WorldWideScience

Sample records for aharonov-bohm effect

  1. Aharonov-Bohm effect revisited

    OpenAIRE

    Eskin, Gregory

    2015-01-01

    Aharonov-Bohm effect is a quantum mechanical phenomenon that attracted the attention of many physicists and mathematicians since the publication of the seminal paper of Aharonov and Bohm [1] in 1959. We consider different types of Aharonov-Bohm effect such as magnetic AB effect, electric AB effect, combined electromagnetic AB effect, AB effect for the Schr\\"odinger equations with Yang-Mills potentials, and the gravitational analog of AB effect. We shall describe different approaches to prove ...

  2. The Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Quantum mechanics teaches us that matter consists of waves. Interference of matter waves gives rise to delicate effects best illustrated by the double slit experiment. Aharonov and Bohm showed that the interference pattern of electrons in a multiply connected region can be influenced by magnetic fields outside that region. This surprising effect (now called the Aharonov-Bohm effect) has been measured in the laboratory. The process of understanding and coming to terms with this effect has deepened our understanding of both quantum mechanics and electromagnetism. This paper gives an elementary account of the Aharonov-Bohm effect. (author). 13 refs., 2 figs

  3. Nonlocality of the Aharonov-Bohm effect

    Science.gov (United States)

    Aharonov, Yakir; Cohen, Eliahu; Rohrlich, Daniel

    2016-04-01

    Although the Aharonov-Bohm and related effects are familiar in solid-state and high-energy physics, the nonlocality of these effects has been questioned. Here we show that the Aharonov-Bohm effect has two very different aspects. One aspect is instantaneous and nonlocal; the other aspect, which depends on entanglement, unfolds continuously over time. While local, gauge-invariant variables may occasionally suffice for explaining the continuous aspect, we argue that they cannot explain the instantaneous aspect. Thus the Aharonov-Bohm effect is, in general, nonlocal.

  4. The multisolenoid Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    The thesis summarizes, extends and discusses the author's achievements published in Phys. Lett. A 142, 1989, p. 5; J. Math. Phys. 32, 1991, p.13; and Phys. Lett. A 161, 1991, p. 13. The following topics are dealt with: (i) the Green function for the two-solenoid Aharonov-Bohm effect; (ii) application of Krein's formula to the multisolenoid Aharonov-Bohm effect; (iii) the scattering matrix for the two-solenoid Aharonov-Bohm effect; and (iv) the differential cross section. Reprints of the 3 publications are included. (P.A.)

  5. About nature of Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    The problem on the Aharonov-Bohm effect is discussed. The method of surplus potentials for solving boundary-value problem tasks of the anisotropic media electrodynamics is considered. General notion on the vector potential in the uniaxial medium is obtained. The relationship of the zero field potentials with gauge transformation is established. The vector potential structure for the Aharonov-Bohm magnetostatic effect in particular for a solenoid with alternating current is considered. It is shown that presence of the zero field potentials in the general structure may be the cause of the Aharonov-Bohm effect

  6. Nonlocality of the Aharonov-Bohm Effect

    OpenAIRE

    Aharonov, Yakir; Cohen, Eliahu; Rohrlich, Daniel

    2015-01-01

    Although the Aharonov-Bohm and related effects are familiar in solid state and high energy physics, the nonlocality of these effects has been questioned. Here we show, for the first time, that the Aharonov-Bohm effect has two very different aspects. One aspect is instantaneous and nonlocal; the other aspect, which depends on entanglement, unfolds continuously over time. While local, gauge-invariant variables may occasionally suffice for explaining the continuous aspect, we argue that they can...

  7. Aharonov-Bohm effects in nanostructures

    OpenAIRE

    Gurtovoi, V. L.; Nikulov, A. V.; Tulin, V. A.

    2009-01-01

    Measurements of the Little-Parks oscillations at measuring current much lower than the persistent current give unambiguous evidence of the dc current flowing against the force of the dc electric field because of the Aharonov-Bohm effect. This result can assume that an additional force is needed for description of the Aharonov-Bohm effect observed in semiconductor, normal metal and superconductor nanostructures in contrast to the experimental result obtained recently for the case of the two-sl...

  8. Locality and topology in the molecular Aharonov-Bohm effect

    OpenAIRE

    Sjöqvist, Erik

    2001-01-01

    It is shown that the molecular Aharonov-Bohm effect is neither nonlocal nor topological in the sense of the standard magnetic Aharonov-Bohm effect. It is further argued that there is a close relationship between the molecular Aharonov-Bohm effect and the Aharonov-Casher effect for an electrically neutral spin$-{1/2}$ particle encircling a line of charge.

  9. Tunable exciton Aharonov-Bohm effect in a quantum ring

    International Nuclear Information System (INIS)

    We studied the optical Aharonov-Bohm effect for an exciton in a semiconductor quantum ring. A perpendicular electric field applied to a quantum ring with large height, is able to tune the exciton ground state energy such that it exhibits a weak observable Aharonov-Bohm oscillations. This Aharonov-Bohm effect is tunable in strength and period.

  10. Thermoelectric effect in Aharonov-Bohm structures

    Science.gov (United States)

    Lu, Xin; Wang, Jian-Sheng; Morrel, William G.; Ni, Xiaoxi; Wu, Chang-Qin; Li, Baowen

    2015-01-01

    The thermoelectric effects of a single Aharonov-Bohm (SAB) ring and coupled double Aharonov-Bohm (DAB) rings have been investigated on a theoretical basis, taking into account the contributions of both electrons and phonons to the transport process by using the nonequilibrium Green's function technique. The thermoelectric figure of merit of the coupled DAB rings cannot be predicted directly by combining the values of two SAB ring systems due to the contribution of electron-phonon interaction to coupling between the two sites connecting the rings. We find that thermoelectric efficiency can be optimized by modulating the phases of the magnetic flux threading the two rings.

  11. Thermoelectric effect in Aharonov-Bohm structures.

    Science.gov (United States)

    Lu, Xin; Wang, Jian-Sheng; Morrel, William G; Ni, Xiaoxi; Wu, Chang-Qin; Li, Baowen

    2015-01-28

    The thermoelectric effects of a single Aharonov-Bohm (SAB) ring and coupled double Aharonov-Bohm (DAB) rings have been investigated on a theoretical basis, taking into account the contributions of both electrons and phonons to the transport process by using the nonequilibrium Green's function technique. The thermoelectric figure of merit of the coupled DAB rings cannot be predicted directly by combining the values of two SAB ring systems due to the contribution of electron-phonon interaction to coupling between the two sites connecting the rings. We find that thermoelectric efficiency can be optimized by modulating the phases of the magnetic flux threading the two rings. PMID:25537848

  12. The Aharonov-Bohm effect in neutral liquids

    International Nuclear Information System (INIS)

    The Aharonov-Bohm effect was discovered as a quantum-mechanical effect for charged particles, but it has its counterpart in classical wave mechanics. The Aharonov-Bohm interference arises at the scattering of a sound wave by a vortex in classical and quantum hydrodynamics. This interference leads to a transverse force between quasiparticles and vortices in superfluids and superconductors. The Aharonov-Bohm effect was also generalized to neutral particles with magnetic or electric dipole momenta. The Aharonov-Bohm effect for charge particles and its modification for magnetic momenta (the Aharonov-Casher effect) have already been experimentally observed, and the efforts to detect the Aharonov-Bohm effect for electrically polarized neutral particles are on the way. A possible system for this detection is a Bose-condensate of excitons in a double quantum well. Observation of the Aharonov-Bohm effect in this system would provide direct evidence of Bose-Einstein condensation.

  13. Locality of the Aharonov-Bohm-Casher effect

    OpenAIRE

    Kang, Kicheon

    2014-01-01

    We address the question of the locality versus nonlocality in the Aharonov-Bohm and the Aharonov-Casher effects. For this purpose, we investigate all possible configurations of ideal shielding of the overlap between the electromagnetic fields generated by a charge and by a magnetic flux, and analyze their consequences on the Aharonov-Bohm-Casher interference. In a classical treatment of shielding, the Aharonov-Bohm-Casher effect vanishes regardless of the geometry of shielding, when the local...

  14. Aharonov-Bohm effect in spherical billiard

    Institute of Scientific and Technical Information of China (English)

    Dehua Wang

    2007-01-01

    Using Gutzwiller's periodic orbit theory, we study the quantum level density of a spherical billiard in the presence of a magnetic flux line added at its center, especially discuss the influence of the magnetic flux strength on the quantum level density. The Fourier transformed quantum level density of this system has allowed direct comparison between peaks in the level density and the length of the periodic orbits. For particular magnetic flux strength, the amplitude of the peaks in the level density decreased and some of the peaks disappeared. This result suggests that Aharonov-Bohm effect manifests itself through the cancellation of periodic orbits. This phenomenon will provide a new experimental testing ground for exploring Aharonov-Bohm effect.

  15. Electromagnetic potentials and Aharonov-Bohm effect

    OpenAIRE

    Ershkovich, Alexander

    2012-01-01

    Hamilton-Jacobi equation which governs classical mechanics and electrodynamics explicitly depends on the electromagnetic potentials (A,{\\phi}), similar to Schroedinger equation. We derived the Aharonov-Bohm effect from Hamilton-Jacobi equation thereby having proved that this effect is of classical origin. These facts enable us to arrive at the following conclusions: a) the very idea of special role of potentials (A,{\\phi}) in quantum mechanics (different from their role in classical physics) ...

  16. The electric Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    The seminal paper of Aharonov and Bohm [Phys. Rev. 115, 485 (1959)] is at the origin of a very extensive literature in some of the more fundamental issues in physics. They claimed that electromagnetic fields can act at a distance on charged particles even if they are identically zero in the region of space where the particles propagate, that the fundamental electromagnetic quantities in quantum physics are not only the electromagnetic fields but also the circulations of the electromagnetic potentials; what gives them a real physical significance. They proposed two experiments to verify their theoretical conclusions. The magnetic Aharonov-Bohm effect, where an electron is influenced by a magnetic field that is zero in the region of space accessible to the electron, and the electric Aharonov-Bohm effect where an electron is affected by a time-dependent electric potential that is constant in the region where the electron is propagating, i.e., such that the electric field vanishes along its trajectory. The Aharonov-Bohm effects imply such a strong departure from the physical intuition coming from classical physics that it is no wonder that they remain a highly controversial issue after more than fifty years, in spite of the fact that they are discussed in most of the text books in quantum mechanics. The magnetic case has been studied extensively. The experimental issues were settled by the remarkable experiments of Tonomura et al. [Phys. Rev. Lett. 48, 1443 (1982); Phys. Rev. Lett. 56, 792 (1986)] with toroidal magnets, that gave a strong evidence of the existence of the effect, and by the recent experiment of Caprez et al. [Phys. Rev. Lett. 99, 210401 (2007)] that shows that the results of the Tonomura et al. experiments cannot be explained by the action of a force. The theoretical issues were settled by Ballesteros and Weder [Commun. Math. Phys. 285, 345 (2009); J. Math. Phys. 50, 122108 (2009); Commun. Math. Phys. 303, 175 (2011)] who rigorously proved that quantum

  17. Aharonov--Bohm Effect in 3D Abelian Higgs Theory

    OpenAIRE

    Chernodub, M. N.; Gubarev, F. V.; Polikarpov, M.I.

    1996-01-01

    We study a field--theoretical analogue of the Aharonov--Bohm effect in the 3D Abelian Higgs Model: the corresponding topological interaction is proportional to the linking number of the vortex and the particle world trajectories. We show that the Aharonov--Bohm effect gives rise to a nontrivial interaction of tested charged particles.

  18. Optical Aharonov-Bohm effect: an inverse hyperbolic problems approach

    OpenAIRE

    Eskin, Gregory

    2007-01-01

    We describe the general setting for the optical Aharonov-Bohm effect based on the inverse problem of the identification of the coefficients of the governing hyperbolic equation by the boundary measurements. We interpret the inverse problem result as a possibility in principle to detect the optical Aharonov-Bohm effect by the boundary measurements.

  19. Aharonov-Bohm Effect and the Supersymmetry of Identical Anyons

    OpenAIRE

    V. Jakubský

    2010-01-01

    We briefly review the relation between the Aharonov-Bohm effect and the dynamical realization of anyons. We show how the particular symmetries of the Aharonov-Bohm model give rise to the (nonlinear) supersymmetry of the two-body system of identical anyons.

  20. The Aharonov-Bohm effect in noncommutative quantum mechanics

    International Nuclear Information System (INIS)

    The Aharonov-Bohm effect in noncommutative (NC) quantum mechanics is studied. First, by introducing a shift for the magnetic vector potential we give the Schroedinger equations in the presence of a magnetic field on NC space and NC phase space, respectively. Then, by solving the Schroedinger equations, we obtain the Aharonov-Bohm phase on NC space and NC phase space, respectively. (orig.)

  1. Aharonov-Bohm Effect and the Supersymmetry of Identical Anyons

    Directory of Open Access Journals (Sweden)

    V. Jakubský

    2010-01-01

    Full Text Available We briefly review the relation between the Aharonov-Bohm effect and the dynamical realization of anyons. We show how the particular symmetries of the Aharonov-Bohm model give rise to the (nonlinear supersymmetry of the two-body system of identical anyons.

  2. Photonic Aharonov-Bohm effect in photon-phonon interactions.

    Science.gov (United States)

    Li, Enbang; Eggleton, Benjamin J; Fang, Kejie; Fan, Shanhui

    2014-01-01

    The Aharonov-Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov-Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov-Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon-phonon interactions to demonstrate that photonic Aharonov-Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon-phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov-Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential. PMID:24476790

  3. The Aharonov-Bohm effect: Theoretical calculations and interpretations

    International Nuclear Information System (INIS)

    The Aharonov-Bohm effect - the action of an external inaccessible field on the quantum state of a charged particle - is investigated in detail. An exact expression is found for the scattering amplitude of the charged particle in an infinitely long solenoid and its behavior in the shadow region is investigated. The Aharonov-Bohm effect is investigated for bound states, including Landau levels in a uniform magnetic field. It is demonstrated that the Aharonov-Bohm effect arises during the switching-on process of an external magnetic field

  4. Two-particle Aharonov-Bohm effect in electronic interferometers

    International Nuclear Information System (INIS)

    We review recent theoretical investigations on the two-particle Aharonov-Bohm effect and its relation to entanglement production and detection. The difficulties of the entanglement detection due to dephasing and finite temperature are discussed regarding a recent experimental realization of a two-particle Aharonov-Bohm interferometer [15]. We also discuss a theoretical proposal for a two-particle Aharonov-Bohm interferometer, which as against the finite bias setup is driven with dynamical single-electron sources allowing for the tunable production of time-bin entanglement.

  5. Aharonov-Bohm Effect and Disclinations in an Elastic Medium

    OpenAIRE

    Furtado, Claudio; Carvalho, A. M. de M.; Ribeiro, C. A. de Lima

    2006-01-01

    In this work we investigate quasiparticles in the background of defects in solids using the geometric theory of defects. We use the parallel transport matrix to study the Aharonov-Bohm effect in this background. For quasiparticles moving in this effective medium we demonstrate an effect similar to the gravitational Aharonov- Bohm effect. We analyze this effect in an elastic medium with one and $N$ defects.

  6. The Aharonov-Bohm Effect in the Momentum Space

    OpenAIRE

    Dragoman, D.; Bogdan, S.

    2005-01-01

    The Schrodinger formalism of quantum mechanics is used to demonstrate the existence of the Aharonov-Bohm effect in momentum space and set-ups for experimentally demonstrating it are proposed for either free or ballistic electrons.

  7. Photonic Aharonov-Bohm effect based on dynamic modulation.

    Science.gov (United States)

    Fang, Kejie; Yu, Zongfu; Fan, Shanhui

    2012-04-13

    We show that when the refractive index of a photonic system is harmonically modulated, the phase of the modulation introduces an effective gauge potential for photons. This effective gauge potential can be used to create a photonic Aharonov-Bohm effect. We show that the photonic Aharonov-Bohm effect provides the optimal mechanism for achieving complete on-chip nonmagnetic optical isolation. PMID:22587255

  8. Aharonov-Bohm Effect in Lattice Abelian Higgs Theory

    OpenAIRE

    Chernodub, M. N.; Gubarev, F. V.; Polikarpov, M.I.

    1997-01-01

    We study a field-theoretical analogue of the Aharonov-Bohm effect in two-, three- and four-dimensional Abelian Higgs models; the corresponding topological interaction is proportional to the linking number of the Abrikosov vortex and the particle world trajectories. We show that the Aharonov-Bohm effect gives rise to a nontrivial interaction of charged test particles. The numerical calculations in the three-dimensional model confirm this fact.

  9. Aharonov-Bohm effect in a Class of Noncommutative Theories

    OpenAIRE

    Das, A.(University of Arizona, Tucson, AZ, 85721, USA); Falomir, H.; Gamboa, J.; Mendez, F.; Nieto, M.

    2011-01-01

    The Aharonov-Bohm effect including spin-noncommutative effects is considered. At linear order in $\\theta$, the magnetic field is gauge invariant although spatially strongly anisotropic. Despite this anisotropy, the Schr\\"odinger-Pauli equation is separable through successive unitary transformations and the exact solution is found. The scattering amplitude is calculated and compared with the usual case. In the noncommutative Aharonov-Bohm case the differential cross section is independent of $...

  10. Aharonov-Bohm effect in a class of noncommutative theories

    Science.gov (United States)

    Das, Ashok; Falomir, H.; Nieto, M.; Gamboa, J.; Méndez, F.

    2011-08-01

    The Aharonov-Bohm effect including spin-noncommutative effects is considered. At linear order in θ, the magnetic field is gauge invariant although spatially strongly anisotropic. Despite this anisotropy, the Schrödinger-Pauli equation is separable through successive unitary transformations and the exact solution is found. The scattering amplitude is calculated and compared with the usual case. In the noncommutative Aharonov-Bohm case the differential cross section is independent of θ.

  11. Aharonov-Bohm effect in a Class of Noncommutative Theories

    CERN Document Server

    Das, A; Gamboa, J; Mendez, F; Nieto, M

    2011-01-01

    The Aharonov-Bohm effect including spin-noncommutative effects is considered. At linear order in $\\theta$, the magnetic field is gauge invariant although spatially strongly anisotropic. Despite this anisotropy, the Schr\\"odinger-Pauli equation is separable through successive unitary transformations and the exact solution is found. The scattering amplitude is calculated and compared with the usual case. In the noncommutative Aharonov-Bohm case the differential cross section is independent of $\\theta$.

  12. Gravitational Aharonov-Bohm effect in graphene

    International Nuclear Information System (INIS)

    Full text. We would like to suggest that the Einstein theory of gravitation in 2+1 dimensions can be seen and even tested experimentally in possible realizable condensed matter materials, such as graphene. Deforming a graphene sheet in a conical surface this system makes possible the experimental study of relativistic massless quasiparticles with charge e on a two-dimensional, or equivalently, in the 'gravitational field (deficit angle) of a 'pointlike particle' of mass M (cone tip). This surface is locally flat. Then we study a kind of gravitational Aharonov-Bohm effect in a graphene sheet with a wedge removed and edges identified, i.e., a graphitic cone. The angular defect gives rise to a mismatch of the components of the graphene's relativistic charged quasiparticle wavefunctions (spinors) upon closed parallel transport around the (singular) cone tip. Such an affect should affect the basic electronic properties in 'conical graphene' as compared with their planar counterpart and it could be, in principle, detected experimentally. It is similar to the usual Aharonov-Bohm effect in electromagnetism, but simulated as a gravitational field by a deficit angle incorporated in the material. In principle, the effect proposed here could be detected by interference experiments in structured materials by measurements of the electronic transport in these graphitic materials and their relationships with the changes calculated in the quasiparticle wavefunctions. Therefore it could make available interesting probes to the Einstein theory of general relativity in two spatial dimensions. Then we propose a way of verifying, in a microscopic scale, some predictions of a theory that is usual. (author)

  13. Aharonov-Casher and scalar Aharonov-Bohm topological effects.

    Science.gov (United States)

    Dulat, Sayipjamal; Ma, Kai

    2012-02-17

    We reexamine the topological and nonlocal natures of the Aharonov-Casher and scalar Aharonov-Bohm phase effects. The underlying U(1) gauge structure is exhibited explicitly. And the conditions for developing topological Aharonov-Casher and scalar Aharonov-Bohm phases are clarified. We analyze the arguments of M. Peshkin and H. J. Lipkin [Phys. Rev. Lett. 74, 2847 (1995)] in detail and show that they are based on the wrong Hamiltonian which yields their conclusion incorrect. PMID:22401183

  14. The Aharonov-Bohm Effect in Noncommutative Quantum Mechanics

    OpenAIRE

    Li, Kang; Dulat, Sayipjamal

    2005-01-01

    The Aharonov-Bohm (AB) effect in non-commutative quantum mechanics (NCQM) is studied. First, by introducing a shift for the magnetic vector potential we give the Schr$\\ddot{o}$dinger equations in the presence of a magnetic field on NC space and NC phase space, respectively. Then by solving the Schr$\\ddot{o}$dinger equations, we obtain the Aharonov-Bohm (AB) phase on NC space and NC phase space, respectively.

  15. Classical Electrodynamics without Fields and the Aharonov-Bohm effect

    OpenAIRE

    Stefanovich, Eugene V.

    2008-01-01

    The Darwin-Breit Hamiltonian is applied to the Aharonov-Bohm experiment. In agreement with the standard Maxwell-Lorentz theory, the force acting on electrons from infinite solenoids or ferromagnetic rods vanishes. However, the interaction energies and phase factors of the electron wave packets are non-zero. This allows us to explain the Aharonov-Bohm effect without involvement of electromagnetic potentials, fields, and topological properties of space.

  16. Aharonov-Bohm Effect and Hidden Photons

    CERN Document Server

    Arias, Paola

    2013-01-01

    Signs of hypothetical light gauge bosons from a hidden sector may appear in Aharonov-Bohm-like experiments. The absence of signal in carried on experiments allow us to set a modest constraint to the mass and coupling constant of these particles. Our findings open the possibility to exploit the leaking of hidden magnetic field in a different setup of experiments.

  17. Global analogue of the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    This thesis deals with a global analogue of the Aharonov-Bohm effect previously pointed out by other authors. The effect was not well understood because the pure Aharonov-Bohm cross section was thought to be merely an approximate low energy limit. This thesis provides a detailed analysis and reveals that in the particular model considered, there is an exact Aharonov-Bohm cross section over the energy range that a mass splitting occurs. At energies slightly above the mass splitting, the effect has completely disappeared and there is effectively no scattering at large distances. This is a curious observation as it was previously thought that a global theory would not act exactly like a local one over an extended range of energies. It begs the heretical speculation that experimentally observed forces modelled with Lagrangians possessing local symmetries may have an underlying global theory

  18. The covariant, time-dependent Aharonov-Bohm Effect

    CERN Document Server

    Singleton, Douglas

    2013-01-01

    We discuss two possible covariant generalizations of the Aharonov-Bohm effect - one expression in terms of the space-time line integral of the four-vector potential and the other expression in terms of the space-time "area" integral of the electric and magnetic fields written in terms of the Faraday 2-form. These expressions allow one to calculate the Aharonov-Bohm effect for time-dependent situations. In particular, we use these expressions to study the case of an infinite solenoid with a time varying flux and find that the phase shift is zero due to a cancellation of the Aharonov-Bohm phase shift with a phase shift coming from the Lorentz force associated with the electric field, ${\\bf E} = - \\partial_t {\\bf A}$, outside the solenoid. This result may already have been confirmed experimentally.

  19. Holonomy, Aharonov-Bohm effect and phonon scattering in superfluids

    OpenAIRE

    Furtado, Claudio; Carvalho, A. M. de M.; de Andrade, L. C. Garcia; Moraes, F.

    2004-01-01

    In this article we discuss the analogy between superfluids and a spinning thick cosmic string. We use the geometrical approach to obtain the geometrical phases for a phonon in the presence of a vortex. We use loop variables for a geometric description of Aharonov-Bohm effect in these systems. We use holonomy transformations to characterize globally the "space-time" of a vortex and in this point of view we study the gravitational analog of the Aharonov-Bohm effect in this system. We demonstrat...

  20. Aharonov-Bohm effect in many-electron quantum rings

    OpenAIRE

    Kotimaki, V.; Rasanen, E.

    2010-01-01

    The Aharonov-Bohm effect is investigated in two-dimensional, single-terminal quantum rings in magnetic fields by using time-dependent density-functional theory. We find multiple transport loops leading to the oscillation periods of h/(en), where n is the number of loops. We show that the Aharonov-Bohm oscillations are relatively weakly affected by the electron-electron interactions, whereas the ring width has a strong effect on the characteristics of the oscillations. Our results propose that...

  1. Effect of Aharonov-Bohm Phase on Spin Tunneling

    OpenAIRE

    Park, ChangSoo; Park, D. K.

    1999-01-01

    The role of Aharonov-Bohm effect in quantum tunneling is examined when a potential is defined on the $S^1$ and has $N$-fold symmetry. We show that the low-lying energy levels split from the $N$-fold degenerate ground state oscillate as a function of the Aharonov-Bohm phase, from which general degeneracy conditions depending on the magnetic flux is obtained. We apply these results to the spin tunneling in a spin system with $N$-fold rotational symmetry around a hard axis.

  2. Relativistic Aharonov--Bohm effect in the presence of two-dimensional Coulomb potential

    OpenAIRE

    Khalilov, Vladislav

    2004-01-01

    We obtain exact solutions to the Dirac equation and the relevant binding energies in the combined Aharonov--Bohm--Coulomb potential in 2+1 dimensions. By means of solutions obtained the quantum Aharonov--Bohm effect is studied for free and bound electron states. We show that the total scattering amplitude in the combined Aharonov--Bohm--Coulomb potential is a sum of the Aharonov--Bohm and the Coulomb scattering amplitudes. This modifies expression for the standard Aharonov--Bohm cross section...

  3. Magnus Force and Aharonov-Bohm Effect in Superfluids

    OpenAIRE

    Sonin, E. B.

    2001-01-01

    The paper addresses the problem of the transverse force (Magnus force) on a vortex in a Galilean invariant quantum Bose liquid. Interaction of quasiparticles (phonons) with a vortex produces an additional transverse force (Iordanskii force). The Iordanskii force is related to the acoustic Aharonov--Bohm effect.Connection of the effective Magnus force with the Berry phase is also discussed.

