WorldWideScience

Sample records for aided fundamental atomistic

  1. Fundamental limitations in developing computer-aided detection for mammography

    International Nuclear Information System (INIS)

    While asymptomatic screening with mammography has been proven to reduce breast cancer mortality, radiologists miss cancers when reading screening mammograms. Computer-aided detection (CADe) is being developed to help radiologists avoid overlooking a cancer. In this paper, we describe two overarching issues that limit the current development of CADe schemes. These are the inability to optimize a scheme for clinical impact - current methods only optimize for how well the CADe scheme works in the absence of a radiologist - and the lack of a figure of merit that quantifies the performance efficiency of the CADe scheme. Such a figure of merit could be used to determine how much better performance a CADe scheme could obtain, at least in theory, and which component of the several techniques employed in the CADe scheme is the weakest link.

  2. Atomistic simulations of nanoindentation

    Directory of Open Access Journals (Sweden)

    Izabela Szlufarska

    2006-05-01

    Full Text Available Our understanding of mechanics is pushed to its limit when the functionality of devices is controlled at the nanometer scale. A fundamental understanding of nanomechanics is needed to design materials with optimum properties. Atomistic simulations can bring an important insight into nanostructure-property relations and, when combined with experiments, they become a powerful tool to move nanomechanics from basic science to the application area. Nanoindentation is a well-established technique for studying mechanical response. We review recent advances in modeling (atomistic and beyond of nanoindentation and discuss how they have contributed to our current state of knowledge.

  3. One Starfish at a Time: Using Fundamentals in Sociology to Rethink Impressions about People Living with HIV/AIDS

    Science.gov (United States)

    Moremen, Robin D.

    2010-01-01

    The purpose of this article is to document how a course in the fundamentals of sociology encouraged students to rethink negative impressions about people with AIDS. Multimethod, active learning processes were utilized to introduce the sociological imagination, critical thinking, and theory and methods in sociology. The intent was to apply basic…

  4. Atomistic k ⋅ p theory

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Craig E., E-mail: craig-pryor@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Pistol, M.-E., E-mail: mats-erik.pistol@ftf.lth.se [NanoLund and Solid State Physics, Lund University, P.O. Box 118, 221 00 Lund (Sweden)

    2015-12-14

    Pseudopotentials, tight-binding models, and k ⋅ p theory have stood for many years as the standard techniques for computing electronic states in crystalline solids. Here, we present the first new method in decades, which we call atomistic k ⋅ p theory. In its usual formulation, k ⋅ p theory has the advantage of depending on parameters that are directly related to experimentally measured quantities, however, it is insensitive to the locations of individual atoms. We construct an atomistic k ⋅ p theory by defining envelope functions on a grid matching the crystal lattice. The model parameters are matrix elements which are obtained from experimental results or ab initio wave functions in a simple way. This is in contrast to the other atomistic approaches in which parameters are fit to reproduce a desired dispersion and are not expressible in terms of fundamental quantities. This fitting is often very difficult. We illustrate our method by constructing a four-band atomistic model for a diamond/zincblende crystal and show that it is equivalent to the sp{sup 3} tight-binding model. We can thus directly derive the parameters in the sp{sup 3} tight-binding model from experimental data. We then take the atomistic limit of the widely used eight-band Kane model and compute the band structures for all III–V semiconductors not containing nitrogen or boron using parameters fit to experimental data. Our new approach extends k ⋅ p theory to problems in which atomistic precision is required, such as impurities, alloys, polytypes, and interfaces. It also provides a new approach to multiscale modeling by allowing continuum and atomistic k ⋅ p models to be combined in the same system.

  5. Atomistic k ⋅ p theory

    International Nuclear Information System (INIS)

    Pseudopotentials, tight-binding models, and k ⋅ p theory have stood for many years as the standard techniques for computing electronic states in crystalline solids. Here, we present the first new method in decades, which we call atomistic k ⋅ p theory. In its usual formulation, k ⋅ p theory has the advantage of depending on parameters that are directly related to experimentally measured quantities, however, it is insensitive to the locations of individual atoms. We construct an atomistic k ⋅ p theory by defining envelope functions on a grid matching the crystal lattice. The model parameters are matrix elements which are obtained from experimental results or ab initio wave functions in a simple way. This is in contrast to the other atomistic approaches in which parameters are fit to reproduce a desired dispersion and are not expressible in terms of fundamental quantities. This fitting is often very difficult. We illustrate our method by constructing a four-band atomistic model for a diamond/zincblende crystal and show that it is equivalent to the sp3 tight-binding model. We can thus directly derive the parameters in the sp3 tight-binding model from experimental data. We then take the atomistic limit of the widely used eight-band Kane model and compute the band structures for all III–V semiconductors not containing nitrogen or boron using parameters fit to experimental data. Our new approach extends k ⋅ p theory to problems in which atomistic precision is required, such as impurities, alloys, polytypes, and interfaces. It also provides a new approach to multiscale modeling by allowing continuum and atomistic k ⋅ p models to be combined in the same system

  6. AIDS

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000594.htm HIV/AIDS To use the sharing features on this page, ... immunodeficiency virus (HIV) is the virus that causes AIDS. When a person becomes infected with HIV, the ...

  7. Integrated computer-aided design in automotive development development processes, geometric fundamentals, methods of CAD, knowledge-based engineering data management

    CERN Document Server

    Mario, Hirz; Gfrerrer, Anton; Lang, Johann

    2013-01-01

    The automotive industry faces constant pressure to reduce development costs and time while still increasing vehicle quality. To meet this challenge, engineers and researchers in both science and industry are developing effective strategies and flexible tools by enhancing and further integrating powerful, computer-aided design technology. This book provides a valuable overview of the development tools and methods of today and tomorrow. It is targeted not only towards professional project and design engineers, but also to students and to anyone who is interested in state-of-the-art computer-aided development. The book begins with an overview of automotive development processes and the principles of virtual product development. Focusing on computer-aided design, a comprehensive outline of the fundamentals of geometry representation provides a deeper insight into the mathematical techniques used to describe and model geometrical elements. The book then explores the link between the demands of integrated design pr...

  8. Parallel Atomistic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  9. Atomistic Modeling of the U-Zr System

    International Nuclear Information System (INIS)

    Atomistic modeling using the BFS method for alloys and ab initio based parameters is proposed for the study of fundamental properties of U-Zr metallic nuclear fuels. Due to its basic atomistic nature and the universal character of the parametrization, the approach can be used for diverse problems such as the interaction between fuel and cladding and temperature gradient fuel constituent redistribution. In the first case, preliminary results for the formation of an interaction layer using large scale simulations are presented. For the second case, a mean field formalism is introduced in order to determine concentration profiles for arbitrary changes in temperature in the radial direction. (author)

  10. Tracking Microstructure of Crystalline Materials: A Post-Processing Algorithm for Atomistic Simulations

    Science.gov (United States)

    Panzarino, Jason F.; Rupert, Timothy J.

    2014-03-01

    Atomistic simulations have become a powerful tool in materials research due to the extremely fine spatial and temporal resolution provided by such techniques. To understand the fundamental principles that govern material behavior at the atomic scale and directly connect to experimental works, it is necessary to quantify the microstructure of materials simulated with atomistics. Specifically, quantitative tools for identifying crystallites, their crystallographic orientation, and overall sample texture do not currently exist. Here, we develop a post-processing algorithm capable of characterizing such features, while also documenting their evolution during a simulation. In addition, the data is presented in a way that parallels the visualization methods used in traditional experimental techniques. The utility of this algorithm is illustrated by analyzing several types of simulation cells that are commonly found in the atomistic modeling literature but could also be applied to a variety of other atomistic studies that require precise identification and tracking of microstructure.

  11. Robust atomistic calculation of dislocation line tension

    Science.gov (United States)

    Szajewski, B. A.; Pavia, F.; Curtin, W. A.

    2015-12-01

    The line tension Γ of a dislocation is an important and fundamental property ubiquitous to continuum scale models of metal plasticity. However, the precise value of Γ in a given material has proven difficult to assess, with literature values encompassing a wide range. Here results from a multiscale simulation and robust analysis of the dislocation line tension, for dislocation bow-out between pinning points, are presented for two widely-used interatomic potentials for Al. A central part of the analysis involves an effective Peierls stress applicable to curved dislocation structures that markedly differs from that of perfectly straight dislocations but is required to describe the bow-out both in loading and unloading. The line tensions for the two interatomic potentials are similar and provide robust numerical values for Al. Most importantly, the atomic results show notable differences with singular anisotropic elastic dislocation theory in that (i) the coefficient of the \\text{ln}(L) scaling with dislocation length L differs and (ii) the ratio of screw to edge line tension is smaller than predicted by anisotropic elasticity. These differences are attributed to local dislocation core interactions that remain beyond the scope of elasticity theory. The many differing literature values for Γ are attributed to various approximations and inaccuracies in previous approaches. The results here indicate that continuum line dislocation models, based on elasticity theory and various core-cut-off assumptions, may be fundamentally unable to reproduce full atomistic results, thus hampering the detailed predictive ability of such continuum models.

  12. Numerical tools for atomistic simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Fang, H. (Mississippi State University); Gullett, Philip Michael; Slepoy, Alexander (Sandia National Laboratories, Albuquerque, NM); Horstemeyer, Mark F. (Mississippi State University); Baskes, Michael I. (Los Alamos National Laboratory, Los Alamos, NM); Wagner, Gregory John; Li, Mo (Materials Science and Engineering, Atlanta, GA)

    2004-01-01

    The final report for a Laboratory Directed Research and Development project entitled 'Parallel Atomistic Computing for Failure Analysis of Micromachines' is presented. In this project, atomistic algorithms for parallel computers were developed to assist in quantification of microstructure-property relations related to weapon micro-components. With these and other serial computing tools, we are performing atomistic simulations of various sizes, geometries, materials, and boundary conditions. These tools provide the capability to handle the different size-scale effects required to predict failure. Nonlocal continuum models have been proposed to address this problem; however, they are phenomenological in nature and are difficult to validate for micro-scale components. Our goal is to separately quantify damage nucleation, growth, and coalescence mechanisms to provide a basis for macro-scale continuum models that will be used for micromachine design. Because micro-component experiments are difficult, a systematic computational study that employs Monte Carlo methods, molecular statics, and molecular dynamics (EAM and MEAM) simulations to compute continuum quantities will provide mechanism-property relations associated with the following parameters: specimen size, number of grains, crystal orientation, strain rates, temperature, defect nearest neighbor distance, void/crack size, chemical state, and stress state. This study will quantify sizescale effects from nanometers to microns in terms of damage progression and thus potentially allow for optimized micro-machine designs that are more reliable and have higher fidelity in terms of strength. In order to accomplish this task, several atomistic methods needed to be developed and evaluated to cover the range of defects, strain rates, temperatures, and sizes that a material may see in micro-machines. Therefore we are providing a complete set of tools for large scale atomistic simulations that include pre

  13. Atomistic Simulations of Nanotube Fracture

    CERN Document Server

    Belytschko, T; Schatz, G; Ruoff, R S

    2002-01-01

    The fracture of carbon nanotubes is studied by atomistic simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The rangle of fracture strians compares well with experimental results, but predicted range of fracture stresses is marketly higher than observed. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle. The results show moderate dependence of fracture strength on chirality.

  14. Atomistic stimulation of defective oxides

    CERN Document Server

    Minervini, L

    2000-01-01

    defect processes. The predominant intrinsic disorder reaction and the mechanism by which excess oxygen is accommodated are established. Furthermore, the most favourable migration mechanism and pathway for oxygen ions is predicted. Chapters 7 and 8 investigate pyrochlore oxides. These materials are candidates for solid oxide fuel cell components and as actinide host phases. Such applications require a detailed understanding of the defect processes. The defect energies, displayed as contour maps, are able to account for structure stability and, given an appropriate partial charge potential model, to accurately determine the oxygen positional parameter. In particular, the dependence of the positional parameter on intrinsic disorder is predicted. It is demonstrated, by radiation damage experiments, that these results are able to predict the radiation performance of pyrochlore oxides. Atomistic simulation calculations based on energy minimization techniques and classical pair potentials are used to study several i...

  15. Local stress and heat flux in atomistic systems involving three-body forces.

    Science.gov (United States)

    Chen, Youping

    2006-02-01

    Local densities of fundamental physical quantities, including stress and heat flux fields, are formulated for atomistic systems involving three-body forces. The obtained formulas are calculable within an atomistic simulation, in consistent with the conservation equations of thermodynamics of continuum, and can be applied to systems with general two- and three-body interaction forces. It is hoped that this work may correct some misuse of inappropriate formulas of stress and heat flux in the literature, may clarify the definition of site energy of many-body potentials, and may serve as an analytical link between an atomistic model and a continuum theory. Physical meanings of the obtained formulas, their relation with virial theorem and heat theorem, and the applicability are discussed. PMID:16468857

  16. Atomistic Simulation of High-Density Uranium Fuels

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Garcés

    2011-01-01

    Full Text Available We apply an atomistic modeling approach to deal with interfacial phenomena in high-density uranium fuels. The effects of Si, as additive to Al or as U-Mo-particles coating, on the behavior of the Al/U-Mo interface is modeled by using the Bozzolo-Ferrante-Smith (BFS method for alloys. The basic experimental features characterizing the real system are identified, via simulations and atom-by-atom analysis. These include (1 the trend indicating formation of interfacial compounds, (2 much reduced diffusion of Al into U-Mo solid solution due to the high Si concentration, (3 Si depletion in the Al matrix, (4 an unexpected interaction between Mo and Si which inhibits Si diffusion to deeper layers in the U-Mo solid solution, and (5 the minimum amount of Si needed to perform as an effective diffusion barrier. Simulation results related to alternatives to Si dispersed in the Al matrix, such as the use of C coating of U-Mo particles or Zr instead of the Al matrix, are also shown. Recent experimental results confirmed early theoretical proposals, along the lines of the results reported in this work, showing that atomistic computational modeling could become a valuable tool to aid the experimental work in the development of nuclear fuels.

  17. Diffusion fundamentals

    OpenAIRE

    2015-01-01

    Diffusion Fundamentals is a peer-reviewed interdisciplinary open-access online journal published as a part of the website Diffusion-Fundamentals.org. It publishes original research articles in the field of diffusion and transport. Main research areas include theory, experiments applications, methods and diffusion-like phenomena. The readers of Diffusion Fundamentals are academic or industrial scientists in all research disciplines. The journal aims at providing a broad forum for their c...

  18. Atomistic modeling of dropwise condensation

    Science.gov (United States)

    Sikarwar, B. S.; Singh, P. L.; Muralidhar, K.; Khandekar, S.

    2016-05-01

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  19. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  20. Atomistic computer simulations a practical guide

    CERN Document Server

    Brazdova, Veronika

    2013-01-01

    Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o

  1. Atomistic simulations for multiscale modeling in bcc metal

    Energy Technology Data Exchange (ETDEWEB)

    Belak, J.; Moriarty, J.A.; Soderlind, P.; Xu, W.; Yang, L.H.; Zhu

    1998-09-25

    Quantum-based atomistic simulations are being used to study fundamental deformation and defect properties relevant to the multiscale modeling of plasticity in bcc metals at both ambient and extreme conditions. Ab initio electronic-structure calculations on the elastic and ideal-strength properties of Ta and Mo help constrain and validate many-body interatomic potentials used to study grain boundaries and dislocations. The predicted C(capital Sigma)5 (310)[100] grain boundary structure for Mo has recently been confirmed in HREM measurements. The core structure, (small gamma) surfaces, Peierls stress, and kink-pair formation energies associated with the motion of a/2(111) screw dislocations in Ta and Mo have also been calculated. Dislocation mobility and dislocation junction formation and breaking are currently under investigation.

  2. Atomistic Processes of Catalyst Degradation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-27

    The purpose of this cooperative research and development agreement (CRADA) between Sasol North America, Inc., and the oak Ridge National Laboratory (ORNL) was to improve the stability of alumina-based industrial catalysts through the combination of aberration-corrected scanning transmission electron microscopy (STEM) at ORNL and innovative sample preparation techniques at Sasol. Outstanding progress has been made in task 1, 'Atomistic processes of La stabilization'. STEM investigations provided structural information with single-atom precision, showing the lattice location of La dopant atoms, thus enabling first-principles calculations of binding energies, which were performed in collaboration with Vanderbilt University. The stabilization mechanism turns out to be entirely due to a particularly strong binding energy of the La tom to the {gamma}-alumina surface. The large size of the La atom precludes incorporation of La into the bulk alumina and also strains the surface, thus preventing any clustering of La atoms. Thus highly disperse distribution is achieved and confirmed by STEM images. la also affects relative stability of the exposed surfaces of {gamma}-alumina, making the 100 surface more stable for the doped case, unlike the 110 surface for pure {gamma}-alumina. From the first-principles calculations, they can estimate the increase in transition temperature for the 3% loading of La used commercially, and it is in excellent agreement with experiment. This task was further pursued aiming to generate useable recommendations for the optimization of the preparation techniques for La-doped aluminas. The effort was primarily concentrated on the connection between the boehmitre-{gamma}-Al{sub 2}O{sub 3} phase transition (i.e. catalyst preparation) and the resulting dispersion of La on the {gamma}-Al{sub 2}O{sub 3} surface. It was determined that the La distribution on boehmite was non-uniform and different from that on the {gamma}-Al{sub 2}O{sub 3} and thus

  3. Operator Fundamentals

    International Nuclear Information System (INIS)

    Recent events show the need for constant attention on the operator fundamentals, in the commercial nuclear industry. The first report about decline in the application of operator fundamentals during plant operational activities and transient situations was issued in July 2005. Analyses of the events recorded during 18 month period between 2010 and 2011 show similar causes and contributors like it was before July 2005. Due to that fact, the WANO issued SOER 2013-1 Operator Fundamentals Weaknesses with proposed suggestions how to analyse area of operator fundamentals and gives recommendations for effective and sustainable corrective actions. Operator fundamentals are the essential knowledge, skills, behaviours, and practices that operating crews need to apply to operate the plant effectively. These fundamentals are as follows: · Monitoring plant indications and conditions closely · Controlling plant evolutions precisely · Operating the plant with a conservative bias · Working effectively as a team · Having a solid understanding of plant design, engineering principles, and sciences. NEK analysed area of operator fundamentals and verified how consistently the basic principles in the plant control are followed in practice. Some opportunities for improvement were recognized for the training area, operational procedures format improvement and improvement in process of preparation of the planned activities during power operation or during plant shutdown. Among other measures, stability in operation with a sufficient safety margin can be achieved only through continuous monitoring of the operational practice and by constant highlighting of the operational standards. (author)

  4. Radiology fundamentals

    CERN Document Server

    Singh, Harjit

    2011-01-01

    ""Radiology Fundamentals"" is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imag

  5. Theoretical modeling of the PEMFC catalyst layer: A review of atomistic methods

    International Nuclear Information System (INIS)

    This article reviews recent progress in the catalyst layer modeling of polymer electrolyte membrane fuel cells. Theoretical modeling is important to understand the basic chemical, and physical phenomena at the atomistic level in materials and relating these fundamentals to the properties and performance of the catalyst layer. Two fundamentally important theoretical methods have been chosen to represent atomistic models, namely density functional theory (DFT) and classical molecular dynamics. In addition, some reactive force field models are highlighted, and the mathematical framework is sufficiently described. The literature review includes important contributions that help to understand the oxygen reduction reaction including gas-phase reaction trends, and the solvation effects are also presented. Moreover, the electric field effect is discussed along with the recently established double reference method in the DFT framework. Using two atomistic simulations based on different axiomatic theories, the production of current density in the molecular junctions is considered with respect to voltage, elucidating applications to simple systems. The models of water transportation via polymer electrolyte membrane, as well as the catalyst and support oxidation are described. Epoxidized carbon support, oxidizable metal-oxide support and electron localization function analysis have provided insights for improving catalyst support material and enable characterization of the bonding between the catalyst and support. Conclusions and future outlook are outlined at the end. Thus the present work enlightens the future of the catalyst modeling towards more realistic models

  6. Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca.

    Science.gov (United States)

    He, Yang; Gu, Meng; Xiao, Haiyan; Luo, Langli; Shao, Yuyan; Gao, Fei; Du, Yingge; Mao, Scott X; Wang, Chongmin

    2016-05-17

    Intercalation and conversion are two fundamental chemical processes for battery materials in response to ion insertion. The interplay between these two chemical processes has never been directly seen and understood at atomic scale. Here, using in situ HRTEM, we captured the atomistic conversion reaction processes during Li, Na, Ca insertion into a WO3 single crystal model electrode. An intercalation step prior to conversion is explicitly revealed at atomic scale for the first time for Li, Na, Ca. Nanoscale diffraction and ab initio molecular dynamic simulations revealed that after intercalation, the inserted ion-oxygen bond formation destabilizes the transition-metal framework which gradually shrinks, distorts and finally collapses to an amorphous W and Mx O (M=Li, Na, Ca) composite structure. This study provides a full atomistic picture of the transition from intercalation to conversion, which is of essential importance for both secondary ion batteries and electrochromic devices. PMID:27071488

  7. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss......Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and...

  8. Atomistic spin dynamics and surface magnons

    International Nuclear Information System (INIS)

    Atomistic spin dynamics simulations have evolved to become a powerful and versatile tool for simulating dynamic properties of magnetic materials. It has a wide range of applications, for instance switching of magnetic states in bulk and nano-magnets, dynamics of topological magnets, such as skyrmions and vortices and domain wall motion. In this review, after a brief summary of the existing investigation tools for the study of magnons, we focus on calculations of spin-wave excitations in low-dimensional magnets and the effect of relativistic and temperature effects in such structures. In general, we find a good agreement between our results and the experimental values. For material specific studies, the atomistic spin dynamics is combined with electronic structure calculations within the density functional theory from which the required parameters are calculated, such as magnetic exchange interactions, magnetocrystalline anisotropy, and Dzyaloshinskii–Moriya vectors. (topical review)

  9. Fundamental enabling issues in nanotechnology :

    Energy Technology Data Exchange (ETDEWEB)

    Floro, Jerrold Anthony; Foiles, Stephen Martin; Hearne, Sean Joseph; Hoyt, Jeffrey John; Seel, Steven Craig; Webb, Edmund Blackburn,; Morales, Alfredo Martin; Zimmerman, Jonathan A.

    2007-10-01

    To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also supports the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g. continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in

  10. Quantum corrections to the `atomistic' MOSFET simulation

    OpenAIRE

    Asenov, A.

    2000-01-01

    In this paper we study the influence of the quantum effects in the inversion layer on the parameter fluctuation in decanano MOSFETs. The quantum mechanical effects are incorporated in our previously published 3D 'atomistic' simulation approach using a full 3D implementation of the density gradient formalism. This results in a consistent, fully 3D, quantum mechanical picture which incorporates the vertical inversion layer quantization, lateral confinement effects associated with the current fi...

  11. Electronic circuits fundamentals & applications

    CERN Document Server

    Tooley, Mike

    2015-01-01

    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  12. Marketing fundamentals.

    Science.gov (United States)

    Redmond, W H

    2001-01-01

    This chapter outlines current marketing practice from a managerial perspective. The role of marketing within an organization is discussed in relation to efficiency and adaptation to changing environments. Fundamental terms and concepts are presented in an applied context. The implementation of marketing plans is organized around the four P's of marketing: product (or service), promotion (including advertising), place of delivery, and pricing. These are the tools with which marketers seek to better serve their clients and form the basis for competing with other organizations. Basic concepts of strategic relationship management are outlined. Lastly, alternate viewpoints on the role of advertising in healthcare markets are examined. PMID:11401791

  13. How fundamental are fundamental constants?

    Science.gov (United States)

    Duff, M. J.

    2015-01-01

    I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, ?. For example, the standard model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers or scales? they use to measure them. Dimensional constants, on the other hand, such as ?, c, G, e and k ?, are merely human constructs whose number and values differ from one choice of units to the next. In this sense, only dimensionless constants are 'fundamental'. Similarly, the possible time variation of dimensionless fundamental 'constants' of nature is operationally well defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as ? or ? on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions. We provide a selection of opposing opinions in the literature and respond accordingly.

  14. How fundamental are fundamental constants?

    CERN Document Server

    Duff, M J

    2014-01-01

    I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, alpha. For example, the Standard Model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers, scales... they use to measure them. Dimensional constants, on the other hand, such as h, c, G, e, k..., are merely human constructs whose number and values differ from one choice of units to the next. In this sense only dimensionless constants are "fundamental". Similarly, the possible time variation of dimensionless fundamental "constants" of nature is operationally well-defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as c or G on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might...

  15. Atomistic simulations of dislocation processes in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Jacobsen, K.W.

    2002-01-01

    We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example, the...... stability of screw dislocation dipoles is discussed. We show that the presence of jogs will strongly influence cross slip barriers and dipole stability. We furthermore present some new results on jogged edge dislocations and edge dislocation dipoles. The jogs are found to be extended, and simulations of...

  16. AGU Chapman Conference Hydrogeologic Processes: Building and Testing Atomistic- to Basin-Scale Models

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, B. [American Geophysical Union, Washington, DC (United States)

    1994-12-31

    This report presents details of the Chapman Conference given on June 6--9, 1994 in Lincoln, New Hampshire. This conference covered the scale of processes involved in coupled hydrogeologic mass transport and a concept of modeling and testing from the atomistic- to the basin- scale. Other topics include; the testing of fundamental atomic level parameterizations in the laboratory and field studies of fluid flow and mass transport and the next generation of hydrogeologic models. Individual papers from this conference are processed separately for the database.

  17. Atomistic modeling of diffusional phasetransformations with elastic strain

    Energy Technology Data Exchange (ETDEWEB)

    Mason, D R; Rudd, R E; Sutton, A P

    2003-10-31

    Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorporating the effects of strain around misfitting atoms and vacancies. Atomic interactions are modelled by Finnis-Sinclair potentials constructed for these simulations. Vacancy diffusion is modelled by comparing the energies of trial states, where the system is partially relaxed for each trial state. No special requirements are made about the description of atomic interactions, making our approach suitable for more fundamentally based models such as tight binding if sufficient computational resources are available. Only a limited precision is required for the energy of each trial state, determined by the value of kBT. Since the change in the relaxation displacement field caused by a vacancy hop decays as 1/r{sup 3} , it is sufficient to determine the next move by relaxing only those atoms in a sphere of finite radius centred on the moving vacancy. However, once the next move has been selected, the entire system is relaxed. Simulations of the early stages of phase separation in Al-Cu with elastic relaxation show an enhanced rate of clustering compared to those performed on the same system with a rigid lattice.

  18. A Primer on Aids for Health Professionals.

    Science.gov (United States)

    Healy, Ramona M.; Coleman, Ted

    1989-01-01

    This article provides health educators with a fundamental practical understanding of some of the characteristics of the AIDS virus and its adverse effects on the human body. Symptoms, preventive measures, transmission patterns, and guidelines for AIDS education are discussed. (IAH)

  19. Scalable Atomistic Simulation Algorithms for Materials Research

    Directory of Open Access Journals (Sweden)

    Aiichiro Nakano

    2002-01-01

    Full Text Available A suite of scalable atomistic simulation programs has been developed for materials research based on space-time multiresolution algorithms. Design and analysis of parallel algorithms are presented for molecular dynamics (MD simulations and quantum-mechanical (QM calculations based on the density functional theory. Performance tests have been carried out on 1,088-processor Cray T3E and 1,280-processor IBM SP3 computers. The linear-scaling algorithms have enabled 6.44-billion-atom MD and 111,000-atom QM calculations on 1,024 SP3 processors with parallel efficiency well over 90%. production-quality programs also feature wavelet-based computational-space decomposition for adaptive load balancing, spacefilling-curve-based adaptive data compression with user-defined error bound for scalable I/O, and octree-based fast visibility culling for immersive and interactive visualization of massive simulation data.

  20. Towards Automated Benchmarking of Atomistic Forcefields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive

    CERN Document Server

    Beauchamp, Kyle A; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-01-01

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the forcefield employed. While experimental measurements of fundamental physical properties offer a straightforward approach for evaluating forcefield quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark datasets of physical properties from non-machine-readable sources require substantial human effort and is prone to accumulation of human errors, hindering the development of reproducible benchmarks of forcefield accuracy. Here, we examine the feasibility of benchmarking atomistic forcefields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating format. As a proof of concept, we present a detailed benchmark of the generalized Amber small molecule forcefield (GAFF) using t...

  1. Free energy of steps using atomistic simulations

    Science.gov (United States)

    Freitas, Rodrigo; Frolov, Timofey; Asta, Mark

    The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.

  2. Atomistic simulations of caloric effects in ferroelectrics

    Science.gov (United States)

    Lisenkov, Sergey; Ponomareva, Inna

    2013-03-01

    The materials that exhibit large caloric effects have emerged as promising candidates for solid-state refrigeration which is an energy-efficient and environmentally friendly alternative to the conventional refrigeration technology. However, despite recent ground breaking discoveries of giant caloric effects in some materials they appear to remain one of nature's rarities. Here we use atomistic simulations to study electrocaloric and elastocaloric effects in Ba0.5Sr0.5TiO3 and PbTiO3 ferroelectrics. Our study reveals the intrinsic features of such caloric effects in ferroelectrics and their potential to exhibit giant caloric effects. Some of the findings include the coexistence of negative and positive electrocaloric effects in one material and an unusual field-driven transition between them as well as the coexistence of multiple giant caloric effects in Ba0.5Sr0.5TiO3 alloys. These findings could potentially lead to new paradigms for cooling devices. This work is partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0005245.

  3. Atomistic mechanisms of fatigue in nanotwinned metals

    International Nuclear Information System (INIS)

    We investigate the fatigue behavior of nanotwinned Cu using a combination of molecular statics and molecular dynamics simulations. The presence of nanoscale twins is found to enhance fatigue crack growth resistance. For the twin-free nanocrystalline samples, the fatigue crack propagates by linking the nanovoids that are formed ahead of the crack tip. In the case of the nanotwinned samples, however, it advances as the crack tip alternately blunts and re-sharpens due to dislocation emission and slip. Both detwinning and crack closure are observed in the path of the fatigue crack in nanotwinned samples with a high density of twin boundaries. As the twin number per grain (quantified by the ratio of the mean grain size to the twin boundary spacing d/λ) increases, detwinning increases the dissipated energy of fatigue cracking, leading to enhanced fatigue resistance. The atomistic simulations show that fatigue crack growth in nanotwinned Cu conforms to Paris’ law. In conjunction with the experimental results, we obtain a quantitative estimation of the Paris’ law exponent (∼4.0), which is in agreement with the theoretical predictions from the damage accumulation model

  4. Multi-scale modelling of ions in solution: from atomistic descriptions to chemical engineering

    International Nuclear Information System (INIS)

    Ions in solution play a fundamental role in many physical, chemical, and biological processes. The PUREX process used in the nuclear industry to the treatment of spent nuclear fuels is considered as an example. For industrial applications these systems are usually described using simple analytical models which are fitted to reproduce the available experimental data. In this work, we propose a multi-scale coarse graining procedure to derive such models from atomistic descriptions. First, parameters for classical force-fields of ions in solution are extracted from ab-initio calculations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution functions measured in classical molecular dynamics simulations, allowing us to define an implicit solvent model of electrolytes. Finally, perturbation calculations are performed to define the best possible representation for these systems, in terms of charged hard-sphere models. Our final model is analytical and contains no free 'fitting' parameters. It shows good agreement with the exact results obtained from Monte-Carlo simulations for the thermodynamic and structural properties. Development of a similar model for the electrolyte viscosity, from information derived from atomistic descriptions, is also introduced. (author)

  5. A comparison of finite element and atomistic modelling of fracture

    International Nuclear Information System (INIS)

    Are the cohesive laws of interfaces sufficient for modelling fracture in polycrystals using the cohesive zone model? We examine this question by comparing a fully atomistic simulation of a silicon polycrystal with a finite element simulation with a similar overall geometry. The cohesive laws used in the finite element simulation are measured atomistically. We describe in detail how to convert the output of atomistic grain boundary fracture simulations into the piecewise linear form needed by a cohesive zone model. We discuss the effects of grain boundary microparameters (the choice of section of the interface, the translations of the grains relative to one another and the cutting plane of each lattice orientation) on the cohesive laws and polycrystal fracture. We find that the atomistic simulations fracture at lower levels of external stress, indicating that the initiation of fracture in the atomistic simulations is likely dominated by irregular atomic structures at external faces, internal edges, corners and junctions of grains. Thus, the cohesive properties of interfaces alone are not likely to be sufficient for modelling the fracture of polycrystals using continuum methods

  6. A robust, coupled approach for atomistic-continuum simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, Sylvie; Webb, Edmund Blackburn, III (Sandia National Laboratories, Albuquerque, NM); Wagner, Gregory John; Klein, Patrick A.; Jones, Reese E.; Zimmerman, Jonathan A.; Bammann, Douglas J.; Hoyt, Jeffrey John (Sandia National Laboratories, Albuquerque, NM); Kimmer, Christopher J.

    2004-09-01

    This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.

  7. Aid Effectiveness

    DEFF Research Database (Denmark)

    Arndt, Channing; Jones, Edward Samuel; Tarp, Finn

    Controversy over the aggregate impact of foreign aid has focused on reduced form estimates of the aid-growth link. The causal chain, through which aid affects developmental outcomes including growth, has received much less attention. We address this gap by: (i) specifying a structural model of the...... main relationships; (ii) estimating the impact of aid on a range of final and intermediate outcomes; and (iii) quantifying a simplied representation of the full structural form, where aid impacts on growth through key intermediate outcomes. A coherent picture emerges: aid stimulates growth and reduces...

  8. AIDS (image)

    Science.gov (United States)

    AIDS (acquired immune deficiency syndrome) is caused by HIV (human immunodeficiency virus), and is a syndrome that ... life-threatening illnesses. There is no cure for AIDS, but treatment with antiviral medication can suppress symptoms. ...

  9. Hearing Aids

    Science.gov (United States)

    ... more in both quiet and noisy situations. Hearing aids help people who have hearing loss from damage ... your doctor. There are different kinds of hearing aids. They differ by size, their placement on or ...

  10. Hearing Aids

    Science.gov (United States)

    ... electrical nerve impulses and send them to the auditory nerve, which connects the inner ear to the ... prefer. Cleaning makes a difference in hearing aid comfort. A perfectly comfortable hearing aid can become pretty ...

  11. Foreign aid

    DEFF Research Database (Denmark)

    Tarp, Finn

    2008-01-01

    Foreign aid has evolved significantly since the Second World War in response to a dramatically changing global political and economic context. This article (a) reviews this process and associated trends in the volume and distribution of foreign aid; (b) reviews the goals, principles and instituti......Foreign aid has evolved significantly since the Second World War in response to a dramatically changing global political and economic context. This article (a) reviews this process and associated trends in the volume and distribution of foreign aid; (b) reviews the goals, principles and...... institutions of the aid system; and (c) discusses whether aid has been effective. While much of the original optimism about the impact of foreign aid needed modification, there is solid evidence that aid has indeed helped further growth and poverty reduction...

  12. An object oriented Python interface for atomistic simulations

    Science.gov (United States)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.