  4. Non-traditional Aharonov-Bohm effects in condensed matter

    International Nuclear Information System (INIS)

    In 1959, Aharonov and Bohm proposed an elegant experiment demonstrating observability of electromagnetic potentials (or, which is the same, the non-locality of the wave function of charged particles) in quantum mechanics. This paper discusses the Aharonov-Bohm effect, based on the fundamental principles of quantum theory, as the superposition principles, the quantum character of motion of particles and locality of the interaction of a charge with an electromagnetic potential Lint = jμAμ. It is thus no wonder that the Aharonov-Bohm's paper aroused much dispute which is still ongoing. Originally, the Aharonov-Bohm effect (ABE) means the dependence of the interference pattern on the magnetic fluid flux φ in a Gendaken experiment on a coherent electron beam in the field of an infinitely thin solenoid. Later, however, it became common to refer to the Aharonov-Bohm phenomenon wherever the characteristics of systems under study appear to depend on the flux φ in the absence of electric and magnetic fields. In this sense, it was highly interesting to analyze the ABE in condensed media (the many-particle Aharonov-Bohm effect), in particular to study the dependence of the thermodynamic and kinetic characteristics, e.g., of metal on the flux. Such a problem was first discussed by Byers and Yang who formulated the general theorems related to the ABE in conducting condensed media. The next important step was the work of Kulik who formulated a concrete model and calculated the flux-dependent contribution to the metal free energy and provided a first clear formulation of the requirements to reveal

  5. Generalised boundary conditions for the Aharonov-Bohm effect combined with a homogeneous magnetic field

    OpenAIRE

    Exner, Pavel; Stovicek, Pavel; Vytras, Petr

    2001-01-01

    The most general admissible boundary conditions are derived for an idealised Aharonov-Bohm flux intersecting the plane at the origin on the background of a homogeneous magnetic field. A standard technique based on self-adjoint extensions yields a four-parameter family of boundary conditions; other two parameters of the model are the Aharonov-Bohm flux and the homogeneous magnetic field. The generalised boundary conditions may be regarded as a combination of the Aharonov-Bohm effect with a poi...

  6. Observation of Aharonov-Bohm effects by neutron interferometry

    International Nuclear Information System (INIS)

    The special and unique techniques of neutron interferometry have been used to observe a number of topological effects. These include the quantum mechanical phase shift of a neutron due to the Earth's rotation (the quantum analog of the Michelson-Gale-Pearson experiment with light), the phase shift of a particle carrying a magnetic moment (a neutron) encircling a line charge (the Aharonov-Casher effect) and the scalar Aharonov-Bohm effect, observed with a pulsed magnetic field solenoid and time-of-flight neutron detection. On the occasion of the 50th anniversary of the Aharonov-Bohm paper, we provide an overview of the neutron interferometry technique and a description of these three historic experiments.

  7. Aharonov-Bohm effect induced by circularly polarized light

    Science.gov (United States)

    Sigurdsson, H.; Kibis, O. V.; Shelykh, I. A.

    2015-11-01

    We demonstrated theoretically that the strong electron interaction with circularly polarized photons in ring-like nanostructures changes the phase of electron wave. This optically-induced effect is caused by the breaking of time-reversal symmetry and is similar to the Aharonov-Bohm effect. As a consequence of this phenomenon, the conductance of mesoscopic rings irradiated by a circularly polarized electromagnetic wave behaves as an oscillating function of the intensity and frequency of the wave.

  8. Scalar Aharonov-Bohm effect with longitudinally polarized neutrons

    International Nuclear Information System (INIS)

    In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a ''dual'' scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper. (c) 1999 The American Physical Society

  9. Spin- and localization-induced fractional Aharonov-Bohm effect

    Science.gov (United States)

    Emperador, A.; Pederiva, F.; Lipparini, E.

    2003-09-01

    We performed a theoretical analysis of the Aharonov-Bohm oscillations of the ground-state energy of quasi-one-dimensional quantum rings in a magnetic field, recently observed in conductance experiments, by means of quantum Monte Carlo calculations. The model rings considered contain N=10 and N=4 electrons, with radii of 20 and 120 nm, respectively. These parameters give a close description of the nanorings analyzed in the experiments. In particular, the two cases well reproduce the high- and low-electron-density regimes. For N=10, we have found fractional Aharonov-Bohm effect with a period Φ0/2 due to the changes in the total spin of the ground state. For N=4, we have found fractional oscillations with a period Φ0/4, which are shown to be a consequence of strong localization.

  10. Aharonov-Bohm Effect in Cyclotron and Synchrotron Radiations

    CERN Document Server

    Bagrov, V G; Levin, A; Tlyachev, V B

    2000-01-01

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra

  11. Noncommutative analogue Aharonov-Bohm effect and superresonance

    OpenAIRE

    M.A. Anacleto; Brito, F. A.; E. Passos

    2012-01-01

    We consider the idea of modeling a rotating acoustic black hole by an idealized draining bathtub vortex which is a planar circulating flow phenomenon with a sink at the origin. We find the acoustic metric for this phenomenon from a noncommutative Abelian Higgs model. As such the acoustic metric not only describes a rotating acoustic black hole but also inherits the noncommutative characteristic of the spacetime. We address the issues of superresonance and analogue Aharonov-Bohm (AB) effect in...

  12. The Fano Effect in Aharonov-Bohm interferometers

    OpenAIRE

    Entin-Wohlman, O.; Aharony, A.; Imry, Y.; Levinson, Y.

    2001-01-01

    After briefly reviewing the Fano effect, we explain why it may be relevant to various types of Aharonov-Bohm interferometers. We discuss both closed (electron conserving) and open interferometers, in which one path contains either a simple quantum dot or a decorated quantum dot (with more than one internal state or a parallel path). The possible relevance to some hitherto unexplained experimental features is also discussed.

  13. Aharonov-Bohm effect of excitons in nanorings

    Science.gov (United States)

    Hu, Hui; Zhu, Jia-Lin; Li, Dai-Jun; Xiong, Jia-Jiong

    2001-05-01

    The magnetic field effects on excitons in an InAs nanoring are studied theoretically. By numerically diagonalizing the effective-mass Hamiltonian of the problem that can be separated into terms in center-of-mass and relative coordinates, we calculate the low-lying excitonic energy levels and oscillator strengths as a function of the ring width and the strength of an external magnetic field. It is shown that in the presence of Coulomb correlation, the so-called Aharonov-Bohm effect of excitons exists in a finite (but small) width nanoring. However, when the ring width becomes large, the non-simply-connected geometry of nanorings is destroyed, causing the suppression of the Aharonov-Bohm effect. The analytical results are obtained for a narrow-width nanoring in which the radial motion is the fastest one and adiabatically decoupled from the azimuthal motions. The conditional probability distribution calculated for the low-lying excitonic states allows identification of the presence of the Aharonov-Bohm effect. The linear optical susceptibility is also calculated as a function of the magnetic field, to be compared with the future measurements of optical emission experiments on InAs nanorings.

  14. Aharonov-Bohm effect in optical activity

    International Nuclear Information System (INIS)

    Optically active media have the helical and dissymmetric crystal structure, which constrains the motions of the electrons to a helical path under the influence of the incident electric field. The charge flow along the helices induces a magnetic field in the direction of the axis of helices. The helical structure hence acts as natural micro-solenoids for the electromagnetic waves passing through them. Optical rotation is related to the difference in the accumulative Aharonov-Bohm (AB) phase between the right- and the left-circularly polarized waves. The AB phase is proportional to the angular momentum of an electron moving around the micro-solenoid. Originally the AB phase is shown to be a continuous function of the magnetic flux. However, quantization of the geometrical angular momentum leads to the quantized AB phase. The rotatory power and the Verdet constant are proportional to the refractive index of the medium. The quantized current in the micro-solenoid is proportional to the Bohr magneton and inversely proportional to the area of the helices.

  15. On the Aharonov-Bohm Effect and Why Heisenberg Captures Nonlocality Better Than Schr\\"odinger

    OpenAIRE

    Aharonov, Yakir

    2013-01-01

    I discuss in detail the history of the Aharonov-Bohm effect in Bristol and my encounters with Akira Tonomura later on. I then propose an idea that developed following the publication of the Aharonov-Bohm effect, namely the importance of modulo momentum and Heisenberg representation in dealing with non-local quantum phenomena.

  16. On the Locality Principle Keeping in Aharonov-Bohm Effect

    CERN Document Server

    Gritsunov, Alexander

    2013-01-01

    The locality principle fulfillment in the Aharonov-Bohm (AB) effect is analyzed from the point of view of a self-sufficient potential formalism based on so-called gradient hypothesis in electrodynamics. The "magnetic" kind of AB effect is examined (as the quantum charged particle moves to an infinitely long solenoid with a permanent current), and no locality principle violation recognized if the gradient hypothesis is used. A conclusion is made that AB effect is no longer a physical and electrodynamic "paradox".

  17. The Early History of the Aharonov-Bohm Effect

    CERN Document Server

    Hiley, B J

    2013-01-01

    This paper traces the early history of the Aharonov-Bohm effect. It appears to have been `discovered' at least three times to my knowledge before the defining paper of Aharonov and Bohm appeared in 1959. The first hint of the effect appears in Germany in 1939, immediately disappearing from sight in those troubled times. It reappeared in a paper in 1949, ten years before the defining paper appeared. Here I report the background to the early evolution of this effect, presenting first hand unpublished accounts reported to me by colleagues at Birkbeck College in the University of London.

  18. Analogue Aharonov-Bohm effect in neo-Newtonian theory

    CERN Document Server

    Anacleto, M A; Brito, F A; Passos, E

    2015-01-01

    We address the issues of the scattering of massless planar scalar waves by an acoustic black hole in neo-Newtonian hydrodynamics. We then compute the differential cross section through the use of the partial wave approach in the neo-Newtonian theory which is a modification of the usual Newtonian theory that correctly incorporates the effects of pressure. We mainly show that the scattering of planar waves leads to a modified analogue Aharonov-Bohm effect due to a nontrivial response of the parameters defining the equation of state.

  19. Spectroscopic detectability of the molecular Aharonov-Bohm effect

    Science.gov (United States)

    Englman, R.

    2016-01-01

    It is theoretically shown that the emission spectra from an excited Jahn-Teller state in which the ions undergo a forced periodic trajectory have an M-shaped form, directly due to the sign change by the Berry-phase factor. The presence of a weak spectral sideline is noted and the effects of a nonlinear vibronic coupling are calculated. Experimental verifications of the results, e.g., on R'-centers in LiF, are proposed. The dip in the M-shaped emission line is a novel, and perhaps unique, spectroscopic manifestation of the "molecular Aharonov-Bohm effect."

  20. Analogue Aharonov-Bohm effect in neo-Newtonian theory

    Science.gov (United States)

    Anacleto, M. A.; Salako, I. G.; Brito, F. A.; Passos, E.

    2015-12-01

    We address the issues of the scattering of massless planar scalar waves by an acoustic black hole in neo-Newtonian hydrodynamics. We then compute the differential cross section through the use of the partial wave approach in the neo-Newtonian theory which is a modification of the usual Newtonian theory that correctly incorporates the effects of pressure. We mainly show that the scattering of planar waves leads to a modified analogue Aharonov-Bohm effect due to a nontrivial response of the parameters defining the equation of state.

  1. Analogue Aharonov-Bohm effect in neo-Newtonian theory

    OpenAIRE

    Anacleto, M.A.(Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba, Brazil); Salako, I. G.; Brito, F. A.; Passos, E.

    2015-01-01

    We address the issues of the scattering of massless planar scalar waves by an acoustic black hole in neo-Newtonian hydrodynamics. We then compute the differential cross section through the use of the partial wave approach in the neo-Newtonian theory which is a modification of the usual Newtonian theory that correctly incorporates the effects of pressure. We mainly show that the scattering of planar waves leads to a modified analogue Aharonov-Bohm effect due to a nontrivial response of the par...

  2. Paradoxes of the Aharonov-Bohm and the Aharonov-Casher effects

    OpenAIRE

    Vaidman, Lev

    2013-01-01

    For a believer in locality of Nature, the Aharonov-Bohm effect and the Aharonov-Casher effect are paradoxes. I discuss these and other Aharonov's paradoxes and propose a local explanation of these effects. If the solenoid in the Aharonov-Bohm effect is treated quantum mechanically, the effect can be explained via local interaction between the field of the electron and the solenoid. I argue that the core of the Aharonov-Bohm and the Aharonov-Casher effects is that of quantum entanglement: the ...

  3. Kirchhoff diffraction optics and the nascent Aharonov-Bohm effect: a theorem

    International Nuclear Information System (INIS)

    Textbook diffraction optics, Kirchhoff diffraction, is connected to the Aharonov-Bohm effect of quantum mechanics by an easy theorem proved here. The connection is between the Kirchhoff wave field and the Aharonov-Bohm quantum wave field in the limit of zero flux: the 'nascent' Aharonov-Bohm effect. The diffracting opaque screen of Kirchhoff optics is replaced in the quantum mechanics by a magnetic flux line, or loop, in the shape of the boundary edge of the screen. The gauge must be chosen appropriately: a delta function on that surface, spanning the boundary edge, which matches the screen.

  4. Gravito-electromagnetic Aharonov-Bohm effect: some rotation effects revised

    OpenAIRE

    Ruggiero, Matteo Luca

    2010-01-01

    By means of the description of the standard relative dynamics in terms of gravito-electromagnetic fields, in the context of natural splitting, we formally introduce the gravito-magnetic Aharonov-Bohm effect. Then, we interpret the Sagnac effect as a gravito-magnetic Aharonov-Bohm effect and we exploit this formalism for studying the General Relativistic corrections to the Sagnac effect in stationary and axially symmetric geometries.

  5. What did we learn from the Aharonov-Bohm effect? Is spin 1/2 different?

    International Nuclear Information System (INIS)

    I review what has been learned about fundamental issues in quantum mechanics from the Aharonov-Bohm effect. Following that, I consider the Aharonov-Casher effect and the Scalar Aharonov-Bohm effect, in both of which a spin-1/2 particle interacts with a local electromagnetic field through its magnetic moment, and conclude that those effects can be described as observable effects of local torques

  6. The bound state Aharonov-Bohm effect around a cosmic string revisited

    OpenAIRE

    Filgueiras, C.; Moraes, Fernando

    2005-01-01

    In this article we observe that the self-adjoint extension of the Hamiltonian of a particle moving around a shielded cosmic string gives rise to a gravitational analogue of the bound state Aharonov-Bohm effect.

  7. Gauge equivalence classes of flat connections in the Aharonov-Bohm effect

    OpenAIRE

    M.A. Aguilar; Isidro, J. M.; Socolovsky, M.

    2003-01-01

    In this note we present a simplified derivation of the fact that the moduli space of flat connections in the abelian Aharonov-Bohm effect is isomorphic to the circle. The length of this circle is the electric charge.

  8. Revisiting the Marton, Simpson, and Suddeth experimental confirmation of the Aharonov-Bohm effect

    Science.gov (United States)

    Macdougall, James; Singleton, Douglas; Vagenas, Elias C.

    2015-09-01

    We perform an "archeological" study of one of the original experiments used as evidence for the static, time-independent Aharonov-Bohm effect. Since the experiment in question [1] involved a time varying magnetic field we show that there are problems with the explanation of this experiment as a confirmation of the static Aharonov-Bohm effect - specifically the previous analysis ignored the electric field which arises in conjunction with a time-varying magnetic flux. We further argue that the results of this experiment do in fact conform exactly to the recent prediction [2,3] of a cancellation between the magnetic and electric phase shifts for the time-dependent Aharonov-Bohm effect. To resolve this issue a new time-dependent Aharonov-Bohm experiment is called for.

  9. Path integrals with topological constraints: Aharonov-Bohm effect and polymer entanglements

    OpenAIRE

    Wiegel, F.W.

    1981-01-01

    For Wiener- and Feynman integrals over paths with certain topological properties we compare various methods for explicit calculation. This leads to a one-to-one correspondence between the Aharonov-Bohm effect and a certain polymer entanglement problem. We briefly comment on two generalizations of the Aharonov-Bohm effect. First, we consider this effect due to a closed magnetic flux loop of arbitrary shape; next, we consider the combined effect due to a gas of microscopic magnetic flux loops.

  10. Photon mass and quantum effects of the Aharonov-Bohm type

    OpenAIRE

    Spavieri, G.; M. Rodriguez

    2007-01-01

    The magnetic field due to the photon rest mass $m_{ph}$ modifies the standard results of the Aharonov-Bohm effect for electrons, and of other recent quantum effects. For the effect involving a coherent superposition of beams of particles with opposite electromagnetic properties, by means of a table-top experiment, the limit $m_{ph}x10^{-51}g$ is achievable, improving by 6 orders of magnitude that derived by Boulware and Deser for the Aharonov-Bohm effect.

  11. Noncommutative analogue Aharonov-Bohm effect and superresonance

    CERN Document Server

    Anacleto, M A; Passos, E

    2012-01-01

    We consider the idea of modeling a rotating acoustic black hole by an idealized draining bathtub vortex which is a planar circulating flow phenomenon with a sink at the origin. We find the acoustic metric for this phenomenon from a noncommutative Abelian Higgs model. As such the acoustic metric not only describes a rotating acoustic black hole but also inherits the noncommutative characteristic of the spacetime. We address the issues of superresonance and analogue Aharonov-Bohm (AB) effect in this background. We mainly show that the scattering of planar waves by a draining bathtub vortex leads to a modified AB effect and due to spacetime noncommutativity, the phase shift persists even in the limit where the parameters associated with the circulation and draining vanish. Finally, we also find that the analogue AB effect and superresonance are competing phenomena at a noncommutative spacetime.

  12. Noncommutative analogue Aharonov-Bohm effect and superresonance

    Science.gov (United States)

    Anacleto, M. A.; Brito, F. A.; Passos, E.

    2013-06-01

    We consider the idea of modeling a rotating acoustic black hole by an idealized draining bathtub vortex which is a planar circulating flow phenomenon with a sink at the origin. We find the acoustic metric for this phenomenon from a noncommutative Abelian Higgs model. As such the acoustic metric not only describes a rotating acoustic black hole but also inherits the noncommutative characteristic of the spacetime. We address the issues of superresonance and analogue Aharonov-Bohm (AB) effect in this background. We mainly show that the scattering of planar waves by a draining bathtub vortex leads to a modified AB effect and due to spacetime noncommutativity, the phase shift persists even in the limit where the parameters associated with the circulation and draining vanish. Finally, we also find that the analogue AB effect and superresonance are competing phenomena at a noncommutative spacetime.

  13. The Aharonov-Bohm and Aharonov-Casher effects and electromagnetic angular momentum

    International Nuclear Information System (INIS)

    A semiclassical explanation for the Aharonov-Bohm and Aharonov-Casher effects is presented. It is shown that these quantum-mechanical effects derive from nontrivial electromagnetic angular momentum inherent to a system containing both charges and magnetic dipoles. It is emphasized that a unified description of the Aharonov-Bohm effect with a solenoid of general shape, both open and closed, is developed in terms of the electromagnetic angular momentum carried by the flux lines that constitute real magnetic flux. (orig.)

  14. Non-Abelian Vortices with an Aharonov-Bohm Effect

    CERN Document Server

    Evslin, Jarah; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter

    2014-01-01

    The interplay of gauge dynamics and flavor symmetries often leads to remarkably subtle phenomena in the presence of soliton configurations. Non-Abelian vortices -- vortex solutions with continuous internal orientational moduli -- provide an example. Here we study the effect of weakly gauging a U(1)_R subgroup of the flavor symmetry on such BPS vortex solutions. Our prototypical setting consists of an SU(2) x U(1) gauge theory with N_f=2 sets of fundamental scalars that break the gauge symmetry to an "electromagnetic" U(1). The weak U(1)_R gauging converts the well-known CP1 orientation modulus |B| of the non-Abelian vortex into a parameter characterizing the strength of the magnetic field that is responsible for the Aharonov-Bohm effect. As the phase of B remains a genuine zero mode while the electromagnetic gauge symmetry is Higgsed in the interior of the vortex, these solutions are superconducting strings.

  15. Thermoelectric effects in a rectangular Aharonov-Bohm geometry

    Science.gov (United States)

    Pye, A. J.; Faux, D. A.; Kearney, M. J.

    2016-04-01

    The thermoelectric transport properties of a rectangular Aharonov-Bohm ring at low temperature are investigated using a theoretical approach based on Green's functions. The oscillations in the transmission coefficient as the field is varied can be used to tune the thermoelectric response of the ring. Large magnitude thermopowers are obtainable which, in conjunction with low conductance, can result in a high thermoelectric figure of merit. The effects of single site impurities and more general Anderson disorder are considered explicitly in the context of evaluating their effect on the Fano-type resonances in the transmission coefficient. Importantly, it is shown that even for moderate levels of disorder, the thermoelectric figure of merit can remain significant, increasing the appeal of such structures from the perspective of specialist thermoelectric applications.

  16. Two-particle Aharonov-Bohm effect and Entanglement in the electronic Hanbury Brown Twiss setup

    OpenAIRE

    Samuelsson, Martin Peter; Sukhorukov, Eugene; Buttiker, Markus

    2003-01-01

    We analyze a Hanbury Brown-Twiss geometry in which particles are injected from two independent sources into a mesoscopic conductor in the quantum Hall regime. All partial waves end in different reservoirs without generating any single-particle interference; in particular, there is no single-particle Aharonov-Bohm effect. However, exchange effects lead to two-particle Aharonov-Bohm oscillations in the zero-frequency current cross correlations. We demonstrate that this is related to two-particl...

  17. Aharonov-Bohm Effect in Perturbation Theory.

    Science.gov (United States)

    Purcell, Kay M.; Henneberger, Walter C.

    1978-01-01

    The Aharonov-Bohn effect is obtained in first-order perturbation theory. It is shown that the effect occurs only when the initial state is a superposition of eigenstates of Lz corresponding to eigenvalues having opposite sign. (Author/GA)

  18. Magnetic Catalysis of Dynamical Symmetry Breaking and Aharonov-Bohm Effect

    OpenAIRE

    Miransky, V.A.

    1998-01-01

    The phenomenon of the magnetic catalysis of dynamical symmetry breaking is based on the dimensional reduction $D\\to D-2$ in the dynamics of fermion pairing in a magnetic field. We discuss similarities between this phenomenon and the Aharonov-Bohm effect. This leads to the interpretation of the dynamics of the (1+1)-dimensional Gross-Neveu model with a non-integer number of fermion colors as a quantum field theoretical analogue of the Aharonov-Bohm dynamics.

  19. The Aharonov-Casher and scalar Aharonov-Bohm topological effects

    OpenAIRE

    Dulat, Sayipjamal; Ma, Kai

    2012-01-01

    We reexamine the topological and nonlocal natures of the Aharonov-Casher and scalar Aharonov-Bohm phase effects. The underlying U(1) gauge structure is exhibited explicitly. And the conditions for developing topological Aharonov-Casher and scalar Aharonov-Bohm phases are clarified. We analyse the arguments of M. Peshkin and H. J. Lipkin (Phys. Rev. Lett. 74, 2847(1995)) in detail and show that they are based on the wrong Hamiltonian which yields their conclusion incorrect.

  20. Whirling Waves and the Aharonov-Bohm Effect for Relativistic Spinning Particles

    OpenAIRE

    Girotti, H. O.; Romero, F. Fonseca

    1996-01-01

    The formulation of Berry for the Aharonov-Bohm effect is generalized to the relativistic regime. Then, the problem of finding the self-adjoint extensions of the (2+1)-dimensional Dirac Hamiltonian, in an Aharonov-Bohm background potential, is solved in a novel way. The same treatment also solves the problem of finding the self-adjoint extensions of the Dirac Hamiltonian in a background Aharonov-Casher.

  1. Time-dependent Aharonov-Bohm effect on the noncommutative space

    Science.gov (United States)

    Ma, Kai; Wang, Jian-Hua; Yang, Huan-Xiong

    2016-08-01

    We study the time-dependent Aharonov-Bohm effect on the noncommutative space. Because there is no net Aharonov-Bohm phase shift in the time-dependent case on the commutative space, therefore, a tiny deviation from zero indicates new physics. Based on the Seiberg-Witten map we obtain the gauge invariant and Lorentz covariant Aharonov-Bohm phase shift in general case on noncommutative space. We find there are two kinds of contribution: momentum-dependent and momentum-independent corrections. For the momentum-dependent correction, there is a cancellation between the magnetic and electric phase shifts, just like the case on the commutative space. However, there is a non-trivial contribution in the momentum-independent correction. This is true for both the time-independent and time-dependent Aharonov-Bohm effects on the noncommutative space. However, for the time-dependent Aharonov-Bohm effect, there is no overwhelming background which exists in the time-independent Aharonov-Bohm effect on both commutative and noncommutative space. Therefore, the time-dependent Aharonov-Bohm can be sensitive to the spatial noncommutativity. The net correction is proportional to the product of the magnetic fluxes through the fundamental area represented by the noncommutative parameter θ, and through the surface enclosed by the trajectory of charged particle. More interestingly, there is an anti-collinear relation between the logarithms of the magnetic field B and the averaged flux Φ / N (N is the number of fringes shifted). This nontrivial relation can also provide a way to test the spatial noncommutativity. For BΦ / N ∼ 1, our estimation on the experimental sensitivity shows that it can reach the 10 GeV scale. This sensitivity can be enhanced by using stronger magnetic field strength, larger magnetic flux, as well as higher experimental precision on the phase shift.

  2. Non-Abelian vortices with an Aharonov-Bohm effect

    Energy Technology Data Exchange (ETDEWEB)

    Evslin, Jarah [TPCSF, IHEP, Chinese Academy of Sciences,Beijing (China); Theoretical physics division, IHEP, Chinese Academy of Sciences,Beijing (China); Konishi, Kenichi [Department of Physics “Enrico Fermi”, University of Pisa,Largo Pontecorvo 3, 56127, Pisa (Italy); INFN, Sezione di Pisa,Largo Pontecorvo 3, 56127, Pisa (Italy); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University,4-1-1 Hiyoshi, Yokohama, Kanagawa 223-8521 (Japan); Ohashi, Keisuke [Department of Physics, Osaka City University,Osaka (Japan); Vinci, Walter [London Centre for Nanotechnology and Computer Science, University College London,17-19 Gordon Street, London, WC1H 0AH (United Kingdom)

    2014-01-16

    The interplay of gauge dynamics and flavor symmetries often leads to remarkably subtle phenomena in the presence of soliton configurations. Non-Abelian vortices — vortex solutions with continuous internal orientational moduli — provide an example. Here we study the effect of weakly gauging a U(1){sub R} subgroup of the flavor symmetry on such BPS vortex solutions. Our prototypical setting consists of an SU(2)×U(1) gauge theory with N{sub f}=2 sets of fundamental scalars that break the gauge symmetry to an “electromagnetic' U(1). The weak U(1){sub R} gauging converts the well-known CP{sup 1} orientation modulus |B| of the non-Abelian vortex into a parameter characterizing the strength of the magnetic field that is responsible for the Aharonov-Bohm effect. As the phase of B remains a genuine zero mode while the electromagnetic gauge symmetry is Higgsed in the interior of the vortex, these solutions are superconducting strings.

  3. Analytical and Numerical Study of the Aharonov--Bohm Effect in 3D and 4D Abelian Higgs Model

    OpenAIRE

    Chernodub, M. N.; Gubarev, F. V.; Polikarpov, M.I.

    1996-01-01

    We discuss the Aharonov--Bohm effect in three and four dimensional non--compact lattice Abelian Higgs model. We show analytically that this effect leads to the long--range Coulomb interaction of the charged particles, which is confining in three dimensions. The Aharonov--Bohm effect is found in numerical calculations in 3D Abelian Higgs model.

  4. Time-dependent Aharonov-Bohm effect on the noncommutative space

    CERN Document Server

    Ma, Kai; Yang, Huan-Xiong

    2016-01-01

    We study the time-dependent Aharonov-Bohm effect on the noncommutative space. Because there is no net Aharonov-Bohm phase shift in the time-dependent case on the commutative space, therefore tiny deviation from zero indicates new physics. Based on the Seiberg-Witten map we obtained the gauge invariant and Lorentz covariant Aharonov-Bohm phase shift on noncommutative space in general case. We find there are two kinds of contributions: momentum-dependent and momentum-independent corrections. For the momentum-dependent correction, there is a cancellation between the magnetic and electric phase shifts, just like the case on the commutative space. However, there is a non-trivial contribution in the momentum-independent correction. This is true for both the time-independent and time-dependent Aharonov-Bohm effects on the noncommutative space. However, for the time-dependent Aharonov-Bohm effect, there is no overwhelming background which exists on both commutative and noncommutative space for the time-independent Ah...

  5. Internal frame dragging and a global analog of the Aharonov-Bohm effect

    OpenAIRE

    March-Russell, John(Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, U.K.); Preskill, John; Wilczek, Frank

    1992-01-01

    It is shown that the breakdown of a global symmetry group to a discrete subgroup can lead to analogs of the Aharonov-Bohm effect. At sufficiently low momentum transfer, the cross section for scattering of a particle with nontrivial Z2 charge off a global vortex is almost equal to (but definitely different from) maximal Aharonov-Bohm scattering; the effect goes away at large momentum transfer. The scattering of a spin-1/2 particle off a magnetic vortex provides an amusing experimentally realiz...

  6. On the role of potentials in the Aharonov-Bohm effect

    OpenAIRE

    Vaidman, Lev

    2011-01-01

    There is a consensus today that the the main lesson of the Aharonov-Bohm effect is that a picture of electromagnetism based on the local action of the field strengths is not possible in quantum mechanics. Contrary to this statement it is argued here that when the source of the electromagnetic potential is treated in the framework of quantum theory, the Aharonov-Bohm effect can be explained without the notion of potentials. It is explained by local action of the field of the electron on the so...

  7. The Crucial Role of Inert Source in the Magnetic Aharonov-Bohm Effect

    OpenAIRE

    Comay, E.

    2009-01-01

    The role of the inert magnetic source used in the Tonomura experiment that has confirmed the magnetic Aharonov-Bohm effect is discussed. For this purpose, an analysis of a thought experiment is carried out. Here the permanent magnet is replaced by a classical source which is made of an ideal coil. A detailed calculation of this noninert source proves that in this case the effect disappears. This outcome provides another support for the crucial role of an inert source in the Aharonov-Bohm effe...

  8. Interference between the Aharonov-Bohm and Aharonov-Casher effects

    International Nuclear Information System (INIS)

    After a discussion of the principles of the Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects, the possibility of observing the interference between them is discussed. The implications of the AB and AC effects for anyon physics are also considered. (author) 8 refs., 3 figs

  9. Duality in the Aharonov-Casher and Aharonov-Bohm effects

    International Nuclear Information System (INIS)

    A neutral particle with a magnetic moment interacts with a charged particle. Such an interaction is invariant under the interchange of the particles. This interchangeability or duality of the particles elucidates subtleties of the Aharonov-Bohm and Aharonov-Casher effects, including whether and how these two effects are themselves dual.

  10. Gravitational Aharonov-Bohm effect due to noncommutative BTZ black hole

    CERN Document Server

    Anacleto, M A; Passos, E

    2014-01-01

    In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov-Bohm effect due to spacetime noncommutativity

  11. Gravitational Aharonov-Bohm effect due to noncommutative BTZ black hole

    Science.gov (United States)

    Anacleto, M. A.; Brito, F. A.; Passos, E.

    2015-04-01

    In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov-Bohm effect due to spacetime noncommutativity.

  12. The bound-state Aharonov-Bohm effect around a cosmic string revisited

    International Nuclear Information System (INIS)

    In this Letter we observe that the self-adjoint extension of the Hamiltonian of a particle moving around a cosmic string gives rise to a gravitational analogue of the bound-state Aharonov-Bohm effect without the need of confining walls

  13. Revisiting the Marton, Simpson, and Suddeth experimental confirmation of the Aharonov-Bohm effect

    CERN Document Server

    Macdougall, James; Vagenas, Elias C

    2015-01-01

    We perform an "archeological" study of one of the original experiments used as evidence for the static, time-independent Aharonov-Bohm effect. Since the experiment in question [L. Marton, J. A. Simpson, and J. A. Suddeth, Rev. Sci. Instr. 25, 1099 (1954)] involved a time varying magnetic field we show that there are problems with the explanation of this experiment as a confirmation of the static Aharonov-Bohm effect -- specifically the previous analysis ignored the electric field which arises in conjunction with a time-varying magnetic flux. We further argue that the results of this experiment do in fact conform exactly to the recent prediction [D. Singleton and E. Vagenas, Phys. Lett. B723, 241 (2013); J. MacDougall and D. Singleton, J. Math. Phys. 55, 042101 (2014)] of a cancellation between the magnetic and electric phase shifts for the time-dependent Aharonov-Bohm effect. To resolve this issue a new time-dependent Aharonov-Bohm experiment is called for.

  14. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    CERN Document Server

    Macdougall, James

    2013-01-01

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect -- the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology of the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.

  15. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology of the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed

  16. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    Energy Technology Data Exchange (ETDEWEB)

    Macdougall, James, E-mail: jbm34@mail.fresnostate.edu; Singleton, Douglas, E-mail: dougs@csufresno.edu [Department of Physics, California State University Fresno, Fresno, California 93740-8031 (United States)

    2014-04-15

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology of the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.

  17. Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects

    OpenAIRE

    Eckle, H. -P.; Johannesson, H; Stafford, C. A.

    2000-01-01

    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo re...

  18. Dispersionless forces and the Aharonov-Bohm effect

    Science.gov (United States)

    Batelaan, H.; Becker, M.

    2015-11-01

    The independence of the Aharonov-Bohm phase shift on particle velocity is one of its defining properties. The classical counterpart to this dispersionless behavior is the absence of forces along the direction of motion of the particle. A reevaluation of the experimental demonstration that forces are absent in the AB physical system is given, including previously unpublished data. It is shown that the debate on the presence or absence of forces is not settled. Experiments that measure the influence of magnetic permeability on forces and search for dispersionless quantum forces are proposed.

  19. The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results

    International Nuclear Information System (INIS)

    The Aharonov-Bohm effect is a fundamental issue in physics. It describes the physically important electromagnetic quantities in quantum mechanics. Its experimental verification constitutes a test of the theory of quantum mechanics itself. The remarkable experiments of Tonomura et al. ['Observation of Aharonov-Bohm effect by electron holography', Phys. Rev. Lett 48, 1443 (1982) and 'Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave', Phys. Rev. Lett 56, 792 (1986)] are widely considered as the only experimental evidence of the physical existence of the Aharonov-Bohm effect. Here we give the first rigorous proof that the classical ansatz of Aharonov and Bohm of 1959 ['Significance of electromagnetic potentials in the quantum theory', Phys. Rev. 115, 485 (1959)], that was tested by Tonomura et al., is a good approximation to the exact solution to the Schroedinger equation. This also proves that the electron, that is, represented by the exact solution, is not accelerated, in agreement with the recent experiment of Caprez et al. in 2007 ['Macroscopic test of the Aharonov-Bohm effect', Phys. Rev. Lett. 99, 210401 (2007)], that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Under the assumption that the incoming free electron is a Gaussian wave packet, we estimate the exact solution to the Schroedinger equation for all times. We provide a rigorous, quantitative error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. Our bound is uniform in time. We also prove that on the Gaussian asymptotic state the scattering operator is given by a constant phase shift, up to a quantitative error bound that we provide. Our results show that for intermediate size electron wave packets, smaller than the ones used in the Tonomura et al. experiments, quantum mechanics predicts the results observed by Tonomura et al. with an error bound smaller than 10

  20. Scattering theory and the Aharonov-Bohm effect in quasiclassical physics

    International Nuclear Information System (INIS)

    Research highlights: → Scattering Aharonov-Bohm effect. → Short-wavelength limit of scattered nonrelativistic particles. → Fraunhofer diffraction in the forward direction. → Fresnel diffraction in the forward region in conical space. → Enclosed magnetic flux is a gate for the propagation of quasiclassical particles. - Abstract: Scattering of a nonrelativistic quantum-mechanical particle by an impenetrable magnetic vortex is considered. The nonvanishing transverse size of the vortex is taken into account, and the limit of short, as compared to this size, wavelengths of the scattered particle is analyzed. We show that the scattering Aharonov-Bohm effect persists in the quasiclassical limit owing to the diffraction persisting in the short-wavelength limit. As a result, the vortex flux serves as a gate for the propagation of short-wavelength, almost classical, particles. This quasiclassical effect is more feasible to experimental detection in the case when space outside the vortex is conical.

  1. Aharonov-Bohm effect for a fermion field in the acoustic black hole background

    CERN Document Server

    Anacleto, M A; Mohammadi, A; Passos, E

    2016-01-01

    In this paper we consider the dynamics of a massive spinor field in the background of the acoustic black hole spacetime and then compute the differential cross section through the use of the partial wave approach. We show that an effect similar to the gravitational Aharonov-Bohm effect occurs for massive fermion fields moving in this effective metric. We discuss the limiting cases and compare the results with the bosonic case.

  2. Optical analogue of the Aharonov-Bohm effect using anisotropic media

    International Nuclear Information System (INIS)

    We show that in the context of paraxial optics, which can be analyzed through a wave equation similar to the non-relativistic Schroedinger equation of quantum mechanics but replacing time t by spatial coordinate z, the existence of a vector potential A-perpendicular mimicking the magnetic vector potential in quantum mechanics is allowed by specific gauge symmetries of the optical field in a medium with anisotropic refractive index. In this way, we use Feynman's path integral to demonstrate an optical analogue of the quantum-mechanical Aharonov-Bohm effect, encouraging the search for another optical systems with analogies with more complex quantum field theories. -- Highlights: → The optical analogue of the Aharonov-Bohm effect is demonstrated using anisotropic media. → It follows from the gauge principle applied to the optical field in the paraxial regime. → Feynman's path integral formalism is used to obtain the main result, leading directly from geometric to physical optics.

  3. Two impurity Kondo problem under Aharonov--Bohm and Aharonov--Casher Effects

    OpenAIRE

    Aono, Tomosuke

    2006-01-01

    We investigate electron transport under the two impurity Kondo problem with the Aharonov--Bohm and Aharonov--Casher effects. These interference effects induce the Ising-coupled Ruderman--Kittel--Kasuya--Yosida (RKKY) interaction. We discuss the inter- and intra-site spin conductance as well as charge conductance in the Kondo and the mixed-valence regimes using the slave boson mean field approximation.

  4. Remark on the Connectedness of Space in the Experimental Devices of Aharonov-Bohm Effect

    Institute of Scientific and Technical Information of China (English)

    QIAN Shang-Wu; GU Zhi-Yu

    2003-01-01

    This article shows that in Aharonov-Bohm (AB) effect arrangements, the electron wave propagation spaceis doubly connected for two real coherent sources, and simply connected under certain condition for two virtual coherentsources, and all known AB experiments belong to the latter case. By the Feynman path integral method, we show thatin the former case there is no AB effect, whereas in the latter case there is.

  5. The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams

    OpenAIRE

    Rizzi, Guido; Ruggiero, Matteo Luca

    2003-01-01

    The phase shift due to the Sagnac Effect, for relativistic matter beams counter-propagating in a rotating interferometer, is deduced on the bases of a a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by Sakurai, in which non relativistic quantum mechanics and newtonian physics appear together with some intrinsically relativistic elements, is generalized to a fully relativistic context, using the Cattaneo's splitting technique. This approach leads to an exact derivation...

  6. Reply to "Comment on `Role of potentials in the Aharonov-Bohm effect' "

    Science.gov (United States)

    Vaidman, Lev

    2015-08-01

    The preceding Comment challenged my claim that potentials might be just auxiliary mathematical tools and that they are not necessary for explaining physical phenomena. The Comment did not confront my explanation without the potentials of the Aharonov-Bohm effects that appeared in the original article, but stated that I cannot apply this explanation for seven other examples. In my reply, using my method, I provide explanations of one of the examples, show that two other examples are not relevant, and agree that the remaining examples require further analysis. However, I argue that none of the examples provides robust counterexamples to my claim, similar to the original Aharonov-Bohm setups which were explained in my article, so the Comment does not refute my claim.

  7. The time-dependent non-Abelian Aharonov-Bohm effect

    CERN Document Server

    Bright, Max

    2015-01-01

    In this article, we study the {\\it time-dependent} Aharonov-Bohm effect for non-Abelian gauge fields. We use two well known time-dependent solutions to the Yang-Mills field equations to investigate the Aharonov-Bohm phase shift. For both of the solutions, we find a cancellation between the phase shift coming from the non-Abelian "magnetic" field and the phase shift coming from the non-Abelian "electric" field, which inevitably arises in time-dependent cases. We compare and contrast this cancellation for the time-dependent non-Abelian case to a similar cancellation which occurs in the time-dependent Abelian case. We postulate that this cancellation occurs generally in time-dependent situations for both Abelian and non-Abelian fields.

  8. Spin accumulation assisted by the Aharonov-Bohm-Fano effect of quantum dot structures.

    Science.gov (United States)

    Gong, Wei-Jiang; Han, Yu; Wei, Guo-Zhu; Du, An

    2012-01-01

    : We investigate the spin accumulations of Aharonov-Bohm interferometers with embedded quantum dots by considering spin bias in the leads. It is found that regardless of the interferometer configurations, the spin accumulations are closely determined by their quantum interference features. This is mainly manifested in the dependence of spin accumulations on the threaded magnetic flux and the nonresonant transmission process. Namely, the Aharonov-Bohm-Fano effect is a necessary condition to achieve the spin accumulation in the quantum dot of the resonant channel. Further analysis showed that in the double-dot interferometer, the spin accumulation can be detailedly manipulated. The spin accumulation properties of such structures offer a new scheme of spin manipulation. When the intradot Coulomb interactions are taken into account, we find that the electron interactions are advantageous to the spin accumulation in the resonant channel. PMID:22985404

  9. How the Test of Aharonov-Bohm Effect Was Initiated at Hitachi Laboratory

    Science.gov (United States)

    Osakabe, Nobuyuki

    2014-01-01

    I joined the Tonomura's team in 1980. Since then, I have seen his enthusiasm and creativity in science as a member of his team and later as director of the laboratory. I will discuss in this article how the industrially driven technologies met science at Hitachi Central Research Laboratory in the case of verification of the Aharonov-Bohm effect and other scientific achievements by Akira Tonomura.

  10. Entanglement entropy as a witness of the Aharonov-Bohm effect in QFT

    CERN Document Server

    Arias, Raúl E; Casini, Horacio

    2014-01-01

    We study the dependence of the entanglement entropy with a magnetic flux, and show that the former quantity witnesses an Aharonov Bohm-like effect. In particular, we consider free charged scalar and Dirac fields living on a two dimensional cylinder and study how the entanglement entropy for a strip-like region on the surface of the cylinder is affected by a magnetic field enclosed by it.

  11. Reply to "Comment on "Aharonov-Casher and Scalar Aharonov-Bohm Topological Effects""

    OpenAIRE

    Ma, Kai; Dulat, Sayipjamal

    2013-01-01

    In this Reply we argue that (i) the Hamiltonian, Eq. (17) in our paper (Phys. Rev. Lett. 108, 070405 (2012)), is definitely Lorentz invariant; (ii) the conditions of generating topological Aharonov-Casher(AC) and Scalar Aharonov-Bohm (SAB) effects are essential and physically meaningful; (iii) the Hamiltonians both in Phys. Rev. Lett. 74, 2847 (1995) and arXiv:1311.4011 are not suitable to describe the polarized spinor particles.

  12. Coupling of Aharonov-Bohm and Aharonov-Casher effects at different particle spins

    International Nuclear Information System (INIS)

    Coupling of Aharonov-Bohm and Aharonov-Casher topological effects is studied depending on the spin of moving particle and its orientation. Duality of wave functions occurs only at the absence of spin precession, that is, at a certain, maximal by the absolute value of its projection on the normal to the motion plane. Generalization for particles both with charge and anomalous magnetic moment is studied. 12 refs

  13. Aharonov-Bohm oscillations in disordered nanorings with quantum dots: Effect of electron-electron interactions

    Science.gov (United States)

    Semenov, Andrew G.; Zaikin, Andrei D.

    2010-01-01

    We investigate the effect of electron-electron interactions on Aharonov-Bohm (AB) current oscillations in nanorings formed by a chain of metallic quantum dots. We demonstrate that electron-electron interactions cause electron dephasing thereby suppressing the amplitude of AB oscillations at all temperatures down to T=0. The crossover between thermal and quantum dephasing is found to be controlled by the ring perimeter. Our predictions can be directly tested in future experiments.

  14. Anticrossing-induced optical excitonic Aharonov-Bohm effect in strained type-I semiconductor nanorings

    OpenAIRE

    Tadić, M.; Čukarić, N.; Arsoski, V.; Peeters, F. M.

    2010-01-01

    The exciton states in strained (In,Ga)As nanorings embedded in a GaAs matrix are computed. The strain distribution is extracted from the continuum mechanical model, and the exact diagonalization approach is employed to compute the exciton states. Weak oscillations of the ground exciton state energy with the magnetic field normal to the ring are an expression of the excitonic Aharonov-Bohm effect. Those oscillations arise from anticrossings between the ground and the second exciton state and c...

  15. Aharonov-Bohm oscillations in disordered nanorings with quantum dots: Effect of electron-electron interactions

    OpenAIRE

    Semenov, Andrew G.; Zaikin, Andrei D.

    2009-01-01

    We investigate the effect of electron-electron interactions on Aharonov-Bohm (AB) current oscillations in nanorings formed by a chain of metallic quantum dots. We demonstrate that electron-electron interactions cause electron dephasing thereby suppressing the amplitude of AB oscillations at all temperatures down to T=0. The crossover between thermal and quantum dephasing is found to be controlled by the ring perimeter. Our predictions can be directly tested in future experiments.

  16. Observation of Scalar Aharonov-Bohm Effect with Longitudinally Polarized Neutrons

    OpenAIRE

    Lee, W. -T.; Motrunich, O.; Allman, B. E.; Werner, S. A.

    1998-01-01

    We have carried out a neutron interferometry experiment using longitudinally polarized neutrons to observe the scalar Aharonov-Bohm effect. The neutrons inside the interferometer are polarized parallel to an applied pulsed magnetic field B(t). The pulsed B field is spatially uniform so it exerts no force on the neutrons. Its direction also precludes the presence of any classical torque to change the neutron polarization.

  17. Time-dependent Pauli equation in the presence of the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    We use the Lewis-Riesenfeld theory to determine the exact form of the wavefunctions of a two-dimensional Pauli equation of a charged spin 1/2 particle with time-dependent mass and frequency in the presence of the Aharonov-Bohm effect and a two-dimensional time-dependent harmonic oscillator. We find that the irregular solution at the origin as well as the regular one contributes to the phase of the wavefunction

  18. Time-dependent Pauli equation in the presence of the Aharonov-Bohm effect

    Science.gov (United States)

    Bouguerra, Y.; Bounames, A.; Maamache, M.; Saadi, Y.

    2008-04-01

    We use the Lewis-Riesenfeld theory to determine the exact form of the wavefunctions of a two-dimensional Pauli equation of a charged spin 1/2 particle with time-dependent mass and frequency in the presence of the Aharonov-Bohm effect and a two-dimensional time-dependent harmonic oscillator. We find that the irregular solution at the origin as well as the regular one contributes to the phase of the wavefunction.

  19. Effects of nongauge potentials on the spin-1/2 Aharonov-Bohm problem

    International Nuclear Information System (INIS)

    Some recent work has attempted to show that the singular solutions which are known to occur in the Dirac description of spin-1/2 Aharonov-Bohm scattering can be eliminated by the inclusion of strongly repulsive potentials inside the flux tube. It is shown here that these calculations are generally unreliable since they necessarily require potentials which lead to the occurrence of Klein's paradox. To avoid that difficulty the problem is solved within the framework of the Galilean spin-1/2 wave equation which is free of that particular complication. It is then found that the singular solutions can be eliminated provided that the nongauge potential is made energy dependent. The effect of the inclusion of a Coulomb potential is also considered with the result being that the range of flux parameter for which singular solutions are allowed is only one-half as great as in the pure Aharonov-Bohm limit. Expressions are also obtained for the binding energies which can occur in the combined Aharonov-Bohm-Coulomb system

  20. Generalized Aharonov-Bohm experiments with neutrons

    International Nuclear Information System (INIS)

    The Aharonov-Bohm effects are generally regarded as direct manifestations of the property, that potentials are affecting quantum systems in a way significantly different from the classical case. This paper searches for generalizations for the neutron case, where still some of the features of the original Aharonov-Bohm effects are maintained. This is based on operational analogy and does not involve any interpretive or epistemological questions. The author identifies operationally significant features of the Aharonov-Bohm effects with a thorough operational analysis. The electric and the magnetic Aharonov-Bohm effects are analyzed separately; this procedure leads to the identification of common features

  1. Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm-Casher Effects

    International Nuclear Information System (INIS)

    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring

  2. Optical exciton Aharonov-Bohm effect, persistent current, and magnetization in semiconductor nanorings of type I and II

    Science.gov (United States)

    Grochol, M.; Grosse, F.; Zimmermann, R.

    2006-09-01

    The optical exciton Aharonov-Bohm effect—i.e., an oscillatory component in the energy of optically active (bright) states—is investigated in nanorings. It is shown that a small effective electron mass, strong confinement of the electron, and high barrier for the hole, achieved, e.g., by an InAs nanoring embedded in an AlGaSb quantum well, are favorable for observing the optical exciton Aharonov-Bohm effect. The second derivative of the exciton energy with respect to the magnetic field is utilized to extract Aharonov-Bohm oscillations even for the lowest bright state unambiguously. A connection between the theories for infinitesimal narrow and finite width rings is established. Furthermore, the magnetization is compared to the persistent current, which oscillates periodically with the magnetic field and confirms thus the nontrivial (connected) topology of the wave function in the nanoring.

  3. Exact equivalence of spin-1/2 Aharonov-Bohm and Aharonov-Casher effects

    International Nuclear Information System (INIS)

    It is shown that there is an exact equivalence between the Aharonov-Bohm effect for spin-1/2 particles and the Aharonov-Casher effect. The demonstration of this precise relationship between the two is seen furthermore to be independent of whether relativistic or nonrelativistic kinematics are used. The only remaining substantive distinction between the two effects may well be the fact that the scattering cross section for polarized beams has a considerably greater sturcture in the Aharonov-Casher case despite the mathematical equivalence of the scattering amplitudes for the two effects

  4. Aharonov-Bohm and Aharonov-Casher Effects: Connections to Dynamics of Topological Singularities

    OpenAIRE

    Ao, P.; Niu, Q.

    1998-01-01

    We analyze the physical processes involved in the Aharonov-Bohm (A-B) and the Aharonov-Casher (A-C) effects, showing that an incomplete A-B effect knowledge can lead a totally wrong conclusion on the A-C effect. Based on this we demonstrate that the Magnus force, the net force, is the only transverse force on a moving vortex, in analogous to the net charge in A-C effect. This conclusion has been arrived both theoretically and experimentally.

  5. Optical exciton Aharonov-Bohm effect, persistent current, and magnetization in semiconductor nanorings of type I and II

    OpenAIRE

    Grochol, M.; Grosse, F.; Zimmermann, R.

    2005-01-01

    The optical exciton Aharonov-Bohm effect, i. e. an oscillatory component in the energy of optically active (bright) states, is investigated in nanorings. It is shown that a small effective electron mass, strong confinement of the electron, and high barrier for the hole, achieved e. g. by an InAs nanoring embedded in an AlGaSb quantum well, are favorable for observing the optical exciton Aharonov-Bohm effect. The second derivative of the exciton energy with respect to the magnetic field is uti...

  6. Interrelations Between the Neutron's Magnetic Interactions and the Magnetic Aharonov-Bohm Effect

    CERN Document Server

    Comay, E

    1999-01-01

    It is proved that the phase shift of a polarized neutron interacting with a spatially uniform time-dependent magnetic field, demonstrates the same physical principles as the magnetic Aharonov-Bohm effect. The crucial role of inert objects is explained, thereby proving the quantum mechanical nature of the effect. It is also proved that the nonsimply connectedness of the field-free region is not a profound property of the system and that it cannot be regarded as a sufficient condition for a nonzero phase shift.

  7. Non-Abelian Aharonov-Bohm effect with the time-dependent gauge fields

    Science.gov (United States)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz

    2016-04-01

    We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of SU (N) generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.

  8. Kondo effect in transport through Aharonov-Bohm and Aharonov-Casher interferometers

    OpenAIRE

    Lobos, A. M.; Aligia, A. A.

    2009-01-01

    We derive the extension of the Hubbard model to include Rashba spin-orbit coupling that correctly describes Aharonov-Bohm and Aharonov-Casher phases in a ring under applied magnetic and electric fields. When the ring is connected to conducting leads, we develop a formalism that is able to describe both, Kondo and interference effects. We find that in the Kondo regime, the spin-orbit coupling reduces strongly the conductance from the unitary limit. This effect in combination with the magnetic ...

  9. Non-Abelian Aharonov-Bohm effect with the time-dependent gauge fields

    CERN Document Server

    Mansoori, Seyed Ali Hosseini

    2016-01-01

    We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of $SU(N)$ generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.

  10. Kondo effect in transport through Aharonov-Bohm and Aharonov-Casher interferometers

    International Nuclear Information System (INIS)

    We derive the extension of the Hubbard model to include Rashba spin-orbit coupling that correctly describes Aharonov-Bohm and Aharonov-Casher phases in a ring under applied magnetic and electric fields. When the ring is connected to conducting leads, we develop a formalism that is able to describe both, Kondo and interference effects. We find that in the Kondo regime, the spin-orbit coupling reduces strongly the conductance from the unitary limit. This effect in combination with the magnetic flux, can be used to produce spin polarized carriers.

  11. Aharonov-Bohm effect for an exciton in a finite width nano-ring

    OpenAIRE

    Palmero, F.; Dorignac, J.; Eilbeck, J. C.; Romer, R. A.

    2005-01-01

    We study the Aharonov-Bohm effect for an exciton on a nano-ring using a 2D attractive fermionic Hubbard model. We extend previous results obtained for a 1D ring in which only azimuthal motion is considered, to a more general case of 2D annular lattices. In general, we show that the existence of the localization effect, increased by the nonlinearity, makes the phenomenon in the 2D system similar to the 1D case. However, the introduction of radial motion introduces extra frequencies, different ...

  12. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    OpenAIRE

    Rui-Feng Wang

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced...

  13. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    Science.gov (United States)

    Wang, Rui-Feng

    2015-09-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge.

  14. Non-radiating sources, dynamic anapole and Aharonov-Bohm effect

    CERN Document Server

    Nemkov, Nikita A; Fedotov, Vassily A

    2016-01-01

    We show that any non-radiating source can be represented by a combination of identical, spatially localized distributions of electric and toroidal point dipoles. One of the implications is that at every point of an arbitrary non-radiating source there exists a simple universal relation between the electric and toroidal dipole moments. We also present simple means of describing non-radiating sources and discuss a possible scenario for observing the time-dependent version of the Aharonov-Bohm effect in such systems.