    2016-01-01

    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  13. Atomistic calculation of the thermoelectric properties of Si nanowires

    OpenAIRE

    Bejenari, Igor; Kratzer, Peter

    2014-01-01

    The thermoelectric properties of 1.6 nm-thick Si square nanowires with [100] crystalline orientation are calculated over a wide temperature range from 0 K to 1000 K, taking into account atomistic electron-phonon interaction. In our model, the [010] and [001] facets are passivated by hydrogen and there are Si-Si dimers on the nanowire surface. The electronic structure was calculated by using the sp^3 spin-orbit-coupled atomistic second-nearest-neighbor tight-binding model. The phonon dispersio...

  14. Hierarchical approach to 'atomistic' 3-D MOSFET simulation

    OpenAIRE

    Asenov, A.; Brown, A. R.; J. H. Davies; S Saini

    1999-01-01

    We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1-μm MOSFETs. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have de...

  15. Calculation and visualization of atomistic mechanical stresses in nanomaterials and biomolecules.

    Directory of Open Access Journals (Sweden)

    Andrew T Fenley

    Full Text Available Many biomolecules have machine-like functions, and accordingly are discussed in terms of mechanical properties like force and motion. However, the concept of stress, a mechanical property that is of fundamental importance in the study of macroscopic mechanics, is not commonly applied in the biomolecular context. We anticipate that microscopical stress analyses of biomolecules and nanomaterials will provide useful mechanistic insights and help guide molecular design. To enable such applications, we have developed Calculator of Atomistic Mechanical Stress (CAMS, an open-source software package for computing atomic resolution stresses from molecular dynamics (MD simulations. The software also enables decomposition of stress into contributions from bonded, nonbonded and Generalized Born potential terms. CAMS reads GROMACS topology and trajectory files, which are easily generated from AMBER files as well; and time-varying stresses may be animated and visualized in the VMD viewer. Here, we review relevant theory and present illustrative applications.

  16. A fully atomistic computer simulation study of cold denaturation of a β-hairpin

    Science.gov (United States)

    Yang, Changwon; Jang, Soonmin; Pak, Youngshang

    2014-12-01

    Cold denaturation is a fundamental phenomenon in aqueous solutions where the native structure of proteins disrupts on cooling. Understanding this process in molecular details can provide a new insight into the detailed natures of hydrophobic forces governing the stability of proteins in water. We show that the cold-denaturation-like phenomenon can be directly observed at low temperatures using a fully atomistic molecular dynamics simulation method. Using a highly optimized protein force field in conjunction with three different explicit water models, a replica exchange molecular dynamics simulation scheme at constant pressures allows for the computation of the melting profile of an experimentally well-characterized β-hairpin peptide. For all three water models tested, the simulated melting profiles are indicative of possible cold denaturation. From the analysis of simulation ensembles, we find that the most probable cold-denatured structure is structurally compact, with its hydrogen bonds and native hydrophobic packing substantially disrupted.

  17. Hybrid continuum-atomistic approach to model electrokinetics in nanofluidics.

    Science.gov (United States)

    Amani, Ehsan; Movahed, Saeid

    2016-06-01

    In this study, for the first time, a hybrid continuum-atomistic based model is proposed for electrokinetics, electroosmosis and electrophoresis, through nanochannels. Although continuum based methods are accurate enough to model fluid flow and electric potential in nanofluidics (in dimensions larger than 4 nm), ionic concentration is too low in nanochannels for the continuum assumption to be valid. On the other hand, the non-continuum based approaches are too time-consuming and therefore is limited to simple geometries, in practice. Here, to propose an efficient hybrid continuum-atomistic method of modelling the electrokinetics in nanochannels; the fluid flow and electric potential are computed based on continuum hypothesis coupled with an atomistic Lagrangian approach for the ionic transport. The results of the model are compared to and validated by the results of the molecular dynamics technique for a couple of case studies. Then, the influences of bulk ionic concentration, external electric field, size of nanochannel, and surface electric charge on the electrokinetic flow and ionic mass transfer are investigated, carefully. The hybrid continuum-atomistic method is a promising approach to model more complicated geometries and investigate more details of the electrokinetics in nanofluidics. PMID:27155300

  18. Adaptive resolution simulation of an atomistic protein in MARTINI water

    NARCIS (Netherlands)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J.; Praprotnik, Matej

    2014-01-01

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coa

  19. Bridging the Macroscopic and Atomistic Descriptions of the Electrocaloric Effect

    Science.gov (United States)

    Ponomareva, I.; Lisenkov, S.

    2012-04-01

    First-principles-based simulations are used to simulate the electrocaloric effect (ECE) in Ba0.5Sr0.5TiO3 alloys. In analogy with experimental studies we simulate the effect directly and indirectly (via the use of Maxwell thermodynamics). Both direct and indirect simulations utilize the same atomistic framework that allows us to compare them in a systematic way and with an atomistic precision for the very first time. Such precise comparison allows us to provide a bridge between the atomistic and macroscopic descriptions of the ECE and identify the factors that may critically compromise or even destroy their equivalence. Our computational data reveal the intrinsic features of ECE in ferroelectrics with multiple ferroelectric transitions and confirm the potential of these materials to exhibit giant electrocaloric response. The coexistence of negative and positive ECE in one material as well as an unusual field-driven transition between them is predicted, explained at an atomistic level, and proposed as a potential way to enhance the electrocaloric efficiency.

  20. Definition and detection of contact in atomistic simulations

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    2015-01-01

    In atomistic simulations, contact depends on the accurate detection of contacting atoms as well as their contact area. While it is common to define contact between atoms based on the so-called ‘contact distance’ where the interatomic potential energy reaches its minimum, this discounts, for example,

  1. Exchange Rates and Fundamentals.

    Science.gov (United States)

    Engel, Charles; West, Kenneth D.

    2005-01-01

    We show analytically that in a rational expectations present-value model, an asset price manifests near-random walk behavior if fundamentals are I (1) and the factor for discounting future fundamentals is near one. We argue that this result helps explain the well-known puzzle that fundamental variables such as relative money supplies, outputs,…

  2. On the fundamental Lagrangian

    International Nuclear Information System (INIS)

    Derivation of a fundamental object associated with internal symmetry is discussed. The form of the fundamental lagrangian is supposed to be known. The fundamental object is similar to an energy-momentum tensor having external space-time symmetry as a source

  3. Hearing Aids

    Science.gov (United States)

    ... prefer the open-fit hearing aid because their perception of their voice does not sound “plugged up.” ... My voice sounds too loud. The “plugged-up” sensation that causes a hearing aid user’s voice to ...

  4. Brand Aid

    DEFF Research Database (Denmark)

    Richey, Lisa Ann; Ponte, Stefano

    A critical account of the rise of celebrity-driven “compassionate consumption” Cofounded by the rock star Bono in 2006, Product RED exemplifies a new trend in celebrity-driven international aid and development, one explicitly linked to commerce, not philanthropy. Brand Aid offers a deeply informed...

  5. Adhesive contact:from atomistic model to continuum model

    Institute of Scientific and Technical Information of China (English)

    Fan Kang-Qi; Jia Jian-Yuan; Zhu Ying-Min; Zhang Xiu-Yan

    2011-01-01

    Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a selfconsistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The effect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.

  6. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    International Nuclear Information System (INIS)

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  7. Atomistic modelling of radiation effects: Towards dynamics of exciton relaxation

    OpenAIRE

    Shluger, A. L.; Gavartin, J. L.; Szymanski, M. A.; Stoneham, A. M.

    2000-01-01

    This brief review is focused on recent results of atomistic modelling and simulation of exciton related processes in ionic materials. We present an analysis of thermal fluctuations of the electrostatic potential in cubic ionic crystals and their relation to formation of a tail in the electron density of states and localisation of electronic states. Then the possible 'fast' mechanism of formation of F-H pairs in KBr as a result of decomposition of relaxing excitons is discussed. We briefly des...

  8. Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers

    OpenAIRE

    Bennett, W. F. Drew; Sapay, Nicolas; Tieleman, D. Peter

    2014-01-01

    Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DM...

  9. Redox reactions with empirical potentials: Atomistic battery discharge simulations

    OpenAIRE

    Dapp, Wolf B.; Müser, Martin H.

    2013-01-01

    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each ...

  10. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    Science.gov (United States)

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency. PMID:19518394

  11. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine

    CERN Document Server

    Rapaport, D C

    2009-01-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  12. Structure identification methods for atomistic simulations of crystalline materials

    OpenAIRE

    Stukowski, Alexander

    2012-01-01

    We discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as Common Neighbor Analysis, Centrosymmetry Analysis, Bond Angle Analysis, Bond Order Analysis, and Voronoi Analysis. In addition we propose a simple extension to the Common Neighbor Analysis method that makes it suitable for multi-phase systems...

  13. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine

    Science.gov (United States)

    Rapaport, D. C.

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  14. Atomistic Determination of Cross-Slip Pathway and Energetics

    DEFF Research Database (Denmark)

    Rasmussen, Torben; Jacobsen, Karsten Wedel; Leffers, Torben;

    1997-01-01

    The mechanism for cross slip of a screw dislocation in Cu is determined by atomistic simulations that only presume the initial and final states of the process. The dissociated dislocation constricts in the primary plane and redissociates into the cross-slip plane while still partly in the primary...... dislocation is determined. The breakdown of linear elasticity theory for small splitting widths is studied. [S0031-9007(97)04444-X]....

  15. Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires

    OpenAIRE

    Chen, Jie; Zhang, Gang; Li, Baowen

    2012-01-01

    By using non-equilibrium molecular dynamics simulations, we demonstrated that thermal conductivity of Germanium nanowires can be reduced more than 25% at room temperature by atomistic coating. There is a critical coating thickness beyond which thermal conductivity of the coated nanowire is larger than that of the host nanowire. The diameter dependent critical coating thickness and minimum thermal conductivity are explored. Moreover, we found that interface roughness can induce further reducti...

  16. Islamic fundamentalism in Indonesia

    OpenAIRE

    Nagy, Sandra L.

    1996-01-01

    This is a study of Islamic fundamentalism in Indonesia. Islamic fundamentalism is defined as the return to the foundations and principles of Islam including all movements based on the desire to create a more Islamic society. After describing the practices and beliefs of Islam, this thesis examines the three aspects of universal Islamic fundamentalism: revivalism, resurgence, and radicalism. It analyzes the role of Islam in Indonesia under Dutch colonial rule, an alien Christian imperialist po...

  17. Fundamentals of gas dynamics

    CERN Document Server

    Babu, V

    2014-01-01

    Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav

  18. Hearing Aid

    Science.gov (United States)

    ... and Food and Drug Administration Staff FDA permits marketing of new laser-based hearing aid with potential ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  19. Ash'arite's atomistic conception of the physical world: A restatement

    International Nuclear Information System (INIS)

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21st century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them

  20. Development and assessment of atomistic models for predicting static friction coefficients

    Science.gov (United States)

    Jahangiri, Soran; Heverly-Coulson, Gavin S.; Mosey, Nicholas J.

    2016-08-01

    The friction coefficient relates friction forces to normal loads and plays a key role in fundamental and applied areas of science and technology. Despite its importance, the relationship between the friction coefficient and the properties of the materials forming a sliding contact is poorly understood. We illustrate how simple relationships regarding the changes in energy that occur during slip can be used to develop a quantitative model relating the friction coefficient to atomic-level features of the contact. The slip event is considered as an activated process and the load dependence of the slip energy barrier is approximated with a Taylor series expansion of the corresponding energies with respect to load. The resulting expression for the load-dependent slip energy barrier is incorporated in the Prandtl-Tomlinson (PT) model and a shear-based model to obtain expressions for friction coefficient. The results indicate that the shear-based model reproduces the static friction coefficients μs obtained from first-principles molecular dynamics simulations more accurately than the PT model. The ability of the model to provide atomistic explanations for differences in μs amongst different contacts is also illustrated. As a whole, the model is able to account for fundamental atomic-level features of μs, explain the differences in μs for different materials based on their properties, and might be also used in guiding the development of contacts with desired values of μs.

  1. Ash'arite's atomistic conception of the physical world: A restatement

    Science.gov (United States)

    Pozi, Firdaus; Mohamed, Faizal; Othman, Mohd Yusof

    2013-11-01

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21st century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them.

  2. Ash'arite's atomistic conception of the physical world: A restatement

    Energy Technology Data Exchange (ETDEWEB)

    Pozi, Firdaus; Othman, Mohd Yusof [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia and Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia); Mohamed, Faizal [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21{sup st} century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them.

  3. The scientific and cultural role of atomistic

    International Nuclear Information System (INIS)

    The development of the idea that atoms are the building blocks of matter is presented. This hypothesis began in the Ancient Greece and, independently, in the Ancient India. Arguments are presented that the fact that the atomic theory started in these two regions and not e.g. in Egypt, China or by the Mayas can be linked to their writing. In both Greece and India the alphabet contained letters and not pictograms as used in the three other cultures. The role of Islamic scholars in preserving the knowledge of the ancient atomic theories is presented. In the Middle Ages a significant part of the Greek philosophic treatises have been firstly learned via the Arab translations. It is shown that the atomic concept has not been developed in the Middle Ages. This was because the church found it to be in a disagreement with the Holy Scripture. The start of the modern scientific atomic theory is presented and the role of the established quantitative laws of chemical reactions is discussed. Arguments are presented that the atoms discovered in the nineteenth century did not have the qualities of the atoms proposed by the Ancient Greek philosophers. Contrary to the atoms proposed by the Greeks the former can be decomposed into more fundamental parts. The discussion of the possibility that quarks, leptons and quanta of interactions fields meet the above qualities is presented. (author)

  4. Fluid mechanics fundamentals and applications

    CERN Document Server

    Cengel, Yunus

    2013-01-01

    Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...

  5. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  6. Numerical Simulation of The Mechanical Properties of Carbon Nanotube Using the Atomistic-Continuum Mechanics

    OpenAIRE

    Wu, C. -J.; Chou, C. -Y.; Han, C. -N.; Chiang, K.-N.

    2006-01-01

    This paper the utilizes atomistic-continuum mechanics (ACM) to investigate the mechanical properties of single-walled carbon nanotubes (SWCNTs). By establishing a linkage between structural mechanics and molecular mechanics, not only the Young's moduli could be obtained but also the modal analysis could be achieved. In addition, according to atomistic-continuum mechanics and finite element method, an effective atomistic-continuum model is constructed to investigate the above two mechanical pr...

  7. Fundamental neutron physics

    International Nuclear Information System (INIS)

    Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more

  8. On Ethical Fundamentalisms

    Directory of Open Access Journals (Sweden)

    Otacílio Gomes da Silva Neto

    2014-04-01

    Full Text Available The history involves diverse types of fundamentalism. This article highlights a variety of ethical fundamentalist thoughts that marked humanity and were challenged by thinkers and intellectuals. The fundamentalism originates in the interpretation of doctrines isolated from their historical context and without room for criticism. As understood in the entry in Voltaire´s Dictionnaire philosophique_(1752, fundamentalism is closely related to fanaticism. The practice of interpreting any one doctrine as containing a single fundamental truth can result in a type of blindness that impedes the ability to observe reality with a critical spirit. Certain modern thinkers generally associate fundamentalism with religion and hold it responsible for great human tragedy._ However, fundamentalism unrelated to religion was also spread and likewise caused insurmountable damage to human life. Fundamentalism is defined in the following terms: philosophical, scientific, totalitarian and economic. In as much as one tries to identify and denounce fundamentalism, it seems that it continues to appear in the course of human relations. Whenever critics stand against determined fanaticisms, others will arise to be denounced._ This discussion might be considered trivial if the current state of affairs did not threaten human life, and if predictions were favorable for the life of our species on this planet.

  9. How fundamental is the fundamental assumption?

    OpenAIRE

    Kurbis, Nils

    2012-01-01

    The fundamental assumption of Dummett’s and Prawitz’ proof-theoretic justification of deduction is that ‘if we have a valid argument for a complex statement, we can construct a valid argument for it which finishes with an application of one of the introduction rules governing its principal operator’. I argue that the assumption is flawed in this general version, but should be restricted, not to apply to arguments in general, but only to proofs. I also argue that Dummett’s and Prawitz’ project...

  10. Fundamentals of electronics

    CERN Document Server

    Schubert, Thomas F

    2015-01-01

    This book, Electronic Devices and Circuit Application, is the first of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters describing the basic operation of each of the four fundamental building blocks of modern electronics: operational amplifiers, semiconductor diodes, bipolar junction transistors, and field effect transistors. Attention is focused on the reader obtaining a clear understanding of each of the devices when it is operated in equilibrium. Ideas fundamental to the study of electronic circuits are also developed in the book at a basic level to

  11. Types of Hearing Aids

    Science.gov (United States)

    ... Devices Consumer Products Hearing Aids Types of Hearing Aids Share Tweet Linkedin Pin it More sharing options ... some features for hearing aids? What are hearing aids? Hearing aids are sound-amplifying devices designed to ...

  12. Mesoscale computational study of the nanocrystallization of amorphous Ge via a self-consistent atomistic phase-field model

    International Nuclear Information System (INIS)

    Germanium is the base element in many phase-change materials, i.e. systems that can undergo reversible transformations between their crystalline and amorphous phases. These materials are widely used in current digital electronics and hold great promise for the next generation of non-volatile memory devices. However, the ultra-fast phase transformations required for these applications can be exceedingly complex even for single-component systems, and a full physical understanding of these phenomena is still lacking. In this paper we study the growth of crystalline Ge from amorphous thin films at high temperature using phase-field models informed by atomistic calculations of fundamental material properties. The atomistic calculations capture the full anisotropy of the Ge crystal lattice, which results in orientation dependences for interfacial energies and mobilities. These orientation relations are then exactly recovered by the phase-field model at finite thickness via a novel parametrization strategy based on invariance solutions of the Allen–Cahn equations. By means of this multiscale approach, we study the interplay between nucleation and growth and find that the relation between the mean radius of the crystallized Ge grains and the nucleation rate follows simple Avrami-type scaling laws. We argue that these can be used to cover a wide region of the nucleation rate space, hence facilitating comparison with experiments

  13. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  14. Fundamentals of crystallography

    CERN Document Server

    2011-01-01

    Crystallography is a basic tool for scientists in many diverse disciplines. This text offers a clear description of fundamentals and of modern applications. It supports curricula in crystallography at undergraduate level.

  15. Fundamental strings in SFT

    OpenAIRE

    Bonora, L.; Maccaferri, C.; Santos, R. J. Scherer; Tolla, D. D.

    2005-01-01

    In this letter we show that vacuum string field theory contains exact solutions that can be interpreted as macroscopic fundamental strings. They are formed by a condensate of infinitely many completely space-localized solutions (D0-branes).

  16. Information security fundamentals

    CERN Document Server

    Peltier, Thomas R

    2013-01-01

    Developing an information security program that adheres to the principle of security as a business enabler must be the first step in an enterprise's effort to build an effective security program. Following in the footsteps of its bestselling predecessor, Information Security Fundamentals, Second Edition provides information security professionals with a clear understanding of the fundamentals of security required to address the range of issues they will experience in the field.The book examines the elements of computer security, employee roles and r

  17. Fundamental Equation of Economics

    OpenAIRE

    Wayne, James J.

    2013-01-01

    Recent experience of the great recession of 2008 has renewed one of the oldest debates in economics: whether economics could ever become a scientific discipline like physics. This paper proves that economics is truly a branch of physics by establishing for the first time a fundamental equation of economics (FEOE), which is similar to many fundamental equations governing other subfields of physics, for example, Maxwell’s Equations for electromagnetism. From recently established physics laws of...

  18. Fundamentalism and terrorism

    OpenAIRE

    Cassandra Christina Rausch

    2015-01-01

    Citizens worldwide are becoming all too familiar with the accelerated frequency of terrorist attacks in the 21st century, particularly with those involving a religious underpinning. Why, though, have religiously-affiliated acts of terrorism become such a common occurrence? By examining how religious fundamentalism has accelerated and intensified terrorism within the modern world, scholars can focus on determining the “why”. By historically defining terrorism and fundamentalism and then placin...

  19. Fundamentals of structural dynamics

    CERN Document Server

    Craig, Roy R

    2006-01-01

    From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e

  20. Fundamentalism and science

    Directory of Open Access Journals (Sweden)

    Massimo Pigliucci

    2006-06-01

    Full Text Available The many facets of fundamentalism. There has been much talk about fundamentalism of late. While most people's thought on the topic go to the 9/11 attacks against the United States, or to the ongoing war in Iraq, fundamentalism is affecting science and its relationship to society in a way that may have dire long-term consequences. Of course, religious fundamentalism has always had a history of antagonism with science, and – before the birth of modern science – with philosophy, the age-old vehicle of the human attempt to exercise critical thinking and rationality to solve problems and pursue knowledge. “Fundamentalism” is defined by the Oxford Dictionary of the Social Sciences1 as “A movement that asserts the primacy of religious values in social and political life and calls for a return to a 'fundamental' or pure form of religion.” In its broadest sense, however, fundamentalism is a form of ideological intransigence which is not limited to religion, but includes political positions as well (for example, in the case of some extreme forms of “environmentalism”.

  1. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions

    KAUST Repository

    French, William R.

    2013-01-01

    We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.

  2. Brand Aid

    DEFF Research Database (Denmark)

    Richey, Lisa Ann; Ponte, Stefano

    2011-01-01

    activists, scholars and venture capitalists, discusses the pros and cons of changing the world by ‘voting with your dollars’. Lisa Ann Richey and Stefano Ponte (Professor at Roskilde University and Senior Researcher at DIIS respectively), authors of Brand Aid: Shopping Well to Save the World, highlight how...

  3. Negotiating Aid

    DEFF Research Database (Denmark)

    Whitfield, Lindsay; Fraser, Alastair

    2011-01-01

    This article presents a new analytical approach to the study of aid negotiations. Building on existing approaches but trying to overcome their limitations, it argues that factors outside of individual negotiations (or the `game' in game-theoretic approaches) significantly affect the preferences of...

  4. Atomistic simulations of jog migration on extended screw dislocations

    DEFF Research Database (Denmark)

    Vegge, T.; Leffers, T.; Pedersen, O.B.; Jacobsen, K.W.

    Effective Medium Theory, The minimum energy path through configuration space and the corresponding transition state energy are obtained using the Nudged Elastic Band path technique. We find very similar migration properties for elementary jogs on the (110){110} octahedral slip systems and the (110){110} non......We have performed large-scale atomistic simulations of the migration of elementary jogs on dissociated screw dislocations in Cu. The local crystalline configurations, transition paths. effective masses. and migration barriers for the jogs are determined using an interatomic potential based on the...

  5. Atomistic simulations of Mg-Cu metallic glasses: Mechanical properties

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    The atomistic mechanisms of plastic deformation in amorphous metals are far from being understood. We have derived potential parameters for molecular dynamics simulations of Mg-Cu amorphous alloys using the Effective Medium Theory. We have simulated the formation of alloys by cooling from the melt......, and have used these glassy configurations to carry out simulations of plastic deformation. These involved different compositions, temperatures (including zero), and types of deformation (uniaxial strain/pure shear), and yielded stress-strain curves and values of flow stress. Separate simulations were...

  6. Atomistic simulations of plasma-wall interactions in fusion reactors

    International Nuclear Information System (INIS)

    Atomistic computer simulations, especially molecular dynamics, but also kinetic Monte Carlo simulations and electronic structure calculations, have proven to be a valuable tool for studying radiation effects in fusion reactor materials. In this paper, I will first review a few cases where these methods have given additional insights into the interaction between a fusion plasma and the first wall of a reactor. Then I will, in the spirit of the workshop theme of 'new directions in plasma-wall interactions' discuss some possible future avenues of research

  7. Multiscale atomistic simulation of metal-oxygen surface interactions: methodological development, theoretical investigation, and correlation with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Judith C. [University of Pittsburgh

    2015-01-09

    The purpose of this grant is to develop the multi-scale theoretical methods to describe the nanoscale oxidation of metal thin films, as the PI (Yang) extensive previous experience in the experimental elucidation of the initial stages of Cu oxidation by primarily in situ transmission electron microscopy methods. Through the use and development of computational tools at varying length (and time) scales, from atomistic quantum mechanical calculation, force field mesoscale simulations, to large scale Kinetic Monte Carlo (KMC) modeling, the fundamental underpinings of the initial stages of Cu oxidation have been elucidated. The development of computational modeling tools allows for accelerated materials discovery. The theoretical tools developed from this program impact a wide range of technologies that depend on surface reactions, including corrosion, catalysis, and nanomaterials fabrication.

  8. Fundamentals of turbomachines

    CERN Document Server

    Dick, Erik

    2015-01-01

    This book explores the working principles of all kinds of turbomachines. The same theoretical framework is used to analyse the different machine types. Fundamentals are first presented and theoretical concepts are then elaborated for particular machine types, starting with the simplest ones.For each machine type, the author strikes a balance between building basic understanding and exploring knowledge of practical aspects. Readers are invited through challenging exercises to consider how the theory applies to particular cases and how it can be generalised.   The book is primarily meant as a course book. It teaches fundamentals and explores applications. It will appeal to senior undergraduate and graduate students in mechanical engineering and to professional engineers seeking to understand the operation of turbomachines. Readers will gain a fundamental understanding of turbomachines. They will also be able to make a reasoned choice of turbomachine for a particular application and to understand its operation...

  9. Atomistically-informed Dislocation Dynamics in fcc Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E; Marian, J; Arsenlis, T; Victoria, M; Perlado, J M

    2006-09-06

    We develop a nodal dislocation dynamics (DD) model to simulate plastic processes in fcc crystals. The model explicitly accounts for all slip systems and Burgers vectors observed in fcc systems, including stacking faults and partial dislocations. We derive simple conservation rules that describe all partial dislocation interactions rigorously and allow us to model and quantify cross-slip processes, the structure and strength of dislocation junctions and the formation of fcc-specific structures such as stacking fault tetrahedra. The DD framework is built upon isotropic non-singular linear elasticity, and supports itself on information transmitted from the atomistic scale. In this fashion, connection between the meso and micro scales is attained self-consistently with core parameters fitted to atomistic data. We perform a series of targeted simulations to demonstrate the capabilities of the model, including dislocation reactions and dissociations and dislocation junction strength. Additionally we map the four-dimensional stress space relevant for cross-slip and relate our findings to the plastic behavior of monocrystalline fcc metals.

  10. Adaptive resolution simulation of an atomistic protein in MARTINI water

    International Nuclear Information System (INIS)

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations

  11. Testing continuum concepts for hydrogen embrittlement in metals using atomistics

    International Nuclear Information System (INIS)

    Hydrogen embrittlement is a pervasive mode of degradation in many metallic systems that can occur via several mechanisms. Here, the competition between dislocation emission and cleavage at a crack tip is evaluated in the presence of H. At this level, embrittlement is predicted when the critical stress intensity required for emission rises above that needed for cleavage, eliminating crack tip plasticity and blunting as toughening mechanisms. Continuum predictions for emission and cleavage are made using computed generalized stacking fault energies and surface energies in a model Ni–H system, and embrittlement is predicted at a critical H concentration. An atomistic model is then used to investigate actual crack tip behavior in the presence of controlled arrays of H atoms around the crack tip. The continuum models are accurate at low H concentrations, below the embrittlement point, but at higher H concentrations the models deviate from the atomistic behavior due to alternative dislocation emission modes. Additional H configurations are investigated to understand controlling features of the emission process. In no cases does crack propagation occur in preference to dislocation emission in geometries where emission is possible, indicating that embrittlement can be more complicated than envisioned by the basic brittle–ductile transition

  12. Modeling the atomistic growth behavior of gold nanoparticles in solution

    Science.gov (United States)

    Turner, C. Heath; Lei, Yu; Bao, Yuping

    2016-04-01

    The properties of gold nanoparticles strongly depend on their three-dimensional atomic structure, leading to an increased emphasis on controlling and predicting nanoparticle structural evolution during the synthesis process. In order to provide this atomistic-level insight and establish a link to the experimentally-observed growth behavior, a kinetic Monte Carlo simulation (KMC) approach is developed for capturing Au nanoparticle growth characteristics. The advantage of this approach is that, compared to traditional molecular dynamics simulations, the atomistic nanoparticle structural evolution can be tracked on time scales that approach the actual experiments. This has enabled several different comparisons against experimental benchmarks, and it has helped transition the KMC simulations from a hypothetical toy model into a more experimentally-relevant test-bed. The model is initially parameterized by performing a series of automated comparisons of Au nanoparticle growth curves versus the experimental observations, and then the refined model allows for detailed structural analysis of the nanoparticle growth behavior. Although the Au nanoparticles are roughly spherical, the maximum/minimum dimensions deviate from the average by approximately 12.5%, which is consistent with the corresponding experiments. Also, a surface texture analysis highlights the changes in the surface structure as a function of time. While the nanoparticles show similar surface structures throughout the growth process, there can be some significant differences during the initial growth at different synthesis conditions.

  13. Atomistic calculation of the thermoelectric properties of Si nanowires

    Science.gov (United States)

    Bejenari, I.; Kratzer, P.

    2014-07-01

    The thermoelectric properties of 1.6-nm-thick Si square nanowires with [100] crystalline orientation are calculated over a wide temperature range from 0 K to 1000 K, taking into account atomistic electron-phonon interaction. In our model, the [010] and [001] facets are passivated by hydrogen and there are Si-Si dimers on the nanowire surface. The electronic structure was calculated by using the sp3 spin-orbit-coupled atomistic second-nearest-neighbor tight-binding model. The phonon dispersion was calculated from a valence force field model of the Brenner type. A scheme for calculating electron-phonon matrix elements from a second-nearest-neighbor tight-binding model is presented. Based on Fermi's golden rule, the electron-phonon transition rate was obtained by combining the electron and phonon eigenstates. Both elastic and inelastic scattering processes are taken into consideration. The temperature dependence of transport characteristics was calculated by using a solution of the linearized Boltzmann transport equation obtained by means of the iterative orthomin method. At room temperature, the electron mobility is 195 cm2 V-1 s-1 and increases with temperature, while a figure of merit ZT =0.38 is reached for n-type doping with a concentration of n =1019 cm-3.

  14. A Comparative Study of China's Foreign Aid

    Institute of Scientific and Technical Information of China (English)

    Huang Ying

    2007-01-01

    Chinese development assistance is totally different in nature in comparison with the aid offered by the United States and Japan. The U.S. sees its aid as a form of "mercy" to less-developed countries and gives it with numerous conditions attached. Japan seems to mainly use it to pursue commercial interests. By contrast, Chinese aid is, in essence, cooperation and mutual support between developing countries. This fundamental difference helps to explain why Beijing's aid is so different from that of the Western donors.

  15. Dynamic bonding of metallic nanocontacts: Insights from experiments and atomistic simulations

    Science.gov (United States)

    Fernández, M. A.; Sabater, C.; Dednam, W.; Palacios, J. J.; Calvo, M. R.; Untiedt, C.; Caturla, M. J.

    2016-02-01

    The conductance across an atomically narrow metallic contact can be measured by using scanning tunneling microscopy. In certain situations, a jump in the conductance is observed right at the point of contact between the tip and the surface, which is known as "jump to contact" (JC). Such behavior provides a way to explore, at a fundamental level, how bonding between metallic atoms occurs dynamically. This phenomenon depends not only on the type of metal but also on the geometry of the two electrodes. For example, while some authors always find JC when approaching two atomically sharp tips of Cu, others find that a smooth transition occurs when approaching a Cu tip to an adatom on a flat surface of Cu. In an attempt to show that all these results are consistent, we make use of atomistic simulations; in particular, classical molecular dynamics together with density functional theory transport calculations to explore a number of possible scenarios. Simulations are performed for two different materials: Cu and Au in a [100] crystal orientation and at a temperature of 4.2 K. These simulations allow us to study the contribution of short- and long-range interactions to the process of bonding between metallic atoms, as well as to compare directly with experimental measurements of conductance, giving a plausible explanation for the different experimental observations. Moreover, we show a correlation between the cohesive energy of the metal, its Young's modulus, and the frequency of occurrence of a jump to contact.

  16. Tactile Aids

    Directory of Open Access Journals (Sweden)

    Mohtaramossadat Homayuni

    1996-04-01

    Full Text Available Tactile aids, which translate sound waves into vibrations that can be felt by the skin, have been used for decades by people with severe/profound hearing loss to enhance speech/language development and improve speechreading.The development of tactile aids dates from the efforts of Goults and his co-workers in the 1920s; Although The power supply was too voluminous and it was difficult to carry specially by children, it was too huge and heavy to be carried outside the laboratories and its application was restricted to the experimental usage. Nowadays great advances have been performed in producing this instrument and its numerous models is available in markets around the world.

  17. Pragmatic electrical engineering fundamentals

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Fundamentals introduces the fundamentals of the energy-delivery part of electrical systems. It begins with a study of basic electrical circuits and then focuses on electrical power. Three-phase power systems, transformers, induction motors, and magnetics are the major topics.All of the material in the text is illustrated with completely-worked examples to guide the student to a better understanding of the topics. This short lecture book will be of use at any level of engineering, not just electrical. Its goal is to provide the practicing engineer with a practi

  18. Homeschooling and religious fundamentalism

    Directory of Open Access Journals (Sweden)

    Robert KUNZMAN

    2010-10-01

    Full Text Available This article considers the relationship between homeschooling and religious fundamentalism by focusing on their intersection in the philosophies and practices of conservative Christian homeschoolers in the United States. Homeschooling provides an ideal educational setting to support several core fundamentalist principles: resistance to contemporary culture; suspicion of institutional authority and professional expertise; parental control and centrality of the family; and interweaving of faith and academics. It is important to recognize, however, that fundamentalism exists on a continuum; conservative religious homeschoolers resist liberal democratic values to varying degrees, and efforts to foster dialogue and accommodation with religious homeschoolers can ultimately helpstrengthen the broader civic fabric.

  19. Antennas fundamentals, design, measurement

    CERN Document Server

    Long, Maurice

    2009-01-01

    This comprehensive revision (3rd Edition) is a senior undergraduate or first-year graduate level textbook on antenna fundamentals, design, performance analysis, and measurements. In addition to its use as a formal course textbook, the book's pragmatic style and emphasis on the fundamentals make it especially useful to engineering professionals who need to grasp the essence of the subject quickly but without being mired in unnecessary detail. This new edition was prepared for a first year graduate course at Southern Polytechnic State University in Georgia. It provides broad coverage of antenna

  20. Fundamentals of physics

    CERN Document Server

    Aggarwal, Vibha

    2009-01-01

    Fundamentals of physics is a general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of physics based on different theories, with applications to a variety of important phenomena. Its clarity and completeness makes the text suitable for self-learning and for self-paced courses. Throughout the text the emphasis is on clarity, rather than formality, the various derivations are explained in detail and wherever possible, the physical interpretations are emphasised. The mathematical treatment is set out in great detail, carrying out the steps whic

  1. Infosec management fundamentals

    CERN Document Server

    Dalziel, Henry

    2015-01-01

    Infosec Management Fundamentals is a concise overview of the Information Security management concepts and techniques, providing a foundational template for both experienced professionals and those new to the industry. This brief volume will also appeal to business executives and managers outside of infosec who want to understand the fundamental concepts of Information Security and how it impacts their business decisions and daily activities. Teaches ISO/IEC 27000 best practices on information security management Discusses risks and controls within the context of an overall information securi

  2. Fundamentals of continuum mechanics

    CERN Document Server

    Rudnicki, John W

    2014-01-01

    A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally.  This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ

  3. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  4. Homeschooling and Religious Fundamentalism

    Science.gov (United States)

    Kunzman, Robert

    2010-01-01

    This article considers the relationship between homeschooling and religious fundamentalism by focusing on their intersection in the philosophies and practices of conservative Christian homeschoolers in the United States. Homeschooling provides an ideal educational setting to support several core fundamentalist principles: resistance to…

  5. Homeschooling and religious fundamentalism

    OpenAIRE

    KUNZMAN, Robert

    2010-01-01

    This article considers the relationship between homeschooling and religious fundamentalism by focusing on their intersection in the philosophies and practices of conservative Christian homeschoolers in the United States. Homeschooling provides an ideal educational setting to support several core fundamentalist principles: resistance to contemporary culture; suspicion of institutional authority and professional expertise; parental control and centrality of the family; and interweaving of faith...