  15. Quantum mechanics of relativistic particles in multiply connected spaces and the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    We consider the motion of free relativistic particles in multiply connected spaces. We show that if one of the spatial dimensions has the topology of a circle then the D dimensional spacetime is compactified to D-1 dimensions and the particle mass increases by an amount which is proportional to a quantum phase factor and inversely proportional to the radius of the circle. We also consider the relativistic Aharonov-Bohm effect and we show that the interference pattern is a universal characteristic due only to the topological properties of the experimental situation and not to the intrinsic properties of the particle. The propagators are calculated in both situations. (author)

  16. Geometric phases in quantum mechanics and the dual Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Full text: In the year of 1959, Y. Aharonov and D. Bohm published a paper discussing the importance of the electromagnetic potentials in quantum mechanics, not only as a mathematical tool but as an object with physical significance. In this paper they propose an experiment in which a measurable phase change can be observed in the wavefunction of the electron passing by a long thin solenoid due to the presence of the magnetic potential, even in the absence of magnetic fields. Since then, the effect became known as the Aharonov-Bohm (AB) effect. Although it was not widely discussed at the time of the above publication, the AB effect can be understood as a specific case of a broader class of phenomena generally known as geometric phases. A paper was published in 1984 by the british physicist Michael Berry bringing about a widespread discussion on the importance of geometric phases and their appearance and applications in a great number of physical systems and in technologies such as topological quantum computation, for instance. In this work we discuss the appearance of geometric phases in both adiabatic, as discussed by Berry, and general evolution of quantum systems. Some modern applications are presented and the approach of geometrical phases is used to study some proposed implementations of the dual Aharonov-Bohm effect, built upon duality transformations on Maxwell's Equations. (author)

  17. Aharonov-Bohm and Aharonov-Casher tunneling effects and edge states in double-barrier structures

    International Nuclear Information System (INIS)

    The simultaneous occurrence of Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects due to edge states in double-barrier two-dimensional wires formed by an electrostatic confinement potential, in the quantum Hall effect regime, is discussed. The AC effect is manifested via a shift of the AB conductance oscillations, and a method for measurement of the effect is proposed

  18. Excitonic Aharonov-Bohm effect: Unstrained versus strained type-I semiconductor nanorings

    Science.gov (United States)

    Tadić, M.; Čukarić, N.; Arsoski, V.; Peeters, F. M.

    2011-09-01

    We study how mechanical strain affects the magnetic field dependence of the exciton states in type-I semiconductor nanorings. Strain spatially separates the electron and hole in (In,Ga)As/GaAs nanorings which is beneficial for the occurrence of the excitonic Aharonov-Bohm (AB) effect. In narrow strained (In,Ga)As/GaAs nanorings the AB oscillations in the exciton ground-state energy are due to anticrossings with the first excited state. No such AB oscillations are found in unstrained GaAs/(Al,Ga)As nanorings irrespective of the ring width. Our results are obtained within an exact numerical diagonalization scheme and are shown to be accurately described by a two-level model with off-diagonal coupling t. The later transfer integral expresses the Coulomb coupling between states of electron-hole pairs. We also found that the oscillator strength for exciton recombination in (In,Ga)As/GaAs nanorings exhibits AB oscillations, which are superimposed on a linear increase with magnetic field. Our results agree qualitatively with recent experiments on the excitonic Aharonov-Bohm effect in type-I (In,Ga)As/GaAs nanorings.

  19. Gaussian Curvature and Global effects : gravitational Aharonov-Bohm effect revisited

    CERN Document Server

    Nouri-Zonoz, M

    2013-01-01

    Using the Gauss-Bonnet formula, integral of the Gaussian curvature over a 2-surface enclosed by a curve in the asymptotically flat region of a static spacetime was found to be a measure of a gravitational analogue of Aharonov-Bohm effect by Ford and Vilenkin in the linearized regime. Employing the 1+3 formulation of spacetime decomposition we study the same effect in the context of full Einstein field equations for stationary spacetimes. Applying our approach to static tube-like and cylindrical distributions of dust not only we recover their result but also obtain an extra term which is interpreted to be representing the classical version of the Colella-Overhauser-Werner effect (the COW experiment).

  20. Probing the noncommutative effects of phase space in the time-dependent Aharonov-Bohm effect

    CERN Document Server

    Ma, Kai; Yang, Huan-Xiong

    2016-01-01

    We study the noncommutative corrections on the time-dependent Aharonov-Bohm effect when both the coordinate-coordinate and momentum-momentum noncommutativities are considered. This study is motivated by the recent observation that there is no net phase shift in the time-dependent AB effect on the ordinary space, and therefore tiny derivation from zero can indicate new physics. The vanishing of the time-dependent AB phase shift on the ordinary space is preserved by the gauge and Lorentz symmetries. However, on the noncomutative phase space, while the ordinary gauge symmetry can be kept by the Seiberg-Witten map, but the Lorentz symmetry is broken. Therefore nontrivial noncommutative corrections are expected. We find there are three kinds of noncommutative corrections in general: 1) $\\xi$-dependent correction which comes from the noncommutativity among momentum operators; 2) momentum-dependent correction which is rooted in the nonlocal interactions in the noncommutative extended model; 3) momentum-independent c...

  1. Aharonov-bohm paradox.

    Science.gov (United States)

    Trammel, G. T.

    1964-01-01

    Aharonov-bohm paradox involving charge particle interaction with stationary current distribution showing that vector potential term in canonical momenta expression represents electromagnetic field momentum

  2. Thermoelectric effect in an Aharonov-Bohm ring with an embedded quantum dot.

    Science.gov (United States)

    Zheng, Jun; Chi, Feng; Lu, Xiao-Dong; Zhang, Kai-Cheng

    2012-01-01

    Thermoelectric effect is studied in an Aharonov-Bohm interferometer with an embedded quantum dot (QD) in the Coulomb blockade regime. The electrical conductance, electron thermal conductance, thermopower, and thermoelectric figure-of-merit are calculated by using the Keldysh Green's function method. It is found that the figure-of-merit ZT of the QD ring may be quite high due to the Fano effect originated from the quantum interference effect. Moreover, the thermoelectric efficiency is sensitive to the magnitude of the dot-lead and inter-lead coupling strengthes. The effect of intradot Coulomb repulsion on ZT is significant in the weak-coupling regime, and then large ZT values can be obtained at rather high temperature. PMID:22369454

  3. Against a proposed alternative explanation of the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    The Aharonov-Bohm (AB) effect is understood to demonstrate that the Maxwell fields can act nonlocally in some situations. However it has been suggested from time to time that the AB effect is somehow a consequence of a local classical electromagnetic field phenomenon involving energy that is temporarily stored in the overlap between the external field and the field of which the beam particle is the source. That idea was shown in the past not to work for some models of the source of the external field. Here a more general proof is presented for the magnetic AB effect to show that the overlap energy is always compensated by another contribution to the energy of the magnetic field in such a way that the sum of the two is independent of the external flux. Therefore no such mechanism can underlie the AB effect.

  4. Combined Aharonov-Bohm and Zeeman spin-polarization effects in a double quantum dot ring

    International Nuclear Information System (INIS)

    A mesoscale Aharonov-Bohm (AB) ring with a quantum dot (QD) embedded in each arm is computationally modeled for unique transmission properties arising from a combination of AB effects and Zeeman splitting of the QD energy levels. A tight-binding Hamiltonian is solved, providing analytical expressions for the transmission as a function of system parameters. Transmission resonances with spin-polarized output are presented for cases involving either a perpendicular field, or a parallel field, or both. The combination of the AB-effect with Zeeman splitting allows sensitive control of the output resonances of the device, manifesting in spin-polarized states which separate and cross as a function of applied field. In the case with perpendicular flux, the AB-oscillations exhibit atypical non-periodicity, and Fano-type resonances appear as a function of magnetic flux due to the flux-dependent shift in the QD energy levels via the Zeeman effect.

  5. Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap.

    Science.gov (United States)

    Noguchi, Atsushi; Shikano, Yutaka; Toyoda, Kenji; Urabe, Shinji

    2014-01-01

    Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov-Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ0 through the rotor [(0.99 ± 0.07) × φ0]. PMID:24820051

  6. The Aharonov-Bohm effect and fractional statistics of distinguishable particles

    International Nuclear Information System (INIS)

    In two-dimensional space, the topological coupling arising between charged particles with attached magnetic fluxes, via the Aharonov-Bohm effect, causes distinguishable particles to effectively acquire quantum statistics: a nontrivial quantum phase is generated when a particle of one species encircles one of a different species. We discuss a number of exact and numerical results concerning distinguishable particles with fractional statistics. Just like for anyons, the spectrum of such particles confined to the lowest Landau level of a strong magnetic field can be found exactly. Then a system of particles in the presence of static magnetic fluxes (equivalent to particles with infinite mass) is considered, and the low-lying states of one particle in the presence of two fluxes and two particles in the presence of one flux are analyzed.

  7. The manifestly covariant Aharonov-Bohm effect in terms of the 4D fields

    CERN Document Server

    Ivezic, Tomislav

    2014-01-01

    In this paper it is presented a manifestly covariant formulation of the Aharonov-Bohm (AB) phase difference for the magnetic AB effect . This covariant AB phase is written in terms of the Faraday 2-form F and using the decomposition of F in terms of the electric and magnetic fields as four-dimensional (4D) geometric quantities. It is shown that there is a static electric field outside a stationary solenoid with resistive conductor carrying steady current, which causes that the AB phase difference in the magnetic AB effect may be determined by the electric part of the covariant expression, i.e. by the local influence of the 4D electric field and not, as generally accepted,in terms of nonzero vector potential.

  8. Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap

    CERN Document Server

    Noguchi, Atshushi; Toyoda, Kenji; Urabe, Shinji

    2014-01-01

    Quantum tunnelling is a common fundamental quantum-mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum-tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here, we realise a quantum-tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum-tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov-Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic-flux quantum $\\phi_0$ through the rotor [($0.99 \\pm 0.07)\\times \\phi_0$].

  9. Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer

    Directory of Open Access Journals (Sweden)

    Yang XF

    2010-01-01

    Full Text Available Abstract We investigate quantum interference effects in a double-Aharonov-Bohm (AB interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.

  10. Aharonov-Bohm effect of excitons in nano-rings

    OpenAIRE

    Hu, Hui; Zhu, Jia-Lin; Li, Dai-Jun; Xiong, Jia-Jiong

    2000-01-01

    The magnetic field effects on excitons in an InAs nano-ring are studied theoretically. By numerically diagonalizing the effective-mass Hamiltonian of the problem, which can be separated into terms in centre-of-mass and relative coordinates, we calculate the low-lying exciton energy levels and oscillator strengths as a function of the width of the ring and the strength of the external magnetic field. The analytical results are obtained for a narrow-width nano-ring in which the radial motion is...

  11. Aharonov-Bohm effect in curved space and cosmic strings

    International Nuclear Information System (INIS)

    The paper deals with the development of the theory of nonrelativistic particle scattering in the cosmic string field, which is considered as a registration of magnetic and gravitation strings. The effects, which are caused by the finite nature of the transverse parameters of the strings, are taken into account making sufficiently general assumptions about the distribution of the magnetic field and space curvature inside the string. It is shown that in a certain region of angles the differential scattering section significantly depends on the string magnetic flux value at all absolute values of the bombarding particle wind vector. 34 refs

  12. Aharonov-Bohm effect in an electron-hole graphene ring system

    OpenAIRE

    D. Smirnov; Schmidt, H; Haug, R. J.

    2012-01-01

    Aharonov-Bohm oscillations are observed in a graphene quantum ring with a top gate covering one arm of the ring. As graphene is a gapless semiconductor this geometry allows to study not only the quantum interference of electrons with electrons or holes with holes but also the unique situation of quantum interference between electrons and holes. The period and amplitude of the observed Aharonov-Bohm oscillations are independent of the sign of the applied gate voltage showing the equivalence be...

  13. Enhancement of the Aharonov-Bohm effect of neutral excitons in semiconductor nanorings with an electric field

    Science.gov (United States)

    Maslov, A. V.; Citrin, D. S.

    2003-03-01

    This work demonstrates that the Aharonov-Bohm effect for excitons, practically indistinguishable from the numerical noise without an applied electric field, becomes clearly evident in the optical absorption once the electric field is applied in the plane containing the nanoring. The enhancement arises as a result of the field-induced delocalization of the relative electron-hole motion around the entire ring. The excitonic effects are essential to describe even qualitatively the absorption spectra.

  14. 2D Pauli Equation with Hulthén Potential in the Presence of Aharonov-Bohm Effect

    Institute of Scientific and Technical Information of China (English)

    N.Ferkous; A.Bounames

    2013-01-01

    The 2D Pauli equation with Hulthén potential for spin-1/2 particle in the presence of Aharonov-Bohm (AB) field is solved analytically,on the assumption that an effective approximation is used for the centrifugai term.Singular and regular solutions of the problem are obtained.It is shown that the AB field lifts the degeneracy of the energy levels.The range of the flux parameter for which singular solutions are allowed is modified compared to the pure AB case.When the screening parameter vanishes,it is shown that the obtained energy spectrum becomes the same as that of the Aharonov-Bohm Coulomb problem.

  15. Fano Interference versus Kondo Effect in Strongly Correlated T-Shaped Quantum Dots Embedded in an Aharonov-Bohm Ring

    Institute of Scientific and Technical Information of China (English)

    CHEN Bao-Ju; CHEN Xiong-Wen; SHI Zhen-Gang; ZHU Xi-Xiang; SONG Ke-Hui; WU Shao-Quan

    2007-01-01

    We theoretically investigate the properties of the ground state of the strongly correlated T-shaped double quantum dots embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian.It is found that in this system,the persistent current depends sensitively on the parity and size of the ring.With the increase of interdot coupling,the persistent current is suppressed due to the enhancing Fano interference weakening the Kondo effect.Moreover,when the spin of quantum dot embedded in the aharonovBohm ring is screened,the persistent current peak is not affected by interdot coupling.Thus this model may be a new candidate for detecting Kondo screening cloud.

  16. Valley Zeeman energy in monolayer MoS2 quantum rings: Aharonov-Bohm effect

    Science.gov (United States)

    Oliveira, D.; Fu, Jiyong; Villegas-Lelovsky, L.; Dias, A. C.; Qu, Fanyao

    2016-05-01

    We investigate the valley Zeeman energy (VZE) in monolayer MoS2 quantum rings, subjected to a magnetic flux Φ only passing through a hole region enclosed by the inner circle of the ring. To gain insight on our numerical outcomes for finite two-dimensional rings, an analytic solution in the one-dimensional limit (zero ring width) is also presented. Although no magnetic field is applied inside the ring region, we observe finite VZEs. Interestingly, in contrast to the usual linear scenario, the VZE of the rings exhibits an oscillatory dependence on Φ with possible vanishing valley Zeeman effect even in a nonzero magnetic flux due to Aharonov-Bohm type effect. On the other hand, within one period of oscillations the VZE increases linearly with Φ . Furthermore, for a given magnetic flux, the valley Zeeman effect is more pronounced in a ring with a stronger quantum confinement. Thus the VZE can be tuned by either magnetic flux or ring confinement or both of them. This opens a new route for controlling the valley Zeeman effect using a nonmagnetic means.

  17. Aharonov-Bohm Effect in the Photodetachment Microscopy of Hydrogen Negative Ions in an Electric Field

    Science.gov (United States)

    Wang, Dehua

    2014-09-01

    The Aharonov-Bohm (AB) effect in the photodetachment microscopy of the H- ions in an electric field has been studied on the basis of the semiclassical theory. After the H- ion is irradiated by a laser light, they provide a coherent electron source. When the detached electron is accelerated by a uniform electric field, two trajectories of a detached electron which run from the source to the same point on the detector, will interfere with each other and lead to an interference pattern in the photodetachment microscopy. After the solenoid is electrified beside the H- ion, even though no Lorentz force acts on the electron outside the solenoid, the photodetachment microscopy interference pattern on the detector is changed with the variation in the magnetic flux enclosed by the solenoid. This is caused by the AB effect. Under certain conditions, the interference pattern reaches the macroscopic dimensions and could be observed in a direct AB effect experiment. Our study can provide some predictions for the future experimental study of the AB effect in the photodetachment microscopy of negative ions.

  18. The Aharonov-Bohm effect in a spatially confining theory based on a turbulent fluid

    CERN Document Server

    Antonov, Dmitri

    2012-01-01

    Wilson loops in a turbulent fluid are shown to respect a specific area law corresponding to the Kolmogorov scaling. This law leads to the condensation of a complex-valued scalar field minimally coupled to the velocity field. We use this finding to estimate a v.e.v. of the dual Higgs field, which appears in the hydrodynamic description of a spatially confining dual Landau-Ginzburg theory. The temperature dependence of all other parameters of this theory is found upon a comparison with the spatial string tension and the chromo-magnetic vacuum correlation length of the Yang-Mills gluon plasma. In particular, a nonperturbative contribution to the shear viscosity of the dual fluid comes out exponentially suppressed with temperature. Interactions of the dual Abrikosov vortices with excitations of the fluid yield a long-range Aharonov-Bohm effect. This effect is shown to take place for all but calculated discrete values of the product of the kinematic viscosity of the fluid to the coupling constant of the dual Higgs...

  19. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  20. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  1. Effect of vacuum polarization of charged massive fermions in an Aharonov-Bohm field

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V.R. [M.V. Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation)

    2014-09-15

    The effect of vacuum polarization of charged massive fermions in an Aharonov-Bohm (AB) potential in 2 + 1 dimensions is investigated. The causal Green function of the Dirac equation with the AB potential is represented via the regular and irregular solutions of the two-dimensional radial Dirac equation. It is shown that the vacuum current density contains the contribution from free filled states of the negative energy continuum as well as that from a bound unfilled state, which can emerge in the above background due to the interaction of the fermion's spin magnetic moment with the AB magnetic field, while the induced charge density contains only the contribution from the bound state. The expressions for the vacuum charge and induced current densities are obtained (recovered for massless fermions) for the graphene in the field of infinitesimally thin solenoid perpendicular to the plane of a sample. We also find the bound state energy as a function of magnetic flux, fermion spin, and the radius of solenoid, and we discuss the role of the so-called self-adjoint extension parameter and determine it in terms of the physics of the problem. (orig.)

  2. NonAbelian Vortices, Large Winding Limits and Aharonov-Bohm Effects

    CERN Document Server

    Bolognesi, Stefano; Konishi, Kenichi

    2015-01-01

    Remarkable simplification arises from considering vortex equations in the large winding limit. This was recently used in [1] to display all sorts of vortex zeromodes, the orientational, translational, fermionic as well as semi-local, and to relate them to the apparently distinct phenomena of the Nielsen-Olesen-Ambjorn magnetic instabilities. Here we extend these analyses to more general types of BPS nonAbelian vortices, taking as a prototype a system with gauged U(1) x SU(N) x SU(N) symmetry where the VEV of charged scalar fields in the bifundamental representation breaks the symmetry to SU(N)_{l+r} . The presence of the massless SU(N)_{l+r} gauge fields in 4D bulk introduces all sorts of non-local, topological phenomena such as the nonAbelian Aharonov-Bohm effects, which in the theory with global SU(N)_r group (g_r=0) are washed away by the strongly fluctuating orientational zeromodes in the worldsheet. Physics changes qualitatively at the moment the right gauge coupling constant g_r is turned on.

  3. Spin Filter Based on an Aharonov-Bohm Interferometer with Rashba Spin-Orbit Effect

    Institute of Scientific and Technical Information of China (English)

    FANG Ming; SUN Lian-Liang

    2008-01-01

    We propose a spin filter based on both the quantum interference and the Rashba spin-orbit (RSO) effects. This spin filter consists of a Aharonov-Bohm (AB) interferometer with two quantum dots (QDs) inserted in its arms.The influences of a magnetic flux ψ threading through the AB ring and the RSO interaction inside the two QDs are taken into account by using the nonequilibrium Green's function technique. Due to the existence of the RSO interaction, the electrons flowing through different arms of the ring will acquire a spin-dependent phase factor in the linewidth matrix elements. This phase factor, combined with the influence of the magnetic flux, will induce a spin-dependent electron transport through the device. Moreover, we show that by tuning the magnetic flux,the RSO strength and the inter-dot tunnelling coupling strength, a pure spin-up or spin-down conductance can be obtained when a spin-unpolarized current is injected from the external leads, which can be used to filter the electron spin.

  4. Effect of vacuum polarization of charged massive fermions in an Aharonov-Bohm field

    International Nuclear Information System (INIS)

    The effect of vacuum polarization of charged massive fermions in an Aharonov-Bohm (AB) potential in 2 + 1 dimensions is investigated. The causal Green function of the Dirac equation with the AB potential is represented via the regular and irregular solutions of the two-dimensional radial Dirac equation. It is shown that the vacuum current density contains the contribution from free filled states of the negative energy continuum as well as that from a bound unfilled state, which can emerge in the above background due to the interaction of the fermion's spin magnetic moment with the AB magnetic field, while the induced charge density contains only the contribution from the bound state. The expressions for the vacuum charge and induced current densities are obtained (recovered for massless fermions) for the graphene in the field of infinitesimally thin solenoid perpendicular to the plane of a sample. We also find the bound state energy as a function of magnetic flux, fermion spin, and the radius of solenoid, and we discuss the role of the so-called self-adjoint extension parameter and determine it in terms of the physics of the problem. (orig.)

  5. Aharonov-Bohm effects on bright and dark excitons in carbon nanotubes

    International Nuclear Information System (INIS)

    A short-range part of the Coulomb interaction causes splitting and shift of excitons due to exchange interaction and mixing between different valleys in semiconducting carbon nanotubes. In the absence of a magnetic flux only a single exciton is optically active (bright) and all others are inactive (dark). Two bright excitons appear in the presence of an Aharonov- Bohm magnetic flux

  6. The two-level model of the excitonic Aharonov-Bohm effect in strained self-assembled semiconductor nanorings

    Science.gov (United States)

    Tadić, M.; Arsoski, V.; Čukarić, N.; Peeters, F. M.

    2013-12-01

    The excitonic Aharonov-Bohm oscillations in type-I nanorings are found to be caused by anticrossings between exciton states. These anticrossings are analyzed by a tight-binding-like model of exciton states. The criteria for the existence of the excitonic Aharonov-Bohm oscillations are formulated. For nanorings of realistic width and height, the range of values of the inner radius where the excitonic Aharonov-Bohm oscillations exist is found.

  7. Aharonov-Bohm oscillations in the local density of states

    OpenAIRE

    A. Cano; Paul, I

    2009-01-01

    The scattering of electrons with inhomogeneities produces modulations in the local density of states of a metal. We show that electron interference contributions to these modulations are affected by the magnetic field via the Aharonov-Bohm effect. This can be exploited in a simple STM setup that serves as an Aharonov-Bohm interferometer at the nanometer scale.

  8. Polarized excitons in nanorings and the `optical' Aharonov-Bohm effect

    OpenAIRE

    Govorov, A. O.; Ulloa, S. E.; Karrai, K.; Warburton, R. J.

    2002-01-01

    The quantum nature of matter lies in the wave function phases that accumulate while particles move along their trajectories. A prominent example is the Aharonov-Bohm phase, which has been studied in connection with the conductance of nanostructures. However, optical response in solids is determined by neutral excitations, for which no sensitivity to magnetic flux would be expected. We propose a new mechanism for the topological phase of a neutral particle, a polarized exciton confined to a se...

  9. Aharonov-Bohm phase for an electromagnetic wave background

    Science.gov (United States)

    Bright, Max; Singleton, Douglas; Yoshida, Atsushi

    2015-09-01

    The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in time-dependent potentials. In particular, we focus on the case of a charged particle moving in the time-varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential (i.e. oint A_μ dx ^μ ) and the field (i.e. 1/2int F_{μ ν } dσ ^{μ ν }) forms of the Aharonov-Bohm phase. We give conditions in terms of the parameters of the system (frequency of the electromagnetic wave, the size of the space-time loop, amplitude of the electromagnetic wave) under which the time-varying Aharonov-Bohm effect could be observed.

  10. Aharonov-Bohm phase for an electromagnetic wave background

    International Nuclear Information System (INIS)

    The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in time-dependent potentials. In particular, we focus on the case of a charged particle moving in the time-varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential (i.e. circular integral Aμ dxμ) and the field (i.e. (1)/(2) ∫ Fμνdσμν) forms of the Aharonov-Bohm phase. We give conditions in terms of the parameters of the system (frequency of the electromagnetic wave, the size of the space-time loop, amplitude of the electromagnetic wave) under which the time-varying Aharonov-Bohm effect could be observed. (orig.)

  11. Aharonov-Bohm phase for an electromagnetic wave background

    Energy Technology Data Exchange (ETDEWEB)

    Bright, Max [California State University Fresno, Department of Physics, Fresno, CA (United States); Singleton, Douglas [California State University Fresno, Department of Physics, Fresno, CA (United States); UNESP-Univ. Estadual Paulista, ICTP South American Institute for Fundamental Research, Sao Paulo, SP (Brazil); Yoshida, Atsushi [University of Virginia, Department of Physics, Charlottesville, VA (United States); Hue University College of Education, Hue (Viet Nam)

    2015-09-15

    The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in time-dependent potentials. In particular, we focus on the case of a charged particle moving in the time-varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential (i.e. circular integral A{sub μ} dx{sup μ}) and the field (i.e. (1)/(2) ∫ F{sub μν}dσ{sup μν}) forms of the Aharonov-Bohm phase. We give conditions in terms of the parameters of the system (frequency of the electromagnetic wave, the size of the space-time loop, amplitude of the electromagnetic wave) under which the time-varying Aharonov-Bohm effect could be observed. (orig.)

  12. Aharonov-Bohm Constraint for Fusion

    Science.gov (United States)

    Yahalom, Asher

    It was shown that an Aharonov-Bohm (AB) effect exists in magnetohydrodynamics (MHD). This effect is best described in terms of the MHD variational variables. If a MHD flow has a non trivial topology some of the functions appearing in the MHD Lagrangian are non-single valued. Some of those functions are analogue to the phases in the AB celebrated effect. While the manifestation of the quantum AB effect is in interference fringe patterns, the manifestation of the MHD Aharonov-Bohm effect is through a new dynamical conservation law. This local conservation law will be shown to constrain the dynamics of MHD flows including fusion scenarios. Bibliography

  13. Quantum Faraday Effect in Double-Dot Aharonov-Bohm Ring

    OpenAIRE

    Kang, Kicheon

    2011-01-01

    We investigate Faraday's law of induction manifested in the quantum state of Aharonov-Bohm loops. In particular, we propose a flux-switching experiment for a double-dot AB ring to verify the phase shift induced by Faraday's law. We show that the induced {\\em Faraday phase} is geometric and nontopological. Our study demonstrates that the relation between the local phases of a ring at different fluxes is not arbitrary but is instead determined by Faraday's inductive law, which is in strong cont...