  6. Fundamentals of convolutional coding

    CERN Document Server

    Johannesson, Rolf

    2015-01-01

    Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual

  7. Grenoble Fundamental Research Department

    International Nuclear Information System (INIS)

    A summary of the various activities of the Fundamental Research Institute, Grenoble, France is given. The following fields are covered: Nuclear physics, solid state physics, physical chemistry, biology and advanced techniques. Fore more detailed descriptions readers are referred to scientific literature

  8. Unification of Fundamental Forces

    Science.gov (United States)

    Salam, Abdus; Taylor, Foreword by John C.

    2005-10-01

    Foreword John C. Taylor; 1. Unification of fundamental forces Abdus Salam; 2. History unfolding: an introduction to the two 1968 lectures by W. Heisenberg and P. A. M. Dirac Abdus Salam; 3. Theory, criticism, and a philosophy Werner Heisenberg; 4. Methods in theoretical physics Paul Adrian Maurice Dirac.

  9. The Fundamental Property Relation.

    Science.gov (United States)

    Martin, Joseph J.

    1983-01-01

    Discusses a basic equation in thermodynamics (the fundamental property relation), focusing on a logical approach to the development of the relation where effects other than thermal, compression, and exchange of matter with the surroundings are considered. Also demonstrates erroneous treatments of the relation in three well-known textbooks. (JN)

  10. Fundamental Metallurgy of Solidification

    DEFF Research Database (Denmark)

    Tiedje, Niels

    2004-01-01

    The text takes the reader through some fundamental aspects of solidification, with focus on understanding the basic physics that govern solidification in casting and welding. It is described how the first solid is formed and which factors affect nucleation. It is described how crystals grow from ...

  11. Division I: Fundamental astronomy

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; McCarthy, D.D.; Fukushima, T.; Brzezinski, A.; Burns, J.A.; Defraigne, P.; Evans, D.W.; Kaplan, G.H.; Klioner, S.; Kneževic, Z.; Kumkova, I.I.; Ma, Ch.; Manchester, R.N.; Petite, G.

    Cambridge : Cambridge University Press, 2009 - (van der Hucht, K.), s. 1-4 ISBN 978-0-521-85605-8. - (Proceedings of the IAU. IAU Transactions. 27A) Institutional research plan: CEZ:AV0Z10030501 Keywords : fundamental astronomy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Fundamentals of soil science

    Science.gov (United States)

    This study guide provides comments and references for professional soil scientists who are studying for the soil science fundamentals exam needed as the first step for certification. The performance objectives were determined by the Soil Science Society of America's Council of Soil Science Examiners...

  13. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  14. Neurological Complications of AIDS

    Science.gov (United States)

    ... Diversity Find People About NINDS Neurological Complications of AIDS Fact Sheet Feature Federal domestic HIV/AIDS information ... Where can I get more information? What is AIDS? AIDS (acquired immune deficiency syndrome) is a condition ...

  15. Microstructural evolution under high temperature irradiation: fundamental aspects

    International Nuclear Information System (INIS)

    In view of the impossibility to propose theoretically established scaling laws for extrapolating microstructural evolutions to unknown irradiation conditions, a full modelization of microstructural evolution at the atomistic level cannot be avoided. We briefly review the main models available for describing: defect balance under irradiation, the nucleation of clusters of various types, the development of each of the components of the microstructure, synergistic effects among the latter. Attention is called on the problems which remain to be solved at each step. In particular, the swelling incubation phenomenon is just being studied from the fundamental viewpoint. A table of available relevant observations thereof is given. The existence of dose-rate thresholds accross which microstructural evolution undergoes a qualitative change is stressed. Such thresholds call for a detailed modelization of microstructural evolution in order to propose safe extrapolation techniques

  16. Atomistic simulation of mineral surfaces: Their structure, hydration and growth

    International Nuclear Information System (INIS)

    In this thesis, we have used atomistic simulation techniques to investigate the surface structure and stability of the biomineral barium sulfate and a number of important iron oxides, namely hematite, magnetite and goethite. We have studied the effect of the molecular adsorption of water on the surface structures and stabilities of all four minerals, and dissociative adsorption of water on the iron oxides. In addition, we have investigated the segregation of foreign ions to the surfaces of barium sulfate. Chapter 1 gives an overview of some previous studies of surfaces, employing both atomistic simulations and electronic structure calculations. Also discussed are some popular experimental analysis techniques used in surface characterisation. Chapter 2 describes the theoretical methods used in atomistic simulations and the mathematical methods used in the calculations, including the evaluation of surface energies. Chapter 3 introduces the potential model and discusses their reliability and transferability between structures. The potential parameters used in chapters 4-7 are given and where possible, compared with experiment. Chapter 4 describes the structures and stabilities of the pure surfaces of barium sulfate, and after the overgrowth of segregation of a layer of impurity ions at the surface. The modified crystal morphologies are discussed. Chapter 5 follows the work in the previous chapter by discussing the effect of the molecular adsorption of water at different coverages on the structure and stabilities of barium sulfate surfaces. The hydrated energies and surface energies are calculated. The second section of chapter 5 investigates structural influences on the growth of barium sulfate. In Chapter 6, the pure surfaces of hematite, magnetite and goethite are described. The surface relaxation are studied and equilibrium crystal morphologies compared with experimental findings. The surface structure of Fe2O3(00.1) under reducing conditions is also investigated

  17. AIDS Epidemiyolojisi

    OpenAIRE

    SÜNTER, A.T.; PEKŞEN, Y.

    2010-01-01

    AIDS was first defined in the United States in 1981. It spreads to nearly all the countries of the world with a great speed and can infect everbody without any differantiation. The infection results in death and there is no cure or vaccine for it, yet. To data given to World Health Organization until July-1994, it is estimated that there are about 1 million patients and about 22 millions HIV positive persons In the world. Sixty percent of HIV positive persons are men and 40% are women. The di...

  18. Material fields in atomistics as pull-backs of spatial distributions

    Science.gov (United States)

    Chandra Admal, Nikhil; Tadmor, Ellad B.

    2016-04-01

    The various fields defined in continuum mechanics have both a material and a spatial description that are related through the deformation mapping. In contrast, continuum fields defined for atomistic systems using the Irving-Kirkwood or Murdoch-Hardy procedures correspond to a spatial description. It is uncommon to define atomistic fields in the reference configuration due to the lack of a unique definition for the deformation mapping in atomistic systems. In this paper, we construct referential atomistic distributions as pull-backs of the spatial distributions obtained in the Murdoch-Hardy procedure with respect to a postulated deformation mapping that tracks particles. We then show that some of these referential distributions are independent of the choice of the deformation mapping and only depend on the reference and current configuration of particles. Therefore, the fields obtained from these distributions can be calculated without explicitly constructing a deformation map, and by construction they satisfy the balance equations. In particular, we obtain definitions for the first and second atomistic Piola-Kirchhoff stress tensors. We demonstrate the validity of these definitions through a numerical example involving finite deformation of a slab containing a notch under tension. An interesting feature of the atomistic first Piola-Kirchhoff stress tensor is the absence of a kinetic part, which in the atomistic Cauchy stress tensor accounts for thermal fluctuations. We show that this effect is implicitly included in the atomistic first Piola-Kirchhoff stress tensor through the motion of the particles. An open source program to compute the atomistic Cauchy and first Piola-Kirchhoff stress fields called MDStressLab is available online at

  19. Fundamentals of Geophysics

    Science.gov (United States)

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  20. Variation of fundamental constants

    CERN Document Server

    Flambaum, V V

    2006-01-01

    We present a review of recent works devoted to the variation of the fine structure constant alpha, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra, Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feschbach resonance.

  1. What is Fundamental?

    CERN Multimedia

    2004-01-01

    Discussing what is fundamental in a variety of fields, biologist Richard Dawkins, physicist Gerardus 't Hooft, and mathematician Alain Connes spoke to a packed Main Auditorium at CERN 15 October. Dawkins, Professor of the Public Understanding of Science at Oxford University, explained simply the logic behind Darwinian natural selection, and how it would seem to apply anywhere in the universe that had the right conditions. 't Hooft, winner of the 1999 Physics Nobel Prize, outlined some of the main problems in physics today, and said he thinks physics is so fundamental that even alien scientists from another planet would likely come up with the same basic principles, such as relativity and quantum mechanics. Connes, winner of the 1982 Fields Medal (often called the Nobel Prize of Mathematics), explained how physics is different from mathematics, which he described as a "factory for concepts," unfettered by connection to the physical world. On 16 October, anthropologist Sharon Traweek shared anecdotes from her ...

  2. Fundamentals of differential beamforming

    CERN Document Server

    Benesty, Jacob; Pan, Chao

    2016-01-01

    This book provides a systematic study of the fundamental theory and methods of beamforming with differential microphone arrays (DMAs), or differential beamforming in short. It begins with a brief overview of differential beamforming and some popularly used DMA beampatterns such as the dipole, cardioid, hypercardioid, and supercardioid, before providing essential background knowledge on orthogonal functions and orthogonal polynomials, which form the basis of differential beamforming. From a physical perspective, a DMA of a given order is defined as an array that measures the differential acoustic pressure field of that order; such an array has a beampattern in the form of a polynomial whose degree is equal to the DMA order. Therefore, the fundamental and core problem of differential beamforming boils down to the design of beampatterns with orthogonal polynomials. But certain constraints also have to be considered so that the resulting beamformer does not seriously amplify the sensors’ self noise and the mism...

  3. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  4. Fundamentals of queueing theory

    CERN Document Server

    Gross, Donald; Thompson, James M; Harris, Carl M

    2013-01-01

    Praise for the Third Edition ""This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented.""-IIE Transactions on Operations Engineering Thoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than pre

  5. Fundamental partial compositeness

    OpenAIRE

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea; Vigiani, Elena

    2016-01-01

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough 'square root'. Furthermore, right-handed SM fermions have an SU(2)$_R$-like structure, yielding a cu...

  6. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    The basic processes of living cells which are relevant to an understanding of the interaction of ionizing radiation with man are described. Particular reference is made to cell death, cancer induction and genetic effects. This is the second of a series of reports which present the fundamentals necessary for an understanding of the bases of regulatory criteria such as those recommended by the International Commision on Radiological Protection (ICRP). Others consider basic radiation physics and the biological effects of ionizing radiation. (author)

  7. Semantic Web Services Fundamentals

    OpenAIRE

    Heymans, Stijn; Hoffmann, Joerg; Marconi, Annapaola; Phlipps, Joshua; Weber, Ingo

    2011-01-01

    The research area of Semantic Web Services investigates the annotation of services, typically in a SOA, with a precise mathematical meaning in a formal ontology. These annotations allow a higher degree of automation. The last decade has seen a wide proliferation of such approaches, proposing different ontology languages, and paradigms for employing these in practice. The next chapter gives an overview of these approaches. In the present chapter, we provide an understanding of the fundamental ...

  8. Fundamentals of Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  9. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  10. Fundamental cosmic strings

    OpenAIRE

    Davis, A. -C.; Kibble, T. W. B.

    2005-01-01

    Cosmic strings are linear concentrations of energy that may be formed at phase transitions in the very early universe. At one time they were thought to provide a possible origin for the density inhomogeneities from which galaxies eventually develop, though this idea has been ruled out, primarily by observations of the cosmic microwave background (CMB). Fundamental strings are the supposed building blocks of all matter in superstring theory or its modern version, M-theory. These two concepts w...

  11. Fundamental concepts on energy

    International Nuclear Information System (INIS)

    The fundamental concepts on energy and the different forms in which it is manifested are presented. Since it is possible to transform energy in a way to other, the laws that govern these transformations are discussed. The energy transformation processes are an essential compound in the capacity humanizes to survive and be developed. The energy use brings important economic aspects, technical and political. Because this, any decision to administer energy system will be key for our future life

  12. Time in Fundamental Physics

    OpenAIRE

    Ashtekar, Abhay

    2013-01-01

    The first three sections of this article contain a broad brush summary of the profound changes in the notion of time in fundamental physics that were brought about by three revolutions: the foundations of mechanics distilled by Newton in his Principia, the discovery of special relativity by Einstein and its reformulation by Minkowski, and, finally, the fusion of geometry and gravity in Einstein's general relativity. The fourth section discusses two aspects of yet another deep revision that wa...

  13. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  14. Value of Fundamental Science

    Science.gov (United States)

    Burov, Alexey

    Fundamental science is a hard, long-term human adventure that has required high devotion and social support, especially significant in our epoch of Mega-science. The measure of this devotion and this support expresses the real value of the fundamental science in public opinion. Why does fundamental science have value? What determines its strength and what endangers it? The dominant answer is that the value of science arises out of curiosity and is supported by the technological progress. Is this really a good, astute answer? When trying to attract public support, we talk about the ``mystery of the universe''. Why do these words sound so attractive? What is implied by and what is incompatible with them? More than two centuries ago, Immanuel Kant asserted an inseparable entanglement between ethics and metaphysics. Thus, we may ask: which metaphysics supports the value of scientific cognition, and which does not? Should we continue to neglect the dependence of value of pure science on metaphysics? If not, how can this issue be addressed in the public outreach? Is the public alienated by one or another message coming from the face of science? What does it mean to be politically correct in this sort of discussion?

  15. Atomistic Kinetic Monte Carlo Simulations of Polycrystalline Copper Electrodeposition

    CERN Document Server

    Treeratanaphitak, Tanyakarn; Abukhdeir, Nasser Mohieddin

    2014-01-01

    A high-fidelity kinetic Monte Carlo (KMC) simulation method (T. Treeratanaphitak, M. Pritzker, N. M. Abukhdeir, Electrochim. Acta 121 (2014) 407--414) using the semi-empirical multi-body embedded-atom method (EAM) potential has been extended to model polycrystalline metal electrodeposition. The presented KMC-EAM method enables true three-dimensional atomistic simulations of electrodeposition over experimentally relevant timescales. Simulations using KMC-EAM are performed over a range of overpotentials to predict the effect on deposit texture evolution. Results show strong agreement with past experimental results both with respect to deposition rates on various copper surfaces and roughness-time power law behaviour. It is found that roughness scales with time $\\propto t^\\beta$ where $\\beta=0.62 \\pm 0.12$, which is in good agreement with past experimental results. Furthermore, the simulations provide insights into sub-surface deposit morphologies which are not directly accessible from experimental measurements.

  16. Atomistic simulations of material damping in amorphous silicon nanoresonators

    Science.gov (United States)

    Mukherjee, Sankha; Song, Jun; Vengallatore, Srikar

    2016-06-01

    Atomistic simulations using molecular dynamics (MD) are emerging as a valuable tool for exploring dissipation and material damping in nanomechanical resonators. In this study, we used isothermal MD to simulate the dynamics of the longitudinal-mode oscillations of an amorphous silicon nanoresonator as a function of frequency (2 GHz–50 GHz) and temperature (15 K–300 K). Damping was characterized by computing the loss tangent with an estimated uncertainty of 7%. The dissipation spectrum displays a sharp peak at 50 K and a broad peak at around 160 K. Damping is a weak function of frequency at room temperature, and the loss tangent has a remarkably high value of ~0.01. In contrast, at low temperatures (15 K), the loss tangent increases monotonically from 4× {{10}-4} to 4× {{10}-3} as the frequency increases from 2 GHz to 50 GHz. The mechanisms of dissipation are discussed.

  17. An experimentally consistent atomistic structural model of silica glass

    International Nuclear Information System (INIS)

    Empirical potential structure refinement is used to build an atomistic model of silica glass based on neutron scattering data. This model is tested against X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy data to establish its local and intermediate range structural veracity. The chemical specificity of the silicon and oxygen K-edge spectroscopic information allows us to confirm that the neutron scattering derived model represents a reasonable representation of the three partial structure factors that are required to characterise this binary glass and subsequently give confidence in the Faber-Ziman and Bhatia-Thornton partial structure factors and pair distribution functions that are extracted from the model

  18. Atomistic simulation of static magnetic properties of bit patterned media

    Science.gov (United States)

    Arbeláez-Echeverri, O. D.; Agudelo-Giraldo, J. D.; Restrepo-Parra, E.

    2016-09-01

    In this work we present a new design of Co based bit pattern media with out-of-plane uni-axial anisotropy induced by interface effects. Our model features the inclusion of magnetic impurities in the non-magnetic matrix. After the material model was refined during three iterations using Monte Carlo simulations, further simulations were performed using an atomistic integrator of Landau-Lifshitz-Gilbert equation with Langevin dynamics to study the behavior of the system paying special attention to the super-paramagnetic limit. Our model system exhibits three magnetic phase transitions, one due to the magnetically doped matrix material and the weak magnetic interaction between the nano-structures in the system. The different magnetic phases of the system as well as the features of its phase diagram are explained.

  19. Protein displacements under external forces: An atomistic Langevin dynamics approach

    Science.gov (United States)

    Gnandt, David; Utz, Nadine; Blumen, Alexander; Koslowski, Thorsten

    2009-02-01

    We present a fully atomistic Langevin dynamics approach as a method to simulate biopolymers under external forces. In the harmonic regime, this approach permits the computation of the long-term dynamics using only the eigenvalues and eigenvectors of the Hessian matrix of second derivatives. We apply this scheme to identify polymorphs of model proteins by their mechanical response fingerprint, and we relate the averaged dynamics of proteins to their biological functionality, with the ion channel gramicidin A, a phosphorylase, and neuropeptide Y as examples. In an environment akin to dilute solutions, even small proteins show relaxation times up to 50 ns. Atomically resolved Langevin dynamics computations have been performed for the stretched gramicidin A ion channel.

  20. Effective Transparency: A Test of Atomistic Laser-Cluster Models

    CERN Document Server

    Pandit, Rishi; Teague, Thomas; Hartwick, Zachary; Bigaouette, Nicolas; Ramunno, Lora; Ackad, Edward

    2016-01-01

    The effective transparency of rare-gas clusters, post-interaction with an extreme ultraviolet (XUV) pump pulse, is studied by using an atomistic hybrid quantum-classical molecular dynamics model. We find there is an intensity range in which an XUV probe pulse has no lasting effect on the average charge state of a cluster after being saturated by an XUV pump pulse: the cluster is effectively transparent to the probe pulse. The range of this phenomena increases with the size of the cluster and thus provides an excellent candidate for an experimental test of the effective transparency effect. We present predictions for the clusters at the peak of the laser pulse as well as the experimental time-of-flight signal expected along with trends which can be compared with. Significant deviations from these predictions would provide evidence for enhanced photoionization mechanism(s).

  1. Atomistic modelling of the hydration of CaSO 4

    Science.gov (United States)

    Adam, Craig D.

    2003-08-01

    Atomistic modelling techniques, using empirical potentials, have been used to simulate a range of structures formed by the hydration of γ-CaSO 4 and described as CaSO 4· nH 2O (0commercial importance and has been subjected to much experimental study. These simulation studies demonstrate significant water-matrix interactions that influence the crystallography of the hydrated phase. The existence of two types of hydration site has been predicted, including one within the Ca 2+coordination sphere. Close correlation between water molecule bonding energy, Ca 2+-O w bond length and unit-cell volume have been established. This shows that as the number of water molecules within the unit cell increases, the bonding energy increases and the unit cell contracts. However around n=0.5, this process reaches a turning point with the incorporation of further waters resulting in reduced binding energy and an expanding unit cell.

  2. Atomistic processes during nanoindentation of amorphous silicon carbide

    International Nuclear Information System (INIS)

    Atomistic mechanisms of nanoindentation of a-SiC have been studied by molecular dynamics simulations. The load displacement curve exhibits a series of load drops, reflecting the short-range topological order similar to crystalline 3C-SiC. In contrast to 3C-SiC, the load drops are irregularly spaced and less pronounced. The damage is spatially more extended than in 3C-SiC, and it exhibits long-range oscillations consistent with the indenter size. Hardness is ∼60% lower than in 3C-SiC and is in agreement with experiment. The onset of plastic deformation occurs at depth ∼75% lower than in 3C-SiC

  3. Mathematics for natural scientists fundamentals and basics

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book, the first in a two part series, covers a course of mathematics tailored specifically for physics, engineering and chemistry students at the undergraduate level. It is unique in that it begins with logical concepts of mathematics first encountered at A-level and covers them in thorough detail, filling in the gaps in students' knowledge and reasoning. Then the book aids the leap between A-level and university-level mathematics, with complete proofs provided throughout and all complex mathematical concepts and techniques presented in a clear and transparent manner. Numerous examples and problems (with answers) are given for each section and, where appropriate, mathematical concepts are illustrated in a physics context. This text gives an invaluable foundation to students and a comprehensive aid to lecturers. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.

  4. An Atomistic Statistically Effective Energy Function for Computational Protein Design.

    Science.gov (United States)

    Topham, Christopher M; Barbe, Sophie; André, Isabelle

    2016-08-01

    Shortcomings in the definition of effective free-energy surfaces of proteins are recognized to be a major contributory factor responsible for the low success rates of existing automated methods for computational protein design (CPD). The formulation of an atomistic statistically effective energy function (SEEF) suitable for a wide range of CPD applications and its derivation from structural data extracted from protein domains and protein-ligand complexes are described here. The proposed energy function comprises nonlocal atom-based and local residue-based SEEFs, which are coupled using a novel atom connectivity number factor to scale short-range, pairwise, nonbonded atomic interaction energies and a surface-area-dependent cavity energy term. This energy function was used to derive additional SEEFs describing the unfolded-state ensemble of any given residue sequence based on computed average energies for partially or fully solvent-exposed fragments in regions of irregular structure in native proteins. Relative thermal stabilities of 97 T4 bacteriophage lysozyme mutants were predicted from calculated energy differences for folded and unfolded states with an average unsigned error (AUE) of 0.84 kcal mol(-1) when compared to experiment. To demonstrate the utility of the energy function for CPD, further validation was carried out in tests of its capacity to recover cognate protein sequences and to discriminate native and near-native protein folds, loop conformers, and small-molecule ligand binding poses from non-native benchmark decoys. Experimental ligand binding free energies for a diverse set of 80 protein complexes could be predicted with an AUE of 2.4 kcal mol(-1) using an additional energy term to account for the loss in ligand configurational entropy upon binding. The atomistic SEEF is expected to improve the accuracy of residue-based coarse-grained SEEFs currently used in CPD and to extend the range of applications of extant atom-based protein statistical

  5. Experimentally driven atomistic model of 1,2 polybutadiene

    International Nuclear Information System (INIS)

    We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles, and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120–400 K. Analysis of the experimental data yields bond lengths for Cî—¸C and C î—» C of 1.54 Å and 1.35 Å, respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently, the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results

  6. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    A brief review is presented of the early and late effects of ionising radiation on man, with particular emphasis on those aspects of importance in radiological protection. The terminology and dose response curves, are explained. Early effects on cells, tissues and whole organs are discussed. Late somatic effects considered include cancer and life-span shortening. Genetic effects are examined. The review is the third of a series of reports which present the fundamentals necessary for an understanding of the basis of regulatory criteria, such as those of the ICRP. (u.K.)

  7. Time in Fundamental Physics

    CERN Document Server

    Ashtekar, Abhay

    2013-01-01

    The first three sections of this article contain a broad brush summary of the profound changes in the notion of time in fundamental physics that were brought about by three revolutions: the foundations of mechanics distilled by Newton in his Principia, the discovery of special relativity by Einstein and its reformulation by Minkowski, and, finally, the fusion of geometry and gravity in Einstein's general relativity. The fourth section discusses two aspects of yet another deep revision that waits in the wings as we attempt to unify general relativity with quantum physics.

  8. Fundamentals of calculus

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Fundamentals of Calculus encourages students to use power, quotient, and product rules for solutions as well as stresses the importance of modeling skills.  In addition to core integral and differential calculus coverage, the book features finite calculus, which lends itself to modeling and spreadsheets.  Specifically, finite calculus is applied to marginal economic analysis, finance, growth, and decay.  Includes: Linear Equations and FunctionsThe DerivativeUsing the Derivative Exponential and Logarithmic Functions Techniques of DifferentiationIntegral CalculusIntegration TechniquesFunctions

  9. Information security fundamentals

    CERN Document Server

    Blackley, John A; Peltier, Justin

    2004-01-01

    Effective security rules and procedures do not exist for their own sake-they are put in place to protect critical assets, thereby supporting overall business objectives. Recognizing security as a business enabler is the first step in building a successful program.Information Security Fundamentals allows future security professionals to gain a solid understanding of the foundations of the field and the entire range of issues that practitioners must address. This book enables students to understand the key elements that comprise a successful information security program and eventually apply thes

  10. Fundamentals of engineering electromagnetism

    International Nuclear Information System (INIS)

    It indicates fundamentals of engineering electromagnetism. It mentions electromagnetic field model of introduction and International system of units and universal constant, Vector analysis with summary and orthogonal coordinate systems, electrostatic field on Coulomb's law and Gauss's law, electrostatic energy and strength, steady state current with Ohm's law and Joule's law and calculation of resistance, crystallite field with Vector's electrostatic potential, Biot-Savart law and application and Magnetic Dipole, time-Savart and Maxwell equation with potential function and Faraday law of electromagnetic induction, plane electromagnetic wave, transmission line, a wave guide and cavity resonator and antenna arrangement.

  11. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  12. Fundamentals of Project Management

    CERN Document Server

    Heagney, Joseph

    2011-01-01

    With sales of more than 160,000 copies, Fundamentals of Project Management has helped generations of project managers navigate the ins and outs of every aspect of this complex discipline. Using a simple step-by-step approach, the book is the perfect introduction to project management tools, techniques, and concepts. Readers will learn how to: ò Develop a mission statement, vision, goals, and objectives ò Plan the project ò Create the work breakdown structure ò Produce a workable schedule ò Understand earned value analysis ò Manage a project team ò Control and evaluate progress at every stage.

  13. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  14. Fundamentals of Survival

    OpenAIRE

    Iqbal, Muzaffar

    2004-01-01

    No mundo contemporâneo existe um nexo fundamental entre a ciência, a religião e as civilizações. A Ciência, como a conhecemos hoje em dia, emergiu na Europa como resultado de processos diversificados e complementares. Ora, a tecnologia produzida pela aplicação da ciência moderna colocou-nos nas margens de um desastre que pode muito bem eliminar toda a raça humana deste planeta. Isto é reconhecido por alguns dos Cientistas mais esclarecidos, e continua a ser uma grande pre...

  15. Nanomachines fundamentals and applications

    CERN Document Server

    Wang, Joseph

    2013-01-01

    This first-hand account by one of the pioneers of nanobiotechnology brings together a wealth of valuable material in a single source. It allows fascinating insights into motion at the nanoscale, showing how the proven principles of biological nanomotors are being transferred to artificial nanodevices.As such, the author provides engineers and scientists with the fundamental knowledge surrounding the design and operation of biological and synthetic nanomotors and the latest advances in nanomachines. He addresses such topics as nanoscale propulsions, natural biomotors, molecular-scale machin

  16. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  17. Fundamental concepts of mathematics

    CERN Document Server

    Goodstein, R L

    Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people

  18. Japanese Marketing. Fundamentally Different

    OpenAIRE

    Höskuldur Hrafn Guttormsson 1990

    2016-01-01

    Japan has always had a unique image in the eyes of many westerners and especially when it comes to its unique and whacky commercials. This study is motivated by the question; “Do the Japanese have a fundamentally different way of marketing compared to the western world?” It aims to advance our understanding of how and why Japanese marketing differs from typical western marketing by focusing on the history of Japan, conventional marketing practices of Japanese companies and the differences bet...

  19. Fundamentals of attosecond optics

    CERN Document Server

    Chang, Zenghu

    2011-01-01

    Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances th

  20. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  1. Mathematical analysis fundamentals

    CERN Document Server

    Bashirov, Agamirza

    2014-01-01

    The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric o

  2. Fundamentals of Cavitation

    CERN Document Server

    Franc, Jean-Pierre

    2005-01-01

    The present book is aimed at providing a comprehensive presentation of cavitation phenomena in liquid flows. It is further backed up by the experience, both experimental and theoretical, of the authors whose expertise has been internationally recognized. A special effort is made to place the various methods of investigation in strong relation with the fundamental physics of cavitation, enabling the reader to treat specific problems independently. Furthermore, it is hoped that a better knowledge of the cavitation phenomenon will allow engineers to create systems using it positively. Examples in the literature show the feasibility of this approach.

  3. Fundamentals of librarianship

    CERN Document Server

    Verma, Renu

    2010-01-01

    Fundamentals of Librarianship is written f or professional librarians and is therefore not intended as a mammal to instruct you on how to be a librarian. Instead it focuses on the federal angle of otherwise Standard practices and procedures of good librarianship. A topic was omitted if it was determined not to have anything uniquely federal about it. An exception was made for the chapter on 'copyright' because it remains a challenging and continuously developing topic for all librarians. We opted to produce this handbook in electronic format as a Web document that can be updated as often as ne

  4. Fundamental mechanisms of CVD

    International Nuclear Information System (INIS)

    A program of coordinated experimental and theoretical research on the fundamental chemistry and physics of VCD is described. The experimental work involves the development and use of laser diagnostic techniques for monitoring chemical species in the gas phase and measuring fluid-flow properties. The theoretical work applies state-of-the-art computational techniques to the coupled fluid mechanical and gas-phase chemical kinetics of CVD. The work has concentrated on the simple model system of silicon deposition from silane, although the concepts should be applicable to CVD in general. Some preliminary work on the chlorosilane and tungsten hexafluoride systems is also described

  5. Fundamental Constants and Conservation Laws

    OpenAIRE

    Roh, Heui-Seol

    2001-01-01

    This work describes underlying features of the universe such as fundamental constants and cosmological parameters, conservation laws, baryon and lepton asymmetries, etc. in the context of local gauge theories for fundamental forces under the constraint of the flat universe. Conservation laws for fundamental forces are related to gauge theories for fundamental forces, their resulting fundamental constants are quantitatively analyzed, and their possible violations at different energy scales are...

  6. The MOND Fundamental Plane

    CERN Document Server

    Cardone, V F; Diaferio, A; Tortora, C; Molinaro, R

    2010-01-01

    Modified Newtonian Dynamics (MOND) has been shown to be able to fit spiral galaxy rotation curves as well as giving a theoretical foundation for empirically determined scaling relations, such as the Tully - Fisher law, without the need for a dark matter halo. As a complementary analysis, one should investigate whether MOND can also reproduce the dynamics of early - type galaxies (ETGs) without dark matter. As a first step, we here show that MOND can indeed fit the observed central velocity dispersion $\\sigma_0$ of a large sample of ETGs assuming a simple MOND interpolating functions and constant anisotropy. We also show that, under some assumptions on the luminosity dependence of the Sersic n parameter and the stellar M/L ratio, MOND predicts a fundamental plane for ETGs : a log - linear relation among the effective radius $R_{eff}$, $\\sigma_0$ and the mean effective intensity $\\langle I_e \\rangle$. However, we predict a tilt between the observed and the MOND fundamental planes.

  7. Fundamentals of electrokinetics

    Science.gov (United States)

    Kozak, M. W.

    The study of electrokinetics is a very mature field. Experimental studies date from the early 1800s, and acceptable theoretical analyses have existed since the early 1900s. The use of electrokinetics in practical field problems is more recent, but it is still quite mature. Most developments in the fundamental understanding of electrokinetics are in the colloid science literature. A significant and increasing divergence between the theoretical understanding of electrokinetics found in the colloid science literature and the theoretical analyses used in interpreting applied experimental studies in soil science and waste remediation has developed. The soil science literature has to date restricted itself to the use of very early theories, with their associated limitations. The purpose of this contribution is to review fundamental aspects of electrokinetic phenomena from a colloid science viewpoint. It is hoped that a bridge can be built between the two branches of the literature, from which both will benefit. Attention is paid to special topics such as the effects of overlapping double layers, applications in unsaturated soils, the influence of dispersivity, and the differences between electrokinetic theory and conductivity theory.

  8. Fundamental Atomtronic Circuit Elements

    Science.gov (United States)

    Lee, Jeffrey; McIlvain, Brian; Lobb, Christopher; Hill, Wendell T., III

    2012-06-01

    Recent experiments with neutral superfluid gases have shown that it is possible to create atomtronic circuits analogous to existing superconducting circuits. The goals of these experiments are to create complex systems such as Josephson junctions. In addition, there are theoretical models for active atomtronic components analogous to diodes, transistors and oscillators. In order for any of these devices to function, an understanding of the more fundamental atomtronic elements is needed. Here we describe the first experimental realization of these more fundamental elements. We have created an atomtronic capacitor that is discharged through a resistance and inductance. We will discuss a theoretical description of the system that allows us to determine values for the capacitance, resistance and inductance. The resistance is shown to be analogous to the Sharvin resistance, and the inductance analogous to kinetic inductance in electronics. This atomtronic circuit is implemented with a thermal sample of laser cooled rubidium atoms. The atoms are confined using what we call free-space atom chips, a novel optical dipole trap produced using a generalized phase-contrast imaging technique. We will also discuss progress toward implementing this atomtronic system in a degenerate Bose gas.

  9. Self-consistent simulations of nanowire transistors using atomistic basis sets

    OpenAIRE

    NEOPHYTOU, Neophytos; Paul, Abhijeet; Lundstrom, Mark S.; Klimeck, Gerhard

    2007-01-01

    As device sizes shrink towards the nanoscale, CMOS development investigates alternative structures and devices. Existing CMOS devices will evolve from planar to 3D non-planar devices at nanometer sizes. These devices will operate under strong confinement and strain, regimes where atomistic effects are important. This work investigates atomistic effects in the transport properties of nanowire devices by using a nearest-neighbor tight binding model (sp3s*d5-SO) for electronic structure calculat...

  10. A State Representation Approach for Atomistic Time-Dependent Transport Calculations in Molecular Junctions

    OpenAIRE

    Zelovich, Tamar; Kronik, Leeor; Hod, Oded

    2014-01-01

    We propose a new method for simulating electron dynamics in open quantum systems out of equilibrium, using a finite atomistic model. The proposed method is motivated by the intuitive and practical nature of the driven Liouville von-Neumann equation approach of S\\'anchez et al. [J. Chem. Phys., 124, 214708 (2006)]. A key ingredient of our approach is a transformation of the Hamiltonian matrix from an atomistic to a state representation of the molecular junction. This allows us to uniquely defi...