  14. Instanton Aharonov-Bohm effect and macroscopic quantum coherence in charge-density-wave systems

    International Nuclear Information System (INIS)

    It is predicted that in a charge-density-wave (CDW) ring-shaped conductor, placed in an external vector-potential field, there should appear a new Aharonov-Bohm contribution to the magnetic susceptibility and the electrical conductivity oscillating as a function of the flux with the period φ0=hc/2e. This contribution arises from instanton transitions between degenerate vacua of the CDW-condensate and is the solid-state realization of θ-vacuum in the quantum field theory. The period transforms into φ0/N in N strongly correlated parallel CDW chains. (author). 27 refs, 2 figs

  15. Effective beam separation schemes for the measurement of the electric Aharonov-Bohm effect in an ion interferometer.

    Science.gov (United States)

    Schütz, G; Rembold, A; Pooch, A; Prochel, H; Stibor, A

    2015-11-01

    We propose an experiment for the first proof of the type I electric Aharonov-Bohm effect in an ion interferometer for hydrogen. The performances of three different beam separation schemes are simulated and compared. The coherent ion beam is generated by a single atom tip (SAT) source and separated by either two biprisms with a quadrupole lens, two biprisms with an einzel-lens or three biprisms. The beam path separation is necessary to introduce two metal tubes that can be pulsed with different electric potentials. The high time resolution of a delay line detector allows to work with a continuous ion beam and circumvents the pulsed beam operation as originally suggested by Aharonov and Bohm. We demonstrate that the higher mass and therefore lower velocity of ions compared to electrons combined with the high expected SAT ion emission puts the direct proof of this quantum effect for the first time into reach of current technical possibilities. Thereby a high detection rate of coherent ions is crucial to avoid long integration times that allow the influence of dephasing noise from the environment. We can determine the period of the expected matter wave interference pattern and the signal on the detector by determining the superposition angle of the coherent partial beams. Our simulations were tested with an electron interferometer setup and agree with the experimental results. We determine the separation scheme with three biprisms to be most efficient and predict a total signal acquisition time of only 80s to measure a phase shift from 0 to 2π due to the electric Aharonov-Bohm effect. PMID:26188995

  16. Fano effect in the Andreev reflection of the Aharonov-Bohm-Fano ring with Majorana bound states

    Science.gov (United States)

    Jiang, Cui; Zheng, Yi-Song

    2015-06-01

    The Andreev reflection in an Aharonov-Bohm-Fano ring induced by Majorana bound states (MBSs) is theoretically investigated. We find that compared with the Fano effect in the normal electron tunneling process, the Fano effect here is more determined by the structural parameters, i.e., the quantum dot level, the dot-MBS coupling, and the dot-MBS and MBS-lead couplings. By transforming the ring into its Nambu representation, we present a comprehensive analysis about the quantum interference in the Andreev reflection, and then explain the reason for the occurrence of the Fano effect. These results will be helpful for understanding the quantum interference in the MBS-assisted Andreev reflection.

  17. Spin-dependent Seebeck effect in Aharonov-Bohm rings with Rashba and Dresselhaus spin-orbit interactions

    Science.gov (United States)

    Liu, Bin; Li, Yunyun; Zhou, Jun; Nakayama, Tsuneyoshi; Li, Baowen

    2016-06-01

    We theoretically investigate the spin-dependent Seebeck effect in an Aharonov-Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin-orbit interactions under magnetic flux perpendicular to the ring. We apply the Green's function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin-orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin-orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.

  18. Aharonov-Bohm phase for an electromagnetic wave background

    CERN Document Server

    Bright, Max; Yoshida, Atsushi

    2015-01-01

    The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in {\\it time-dependent} potentials . In particular, we focus on the case of a charged particle moving in the time varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential ({\\it i.e.} $\\oint A_\\mu dx ^\\mu$) and field ({\\it i.e.} $\\frac{1}{2}\\int F_{\\mu \

  19. Characterisation of ferromagnetic rings for Zernike phase plates using the Aharonov-Bohm effect.

    Science.gov (United States)

    Edgcombe, C J; Ionescu, A; Loudon, J C; Blackburn, A M; Kurebayashi, H; Barnes, C H W

    2012-09-01

    Holographic measurements on magnetised thin-film cobalt rings have demonstrated both onion and vortex states of magnetisation. For a ring in the vortex state, the difference between phases of electron paths that pass through the ring and those that travel outside it was found to agree very well with Aharonov-Bohm theory within measurement error. Thus the magnetic flux in thin-film rings of ferromagnetic material can provide the phase shift required for phase plates in transmission electron microscopy. When a ring of this type is used as a phase plate, scattered electrons will be intercepted over a radial range similar to the ring width. A cobalt ring of thickness 20 nm can produce a phase difference of π/2 from a width of just under 30 nm, suggesting that the range of radial interception for this type of phase plate can be correspondingly small. PMID:22842114

  20. Polarized excitons in nanorings and the optical Aharonov-Bohm effect

    Science.gov (United States)

    Govorov, A. O.; Ulloa, S. E.; Karrai, K.; Warburton, R. J.

    2002-08-01

    The quantum nature of matter lies in the wave function phases that accumulate while particles move along their trajectories. A prominent example is the Aharonov-Bohm phase, which has been studied in connection with the conductance of nanostructures. However, optical response in solids is determined by neutral excitations, for which no sensitivity to magnetic flux would be expected. We propose a mechanism for the topological phase of a neutral particle, a polarized exciton confined to a semiconductor quantum ring. We predict that this magnetic-field induced phase may strongly affect excitons in a system with cylindrical symmetry, resulting in switching between ``bright'' exciton ground states and novel ``dark'' states with nearly infinite lifetimes. Since excitons determine the optical response of semiconductors, the predicted phase can be used to tailor photon emission from quantum nanostructures.

  1. Measurement of the second-order Zeeman effect on the sodium clock transition in the weak-magnetic-field region using the scalar Aharonov-Bohm phase

    International Nuclear Information System (INIS)

    The second-order Zeeman effect of the sodium clock transition in a weak magnetic field of less than 50 μT was measured as the scalar Aharonov-Bohm phase by two-photon stimulated Raman atom interferometry. The ac Stark effect of the Raman pulse was canceled out by adopting an appropriate intensity ratio of two photons in the Raman pulse. The Ramsey fringes for the pulse separation of 7 ms were obtained with a phase uncertainty of π/200 rad. The nondispersive feature of the scalar Aharonov-Bohm phase was clearly demonstrated through 18 fringes with constant amplitude. The Breit-Rabi formula of the sodium clock transition was verified to be Δν=(0.222±0.003)x1012xB1.998±0.004 in a magnetic field of less than 50 μT.

  2. Aharonov-Bohm Effect for Bound States on the Confinement of a Relativistic Scalar Particle to a Coulomb-Type Potential in Kaluza-Klein Theory

    Directory of Open Access Journals (Sweden)

    E. V. B. Leite

    2015-01-01

    Full Text Available Based on the Kaluza-Klein theory, we study the Aharonov-Bohm effect for bound states for a relativistic scalar particle subject to a Coulomb-type potential. We introduce this scalar potential as a modification of the mass term of the Klein-Gordon equation, and a magnetic flux through the line element of the Minkowski spacetime in five dimensions. Then, we obtain the relativistic bound states solutions and calculate the persistent currents.

  3. Aharonov-Bohm oscillations of a tunable quantum ring

    OpenAIRE

    Keyser, U.F; Borck, S.; Haug, R. J.; Wegscheider, W.; Bichler, M.; Abstreiter, G.

    2002-01-01

    With an atomic force microscope a ring geometry with self-aligned in-plane gates was directly written into a GaAs/AlGaAs-heterostructure. Transport measurements in the open regime show only one transmitting mode and Aharonov-Bohm oscillations with more than 50% modulation are observed in the conductance. The tuning via in-plane gates allows to study the Aharonov-Bohm effect in the whole range from the open ring to the Coulomb-blockade regime.

  4. Aharonov-Bohm Radiation

    CERN Document Server

    Jones-Smith, Katherine; Vachaspati, Tanmay

    2009-01-01

    A solenoid oscillating in vacuum will pair produce charged particles due to the Aharonov-Bohm (AB) interaction. We calculate the radiation pattern and power emitted for charged scalar particles. We extend the solenoid analysis to cosmic strings, and find enhanced radiation from cusps and kinks on loops. We argue by analogy with the electromagnetic AB interaction that cosmic strings should emit photons due to the gravitational AB interaction of fields in the conical spacetime of a cosmic string. We calculate the emission from a kink and find that it is of similar order as emission from a cusp, but kinks are vastly more numerous than cusps and may provide a more interesting observational signature.

  5. Aharonov-Bohm scattering on a cone

    OpenAIRE

    Alvarez, Marcos

    1998-01-01

    The Aharonov-Bohm scattering amplitude is calculated in the context of planar gravity with localized sources which also carry a magnetic flux. These sources cause space-time to develop conical singularities at their location, thus introducing novel effects in the scattering of electrically charged particles. The behaviour of the wave function in the proximity of the classical scattering directions is analyzed by means of an asymptotic expansion previously introduced by the author. It is found...

  6. Influence of Auxiliary Equation on Wave Functions for Time-Dependent Pauli Equation in Presence of Aharonov-Bohm Effect

    Institute of Scientific and Technical Information of China (English)

    M. Maamache; C. Lahoulou; Y. Saadi

    2009-01-01

    Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov-Bohm effect (AB) and external scalar potential. For the spin particles the problem with the magnetic field is that it introduces a singularity into wave equation at the origin. A physical motivation is to replace the zero radius flux tube by one of radius R, with the additional condition that the magnetic field be confined to the surface of the tube, and then taking the limit R → 0 at the end of the computations. We point that the invariant operator must contain the step function θ(r - R). Consequently, the problem becomes more complicated. In order to avoid this difficulty, we replace the radius R by p(t)R, where p(t) is a positive time-dependent function. Then at the end of calculations we take the limit R →0.The qualitative properties for the invariant operator spectrum are described separately for the different values of the parameter C appearing in the nonlinear auxiliary equation satisfied by p(t), i.e., C > 0, C = 0, and C 0) or continuous (C≤0).

  7. Influence of Auxiliary Equation on Wave Functions for Time-Dependent Pauli Equation in Presence of Aharonov-Bohm Effect

    International Nuclear Information System (INIS)

    Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov-Bohm effect (AB) and external scalar potential. For the spin particles the problem with the magnetic field is that it introduces a singularity into wave equation at the origin. A physical motivation is to replace the zero radius flux tube by one of radius R, with the additional condition that the magnetic field be confined to the surface of the tube, and then taking the limit R → 0 at the end of the computations. We point that the invariant operator must contain the step function θ(r - R). Consequently, the problem becomes more complicated. In order to avoid this difficulty, we replace the radius R by ρ(t)R, where ρ(t) is a positive time-dependent function. Then at the end of calculations we take the limit R → 0. The qualitative properties for the invariant operator spectrum are described separately for the different values of the parameter C appearing in the nonlinear auxiliary equation satisfied by ρ(t), i.e., C > 0, C = 0, and C 0) or continuous (C ≤ 0). (general)

  8. Non-circular semiconductor nanorings of type I and II: Emission kinetics in the exciton Aharonov-Bohm effect

    OpenAIRE

    Grochol, Michal; Zimmermann, Roland

    2007-01-01

    Transition energies and oscillator strengths of excitons in dependence on magnetic field are investigated in type I and II semiconductor nanorings. A slight deviation from circular (concentric) shape of the type II nanoring gives a better observability of the Aharonov-Bohm oscillations since the ground state is always optically active. Kinetic equations for the exciton occupation are solved with acoustic phonon scattering as the major relaxation process, and absorption and luminescence spectr...

  9. Anomalous aharonov-bohm gap oscillations in carbon nanotubes.

    Science.gov (United States)

    Sangalli, Davide; Marini, Andrea

    2011-10-12

    The gap oscillations caused by a magnetic flux penetrating a carbon nanotube represent one of the most spectacular observations of the Aharonov-Bohm effect at the nanoscale. Our understanding of this effect is, however, based on the assumption that the electrons are strictly confined on the tube surface, on trajectories that are not modified by curvature effects. Using an ab initio approach based on density functional theory, we show that this assumption fails at the nanoscale inducing important corrections to the physics of the Aharonov-Bohm effect. Curvature effects and electronic density that is spilled out of the nanotube surface are shown to break the periodicity of the gap oscillations. We predict the key phenomenological features of this anomalous Aharonov-Bohm effect in semiconductive and metallic tubes and the existence of a large metallic phase in the low flux regime of multiwalled nanotubes, also suggesting possible experiments to validate our results. PMID:21805987

  10. Quantum Computation with Aharonov-Bohm Qubits

    OpenAIRE

    Barone, A.; Hakioglu, T.; Kulik, I. O.

    2002-01-01

    We analyze the posibility of employing the mesoscopic-nanoscopic ring of a normal metal in a doubly degenerate persistent current state with a third auxihilary level and in the presence of the Aharonov-Bohm flux equal to the half of the normal flux quantum $\\hbar c/e$ as a qubit. The auxiliary level can be effectively used for all fundamental quantum logic gate (qu-gate) operations which includes the initialization, phase rotation, bit flip and the Hadamard transformation as well as the doubl...

  11. Noncircular semiconductor nanorings of types I and II: Emission kinetics in the excitonic Aharonov-Bohm effect

    Science.gov (United States)

    Grochol, Michal; Zimmermann, Roland

    2007-11-01

    Transition energies and oscillator strengths of excitons in dependence on magnetic field are investigated in types I and II semiconductor nanorings. A slight deviation from circular (concentric) shape of the type II nanoring gives a better observability of the Aharonov-Bohm oscillations since the ground state is always optically active. Kinetic equations for the exciton occupation are solved with acoustic phonon scattering as the major relaxation process, and absorption and luminescence spectra are calculated, showing deviations from equilibrium. The presence of a nonradiative exciton decay leads to a quenching of the integrated photoluminescence with magnetic field.

  12. Lorentz violation correction to the Aharonov-Bohm scattering

    Science.gov (United States)

    Anacleto, M. A.

    2015-10-01

    In this paper, using a (2 +1 )-dimensional field theory approach, we study the Aharonov-Bohm (AB) scattering with Lorentz symmetry breaking. We obtain the modified scattering amplitude to the AB effect due to the small Lorentz violation correction in the breaking parameter and prove that up to one loop the model is free from ultraviolet divergences.

  13. Lorentz violation correction to the Aharonov-Bohm scattering

    CERN Document Server

    Anacleto, M A

    2015-01-01

    In this paper, using a (2+1)-dimensional field theory approach we study the Aharonov-Bohm (AB) scattering with Lorentz symmetry breaking. We obtain the modified scattering amplitude to the AB effect due to the small Lorentz violation correction in breaking parameter and prove that up to one-loop the model is free from ultraviolet divergences.

  14. Group-theoretical derivation of Aharonov-Bohm phase shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, C. R. [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171 (United States)

    2013-02-15

    The phase shifts of the Aharonov-Bohm effect are generally determined by means of the partial wave decomposition of the underlying Schroedinger equation. It is shown here that they readily emerge from an o(2,1) calculation of the energy levels employing an added harmonic oscillator potential which discretizes the spectrum.

  15. Aharonov-Bohm effect in undoped graphene: Magnetotransport via evanescent waves

    OpenAIRE

    Katsnelson, M. I.

    2009-01-01

    Using conformal mapping technique, compact and general analytic expressions for the effects of magnetic fluxes on conductance and Fano factor of undoped graphene nanoflakes in pseudodiffusive regime are derived.

  16. Aharonov-Bohm phases and Dynamical Casimir Effect in a quantum LC circuit

    CERN Document Server

    Yao, Yuan

    2016-01-01

    We study novel types of contributions to the partition function of the Maxwell system defined on a small compact manifold ${\\mathbb{M}}$ with nontrivial mappings $\\pi_1[U(1)]\\cong\\mathbb{Z}$. These novel contributions cannot be described in terms of conventional physical propagating photons with two transverse polarizations, and instead emerge as a result of tunneling transitions between topologically different but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that if the same system is considered in the background of a small external time-dependent E\\&M field, then real physical photons will be emitted from the vacuum, similar to the dynamical Casimir effect (DCE) where photons are radiated from the vacuum due to time-dependent boundary conditions. We propose an experimental realization of such small effects using a microwave cavity. We also comment on the possible cosmological implications of this effect.

  17. Topological damping of Aharonov-Bohm effect: quantum graphs and vertex conditions

    OpenAIRE

    Kurasov, P.; Serio, A

    2015-01-01

    The magnetic Schro¨dinger operator was studied on a figure 8-shaped graph. It is shown that for specially chosen vertex conditions, the spectrum of the magnetic operator is independent of the flux through one of the loops, provided the flux through the other loop is zero. Topological reasons for this effect are explained.

  18. Electronic energy levels of nanorings with impurities and Aharonov-Bohm effects

    Science.gov (United States)

    Ramírez, S.

    2011-10-01

    By modeling impurities along a nanoring as general potential forms the Schrödinger equation for ballistic electrons is shown to separate in cylindrical coordinates. We find an analytical eigenvalue equation for N delta-function-barrier impurities in the presence of magnetic flux. Previous calculations of the electronic states of a one-dimensional (1D) and two-dimensional (2D) nanoring for only one or two impurities modeled by equal square barriers is explicitly extended to three and four different or equal impurities modeled as delta-barrier, square-barrier, or delta-well potential forms. This is shown to be generalizable to any number N. Effects on the energy spectra due to magnetic flux and different kinds and numbers of impurities are compared in 1D and 2D nanorings.

  19. Path integral action of a particle in a magnetic field in the noncommutative plane and the Aharonov-Bohm effect

    CERN Document Server

    Gangopadhyay, Sunandan

    2014-01-01

    The formulation of noncommutative quantum mechanics as a quantum system represented in the space of Hilbert-Schmidt operators is used to systematically derive, using the standard time slicing procedure, the path integral action for a particle moving in the noncommutative plane and in the presence of a magnetic field and an arbitrary potential. Using this action, the equation of motion and the energy spectrum for the partcle are obtained explicitly. The Aharonov-Bohm phase is derived using a variety of methods and several dualities between this system and other commutative and noncommutative systems are demonstrated. Finally, the equivalence of the path integral formulation with the noncommutative Schr\\"{o}dinger equation is also established.

  20. Pauli isotonic oscillatorwith an anomalous magnetic moment in the presence of the Aharonov-Bohm effect: Laplace transform approach

    Science.gov (United States)

    Roshanzamir-Nikou, M.; Goudarzi, H.

    2016-02-01

    A strong magnetic field significantly affects the intrinsic magnetic moment of fermions. In quantum electrodynamics, it was shown that the anomalous magnetic moment of an electron arises kinematically, while it results from a dynamical interaction with an external magnetic field for hadrons (proton). Taking the anomalous magnetic moment of a fermion into account, we find an exact expression for the boundstate energy and the corresponding eigenfunctions of a two-dimensional nonrelativistic spin-1/2 harmonic oscillator with a centripetal barrier (known as the isotonic oscillator) including an Aharonov-Bohm term in the presence of a strong magnetic field. We use the Laplace transform method in the calculations. We find that the singular solution contributes to the phase of the wave function at the origin and the phase depends on the spin and magnetic flux.

  1. The Aharonov-Bohm-Casher ring-dot as a flux-tunable resonant tunneling diode

    OpenAIRE

    Citro, R; Romeo, F.

    2008-01-01

    A mesoscopic ring subject to the Rashba spin-orbit interaction and sequentially coupled to an interacting quantum dot, in the presence of Aharonov-Bohm flux, is proposed as a flux tunable tunneling diode. The analysis of the conductance by means of the nonequilibrium Green's function technique, shows an intrinsic bistability at varying the Aharonov-Bohm flux when 2U > \\pi \\Gamma, U being the charging energy on the dot and \\Gamma the effective resonance width. The bistability properties are di...

  2. Relativistic scalar Aharonov-Bohm scattering

    International Nuclear Information System (INIS)

    Full text follows: We study the scattering of a charged spin zero relativistic particle from a fixed, thin, infinitely long solenoid in the framework of the first quantization comparing with the results obtained using the field theory approach. The scattering amplitude, within the viewpoint of the relativistic quantum mechanics, can be calculated exactly as a mimic of the nonrelativistic case, either in the original Aharonov-Bohm way or by using the Berry's magnetization scheme. To implement the perturbative analysis within the first-quantized treatment, we consider the Feshbach-Villars two-component formalism of the Klein-Gordon equation. It is shown that the first Born approximation gives an incomplete result while the second order is divergent as occurs in the nonrelativistic counterpart. We search for additional interactions which might provide the appropriated renormalization of the amplitude. It is shown that the addition of a phenomenological magnetic interaction (naively inspired in the spin half case) generates the correct first order term in the the nonrelativistic leading order but it does not give reasonable results in higher orders. We demonstrate that an external delta potential is necessary to reproduce the correct perturbation expansion as happens in the nonrelativistic situation. However, it does not produce the same effect of the quartic self-interaction in the second quantized treatment, which corresponds to the two body sector of a scalar Chern-Simons theory. In the later case, additional contributions coming from vacuum polarization and vertex corrections spoil the scale invariance characteristic of the nonrelativistic Aharonov-Bohm scattering. (author)

  3. Realization of adiabatic Aharonov-Bohm scattering with neutrons

    Science.gov (United States)

    Sjöqvist, Erik; Almquist, Martin; Mattsson, Ken; Gürkan, Zeynep Nilhan; Hessmo, Björn

    2015-11-01

    The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on a long straight current-carrying wire.

  4. Spin filter effects in an Aharonov-Bohm ring with double quantum dots under general Rashba spin-orbit interactions

    Science.gov (United States)

    Kondo, Kenji

    2016-01-01

    Many researchers have reported on spin filters using linear Rashba spin-orbit interactions (SOI). However, spin filters using square and cubic Rashba SOIs have not yet been reported. We consider that this is because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this study, we try to derive the AC phases acquired under square and cubic Rashba SOIs from the viewpoint of non-Abelian SU(2) gauge theory. These AC phases can be derived successfully from the non-Abelian SU(2) gauge theory without the completing square methods. Using the results, we investigate the spin filtering in a double quantum dot (QD) Aharonov-Bohm (AB) ring under linear, square, and cubic Rashba SOIs. This AB ring consists of elongated QDs and quasi-one-dimensional quantum nanowires under an external magnetic field. The spin transport is investigated from the left nanowire to the right nanowire in the above structure within the tight-binding approximation. In particular, we focus on the difference of spin filtering among linear, square, and cubic Rashba SOIs. The calculation is performed for the spin polarization by changing the penetrating magnetic flux for the AB ring subject to linear, square, and cubic Rashba SOIs. It is found that perfect spin filtering is achieved for all of the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation. Moreover, the AB rings under general Rashba SOIs behave in totally different ways in response to penetrating magnetic flux, which is attributed to linear, square, and cubic behaviors in the in-plane momentum. This result enables us to make a clear distinction between linear, square, and cubic Rashba SOIs according to the peak position of the perfect spin filtering.

  5. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    OpenAIRE

    Farghadan, R.; Saffarzadeh, A.; Semiromi, E. Heidari

    2014-01-01

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction,...

  6. Observability of the scalar Aharonov-Bohm effect inside a 3D Faraday cage with time-varying exterior charges and masses

    CERN Document Server

    Chiao, R Y; Sundqvist, K M; Inan, N A; Munoz, G A; Singleton, D A; Kang, B S; Martinez, L A

    2014-01-01

    In this paper we investigate the scalar Aharonov-Bohm (AB) effect in two of its forms, i.e., its electric form and its gravitational form. The standard form of the electric AB effect involves having particles (such as electrons) move in regions with zero electric field but different electric potentials. When a particle is recombined with itself, it will have a different phase, which can show up as a change in the way the single particle interferes with itself when it is recombined with itself. In the case where one has quasi-static fields and potentials, the particle will invariably encounter fringing fields, which makes the theoretical and experimental status of the electric AB effect much less clear than that of the magnetic (or vector) AB effect. Here we propose using time varying fields outside of a spherical shell, and potentials inside a spherical shell to experimentally test the scalar AB effect. In our proposal a quantum system will always be in a field-free region but subjected to a non-zero time-var...

  7. GENERAL: Influence of Auxiliary Equation on Wave Functions for Time-Dependent Pauli Equation in Presence of Aharonov-Bohm Effect

    Science.gov (United States)

    Maamache, M.; Lahoulou, C.; Saadi, Y.

    2009-05-01

    Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov-Bohm effect (AB) and external scalar potential. For the spin particles the problem with the magnetic field is that it introduces a singularity into wave equation at the origin. A physical motivation is to replace the zero radius flux tube by one of radius R, with the additional condition that the magnetic field be confined to the surface of the tube, and then taking the limit R → 0 at the end of the computations. We point that the invariant operator must contain the step function θ(r - R). Consequently, the problem becomes more complicated. In order to avoid this difficulty, we replace the radius R by ρ(t)R, where ρ(t) is a positive time-dependent function. Then at the end of calculations we take the limit R → 0. The qualitative properties for the invariant operator spectrum are described separately for the different values of the parameter C appearing in the nonlinear auxiliary equation satisfied by ρ(t), i.e., C > 0, C = 0, and C 0) or continuous (C <= 0).

  8. Hysteretic method for measuring the flux trapped within the core of a superconducting lead-coated ferromagnetic torus by a linked superconducting tin ring, in a novel Aharonov-Bohm-like effect based on the Feynman path-integral principle

    CERN Document Server

    Chiao, Raymond

    2012-01-01

    A novel kind of nonlocal, macroscopic Aharonov-Bohm effect involving two topologically linked superconducting rings made out of two different materials, namely, lead and tin, is suggested for experimental observation, in which the lead ring is a torus containing a core composed of permanently magnetized ferromagnetic material. It is predicted that the remnant fields in a hysteresis loop induced by the application of a magnetic field imposed by a large external pair of Helmholtz coils upon the tin ring, will be asymmetric with respect to the origin of the loop. An appendix based on Feynman's path-integral principle is the basis for these predictions.

  9. Universal Formula for the Expectation Value of the Radial Operator under the Aharonov-Bohm Flux and the Coulomb Field

    OpenAIRE

    Kao, W. F.; Kao, Y. M.; Lin, D. H.

    2002-01-01

    A useful and universal formula for the expectation value of the radial operator in the presence of the Aharonov-Bohm flux and the Coulomb Field is established. We find that the expectation value $$ $(-\\infty \\leq \\lambda \\leq \\infty)$ is greatly affected due to the non-local effect of the magnetic flux although the Aharonov-Bohm flux does not have any dynamical significance in classical mechanics. In particular, the quantum fluctuation increases in the presence of the magnetic f...

  10. Scattering of spin 1/2 particles by the 2+1 dimensional noncommutative Aharonov-Bohm potential

    OpenAIRE

    Ferrari, A. F.; Gomes, M; Stechhahn, C. A.

    2007-01-01

    In this work we study modifications in the Aharonov-Bohm effect for relativistic spin 1/2 particles due to the noncommutativity of spacetime in $2 + 1$ dimensions. The noncommutativity gives rise to a correction to the Aharonov-Bohm potential which is highly singular at the origin, producing divergences in a perturbative expansion around the usual solution of the free Dirac equation. This problem is surmounted by using a perturbative expansion around the exact solution of the \\textit{commutat...

  11. On the Aharonov-Bohm diffusion

    International Nuclear Information System (INIS)

    The diffusion of a charged particle by a singular flux tube is revisited. A simple and rigourous derivation shows that the action of the propagator on an incident plane wave precisely yields the Aharonov-Bohm diffusion amplitude. The forward diffusion is discussed as well as the singularity of the interaction at the position of the flux tube. (orig.)

  12. Time-dependent Aharonov-Bohm Hamiltonian and admissibility criteria of quantum wave functions

    International Nuclear Information System (INIS)

    Self-adjointness of the time-independent Aharonov-Bohm Hamiltonians is shown to allow a continuous family of different dynamics including those following from Pauli's criterion of rotational invariance, Aharonov-Bohm criterion of single valuedness and a version of Pauli's criterion appropriate to cylindrical symmetry suggested by Henneberger. A time-dependent flux F(t) linking the Aharonov-Bohm solenoid leads to the time-dependent AB Hamiltonian. Explicit solutions in cases with and without inaccessible regions for the charged particle rule out applicability of both versions of the Pauli criterion. The solutions contain one time-independent parameter α, integer values of which correspond to single-valued wave functions. Any real (integer or noninteger) value of α is allowed. Charge and current densities depend on α and F(t) only through the combination changing the flux during an experiment can be understood as local effects of the electric field inevitably associated with changing magnetic flux

  13. Aharonov-Bohm detection of two-dimensional magnetostatic cloaks

    Science.gov (United States)

    Valagiannopoulos, Constantinos A.; Askarpour, Amir Nader; Alù, Andrea

    2015-12-01

    Two-dimensional magnetostatic cloaks, even when perfectly designed to mitigate the magnetic field disturbance of a scatterer, may be still detectable with Aharonov-Bohm (AB) measurements, and therefore may affect quantum interactions and experiments with elongated objects. We explore a multilayered cylindrical cloak whose permeability profile is tailored to nullify the magnetic-flux perturbation of the system, neutralizing its effect on AB measurements, and simultaneously optimally suppress the overall scattering. In this way, our improved magnetostatic cloak combines substantial mitigation of the magnetostatic scattering response with zero detectability by AB experiments.

  14. Hidden Photons in Aharonov-Bohm-Type Experiments

    CERN Document Server

    Arias, Paola; Diaz, Marco Aurelio; Jaeckel, Joerg; Koch, Benjamin; Redondo, Javier

    2016-01-01

    We discuss the Aharonov-Bohm effect in the presence of hidden photons kinetically mixed with the ordinary electromagnetic photons. The hidden photon field causes a slight phase shift in the observable interference pattern. It is then shown how the limited sensitivity of this experiment can be largely improved. The key observation is that the hidden photon field causes a leakage of the ordinary magnetic field into the supposedly field-free region. The direct measurement of this magnetic field can provide a sensitive experiment with a good discovery potential, particularly below the $\\sim$ meV mass range for hidden photons.

  15. Patterns of the Aharonov-Bohm oscillations in graphene nanorings

    OpenAIRE

    Romanovsky, Igor; Yannouleas, Constantine; Landman, Uzi

    2012-01-01

    Using extensive tight-binding calculations, we investigate (including the spin) the Aharonov-Bohm (AB) effect in monolayer and bilayer trigonal and hexagonal graphene rings with zigzag boundary conditions. Unlike the previous literature, we demonstrate the universality of integer (hc/e) and half-integer (hc/2e) values for the period of the AB oscillations as a function of the magnetic flux, in consonance with the case of mesoscopic metal rings. Odd-even (in the number of Dirac electrons, N) s...

  16. Hidden superconformal symmetry of the spinless Aharonov-Bohm system

    International Nuclear Information System (INIS)

    A hidden supersymmetry is revealed in the spinless Aharonov-Bohm problem. The intrinsic supersymmetric structure is shown to be intimately related to the scale symmetry. As a result, a bosonized superconformal symmetry is identified in the system. Different self-adjoint extensions of the Aharonov-Bohm problem are studied in the light of this superconformal structure and interacting anyons. The scattering problem of the original Aharonov-Bohm model is discussed in the context of the revealed supersymmetry.

  17. Hidden superconformal symmetry of spinless Aharonov-Bohm system

    OpenAIRE

    Correa, Francisco; Falomir, Horacio; Jakubsky, Vit; Plyushchay, Mikhail S.

    2009-01-01

    A hidden supersymmetry is revealed in the spinless Aharonov-Bohm problem. The intrinsic supersymmetric structure is shown to be intimately related with the scale symmetry. As a result, a bosonized superconformal symmetry is identified in the system. Different self-adjoint extensions of the Aharonov-Bohm problem are studied in the light of this superconformal structure and interacting anyons. Scattering problem of the original Aharonov-Bohm model is discussed in the context of the revealed sup...

  18. Effect of the Aharonov - Bohm Flux on the Magnetic Gap Soliton%一维铁磁链中的磁隙孤子激发

    Institute of Scientific and Technical Information of China (English)

    许长谭

    2001-01-01

    采用Holstein-Primakoff变换、相干态表示、含时微扰原理和多重标度方法,研究了Aharonov-Bohm(A-B)磁通对一维铁磁链中的磁隙孤子产生的影响,得到了在A-B磁通影响下的磁隙孤子的峰值、宽度、能量和自旋空间排列.

  19. Aharonov--Bohm problem for vector bosons

    CERN Document Server

    Castro, Luis B

    2015-01-01

    The Aharonov--Bohm (AB) problem for vector bosons by the Duffin--Kemmer--Petiau (DKP) formalism is analyzed. The relevant eigenvalue equation coming from the DKP formalism reveals an equivalence to the spin--$1/2$ AB problem. By using the self--adjoint extension approach, we examine the bound state scenario. The energy spectra are explicitly computed as well as their dependencies on the magnetic flux parameter and also the conditions for the occurrence of bound states.

  20. Propagator for an Aharonov-Bohm-Coulomb system

    OpenAIRE

    Park, D. K.; Yoo, Sahng-Kyoon; Lee, Soo-Young; Kahng, Jae-Rok; Park, Chang Soo; Yim, Eui-Soon; Lee, C.H.

    1997-01-01

    The propagator of three-dimensional Aharonov-Bohm-Coulomb system is calculated by following the Duru-Kleinert method. It is shown that the system is reduced to two independent two dimensional Aharonov-Bohm plus harmonic oscillator systems through dimensional extension and Kustaanheimo-Stiefel transformation. The energy spectrum is deduced.

  1. Properties of Type-II ZnTe/ZnSe Submonolayer Quantum Dots Studied via Excitonic Aharonov- Bohm Effect and Polarized Optical Spectroscopy

    Science.gov (United States)

    Ji, Haojie

    In this thesis I develop understanding of the fundamental physical and material properties of type-II ZnTe/ZnSe submonolayer quantum dots (QDs), grown via combination of molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE). I use magneto-photoluminescence, including excitonic Aharonov-Bohm (AB) effect and polarized optical spectroscopy as the primary tools in this work. I present previous studies as well as the background of optical and magneto-optical processes in semiconductor nanostructures and introduce the experimental methods in Chapters 1 - 3. In Chapter 4 I focus on the excitonic AB effect in the type-II QDs. I develop a lateral tightly-bound exciton model for ZnTe/ZnSe type-II QDs, using analytical methods and numerical calculations. This explained the magneto-PL observation and allowed for establishing the size and density of the QDs in each sample based on the results of PL and magneto-PL measurements. For samples with larger QDs, I observe behaviors that fall between properties of quantum-dot and quantum-well-like systems due to increased QD densities and their type-II nature. Finally, the decoherence mechanisms of the AB excitons are investigated via the temperature dependent studies of the magneto-PL. It is determined that the AB exciton decoherence is due to transport-like (acoustic phonon) scattering of the electrons moving in the ZnSe barriers, but with substantially smaller magnitude of electron-phonon coupling constant due to relatively strong electron-hole coupling within these type-II QDs. In Chapter 5 I discuss the results of circularly polarized magneto-PL measurements. A model with ultra-long spin-flip time of holes confined to submonolayer QDs is proposed. The g-factor of type-II excitons was extracted from the Zeeman splitting and the g-factor of electrons was obtained by fitting the temperature dependence of the degree of circular polarization (DCP), from which g-factor of holes confined within ZnTe QDs was found. It is shown

  2. Andreev reflection and Aharonov-Bohm oscillations through a parallel-coupled double quantum dot with spin-flip scattering

    International Nuclear Information System (INIS)

    Using nonequilibrium Green's function techniques, we investigate Andreev reflection and Aharonov-Bohm oscillations through a parallel-coupled double quantum dot connected with a ferromagnetic lead and a superconductor lead. The possibility of controlling Andreev reflection and Aharonov-Bohm oscillations of the system is explored by tuning the interdot coupling, the gate voltage, the magnetic flux, and the intradot spin-flip scattering. When the spin-flip scattering increases, Fano resonant peaks resulting from the asymmetrical levels of the two quantum dots begin to split, and Aharonov-Bohm oscillations are suppressed. Due to the interdot coupling, one strongly and one weakly coupled state of the system can be formed. The magnetic flux can exchange the function of the two states, which leads to a swap effect.

  3. Scattering of spin 1/2 particles by the 2+1 dimensional noncommutative Aharonov-Bohm potential

    International Nuclear Information System (INIS)

    In this work we study modifications in the Aharonov-Bohm effect for relativistic spin 1/2 particles due to the noncommutativity of spacetime in 2+1 dimensions. The noncommutativity gives rise to a correction to the Aharonov-Bohm potential which is highly singular at the origin, producing divergences in a perturbative expansion around the usual solution of the free Dirac equation. This problem is surmounted by using a perturbative expansion around the exact solution of the commutative Aharonov-Bohm problem. We calculate, in this setting, the scattering amplitude and the corrections to the differential and total cross sections for a spin 1/2 particle, in the small-flux limit

  4. CALL FOR PAPERS: Special issue on Quantum Phases: 50 Years of the Aharonov-Bohm Effect and 25 Years of the Berry Phase Special issue on Quantum Phases: 50 Years of the Aharonov-Bohm Effect and 25 Years of the Berry Phase

    Science.gov (United States)

    Vaidman, Lev; Dennis, Mark; Popescu, Sandu

    2010-01-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to the subject of quantum phases and highlighting the impact of the discovery of the Aharonov--Bohm effect and of the Berry phase across physics. Researchers working in the area are invited to submit papers of original research to this issue. Editorial policy The Editorial Board has invited Lev Vaidman, Mark Dennis and Sandu Popescu to serve as Guest Editors for the special issue. The criteria for acceptance of contributions are as follows: Contributions will be refereed and processed according to the usual procedure and high standards of the journal. Papers should be original and should contain substantial new results. All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The DEADLINE for contributed papers will be 1 February 2010. This deadline will allow the special issue to appear in September 2010. Advice on publishing your work in Journal of Physics A: Mathematical and Theoretical www.iop.org/Journals/jphysa. Contributions to the special issue should be submitted electronically, if possible, by web upload at www.iop.org/Journals/jphysa, or by email to jphysa@iop.org, quoting 'JPhysA Special Issue— Quantum Phases'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. Authors unable to submit electronically may send hard-copy contributions to: Publishing Administrators, Journal of Physics A, IOP Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. Please quote 'JPhysA Special Issue— Quantum Phases'. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any

  5. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Farghadan, R., E-mail: rfarghadan@kashanu.ac.ir; Heidari Semiromi, E. [Department of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Saffarzadeh, A. [Department of Physics, Payame Noor University, P.O. Box 19395-3697 Tehran (Iran, Islamic Republic of); Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada)

    2013-12-07

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zero and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.

  6. Patterns of the Aharonov-Bohm oscillations in graphene nanorings

    Science.gov (United States)

    Romanovsky, Igor; Yannouleas, Constantine; Landman, Uzi

    2012-04-01

    Using extensive tight-binding calculations, we investigate (including the spin) the Aharonov-Bohm (AB) effect in monolayer and bilayer trigonal and hexagonal graphene rings with zigzag boundary conditions. Unlike the previous literature, we demonstrate the universality of integer (hc/e) and half-integer (hc/2e) values for the period of the AB oscillations as a function of the magnetic flux, in consonance with the case of mesoscopic metal rings. Odd-even (in the number of Dirac electrons, N) sawtooth-type patterns relating to the halving of the period have also been found; they are more numerous for a monolayer hexagonal ring, compared to the cases of a trigonal and a bilayer hexagonal ring. Additional, more complicated patterns are also present, depending on the shape of the graphene ring. Overall, the AB patterns repeat themselves as a function of N, with periods proportional to the number of the sides of the rings.

  7. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    Science.gov (United States)

    Farghadan, R.; Saffarzadeh, A.; Heidari Semiromi, E.

    2013-12-01

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zero and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.

  8. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    International Nuclear Information System (INIS)

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zero and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations

  9. New formulae for the Aharonov-Bohm wave operators

    OpenAIRE

    Richard, Serge

    2008-01-01

    It is proved that the wave operators corresponding to Schr¨odinger operators with Aharonov- Bohm type magnetic fields can be rewritten in terms of explicit functions of the generator of dilations and of the Laplacian.

  10. Unitarity of the Aharonov-Bohm Scattering Amplitudes

    OpenAIRE

    Arai, Masato; Minakata, Hisakazu

    1996-01-01

    We discuss the unitarity relation of the Aharonov-Bohm scattering amplitude with the hope that it distinguishes between the differing treatments which employ different incident waves. We find that the original Aharonov-Bohm scattering amplitude satisfies the unitarity relation under the regularization prescription whose theoretical foundation does not appear to be understood. On the other hand, the amplitude obtained by Ruijsenaars who uses plane wave as incident wave also satisfies the unita...

  11. Mesoscopic Persistent Currents, Aharonov-Bohm Magnetic Flux and Time Reversal Symmetry

    Institute of Scientific and Technical Information of China (English)

    LI Hua-Zhong

    2003-01-01

    We discuss the effect of Aharonov-Bohm magnetic flux on the time reversal symmetric properties of .mesoscopic metallic ring systems. It is usually believed that AB flux causes time reversal symmetry breaking. We analyse the case of mesoscopic persistent currents and find out that AB flux does not breai time reversal symmetry. Our arguments are supported by the general theory of mesoscopic persistent currents.

  12. Asymmetry of the Aharonov-Bohm diffraction pattern and Ehrenfest's theorem

    International Nuclear Information System (INIS)

    The electron diffraction pattern for two-slits with magnetic flux confined to an inaccessible region between them is calculated. The Aharonov-Bohm effect gives a diffraction pattern which is asymmetric but with a symmetric envelope. In general, both expected displacement and kinetic momentum of the electron are nonzero as a consequence of the asymmetry. Nevertheless Ehrenfest's theorems and the conservation of momentum are satisfied. (author)

  13. Axial anomaly in the presence of the Aharonov-Bohm gauge field

    International Nuclear Information System (INIS)

    The axial anomaly for Euclidean Dirac fermions in the presence of a background Aharonov-Bohm gauge potential was computed. The non-perturbative result depends on the self-adjoint extensions of the Dirac operator. The role of the quantum mechanical parameters involved in the expression for the axial anomaly is discussed. A derivation of the effective action by means of the stereographic projection is also considered. (authors). 14 refs

  14. Aharonov-Bohm phases in a quantum LC circuit

    Science.gov (United States)

    Cao, ChunJun; Yao, Yuan; Zhitnitsky, Ariel R.

    2016-03-01

    We study novel types of contributions to the partition function of the Maxwell system defined on a small compact manifold. These contributions, often not addressed in the perturbative treatment with physical photons, emerge as a result of tunneling transitions between topologically distinct but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that this effect is highly sensitive to a small external electric field, which should be contrasted with the conventional Casimir effect, where the vacuum photons are essentially unaffected by any external field. Furthermore, photons will be emitted from the vacuum in response to a time-dependent electric field, similar to the dynamical Casimir effect in which real particles are radiated from the vacuum due to the time-dependent boundary conditions. We also propose an experimental setup using a quantum LC circuit to detect this novel effect. We expect physical electric charges to appear on the capacitor plates when the system dimension is such that coherent Aharonov-Bohm phases can be maintained over macroscopically large distances.

  15. Quantum interference and Aharonov-Bohm oscillations in topological insulators.

    Science.gov (United States)

    Bardarson, Jens H; Moore, Joel E

    2013-05-01

    Topological insulators (TIs) have an insulating bulk but a metallic surface. In the simplest case, the surface electronic structure of a three-dimensional (3D) TI is described by a single two-dimensional (2D) Dirac cone. A single 2D Dirac fermion cannot be realized in an isolated 2D system with time-reversal symmetry, but rather owes its existence to the topological properties of the 3D bulk wavefunctions. The transport properties of such a surface state are of considerable current interest; they have some similarities with graphene, which also realizes Dirac fermions, but have several unique features in their response to magnetic fields. In this review we give an overview of some of the main quantum transport properties of TI surfaces. We focus on the efforts to use quantum interference phenomena, such as weak anti-localization and the Aharonov-Bohm effect, to verify in a transport experiment the Dirac nature of the surface state and its defining properties. In addition to explaining the basic ideas and predictions of the theory, we provide a survey of recent experimental work. PMID:23552181

  16. Aharonov-Bohm oscillation modes in double-barrier nanorings

    Science.gov (United States)

    Zhu, Jia-Lin; Yu, Xiquan; Dai, Zhensheng; Hu, Xiao

    2003-02-01

    The energy spectrum and Aharonov-Bohm (AB) effect in a two-dimensional nanoring interrupted by two identical barriers are studied, and a way of labeling a state according to the node numbers of the wave function in the absence of magnetic flux is introduced. It is found that a magnetic flux φ can modify both the phase and amplitude of wave functions due to the presence of the barriers. AB oscillations are strongly affected by the double barriers, and there are two modes of strong AB oscillations, named O and X modes. The energy levels of O and X modes are occasionally degenerate at φ=0 and 0.5, respectively, and the corresponding wave functions of both degenerate states are localized and can be greatly modified by a small change of φ. The O mode of AB oscillations, which does not exist in the parallel double-barrier ring usually used in experiments, presents an interesting picture and suggests other related phenomena.

  17. Aharonov-Bohm oscillation modes in double-barrier nanorings

    International Nuclear Information System (INIS)

    The energy spectrum and Aharonov-Bohm (AB) effect in a two-dimensional nanoring interrupted by two identical barriers are studied, and a way of labeling a state according to the node numbers of the wave function in the absence of magnetic flux is introduced. It is found that a magnetic flux φ can modify both the phase and amplitude of wave functions due to the presence of the barriers. AB oscillations are strongly affected by the double barriers, and there are two modes of strong AB oscillations, named O and X modes. The energy levels of O and X modes are occasionally degenerate at φ=0 and 0.5, respectively, and the corresponding wave functions of both degenerate states are localized and can be greatly modified by a small change of φ. The O mode of AB oscillations, which does not exist in the parallel double-barrier ring usually used in experiments, presents an interesting picture and suggests other related phenomena

  18. Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry

    Science.gov (United States)

    Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi

    2016-04-01

    We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (A B ) flux ϕ . We show that by varying the A B flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2 e2/h . We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0 ,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the A B effect between the MBS and ABS.

  19. Aharonov-Bohm oscillations in singly connected disordered conductors.

    Science.gov (United States)

    Aleiner, I L; Andreev, A V; Vinokur, V

    2015-02-20

    We show that the transport and thermodynamic properties of a singly connected disordered conductor exhibit quantum Aharonov-Bohm oscillations as a function of the total magnetic flux through the sample. The oscillations are associated with the interference contribution from a special class of electron trajectories confined to the surface of the sample. PMID:25763968

  20. Spectral and scattering theory for the Aharonov-Bohm operators

    OpenAIRE

    Pankrashkin, Konstantin; Richard, Serge

    2011-01-01

    We review the spectral and the scattering theory for the Aharonov-Bohm model on $\\mathbb{R}^2$. New formulae for the wave operators and for the scattering operator are presented. The asymptotics at high and at low energy of the scattering operator are computed.

  1. Putting a Spin on the Aharonov-Bohm Oscillations

    OpenAIRE

    Anandan, Jeeva

    2002-01-01

    An experiment that shows the modulation of the Aharonov-Bohm oscillations of magneto-resistance in a mesoscopic ring is described. Possible theoretical explanations of this modulation due to the interaction of the electron spin with the magnetic and electric fields are considered.

  2. Classical Interaction of a Magnet and a Point Charge: The Classical Electromagnetic Forces Responsible for the Aharonov-Bohm Phase Shift

    CERN Document Server

    Boyer, Timothy H

    2014-01-01

    A new classical electromagnetic analysis is presented suggesting that the Aharonov-Bohm phase shift is overwhelmingly likely to arise from a classical lag effect based upon classical electromagnetic forces. The analysis makes use of several aspects of classical electromagnetic theory which are unfamiliar to most physicists, including the Darwin Lagrangian, acceleration-based electric fields, internal electromagnetic momentum in a magnet, and a magnet model involving at least three mutually-interacting particles. Only when the acceleration-based electric forces acting on the passing charge are included do we find consistency with all the relativistic conservation laws: energy, linear momentum, angular momentum, and constant center-of-mass velocity. The electric forces on the passing charge lead to a lag effect which accounts quantitatively for the Aharonov-Bohm phase shift. Thus the classical analysis strongly suggests that the Aharonov-Bohm phase shift (observed when electrons pass a long solenoid which corre...

  3. Gate controlled Aharonov-Bohm-type oscillations from single neutral excitons in quantum rings

    Science.gov (United States)

    Ding, F.; Akopian, N.; Li, B.; Perinetti, U.; Govorov, A.; Peeters, F. M.; Bof Bufon, C. C.; Deneke, C.; Chen, Y. H.; Rastelli, A.; Schmidt, O. G.; Zwiller, V.

    2010-08-01

    We report on a magnetophotoluminescence study of single self-assembled semiconductor nanorings which are fabricated by molecular-beam epitaxy combined with AsBr3 in situ etching. Oscillations in the neutral exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we control the period of the oscillations with a gate potential that modifies the exciton confinement. We infer from the experimental results, combined with calculations, that the exciton Aharonov-Bohm effect may account for the observed effects.

  4. Transmission phase lapse in the non-Hermitian Aharonov-Bohm interferometer near the spectral singularity

    OpenAIRE

    Zhang, G.; Li, X.Q.(Nankai University, Tianjin, 300071, People's Republic of China); Zhang, X. Z.; Song, Z.

    2014-01-01

    We study the effect of PT-symmetric imaginary potentials embedded in the two arms of an Aharonov-Bohm interferometer on the transmission phase by finding an exact solution for a concrete tight-binding system. It is observed that the spectral singularity always occurs at k=${\\pm}${\\pi}/2 for a wide range of fluxes and imaginary potentials. Critical behavior associated with the physics of the spectral singularity is also investigated. It is demonstrated that the quasi-spectral singularity corre...

  5. Force-free gravitational redshift: proposed gravitational Aharonov-Bohm experiment.

    Science.gov (United States)

    Hohensee, Michael A; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Müller, Holger

    2012-06-01

    We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atom's Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces. PMID:23003927

  6. Coherent control of interacting particles using dynamical and Aharonov-Bohm phases

    OpenAIRE

    Creffield, Charles E.; Platero, G.

    2010-01-01

    A powerful method of manipulating the dynamics of quantum coherent particles is to control the phase of their tunneling. We consider a system of two electrons hopping on a quasi-one- dimensional lattice in the presence of a uniform magnetic field and study the effect of adding a time-periodic driving potential. We show that the dynamical phases produced by the driving can combine with the Aharonov-Bohm phases to give precise control of the localization and dynamics of the particles, even in t...

  7. Force-free gravitational redshift: a gravitostatic Aharonov-Bohm experiment

    CERN Document Server

    Hohensee, Michael A; Hamilton, Paul; Zeilinger, Anton; Mueller, Holger

    2011-01-01

    We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atom's Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces.

  8. Quantum transport through two series Aharonov-Bohm interferometers with zero total magnetic flux

    Institute of Scientific and Technical Information of China (English)

    Wang Jian-Ming; Wang Rui; Zhang Yong-Ping; Liang Jiu-Qing

    2007-01-01

    With the help of nonequilibrium Green's function technique, the electronic transport through series AharonovBohm (AB) interferometers is investigated. We obtain the AB interference pattern of the transition probability characterized by the algebraic sum φ and the difference θ of two magnetic fluxes, and particularly a general rule of AB oscillation period depending on the ratio of integer quantum numbers of the fluxes. A parity effect is observed, showing the asymmetric AB oscillations with respect to the even and odd quantum numbers of the total flux in antiparallel AB interferometers. It is also shown that the AB flux can shift the Fano resonance peaks of the transmission spectrum.

  9. Electron transport through an Aharonov-Bohm ring with a side-coupled quantum dot

    International Nuclear Information System (INIS)

    We present a theoretical description for electron transport through an Aharonov-Bohm ring with a quantum dot side-coupled to one arm. An analytic formula of conductance is derived which shows the Aharonov-Bohm oscillations. The quantum dot modulates electron transmission through the coupled arm, and thus affects the amplitude of the AB oscillations. Tuning the plunger gate of the quantum dot can induce the antiresonance, in which the transmission through the coupled arm is quenched and the Aharonov-Bohm oscillations are suppressed completely. The temperature-dependence of the suppression of the Aharonov-Bohm oscillations is discussed

  10. Kondo resonance in an Aharonov-Bohm-Casher ring with a quantum dot: exact results for the persistent current

    International Nuclear Information System (INIS)

    Full text: We study the charge persistent current (PC) in a one dimensional mesoscopic ring pierced by Aharonov-Bohm-Casher fluxes coupled to a side-branch quantum dot with a singly occupied level at Kondo resonance. For privileged values of the fluxes the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find - contrary to recent claims in the literature - that the presence of the quantum dot has no effect on the PC. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a term in the PC that scales as 1/N in the strong coupling regime, with N the number of electrons in the ring

  11. Nonlocal Phases of Local Quantum Mechanical Wavefunctions in Static and Time-Dependent Aharonov-Bohm Experiments

    CERN Document Server

    Moulopoulos, Konstantinos

    2010-01-01

    We show that the standard Dirac phase factor is not the only solution of the gauge transformation equations. The full form of a general gauge function (that connects systems that move in different sets of scalar and vector potentials), apart from Dirac phases also contains terms of classical fields that act nonlocally (in spacetime) on the local solutions of the time-dependent Schr\\"odinger equation: the phases of wavefunctions in the Schr\\"odinger picture are affected nonlocally by spatially and temporally remote magnetic and electric fields, in ways that are fully explored. These contributions go beyond the usual Aharonov-Bohm effects (magnetic or electric). (i) Application to cases of particles passing through static magnetic or electric fields leads to cancellations of Aharonov-Bohm phases at the observation point; these are linked to behaviors at the semiclassical level (to the old Werner & Brill experimental observations, or their "electric analogs" - or to recent reports of Batelaan & Tonomura)...

  12. Phase measurements in open and closed Aharonov-Bohm interferometers

    OpenAIRE

    Aharony, A.; Entin-Wohlman, O.; Imry, Y.

    2004-01-01

    Mesoscopic Aharonov-Bohm interferometers have been used in attempts to measure the transmission phase of a quantum dot which is placed on one arm of the interferometer. Here we review theoretical results for the conductance through such interferometers, for both the closed (two-terminal) and open (multi-terminal) cases. In addition to earlier results for the Coulomb blockade regime, we present new results for the strongly correlated Kondo regime, and test the consistency of the two-slit analy...