  11. Nano sculpt: A methodology for generating complex realistic configurations for atomistic simulations.

    Science.gov (United States)

    Prakash, A; Hummel, M; Schmauder, S; Bitzek, E

    2016-01-01

    Atomistic simulations have now become commonplace in the study of the deformation and failure of materials. Increase in computing power in recent years has made large-scale simulations with billions, or even trillions, of atoms a possibility. Most simulations to-date, however, are still performed with quasi-2D geometries or rather simplistic 3D setups. Although controlled studies on such well-defined structures are often required to obtain quantitative information from atomistic simulations, for qualitative studies focusing on e.g. the identification of mechanisms, researchers would greatly benefit from a methodology that helps realize more realistic configurations. The ideal scenario would be a one-on-one reconstruction of experimentally observed structures. To this end, we propose a new method and software tool called nano sculpt with the following features:•The method allows for easy sample generation for atomistic simulations from any arbitrarily shaped 3D enclosed volume.•The tool can be used to build atomistic samples from artificial geometries, including CAD geometries and structures obtained from simulation methods other than atomistic simulations.•The tool enables the generation of experimentally informed atomistic samples, by e.g. digitization of micrographs or usage of tomography data. PMID:27054098

  12. Three-dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, S; Hornung, R; Garcia, A; Hadjiconstantinou, N

    2004-04-15

    We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi-scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux-based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is invalid or inaccurate, such as near strong flow gradients and at fluid interfaces, or when the continuum grid is refined to the molecular scale. The need for such ''hybrid'' methods arises from the fact that hydrodynamics modeled by continuum representations are often under-resolved or inaccurate while solutions generated using molecular resolution globally are not feasible. In the implementation described herein, Direct Simulation Monte Carlo (DSMC) provides an atomistic description of the flow and the compressible two-fluid Euler equations serve as our continuum-scale model. The AMR methodology provides local grid refinement while the algorithm refinement feature allows the transition to DSMC where needed. The continuum and atomistic representations are coupled by matching fluxes at the continuum-atomistic interfaces and by proper averaging and interpolation of data between scales. Our AMAR application code is implemented in C++ and is built upon the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) framework developed at Lawrence Livermore National Laboratory. SAMRAI provides the parallel adaptive gridding algorithm and enables the coupling between the continuum and atomistic methods.

  13. Nanosculpt: A methodology for generating complex realistic configurations for atomistic simulations

    Science.gov (United States)

    Prakash, A.; Hummel, M.; Schmauder, S.; Bitzek, E.

    2016-01-01

    Atomistic simulations have now become commonplace in the study of the deformation and failure of materials. Increase in computing power in recent years has made large-scale simulations with billions, or even trillions, of atoms a possibility. Most simulations to-date, however, are still performed with quasi-2D geometries or rather simplistic 3D setups. Although controlled studies on such well-defined structures are often required to obtain quantitative information from atomistic simulations, for qualitative studies focusing on e.g. the identification of mechanisms, researchers would greatly benefit from a methodology that helps realize more realistic configurations. The ideal scenario would be a one-on-one reconstruction of experimentally observed structures. To this end, we propose a new method and software tool called nanosculpt with the following features:•The method allows for easy sample generation for atomistic simulations from any arbitrarily shaped 3D enclosed volume.•The tool can be used to build atomistic samples from artificial geometries, including CAD geometries and structures obtained from simulation methods other than atomistic simulations.•The tool enables the generation of experimentally informed atomistic samples, by e.g. digitization of micrographs or usage of tomography data. PMID:27054098

  14. THE EUROPEAN UNION STATE AID: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Venig Adelina

    2015-07-01

    Full Text Available This paper summarizes the economic significance of state aid and the main principles of European state aid control. It starts with a definition of state aid in European context and exceptions to the general ban of state aid. Then they are explored the motives for granting state aid, ranging from the correction of market failures over political motives to political economy considerations. They are described some procedures and coordination of granting state aid, then how state aid control fits into the framework of European competition policy before we comment extensively on the more economic approach to state aid control, as implemented by the European Commission, and the state aid action plan. Control of state aid is of increasing importance in the context of European competition policy in order to maintain a fair level of activity of all enterprises participating in the European markets, regardless of the Member State in which they reside. The theoretical fundamentals of state aid are important to be studied and applied. Were distinguished and described the main approaches in the evolution of economic theories in the field of State aid. Criteria were established to determine the government's actions as state aid and intervention methods analyzed. It is important to think about the implications of state aid at an early stage. Doing so allows assistance to be designed and given more quickly and effectively and avoids potential problems later. A program of assistance that does not follow the rules could be forced to close. Giving state aid illegally could result in the money having to be clawed back with possibly very serious consequences for the recipient. The European Commission monitors and controls state aid in the EU by requiring member states to notify the Commission in advance of proposed state aid in order to ensure compliance. If a European company believes that a competitor is receiving illegal aid then they should complain directly to

  15. Lasers Fundamentals and Applications

    CERN Document Server

    Thyagarajan, K

    2010-01-01

    Lasers: Fundamentals and Applications, serves as a vital textbook to accompany undergraduate and graduate courses on lasers and their applications. Ever since their invention in 1960, lasers have assumed tremendous importance in the fields of science, engineering and technology because of their diverse uses in basic research and countless technological applications. This book provides a coherent presentation of the basic physics behind the way lasers work, and presents some of their most important applications in vivid detail. After reading this book, students will understand how to apply the concepts found within to practical, tangible situations. This textbook includes worked-out examples and exercises to enhance understanding, and the preface shows lecturers how to most beneficially match the textbook with their course curricula. The book includes several recent Nobel Lectures, which will further expose students to the emerging applications and excitement of working with lasers. Students who study lasers, ...

  16. Unification of fundamental forces

    International Nuclear Information System (INIS)

    Abdus Salam, a Fellow of St. John's College, Cambridge, provides an accessible overview of modern particle physics and the quest for the unification of the fundamental forces, the electromagnetic, strong nuclear weak nuclear and gravitational. A major theme of the lecture is the way in which the theoretical physicists approach the task of imposing orders on a seemingly chaotic universe. A secondary theme is that the electroweak force is most likely to be the force of life. The theme of the philosophy behind the work of theorists is continued in two additional lectures by Werner Heisenberg and Paul Dirac which give fascinating insights into the modus operandi and work of two of the founders of quantum mechanics. (author)

  17. Theory of fundamental interactions

    International Nuclear Information System (INIS)

    In the present article the theory of fundamental interactions is derived in a systematic way from the first principles. In the developed theory there is no separation between space-time and internal gauge space. Main equations for basic fields are derived. In is shown that the theory satisfies the correspondence principle and gives rise to new notions in the considered region. In particular, the conclusion is made about the existence of particles which are characterized not only by the mass, spin, charge but also by the moment of inertia. These are rotating particles, the particles which represent the notion of the rigid body on the microscopical level and give the key for understanding strong interactions. The main concepts and dynamical laws for these particles are formulated. The basic principles of the theory may be examined experimentally not in the distant future. 29 refs

  18. Fundamentals of sustainable neighbourhoods

    CERN Document Server

    Friedman, Avi

    2015-01-01

    This book introduces architects, engineers, builders, and urban planners to a range of design principles of sustainable communities and illustrates them with outstanding case studies. Drawing on the author’s experience as well as local and international case studies, Fundamentals of Sustainable Neighbourhoods presents planning concepts that minimize developments' carbon footprint through compact communities, adaptable and expandable dwellings, adaptable landscapes, and smaller-sized yet quality-designed housing. This book also: Examines in-depth global strategies for minimizing the residential carbon footprint, including district heating, passive solar gain, net-zero residences, as well as preserving the communities' natural assets Reconsiders conceptual approaches in building design and urban planning to promote a better connection between communities and nature Demonstrates practical applications of green architecture Focuses on innovative living spaces in urban environments

  19. Fundamentals of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawing from the second edition of the best-selling Handbook of Phosphors, Fundamentals of Phosphors covers the principles and mechanisms of luminescence in detail and surveys the primary phosphor materials as well as their optical properties. The book addresses cutting-edge developments in phosphor science and technology including oxynitride phosphors and the impact of lanthanide level location on phosphor performance.Beginning with an explanation of the physics underlying luminescence mechanisms in solids, the book goes on to interpret various luminescence phenomena in inorganic and organic materials. This includes the interpretation of the luminescence of recently developed low-dimensional systems, such as quantum wells and dots. The book also discusses the excitation mechanisms by cathode-ray and ionizing radiation and by electric fields to produce electroluminescence. The book classifies phosphor materials according to the type of luminescence centers employed or the class of host materials used and inte...

  20. Fundamental partial compositeness

    CERN Document Server

    Sannino, Francesco; Tesi, Andrea; Vigiani, Elena

    2016-01-01

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough 'square root'. Furthermore, right-handed SM fermions have an SU(2)$_R$-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.

  1. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  2. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    discipline. It covers thermo chemistry including mixtures and chemical reactions; Introduces combustion to the fire protection student; Discusses premixed flames and spontaneous ignition; Presents conservation laws for control volumes, including the effects of fire; Describes the theoretical bases for......Understanding fire dynamics and combustion is essential in fire safety engineering and in fire science curricula. Engineers and students involved in fire protection, safety and investigation need to know and predict how fire behaves to be able to implement adequate safety measures and hazard...... analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  3. Fundamentals of Geometrothermodynamics

    CERN Document Server

    Quevedo, Hernando

    2011-01-01

    We present the basic mathematical elements of geometrothermodynamics which is a formalism developed to describe in an invariant way the thermodynamic properties of a given thermodynamic system in terms of geometric structures. First, in order to represent the first law of thermodynamics and the general Legendre transformations in an invariant way, we define the phase manifold as a Legendre invariant Riemannian manifold with a contact structure. The equilibrium manifold is defined by using a harmonic map which includes the specification of the fundamental equation of the thermodynamic system. Quasi-static thermodynamic processes are shown to correspond to geodesics of the equilibrium manifold which preserve the laws of thermodynamics. We study in detail the equilibrium manifold of the ideal gas and the van der Waals gas as concrete examples of the application of geometrothermodynamics.

  4. Digital Fourier analysis fundamentals

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations.  These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...

  5. Fundamentals of Structural Engineering

    CERN Document Server

    Connor, Jerome J

    2013-01-01

    Fundamentals of Structural Engineering provides a balanced, seamless treatment of both classic, analytic methods and contemporary, computer-based techniques for conceptualizing and designing a structure. The book’s principle goal is to foster an intuitive understanding of structural behavior based on problem solving experience for students of civil engineering and architecture who have been exposed to the basic concepts of engineering mechanics and mechanics of materials. Making it distinct from many other undergraduate textbooks, the authors of this text recognize the notion that engineers reason about behavior using simple models and intuition they acquire through problem solving. The approach adopted in this text develops this type of intuition  by presenting extensive, realistic problems and case studies together with computer simulation, which allows rapid exploration of  how a structure responds to changes in geometry and physical parameters. This book also: Emphasizes problem-based understanding of...

  6. Macroeconomic Issues in Foreign Aid

    DEFF Research Database (Denmark)

    Hjertholm, Peter; Laursen, Jytte; White, Howard

    foreign aid, macroeconomics of aid, gap models, aid fungibility, fiscal response models, foreign debt,......foreign aid, macroeconomics of aid, gap models, aid fungibility, fiscal response models, foreign debt,...

  7. Testing Our Fundamental Assumptions

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Science is all about testing the things we take for granted including some of the most fundamental aspects of how we understand our universe. Is the speed of light in a vacuum the same for all photons regardless of their energy? Is the rest mass of a photon actually zero? A series of recent studies explore the possibility of using transient astrophysical sources for tests!Explaining Different Arrival TimesArtists illustration of a gamma-ray burst, another extragalactic transient, in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]Suppose you observe a distant transient astrophysical source like a gamma-ray burst, or a flare from an active nucleus and two photons of different energies arrive at your telescope at different times. This difference in arrival times could be due to several different factors, depending on how deeply you want to question some of our fundamental assumptions about physics:Intrinsic delayThe photons may simply have been emitted at two different times by the astrophysical source.Delay due to Lorentz invariance violationPerhaps the assumption that all massless particles (even two photons with different energies) move at the exact same velocity in a vacuum is incorrect.Special-relativistic delayMaybe there is a universal speed for massless particles, but the assumption that photons have zero rest mass is wrong. This, too, would cause photon velocities to be energy-dependent.Delay due to gravitational potentialPerhaps our understanding of the gravitational potential that the photons experience as they travel is incorrect, also causing different flight times for photons of different energies. This would mean that Einsteins equivalence principle, a fundamental tenet of general relativity (GR), is incorrect.If we now turn this problem around, then by measuring the arrival time delay between photons of different energies from various astrophysical sources the further away, the better we can provide constraints on these

  8. Rotational relaxation in ortho-terphenyl: using atomistic simulations to bridge theory and experiment.

    Science.gov (United States)

    Eastwood, Michael P; Chitra, Tarun; Jumper, John M; Palmo, Kim; Pan, Albert C; Shaw, David E

    2013-10-24

    Understanding the nature of the glass transition--the dramatic slowing of dynamics and eventual emergence of a disordered solid from a cooling liquid--is a fundamental challenge in physical science. A central characteristic of glass-forming liquids is a non-exponential main relaxation process. The extent of deviation from exponential relaxation typically becomes more pronounced on cooling. Theories that predict a growth of spatially heterogeneous dynamics as temperature is lowered can explain these observations. In apparent contradiction to these theories, however, some experiments suggest that certain substances--notably including the intensely studied molecular glass-former ortho-terphenyl (OTP)--have a main relaxation process whose shape is essentially temperature independent, even though other observables predicted to be correlated with the degree of dynamical heterogeneity are temperature dependent. Here we report the first simulations based on an atomistic model of OTP that reach equilibrium at temperatures well into the supercooled regime. We first show that the results of these simulations are in reasonable quantitative agreement with experimental data for several basic properties over a wide range of temperatures. We then focus on rotational relaxation, finding nearly exponential behavior at high temperatures with clearly increasing deviations as temperature is lowered. The much weaker temperature dependence observed in light-scattering experiments also emerges from the same simulation data when we calculate correlation functions similar to those probed experimentally; this highlights the diversity of temperature dependencies that can be obtained with different probes. Further analysis suggests that the temperature insensitivity observed in the light-scattering experiments stems from the dependence of these measurements on internal as well as rotational molecular motion. Within the temperature range of our OTP simulations, our results strongly suggest that

  9. Atomistic view in the initial stages of growth of epitaxial graphene on metal substrates

    Science.gov (United States)

    Zhang, Zhenyu

    2011-03-01

    For both fundamental studies and potential development of graphene electronics, it is pressing to search for reliable methods for mass production of quality graphene. Epitaxial growth of graphene on catalytic metal substrates combined with post-growth transfer has become a promising route towards this goal [1,2]. However, to better control the quality and yield of graphene, a comprehensive understanding of the growth kinetics is essential. In particular, how the carbon atoms adsorbed on the metal surface (or dissolved into the metal) meet to nucleate into stable carbon islands will greatly influence both the growth rate and quality of larger carbon entities such as graphene sheets. In this talk, we first show that the delicate competition between carbon-carbon bonding and carbon-metal bonding dictates the initial nucleation sites of graphene on metal surfaces. These results are discussed in connection with the experimental findings that on Ir(111) and Ru(0001) substrates graphene nucleates from the step edges [4,5]. We also predict that on Cu(111) nucleation should take place everywhere on a terrace. Next we study larger carbon clusters on Cu(111) and explicitly compare the stability of linear and compact structures. We find that the linear carbon ``nanoarches'' are more stable than compact islands consisting of up to 13 carbon atoms, and these nanoarched structures may serve as the missing bridge between carbon dimers and larger graphene nanodomes. Based on these improved understanding of the atomistic rate processes involved, we propose a few kinetic pathways that may lead to better growth control of bilayer graphene and graphene nanoribbons as elemental building blocks for developing graphene electronics. Work done in collaboration with Hua Chen, Wenguang Zhu, Robert Van Wesep, Wei Chen, Ping Cui, and Haiping Lan, and supported by USDOE, USNSF, and NNSF of China.

  10. HIV and AIDS

    Science.gov (United States)

    ... Got Homework? Here's Help White House Lunch Recipes HIV and AIDS KidsHealth > For Kids > HIV and AIDS ... actually the virus that causes the disease AIDS. HIV Hurts the Immune System People who are HIV ...

  11. HIV-AIDS Connection

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area The HIV-AIDS Connection AIDS was first recognized in 1981 ... cancers. Why is there overwhelming scientific consensus that HIV causes AIDS? Before HIV infection became widespread in ...

  12. Heart attack first aid

    Science.gov (United States)

    First aid - heart attack; First aid - cardiopulmonary arrest; First aid - cardiac arrest ... A heart attack occurs when the blood flow that carries oxygen to the heart is blocked. The heart muscle becomes ...

  13. AIDS.gov

    Science.gov (United States)

    ... Hospitalization and Palliative Care Friends & Family Dating and Marriage Family Planning Mixed-Status Couples Discrimination Legal Issues ... National HIV/AIDS and Aging Awareness Day National Gay Men's HIV/AIDS Awareness Day National Latino AIDS ...

  14. Breathing difficulties - first aid

    Science.gov (United States)

    Difficulty breathing - first aid; Dyspnea - first aid; Shortness of breath - first aid ... Breathing difficulty is almost always a medical emergency. An exception is feeling slightly winded from normal activity, ...

  15. Heart attack first aid

    Science.gov (United States)

    First aid - heart attack; First aid - cardiopulmonary arrest; First aid - cardiac arrest ... A heart attack occurs when the blood flow that carries oxygen to the heart is blocked. The heart muscle ...

  16. Nosebleed, First Aid

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Nosebleed, First Aid A A A First Aid for Nosebleed: View ... of the nose, causing bleeding into the throat. First Aid Guide The following self-care measures are recommended: ...

  17. Unconsciousness - first aid

    Science.gov (United States)

    Loss of consciousness - first aid; Coma - first aid; Mental status change; Altered mental status ... has a change in mental status, follow these first aid steps: Call or tell someone to call 911 . ...

  18. Splinter, First Aid

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Splinter, First Aid A A A First Aid for Splinter: View ... wet, it makes the area prone to infection. First Aid Guide Self-care measures to remove a splinter ...

  19. Atomistic Simulations of Poly(N-isopropylacrylamide) Surfactants in Water

    Science.gov (United States)

    Abbott, Lauren J.; Stevens, Mark J.

    2015-03-01

    The amphiphilic polymer poly(N-isopropylacrylamide) (PNIPAM) displays a sharp phase transition at its LCST around 32 °C, which results from competing interactions of the hydrophobic and hydrophilic groups with water. This thermoresponsive behavior can be exploited in more complex architectures, such as block copolymers or surfactants, to provide responsive PNIPAM head groups. In these systems, however, changes to the hydrophobic/hydrophilic balance can alter the transition behavior. In this work, we perform atomistic simulations of PNIPAM-alkyl surfactants to study the temperature dependence of their structures. A single chain of the surfactant does not show temperature-responsive behavior. Instead, below and above the LCST of PNIPAM, the surfactant folds to bring the hydrophobic alkyl tail in contact with the PNIPAM backbone, shielding it from water. In addition to single chains, we explore the self-assembly of multiple surfactants into micelles and how the temperature-dependent behavior is changed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene.

    Science.gov (United States)

    Strong, Steven E; Eaves, Joel D

    2016-05-19

    Mirroring their role in electrical and optical physics, two-dimensional crystals are emerging as novel platforms for fluid separations and water desalination, which are hydrodynamic processes that occur in nanoscale environments. For numerical simulation to play a predictive and descriptive role, one must have theoretically sound methods that span orders of magnitude in physical scales, from the atomistic motions of particles inside the channels to the large-scale hydrodynamic gradients that drive transport. Here, we use constraint dynamics to derive a nonequilibrium molecular dynamics method for simulating steady-state mass flow of a fluid moving through the nanoscopic spaces of a porous solid. After validating our method on a model system, we use it to study the hydrophobic effect of water moving through pores of electrically doped single-layer graphene. The trend in permeability that we calculate does not follow the hydrophobicity of the membrane but is instead governed by a crossover between two competing molecular transport mechanisms. PMID:27139634

  1. Atomistic modeling of phonon transport in turbostratic graphitic structures

    Science.gov (United States)

    Mao, Rui; Chen, Yifeng; Kim, Ki Wook

    2016-05-01

    Thermal transport in turbostratic graphitic systems is investigated by using an atomistic analytical model based on the 4th-nearest-neighbor force constant approximation and a registry-dependent interlayer potential. The developed model is shown to produce an excellent agreement with the experimental data and ab initio results in the calculation of bulk properties. Subsequent analysis of phonon transport in combination with the Green's function method illustrates the significant dependence of key characteristics on the misorientation angle, clearly indicating the importance of this degree of freedom in multi-stacked structures. Selecting three angles with the smallest commensurate unit cells, the thermal resistance is evaluated at the twisted interface between two AB stacked graphite. The resulting values in the range of 35 × 10-10 K m2/W to 116 × 10-10 K m2/W are as large as those between two dissimilar material systems such as a metal and graphene. The strong rotational effect on the cross-plane thermal transport may offer an effective means of phonon engineering for applications such as thermoelectric materials.

  2. Optimization Algorithms in Optimal Predictions of Atomistic Properties by Kriging.

    Science.gov (United States)

    Di Pasquale, Nicodemo; Davie, Stuart J; Popelier, Paul L A

    2016-04-12

    The machine learning method kriging is an attractive tool to construct next-generation force fields. Kriging can accurately predict atomistic properties, which involves optimization of the so-called concentrated log-likelihood function (i.e., fitness function). The difficulty of this optimization problem quickly escalates in response to an increase in either the number of dimensions of the system considered or the size of the training set. In this article, we demonstrate and compare the use of two search algorithms, namely, particle swarm optimization (PSO) and differential evolution (DE), to rapidly obtain the maximum of this fitness function. The ability of these two algorithms to find a stationary point is assessed by using the first derivative of the fitness function. Finally, the converged position obtained by PSO and DE is refined through the limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm, which belongs to the class of quasi-Newton algorithms. We show that both PSO and DE are able to come close to the stationary point, even in high-dimensional problems. They do so in a reasonable amount of time, compared to that with the Newton and quasi-Newton algorithms, regardless of the starting position in the search space of kriging hyperparameters. The refinement through L-BFGS-B is able to give the position of the maximum with whichever precision is desired. PMID:26930135

  3. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiroshi, E-mail: h.ogawa@aist.go.jp

    2015-10-05

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation.

  4. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation

  5. Atomistic Molecular Dynamics Simulations of Shock Compressed Quartz

    CERN Document Server

    Farrow, Matthew R

    2011-01-01

    Atomistic non-equilibrium molecular dynamics (NEMD) simulations of shock wave compression of quartz have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer and van Santen to construct the Hugoniot of quartz. Our scheme mimics the real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first shock wave simulation that uses a geom- etry optimised system of a polar slab in a 3-dimensional system employing periodic boundary conditions. Our scheme also includes the relaxation of the surface dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The original BKS potential is unsuited to shock wave calculations and so we propose a simple modification. With this modification, we find that our calculated Hugoniot is in good agreement with experimental shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our modified BKS potential is suitable for quartz under repres...

  6. Strings and fundamental physics

    International Nuclear Information System (INIS)

    The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)

  7. Fundamentals of klystron testing

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, J.W. Jr.

    1978-08-01

    Fundamentals of klystron testing is a text primarily intended for the indoctrination of new klystron group test stand operators. It should significantly reduce the familiarization time of a new operator, making him an asset to the group sooner than has been experienced in the past. The new employee must appreciate the mission of SLAC before he can rightfully be expected to make a meaningful contribution to the group's effort. Thus, the introductory section acquaints the reader with basic concepts of accelerators in general, then briefly describes major physical aspects of the Stanford Linear Accelerator. Only then is his attention directed to the klystron, with its auxiliary systems, and the rudiments of klystron tube performance checks. It is presumed that the reader is acquainted with basic principles of electronics and scientific notation. However, to preserve the integrity of an indoctrination guide, tedious technical discussions and mathematical analysis have been studiously avoided. It is hoped that the new operator will continue to use the text for reference long after his indoctrination period is completed. Even the more experienced operator should find that particular sections will refresh his understanding of basic principles of klystron testing.

  8. Fundamentals of Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of Monte Carlo. Welcome to Los Alamos, the birthplace of “Monte Carlo” for computational physics. Stanislaw Ulam, John von Neumann, and Nicholas Metropolis are credited as the founders of modern Monte Carlo methods. The name “Monte Carlo” was chosen in reference to the Monte Carlo Casino in Monaco (purportedly a place where Ulam’s uncle went to gamble). The central idea (for us) – to use computer-generated “random” numbers to determine expected values or estimate equation solutions – has since spread to many fields. "The first thoughts and attempts I made to practice [the Monte Carlo Method] were suggested by a question which occurred to me in 1946 as I was convalescing from an illness and playing solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards will come out successfully? After spending a lot of time trying to estimate them by pure combinatorial calculations, I wondered whether a more practical method than “abstract thinking” might not be to lay it out say one hundred times and simply observe and count the number of successful plays... Later [in 1946], I described the idea to John von Neumann, and we began to plan actual calculations." - Stanislaw Ulam.

  9. Revisiting energy efficiency fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lombard, L.; Velazquez, D. [Grupo de Termotecnia, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville (Spain); Ortiz, J. [Building Research Establishment (BRE), Garston, Watford, WD25 9XX (United Kingdom)

    2013-05-15

    Energy efficiency is a central target for energy policy and a keystone to mitigate climate change and to achieve a sustainable development. Although great efforts have been carried out during the last four decades to investigate the issue, focusing into measuring energy efficiency, understanding its trends and impacts on energy consumption and to design effective energy efficiency policies, many energy efficiency-related concepts, some methodological problems for the construction of energy efficiency indicators (EEI) and even some of the energy efficiency potential gains are often ignored or misunderstood, causing no little confusion and controversy not only for laymen but even for specialists. This paper aims to revisit, analyse and discuss some efficiency fundamental topics that could improve understanding and critical judgement of efficiency stakeholders and that could help in avoiding unfounded judgements and misleading statements. Firstly, we address the problem of measuring energy efficiency both in qualitative and quantitative terms. Secondly, main methodological problems standing in the way of the construction of EEI are discussed, and a sequence of actions is proposed to tackle them in an ordered fashion. Finally, two key topics are discussed in detail: the links between energy efficiency and energy savings, and the border between energy efficiency improvement and renewable sources promotion.

  10. Fundamental Safety Principles

    International Nuclear Information System (INIS)

    This work presents a summary of the IAEA Safety Standards Series publication No. SF-1 entitled FUDAMENTAL Safety PRINCIPLESpublished on 2006. This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purposes. Safety measures and security measures have in common the aim of protecting human life and health and the environment. These safety principles are: 1) Responsibility for safety, 2) Role of the government, 3) Leadership and management for safety, 4) Justification of facilities and activities, 5) Optimization of protection, 6) Limitation of risks to individuals, 7) Protection of present and future generations, 8) Prevention of accidents, 9)Emergency preparedness and response and 10) Protective action to reduce existing or unregulated radiation risks. The safety principles concern the security of facilities and activities to the extent that they apply to measures that contribute to both safety and security. Safety measures and security measures must be designed and implemented in an integrated manner so that security measures do not compromise safety and safety measures do not compromise security.

  11. Fundamentals of Quantum Mechanics

    Science.gov (United States)

    Tang, C. L.

    2005-06-01

    Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors

  12. Fundamentals of klystron testing

    International Nuclear Information System (INIS)

    Fundamentals of klystron testing is a text primarily intended for the indoctrination of new klystron group test stand operators. It should significantly reduce the familiarization time of a new operator, making him an asset to the group sooner than has been experienced in the past. The new employee must appreciate the mission of SLAC before he can rightfully be expected to make a meaningful contribution to the group's effort. Thus, the introductory section acquaints the reader with basic concepts of accelerators in general, then briefly describes major physical aspects of the Stanford Linear Accelerator. Only then is his attention directed to the klystron, with its auxiliary systems, and the rudiments of klystron tube performance checks. It is presumed that the reader is acquainted with basic principles of electronics and scientific notation. However, to preserve the integrity of an indoctrination guide, tedious technical discussions and mathematical analysis have been studiously avoided. It is hoped that the new operator will continue to use the text for reference long after his indoctrination period is completed. Even the more experienced operator should find that particular sections will refresh his understanding of basic principles of klystron testing

  13. Fundamental Limits of Cooperation

    CERN Document Server

    Lozano, Angel; Andrews, Jeffrey G

    2012-01-01

    Cooperation is viewed as a key ingredient for interference management in wireless systems. This paper shows that cooperation has fundamental limitations. The main result is that even full cooperation between transmitters cannot in general change an interference-limited network to a noise-limited network. The key idea is that there exists a spectral efficiency upper bound that is independent of the transmit power. First, a spectral efficiency upper bound is established for systems that rely on pilot-assisted channel estimation; in this framework, cooperation is shown to be possible only within clusters of limited size, which are subject to out-of-cluster interference whose power scales with that of the in-cluster signals. Second, an upper bound is also shown to exist when cooperation is through noncoherent communication; thus, the spectral efficiency limitation is not a by-product of the reliance on pilot-assisted channel estimation. Consequently, existing literature that routinely assumes the high-power spect...

  14. Peridynamics as a rigorous coarse-graining of atomistics for multiscale materials design.

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, Richard B.; Aidun, John Bahram; Silling, Stewart Andrew; Sears, Mark P.; Kamm, James R.; Parks, Michael L.

    2010-09-01

    This report summarizes activities undertaken during FY08-FY10 for the LDRD Peridynamics as a Rigorous Coarse-Graining of Atomistics for Multiscale Materials Design. The goal of our project was to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. The goal of our project is to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. Our coarse-graining overcomes the intrinsic limitation of coupling atomistics with classical continuum mechanics via the FEM (finite element method), SPH (smoothed particle hydrodynamics), or MPM (material point method); namely, that classical continuum mechanics assumes a local force interaction that is incompatible with the nonlocal force model of atomistic methods. Therefore FEM, SPH, and MPM inherit this limitation. This seemingly innocuous dichotomy has far reaching consequences; for example, classical continuum mechanics cannot resolve the short wavelength behavior associated with atomistics. Other consequences include spurious forces, invalid phonon dispersion relationships, and irreconcilable descriptions/treatments of temperature. We propose a statistically based coarse-graining of atomistics via peridynamics and so develop a first of a kind mesoscopic capability to enable consistent, thermodynamically sound, atomistic-to-continuum (AtC) multiscale material simulation. Peridynamics (PD) is a microcontinuum theory that assumes nonlocal forces for describing long-range material interaction. The force interactions occurring at finite distances are naturally accounted for in PD. Moreover, PDs nonlocal force model is entirely consistent with those used by atomistics methods, in stark contrast to classical continuum mechanics. Hence, PD can be employed for mesoscopic phenomena that are beyond the realms of classical continuum mechanics and

  15. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  16. Types of Foreign Aid

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    Foreign aid is given for many purposes and different intentions, yet most studies treat aid flows as a unitary concept. This paper uses factor analysis to separate aid flows into different types. The main types can be interpreted as aid for economic purposes, social purposes, and reconstruction; a...... residual category captures remaining purposes. Estimating the growth effects of separable types of aid suggests that most aid has no effects while reconstruction aid has direct positive effects. Although this type only applies in special circumstances, it has become more prevalent in more recent years....

  17. Atomistic theory of transport in organic and inorganic nanostructures

    International Nuclear Information System (INIS)

    As the size of modern electronic and optoelectronic devices is scaling down at a steady pace, atomistic simulations become necessary for an accurate modelling of their structural, electronic, optical and transport properties. Such microscopic approaches are important in order to account correctly for quantum-mechanical phenomena affecting both electronic and transport properties of nanodevices. Effective bulk parameters cannot be used for the description of the electronic states since interfacial properties play a crucial role and semiclassical methods for transport calculations are not suitable at the typical scales where the device behaviour is characterized by coherent tunnelling. Quantum-mechanical computations with atomic resolution can be achieved using localized basis sets for the description of the system Hamiltonian. Such methods have been extensively used to predict optical and electronic properties of molecules and mesoscopic systems. The most important approaches formulated in terms of localized basis sets, from empirical tight-binding (TB) to first principles methods, are here reviewed. Being a full band approach, even the simplest TB overcomes the limitations of envelope function approximations, such as the well-known k · p, and allows to retain atomic details and realistic band structures. First principles calculations, on the other hand, can give a very accurate description of the electronic and structural properties. Transport in nanoscale devices cannot neglect quantum effects such as coherent tunnelling. In this context, localized basis sets are well-suited for the formal treatment of quantum transport since they provide a simple mathematical framework to treat open-boundary conditions, typically encountered when the system eigenstates carry a steady-state current. We review the principal methods used to formulate quantum transport based on local orbital sets via transfer matrix and Green's function (GF) techniques. We start from a general

  18. Atomistic theory of transport in organic and inorganic nanostructures

    Science.gov (United States)

    Pecchia, Alessandro; Di Carlo, Aldo

    2004-08-01

    As the size of modern electronic and optoelectronic devices is scaling down at a steady pace, atomistic simulations become necessary for an accurate modelling of their structural, electronic, optical and transport properties. Such microscopic approaches are important in order to account correctly for quantum-mechanical phenomena affecting both electronic and transport properties of nanodevices. Effective bulk parameters cannot be used for the description of the electronic states since interfacial properties play a crucial role and semiclassical methods for transport calculations are not suitable at the typical scales where the device behaviour is characterized by coherent tunnelling. Quantum-mechanical computations with atomic resolution can be achieved using localized basis sets for the description of the system Hamiltonian. Such methods have been extensively used to predict optical and electronic properties of molecules and mesoscopic systems. The most important approaches formulated in terms of localized basis sets, from empirical tight-binding (TB) to first principles methods, are here reviewed. Being a full band approach, even the simplest TB overcomes the limitations of envelope function approximations, such as the well-known k · p, and allows to retain atomic details and realistic band structures. First principles calculations, on the other hand, can give a very accurate description of the electronic and structural properties. Transport in nanoscale devices cannot neglect quantum effects such as coherent tunnelling. In this context, localized basis sets are well-suited for the formal treatment of quantum transport since they provide a simple mathematical framework to treat open-boundary conditions, typically encountered when the system eigenstates carry a steady-state current. We review the principal methods used to formulate quantum transport based on local orbital sets via transfer matrix and Green's function (GF) techniques. We start from a general

  19. A fully atomistic model of the Cx32 connexon.

    Directory of Open Access Journals (Sweden)

    Sergio Pantano

    Full Text Available Connexins are plasma membrane proteins that associate in hexameric complexes to form channels named connexons. Two connexons in neighboring cells may dock to form a "gap junction" channel, i.e. an intercellular conduit that permits the direct exchange of solutes between the cytoplasm of adjacent cells and thus mediate cell-cell ion and metabolic signaling. The lack of high resolution data for connexon structures has hampered so far the study of the structure-function relationships that link molecular effects of disease-causing mutations with their observed phenotypes. Here we present a combination of modeling techniques and molecular dynamics (MD to infer side chain positions starting from low resolution structures containing only C alpha atoms. We validated this procedure on the structure of the KcsA potassium channel, which is solved at atomic resolution. We then produced a fully atomistic model of a homotypic Cx32 connexon starting from a published model of the C alpha carbons arrangement for the connexin transmembrane helices, to which we added extracellular and cytoplasmic loops. To achieve structural relaxation within a realistic environment, we used MD simulations inserted in an explicit solvent-membrane context and we subsequently checked predictions of putative side chain positions and interactions in the Cx32 connexon against a vast body of experimental reports. Our results provide new mechanistic insights into the effects of numerous spontaneous mutations and their implication in connexin-related pathologies. This model constitutes a step forward towards a structurally detailed description of the gap junction architecture and provides a structural platform to plan new biochemical and biophysical experiments aimed at elucidating the structure of connexin channels and hemichannels.