  13. A charged particle in a homogeneous magnetic field accelerated by a time-periodic Aharonov-Bohm flux

    International Nuclear Information System (INIS)

    We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution and a very good agreement is found. - Highlights: → A nonrelativistic quantum charged particle on a plane. → A homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm flux. → The quantum averaging method applied to a time-dependent system. → A resonance of the AB flux with the cyclotron frequency. → An acceleration with linearly increasing energy; a formula for the acceleration rate.

  14. Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xingfei; Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2014-04-21

    We theoretically investigate the thermoelectric effects in an Aharonov-Bohm ring with a serially coupled double quantum dot embedded in one arm. An external magnetic field is perpendicularly applied to the two dots. Using the nonequilibrium Green's function method in the linear-response regime, we calculate the charge and spin figures of merit. When the energy levels of the two quantum dots are equal and the system is connected to two normal leads, a large spin figure of merit (Z{sub s}T ≈ 4.5) accompanying with a small charge figure of merit (Z{sub c}T ≈ 0) can be generated due to the remarkable bipolar effect. Further, when the system is connected to two ferromagnetic leads, the spin figure of merit can reach even a higher value about 9. Afterwards, we find that Z{sub s}T is enhanced while Z{sub c}T is reduced in the coaction of the Aharonov-Bohm flux and Rashba spin-orbit coupling. It is argued that the bipolar effect is positive (negative) to spin (charge) figure of merit in the presence of level detuning of the two quantum dots and intradot Coulomb interactions, respectively. Also, we propose a possible experiment to verify our results.

  15. Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot

    International Nuclear Information System (INIS)

    We theoretically investigate the thermoelectric effects in an Aharonov-Bohm ring with a serially coupled double quantum dot embedded in one arm. An external magnetic field is perpendicularly applied to the two dots. Using the nonequilibrium Green's function method in the linear-response regime, we calculate the charge and spin figures of merit. When the energy levels of the two quantum dots are equal and the system is connected to two normal leads, a large spin figure of merit (ZsT ≈ 4.5) accompanying with a small charge figure of merit (ZcT ≈ 0) can be generated due to the remarkable bipolar effect. Further, when the system is connected to two ferromagnetic leads, the spin figure of merit can reach even a higher value about 9. Afterwards, we find that ZsT is enhanced while ZcT is reduced in the coaction of the Aharonov-Bohm flux and Rashba spin-orbit coupling. It is argued that the bipolar effect is positive (negative) to spin (charge) figure of merit in the presence of level detuning of the two quantum dots and intradot Coulomb interactions, respectively. Also, we propose a possible experiment to verify our results

  16. Aharonov-Bohm oscillations in a quasi-ballistic three-dimensional topological insulator nanowire.

    Science.gov (United States)

    Cho, Sungjae; Dellabetta, Brian; Zhong, Ruidan; Schneeloch, John; Liu, Tiansheng; Gu, Genda; Gilbert, Matthew J; Mason, Nadya

    2015-01-01

    Aharonov-Bohm oscillations effectively demonstrate coherent, ballistic transport in mesoscopic rings and tubes. In three-dimensional topological insulator nanowires, they can be used to not only characterize surface states but also to test predictions of unique topological behaviour. Here we report measurements of Aharonov-Bohm oscillations in (Bi1.33Sb0.67)Se3 that demonstrate salient features of topological nanowires. By fabricating quasi-ballistic three-dimensional topological insulator nanowire devices that are gate-tunable through the Dirac point, we are able to observe alternations of conductance maxima and minima with gate voltage. Near the Dirac point, we observe conductance minima for zero magnetic flux through the nanowire and corresponding maxima (having magnitudes of almost a conductance quantum) at magnetic flux equal to half a flux quantum; this is consistent with the presence of a low-energy topological mode. The observation of this mode is a necessary step towards utilizing topological properties at the nanoscale in post-CMOS applications. PMID:26158768

  17. Aharonov-Bohm order parameters for non-Abelian gauge theories

    International Nuclear Information System (INIS)

    The Aharonov-Bohm effect has been invoked to probe the phase structure of a gauge theory. Yet in the case of non-Abelian gauge theories, it proves difficult to formulate a general procedure that unambiguously specifies the realization of the gauge symmetry, e.g., the unbroken subgroup. In this paper we propose a set of order parameters that will do the job. We articulate the fact that any useful Aharonov-Bohm experiment necessarily proceeds in two stages: calibration and measurement. World sheets of virtual cosmic string loops can wrap around test charges, thus changing their states relative to other charges in the universe. Consequently, repeated flux measurements with test charges will not necessarily agree. This was the main stumbling block to previous attempts to construct order parameters for non-Abelian gauge theories. In those works, the particles that one uses for calibration and subsequent measurement are stored in separate ''boxes.'' By storing all test particles in the same ''box'' we show how quantum fluctuations can be overcome. The importance of gauge fixing is also emphasized. copyright 1995 The American Physical Society

  18. 'Aharonov-Bohm antiferromagnetism' and compensation points in the lattice of quantum rings

    International Nuclear Information System (INIS)

    We investigate the magnetic properties of the lattice of non-interacting quantum rings using the 2D rotator model. The exact analytic expressions for the free energy as well as for the magnetization and magnetic susceptibility are found and analyzed. It is shown that such a system can be considered as a system with antiferromagnetic-like properties. We have shown also that all observable quantities in this case (free energy, entropy, magnetization) are periodic functions of the magnetic flux through the ring's area (as well known, such a behavior is typical for the Aharonov-Bohm effect). For the lattice of quantum rings with two different geometric parameters we investigate the ordinary compensation points ('temperature compensation points', i.e. points at which the magnetization vanishes at fixed values of the magnetic field strength). It is shown that the positions of compensation points in the temperature scale are very sensitive to small changes in the magnetic field strength. - Highlights: → The lattice of quantum rings as a system with antiferromagnetic-like properties. → In considered system the 'temperature compensation points' take place. → The 'temperature compensation points' positions depend on the Aharonov-Bohm flux.

  19. Discrete Gauge Symmetry and Aharonov-Bohm Radiation in String Theory

    CERN Document Server

    Ookouchi, Yutaka

    2013-01-01

    We investigate cosmological constraints on phenomenological models with discrete gauge symmetries by discussing the radiation of standard model particles from Aharonov-Bohm strings. Using intersecting D-brane models in Type IIA string theory, we demonstrate that Aharonov-Bohm radiation, when combined with cosmological observations, imposes constraints on the compactification scales.

  20. Coherent coupling of two quantum dots embedded in an Aharonov-Bohm ring

    OpenAIRE

    Holleitner, A. W.; Decker, C. R.; Eberl, K.; Blick, R. H.

    2000-01-01

    We define two laterally gated small quantum dots (~ 15 electrons) in an Aharonov-Bohm geometry in which the coupling between the two dots can be broadly changed. For weakly coupled quantum dots we find Aharonov-Bohm oscillations. In an intermediate coupling regime we concentrate on the molecular states of the double dot and extract the magnetic field dependence of the coherent coupling.

  1. Strong unique continuation property of two-dimensional Dirac equations with Aharonov-Bohm fields

    OpenAIRE

    Ikoma, Makoto; Yamada, Osanobu

    2003-01-01

    We study the unique continuation property of two-dimensional Dirac equations with Aharonov-Bohm fields. Some results for the unperturbed Dirac operator are given by De Carli-\\={O}kaji [2]. We are interested in the problem how the singularity of Aharonov-Bohm fields at the origin influences the unique continuation property.

  2. Discrete gauge symmetry and Aharonov-Bohm radiation in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ookouchi, Yutaka [Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395 (Japan)

    2014-01-10

    We investigate cosmological constraints on phenomenological models with discrete gauge symmetries by discussing the radiation of standard model particles from Aharonov-Bohm strings. Using intersecting D-brane models in Type IIA string theory, we demonstrate that Aharonov-Bohm radiation, when combined with cosmological observations, imposes constraints on the compactification scales.

  3. Discrete gauge symmetry and Aharonov-Bohm radiation in string theory

    OpenAIRE

    Yutaka Ookouchi

    2014-01-01

    We investigate cosmological constraints on phenomenological models with discrete gauge symmetries by discussing the radiation of standard model particles from Aharonov-Bohm strings. Using intersecting D-brane models in Type IIA string theory, we demonstrate that Aharonov-Bohm radiation, when combined with cosmological observations, imposes constraints on the compactification scales.

  4. Discrete gauge symmetry and Aharonov-Bohm radiation in string theory

    International Nuclear Information System (INIS)

    We investigate cosmological constraints on phenomenological models with discrete gauge symmetries by discussing the radiation of standard model particles from Aharonov-Bohm strings. Using intersecting D-brane models in Type IIA string theory, we demonstrate that Aharonov-Bohm radiation, when combined with cosmological observations, imposes constraints on the compactification scales

  5. A unified approach to Aharonov-Bohm, Aharonov-Casher and which-path experiments

    International Nuclear Information System (INIS)

    A unified approach to Aharonov-Bohm, Aharonov-Casher and which-path experiments is presented, using an enlarged Hilbert space. This Hilbert space contains quasi-periodic Aharonov-Bohm wavefunctions R(x+2π)=R(x)exp(iθ) with various values of θ. Thus it can describe which-path Aharonov-Bohm experiments where the phase θ is uncertain due to decoherence that occurs as a result of the observation of the paths of the electric charges. The same Hilbert space contains quasi-periodic Aharonov-Casher wavefunctions which describe magnetic flux tubes winding around an electric charge and which are related through a Fourier transform to the Aharonov-Bohm wavefunctions. The duality between these two phenomena is discussed. The decoherence occurring in which-path experiments is studied quantitatively. Magnetic and electric superselection rules, appropriate for the Aharonov-Bohm and Aharonov-Casher experiments correspondingly, are also discussed. (author)

  6. Inelastic transport through Aharonov-Bohm interferometer in Kondo regime

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Ryosuke; Eto, Mikio [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Sakano, Rui [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan); Affleck, Ian [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada)

    2013-12-04

    We formulate elastic and inelastic parts of linear conductance through an Aharonov-Bohm (AB) ring with an embedded quantum dot in the Kondo regime. The inelastic part G{sub inel} is proportional to T{sup 2} when the temperature T is much smaller than the Kondo temperature T{sub K}, whereas it is negligibly small compared with elastic part G{sub el} when T ≫ T{sub K}. G{sub inel} weakly depends on the magnetic flux penetrating the AB ring, which disturbs the precise detection of G{sub el}/(G{sub el}+G{sub inel}) by the visibility of AB oscillation.

  7. Bound states of massive fermions in the Aharonov--Bohm-like fields

    OpenAIRE

    Khalilov, V. R.

    2014-01-01

    Bound states of massive fermions in the Aharonov-Bohm like fields have analytically been studied. The Hamiltonians with the Aharonov--Bohm like potentials are essentially singular and therefore require specification of a one-parameter self-adjoint extension. We construct self-adjoint Dirac Hamiltonians with the Aharonov-Bohm (AB) potential in 2+1 dimensions that are specified by boundary conditions at the origin. It is of interest that for some range of extension parameter the AB potential ca...

  8. Persistent Currents in the Double Aharonov-Bohm Ring Connected to Electron Reservoirs

    International Nuclear Information System (INIS)

    We study persistent currents in the double Aharonov-Bohm ring connected to two electron reservoirs by quantum waveguide theory. It is found that the persistent currents in the double Aharonov-Bohm ring depend on the direction of the current flow from one reservoir to another. When the direction of the current flow reverses, the persistent current in each ring of the double Aharonov-Bohm ring changes. If the two rings are of the same size, the persistent currents in the left and the right rings exchange at the reversal of the current flow direction.

  9. Electron in the Aharonov-Bohm potential and Coulomb field in (2+1)-dimensions

    International Nuclear Information System (INIS)

    One derived the precise solutions of the Dirac equation in 2+1 dimensions and determined the electron energy spectrum in the superposition of the Aharonov-Bohm potential and of the Coulomb potential. The expression for the scattering amplitude is presented as a sum of the amplitudes of scattering in the Aharonov-Bohm potential and in the Coulomb potential. The wave function calibration invariant phase or the energy of the electron bound state are shown to be the observed values. One derived a formula for the cross section of the spin-polarized electron scattering in the Aharonov-Bohm potential

  10. Propagator for spinless and spin-1/2 Aharonov-Bohm-Coulomb systems

    OpenAIRE

    Park, D. K.; Yoo, Sahng-Kyoon

    1997-01-01

    The propagator of the spinless Aharonov-Bohm-Coulomb system is derived by following the Duru-Kleinert method. We use this propagator to explore the spin-1/2 Aharonov-Bohm-Coulomb system which contains a point interaction as a Zeeman term. Incorporation of the self-adjoint extension method into the Green's function formalism properly allows us to derive the finite propagator of the spin-1/2 Aharonov-Bohm-Coulomb system. As a by-product, the relation between the self-adjoint extension parameter...

  11. The interplay between the Aharonov-Bohm interference and parity selective tunneling in graphene nanoribbon rings.

    Science.gov (United States)

    Nguyen, V Hung; Niquet, Y-M; Dollfus, P

    2014-05-21

    We report on a numerical study of the Aharonov-Bohm (AB) effect and parity selective tunneling in pn junctions based on rectangular graphene rings where the contacts and ring arms are all made of zigzag nanoribbons. We find that when applying a magnetic field to the ring, the AB interference can reverse the parity symmetry of incoming waves and hence can strongly modulate the parity selective transmission through the system. Therefore, the transmission between two states of different parity exhibits the AB oscillations with a π-phase shift, compared to the case of states of the same parity. On this basis, it is shown that interesting effects, such as giant (both positive and negative) magnetoresistance and strong negative differential conductance, can be achieved in this structure. Our study thus presents a new property of the AB interference in graphene nanorings, which could be helpful for further understanding the transport properties of graphene mesoscopic systems. PMID:24785639

  12. Aharonov-Bohm oscillations with period hc/4e and negative magnetoresistance in dirty superconductors

    International Nuclear Information System (INIS)

    We show that in a disordered superconductor near the superconductor-to-insulator transition the local superfluid density Ns fluctuates from point to point in sign as well as magnitude. We demonstrate this explicitly with a simple model in which correlation effects produce a negative Josephson coupling between two superconducting grains. We argue more generally that correlation effects and resistance fluctuations produce random signs of Ns. This implies that the superconductor-to-insulator transition may not be in the same universality class as the Bose-superfluid--to--insulator transition. It also results in a hc/4e period of Aharonov-Bohm oscillations and a negative magnetoresistance; both occur for T>Tc in superconducting samples and at low temperatures in insulating samples

  13. Aharonov-Bohm oscillations with period hc /4 e and negative magnetoresistance in dirty superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. (Department of Physics, University of California Los Angeles, Los Angeles, California 90024 (United States)); Spivak, B.Z. (Physics Department, University of Washington, Seattle, Washington 98195 (United States))

    1992-05-01

    We show that in a disordered superconductor near the superconductor-to-insulator transition the local superfluid density {ital N}{sub {ital s}} fluctuates from point to point in sign as well as magnitude. We demonstrate this explicitly with a simple model in which correlation effects produce a negative Josephson coupling between two superconducting grains. We argue more generally that correlation effects and resistance fluctuations produce random signs of {ital N}{sub {ital s}}. This implies that the superconductor-to-insulator transition may not be in the same universality class as the Bose-superfluid--to--insulator transition. It also results in a {ital hc}/4{ital e} period of Aharonov-Bohm oscillations and a negative magnetoresistance; both occur for {ital T}{gt}{ital T}{sub {ital c}} in superconducting samples and at low temperatures in insulating samples.

  14. Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode

    CERN Document Server

    Li, Yunyun; Marchesoni, Fabio; Li, Baowen

    2014-01-01

    Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schr\\"odinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring.

  15. Wave-packet rectification in nonlinear electronic systems: a tunable Aharonov-Bohm diode.

    Science.gov (United States)

    Li, Yunyun; Zhou, Jun; Marchesoni, Fabio; Li, Baowen

    2014-01-01

    Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schrödinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring. PMID:24691462

  16. Gravitational and Aharonov-Bohm phases in neutron interferometry

    International Nuclear Information System (INIS)

    This thesis describes two experiments with the interferometer for very-cold-neutrons (VCN) at the Institut Laue-Langevin in Grenoble, France. This interferometer operates with neutrons that are 40 m/s slow and uses micro-fabricated phase gratings as beam-splitters. The first experiment is a demonstration of the scalar neutron Aharonov-Bohm (AB) effect, which is the neutron analogue of the electrostatic AB effect for electrons. Aharonov and Bohm (1959) proposed this latter effect together with the magnetic AB effect to clarify the significance of electromagnetic potentials in quantum mechanics. The experiment described here focuses at for the first time simultaneously demonstrating the two essential operational signatures of all AB-type effects: their nondispersivity, i.e. wavelength independence, and the fact that they are not locally observable in a simply connected space-time. In this thesis it will be shown, as was already pointed out by Zeilinger (1984, 1986), that the neutron analogue also has both signatures and thus can be used to demonstrate them. In the experiment the paths of the neutron interferometer are enclosed by two anti-parallel solenoids. When, determined by a chopper, the neutron is completely inside the homogeneous field region of the coils the field is turned on and off, resulting in a phase shift due to the difference in magnetic energy. High-visibility fringes were observed even for phase shifts exceeding the limit given by the coherence length, which is a clear demonstration of the wavelength independence of this effect. Because the interferometer has spatially separated beams and uses unpolarized neutrons the effect of the magnetic field on the neutron is not locally observable in either of the interferometer arms. The second experiment is what is commonly known as a COW-experiment. In these experiments a neutron interferometer is tilted around its optical axis, resulting in a phase shift due to the difference in gravitational potential

  17. Description of the Magnetic Field and Divergence of Multisolenoid Aharonov-Bohm Potential

    Directory of Open Access Journals (Sweden)

    Araz R. Aliev

    2016-01-01

    Full Text Available Explicit formulas for the magnetic field and divergence of multisolenoid Aharonov-Bohm potential are obtained; the mathematical essence of this potential is explained. It is shown that the magnetic field and divergence of this potential are very singular generalized functions concentrated at a finite number of thin solenoids. Deficiency index is found for the minimal operator generated by the Aharonov-Bohm differential expression.

  18. Radiation of Supersymmetric Particles from Aharonov-Bohm R-string

    OpenAIRE

    Ookouchi, Yutaka; Yonemoto, Takahiro

    2014-01-01

    We study radiation of supersymmetric particles from an Aharonov-Bohm string associated with a discrete R-symmetry. Radiation of the lightest supersymmetric particle, when combined with the observed dark matter density, imposes constraints on the string tension or the freeze-out temperature of the particle. We also calculate the amplitude for Aharonov-Bohm radiation of massive spin $3/2$ particles.

  19. Solutions of relativistic wave equations in superpositions of Aharonov-Bohm, magnetic, and electric fields

    OpenAIRE

    Bagrov, V. G.; Gitman, D. M.; Tlyachev, V. B.

    2002-01-01

    We present new exact solutions (in 3+1 and 2+1 dimensions) of relativistic wave equations (Klein-Gordon and Dirac) in external electromagnetic fields of special form. These fields are combinations of Aharonov-Bohm solenoid field and some additional electric and magnetic fields. In particular, as such additional fields, we consider longitudinal electric and magnetic fields, some crossed fields, and some special non-uniform fields. The solutions obtained can be useful to study Aharonov-Bohm eff...

  20. Aharonov-Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields

    OpenAIRE

    Longhi, Stefano

    2014-01-01

    We suggest a method for trapping photons in quasi one-dimensional waveguide or coupled-resonator lattices, which is based on an optical analogue of the Aharonov-Bohm cages for charged particles. Light trapping results from a destructive interference of Aharonov-Bohm type induced by a synthetic magnetic field, which is realized by periodic modulation of the waveguide/resonator propagation constants/resonances.

  1. Description of the Magnetic Field and Divergence of Multisolenoid Aharonov-Bohm Potential

    OpenAIRE

    Araz R. Aliev; Eyvazov, Elshad H.; Said F. M. Ibrahim; Hassan A. Zedan

    2016-01-01

    Explicit formulas for the magnetic field and divergence of multisolenoid Aharonov-Bohm potential are obtained; the mathematical essence of this potential is explained. It is shown that the magnetic field and divergence of this potential are very singular generalized functions concentrated at a finite number of thin solenoids. Deficiency index is found for the minimal operator generated by the Aharonov-Bohm differential expression.

  2. Aharonov-Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields.

    Science.gov (United States)

    Longhi, Stefano

    2014-10-15

    We suggest a method for trapping photons in quasi-one-dimensional waveguide or coupled-resonator lattices, which is based on an optical analogue of the Aharonov-Bohm cages for charged particles. Light trapping results from a destructive interference of Aharonov-Bohm type induced by a synthetic magnetic field, which is realized by periodic modulation of the waveguide/resonator propagation constants/resonances. PMID:25361112

  3. Nonlocal phases of local quantum mechanical wavefunctions in static and time-dependent Aharonov-Bohm experiments

    International Nuclear Information System (INIS)

    We show that the standard Dirac phase factor is not the only solution of the usual gauge transformation equations. The full form of a general gauge function (that connects systems that move in different sets of scalar and vector potentials), apart from Dirac phases (spatial or temporal integrals over potentials), also contains terms of classical fields that act nonlocally (in spacetime) on the local solutions of the time-dependent Schroedinger equation. As a result, the phases of wavefunctions in the Schroedinger picture are affected nonlocally by spatially and temporally remote magnetic and electric fields, in specific ways that are fully explored. These contributions go beyond the usual Aharonov-Bohm effects (magnetic or electric). (i) Application to cases of particles passing through full static magnetic or electric fields leads to cancellations of Aharonov-Bohm phases at the observation point; these cancellations are linked to behaviors at the semiclassical level (i.e. the old Werner and Brill experimental observations, or their 'electric analogs'-or to more recent reports of Batelaan and Tonomura) but are shown to be far more general (true not only for narrow wavepackets but also for completely delocalized (spread-out) quantum states). By using these cancellations, certain previously unnoticed sign-errors in the literature are corrected. (ii) Application to time-dependent situations provides a remedy for erroneous results in the literature (concerning an uncritical use of Dirac phase factors) and leads to phases that contain an Aharonov-Bohm part and a field-nonlocal part: their competition is shown to recover relativistic causality in earlier 'paradoxes' (such as the van Kampen thought-experiment), while a more general consideration indicates that the temporal nonlocalities found here demonstrate in part a causal propagation of phases of quantum mechanical wavefunctions in the Schroedinger picture. This may open a new and direct way to address time

  4. An Aharonov-Bohm interferometer for determining Bloch band topology.

    Science.gov (United States)

    Duca, L; Li, T; Reitter, M; Bloch, I; Schleier-Smith, M; Schneider, U

    2015-01-16

    The geometric structure of a single-particle energy band in a solid is fundamental for a wide range of many-body phenomena and is uniquely characterized by the distribution of Berry curvature over the Brillouin zone. We realize an atomic interferometer to measure Berry flux in momentum space, in analogy to an Aharonov-Bohm interferometer that measures magnetic flux in real space. We demonstrate the interferometer for a graphene-type hexagonal optical lattice loaded with bosonic atoms. By detecting the singular π Berry flux localized at each Dirac point, we establish the high momentum resolution of this interferometric technique. Our work forms the basis for a general framework to fully characterize topological band structures. PMID:25525160

  5. Scattering on two Aharonov-Bohm vortices with opposite fluxes

    International Nuclear Information System (INIS)

    The scattering of an incident plane wave on two Aharonov-Bohm vortices with opposite fluxes is considered in detail. The presence of the vortices imposes non-trivial boundary conditions for the partial waves on a cut joining the two vortices. These conditions result in an infinite system of equations for scattering amplitudes between incoming and outgoing partial waves, which can be solved numerically. The main focus of the paper is the analytic determination of the scattering amplitude in two limits, the small flux limit and the limit of small vortex separation. In the latter limit the dominant contribution comes from the S-wave amplitude. Calculating it, however, still requires solving an infinite system of equations, which is achieved by the Riemann-Hilbert method. The results agree well with the numerical calculations.

  6. Persistent current in a correlated quantum ring with electron-phonon interaction in the presence of Rashba interaction and Aharonov-Bohm flux

    Science.gov (United States)

    Monisha, P. J.; Sankar, I. V.; Sil, Shreekantha; Chatterjee, Ashok

    2016-02-01

    Persistent current in a correlated quantum ring threaded by an Aharonov-Bohm flux is studied in the presence of electron-phonon interactions and Rashba spin-orbit coupling. The quantum ring is modeled by the Holstein-Hubbard-Rashba Hamiltonian and the energy is calculated by performing the conventional Lang-Firsov transformation followed by the diagonalization of the effective Hamiltonian within a mean-field approximation. The effects of Aharonov-Bohm flux, temperature, spin-orbit and electron-phonon interactions on the persistent current are investigated. It is shown that the electron-phonon interactions reduce the persistent current, while the Rashba coupling enhances it. It is also shown that temperature smoothens the persistent current curve. The effect of chemical potential on the persistent current is also studied.

  7. Edge states, Aharonov-Bohm oscillations, and thermodynamic and spectral properties in a two-dimensional electron gas with an antidot

    International Nuclear Information System (INIS)

    The thermodynamic and spectral properties of a two-dimensional electron gas with an antidot in a strong magnetic field, rc≤r0, where rc is the cyclotron radius and r0 is the antidot effective radius, are studied via a solvable model with the antidot confinement potential U∼1/r2. The edge states localized at the antidot boundary result in an Aharonov-Bohm-type oscillatory dependence of the magnetization as a function of the magnetic field flux through the antidot. These oscillations are superimposed on the de Haas--van Alphen oscillations. In the strong-field limit, ℎωc∼εF, where ωc is the cyclotron frequency and εF is the Fermi energy, the amplitude of the Aharonov-Bohm-type oscillations of the magnetization due to the contribution of the lowest edge state is ∼μBkFrc (μB is the Bohr magneton and kF is the Fermi wave vector). When the magnetic field is decreased, higher edge states can contribute to the magnetization, leading to the appearance of a beating pattern in the Aharonov-Bohm oscillations. The role of temperature in suppressing the oscillatory contribution due to higher edge states is analyzed. Rapid oscillations of the magnetization as a function of the Aharonov-Bohm flux, occurring on a scale of a small fraction of the flux quantum hc/e, are demonstrated. The appearance of a manifold of non- equidistant frequencies in the magneto-optical-absorption spectrum, due to transitions between electronic edge states localized near the antidot boundary, is predicted

  8. The conductance of the asymmetric Aharonov-Bohm ring with a delta-potential barrier in the presence of Rashba spin-orbit interaction

    International Nuclear Information System (INIS)

    This Letter deals with the effect of a delta-potential barrier on the one-dimensional and asymmetric Aharonov-Bohm ring with Rashba spin-orbit interaction. The analytic expressions of the transmission amplitude and conductance are derived by applying the transfer matrix method in the one-electron scattering formalism. Resorting to an adequate tuning of the Aharonov-Bohm magnetic flux and Rashba coupling strength, a control of the conductance can be done by varying the strength and the location of the barrier. This may be useful in the design of further mesoscopic spin filters by using suitable asymmetry configurations. -- Highlights: → An asymmetric Aharonov-Bohm ring with Rashba spin-orbit interaction is considered. → The effect of a delta-potential barrier on this ring is examined. → The analytic expression of the transmission amplitude is derived. → The conductance can be controlled by varying the barrier parameters. → The asymmetric ring can acts like a spin filter device.