  20. Thinking about Aid Predictability

    OpenAIRE

    Andrews, Matthew; Wilhelm, Vera

    2008-01-01

    Researchers are giving more attention to aid predictability. In part, this is because of increases in the number of aid agencies and aid dollars and the growing complexity of the aid community. A growing body of research is examining key questions: Is aid unpredictable? What causes unpredictability? What can be done about it? This note draws from a selection of recent literature to bring s...

  1. How to Get Hearing Aids

    Science.gov (United States)

    ... Consumer Products Hearing Aids How to get Hearing Aids Share Tweet Linkedin Pin it More sharing options ... my hearing aids? How do I get hearing aids? To get hearing aids, you should first have ...

  2. Communication technology update and fundamentals

    CERN Document Server

    Grant, August E

    2010-01-01

    New communication technologies are being introduced at an astonishing rate. Making sense of these technologies is increasingly difficult. Communication Technology Update and Fundamentals is the single best source for the latest developments, trends, and issues in communication technology. Featuring the fundamental framework along with the history and background of communication technologies, Communication Technology Update and Fundamentals, 12th edition helps you stay ahead of these ever-changing and emerging technologies.As always, every chapter ha

  3. A Note on Automatic Kernel Carpentry for Atomistic Support of Continuum Stress

    CERN Document Server

    Ulz, Manfred H

    2015-01-01

    Research within the field of multiscale modelling seeks, amongst other questions, to reconcile atomistic scale interactions with thermodynamical quantities (such as stress) on the continuum scale. The estimation of stress at a continuum point on the atomistic scale requires a pre-defined kernel function. This kernel function derives the stress at a continuum point by averaging the contribution from atoms within a region surrounding the continuum point. Commonly the kernel weight assignment is isotropic: an identical weight is assigned to atoms at the same spatial distance, which is tantamount to a local constant regression model. In this paper we employ a local linear regression model and leverage the mechanism of automatic kernel carpentry to allow for spatial averaging adaptive to the local distribution of atoms. As a result, different weights may be assigned to atoms at the same spatial distance. This is of interest for determining atomistic stress at stacking faults, interfaces or surfaces. It is shown in...

  4. Accelerating a hybrid continuum-atomistic fluidic model with on-the-fly machine learning

    CERN Document Server

    Stephenson, David; Lockerby, Duncan A

    2016-01-01

    We present a hybrid continuum-atomistic scheme which combines molecular dynamics (MD) simulations with on-the-fly machine learning techniques for the accurate and efficient prediction of multiscale fluidic systems. By using a Gaussian process as a surrogate model for the computationally expensive MD simulations, we use Bayesian inference to predict the system behaviour at the atomistic scale, purely by consideration of the macroscopic inputs and outputs. Whenever the uncertainty of this prediction is greater than a predetermined acceptable threshold, a new MD simulation is performed to continually augment the database, which is never required to be complete. This provides a substantial enhancement to the current generation of hybrid methods, which often require many similar atomistic simulations to be performed, discarding information after it is used once. We apply our hybrid scheme to nano-confined unsteady flow through a high-aspect-ratio converging-diverging channel, and make comparisons between the new s...

  5. Limitations of reactive atomistic potentials in describing defect structures in oxides

    Science.gov (United States)

    Hynninen, Teemu; Musso, Tiziana; Foster, Adam S.

    2016-03-01

    It is difficult to achieve low expense and high accuracy in computational methods, yet it remains a key objective in atomistic approaches. In solid state physics, advanced atomistic potentials using reactive force fields have shown promise in delivering both. However, these methods have not been applied widely beyond their development environment and thus their strengths and weaknesses are not fully understood. In this work we present benchmark calculations on silica (SiO2) and hafnia (HfO2) structures, comparing a leading charge optimized many-body potential to a more advanced density functional calculation. We find that although the atomistic potential gives excellent results for bulk structures, it has severe shortcomings when applied to small systems with low coordinated atoms. We also establish clearly the components of the many-body potential and how these relate to predicted physical properties.

  6. [Aged woman's vulnerability related to AIDS].

    Science.gov (United States)

    Silva, Carla Marins; Lopes, Fernanda Maria do Valle Martins; Vargens, Octavio Muniz da Costa

    2010-09-01

    This article is a systhematic literature review including the period from 1994 to 2009, whose objective was to discuss the aged woman's vulnerability in relation to Acquired Imunodeficiency Syndrome (Aids). The search for scientific texts was accomplished in the following databases: Biblioteca Virtual em Saúde, Scientific Eletronic Library Online (SciELO), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) and Medical Literature Analysis and Retrieval System Online (MEDLINE). The descriptors used were vulnerability, woman and Aids. Eighteen texts were analyzed, including articles in scientific journals, thesis and dissertations. As a conclusion, it was noted that aged women and vulnerability to Aids are directly related, through gender characteristics including submission and that were built historical and socially. We consider as fundamental the development of studies which may generate publications accessible to women, in order to help them see themselves as persons vulnerable to Aids contagion just for being women. PMID:21574329

  7. First principles view on chemical compound space: Towards atomistic control of molecular properties

    CERN Document Server

    von Lilienfeld, O A

    2012-01-01

    A well-defined notion of chemical space is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we revisit the atomistic first principles perspective on chemical compound space. First, we review chemical space in terms of conceptual density functional and molecular grand-canonical ensemble theory. Subsequently, compound-pairs, "alchemical" interpolation and reference compounds, and the relevance of property non-linearity are discussed. Thereafter, we will focus on recent contributions for accelerating atomistic simulations based on modern statistical data analysis methods (artificial intelligence). The crucial role of good descriptors for chemical compounds will be addressed.

  8. Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review

    Science.gov (United States)

    Kumar, Rajesh; Parashar, Avinash

    2015-12-01

    Due to their exceptional mechanical properties, thermal conductivity and a wide band gap (5-6 eV), boron nitride nanotubes and nanosheets have promising applications in the field of engineering and biomedical science. Accurate modeling of failure or fracture in a nanomaterial inherently involves coupling of atomic domains of cracks and voids as well as a deformation mechanism originating from grain boundaries. This review highlights the recent progress made in the atomistic modeling of boron nitride nanofillers. Continuous improvements in computational power have made it possible to study the structural properties of these nanofillers at the atomistic scale.

  9. Real-Time Examination of Atomistic Mechanisms during Shock-Induced Structural Transformation in Silicon.

    Science.gov (United States)

    Turneaure, Stefan J; Sinclair, N; Gupta, Y M

    2016-07-22

    The experimental determination of atomistic mechanisms linking crystal structures during a compression-driven solid-solid phase transformation is a long-standing and challenging scientific objective. Using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal, and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. The approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes. PMID:27494481

  10. Real-Time Examination of Atomistic Mechanisms during Shock-Induced Structural Transformation in Silicon

    Science.gov (United States)

    Turneaure, Stefan J.; Sinclair, N.; Gupta, Y. M.

    2016-07-01

    The experimental determination of atomistic mechanisms linking crystal structures during a compression-driven solid-solid phase transformation is a long-standing and challenging scientific objective. Using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal, and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. The approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes.

  11. [Migration and AIDS in Africa].

    Science.gov (United States)

    Du Guerney, J

    1994-01-01

    Migration is a domain of human behavior implicated in the spread of AIDS that has been largely neglected in research and prevention campaigns. Recognition of the role of mobility in the spread of AIDS has been largely anecdotal, as in the case of East African truck drivers. Like sexuality, mobility is a fundamental human behavior and very difficult to modify. Now that the AIDS epidemic has become worldwide, the importance of mobility in its spread is clear. Movement in space allowed the virus to be transported to new populations. The spread of the virus is then determined by sexual behavior. Population movements in Africa occur from one rural area or city to another, or between the city and the countryside. The view that AIDS is primarily an urban phenomenon ignores on the one hand return migration of migratory labor or other circuits between the city and countryside, and on the other the significant mobility from one rural area to another, such as that of seasonal plantation workers. Other forms of movement are also very important in Africa, which has more refugees and displaced persons than any other continent. Various armed conflicts involve movement, as does the international drug traffic. Each of these types of movement has tended to increase in recent years because of political instability or economic crisis. Exposure to risk of HIV infection consequently also increases. Officials of some national AIDS control programs have begun to cooperate with each other. Although the epidemic has spread widely, it has not reached its peak even in Africa, especially in rural areas. Systematic interventions at strategic points of migratory currents would be very useful in prevention. PMID:12178209

  12. The stability of fundamental constants

    International Nuclear Information System (INIS)

    The tests of the constancy of fundamental constants are tests of the local position invariance and thus of the equivalence principle, at the heart of general relativity. After summarising the links between fundamental constants, gravity, cosmology and metrology, a brief overview of the observational and experimental constraints on their variation is proposed. (authors)

  13. Aid and growth regressions

    DEFF Research Database (Denmark)

    Hansen, Henrik; Tarp, Finn

    2001-01-01

    This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy....... There are, however, decreasing returns to aid, and the estimated effectiveness of aid is highly sensitive to the choice of estimator and the set of control variables. When investment and human capital are controlled for, no positive effect of aid is found. Yet, aid continues to impact on growth via...

  14. A method of integration of atomistic simulations and continuum mechanics by collecting of dynamical systems with dimensional reduction

    International Nuclear Information System (INIS)

    Elementary processes responsible for phenomena in material are frequently related to scale close to atomic one. Therefore atomistic simulations are important for material sciences. On the other hand continuum mechanics is widely applied in mechanics of materials. It seems inevitable that both methods will gradually integrate. A multiscale method of integration of these approaches called collection of dynamical systems with dimensional reduction is introduced in this work. The dimensional reduction procedure realizes transition between various scale models from an elementary dynamical system (EDS) to a reduced dynamical system (RDS). Mappings which transform variables and forces, skeletal dynamical system (SDS) and a set of approximation and identification methods are main components of this procedure. The skeletal dynamical system is a set of dynamical systems parameterized by some constants and has variables related to the dimensionally reduced model. These constants are identified with the aid of solutions of the elementary dynamical system. As a result we obtain a dimensionally reduced dynamical system which describes phenomena in an averaged way in comparison with the EDS. Concept of integration of atomistic simulations with continuum mechanics consists in using a dynamical system describing evolution of atoms as an elementary dynamical system. Then, we introduce a continuum skeletal dynamical system within the dimensional reduction procedure. In order to construct such a system we have to modify a continuum mechanics formulation to some degree. Namely, we formalize scale of averaging for continuum theory and as a result we consider continuum with finite-dimensional fields only. Then, realization of dimensional reduction is possible. A numerical example of realization of the dimensional reduction procedure is shown. We consider a one dimensional chain of atoms interacting by Lennard-Jones potential. Evolution of this system is described by an elementary

  15. Atomistic theory of transport in organic and inorganic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pecchia, Alessandro; Di Carlo, Aldo [INFM-Department of Electronic Engineering, University of Rome, Tor Vergata, Rome (Italy)

    2004-08-01

    As the size of modern electronic and optoelectronic devices is scaling down at a steady pace, atomistic simulations become necessary for an accurate modelling of their structural, electronic, optical and transport properties. Such microscopic approaches are important in order to account correctly for quantum-mechanical phenomena affecting both electronic and transport properties of nanodevices. Effective bulk parameters cannot be used for the description of the electronic states since interfacial properties play a crucial role and semiclassical methods for transport calculations are not suitable at the typical scales where the device behaviour is characterized by coherent tunnelling. Quantum-mechanical computations with atomic resolution can be achieved using localized basis sets for the description of the system Hamiltonian. Such methods have been extensively used to predict optical and electronic properties of molecules and mesoscopic systems. The most important approaches formulated in terms of localized basis sets, from empirical tight-binding (TB) to first principles methods, are here reviewed. Being a full band approach, even the simplest TB overcomes the limitations of envelope function approximations, such as the well-known k {center_dot} p, and allows to retain atomic details and realistic band structures. First principles calculations, on the other hand, can give a very accurate description of the electronic and structural properties. Transport in nanoscale devices cannot neglect quantum effects such as coherent tunnelling. In this context, localized basis sets are well-suited for the formal treatment of quantum transport since they provide a simple mathematical framework to treat open-boundary conditions, typically encountered when the system eigenstates carry a steady-state current. We review the principal methods used to formulate quantum transport based on local orbital sets via transfer matrix and Green's function (GF) techniques. We start from

  16. Scalable and portable visualization of large atomistic datasets

    Science.gov (United States)

    Sharma, Ashish; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2004-10-01

    A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomistic dataset consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data structure to efficiently remove atoms outside of the user's field-of-view. Probabilistic and depth-based occlusion-culling algorithms then select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the selected subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tested on a number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of millions of atoms on a standard desktop computer and, in its parallel version, up to a billion atoms. Program summaryTitle of program: Atomsviewer Catalogue identifier: ADUM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processor, professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5 Programming languages used: C++, C and OpenGL Memory required to execute with typical data: 1 gigabyte of RAM High speed storage required: 60 gigabytes No. of lines in the distributed program including test data, etc.: 550 241 No. of bytes in the distributed program including test data, etc.: 6 258 245 Number of bits in a word: Arbitrary Number of processors used: 1 Has the code been vectorized or parallelized: No Distribution format: tar gzip file Nature of physical problem: Scientific visualization of atomic systems Method of solution: Rendering of atoms using computer graphic techniques, culling algorithms for data

  17. The Fundamental Scale of Descriptions

    CERN Document Server

    Febres, Gerardo

    2014-01-01

    The complexity of a system description is a function of the entropy of its symbolic description. Prior to computing the entropy of the system description, an observation scale has to be assumed. In natural language texts, typical scales are binary, characters, and words. However, considering languages as structures built around certain preconceived set of symbols, like words or characters, is only a presumption. This study depicts the notion of the Description Fundamental Scale as a set of symbols which serves to analyze the essence a language structure. The concept of Fundamental Scale is tested using English and MIDI music texts by means of an algorithm developed to search for a set of symbols, which minimizes the system observed entropy, and therefore best expresses the fundamental scale of the language employed. Test results show that it is possible to find the Fundamental Scale of some languages. The concept of Fundamental Scale, and the method for its determination, emerges as an interesting tool to fac...

  18. Room Temperature Deformation Mechanisms of Alumina Particles Observed from In Situ Micro-compression and Atomistic Simulations

    Science.gov (United States)

    Sarobol, Pylin; Chandross, Michael; Carroll, Jay D.; Mook, William M.; Bufford, Daniel C.; Boyce, Brad L.; Hattar, Khalid; Kotula, Paul G.; Hall, Aaron C.

    2016-01-01

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. The identified deformation mechanisms provide insight into feedstock design for AD.

  19. An atomistic approach to conduction between nanoelectrodes through a single molecule.

    Science.gov (United States)

    Reimers, Jeffrey R; Shapley, Warwick A; Lambropoulos, Nicholas; Hush, Noel S

    2002-04-01

    Capacitance and other properties of nanoelectrodes, finite-size metal clusters envisaged for use in complex molecular-electronic devices, are discussed. The applicability of classical electrostatics (Coulomb's and Gauss' law, Poisson's equation, etc.) to atomistic systems is investigated and the self-energy necessary to store a finite charge on an atom is found to be of central importance. In particular, the neglect of electron exchange is found to introduce severe limitations, with quantum calculations predicting fundamentally different electronic structures. Also, the well-known poor representation of the atomic self-energy inherent to modern DFT is discussed, along with its implications for molecular electronics calculations. An INDO/S method is introduced with new parameters for gold. This is the simplest approximate computational scheme that correctly includes quantum electrostatic, resonance, and spin effects, and is capable of describing arbitrary excited electronic states. Encouraging results are obtained for some trial problems. In particular, voltage differential between the electrodes in electrode-molecule-electrode conduction is obtained, not through an a priori prescription but rather by moving whole electrons between the electrodes and analyzing the response. The voltage drops across the molecule-electrode junctions and the central molecular region are then deduced. This alternative to the current Landauer-based 1-particle transmission equations for electrode-molecule-electrode conduction is discussed in terms of the use of the electronic states of the system. It provides a proper description not only of conduction via electrode-to-molecule charge or hole transfer but also of conduction via simultaneous charge and hole transfer via low-lying excited molecular electronic states, including the ability to account for electroluminescence and other chemical effects. In addition, various aspects of our research on the quantitative prediction of the I

  20. Atomistic Method Applied to Computational Modeling of Surface Alloys

    Science.gov (United States)

    Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    The formation of surface alloys is a growing research field that, in terms of the surface structure of multicomponent systems, defines the frontier both for experimental and theoretical techniques. Because of the impact that the formation of surface alloys has on surface properties, researchers need reliable methods to predict new surface alloys and to help interpret unknown structures. The structure of surface alloys and when, and even if, they form are largely unpredictable from the known properties of the participating elements. No unified theory or model to date can infer surface alloy structures from the constituents properties or their bulk alloy characteristics. In spite of these severe limitations, a growing catalogue of such systems has been developed during the last decade, and only recently are global theories being advanced to fully understand the phenomenon. None of the methods used in other areas of surface science can properly model even the already known cases. Aware of these limitations, the Computational Materials Group at the NASA Glenn Research Center at Lewis Field has developed a useful, computationally economical, and physically sound methodology to enable the systematic study of surface alloy formation in metals. This tool has been tested successfully on several known systems for which hard experimental evidence exists and has been used to predict ternary surface alloy formation (results to be published: Garces, J.E.; Bozzolo, G.; and Mosca, H.: Atomistic Modeling of Pd/Cu(100) Surface Alloy Formation. Surf. Sci., 2000 (in press); Mosca, H.; Garces J.E.; and Bozzolo, G.: Surface Ternary Alloys of (Cu,Au)/Ni(110). (Accepted for publication in Surf. Sci., 2000.); and Garces, J.E.; Bozzolo, G.; Mosca, H.; and Abel, P.: A New Approach for Atomistic Modeling of Pd/Cu(110) Surface Alloy Formation. (Submitted to Appl. Surf. Sci.)). Ternary alloy formation is a field yet to be fully explored experimentally. The computational tool, which is based on

  1. How HIV Causes AIDS

    Science.gov (United States)

    ... Share this: Main Content Area How HIV Causes AIDS HIV destroys CD4 positive (CD4+) T cells, which ... and disease, ultimately resulting in the development of AIDS. Most people who are infected with HIV can ...

  2. HIV/AIDS Basics

    Science.gov (United States)

    ... Providers Prevention Resources Newsletter Get Tested Find an HIV testing site near you. Enter ZIP code or ... AIDS Get Email Updates on AAA Anonymous Feedback HIV/AIDS Media Infographics Syndicated Content Podcasts Slide Sets ...

  3. Aids for visual impairment.

    OpenAIRE

    Dudley, N. J.

    1990-01-01

    This article provides only a flavour of the type and range of aids available to the visually impaired person. Many other aids for leisure, learning, and daily living are illustrated in the RNIB equipment and games catalogue.

  4. AIDS Myths and Misunderstandings

    Science.gov (United States)

    ... 2014 Select a Language: Fact Sheet 158 AIDS Myths and Misunderstandings WHY ARE THERE SO MANY AIDS ... sweat, saliva or urine of an infected person. Myth: A pregnant woman with HIV infection always infects ...

  5. First Aid: Influenza (Flu)

    Science.gov (United States)

    ... Smoothie Pregnant? Your Baby's Growth First Aid: The Flu KidsHealth > For Parents > First Aid: The Flu Print ... tiredness What to Do If Your Child Has Flu Symptoms: Call your doctor. Encourage rest. Keep your ...

  6. First Aid and Safety

    Science.gov (United States)

    ... Things to Know About Zika & Pregnancy First Aid & Safety Keeping your child safe is your top priority. ... to call for help, and more. First Aid & Safety Center Home Sweet Home A Safe and Spooktacular ...

  7. MICROFICHE AIDS DATA

    Science.gov (United States)

    This data set contains counts of AIDS (Acquired Immune Deficiency Syndrome) cases reported to state and local health departments, by demographics; case-definition; HIV exposure group (risk factors for AIDS); Half-year of diagnosis, report, and death.

  8. Head injury - first aid

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000028.htm Head injury - first aid To use the sharing features on this page, ... a concussion can range from mild to severe. First Aid Learning to recognize a serious head injury and ...

  9. Drug abuse first aid

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000016.htm Drug abuse first aid To use the sharing features on this page, ... Diarrhea Hallucinations Nausea and vomiting Restlessness Shaking Death First Aid 1. Check the patient's airway, breathing, and pulse. ...

  10. Poisoning first aid

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007579.htm Poisoning first aid To use the sharing features on this page, ... or burns Stupor Unconsciousness Unusual breath odor Weakness First Aid Seek immediate medical help. For poisoning by swallowing: ...

  11. Frostbite, First Aid

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Frostbite, First Aid A A A Severe frostbite can result in ... became frozen). Frostbite is often associated with hypothermia. First Aid Guide In the case of mild frostbite, the ...

  12. Jellyfish Stings, First Aid

    Science.gov (United States)

    ... rashes clinical tools newsletter | contact Share | Jellyfish Stings, First Aid A A A The rash caused by a ... to Portuguese man-of-war stings as well. First Aid Guide The rescuer should take care to avoid ...

  13. Unconsciousness, First Aid

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Unconsciousness, First Aid A A A Unconsciousness signs and symptoms can ... keep the airway clear while awaiting medical care. First Aid Guide If you find an unconscious person, try ...

  14. Tick Bites, First Aid

    Science.gov (United States)

    ... rashes clinical tools newsletter | contact Share | Tick Bites, First Aid A A A It is important to inspect ... temporary paralysis in their host (called tick paralysis). First Aid Guide To remove an embedded tick: Wash your ...

  15. Heat Cramps, First Aid

    Science.gov (United States)

    ... rashes clinical tools newsletter | contact Share | Heat Cramps, First Aid A A A Heat cramp signs and symptoms ... if later stages of heat illness are suspected. First Aid Guide Use a combination of the following measures, ...

  16. Blisters, First Aid

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Blisters, First Aid A A A Blisters on the feet are ... can also be found via the Disease List. First Aid Guide Blisters often go away on their own ...

  17. Heatstroke, First Aid

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Heatstroke, First Aid A A A Heatstroke signs and symptoms can ... specific to the earlier stages of heat illness. First Aid Guide When heatstroke is suspected, seek emergency medical ...

  18. Heat Exhaustion, First Aid

    Science.gov (United States)

    ... rashes clinical tools newsletter | contact Share | Heat Exhaustion, First Aid A A A Heat exhaustion signs and symptoms ... specific to the other stages of heat illness. First Aid Guide Use a combination of the following measures ...

  19. First aid kit

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001958.htm First aid kit To use the sharing features on this ... ahead, you can create a well-stocked home first aid kit. Keep all of your supplies in one ...

  20. Head Trauma, First Aid

    Science.gov (United States)

    ... rashes clinical tools newsletter | contact Share | Head Trauma, First Aid A A A Head trauma signs and symptoms ... to take care for potential neck/spinal injury. First Aid Guide If you suspect either a serious head ...

  1. Bruises, First Aid

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Bruises, First Aid A A A Bruises lighten and change color ... Bruises can be a sign of internal bleeding. First Aid Guide If there is external bleeding in addition ...

  2. Symmetry and Complexity - Fundamental Concepts of Research in Chemistry

    Directory of Open Access Journals (Sweden)

    Klaus Mainzer

    1997-11-01

    Full Text Available Molecules have more or less symmetric and complex structures which can be defined in the mathematical framework of topology, group theory, dynamical systems theory, and quantum mechanics. But symmetry and complexity are by no means only theoretical concepts of research. Modern computer aided visualizations show real forms of matter which nevertheless depend on the technical standards of observation, computation, and representation. Furthermore, symmetry and complexity are fundamental interdisciplinary concepts of research inspiring the natural sciences since the antiquity.

  3. Fiscal effects of aid

    OpenAIRE

    Timmis, Emilija

    2015-01-01

    This thesis analyses fiscal effects of aid, first of health aid on health spending for a sample of developing countries and then broadly for Ethiopia and Tanzania. Particular attention is paid to data quality and the severe difficulties in achieving a reliable disaggregation of aid into its on-budget and off-budget components. The first essay assesses the sensitivity of estimated health aid fungibility to how the missing data (often considerable) are treated and explores a novel (at least in...

  4. Studying Aid: Some Methods

    OpenAIRE

    Gasper, Des

    2003-01-01

    textabstractINVESTIGATING IDEAS, IDEOLOGIES AND PRACTICES This paper presents some methods for trying to make sense of international aid and of its study.1 Some of the methods may be deemed ethnographic; the others are important partners to them, but rather different. In the course of discussing questions of aid policy and practice—such as: Should international development aid exist at all? How should aid be conducted? Should humanitarian relief be provided in conflict situations when it can ...

  5. Aid and Development

    OpenAIRE

    Tarp, Finn

    2006-01-01

    Foreign aid looms large in the public discourse; and international development assistance remains squarely on most policy agendas concerned with growth, poverty and inequality in Africa and elsewhere in the developing world. The present review takes a retrospective look at how foreign aid has evolved since World War II in response to a dramatically changing global political and economic context. I review the aid process and associated trends in the volume and distribution of aid and categoriz...

  6. Fundamental number theory with applications

    CERN Document Server

    Mollin, Richard A

    2008-01-01

    An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition           Removal of all advanced material to be even more accessible in scope           New fundamental material, including partition theory, generating functions, and combinatorial number theory           Expa

  7. Fundamentals of technology project management

    CERN Document Server

    Garton, Colleen

    2012-01-01

    Designed to provide software engineers, students, and IT professionals with an understanding of the fundamentals of project management in the technology/IT field, this book serves as a practical introduction to the subject. Updated with information on how Fundamentals of Project Management integrates with and complements Project Management Institute''s Project Management Body of Knowledge, this collection explains fundamental methodologies and techniques while also discussing new technology, tools, and virtual work environments. Examples and case studies are based on technology projects, and t

  8. First Aid: Falls

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Falls KidsHealth > For Parents > First Aid: Falls Print A A A Text Size en ... Floors, Doors & Windows, Furniture, Stairways: Household Safety Checklist First Aid: Broken Bones Head Injuries Preventing Children's Sports Injuries ...

  9. First Aid: Rashes

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Rashes KidsHealth > For Parents > First Aid: Rashes Print A A A Text Size Rashes ... For Kids For Parents MORE ON THIS TOPIC First Aid: Skin Infections Poison Ivy Erythema Multiforme Hives (Urticaria) ...

  10. First Aid: Dehydration

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Dehydration KidsHealth > For Parents > First Aid: Dehydration Print A A A Text Size Dehydration ... MORE ON THIS TOPIC Summer Safety Heat Illness First Aid: Heat Illness Sun Safety Dehydration Diarrhea Vomiting Word! ...

  11. First Aid: Burns

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Burns KidsHealth > For Parents > First Aid: Burns Print A A A Text Size Scald ... THIS TOPIC Kitchen: Household Safety Checklist Fireworks Safety First Aid: Sunburn Firesetting Fire Safety Burns Household Safety: Preventing ...

  12. First Aid: Choking

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Choking KidsHealth > For Parents > First Aid: Choking Print A A A Text Size Choking ... usually are taught as part of any basic first-aid course. Reviewed by: Steven Dowshen, MD Date reviewed: ...

  13. First Aid: Animal Bites

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Animal Bites KidsHealth > For Parents > First Aid: Animal Bites Print A A A Text Size ... For Kids For Parents MORE ON THIS TOPIC First Aid & Safety Center Infections That Pets Carry Dealing With ...

  14. First Aid: Croup

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Croup KidsHealth > For Parents > First Aid: Croup Print A A A Text Size Croup ... For Kids For Parents MORE ON THIS TOPIC First Aid: Coughing X-Ray Exam: Neck Why Is Hand ...

  15. Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions

    NARCIS (Netherlands)

    Rzepiela, Andrzej J.; Sengupta, Durba; Goga, Nicolae; Marrink, Siewert J.

    2010-01-01

    Antimicrobial peptides (AMPs) comprise a large family of peptides that include small cationic peptides, such as magainins, which permeabilize lipid membranes. Previous atomistic level simulations of magainin-H2 peptides show that they act by forming toroidal transmembrane pores. However, due to the

  16. A Mathematical Analysis of Atomistic-to-Continuum (AtC) Multiscale Coupling Methods

    Energy Technology Data Exchange (ETDEWEB)

    Gunzburger, Max

    2013-11-13

    We have worked on several projects aimed at improving the efficiency and understanding of multiscale methods, especially those applicable to problems involving atomistic-to-continuum coupling. Activities include blending methods for AtC coupling and efficient quasi-continuum methods for problems with long-range interactions.

  17. Hybrid Atomistic and Coarse-Grained Molecular Dynamics Simulations of Polyethylene Glycol (PEG) in Explicit Water.

    Science.gov (United States)

    Stanzione, Francesca; Jayaraman, Arthi

    2016-05-01

    In-silico design of polymeric biomaterials requires molecular dynamics (MD) simulations that retain essential atomistic/molecular details (e.g., explicit water around the biofunctional macromolecule) while simultaneously achieving large length and time scales pertinent to macroscale function. Such large-scale atomistically detailed macromolecular MD simulations with explicit solvent representation are computationally expensive. One way to overcome this limitation is to use an adaptive resolution scheme (AdResS) in which the explicit solvent molecules dynamically adopt either atomistic or coarse-grained resolution depending on their location (e.g., near or far from the macromolecule) in the system. In this study we present the feasibility and the limitations of AdResS methodology for studying polyethylene glycol (PEG) in adaptive resolution water, for varying PEG length and architecture. We first validate the AdResS methodology for such systems, by comparing PEG and solvent structure with that from all-atom simulations. We elucidate the role of the atomistic zone size and the need for calculating thermodynamic force correction within this AdResS approach to correctly reproduce the structure of PEG and water. Lastly, by varying the PEG length and architecture, we study the hydration of PEG, and the effect of PEG architectures on the structural properties of water. Changing the architecture of PEG from linear to multiarm star, we observe reduction in the solvent accessible surface area of the PEG, and an increase in the order of water molecules in the hydration shells. PMID:27108869

  18. An atomistically validated continuum model for strain relaxation and misfit dislocation formation

    Science.gov (United States)

    Zhou, X. W.; Ward, D. K.; Zimmerman, J. A.; Cruz-Campa, J. L.; Zubia, D.; Martin, J. E.; van Swol, F.

    2016-06-01

    In this paper, molecular dynamics (MD) calculations have been used to examine the physics behind continuum models of misfit dislocation formation and to assess the limitations and consequences of approximations made within these models. Without compromising the physics of misfit dislocations below a surface, our MD calculations consider arrays of dislocation dipoles constituting a mirror imaged "surface". This allows use of periodic boundary conditions to create a direct correspondence between atomistic and continuum representations of dislocations, which would be difficult to achieve with free surfaces. Additionally, by using long-time averages of system properties, we have essentially reduced the errors of atomistic simulations of large systems to "zero". This enables us to deterministically compare atomistic and continuum calculations. Our work results in a robust approach that uses atomistic simulation to accurately calculate dislocation core radius and energy without the continuum boundary conditions typically assumed in the past, and the novel insight that continuum misfit dislocation models can be inaccurate when incorrect definitions of dislocation spacing and Burgers vector in lattice-mismatched systems are used. We show that when these insights are properly incorporated into the continuum model, the resulting energy density expression of the lattice-mismatched systems is essentially indistinguishable from the MD results.

  19. Ablative Thermal Protection System Fundamentals

    Science.gov (United States)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  20. Fundamental principles of particle detectors

    International Nuclear Information System (INIS)

    This paper goes through the fundamental physics of particles-matter interactions which is necessary for the detection of these particles with detectors. A listing of 41 concepts and detector principles are given. 14 refs., 11 figs

  1. Fundamental Strings as Noncommutative Solitons

    OpenAIRE

    Larsen, Finn

    2000-01-01

    The interpretation of closed fundamental strings as solitons in open string field theory is reviewed. Noncommutativity is introduced to facilitate an explicit construction. The tension is computed exactly and the correct spectrum is recovered at long wave length.

  2. Fundamental approach to discrete mathematics

    CERN Document Server

    Acharjya, DP

    2005-01-01

    Salient Features Mathematical logic, fundamental concepts, proofs and mathematical induction (Chapter 1) Set theory, fundamental concepts, theorems, proofs, Venn diagrams, product of sets, application of set theory and fundamental products (Chapter 2) An introduction to binary relations and concepts, graphs, arrow diagrams, relation matrix, composition of relations, types of relation, partial order relations, total order relation, closure of relations, poset, equivalence classes and partitions. (Chapter 3) An introduction to functions and basic concepts, graphs, composition of functions, floor and ceiling function, characteristic function, remainder function, signum function and introduction to hash function. (Chapter 4) The algebraic structure includes group theory and ring theory. Group theory includes group, subgroups, cyclic group, cosets, homomorphism, introduction to codes and group codes and error correction for block code. The ring theory includes general definition, fundamental concepts, integra...

  3. Fundamental particles and their interactions

    OpenAIRE

    Ananthanarayan, B.

    2005-01-01

    In this article the current understanding of fundamental particles and their interactions is presented for the interested non-specialist, by adopting a semi-historical path. A discussion on the unresolved problems is also presented.

  4. Quantum mechanics I the fundamentals

    CERN Document Server

    Rajasekar, S

    2015-01-01

    Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems.

  5. Testing for Non-Fundamentalness

    OpenAIRE

    Hamidi Sahneh, Mehdi

    2016-01-01

    Non-fundamentalness arises when observed variables do not contain enough information to recover structural shocks. This paper propose a new test to empirically detect non-fundamentalness, which is robust to the conditional heteroskedasticity of unknown form, does not need information outside of the specified model and could be accomplished with a standard F-test. A Monte Carlo study based on a DSGE model is conducted to examine the finite sample performance of the test. I apply the prop...

  6. Conjugated polyelectrolytes fundamentals and applications

    CERN Document Server

    Liu, Bin

    2013-01-01

    This is the first monograph to specifically focus on fundamentals and applications of polyelectrolytes, a class of molecules that gained substantial interest due to their unique combination of properties. Combining both features of organic semiconductors and polyelectrolytes, they offer a broad field for fundamental research as well as applications to analytical chemistry, optical imaging, and opto-electronic devices. The initial chapters introduce readers to the synthesis, optical and electrical properties of various conjugated polyelectrolytes. This is followed by chapters on the applica

  7. The fundamental parameters of physics

    International Nuclear Information System (INIS)

    The four parameters space, time, mass and charge are shown to possess an exact symmetry as a group of order 4. The explicit properties of the parameters as displayed in this group are then used to propose derivations of the fundamental principles of classical mechanics, electromagnetic theory and particle physics. The derivations suggest that the laws of physics and the fundamental particles have a single origin in the initial process of direct measurement. (Auth.)

  8. Fundamentals of electronic image processing

    CERN Document Server

    Weeks, Arthur R

    1996-01-01

    This book is directed to practicing engineers and scientists who need to understand the fundamentals of image processing theory and algorithms to perform their technical tasks. It is intended to fill the gap between existing high-level texts dedicated to specialists in the field and the need for a more practical, fundamental text on image processing. A variety of example images are used to enhance reader understanding of how particular image processing algorithms work.

  9. Fundamental units: physics and metrology

    OpenAIRE

    Okun, L. B.

    2003-01-01

    The problem of fundamental units is discussed in the context of achievements of both theoretical physics and modern metrology. On one hand, due to fascinating accuracy of atomic clocks, the traditional macroscopic standards of metrology (second, metre, kilogram) are giving way to standards based on fundamental units of nature: velocity of light $c$ and quantum of action $h$. On the other hand, the poor precision of gravitational constant $G$, which is widely believed to define the ``cube of t...

  10. Aid with Multiple Personalities

    OpenAIRE

    Djankov, Simeon; Jose G. Montalvo; Reynal-Querol, Marta

    2009-01-01

    The existing research on foreign aid offers inconclusive evidence on the factors that make aid effective. In this paper, we study the supply of aid money in 112 developing countries over the period 1960-1999 and find that the presence of multiple donors in a given country renders aid less effective. In particular, an aid-receiving country at the median of the donor fractionalization distribution will grow one percentage point faster than a country at the 75th percentile. This is in part becau...

  11. Why foreign aid fails

    Directory of Open Access Journals (Sweden)

    Prokopijević Miroslav

    2007-01-01

    Full Text Available The main point of this paper is that foreign aid fails because the structure of its incentives resembles that of central planning. Aid is not only ineffective, it is arguably counterproductive. Contrary to business firms that are paid by those they are supposed to serve (customers, aid agencies are paid by tax payers of developed countries and not by those they serve. This inverse structure of incentives breaks the stream of pressure that exists on the commercial market. It also creates larger loopholes in the principle-agent relationship on each point along the chain of aid delivery. Both factors enhance corruption, moral hazard and negative selection. Instead of promoting development, aid extends the life of bad institutions and those in power. Proposals to reform foreign aid – like aid privatization and aid conditionality – do not change the existing structure of the incentives in aid delivery, and their implementation may just slightly improve aid efficacy. Larger improvement is not possible. For that reason, foreign aid will continue to be a waste of resources, probably serving some objectives different to those that are usually mentioned, like recipient’s development poverty reduction and pain relief.

  12. Conditional Aid Effectiveness

    DEFF Research Database (Denmark)

    Doucouliagos, Hristos; Paldam, Martin

    The AEL (aid effectiveness literature) studies the effect of development aid using econometrics on macro data. It contains about 100 papers of which a third analyzes conditional models where aid effectiveness depends upon z, so that aid only works for a certain range of the variable. The key term...... in this family of AEL models is thus an interaction term of z times aid. The leading candidates for z are a good policy index and aid itself. In this paper, meta-analysis techniques are used (i) to determine whether the AEL has established the said interaction terms, and (ii) to identify some of the...... determinants of the differences in results between studies. Taking all available studies in consideration, we find no support for conditionality with respect to policy, while conditionality regarding aid itself is dubious. However, the results differ depending on the authors’ institutional affiliation....

  13. China vs. AIDS

    Institute of Scientific and Technical Information of China (English)

    LURUCAI

    2004-01-01

    CHINA's first HIV positive diagnosis was in 1985, the victim an ArgentineAmerican. At that time most Chinese,medical workers included, thought of AIDS as a phenomenon occurring outside of China. Twenty years later, the number of HIV/AIDS patients has risen alarmingly. In 2003, the Chinese Ministry of Health launched an AIDS Epidemiological Investigation across China with the support of the WHO and UN AIDS Program. Its results show that there are currently 840,000 HIV carriers, including 80,000 people with full-blown AIDS, in 31 Chinese provinces, municipalities and autonomous regions. This means China has the second highest number of HIV/AIDS cases in Asia and 14th highest in the world. Statistics from the Chinese Venereal Disease and AIDS Prevention Association indicate that the majority of Chinese HIV carriers are young to middle aged, more than half of them between the ages of 20 and 29.

  14. HIV, AIDS, and the Future

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues HIV / AIDS HIV, AIDS, and the Future Past Issues / Summer 2009 Table ... and your loved ones from HIV/AIDS. The AIDS Memorial Quilt In 1987, a total of 1, ...

  15. Hydraulics. FOS: Fundamentals of Service.

    Science.gov (United States)

    John Deere Co., Moline, IL.

    This manual on hydraulics is one of a series of power mechanics texts and visual aids for training in the servicing of agricultural and industrial machinery. Focus is on oil hydraulics. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The twelve chapters focus…

  16. Fundamental physics in particle traps

    International Nuclear Information System (INIS)

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  17. Fundamental physics in particle traps

    Energy Technology Data Exchange (ETDEWEB)

    Quint, Wolfgang; Vogel, Manuel (eds.) [GSI Helmholtz-Zentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2014-03-01

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  18. Fundamental physics in particle traps

    CERN Document Server

    Vogel, Manuel

    2014-01-01

    This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  19. Aid Effectiveness on Growth

    DEFF Research Database (Denmark)

    Doucouliagos, Hristos; Paldam, Martin

    The AEL (aid effectiveness literature) is econo¬metric studies of the macroeconomic effects of development aid. It contains about 100 papers of which 68 are reduced form estimates of theeffect of aid on growth in the recipient country. The raw data show that growth is unconnected to aid, but the...... AEL has put so much structure on the data that all results possible have emerged. The present meta study considers both the best-set of the 68 papers and the all-set of 543 regressions published. Both sets have a positive average aid-growth elasticity, but it is small and insignificant: The AEL has...... not established that aid works. Using meta-regression analysis it is shown that about 20 factors influence the results. Much of the variation between studies is an artifact and can be attributed to publication outlet, institu¬tional affiliation, and specification differences. However, some of the...

  20. Aid and Growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Jones, Edward Samuel; Tarp, Finn

    , are being drawn on the basis of fragile evidence. This paper first assesses the aid-growth literature with a focus on recent contributions. The aid-growth literature is then framed, for the first time, in terms of the Rubin Causal Model, applied at the macroeconomic level. Our results show that aid......The micro-macro paradox has been revived. Despite broadly positive evaluations at the micro and meso-levels, recent literature has turned decidedly pessimistic with respect to the ability of foreign aid to foster economic growth. Policy implications, such as the complete cessation of aid to Africa...... has a positive and statistically significant causal effect on growth over the long run with point estimates at levels suggested by growth theory. We conclude that aid remains an important tool for enhancing the development prospects of poor nations....

  1. RFID design fundamentals and applications

    CERN Document Server

    Lozano-Nieto, Albert

    2010-01-01

    RFID is an increasingly pervasive tool that is now used in a wide range of fields. It is employed to substantiate adherence to food preservation and safety standards, combat the circulation of counterfeit pharmaceuticals, and verify authenticity and history of critical parts used in aircraft and other machinery-and these are just a few of its uses. Goes beyond deployment, focusing on exactly how RFID actually worksRFID Design Fundamentals and Applications systematically explores the fundamental principles involved in the design and characterization of RFID technologies. The RFID market is expl

  2. Fundamental Composite (Goldstone) Higgs Dynamics

    DEFF Research Database (Denmark)

    Cacciapaglia, G.; Sannino, Francesco

    2014-01-01

    We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation...... transforming according to the fundamental representation of the gauge group. This minimal choice enables us to use recent first principle lattice results to make the first predictions for the massive spectrum for models of composite (Goldstone) Higgs dynamics. These results are of the upmost relevance to guide...

  3. THE FUNDAMENTS OF EXPLANATORY CAUSES

    OpenAIRE

    Lavinia Mihaela VLĂDILĂ

    2015-01-01

    The new Criminal Code in the specter of the legal life the division of causes removing the criminal feature of the offence in explanatory causes and non-attributable causes. This dichotomy is not without legal and factual fundaments and has been subjected to doctrinaire debates even since the period when the Criminal Code of 1969 was still in force. From our perspective, one of the possible legal fundaments of the explanatory causes results from that the offence committed is based on the prot...

  4. Fundamental Research and Developing Countries

    CERN Document Server

    Narison, Stéphan

    2002-01-01

    In the first part of this report, I discuss the sociological role of fundamental research in Developing Countries (DC) and how to realize this program. In the second part, I give a brief and elementary introduction to the field of high-energy physics (HEP), accessible to a large audience not necessary physicists. The aim of this report is to make politicians and financial backers aware on the long-term usefulness of fundamental research in DC and on the possible globalisation of HEP and, in general, of science.

  5. Fundamental approach to discrete mathematics

    CERN Document Server

    Acharjya, DP

    2009-01-01

    About the Book: The book `Fundamental Approach to Discrete Mathematics` is a required part of pursuing a computer science degree at most universities. It provides in-depth knowledge to the subject for beginners and stimulates further interest in the topic. The salient features of this book include: Strong coverage of key topics involving recurrence relation, combinatorics, Boolean algebra, graph theory and fuzzy set theory. Algorithms and examples integrated throughout the book to bring clarity to the fundamental concepts. Each concept and definition is followed by thoughtful examples.

  6. Image restoration fundamentals and advances

    CERN Document Server

    Gunturk, Bahadir Kursat

    2012-01-01

    Image Restoration: Fundamentals and Advances responds to the need to update most existing references on the subject, many of which were published decades ago. Providing a broad overview of image restoration, this book explores breakthroughs in related algorithm development and their role in supporting real-world applications associated with various scientific and engineering fields. These include astronomical imaging, photo editing, and medical imaging, to name just a few. The book examines how such advances can also lead to novel insights into the fundamental properties of image sources. Addr

  7. The fundamentals of mathematical analysis

    CERN Document Server

    Fikhtengol'ts, G M

    1965-01-01

    The Fundamentals of Mathematical Analysis, Volume 1 is a textbook that provides a systematic and rigorous treatment of the fundamentals of mathematical analysis. Emphasis is placed on the concept of limit which plays a principal role in mathematical analysis. Examples of the application of mathematical analysis to geometry, mechanics, physics, and engineering are given. This volume is comprised of 14 chapters and begins with a discussion on real numbers, their properties and applications, and arithmetical operations over real numbers. The reader is then introduced to the concept of function, i

  8. Hearing Aids and Music

    OpenAIRE

    Chasin, Marshall; Russo, Frank A.

    2004-01-01

    Historically, the primary concern for hearing aid design and fitting is optimization for speech inputs. However, increasingly other types of inputs are being investigated and this is certainly the case for music. Whether the hearing aid wearer is a musician or merely someone who likes to listen to music, the electronic and electro-acoustic parameters described can be optimized for music as well as for speech. That is, a hearing aid optimally set for music can be optimally set for speech, even...

  9. Radiographic imaging of aids

    International Nuclear Information System (INIS)

    The acquired immunodeficiency syndrome (AIDS) has impacted the civilized world like no other disease. This research aimed to discuss some of the main aids-related complications and their detection by radiology tests, specifically central nervous system and musculoskeletal system disorders. The objectives are: to show specific characteristics of various diseases of HIV patient, to analyze the effect of pathology in patients by radiology, to enhance the knowledge of technologists in aids imaging and to improve communication skills between patient and radiology technologists

  10. Radiographic imaging of aids

    CERN Document Server

    Mahmoud, M B

    2002-01-01

    The acquired immunodeficiency syndrome (AIDS) has impacted the civilized world like no other disease. This research aimed to discuss some of the main aids-related complications and their detection by radiology tests, specifically central nervous system and musculoskeletal system disorders. The objectives are: to show specific characteristics of various diseases of HIV patient, to analyze the effect of pathology in patients by radiology, to enhance the knowledge of technologists in aids imaging and to improve communication skills between patient and radiology technologists.

  11. AIDS: acquired immunodeficiency syndrome

    OpenAIRE

    Gilmore, N. J.; Beaulieu, R.; Steben, M.; Laverdière, M.

    2002-01-01

    Acquired immunodeficiency syndrome, or AIDS, is a new illness that occurs in previously healthy individuals. It is characterized by immunodeficiency, opportunistic infections and unusual malignant diseases. Life-threatening single or multiple infections with viruses, mycobacteria, fungi or protozoa are common. A rare neoplasm, Kaposi's sarcoma, has developed in approximately one third of patients with AIDS. More than 800 cases of AIDS have been reported in North America, over 24 of them in Ca...

  12. Aid, growth, and development

    DEFF Research Database (Denmark)

    Arndt, Channing; Jones, Edward Samuel; Tarp, Finn

    2010-01-01

    The micro-macro paradox has been revived. Despite broadly positive evaluations at the micro- and meso-levels, recent literature doubts the ability of foreign aid to foster economic growth and development. This paper assesses the aid-growth literature and, taking inspiration from the program...... evaluation literature, we re-examine key hypotheses. In our findings, aid has a positive and statistically significant causal effect on growth over the long run, with confidence intervals conforming to levels suggested by growth theory. Aid remains a key tool for enhancing the development prospects of poor...

  13. Music and hearing aids.

    Science.gov (United States)

    Madsen, Sara M K; Moore, Brian C J

    2014-01-01

    The signal processing and fitting methods used for hearing aids have mainly been designed to optimize the intelligibility of speech. Little attention has been paid to the effectiveness of hearing aids for listening to music. Perhaps as a consequence, many hearing-aid users complain that they are not satisfied with their hearing aids when listening to music. This issue inspired the Internet-based survey presented here. The survey was designed to identify the nature and prevalence of problems associated with listening to live and reproduced music with hearing aids. Responses from 523 hearing-aid users to 21 multiple-choice questions are presented and analyzed, and the relationships between responses to questions regarding music and questions concerned with information about the respondents, their hearing aids, and their hearing loss are described. Large proportions of the respondents reported that they found their hearing aids to be helpful for listening to both live and reproduced music, although less so for the former. The survey also identified problems such as distortion, acoustic feedback, insufficient or excessive gain, unbalanced frequency response, and reduced tone quality. The results indicate that the enjoyment of listening to music with hearing aids could be improved by an increase of the input and output dynamic range, extension of the low-frequency response, and improvement of feedback cancellation and automatic gain control systems. PMID:25361601

  14. HIV / AIDS Network.

    Science.gov (United States)

    1995-01-01

    The HIV/AIDS Network and the Philippines Department of Health (DOH) collaborated to produce the AIDS Candlelight Memorial at the Philippine International Convention Center (PICC), May 1995, and World AIDS Day activities on December 1, 1995. After the memorial, a fashion show, "Body Shots," provided a channel for information on acquired immunodeficiency syndrome (AIDS). On World AIDS Day, at the request of DOH, the Network provided speakers who lectured on human immunodeficiency virus (HIV) and AIDS in different government offices. Prior to World AIDS Day, the Network focused on strengthening its cohesiveness and building the capabilities of its member organizations through lectures and symposia during November. Network activities were coordinated by the Remedios AIDS Foundation with support from the other members of the Coordinating Council: Health Action Information Network (HAIN); Caritas; Kabalikat, Stop Trafficking of Pilopinos Foundation, Inc. (STOP);and the Library Foundation (TLF). The Coordinating Council elected for 1996 includes the Remedios AIDS Foundation, HAIN, Caritas, TLF, STOP, the Foundation for Adolescent Development (FAD), and the Salvation Army. PMID:12291699

  15. Different Variants of Fundamental Portfolio

    Directory of Open Access Journals (Sweden)

    Tarczyński Waldemar

    2014-06-01

    Full Text Available The paper proposes the fundamental portfolio of securities. This portfolio is an alternative for the classic Markowitz model, which combines fundamental analysis with portfolio analysis. The method’s main idea is based on the use of the TMAI1 synthetic measure and, in limiting conditions, the use of risk and the portfolio’s rate of return in the objective function. Different variants of fundamental portfolio have been considered under an empirical study. The effectiveness of the proposed solutions has been related to the classic portfolio constructed with the help of the Markowitz model and the WIG20 market index’s rate of return. All portfolios were constructed with data on rates of return for 2005. Their effectiveness in 2006- 2013 was then evaluated. The studied period comprises the end of the bull market, the 2007-2009 crisis, the 2010 bull market and the 2011 crisis. This allows for the evaluation of the solutions’ flexibility in various extreme situations. For the construction of the fundamental portfolio’s objective function and the TMAI, the study made use of financial and economic data on selected indicators retrieved from Notoria Serwis for 2005.

  16. Fundamental Cycles of Cognitive Growth.

    Science.gov (United States)

    Pegg, John

    Over recent years, various theories have arisen to explain and predict cognitive development in mathematics education. We focus on an underlying theme that recurs throughout such theories: a fundamental cycle of growth in the learning of specific concepts, which we frame within broader global theories of individual cognitive growth. Our purpose is…

  17. Political Management of Islamic Fundamentalism

    OpenAIRE

    Alam, Anwar

    2007-01-01

    Abstract This article attempts to explain why and how the Indian state has been successful in managing the militant form of Islamic fundamentalism in India, despite favourable internal and external conditions for such militancy. Internally, it includes such factors as the relative material and cultural deprivation of Indian Muslims, the context of Hindutava and the communal riots, and externally, the Islami...

  18. Environmental Law: Fundamentals for Schools.

    Science.gov (United States)

    Day, David R.

    This booklet outlines the environmental problems most likely to arise in schools. An overview provides a fundamental analysis of environmental issues rather than comprehensive analysis and advice. The text examines the concerns that surround superfund cleanups, focusing on the legal framework, and furnishes some practical pointers, such as what to…

  19. Composing Europe's Fundamental Rights Area

    DEFF Research Database (Denmark)

    Storgaard, Louise Halleskov

    2015-01-01

    The article offers a perspective on how the objective of a strong and coherent European protection standard pursued by the fundamental rights amendments of the Lisbon Treaty can be achieved, as it proposes a discursive pluralistic framework to understand and guide the relationship between the EU...

  20. Fundamental Parameters of Massive Stars

    OpenAIRE

    Crowther, Paul A.

    2003-01-01

    We discuss the determination of fundamental parameters of `normal' hot, massive OB-type stars, namely temperatures, luminosities, masses, gravities and surface abundances. We also present methods used to derive properties of stellar winds -- mass-loss rates and wind velocities from early-type stars.

  1. Fundamentals: IVC and computer science

    NARCIS (Netherlands)

    Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F.; Hartenstein, H.; Tonguz, O.K.

    2013-01-01

    The working group on “Fundamentals: IVC and Computer Science” discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly

  2. Fundamental Concepts in Modern Analysis

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    an opportunity to go into some depth with fundamental notions from mathematical analysis that are not only important from a mathematical point of view butalso occur frequently in the more theoretical parts of the engineering sciences. The book should also appeal to university students in mathematics...

  3. Fundamental composite (Goldstone) Higgs dynamics

    International Nuclear Information System (INIS)

    We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the condensate. We show that, in general, these states mix with repercussions on the electroweak physics and phenomenology. Our results will help clarify the main differences, similarities, benefits and shortcomings of the different ways one can naturally realize a composite nature of the electroweak sector of the Standard Model. We will analyze the minimal underlying realization in terms of fundamental strongly coupled gauge theories supporting the flavor symmetry breaking pattern SU(4)/Sp(4)∼SO(6)/SO(5). The most minimal fundamental description consists of an SU(2) gauge theory with two Dirac fermions transforming according to the fundamental representation of the gauge group. This minimal choice enables us to use recent first principle lattice results to make the first predictions for the massive spectrum for models of composite (Goldstone) Higgs dynamics. These results are of the utmost relevance to guide searches of new physics at the Large Hadron Collider

  4. Biological Computing Fundamentals and Futures

    CERN Document Server

    Akula, Balaji

    2009-01-01

    The fields of computing and biology have begun to cross paths in new ways. In this paper a review of the current research in biological computing is presented. Fundamental concepts are introduced and these foundational elements are explored to discuss the possibilities of a new computing paradigm. We assume the reader to possess a basic knowledge of Biology and Computer Science

  5. Experimental tests of fundamental symmetries

    NARCIS (Netherlands)

    Jungmann, K. P.

    2014-01-01

    Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality; Loren

  6. Lighting Fundamentals. Monograph Number 13.

    Science.gov (United States)

    Locatis, Craig N.; Gerlach, Vernon S.

    Using an accompanying, specified film that consists of 10-second pictures separated by blanks, the learner can, with the 203-step, self-correcting questions and answers provided in this program, come to understand the fundamentals of lighting in photography. The learner should, by the end of the program, be able to describe and identify the…

  7. Experiments in Fundamental Neutron Physics

    OpenAIRE

    Nico, J. S.; Snow, W. M.

    2006-01-01

    Experiments using slow neutrons address a growing range of scientific issues spanning nuclear physics, particle physics, astrophysics, and cosmology. The field of fundamental physics using neutrons has experienced a significant increase in activity over the last two decades. This review summarizes some of the recent developments in the field and outlines some of the prospects for future research.

  8. Fundamentals of Welding. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    These instructional materials assist teachers in improving instruction on the fundamentals of welding. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and 27 references. Seven units of…

  9. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  10. Hybrid continuum–atomistic modelling of swift heavy ion radiation damage in germanium

    International Nuclear Information System (INIS)

    The response of germanium to swift heavy ion irradiation is simulated using a hybrid continuum–atomistic approach. The continuum part of the model, which characterises the electronic excitations is an extension of the inelastic thermal spike based on an approximation to the Boltzmann transport equation; while the atomistic part is represented with molecular dynamics. This integrated method can realistically account for the non-equilibrium carrier dynamics in band-gap materials under irradiation, unlike earlier developments based on the two-temperature approach. The model is used to obtain temporal and spatial evolution of carrier density, electronic temperature and lattice temperature for germanium irradiated with carbon cluster ions. Good agreement with experimental data of amorphised latent track radii for different stopping powers is obtained by fitting a constant value for the electron–phonon coupling strength – the only parameter treated as free in the model

  11. Efficient parallelization of analytic bond-order potentials for large-scale atomistic simulations

    Science.gov (United States)

    Teijeiro, C.; Hammerschmidt, T.; Drautz, R.; Sutmann, G.

    2016-07-01

    Analytic bond-order potentials (BOPs) provide a way to compute atomistic properties with controllable accuracy. For large-scale computations of heterogeneous compounds at the atomistic level, both the computational efficiency and memory demand of BOP implementations have to be optimized. Since the evaluation of BOPs is a local operation within a finite environment, the parallelization concepts known from short-range interacting particle simulations can be applied to improve the performance of these simulations. In this work, several efficient parallelization methods for BOPs that use three-dimensional domain decomposition schemes are described. The schemes are implemented into the bond-order potential code BOPfox, and their performance is measured in a series of benchmarks. Systems of up to several millions of atoms are simulated on a high performance computing system, and parallel scaling is demonstrated for up to thousands of processors.

  12. Nanoscale finite element models for vibrations of single-walled carbon nanotubes:atomistic versus continuum

    Institute of Scientific and Technical Information of China (English)

    R ANSARI; S ROUHI; M ARYAYI

    2013-01-01

    By the atomistic and continuum finite element models, the free vibration behavior of single-walled carbon nanotubes (SWCNTs) is studied. In the atomistic finite element model, the bonds and atoms are modeled by the beam and point mass elements, respectively. The molecular mechanics is linked to structural mechanics to determine the elastic properties of the mentioned beam elements. In the continuum finite element approach, by neglecting the discrete nature of the atomic structure of the nanotubes, they are modeled with shell elements. By both models, the natural frequencies of SWCNTs are computed, and the effects of the geometrical parameters, the atomic structure, and the boundary conditions are investigated. The accuracy of the utilized methods is verified in comparison with molecular dynamic simulations. The molecular structural model leads to more reliable results, especially for lower aspect ratios. The present analysis provides valuable information about application of continuum models in the investigation of the mechanical behaviors of nanotubes.

  13. Fatigue mechanisms in an austenitic steel under cyclic loading: Experiments and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Soppa, E.A., E-mail: ewa.soppa@mpa.uni-stuttgart.de; Kohler, C., E-mail: christopher.kohler@mpa.uni-stuttgart.de; Roos, E., E-mail: eberhard.roos@mpa.uni-stuttgart.de

    2014-03-01

    Experimental investigations on the austenitic stainless steel X6CrNiNb18-10 (AISI – 347) and concomitant atomistic simulations of a FeNi nanocrystalline model system have been performed in order to understand the basic mechanisms of fatigue damage under cyclic loading. Using electron backscatter diffraction (EBSD) the influence of deformation induced martensitic transformation and NbC size distribution on the fatigue crack formation has been demonstrated. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∼1 µm sized) differently oriented grains. The atomistic simulations show the role of regions of a high density of stacking faults for the martensitic transformation.

  14. Fatigue mechanisms in an austenitic steel under cyclic loading: Experiments and atomistic simulations

    International Nuclear Information System (INIS)

    Experimental investigations on the austenitic stainless steel X6CrNiNb18-10 (AISI – 347) and concomitant atomistic simulations of a FeNi nanocrystalline model system have been performed in order to understand the basic mechanisms of fatigue damage under cyclic loading. Using electron backscatter diffraction (EBSD) the influence of deformation induced martensitic transformation and NbC size distribution on the fatigue crack formation has been demonstrated. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∼1 µm sized) differently oriented grains. The atomistic simulations show the role of regions of a high density of stacking faults for the martensitic transformation

  15. Electronic states in an atomistic carbon quantum dot patterned in graphene

    Science.gov (United States)

    Craco, L.; Carara, S. S.; da Silva Pereira, T. A.; Milošević, M. V.

    2016-04-01

    We reveal the emergence of metallic Kondo clouds in an atomistic carbon quantum dot, realized as a single-atom junction in a suitably patterned graphene nanoflake. Using density functional dynamical mean-field theory (DFDMFT) we show how correlation effects lead to striking features in the electronic structure of our device, and how those are enhanced by the electron-electron interactions when graphene is patterned at the atomistic scale. Our setup provides a well-controlled environment to understand the principles behind the orbital-selective Kondo physics and the interplay between orbital and spin degrees of freedom in carbon-based nanomaterials, which indicate new pathways for spintronics in atomically patterned graphene.

  16. Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime.

    Science.gov (United States)

    Chen, Xing; Moore, Justin E; Zekarias, Meserret; Jensen, Lasse

    2015-01-01

    The optical properties of metallic nanoparticles with nanometre dimensions exhibit features that cannot be described by classical electrodynamics. In this quantum size regime, the near-field properties are significantly modified and depend strongly on the geometric arrangements. However, simulating realistically sized systems while retaining the atomistic description remains computationally intractable for fully quantum mechanical approaches. Here we introduce an atomistic electrodynamics model where the traditional description of nanoparticles in terms of a macroscopic homogenous dielectric constant is replaced by an atomic representation with dielectric properties that depend on the local chemical environment. This model provides a unified description of bare and ligand-coated nanoparticles, as well as strongly interacting nanoparticle dimer systems. The non-local screening owing to an inhomogeneous ligand layer is shown to drastically modify the near-field properties. This will be important to consider in optimization of plasmonic nanostructures for near-field spectroscopy and sensing applications. PMID:26555179

  17. AIDS is your business.

    Science.gov (United States)

    Rosen, Sydney; Simon, Jonathon; Vincent, Jeffrey R; MacLeod, William; Fox, Matthew; Thea, Donald M

    2003-02-01

    If your company operates in a developing country, AIDS is your business. While Africa has received the most attention, AIDS is also spreading swiftly in other parts of the world. Russia and Ukraine had the fastest-growing epidemics last year, and many experts believe China and India will suffer the next tidal wave of infection. Why should executives be concerned about AIDS? Because it is destroying the twin rationales of globalization strategy-cheap labor and fast-growing markets--in countries where people are heavily affected by the epidemic. Fortunately, investments in programs that prevent infection and provide treatment for employees who have HIV/AIDS are profitable for many businesses--that is, they lead to savings that outweigh the programs' costs. Due to the long latency period between HIV infection and the onset of AIDS symptoms, a company is not likely to see any of the costs of HIV/AIDS until five to ten years after an employee is infected. But executives can calculate the present value of epidemic-related costs by using the discount rate to weigh each cost according to its expected timing. That allows companies to think about expenses on HIV/AIDS prevention and treatment programs as investments rather than merely as costs. The authors found that the annual cost of AIDS to six corporations in South Africa and Botswana ranged from 0.4% to 5.9% of the wage bill. All six companies would have earned positive returns on their investments if they had provided employees with free treatment for HIV/AIDS in the form of highly active antiretroviral therapy (HAART), according to the mathematical model the authors used. The annual reduction in the AIDS "tax" would have been as much as 40.4%. The authors' conclusion? Fighting AIDS not only helps those infected; it also makes good business sense. PMID:12577655

  18. 'TINA', Aids, and the underdevelopment problem in Africa

    OpenAIRE

    Akinpelu Olanrewaju Olutayo; Molatokunbo Abiola Oluwaseun Olutayo; Ayokunle Olumuyiwa Omobowale

    2008-01-01

    The assumption that 'There Is No Alternative' (TINA) to capitalism as practiced in the United States of America and Western Europe has been the bane of aids effectiveness in assisting to solve the underdevelopment problem in Africa. This paper attempts to show that except there is a fundamental reorientation in the conceptualization of capitalism-free market and democracy-the underdevelopment problem would only be further complicated with aids.

  19. 'TINA', Aids, and the underdevelopment problem in Africa

    Directory of Open Access Journals (Sweden)

    Akinpelu Olanrewaju Olutayo

    2008-06-01

    Full Text Available The assumption that 'There Is No Alternative' (TINA to capitalism as practiced in the United States of America and Western Europe has been the bane of aids effectiveness in assisting to solve the underdevelopment problem in Africa. This paper attempts to show that except there is a fundamental reorientation in the conceptualization of capitalism-free market and democracy-the underdevelopment problem would only be further complicated with aids.

  20. Atomistic Failure Mechanism of Single Wall Carbon Nanotubes with Small Diameters

    Institute of Scientific and Technical Information of China (English)

    JI Dong; GAO Xiang; KONG Xiang-Yang; LI Jia-Ming

    2007-01-01

    @@ Single wall carbon nanotubes with small diameters (< 5.0 (A)) subjected to bending deformation are simulated by orthogonal tight-binding molecular dynamics approach. Based on the calculations of C-C bond stretching and breaking in the bending nanotubes, we elucidate the atomistic failure mechanisms of nanotube with small diameters. In the folding zone of bending nanotube, a large elongation of C-C bonds occurs, accounting for the superelastic behaviour.

  1. Permittivity of oxidized ultra-thin silicon films from atomistic simulations

    OpenAIRE

    Penazzi, G.; KWOK, YH; Aradi, B.; Pecchia, A.; Frauenheim, T.; Chen, G.; Markov, SN

    2015-01-01

    We establish the dependence of the permittivity of oxidized ultra-thin silicon films on the film thickness by means of atomistic simulations within the density-functional-based tight-binding theory (DFTB). This is of utmost importance for modeling ultra- and extremely-thin silicon-on-insulator MOSFETs, and for evaluating their scaling potential. We demonstrate that electronic contribution to the dielectric response naturally emerges from the DFTB Hamiltonian when coupled to Poisson equation s...

  2. A numerical method for the time coarsening of transport processes at the atomistic scale

    Science.gov (United States)

    Gonzalez-Ferreiro, B.; Romero, I.; Ortiz, M.

    2016-05-01

    We propose a novel numerical scheme for the simulation of slow transport processes at the atomistic scale. The scheme is based on a model for non-equilibrium statistical thermodynamics recently proposed by the authors, and extends it by formulating a variational integrator, i.e. a discrete functional whose optimality conditions provide all the governing equations of the problem. The method is employed to study surface segregation of AuAg alloys and its convergence is confirmed numerically.

  3. Atomistic simulation of lipid and DiI dynamics in membrane bilayers under tension

    OpenAIRE

    Muddana, Hari S.; Gullapalli, Ramachandra R.; Manias, Evangelos; Butler, Peter J.

    2010-01-01

    Membrane tension modulates cellular processes by initiating changes in the dynamics of its molecular constituents. To quantify the precise relationship between tension, structural properties of the membrane, and the dynamics of lipids and a lipophilic reporter dye, we performed atomistic molecular dynamics (MD) simulations of DiI-labeled dipalmitoylphosphatidylcholine (DPPC) lipid bilayers under physiological lateral tensions ranging from −2.6 mN m−1 to 15.9 mN m−1. Simulations showed that th...

  4. Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments.

    Science.gov (United States)

    Ollila, O H Samuli; Pabst, Georg

    2016-10-01

    Accurate details on the sampled atomistic resolution structures of lipid bilayers can be experimentally obtained by measuring C-H bond order parameters, spin relaxation rates and scattering form factors. These parameters can be also directly calculated from the classical atomistic resolution molecular dynamics simulations (MD) and compared to the experimentally achieved results. This comparison measures the simulation model quality with respect to 'reality'. If agreement is sufficient, the simulation model gives an atomistic structural interpretation of the acquired experimental data. Significant advance of MD models is made by jointly interpreting different experiments using the same structural model. Here we focus on phosphatidylcholine lipid bilayers, which out of all model membranes have been studied mostly by experiments and simulations, leading to the largest available dataset. From the applied comparisons we conclude that the acyl chain region structure and rotational dynamics are generally well described in simulation models. Also changes with temperature, dehydration and cholesterol concentration are qualitatively correctly reproduced. However, the quality of the underlying atomistic resolution structural changes is uncertain. Even worse, when focusing on the lipid bilayer properties at the interfacial region, e.g. glycerol backbone and choline structures, and cation binding, many simulation models produce an inaccurate description of experimental data. Thus extreme care must be applied when simulations are applied to understand phenomena where the interfacial region plays a significant role. This work is done by the NMRlipids Open Collaboration project running at https://nmrlipids.blogspot.fi and https://github.com/NMRLipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26809025

  5. Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Paavilainen, S.; Rog, T.; Vattulainen, I.

    2011-01-01

    We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile, no...... significant bending or stretching of nanocellulose is discovered. Considerations of atomic-scale interaction patterns bring about that the twisting arises from hydrogen bonding within and between the chains in a fibril....

  6. A genetic algorithm for the atomistic design and global optimisation of substitutionally disordered materials

    OpenAIRE

    Mohn, Chris E.; Kob, Walter

    2008-01-01

    We present a genetic algorithm for the atomistic design and global optimisation of substitutionally disordered bulk materials and surfaces. Premature convergence which hamper conventional genetic algorithms due to problems with synchronisation is avoided using a symmetry adapted crossover. The algorithm outperforms previously reported Monte Carlo and genetic algorithm simulations for finding low energy minima of two simple alloy models without the need for any redesign.

  7. Large scale atomistic simulation of size effects during nanoindentation: Dislocation length and hardness

    International Nuclear Information System (INIS)

    The present paper studies the size effects during nanoindentation in Ni thin films using large scale atomistic simulation. The main focus of this paper is to evaluate the available theoretical models of size effects during nanoindentation using atomistic simulation. First, the dislocation nucleation and evolution in the simulated samples are studied. In the next step, the plastic zone size is obtained for each sample at several indentation depths incorporating the dislocation visualization. The results show that the plastic zone size divided by the contact radius is not a constant factor and varies as the indentation depth changes. The total length of dislocations located in the plastic zone is measured in the simulated samples and compared to that of the corresponding theoretical models. The results obtained from the atomistic simulation verify the theoretical predictions of the dislocation length. Next, the variation of hardness obtained directly from the molecular dynamics outputs, which is the indentation force over the contact area, is studied. In the case of conical indenter, the theoretical predictions of hardness have been verified using both experiments and simulations, and the current simulation shows the same trend, i.e. the hardness decreases as the indentation depth increases. However, in the cases of flat indenters, the theoretical models have not been validated using any experiments or simulations. Here, in the cases of flat indenters, the simulation results verify the theoretical predictions of hardness. They show that the hardness increases as the indentation depth increases. The variation of dislocation density as a function of indentation depth is then studied. In the case of nanoindentation experiment, the validity of Taylor hardening model, i.e. the relation between the hardening and dislocation density, which has not been previously studied with full atomistic details, is investigated. Accordingly, the hardness obtained directly from the

  8. Atomistic calculation of the thermal conductance of large scale bulk-nanowire junctions

    OpenAIRE

    Duchemin, Ivan; Donadio, Davide

    2011-01-01

    We have developed an efficient scalable kernel method for thermal transport in open systems, with which we have computed the thermal conductance of a junction between bulk silicon and silicon nanowires with diameter up to 10 nm. We have devised scaling laws for transmission and reflection spectra, which allow us to predict the thermal resistance of bulk-nanowire interfaces with larger cross sections than those achievable with atomistic simulations. Our results indicate the characteristic size...

  9. Soft sphere model for electron correlation and scattering in the atomistic modelling of semiconductor devices

    OpenAIRE

    J. R. Watling; Barker, J R; Asenov, A

    2000-01-01

    The atomistic modelling of silicon MOSFET devices becomes essential at deep sub-micron scales when it is no longer possible to represent the charged impurities by a continuous charge distribution with a determined doping density. Instead the spatial distribution and the actual number of dopants must be treated as discrete random variables. The present paper addresses the issue of modelling the dynamics of discrete carrier flow in a semiconductor device utilising a simple model of the carrier-...

  10. An atomistic-continuum hybrid simulation of fluid flows over superhydrophobic surfaces

    OpenAIRE

    LI Qiang; He, Guo-Wei

    2009-01-01

    Recent experiments have found that slip length could be as large as on the order of 1 μm for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption i...

  11. International Aid to Education

    Science.gov (United States)

    Benavot, Aaron

    2010-01-01

    Recent evidence highlights several worrisome trends regarding aid pledges and disbursements, which have been exacerbated by the global financial crisis. First, while overall development assistance rose in 2008, after 2 years of decline, the share of all sector aid going to the education sector has remained virtually unchanged at about 12 percent…

  12. AIDS Epidemiological models

    Science.gov (United States)

    Rahmani, Fouad Lazhar

    2010-11-01

    The aim of this paper is to present mathematical modelling of the spread of infection in the context of the transmission of the human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS). These models are based in part on the models suggested in the field of th AIDS mathematical modelling as reported by ISHAM [6].

  13. Genetic Immunity to AIDS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In an article on genetic immunity to AIDS published in Science magazine, American and Chinese scientists claim to have discovered why certain HIV carriers do not develop full-blown AIDS. They say that the key to this conundrum lies in a particular protein in the endocrine system that inhibits development of HIV.

  14. Aid and Income

    DEFF Research Database (Denmark)

    Lof, Matthijs; Mekasha, Tseday Jemaneh; Tarp, Finn

    2015-01-01

    to nonrandom omission of a large proportion of observations. Furthermore, we show that NDHKM’s use of co-integrated regressions is not a suitable empirical strategy for estimating the causal effect of aid on income. Evidence from a Panel VAR model estimated on the dataset of NDHKM, suggests a...... positive and statistically significant long-run effect of aid on income....

  15. AIDS and Chemical Dependency.

    Science.gov (United States)

    Pohl, Melvin I.

    After defining HIV and the AIDS disease and outlining symptoms and means of infection, this fact sheet lists the ways alcohol and drugs are involved with the AIDS epidemic, noting that needle-sharing transmits the virus; that alcohol or mood-altering drugs like crack cocaine cause disinhibition, increase sex drive, encourage sex for drugs, and…

  16. [Oral hygiene aids].

    Science.gov (United States)

    Hovius, M; Leemans, G J

    1994-05-01

    Different dental hygiene aids are discussed, such as floss, tape, superfloss, gauze, flat shoelace, toothpick, interproximal brush, single-tufted brush, electric toothbrush, manual toothbrush and oral irrigation. Research shows that not one specific aid is superior to another if effectiveness is taken into consideration. Other factors which can influence oral hygiene efficacy are discussed as well. PMID:11830968

  17. Changing epidemiology of AIDS.

    OpenAIRE

    Donovan, C. A.; Stratton, E.

    1994-01-01

    It has been 15 years since AIDS made its first appearance in North America, probably longer worldwide. In that time, our knowledge of the epidemiology of AIDS has grown and changed. This review highlights significant aspects of the epidemic with particular emphasis on the evolution of this disease in North America.

  18. Hearing aid and Noise

    OpenAIRE

    Ahmad Reza Nazeri

    1999-01-01

    Prescription of hearing aid is an extensive special category of knowledge in the field of audiology. This article is aimed at discussing the function of hearing aid and also management of patients in the noisy environments and presenting solutions to overcome problems regarding to this issue along with taking a look to the equipments prepared nowadays to cope with noisy situations.

  19. Aid and sectoral growth

    DEFF Research Database (Denmark)

    Selaya, Pablo; Thiele, Rainer

    2010-01-01

    This article examines empirically the proposition that aid to poor countries is detrimental for external competitiveness, giving rise to Dutch disease type effects. At the aggregate level, aid is found to have a positive effect on growth. A sectoral decomposition shows that the effect is (i) sign...... labour capacity that prevents the real exchange rate from appreciating....

  20. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    Science.gov (United States)

    Huang, Liangliang; Seredych, Mykola; Bandosz, Teresa J.; van Duin, Adri C. T.; Lu, Xiaohua; Gubbins, Keith E.

    2013-11-01

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H2S and H2O/H2S mixtures on GO materials and compare the results with experiment. We find that H2S molecules dissociate on the carbonyl functional groups, and H2O, CO2, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H2O/H2S mixtures, H2O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H2S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials.

  1. Hybrid Simulation Strategy for Simulating Self-Assembled Morphologies at the Atomistic Length Scales

    Science.gov (United States)

    Sethuraman, Vaidyanathan; Ganesan, Venkat

    In the context of Lithium-ion batteries, an enhancement in both ionic conductivity and mechanical properties, were observed for block copolymer electrolytes with increasing MW. On the contrary, when homopolymers were used as electrolytes, the ionic conductivity decreased with increasing MW. However, the origins of such increase in conductivity are unclear and are speculated to be tied to both the morphology and the atomistic details of the copolymer themselves. Motivated by such issues, we present a strategy to create ordered morphologies of block copolymers at the atomistic level using a combination of coarse-graining and inverse coarse-graining techniques. A mapping which is developed using the long-ranged structural mapping in the disordered phases will be utilized to generate self-assembled morphologies. In particular we focus on generating self-assembled morphologies of PS-PEO at the atomistic length scales. Statics and dynamics of such self-assembled morphologies will be presented and the effect of self assembly on the transport properties of ions will also be explored. Funded by NSF.

  2. Phase field crystal modelling of the order-to-disordered atomistic structure transition of metallic glasses

    Science.gov (United States)

    Zhang, W.; Mi, J.

    2016-03-01

    Bulk metallic glass composites are a new class of metallic alloy systems that have very high tensile strength, ductility and fracture toughness. This unique combination of mechanical properties is largely determined by the presence of crystalline phases uniformly distributed within the glassy matrix. However, there have been very limited reports on how the crystalline phases are nucleated in the super-cooled liquid and their growth dynamics, especially lack of information on the order-to-disordered atomistic structure transition across the crystalline-amorphous interface. In this paper, we use phase field crystal (PFC) method to study the nucleation and growth of the crystalline phases and the glass formation of the super cooled liquid of a binary alloy. The study is focused on understanding the order-to-disordered transition of atomistic configuration across the interface between the crystalline phases and amorphous matrix of different chemical compositions at different thermal conditions. The capability of using PFC to simulate the order-to-disorder atomistic transition in the bulk material or across the interface is discussed in details.

  3. Atomistic modeling of the dislocation dynamics and evaluation of static yield stress

    Science.gov (United States)

    Karavaev, A. V.; Dremov, V. V.; Ionov, G. V.

    2015-09-01

    Static strength characteristics of structural materials are of great importance for the analysis of the materials behaviour under mechanical loadings. Mechanical characteristics of structural materials such as elastic limit, strength limit, ultimate tensile strength, plasticity are, unlike elastic moduli, very sensitive to the presence of impurities and defects of crystal structure. Direct atomistic modeling of the static mechanical strength characteristics of real materials is an extremely difficult task since the typical time scales available for the direct modeling in the frames of classical molecular dynamics do not exceed a hundred of nanoseconds. This means that the direct atomistic modeling of the material deformation can be done for the regimes with rather high strain rates at which the yield stress and other mechanical strength characteristics are controlled by microscopic mechanisms different from those at low (quasi-static) strain rates. In essence, the plastic properties of structural materials are determined by the dynamics of the extended defects of crystal structure (edge and screw dislocations) and by interactions between them and with the other defects in the crystal. In the present work we propose a method that is capable to model the dynamics of edge dislocations in the fcc and hcp materials at dynamic deformations and to estimate the material static yield stress in the states of interest in the frames of the atomistic approach. The method is based on the numerical characterization of the stress relaxation processes in specially generated samples containing solitary edge dislocations.

  4. Atomistic modeling of the dislocation dynamics and evaluation of static yield stress

    Directory of Open Access Journals (Sweden)

    Karavaev A.V.

    2015-01-01

    Full Text Available Static strength characteristics of structural materials are of great importance for the analysis of the materials behaviour under mechanical loadings. Mechanical characteristics of structural materials such as elastic limit, strength limit, ultimate tensile strength, plasticity are, unlike elastic moduli, very sensitive to the presence of impurities and defects of crystal structure. Direct atomistic modeling of the static mechanical strength characteristics of real materials is an extremely difficult task since the typical time scales available for the direct modeling in the frames of classical molecular dynamics do not exceed a hundred of nanoseconds. This means that the direct atomistic modeling of the material deformation can be done for the regimes with rather high strain rates at which the yield stress and other mechanical strength characteristics are controlled by microscopic mechanisms different from those at low (quasi-static strain rates. In essence, the plastic properties of structural materials are determined by the dynamics of the extended defects of crystal structure (edge and screw dislocations and by interactions between them and with the other defects in the crystal. In the present work we propose a method that is capable to model the dynamics of edge dislocations in the fcc and hcp materials at dynamic deformations and to estimate the material static yield stress in the states of interest in the frames of the atomistic approach. The method is based on the numerical characterization of the stress relaxation processes in specially generated samples containing solitary edge dislocations.

  5. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    International Nuclear Information System (INIS)

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H2S and H2O/H2S mixtures on GO materials and compare the results with experiment. We find that H2S molecules dissociate on the carbonyl functional groups, and H2O, CO2, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H2O/H2S mixtures, H2O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H2S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials

  6. Implementing AIDS Education

    Directory of Open Access Journals (Sweden)

    Grace C. Huerta

    1996-08-01

    Full Text Available The world has been challenged by the AIDS epidemic for 15 years. In 1985, the U.S. Department of Health and Human Services, Centers for Disease Control, allocated funds to all state departments of education to assist schools in the development of AIDS education policies and programs. Yet, these policies do not ensure that all students receive effective AIDS education. On September 21, 1991, the Arizona Legislature passed Senate Bill 1396, which requires public schools to annually provide AIDS education in grades K-12. The bill was rescinded in 1995. With prohibitive curriculum guidelines, limited teacher training opportunities and tremendous instructional demands, this educational policy was implemented in disparate forms. By examining the perspectives of the Arizona educators (representing three school districts, this qualitative study reveals how teachers ultimately controlled the delivery and nature of AIDS instruction based upon personal values, views of teacher roles, and their interpretation of the mandate itself.

  7. Atomistic study of macroscopic analogs to short-chain molecules

    Science.gov (United States)

    Welch, Kyle J.; Kilmer, Clayton S. G.; Corwin, Eric I.

    2015-02-01

    We use a bath of chaotic surface waves in water to mechanically and macroscopically mimic the thermal behavior of a short articulated chain with only nearest-neighbor interactions. The chaotic waves provide isotropic and random agitation to which a temperature can be ascribed, allowing the chain to passively explore its degrees of freedom in analogy to thermal motion. We track the chain in real time and infer end-to-end potentials using Boltzmann statistics. We extrapolate our results, by using Monte Carlo simulations of self-avoiding polymers, to lengths not accessible in our system. In the long-chain limit we demonstrate universal scaling of the statistical parameters of all chains in agreement with well-known predictions for self-avoiding walks. However, we find that the behavior of chains below a characteristic length scale fundamentally differs. We find that short chains have much greater compressional stiffness than would be expected. However, chains rapidly soften as length increases to meet with expected scalings.

  8. Atomistic simulation of topaz: Structure, defect, and vibrational properties

    Science.gov (United States)

    Niu, Ji-Nan; Shen, Shai-Shai; Liu, Zhang-Sheng; Feng, Pei-Zhong; Ou, Xue-Mei; Qiang, Ying-Huai; Zhu, Zhen-Cai

    2015-09-01

    The clay force field (CLAYFF) was supplemented by fluorine potential parameters deriving from experimental structures and used to model various topazes. The calculated cell parameters agree well with the observed structures. The quasi-linear correlation of the b lattice parameter to different F/OH ratios calculated by changing fluorine contents in OH-topaz supports that the F content can be measured by an optical method. Hydrogen bond calculations reveal that the hydrogen bond interaction to H1 is stronger than that to H2, and the more fluorine in the structure, the stronger the hydrogen bond interaction of hydroxyl hydrogen. Defect calculations provide the formation energies of all common defects and can be used to judge the ease of formation of them. The calculated vibrational frequencies are fairly consistent with available experimental results, and the 1080-cm-1 frequency often occurring in natural OH-topaz samples can be attributed to Si-F stretching because of the F substitution to OH and the Al-Si exchange. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20140212) and the Fundamental Research Funds for the Central Universities China (Grant Nos. 2012QNA08).

  9. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  10. Clustering Assisted Fundamental Matrix Estimation

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2015-03-01

    Full Text Available In computer vision, the estimation of the fundament al matrix is a basic problem that has been extensively studied. The accuracy of the estimation imposes a significant influence on subsequent tasks such as the camera trajectory dete rmination and 3D reconstruction. In this paper we propose a new method for fundamental matri x estimation that makes use of clustering a group of 4D vectors. The key insight is the obser vation that among the 4D vectors constructed from matching pairs of points obtained from the SIF T algorithm, well-defined cluster points tend to be reliable inliers suitable for fundamenta l matrix estimation. Based on this, we utilizes a recently proposed efficient clustering method thr ough density peaks seeking and propose a new clustering assisted method. Experimental resul ts show that the proposed algorithm is faster and more accurate than currently commonly us ed methods.

  11. Modern measurements fundamentals and applications

    CERN Document Server

    Petri, D; Carbone, P; Catelani, M

    2015-01-01

    This book explores the modern role of measurement science for both the technically most advanced applications and in everyday and will help readers gain the necessary skills to specialize their knowledge for a specific field in measurement. Modern Measurements is divided into two parts. Part I (Fundamentals) presents a model of the modern measurement activity and the already recalled fundamental bricks. It starts with a general description that introduces these bricks and the uncertainty concept. The next chapters provide an overview of these bricks and finishes (Chapter 7) with a more general and complex model that encompasses both traditional (hard) measurements and (soft) measurements, aimed at quantifying non-physical concepts, such as quality, satisfaction, comfort, etc. Part II (Applications) is aimed at showing how the concepts presented in Part I can be usefully applied to design and implement measurements in some very impor ant and broad fields. The editors cover System Identification (Chapter 8...

  12. THE FUNDAMENTS OF EXPLANATORY CAUSES

    Directory of Open Access Journals (Sweden)

    Lavinia Mihaela VLĂDILĂ

    2015-07-01

    Full Text Available The new Criminal Code in the specter of the legal life the division of causes removing the criminal feature of the offence in explanatory causes and non-attributable causes. This dichotomy is not without legal and factual fundaments and has been subjected to doctrinaire debates even since the period when the Criminal Code of 1969 was still in force. From our perspective, one of the possible legal fundaments of the explanatory causes results from that the offence committed is based on the protection of a right at least equal with the one prejudiced by the action of aggression, salvation, by the legal obligation imposed or by the victim’s consent.

  13. DOE Fundamentals Handbook: Classical Physics

    International Nuclear Information System (INIS)

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment

  14. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  15. Fundamental research in developing countries

    International Nuclear Information System (INIS)

    Technical assistance is today a widespread activity. Large numbers of persons with special qualifications in the applied sciences go to the developing countries to work on specific research and development projects, as do educationists on Fulbright or other programmes - usually to teach elementary or intermediate courses. But I believe that until now it has been rare for a person primarily interested in fundamental research to go to one of these countries to help build up advanced education and pure research work. Having recently returned from such an assignment, and having found it a most stimulating and enlightening experience, I feel moved to urge strongly upon others who may be in a position to do so that they should seek similar experience themselves. The first step is to show that advanced education and fundamental research are badly needed in the under-developed countries.

  16. Fundamental Complexity Measures of Life

    CERN Document Server

    Grandpierre, Attila

    2012-01-01

    At present, there is a great deal of confusion regarding complexity and its measures (reviews on complexity measures are found in, e.g. Lloyd, 2001 and Shalizi, 2006 and more references therein). Moreover, there is also confusion regarding the nature of life. In this situation, it seems the task of determining the fundamental complexity measures of life is especially difficult. Yet this task is just part of a greater task: obtaining substantial insights into the nature of biological evolution. We think that without a firm quantitative basis characterizing the most fundamental aspects of life, it is impossible to overcome the confusion so as to clarify the nature of biological evolution. The approach we present here offers such quantitative measures of complexity characterizing biological organization and, as we will see, evolution.

  17. Fundamental indexation for bond markets

    OpenAIRE

    Marielle de Jong; Hongwen Wu

    2014-01-01

    Purpose – The purpose of this paper is to build alternative indices weighing using a measure of fundamental value rather than debt size. The official bond indices built to reflect general price trends are market weighted, meaning that the bonds are weighted by their debt size. The more indebted, the more weight in the index, which mechanically increments the investment risks that are inherent. Those market indices are shown to be return-to-risk inefficient in recent studies compared to indice...

  18. Fundamentals: IVC and computer science

    OpenAIRE

    Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F; Hartenstein, H.; Tonguz, O.K.

    2013-01-01

    The working group on “Fundamentals: IVC and Computer Science” discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly the focus on IEEE 802.11p in the last decade) and the struggling with bringing self-organizing networks to deployment/market. The team started with a retrospective view and identified the following...

  19. Bangladesh: Drifting into Islamic Fundamentalism?

    OpenAIRE

    Wolf, Siegfried O.

    2013-01-01

    Since 9/11 the world has regarded Pakistan and Afghanistan as the epicentre of Islamic fundamentalism. Many of the early observations dealt with the tremendous challenge that terrorism and religious-militant extremism would pose for peace and stability from a geopolitical perspective. Realising the increasingly complex scenarios as well as the causalities and impacts, analyses on the phenomenon under discussion were slowly but persistently broadening. In order to be able to address not only t...

  20. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro

    2014-01-01

    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  1. The fundamental problem of accounting

    OpenAIRE

    Robert D. Cairns

    2013-01-01

    The fundamental problem of economic accounting is to determine a forwardlooking schedule of rentals, user costs or quasirents to provide for the recovery of irreversible investments. The method derived herein relaxes some restrictive assumptions that are common in capital theory. There can be multiple forms of comprehensive capital. Accounting for all forms of capital, including tangible and intangible capital, is symmetrical. The analytical focus becomes one of fixities and frictions and not...

  2. Early Cosmology and Fundamental Physics

    OpenAIRE

    De Vega, Hector

    2003-01-01

    Based on Lectures at the 9th. Chalonge School in Astrofundamental Physics, Palermo, September 2002, NATO ASI. To appear in the Proceedings, N. S'anchez and Yu. Parijskij editors, Kluwer. This is a pedagogical introduction to early cosmology and the host of fundamental physics involved in it (particle physics, grand unification andgeneral relativity). Inflation and the inflaton field are the centraltheme of this review. The quantum field treatment of the inflaton ispresented including its o...

  3. Fundamental Properties of Quaternion Spinors

    OpenAIRE

    Yefremov, Alexander P.

    2012-01-01

    The interior structure of arbitrary sets of quaternion units is analyzed using general methods of the theory of matrices. It is shown that the units are composed of quadratic combinations of fundamental objects having a dual mathematical meaning as spinor couples and dyads locally describing 2D surfaces. A detailed study of algebraic relationships between the spinor sets belonging to different quaternion units is suggested as an initial step aimed at producing a self-consistent geometric imag...

  4. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility)

  5. Fundamental requirements for petrochemical development

    International Nuclear Information System (INIS)

    The development of NOVA Chemicals over the past 20 years is described as an illustration of how the petrochemical industry provides markets for natural gas, natural gas liquids and the products of crude oil distillation, and functions as a conduit for upgrading products which would otherwise be sold into the fuel market. Some fundamental characteristics of the business which are foundations for competitiveness are reviewed in the process. These fundamentals help to understand why the industry locates in certain geographic regions of the world, which are often remote from end-use markets. Chief among these fundamentals is access to an adequate supply of appropriately priced feedstock; this is the single most important reason why chemical companies continue to emphasize developments in areas of the world where feedstock are advantageously priced. The cost of operations is equally significant. Cost depends not so much on location but on the scale of operations, hence the tendency towards large scale plants. Plant and product rationalization, technology and product development synergies and leverage with suppliers are all opportunities for cost reduction throughout the product supply chain. The combination of lower natural gas cost in Alberta, the lower fixed cost of extraction and the economies of scale achieved by large scale operation (five billion pounds per year of polyethylene production capacity) are the crucial factors that will enable NOVA Chemicals to maintain its competitive position and to weather the highs and lows in industry price fluctuations

  6. Fundamentals of spatial information systems

    CERN Document Server

    Laurini, Robert

    1992-01-01

    The study and application of spatial information systems have been developed primarily from the use of computers in the geosciences. These systems have the principle functions of capturing, storing, representing, manipulating, and displaying data in 2-D and 3-D worlds. This book approaches its subject from the perspectives of informatics and geography, presenting methods of conceptual modeling developed in computer science that provide valuable aids for resolving spatial problems. This book is an essential textbook for both students and practitioners. It is indispensable for academic geographe

  7. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general

  8. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, Bartosz

    2011-03-24

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In

  9. Research Report: HIV/AIDS

    Science.gov (United States)

    ... Reports » HIV/AIDS » Letter from the Director HIV/AIDS Email Facebook Twitter Letter from the Director Human ... the virus that causes acquired immune deficiency syndrome (AIDS) — has been with us for three decades now. ...

  10. HIV/AIDS and Alcohol

    Science.gov (United States)

    ... Psychiatric Disorders Other Substance Abuse HIV/AIDS HIV/AIDS Human immunodeficiency virus (HIV) targets the body’s immune ... and often leads to acquired immune deficiency syndrome (AIDS). Each year in the United States, between 55, ...

  11. HIV, AIDS, and the Future

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues HIV / AIDS HIV, AIDS, and the Future Past Issues / Summer 2009 ... turn Javascript on. Photo: The NAMES Project Foundation HIV and AIDS are a global catastrophe. While advances ...

  12. HIV/AIDS: Women's Health

    Science.gov (United States)

    ... Hospitalization and Palliative Care Friends & Family Dating and Marriage Family Planning Mixed-Status Couples Discrimination Legal Issues ... National HIV/AIDS and Aging Awareness Day National Gay Men's HIV/AIDS Awareness Day National Latino AIDS ...

  13. What Is HIV/AIDS?

    Science.gov (United States)

    ... Hospitalization and Palliative Care Friends & Family Dating and Marriage Family Planning Mixed-Status Couples Discrimination Legal Issues ... National HIV/AIDS and Aging Awareness Day National Gay Men's HIV/AIDS Awareness Day National Latino AIDS ...

  14. HIV/AIDS and Vaccines

    Science.gov (United States)

    ... Hospitalization and Palliative Care Friends & Family Dating and Marriage Family Planning Mixed-Status Couples Discrimination Legal Issues ... National HIV/AIDS and Aging Awareness Day National Gay Men's HIV/AIDS Awareness Day National Latino AIDS ...

  15. HIV / AIDS: An Unequal Burden

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues HIV / AIDS HIV / AIDS: An Unequal Burden Past Issues / Summer 2009 Table ... Victoria Cargill talks to students about HIV and AIDS at the opening of a National Library of ...

  16. Aid Supplies Over Time

    DEFF Research Database (Denmark)

    Jones, Edward Samuel

    2015-01-01

    What determines how much foreign aid donors provide? Existing answers to this question point to a complex range of influences. However, the tasks of distinguishing between long- and short-run factors, as well as differences between donors, have not been adequately addressed. Taking advantage of...... data spanning nearly 50 years, this paper uses panel cointegration techniques to consider these issues. The analysis provides clear evidence for heterogeneity both between donors and over time, bandwagon effects, and a growing influence of security considerations in aid provision. Domestic...... macroeconomic shocks have a moderate but delayed effect on aid disbursements....

  17. Aid and Growth

    DEFF Research Database (Denmark)

    Tarp, Finn; Mekasha, Tseday Jemaneh

    2013-01-01

    Recent litterature in the meta-analysis category where results from a range of studies are brought together throws doubt on the ability of foreign aid to foster economic growth and development. This article assesses what meta-analysis has to contribute to the litterature on the effectiveness of...... foreign aid in terms of growth impact. We re-examine key hypotheses, and find that the effect of aid on growth is positive and statistically significant. This significant effect is genuine, and not an artefact of publication selection. We also show why our results differ from those published elsewhere....

  18. Aid and development

    DEFF Research Database (Denmark)

    Tarp, Finn

    2006-01-01

    Foreign aid looms large in the public discourse; and international development assistance remains squarely on most policy agendas concerned with growth, poverty and inequality in Africa and elsewhere in the developing world. The present review takes a retrospective look at how foreign aid has...... been effective in furthering economic growth and development is discussed in some detail. I add perspective and identify some critical unresolved issues. I finally turn to the current development debate and discuss some key concerns, I believe should be kept in mind in formulating any agenda for aid in...

  19. Aid and Growth

    DEFF Research Database (Denmark)

    Mekasha, Tseday Jemaneh; Tarp, Finn

    Some recent literature in the meta-analysis category where results from a range of studies are brought together throws doubt on the ability of foreign aid to foster economic growth and development. This paper assesses what meta-analysis has to say about the effectiveness of foreign aid in terms of...... the growth impact. We re-examine key hypotheses, and find that the effect of aid on growth is positive and statistically significant. This significant effect is genuine, and not an artefact of publication selection. We also show why our results differ from those published elsewhere....

  20. Pulmonary complications of AIDS: radiologic features. [AIDS

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B.A.; Pomeranz, S.; Rabinowitz, J.G.; Rosen, M.J.; Train, J.S.; Norton, K.I.; Mendelson, D.S.

    1984-07-01

    Fifty-two patients with pulmonary complications of acquired immunodeficiency syndrome (AIDS) were studied over a 3-year period. The vast majority of the patients were homosexual; however, a significant number were intravenous drug abusers. Thirteen different organisms were noted, of which Pneumocystis carinii was by far the most common. Five patients had neoplasia. Most patients had initial abnormal chest films; however, eight patients subsequently shown to have Pneumocystis carinii pneumonia had normal chest films. A significant overlap in chest radiographic findings was noted among patients with different or multiple organisms. Lung biopsy should be an early consideration for all patients with a clinical history consistent with the pulmonary complications of AIDS. Of the 52 patients, 41 had died by the time this report was completed.

  1. Fundamental Limits of Ultrathin Metasurfaces

    CERN Document Server

    Arbabi, Amir

    2014-01-01

    We present universal theoretical limits on the operation and performance of non-magnetic passive ultrathin metasurfaces. In particular, we prove that their local transmission, reflection, and polarization conversion coefficients are confined to limited regions of the complex plane. As a result, full control over the phase of the light transmitted through such metasurfaces cannot be achieved if the polarization of the light is not to be affected at the same time. We also establish fundamental limits on the maximum polarization conversion efficiency of these metasurfaces, and show that they cannot achieve more than 25% polarization conversion efficiency in transmission.

  2. Fundamentals of liquid crystal devices

    CERN Document Server

    Yang, Deng-Ke

    2014-01-01

    Revised throughout to cover the latest developments in the fast moving area of display technology, this 2nd edition of Fundamentals of Liquid Crystal Devices, will continue to be a valuable resource for those wishing to understand the operation of liquid crystal displays. Significant updates include new material on display components, 3D LCDs and blue-phase displays which is one of the most promising new technologies within the field of displays and it is expected that this new LC-technology will reduce the response time and the number of optical components of LC-modules. Prof. Yang is a pion

  3. Testing Fundamental Gravitation in Space

    Energy Technology Data Exchange (ETDEWEB)

    Turyshev, Slava G.

    2013-10-15

    General theory of relativity is a standard theory of gravitation; as such, it is used to describe gravity when the problems in astronomy, astrophysics, cosmology, and fundamental physics are concerned. The theory is also relied upon in many modern applications involving spacecraft navigation, geodesy, and time transfer. Here we review the foundations of general relativity and discuss its current empirical status. We describe both the theoretical motivation and the scientific progress that may result from the new generation of high-precision tests that are anticipated in the near future.

  4. Fundamentals of soft matter science

    CERN Document Server

    Hirst, Linda S

    2012-01-01

    ""The publication is written at a very fundamental level, which will make it easily readable for undergraduate students. It will certainly also be a valuable text for students and postgraduates in interdisciplinary programmes, as not only physical aspects, but also the chemistry and applications are presented and discussed. … The book is well illustrated, and I really do like the examples and pictures provided for simple demonstration experiments, which can be done during the lectures. Also, the experimental techniques chapter at the end of the book may be helpful. The question sections are he

  5. Heterogeneous catalysis fundamentals and applications

    CERN Document Server

    Ross, Julian RH

    2011-01-01

    Heterogeneous catalysis plays a part in the production of more than 80% of all chemical products. It is therefore essential that all chemists and chemical engineers have an understanding of the fundamental principles as well as the applications of heterogeneous catalysts. This book introduces the subject, starting at a basic level, and includes sections on adsorption and surface science, catalytic kinetics, experimental methods for preparing and studying heterogeneous catalysts, as well as some aspects of the design of industrial catalytic reactors. It ends with a chapter that covers a range

  6. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  7. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  8. In search of fundamental laws

    CERN Document Server

    Pleitez, V

    1999-01-01

    One of the main activities in science teaching, and in particular in Physics teaching, is not only the discussion of both modern problems and problems which solution is an urgent matter. It means that the picture of an active and alive science should be transmitted to the students, mainly to the College students. A central point in this matter is the issue which characterizes the Fundamental Laws of Nature. In this work we emphasize that this sort of laws may exist in areas which are different from those usually considered. In this type of discussion it is neither possible nor desirable to avoid the historical perspective of the scientific development.

  9. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...

  10. Reconstruction of fundamental SUSY parameters

    Energy Technology Data Exchange (ETDEWEB)

    P. M. Zerwas et al.

    2003-09-25

    We summarize methods and expected accuracies in determining the basic low-energy SUSY parameters from experiments at future e{sup +}e{sup -} linear colliders in the TeV energy range, combined with results from LHC. In a second step we demonstrate how, based on this set of parameters, the fundamental supersymmetric theory can be reconstructed at high scales near the grand unification or Planck scale. These analyses have been carried out for minimal supergravity [confronted with GMSB for comparison], and for a string effective theory.

  11. Computing fundamentals digital literacy edition

    CERN Document Server

    Wempen, Faithe

    2014-01-01

    Computing Fundamentals has been tailor made to help you get up to speed on your Computing Basics and help you get proficient in entry level computing skills. Covering all the key topics, it starts at the beginning and takes you through basic set-up so that you'll be competent on a computer in no time.You'll cover: Computer Basics & HardwareSoftwareIntroduction to Windows 7Microsoft OfficeWord processing with Microsoft Word 2010Creating Spreadsheets with Microsoft ExcelCreating Presentation Graphics with PowerPointConnectivity and CommunicationWeb BasicsNetwork and Internet Privacy and Securit

  12. Computing fundamentals introduction to computers

    CERN Document Server

    Wempen, Faithe

    2014-01-01

    The absolute beginner's guide to learning basic computer skills Computing Fundamentals, Introduction to Computers gets you up to speed on basic computing skills, showing you everything you need to know to conquer entry-level computing courses. Written by a Microsoft Office Master Instructor, this useful guide walks you step-by-step through the most important concepts and skills you need to be proficient on the computer, using nontechnical, easy-to-understand language. You'll start at the very beginning, getting acquainted with the actual, physical machine, then progress through the most common

  13. Fundamentals of magnetism and electricity

    CERN Document Server

    Arya, SN

    2009-01-01

    Fundamentals of Magnetism and Electricity is a textbook on the physics of electricity, magnetism, and electromagnetic fields and waves. It is written mainly with the physics student in mind, although it will also be of use to students of electrical and electronic engineering. The approach is concise but clear, and the author has assumed that the reader will be familiar with the basic phenomena. The theory, however, is set out in a completely self-contained and coherent way and developed to the point where the reader can appreciate the beauty and coherence of the Maxwell equations.

  14. Communication technology update and fundamentals

    CERN Document Server

    Grant, August E

    2014-01-01

    A classic now in its 14th edition, Communication Technology Update and Fundamentals is the single best resource for students and professionals looking to brush up on how these technologies have developed, grown, and converged, as well as what's in store for the future. It begins by developing the communication technology framework-the history, ecosystem, and structure-then delves into each type of technology, including everything from mass media, to computers and consumer electronics, to networking technologies. Each chapter is written by faculty and industry experts who p

  15. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  16. Fundamental triangulation networks in Denmark

    DEFF Research Database (Denmark)

    Borre, Kai

    2014-01-01

    Academy of Sciences and Letters initiated a mapping project which should be based on the principle of triangulation. Eventually 24 maps were printed in varying scales, predominantly in 1:120 000. The last map was engraved in 1842. The Danish GradeMeasurement initiated remeasurements and redesign of the...... fundamental triangulation network. This network served scientific as well as cartographic purposes in more than a century. Only in the 1960s all triangulation sides were measured electronically. A combined least-squares adjustment followed in the 1970s...

  17. Fundamentals of gas particle flow

    CERN Document Server

    Rudinger, G

    1980-01-01

    Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions” course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a r

  18. Testing Fundamental Gravitation in Space

    International Nuclear Information System (INIS)

    General theory of relativity is a standard theory of gravitation; as such, it is used to describe gravity when the problems in astronomy, astrophysics, cosmology, and fundamental physics are concerned. The theory is also relied upon in many modern applications involving spacecraft navigation, geodesy, and time transfer. Here we review the foundations of general relativity and discuss its current empirical status. We describe both the theoretical motivation and the scientific progress that may result from the new generation of high-precision tests that are anticipated in the near future

  19. Fundamental Properties of Quaternion Spinors

    CERN Document Server

    Yefremov, Alexander P

    2012-01-01

    The interior structure of arbitrary sets of quaternion units is analyzed using general methods of the theory of matrices. It is shown that the units are composed of quadratic combinations of fundamental objects having a dual mathematical meaning as spinor couples and dyads locally describing 2D surfaces. A detailed study of algebraic relationships between the spinor sets belonging to different quaternion units is suggested as an initial step aimed at producing a self-consistent geometric image of spinor-surface distribution on the physical 3D space background.

  20. Fundamental stellar properties from asteroseismology

    DEFF Research Database (Denmark)

    Silva Aguirre, V.; Casagrande, L.; Miglio, A.

    2013-01-01

    different evolutionary phases. We present our results on determinations of masses, radii, and distances of stars in the CoRoT and Kepler fields, showing that we can map and date different regions of the galactic disk and distinguish gradients in the distribution of stellar properties at different heights......Accurate characterization of stellar populations is of prime importance to correctly understand the formation and evolution process of our Galaxy. The field of asteroseismology has been particularly successful in such an endeavor providing fundamental parameters for large samples of stars in...

  1. Fundamentals of spread spectrum modulation

    CERN Document Server

    Ziemer, Rodger E

    2007-01-01

    This lecture covers the fundamentals of spread spectrum modulation, which can be defined as any modulation technique that requires a transmission bandwidth much greater than the modulating signal bandwidth, independently of the bandwidth of the modulating signal. After reviewing basic digital modulation techniques, the principal forms of spread spectrum modulation are described. One of the most important components of a spread spectrum system is the spreading code, and several types and their characteristics are described. The most essential operation required at the receiver in a spread spect

  2. Quantum Uncertainty and Fundamental Interactions

    Directory of Open Access Journals (Sweden)

    Tosto S.

    2013-04-01

    Full Text Available The paper proposes a simplified theoretical approach to infer some essential concepts on the fundamental interactions between charged particles and their relative strengths at comparable energies by exploiting the quantum uncertainty only. The worth of the present approach relies on the way of obtaining the results, rather than on the results themselves: concepts today acknowledged as fingerprints of the electroweak and strong interactions appear indeed rooted in the same theoretical frame including also the basic principles of special and general relativity along with the gravity force.

  3. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum)

  4. Autodesk Combustion 4 fundamentals courseware

    CERN Document Server

    Autodesk,

    2005-01-01

    Whether this is your first experience with Combustion software or you're upgrading to take advantage of the many new features and tools, this guide will serve as your ultimate resource to this all-in-one professional compositing application. Much more than a point-and-click manual, this guide explains the principles behind the software, serving as an overview of the package and associated techniques. Written by certified Autodesk training specialists for motion graphic designers, animators, and visual effects artists, Combustion 4 Fundamentals Courseware provides expert advice for all skill le

  5. Buying a Hearing Aid

    Science.gov (United States)

    ... Treatments & Cures Buying a Hearing Aid Cancer Treatment Scams Cancer Treatment Scams CURE-ious Bookmark Direct-to-Consumer Genetic Tests ... Money Privacy, Identity & Online Security Blog Video & Media Scam Alerts Get health and fitness updates by email ...

  6. The Aid Effectiveness Literature

    DEFF Research Database (Denmark)

    Doucouliagos, Hristos; Paldam, Martin

    The AEL consists of empirical macro studies of the effects of development aid. At the end of 2004 it had reached 97 studies of three families, which we have summarized in one study each using meta-analysis. Studies of the effect on investments show that they rise by 1/3 of the aid – the rest is...... crowded out by a fall in savings. Studies of the effect on growth show an insignificant positive effect. Studies of the effect on growth, conditional on something else, have till now shown weak results. The Dutch Disease effect of aid has been ignored. The best aggregate estimate is that since its start...... in the early 1960s aid has increased the standard of living in the poor countries by 20%....

  7. Performance Aided Design

    DEFF Research Database (Denmark)

    Parigi, Dario

    2014-01-01

    The paper present the methodologies and tools developed in the framework of Performance Aided Design (PAD), a term that indicates the shift in the use of Computer Aided Design (CAD) tools from a mere translation in a digital environment of the operations once carried on paper, to an evolving...... paradigm where the increasing integration of parametric tools and performative analysis is changing the way we learn and design. The term Performance Aided Architectural Design (PAD) is proposed at the Master of Science of Architecture and Design at Aalborg University, with the aim of extending a tectonic...... tradition of architecture with computational tools, preparing the basis for the creation of the figure of a modern master builder, sitting at the boundary of the disciplines of architecture and engineering. Performance Aided Design focuses on the role of performative analysis, embedded tectonics, and...

  8. HIV/AIDS

    Science.gov (United States)

    HIV stands for human immunodeficiency virus. It harms your immune system by destroying the white blood cells ... It is the final stage of infection with HIV. Not everyone with HIV develops AIDS. HIV most ...

  9. Aid and Development

    DEFF Research Database (Denmark)

    Tarp, Finn; Arndt, Channing; Jones, Edward Samuel

    inputs. We take as our point of departure a growth accounting analysis and review both intended and unintended effects of aid. Mozambique has benefited from sustained aid inflows in conflict, post-conflict and reconstruction periods. In each of these phases aid has made an unambiguous, positive...... sustained future growth, Mozambique will have to develop its capacity to maximise the benefits from its natural resources while ensuring at the same time the necessary framework is put in place to promote constructive integration in international markets...... contribution both enabling and supporting rapid growth since 1992. At the same time, the proliferation of donors and aid-supported interventions has burdened local administration and there is a distinct need to develop government accountability to its own citizens rather than donor agencies. In ensuring...

  10. World AIDS Day 1998.

    Science.gov (United States)

    1999-01-01

    Excerpts of speeches given at a public rally on World AIDS Day 1998 underscore the need to energize support for those living with HIV/AIDS, emphasize the importance of increasing public education efforts, and memorialize those lost to the disease. Reverend Pat Bumgardner stressed the need to educate children about practicing safe sex and the dangers of drug use. He also focused attention on AIDS as a worldwide crisis, with the 30 million people who have HIV or AIDS. Councilwoman Margarita Lopez spoke about achieving objectives and securing resources through activism. She also condemned New York City's Mayor for trying to hinder the rally. Anne Chelimsky, who did not speak at the rally but attended it, reflected on her new role as an activist, and on how the rally affected her. PMID:11367196

  11. AidData

    Data.gov (United States)

    US Agency for International Development — AidData is a research and innovation lab making information on development finance more accessible and actionable. Tracking more than $6 trillion dollars from 90+...

  12. HIV/AIDS

    Science.gov (United States)

    ... Casual contact, such as hugging Mosquitoes Participating in sports Touching items that were touched by a person ... 20 years. People with AIDS have had their immune system damaged by HIV. They are at very high ...

  13. House OK's Russian aid

    International Nuclear Information System (INIS)

    This article discusses the 2.5 Billion dollar aid package to Russia which House Appropriations Foreign Operations Subcommittee Chairman David Obey successfully defended on the House floor last June. Arizona Republican Jon Kyl offered an admendment that would cut 700 million from the package and was defeated with a 118 to 140 vote. The bill is currently in the hands of the Senate. The controversy over the bill and details concerning the aid package are discussed. The aid deal includes 250 million dollars for nuclear reactor safety and energy as well as environmental technical assistance, 655 million dollars to aid private sector development, and 704 million dollars for additional technical and economic assistance

  14. AIDS: A National Dilemma.

    Science.gov (United States)

    Issues in Science and Technology, 1987

    1987-01-01

    Contains excerpts from a special study on the AIDS epidemic by the Institute of Medicine and National Academy of Sciences. Presents an overview of the problem, outlines educational needs and public health measures, and identifies future research needs. (ML)

  15. HIV/AIDS

    Science.gov (United States)

    HIV stands for human immunodeficiency virus. It kills or damages the body's immune system cells. AIDS stands ... is the most advanced stage of infection with HIV. HIV most often spreads through unprotected sex with ...

  16. AIDS: the hidden enemy.

    Science.gov (United States)

    Tinker, J; Sabatier, R

    1987-01-01

    This article discusses the acquired immunodeficiency syndrome (AIDS) epidemic an its effect on developing countries, with emphasis on Africa. The AIDS death toll will be high in the US: 180,000 by 1991, but it will be in the millions in developing countries. In Africa, AIDS is mainly transmitted heterosexually, is as prevalent among women as among men, and is taking a serious toll among professional classes and young wage earners. The social costs of funerals has increased, and company clinics and sick pay funds have been overwhelmed. In Uganda, the epidemic adds to the state of psychological shock people have sufferred because of the civil war. Medical professionals have been hard-pressed to acquire equipment for testing blood for the virus, although there have been efforts to protect blood supplies through exhaustive testing. Endemic tuberculosis becomes an even more serious problem in developing countries, since AIDS lowers resistance to it. AIDS also effects many developing country children, usually through infected mothers, who can transmit AIDS through breast milk or during pregnancy of birth. This poses a dilemma for promoters of breastfeeding. It is also feared that innoculation of immunosuppressed children may be dangerous. The global picture suggests that Africa is hardest hit: seropositivity prevalence ranges from 0.7% of Congo blood donors to 33% of male donors in Lusaka Zambia. Brazil's cases are mainly homosexual, and in Asia the prevalence is mostly low, although there is a great potential danger in countries where prostitution and heroin addiction are prevalent. The only effective weapon against AIDS is education and blood testing to prevent spread. Despite good education programs in some countries, e.g. Rwanda, there is still widespread ignorance of how AIDS is spread. PMID:12314457

  17. Aid and Vulnerability

    OpenAIRE

    Andrea Filippo Presbitero

    2013-01-01

    Managing and identifying risks are a key challenge for Low Income Countries (LICs), which are extremely vulnerable to exogenous shocks. However, the use of risk management tools by developing countries is quite limited. The paper discusses in which ways aid could strengthen the capacity of LICs to deal with vulnerability to external shocks and to manage capital flows. We provide some novel empirical evidence on the potential role of aid as output stabilizer and shock absorber in recipient cou...

  18. Chagas' disease and AIDS

    OpenAIRE

    Vaidian, Anil K; Louis M Weiss; Tanowitz, Herbert B.

    2004-01-01

    Chagas' disease caused by Trypanosoma cruzi is an opportunistic infection in the setting of HIV/AIDS. Some individuals with HIV and chronic T. cruzi infection may experience a reactivation, which is most commonly manifested by meningoencephalitis. A reactivation myocarditis is the second most common manifestation. These presentations may be difficult to distinguish from toxoplasmosis in individuals with HIV/AIDS. The overlap of HIV and Trypanosoma cruzi infection occurs not only in endemic ar...

  19. [The liver and AIDS].

    Science.gov (United States)

    Rull, S; Sanchís, M J; Palacios, A; Anguiz, A; Colomina, J

    1992-02-01

    Hepatic disorders in AIDS are very common, although the injuries observed are usually non-specific. This is the reason why the real usefulness of hepatic biopsy in this patients is being currently discussed. In this work, such aspect and the hepatic injuries observed in patients with AIDS are discussed. Current indications for hepatic biopsy are summarized, as well as its later manipulation in order to obtain maximum profitability of it. PMID:1576316

  20. World AIDS Day 2004

    Institute of Scientific and Technical Information of China (English)

    CynthiaKirk; 刘保行

    2005-01-01

    December first was World AIDS Day. Last year, the campaign (运动;活动) centered on women and girls. They made up almost half of all people infected with the virus HIV that causes AIDS. And H1V was spreading faster among women than men in most areas of the world. These findings (发现) werefrom the yearly report by the United Nations and the World Health Organization, a UN agency

  1. Hearing aid adjustment

    DEFF Research Database (Denmark)

    Heinemann, Trine; Matthews, Ben; Raudaskoski, Pirkko Liisa

    2012-01-01

    to the interaction during hearing aid fitting. This report of a Danish pilot study describes two such problems. The first problem arises from the requirement that the audiologist needs to ‘translate’ the patient’s subjective hearing description for making technological decisions. The second problem...... is the way in which the hearing aid user’s implicit and often unrealistic expectations are handled. This kind of research has potential application for developing a model of best practices....

  2. A laboratory scale fundamental time?

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, R.V. [Instituto para a Investigacao Interdisciplinar, CMAF, Lisboa (Portugal); Instituto Superior Tecnico, IPFN - EURATOM/IST Association, Lisboa (Portugal)

    2012-11-15

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and {Dirac_h} are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  3. A laboratory scale fundamental time?

    International Nuclear Information System (INIS)

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  4. A Gaussian mixture modelling approach to the data-driven estimation of atomistic support for continuum stress

    International Nuclear Information System (INIS)

    Recent developments in multiscale modelling include the treatment of atomistic scale interactions via molecular dynamics simulations. The atomistic stress definition at a given continuum point contains a space-averaging volume over nearby atoms to provide an averaged macroscopic stress measure. Previous work on atomistic stress measures introduce the size of this volume as an a priori given parameter. In this contribution we let the atomistic data speak for itself by hypothesizing that the influence between atoms can be effectively estimated from their relative spatial position and stress. Atoms with highly similar spatial position and stress should therefore be contained within the same space-averaging volume. We motivate the application of Gaussian mixture modelling as a principled probabilistic means of estimating this similarity directly from the atomistic data. This model enables the discovery of homogeneous sub-populations of atoms in an entirely data-driven manner. The size of the space-averaging volume then follows naturally from the average maximum extent of the sub-populations. Furthermore, we demonstrate how the model can be used to compute the stress at arbitrary continuum points. Thorough evaluation is conducted on a numerical example of an edge dislocation in a single crystal. We find that our results are in excellent agreement with the corresponding analytical solution. (paper)

  5. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level.

    Science.gov (United States)

    Molugu, Trivikram R; Brown, Michael F

    2016-09-01

    Applications of solid-state NMR spectroscopy for investigating the influences of lipid-cholesterol interactions on membrane fluctuations are reviewed in this paper. Emphasis is placed on understanding the energy landscapes and fluctuations at an emergent atomistic level. Solid-state (2)H NMR spectroscopy directly measures residual quadrupolar couplings (RQCs) due to individual C-(2)H labeled segments of the lipid molecules. Moreover, residual dipolar couplings (RDCs) of (13)C-(1)H bonds are obtained in separated local-field NMR spectroscopy. The distributions of RQC or RDC values give nearly complete profiles of the order parameters as a function of acyl segment position. Measured equilibrium properties of glycerophospholipids and sphingolipids including their binary and tertiary mixtures with cholesterol show unequal mixing associated with liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids and may drive the formation of lipid rafts. In addition relaxation time measurements enable one to study the molecular dynamics over a wide time-scale range. For (2)H NMR the experimental spin-lattice (R1Z) relaxation rates follow a theoretical square-law dependence on segmental order parameters (SCD) due to collective slow dynamics over mesoscopic length scales. The functional dependence for the liquid-crystalline lipid membranes is indicative of viscoelastic properties as they emerge from atomistic-level interactions. A striking decrease in square-law slope upon addition of cholesterol denotes stiffening relative to the pure lipid bilayers that is diminished in the case of lanosterol. Measured equilibrium properties and relaxation rates infer opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale that potentially affects lipid raft formation in cellular membranes. PMID:27154600

  6. Applications of Atomistic Simulation to Radioactive and Hazardous Waste Glass Formulation Development

    Energy Technology Data Exchange (ETDEWEB)

    Kielpinski, A.L.

    1995-03-01

    Glass formulation development depends on an understanding of the effects of glass composition on its processibility and product quality. Such compositional effects on properties in turn depend on the microscopic structure of the glass. Historically, compositional effects on macroscopic properties have been explored empirically, e.g., by measuring viscosity at various glass compositions. The relationship of composition to structure has been studied by microstructural experimental methods. More recently, computer simulation has proved a fruitful complement to these more traditional methods of study. By simulating atomic interaction over a period of time using the molecular dynamics method, a direct picture of the glass structure and dynamics is obtained which can verify existing concepts as well as permit ``measurement`` of quantities inaccessible to experiment. Atomistic simulation can be of particular benefit in the development of waste glasses. As vitrification is being considered for an increasing variety of waste streams, process and product models are needed to formulate compositions for an extremely wide variety of elemental species and composition ranges. The demand for process and product models which can predict over such a diverse composition space requires mechanistic understanding of glass behavior; atomistic simulation is ideally suited for providing this understanding. Moreover, while simulation cannot completely eliminate the need for treatability studies, it can play a role in minimizing the experimentation on (and therefore contact handling of) such materials. This paper briefly reviews the molecular dynamics method, which is the primary atomistic simulation tool for studying glass structure. We then summarize the current state of glass simulation, emphasizing areas of importance for waste glass process/product modeling. At SRS, glass process and product models have been formulated in terms of glass structural concepts.

  7. Enhancement of Teaching and Learning of the Fundamentals of Nuclear Engineering Using Multimedia Courseware.

    Science.gov (United States)

    Keyvan, Shahla A.; Pickard, Rodney; Song, Xiaolong

    1997-01-01

    Computer-aided instruction incorporating interactive multimedia and network technologies can boost teaching effectiveness and student learning. This article describes the development and implementation of network server-based interactive multimedia courseware for a fundamental course in nuclear engineering. A student survey determined that 80% of…

  8. Seminario latinoamericano de didactica de los medios audiovisuales (Latin American Seminar on Teaching with Audiovisual Aids).

    Science.gov (United States)

    Eduplan Informa, 1971

    1971-01-01

    This seminar on the use of audiovisual aids reached several conclusions on the need for and the use of such aids in Latin America. The need for educational innovation in the face of a new society, a new type of communication, and a new vision of man is stressed. A new definition of teaching and learning as a fundamental process of communication is…

  9. Fundamental studies of polymer filtration

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Lu, M.T.; Robison, T.W.; Rogers, Y.C.; Wilson, K.V.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were (1) to develop an enhanced fundamental understanding of the coordination chemistry of hazardous-metal-ion complexation with water-soluble metal-binding polymers, and (2) to exploit this knowledge to develop improved separations for analytical methods, metals processing, and waste treatment. We investigated features of water-soluble metal-binding polymers that affect their binding constants and selectivity for selected transition metal ions. We evaluated backbone polymers using light scattering and ultrafiltration techniques to determine the effect of pH and ionic strength on the molecular volume of the polymers. The backbone polymers were incrementally functionalized with a metal-binding ligand. A procedure and analytical method to determine the absolute level of functionalization was developed and the results correlated with the elemental analysis, viscosity, and molecular size.

  10. Materials Fundamentals of Gate Dielectrics

    CERN Document Server

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  11. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  12. Molecular imaging. Fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jie (ed.) [Chinese Academy of Sciences, Beijing (China). Intelligent Medical Research Center

    2013-07-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  13. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  14. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  15. Queueing networks a fundamental approach

    CERN Document Server

    Dijk, Nico

    2011-01-01

    This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner.  The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow subnetworks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the proces generators, and comparison results and explicit error bounds based on an underlying Markov r...

  16. Overview: Main Fundamentals for Steganography

    CERN Document Server

    AL-Ani, Zaidoon Kh; Zaidan, B B; Alanazi, Hamdan O

    2010-01-01

    The rapid development of multimedia and internet allows for wide distribution of digital media data. It becomes much easier to edit, modify and duplicate digital information .Besides that, digital documents are also easy to copy and distribute, therefore it will be faced by many threats. It is a big security and privacy issue, it become necessary to find appropriate protection because of the significance, accuracy and sensitivity of the information. Steganography considers one of the techniques which used to protect the important information. The main goals for this paper, to recognize the researchers for the main fundamentals of steganography. In this paper provides a general overview of the following subject areas: Steganography types, General Steganography system, Characterization of Steganography Systems and Classification of Steganography Techniques.

  17. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  18. Fundamental Travel Demand Model Example

    Science.gov (United States)

    Hanssen, Joel

    2010-01-01

    Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.

  19. Holographic viscosity of fundamental matter.

    Science.gov (United States)

    Mateos, David; Myers, Robert C; Thomson, Rowan M

    2007-03-01

    A holographic dual of a finite-temperature SU(Nc) gauge theory with a small number of flavors Nfblack hole background. By considering the backreaction of the branes, we demonstrate that, to leading order in Nf/Nc, the viscosity to entropy ratio in these theories saturates the conjectured universal bound eta/s> or =1/4pi. Given the known results for the entropy density, the contribution of the fundamental matter eta fund is therefore enhanced at strong 't Hooft coupling lambda; for example, eta fund approximately lambda NcNfT3 in four dimensions. Other transport coefficients are analogously enhanced. These results hold with or without a baryon number chemical potential. PMID:17358523

  20. Optical Metamaterials Fundamentals and Applications

    CERN Document Server

    Cai, Wenshan

    2010-01-01

    Metamaterials—artificially structured materials with engineered electromagnetic properties—have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. In just a few years, the field of optical metamaterials has emerged as one of the most exciting topics in the science of light, with stunning and unexpected outcomes that have fascinated scientists and the general public alike. This volume details recent advances in the study of optical metamaterials, ranging from fundamental aspects to up-to-date implementations, in one unified treatment. Important recent developments and applications such as superlenses and cloaking devices are also treated in detail and made understandable. Optical Metamaterials will serve as a very timely book for both newcomers and advanced researchers in this rapidly evolving field. Early praise for Optical Metamaterials: "...this book is timely bringing to students and other new entrants to the field the most up to date concepts. Th...

  1. ALPHA: antihydrogen and fundamental physics

    Science.gov (United States)

    Madsen, Niels

    2014-02-01

    Detailed comparisons of antihydrogen with hydrogen promise to be a fruitful test bed of fundamental symmetries such as the CPT theorem for quantum field theory or studies of gravitational influence on antimatter. With a string of recent successes, starting with the first trapped antihydrogen and recently resulting in the first measurement of a quantum transition in anti-hydrogen, the ALPHA collaboration is well on its way to perform such precision comparisons. We will discuss the key innovative steps that have made these results possible and in particular focus on the detailed work on positron and antiproton preparation to achieve antihydrogen cold enough to trap as well as the unique features of the ALPHA apparatus that has allowed the first quantum transitions in anti-hydrogen to be measured with only a single trapped antihydrogen atom per experiment. We will also look at how ALPHA plans to step from here towards more precise comparisons of matter and antimatter.

  2. Phononic crystals fundamentals and applications

    CERN Document Server

    Adibi, Ali

    2016-01-01

    This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.

  3. Fundamentals of reversible flowchart languages

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2016-01-01

    Abstract This paper presents the fundamentals of reversible flowcharts. They are intended to naturally represent the structure and control flow of reversible (imperative) programming languages in a simple computation model, in the same way classical flowcharts do for conventional languages......, structured reversible flowcharts are as expressive as unstructured ones, as shown by a reversible version of the classic Structured Program Theorem. We illustrate how reversible flowcharts can be concretized with two example programming languages, complete with syntax and semantics: a low-level unstructured...... language and a high-level structured language. We introduce concrete tools such as program inverters and translators for both languages, which follow the structure suggested by the flowchart model. To further illustrate the different concepts and tools brought together in this paper, we present two major...

  4. Rotational viscosity of a liquid crystal mixture:a fully atomistic molecular dynamics study

    Institute of Scientific and Technical Information of China (English)

    Zhang Ran; Peng Zeng-Hui; Liu Yong-Gang; Zheng Zhi-Gang; Xuan Li

    2009-01-01

    Fully atomistic molecular dynamics(MD)simulations at 293, 303 and 313 K have been performed for the four. component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orientational time correlation functions(TCFs)were calculated from MD trajectories. The rotational viscosity coefficients(RVCs)of the mixture were ca]culated using the Nemtsov-Zakharov and Fialkowski methods based on statistical-mechanical approaches. Temperature dependences of RVC and density were discussed in detall. Reasonable agreement between the simulated and experimental values was found.

  5. Atomistic Simulation of Intrinsic Defects and Trivalent and Tetravalent Ion Doping in Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Ricardo D. S. Santos

    2014-01-01

    Full Text Available Atomistic simulation techniques have been employed in order to investigate key issues related to intrinsic defects and a variety of dopants from trivalent and tetravalent ions. The most favorable intrinsic defect is determined to be a scheme involving calcium and hydroxyl vacancies. It is found that trivalent ions have an energetic preference for the Ca site, while tetravalent ions can enter P sites. Charge compensation is predicted to occur basically via three schemes. In general, the charge compensation via the formation of calcium vacancies is more favorable. Trivalent dopant ions are more stable than tetravalent dopants.

  6. Control of density fluctuations in atomistic-continuum simulations of dense liquids

    DEFF Research Database (Denmark)

    Kotsalis, E.M.; Walther, Jens Honore; Koumoutsakos, P.

    2007-01-01

    continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force is...... usually employed to remedy this situation.We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity of...

  7. Experimental and atomistic study of the elastic properties of α′ Fe–C martensite

    International Nuclear Information System (INIS)

    We calculate the elastic constants of Fe–C α′ single crystals and compare them to our own and previously published measurement data on polycrystals. Based on a recently developed interatomic interaction potential, discrepancies between our present experimental results and earlier measurements are discussed, and can be settled with the help of our simulation data. Atomistic data obtained with a different interatomic potential show less satisfactory agreement. Our results demonstrate a strong increase of the elastic anisotropy with carbon content, but only a mild dependence of the Debye temperature.

  8. Predicting growth of graphene nanostructures using high-fidelity atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Keven F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, Donald K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schultz, Peter A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foster, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In this project we developed t he atomistic models needed to predict how graphene grows when carbon is deposited on metal and semiconductor surfaces. We first calculated energies of many carbon configurations using first principles electronic structure calculations and then used these energies to construct an empirical bond order potentials that enable s comprehensive molecular dynamics simulation of growth. We validated our approach by comparing our predictions to experiments of graphene growth on Ir, Cu and Ge. The robustness of ou r understanding of graphene growth will enable high quality graphene to be grown on novel substrates which will expand the number of potential types of graphene electronic devices.

  9. Investigations on the mechanical behavior of nanowires with twin boundaries by atomistic simulations

    International Nuclear Information System (INIS)

    Atomistic simulations are used to study the deformation behavior of twinned Cu nanowires with a <111> growth orientation under tension. Due to the existence of the twin boundaries, the strength of the twinned nanowires is higher than that of the twin-free nanowire and the yielding stress of twinned nanowires is inversely proportional to the spacings of the twin boundaries. Moreover, The ductility of the twin-free nanowire is the highest of all and it grows with the increasing spacings of the twin boundaries for twinned nanowires. Besides, we find that the twin boundaries can be served as dislocation sources as well as the free surfaces and grain boundaries

  10. Heterogeneous plastic deformation and Bauschinger effect in ultrafine-grained metals: atomistic simulations

    Science.gov (United States)

    Tsuru, Tomohito; Aoyagi, Yoshiteru; Kaji, Yoshiyuki; Shimokawa, Tomotsugu

    2016-03-01

    The effect of the dislocation density on yield strength and subsequent plastic deformation of ultrafine-grained metals was investigated in large-scale atomistic simulations. Polycrystalline models were constructed and uniaxial tension and compression were applied to elucidate the heterogeneous plastic deformation and the Bauschinger effect. The initial yield becomes heterogeneous as the dislocation density decreases owing to a wide range of Schmid factors of activated slip systems in each grain. A different mechanism of the Bauschinger effect was proposed, where the Bauschinger effect of ultrafine-grained metals is caused by the change in dislocation density in the process of forward and backward loadings.

  11. Atomistic investigation of the structure and transport properties of tilt grain boundaries of UO2

    International Nuclear Information System (INIS)

    We apply atomistic simulation techniques to address whether oxygen shows higher diffusivity at the grain boundary region compared to that in bulk UO2, and whether the relative diffusivity is affected by the choice of the grain boundary. We consider coincident site lattice grain boundaries, Σ3, Σ5, Σ9, Σ11 and Σ19, expressing the {n n 1}, {n 1 1}, and {n 1 0} surfaces, and evaluate the extent that the grain boundary structures affect the diffusion of oxygen. We found that oxygen diffusion is enhanced at all boundaries and in the adjacent regions, with strong dependence on the temperature and local structure

  12. Atomistic understanding of hydrogen loading phenomenon into palladium cathode: A simple nanocluster approach and electrochemical evidence

    Indian Academy of Sciences (India)

    Mohsen Lashgari; Davood Matloubi

    2015-03-01

    The inherent potency of palladium to sorb hydrogen atoms was examined empirically and theoretically through various electrochemical methods and high-level quantum chemical calculations (HSE06) based on cluster model (CM) and density functional theory (DFT). The CM-DFT approach using QZVP/cc-PV6Z basis sets revealed a strong attraction between Pd nanoclusters and H atoms that generates some charged entities. This atomistically justifies why the electrochemical impedance of the system becomes less by the loading phenomenon. It is concluded that hydrogen atoms enter the palladium subsurface through hollow and bridge sites by diffusing as proton-like species and get loaded predominantly in the octahedral voids.

  13. Using a scalar parameter to trace dislocation evolution in atomistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinbo [ORNL; Zhang, Z F [Shenyang National Laboratory for Materials Science; Osetskiy, Yury N [ORNL; Stoller, Roger E [ORNL

    2015-01-01

    A scalar gamma-parameter is proposed from the Nye tensor. Its maximum value occurs along a dislocation line, either straight or curved, when the coordinate system is purposely chosen. This parameter can be easily obtained from the Nye tensor calculated at each atom in atomistic modeling. Using the gamma-parameter, a fully automated approach is developed to determine core atoms and the Burgers vectors of dislocations simultaneously. The approach is validated by revealing the smallest dislocation loop and by tracing the whole formation process of complicated dislocation networks on the fly.

  14. Heat flux expressions that satisfy the conservation laws in atomistic system involving multibody potentials

    Science.gov (United States)

    Fu, Yao; Song, Jeong-Hoon

    2015-08-01

    Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic-continuum bridging.

  15. The orphaning experience: descriptions from Ugandan youth who have lost parents to HIV/AIDS

    OpenAIRE

    Ssebunnya Joshua; Jack Susan; Harms Sheila; Kizza Ruth

    2010-01-01

    Abstract The HIV/AIDS epidemic has continued to pose significant challenges to countries in Sub-Saharan Africa. Millions of African children and youth have lost parents to HIV/AIDS leaving a generation of orphans to be cared for within extended family systems and communities. The experiences of youth who have lost parents to the HIV/AIDS epidemic provide an important ingress into this complex, evolving, multi-dimensional phenomenon. A fundamental qualitative descriptive study was conducted to...

  16. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  17. AIDS ORPHANS GET SPECIAL VISITOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chinese Premier Wen Jiabao visits AIDS orphans in Shangcai County,central China’s Henan Province,on November 30,a day before the 20th World AIDS Day. The region of Shangcai has the highest concentration of people living with HIV/AIDS in China. The Chinese Government has released a package of policies that offer people living with HIV/AIDS free medicine,health checks and consultations,as well as free schooling to AIDS orphans.

  18. Atomistic simulation based prediction of the solvent effect on the molecular mobility and glass transition of poly (methyl methacrylate)

    Science.gov (United States)

    Mishra, Shawn; Keten, Sinan

    2013-01-01

    We present an investigation of the retained solvent effect on the glass transition temperature (Tg) of poly(methyl methacrylate) (PMMA) through all-atom molecular dynamics simulations. Addition of a weakly interactive solvent, tetrahydrofuran (THF), causes a depression of the PMMA Tg that can be identified through an analysis of the mean squared displacement of the polymer chains from atomistic trajectories. Our results are in very good agreement with an atomistically informed theoretical model based on free volume theory and demonstrate the applicability of molecular simulation to discern solvent effects on polymer thermomechanical behavior in silico.

  19. Early AIDS dementia complex

    International Nuclear Information System (INIS)

    A frequent complication of the acquired immunodeficiency syndrome (AIDS) is AIDS dementia complex (ADC). The authors evaluated seven patients with AIDS (aged 28-55 years, all male) for ADC by psychiatric evaluation, neuropsychological testing, CT scanning, and IMP-SPECT. Six of seven patients exhibited cognitive or behavioral abnormalities. Neuropsychological testing showed general deficits but no cases of explicit dementia. SPECT showed marked abnormalities in two cases: posterior temporal-parietal diminution of tracer uptake in one case (posterior/anterior=0.81) and marked right/left subcortical asymmetry (1.17) in the other. In three additional cases there was asymmetric tracer uptake in the subcortical and parietal regions. CT findings were normal in all seven cases. The authors conclude that functional imaging with the use of IMP-SPECT may be a useful method to follow ADC progression and response to therapy

  20. Fundamentals and Techniques of Nonimaging

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J. J.; Winston, R.

    2003-07-10

    This is the final report describing a long term basic research program in nonimaging optics that has led to major advances in important areas, including solar energy, fiber optics, illumination techniques, light detectors, and a great many other applications. The term ''nonimaging optics'' refers to the optics of extended sources in systems for which image forming is not important, but effective and efficient collection, concentration, transport, and distribution of light energy is. Although some of the most widely known developments of the early concepts have been in the field of solar energy, a broad variety of other uses have emerged. Most important, under the auspices of this program in fundamental research in nonimaging optics established at the University of Chicago with support from the Office of Basic Energy Sciences at the Department of Energy, the field has become very dynamic, with new ideas and concepts continuing to develop, while applications of the early concepts continue to be pursued. While the subject began as part of classical geometrical optics, it has been extended subsequently to the wave optics domain. Particularly relevant to potential new research directions are recent developments in the formalism of statistical and wave optics, which may be important in understanding energy transport on the nanoscale. Nonimaging optics permits the design of optical systems that achieve the maximum possible concentration allowed by physical conservation laws. The earliest designs were constructed by optimizing the collection of the extreme rays from a source to the desired target: the so-called ''edge-ray'' principle. Later, new concentrator types were generated by placing reflectors along the flow lines of the ''vector flux'' emanating from lambertian emitters in various geometries. A few years ago, a new development occurred with the discovery that making the design edge-ray a functional of some