  9. Arbitrary mixture of two charged interacting particles in a magnetic Aharonov-Bohm ring: persistent currents and Berry's phases

    International Nuclear Information System (INIS)

    Aharonov-Bohm physics at the two-particle level is investigated for distinguishable interacting charged particles through the exact solution of a toy model with confined states. The effect of the inaccessible magnetic flux is distributed between the center-of-mass and the internal pair level, and the nontrivial manner in which the two levels mutually affect each other demonstrates the interplay between interactions, the nontrivial topology, the Aharonov-Bohm flux and the characteristics of a charged quantal mixture. Analytical expressions for energy spectra, wavefunctions, (flux-dependent) critical interactions for binding and current densities are derived, and these offer the rare possibility of studying persistent currents from the point of view of an interacting nanoscopic system. Two cyclic adiabatic processes are identified, one coupled to the center-of-mass behavior and the other defined on the two-body interaction potential, with the associated Berry's phases also analytically determined; these are found to be directly linked to the electric and probability (persistent) currents in nontrivial ways that are shown to be universal (independent of the actual form of the interaction). The direct connection of the two-body Berry's phase to the electric current for a neutral system is found to disappear in the case of identical particles-hence revealing the character of a charged mixture as being crucial for exhibiting this universal behavior.

  10. Quantum motion in superposition of Aharonov-Bohm with some additional electromagnetic fields

    International Nuclear Information System (INIS)

    The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schroedinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schroedinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape.

  11. Tunable dynamical channel blockade in double-dot Aharonov-Bohm interferometers

    OpenAIRE

    Urban, Daniel; König, Jürgen

    2008-01-01

    We study electronic transport through an Aharonov-Bohm interferometer with single-level quantum dots embedded in the two arms. The full counting statistics in the shot-noise regime is calculated to first order in the tunnel-coupling strength. The interplay of interference and charging energy in the dots leads to a dynamical channel blockade that is tunable by the magnetic flux penetrating the Aharonov-Bohm ring. We find super-Poissonian behavior with diverging second and higher cumulants when...

  12. Spin-dependent transport through quantum-dot aharonov-bohm interferometers

    OpenAIRE

    Hiltscher B.; Governale M.; Konig J

    2010-01-01

    We study the influence of spin polarization on the degree of coherence of electron transport through interacting quantum dots. To this end, we identify transport regimes in which the degree of coherence can be related to the visibility of the Aharonov-Bohm oscillations in the current through a quantum-dot Aharonov-Bohm interferometer with one normal and one ferromagnetic lead. For these regimes, we calculate the visibility and, thus, the degree of coherence, as a function of the degree of spi...

  13. The K-Theoretic Formulation of D-Brane Aharonov-Bohm Phases

    OpenAIRE

    Aaron R. Warren

    2012-01-01

    The topological calculation of Aharonov-Bohm phases associated with D-branes in the absence of a Neveu-Schwarz B-field is explored. The K-theoretic classification of Ramond-Ramond fields in Type II and Type I theories is used to produce formulae for the Aharonov-Bohm phase associated with a torsion flux. A topological construction shows that K-theoretic pairings to calculate such phases exist and are well-defined. An analytic perspective is then taken, obtaining a means for determining Aharon...

  14. Aharonov-Bohm oscillations in a mesoscopic ring with a quantum dot

    OpenAIRE

    Levy Yeyati, Alfredo; Buttiker, Markus

    1995-01-01

    We present an analysis of the Aharonov-Bohm oscillations for a mesoscopic ring with a quantum dot inserted in one of its arms. It is shown that microreversibility demands that the phase of the Aharonov-Bohm oscillations changes {\\it abruptly} when a resonant level crosses the Fermi energy. We use the Friedel sum rule to discuss the conservation of the parity of the oscillations at different conductance peaks. Our predictions are illustrated with the help of a simple one channel model that per...

  15. Free and bound spin-polarized fermions in the fields of Aharonov--Bohm kind

    OpenAIRE

    Khalilov, V. R.; Mamsurov, I. V.; Eun, Lee Ki

    2010-01-01

    The scattering of electrons by an Aharonov--Bohm field is considered from the viewpoint of quantum-mechanical problem of constructing a self-adjoint Hamiltonian for the Pauli equation. The correct domain for the self-adjoint Hamiltonian, which takes into account explicitly the electron spin is found. A one-parameter self-adjoint extension of the Hamiltonian for spin-polarized electrons in the Aharonov--Bohm field is selected. The correct domain of the self-adjoint Hamiltonian can contain regu...

  16. Analytical expression of Kondo temperature in quantum dot embedded in Aharonov-Bohm ring.

    Science.gov (United States)

    Yoshii, Ryosuke; Eto, Mikio

    2011-01-01

    We theoretically study the Kondo effect in a quantum dot embedded in an Aharonov-Bohm ring, using the "poor man's" scaling method. Analytical expressions of the Kondo temperature TK are given as a function of magnetic flux Φ penetrating the ring. In this Kondo problem, there are two characteristic lengths, Lc=ℏvF∕|ε̃0| and LK = ħvF = TK, where vF is the Fermi velocity and ε̃0 is the renormalized energy level in the quantum dot. The former is the screening length of the charge fluctuation and the latter is that of the spin fluctuation, i.e., size of Kondo screening cloud. We obtain diferent expressions of TK(Φ) for (i) Lc ≪ LK ≪ L, (ii) Lc ≪ L ≪ LK, and (iii) L ≪ Lc ≪ LK, where L is the size of the ring. TK is remarkably modulated by Φ in cases (ii) and (iii), whereas it hardly depends on Φ in case (i).PACS numbers: PMID:22112300

  17. Quantum spin transport through Aharonov-Bohm ring with a tangent magnetic field

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-Jian

    2005-01-01

    Quantum spin transport in a mesoscopic Aharonov-Bohm ring with two leads subject to a magnetic field with circular configuration is investigated by means of one-dimensional quantum waveguide theory. Within the framework magnetic flux or by the tangent magnetic field. In particular, the spin flips can be induced by hopping the AB magnetic flux or the tangent field.

  18. Eigenvalue estimates for the Aharonov-Bohm operator in a domain

    OpenAIRE

    Frank, Rupert L.; Hansson, Anders

    2007-01-01

    We prove semi-classical estimates on moments of eigenvalues of the Aharonov-Bohm operator in bounded two-dimensional domains. Moreover, we present a counterexample to the generalized diamagnetic inequality which was proposed by Erdos, Loss and Vougalter. Numerical studies complement these results.

  19. Free and bound spin-polarized fermions in the fields of Aharonov--Bohm kind

    CERN Document Server

    Khalilov, V R; Eun, Lee Ki

    2010-01-01

    The scattering of electrons by an Aharonov--Bohm field is considered from the viewpoint of quantum-mechanical problem of constructing a self-adjoint Hamiltonian for the Pauli equation. The correct domain for the self-adjoint Hamiltonian, which takes into account explicitly the electron spin is found. A one-parameter self-adjoint extension of the Hamiltonian for spin-polarized electrons in the Aharonov--Bohm field is selected. The correct domain of the self-adjoint Hamiltonian can contain regular and singular (at the point ${\\bf r}=0$) square-integrable functions on the half-line with measure $rdr$. We argue that the physical reason of the existence of singular functions is the additional attractive potential, which appear due to the interaction between the spin magnetic moment of fermion and Aharonov--Bohm magnetic field. The scattering amplitude and cross section are obtained for spin-polarized electrons scattered by the Aharonov--Bohm field. It is shown that in some range of the extension parameter there ap...

  20. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields

    CERN Document Server

    Falaye, Babatunde James; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-01-01

    This study presents the confinement influences of Aharonov-Bohm-flux (AB-flux), electric and magnetic fields directed along $z$-axis and encircled by quantum plasmas, on the hydrogen atom. The all-inclusive effects result to a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that, the combined effect of the fields is stronger than solitary effect and consequently, there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for hydrogen atom in quantum plasmas, strong electric field and weak magnetic field are required, where AB-flux field can be used as a regulator. The application of perturbation technique utilized in this paper is not restricted to plasma physics, it can also be applied in molecular physics.

  1. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields

    Science.gov (United States)

    Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-05-01

    This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics.

  2. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    Science.gov (United States)

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms. PMID:24096892

  3. Bound States of the Hydrogen Atom in the Presence of a Magnetic Monopole Field and an Aharonov-Bohm Potential

    OpenAIRE

    Villalba, Victor M.

    1994-01-01

    In the present article we analyze the bound states of an electron in a Coulomb field when an Aharonov-Bohm field as well as a magnetic Dirac monopole are present. We solve, via separation of variables, the Schr\\"odinger equation in spherical coordinates and we show how the Hydrogen energy spectrum depends on the Aharonov-Bohm and the magnetic monopole strengths. In passing, the Klein-Gordon equation is solved.

  4. On the Aharonov-Bohm Operators with Varying Poles: The Boundary Behavior of Eigenvalues

    Science.gov (United States)

    Noris, Benedetta; Nys, Manon; Terracini, Susanna

    2015-11-01

    We consider a magnetic Schrödinger operator with magnetic field concentrated at one point (the pole) of a domain and half integer circulation, and we focus on the behavior of Dirichlet eigenvalues as functions of the pole. Although the magnetic field vanishes almost everywhere, it is well known that it affects the operator at the spectral level (the Aharonov-Bohm effect, Phys Rev (2) 115:485-491, 1959). Moreover, the numerical computations performed in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010) show a rather complex behavior of the eigenvalues as the pole varies in a planar domain. In this paper, in continuation of the analysis started in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010), we analyze the relation between the variation of the eigenvalue and the nodal structure of the associated eigenfunctions. We deal with planar domains with Dirichlet boundary conditions and we focus on the case when the singular pole approaches the boundary of the domain: then, the operator loses its singular character and the k-th magnetic eigenvalue converges to that of the standard Laplacian. We can predict both the rate of convergence and whether the convergence happens from above or from below, in relation with the number of nodal lines of the k-th eigenfunction of the Laplacian. The proof relies on the variational characterization of eigenvalues, together with a detailed asymptotic analysis of the eigenfunctions, based on an Almgren-type frequency formula for magnetic eigenfunctions and on the blow-up technique.

  5. Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer

    OpenAIRE

    Lovey, Daniel A.; Gomez, Sergio S.; Romero, Rodolfo H.

    2011-01-01

    We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and th...

  6. Tunable Molecular Resonances of Double Quantum Dots Embedded in an Aharonov-Bohm Interferometer

    OpenAIRE

    Kang, Kicheon; Cho, Sam Young

    2002-01-01

    We investigate resonant tunneling through molecular states of coupled double quantum dots embedded in an Aharonov-Bohm (AB) interferometer. The conductance through the system consists of two resonances associated with the bonding and the antibonding quantum states. We predict that the two resonances are composed of a Breit-Wigner resonance and a Fano resonance, those widths and Fano factor depending on the AB phase very sensitively. Further, we point out that the bonding properties, such as t...

  7. Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles

    OpenAIRE

    Abatangelo, L; Felli, V.

    2015-01-01

    We investigate the behavior of eigenvalues for a magnetic Aharonov-Bohm operator with half-integer circulation and Dirichlet boundary conditions in a planar domain. We provide sharp asymptotics for eigenvalues as the pole is moving in the interior of the domain, approaching a zero of an eigenfunction of the limiting problem along a nodal line. As a consequence, we verify theoretically some conjectures arising from numerical evidences in preexisting literature. The proof relies on an Almgren-t...

  8. Aharonov-Bohm scattering of neutral atoms with induced electric dipole moments

    OpenAIRE

    Audretsch, Juergen; Skarzhinsky, Vladimir

    1998-01-01

    We investigate the scattering of neutral polarizable atoms from an electrically charged wire placed in a homogeneous magnetic field. The atoms carry an induced electric dipole. The reflecting wire is discussed. We calculate the scattering amplitude and cross section the practically more important case that atoms are totally absorbed at the surface of the wire. If the magnetic field is present, there is a dominating Aharonov-Bohm peak in the forward direction followed by decreasing oscillation...

  9. Aharonov-Bohm-Type Oscillations of Thermopower in a Quantum Dot Ring Geometry

    OpenAIRE

    Blanter, Ya. M.; Bruder, Christoph; Fazio, Rosario; Schoeller, Herbert

    1996-01-01

    We investigate Aharonov-Bohm-type oscillations of the thermopower of a quantum dot embedded in a ring for the case when the interaction between electrons can be neglected. The thermopower is shown to be strongly flux dependent, and typically the amplitude of oscillations exceeds the background value. It is also shown to be essentially dependent on the phase of the scattering matrix which is determined by the experimental geometry and is not known in the given experiment. Two procedures to com...

  10. (Semi)classical motion in fields of Aharonov-Bohm and Aharonov-Casher

    OpenAIRE

    Azimov, Ya. I.; Ryndin, R. M.

    1997-01-01

    Particle motion in the fields of Aharonov-Bohm and Aharonov-Casher is considered in framework of the classical theory to reveal conditions admitting duality of the two configurations. Important role of orientation of the magnetic dipole moment is demonstrated. Duality becomes totally destroyed by addition of electric dipole and/or higher multipole moments. Correspondence between quantum and classical considerations is also discussed.

  11. Spin-dependent quantum transport through an Aharonov-Bohm structure spin splitter

    Institute of Scientific and Technical Information of China (English)

    Li Yu-Xian

    2008-01-01

    Using the tight-binding model approximation, this paper investigates theoretically spin-dependent quantum trans-port through an Aharonov-Bohm (AB) interferometer. An external magnetic field is applied to produce the spin-polarization and spin current. The AB interferometer, acting as a spin splitter, separates the opposite spin polarization current. By adjusting the energy and the direction of the magnetic field, large spin-polarized current can be obtained.

  12. Bound states of massive fermions in the Aharonov--Bohm-like fields

    CERN Document Server

    Khalilov, V R

    2014-01-01

    Bound states of massive fermions in the Aharonov-Bohm like fields have analytically been studied. The Hamiltonians with the Aharonov--Bohm like potentials are essentially singular and therefore require specification of a one-parameter self-adjoint extension. We construct self-adjoint Dirac Hamiltonians with the Aharonov-Bohm (AB) potential in 2+1 dimensions that are specified by boundary conditions at the origin. It is of interest that for some range of extension parameter the AB potential can bind relativistic charged massive fermions. The bound-state energy is determined by the AB magnetic flux and depends upon fermion spin and extension parameter; it is a periodical function of the magnetic flux. We also construct self-adjoint Hamiltonians for the so-called Aharonov-Casher (AC) problem, show that nonrelativistic neutral massive fermions can be bound by the Aharonov-Casher background, determine the range of extension parameter in which fermion bound states exist and find their energies as well as wave funct...

  13. On the most general boundary conditions for the Aharonov-Bohm scattering of a Dirac particle: helicity and Aharonov-Bohm symmetry conservation

    International Nuclear Information System (INIS)

    We show that the Hamiltonian H and the helicity operator Λ of a Dirac particle moving in two dimensions in the presence of an infinitely thin magnetic flux tube each admit a four-parameter family of self-adjoint extensions. Each extension is in one-to-one correspondence with the boundary conditions (BCs) to be satisfied by the eigenfunctions at the origin. Although the actions of these two operators commute before specification of BCs, to ensure helicity conservation it is not sufficient to take the same BCs for both operators. We show that, given certain relations between the parameters of the extensions, it is possible to write down the most general domain where both operators H and Λ are self-adjoint with helicity conservation and also Aharonov-Bohm symmetry (φ→φ+1) preserved, where φ is the magnetic flux in natural units. The continuity of the dynamics is also obtained. Our results imply that neither helicity conservation nor Aharonov-Bohm symmetry by itself solves the problem of choosing the 'physical' BCs for this system. (author)

  14. Impurity-modulated Aharonov-Bohm oscillations and intraband optical absorption in quantum dot-ring nanostructures

    Science.gov (United States)

    Barseghyan, M. G.; Manaselyan, A. Kh.; Laroze, D.; Kirakosyan, A. A.

    2016-07-01

    In this work we study the electronic states in quantum dot-ring complex nanostructures with an on-center hydrogenic impurity. The influence of the impurity on Aharonov-Bohm energy spectra oscillations and intraband optical absorption is investigated. It is shown that in the presence of a hydrogenic donor impurity the Aharonov-Bohm oscillations in quantum dot-ring structures become highly tunable. Furthermore, the presence of the impurity drastically changes the intraband absorption spectra due to the strong controllability of the electron localization type.

  15. Asymptotics of the many-whirls representation for Aharonov-Bohm scattering

    International Nuclear Information System (INIS)

    The previously derived decomposition of the Aharonov-Bohm (AB) wavefunction, into 'whirling waves' that wind different numbers of times round the flux line, is studied in detail. Asymptotic approximations are derived, describing many windings, far from the flux, and near the forward direction where the incident and scattered waves cannot be separated. The many-whirls representation gives insight into elementary explanations of the AB in terms of interference between waves passing on either side of the flux; three whirling waves suffice to give a very accurate description of the AB wave.

  16. Aharonov-Bohm interferometer based on n -p junctions in graphene nanoribbons

    Science.gov (United States)

    Mreńca-Kolasińska, A.; Heun, S.; Szafran, B.

    2016-03-01

    We demonstrate that the phenomenon of current confinement along graphene n -p junctions at high magnetic fields can be used to form an Aharonov-Bohm interferometer. The interference system exploits a closed n -p junction that can be induced by a floating gate within the sample, and coupling of the junction currents with the edge currents in the quantum Hall regime. Operation of the device requires current splitting at the edge and the n -p junction contacts which is found for armchair ribbons at low Fermi energy.

  17. Dephasing of electrons in the Aharonov-Bohm interferometer with a single-molecular vibrational junction.

    Science.gov (United States)

    Lai, Wenxi; Xing, Yunhui; Ma, Zhongshui

    2013-05-22

    Phase relaxation of electrons transferring through an electromechanical transistor is studied using the Aharonov-Bohm interferometer. Using the quantum master equation approach, the phase properties of an electron are numerically analyzed based on the interference fringes. The coherence of the electron is partially destroyed by its scattering on excited levels of the local nanomechanical oscillator. The transmission amplitudes with respect to two adjacent mechanical vibrational levels have a phase difference of π. The character of the π phase shift depends on the oscillator frequency only and is robust over a wide range of values of the applied voltage, tunneling length and damping rate of the mechanical oscillator. PMID:23615899

  18. Scattering of spin-polarized electron in an Aharonov Bohm potential

    Science.gov (United States)

    Khalilov, V. R.; Ho, Choon-Lin

    2008-05-01

    The scattering of spin-polarized electrons in an Aharonov-Bohm vector potential is considered. We solve the Pauli equation in 3 + 1 dimensions taking into account explicitly the interaction between the three-dimensional spin magnetic moment of electron and magnetic field. Expressions for the scattering amplitude and the cross section are obtained for spin-polarized electron scattered off a flux tube of small radius. It is also shown that bound electron states cannot occur in this quantum system. The scattering problem for the model of a flux tube of zero radius in the Born approximation is briefly discussed.

  19. Scattering of spin-polarized electron in an Aharonov--Bohm potential

    CERN Document Server

    Khalilov, V R

    2007-01-01

    The scattering of spin-polarized electrons in an Aharonov--Bohm vector potential is considered. We solve the Pauli equation in 3+1 dimensions taking into account explicitly the interaction between the three-dimensional spin magnetic moment of electron and magnetic field. Expressions for the scattering amplitude and the cross section are obtained for spin-polarized electron scattered off a flux tube of small radius. It is also shown that bound electron states cannot occur in this quantum system. The scattering problem for the model of a flux tube of zero radius in the Born approximation is briefly discussed.

  20. Nonlocal Andreev reflection in a three-terminal Aharonov-Bohm interferometer

    International Nuclear Information System (INIS)

    We theoretically report a nonlocal Andreev reflection in an Aharonov-Bohm interferometer, which is a three-terminal normal metal/superconductor (NS) mesoscopic hybrid system. It is found that this nonlocal Andreev reflection is sensitive to the systematic parameters, such as the bias voltages, the quantum dot levels, and the external magnetic flux. If we set the chemical potential of one normal metal lead equal to zero, the electronic current in the lead results from two competing processes: the quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero electronic current signals unambiguously the existence of this nonlocal Andreev reflection

  1. Aharonov-Bohm oscillations with fractional period in a multichannel Wigner crystal ring

    International Nuclear Information System (INIS)

    We study the persistent current in a quasi 1D ring with strongly correlated electrons forming a multichannel Wigner crystal (WC). The influence of the Coulomb interaction manifests itself only in the presence of external scatterers that pin the WC. Two regimes of weak and strong pinning are considered. For strong pinning we predict the Aharonov-Bohm oscillations with fractional period. Fractionalization is due to the interchannel coupling in the process of quantum tunneling of the WC. The fractional period depends on the filling of the channels and may serve as an indicator of non-Fermi-liquid behaviour of interacting electrons in quasi 1D rings. (author). 20 refs

  2. Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2.

    Science.gov (United States)

    Willett, R L; Nayak, C; Shtengel, K; Pfeiffer, L N; West, K W

    2013-11-01

    We show that the resistance of the ν = 5/2 quantum Hall state, confined to an interferometer, oscillates with the magnetic field consistent with an Ising-type non-Abelian state. In three quantum Hall interferometers of different sizes, resistance oscillations at ν = 7/3 and integer filling factors have the magnetic field period expected if the number of quasiparticles contained within the interferometer changes so as to keep the area and the total charge within the interferometer constant. Under these conditions, an Abelian state such as the (3, 3, 1) state would show oscillations with the same period as at an integer quantum Hall state. However, in an Ising-type non-Abelian state there would be a rapid oscillation associated with the "even-odd effect" and a slower one associated with the accumulated Abelian phase due to both the Aharonov-Bohm effect and the Abelian part of the quasiparticle braiding statistics. Our measurements at ν = 5/2 are consistent with the latter. PMID:24237543

  3. Aharonov-Bohm effect on Aharonov-Casher scattering

    International Nuclear Information System (INIS)

    The scattering of relativistic spin-1/2 neutral particles with a magnetic dipole moment by a long straight charged line and a magnetic flux line at the same position is studied. The scattering cross sections for unpolarized and polarized particles are obtained by solving the Dirac-Pauli equation. The results are in general the same as those for pure Aharonov-Casher scattering (by the charged line alone) as expected. However, in special cases when the incident energy, the line charge density, and the magnetic flux satisfy some relations, the cross section for polarized particles is dramatically changed. Relations between the polarization of incident particles and that of scattered ones are presented, both in the full relativistic case and the nonrelativistic limit. The characteristic difference between the general and special cases lies in the backward direction: in the general cases the incident particles are simply bounced while in the special cases their polarization is turned over simultaneously. For pure Aharonov-Casher scattering there exist cases where the helicities of all scattered particles are reversed. This seems to be remarkable but appears unnoticed previously. Two mathematical approaches are employed to deal with the singularity of the electric and magnetic field and it turns out that the physical results are essentially the same.

  4. Expectation values in the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    It has been well established that, as predicted by Aharonov and Bohm, electron interference patterns can be shifted by the introduction of electromagnetic potentials, even if the electrons never enter the region in which the fields are nonzero. In this paper it is proved that, even though the interference pattern shifts, none of the moments of the electron's position r, nor of its kinetic momentum π, are affected. On the other hand, it is proved that the expectation value of the operator sin aπ (with a a certain fixed vector), which was first introduced by Aharonov, Pendleton and Peterson, does shift

  5. Aharonov-Bohm effect on Aharonov-Casher scattering

    Science.gov (United States)

    Lin, Qiong-Gui

    2010-01-01

    The scattering of relativistic spin-1/2 neutral particles with a magnetic dipole moment by a long straight charged line and a magnetic flux line at the same position is studied. The scattering cross sections for unpolarized and polarized particles are obtained by solving the Dirac-Pauli equation. The results are in general the same as those for pure Aharonov-Casher scattering (by the charged line alone) as expected. However, in special cases when the incident energy, the line charge density, and the magnetic flux satisfy some relations, the cross section for polarized particles is dramatically changed. Relations between the polarization of incident particles and that of scattered ones are presented, both in the full relativistic case and the nonrelativistic limit. The characteristic difference between the general and special cases lies in the backward direction: in the general cases the incident particles are simply bounced while in the special cases their polarization is turned over simultaneously. For pure Aharonov-Casher scattering there exist cases where the helicities of all scattered particles are reversed. This seems to be remarkable but appears unnoticed previously. Two mathematical approaches are employed to deal with the singularity of the electric and magnetic field and it turns out that the physical results are essentially the same.

  6. Fermions in scalar Coulomb and Aharonov-Bohm potentials in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V R; Lee, K E, E-mail: khalilov@phys.msu.ru [Faculty of Physics, Moscow State University, 119991 Moscow (Russian Federation)

    2011-05-20

    The quantum-mechanical problem of constructing the self-adjoint Hamiltonians is physically rigorously solved for a Dirac Hamiltonian with a Coulomb scalar potential and an Aharonov-Bohm potential in 2+1 dimensions by taking into account a fermion spin. It is found that the Dirac Hamiltonian on this background requires the additional specification of a one-parameter self-adjoint extension, which can be given in terms of the physically acceptable boundary conditions. We derive equations that determine the spectra of the self-adjoint radial Dirac Hamiltonians for various parameter values. We discuss the role of a particle spin as the physical reason of the existence of bound fermion states in a pure Aharonov-Bohm potential and show that the particle and antiparticle states with zero energy exist only owing to the interaction of the fermion spin magnetic moment with the magnetic field. The energy levels of particles and antiparticles are intersected what may signal on the instability of a quantum system.

  7. Vector solutions of the Laplace equation and the influence of helicity on the Aharonov-Bohm scattering

    International Nuclear Information System (INIS)

    Vector solutions of the Laplace equation are obtained. Their properties and possible applications are discussed. Conditions are found for the nonradiation of charge and current densities periodically changing with time. Electromagnetic properties of the solenoid with non-zero helicity and the influence of the latter on the Aharonov-Bohm scattering are stidied. 20 refs

  8. Fano resonance and flux-dependent transport through a triple-arm Aharonov-Bohm interferometer under an applied electric field

    International Nuclear Information System (INIS)

    The electron transport through a triple-arm Aharonov-Bohm (TAAB) interferometer with an electron-electron interaction quantum dot embedded in each arm is studied using the Green's function technique by means of self-consistent calculation. Transport through one arm of the TAAB interferometer provides the 'background channel'. Linear conductance shows a symmetric structure including the effect of the Coulomb blockade, even in the out-of-equilibrium state, by applying a finite voltage across the device. Four Fano resonant peaks appear with an opposite Fano factor in the conductance, which is different from that of the double-quantum-dot AB interferometer. Not only the magnitude but also the sign of the Fano factor can be controlled more easily when the energy levels of the quantum dots in the reference arm are modified by adjusting the gate or the bias voltage in experiments. As a function of the magnetic field, the AB oscillation is also affected considerably

  9. Observation of oscillations in energy of Aharonov-Bohm excitons in type-II ZnTe/ZnSe stacked submonolayer quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Bidisha; Ji, Haojie; Dhomkar, Siddharth; Kuskovsky, Igor L. [Department of Physics, Queens College of CUNY, 65-30 Kissena Blvd., Queens, NY 11367 (United States); The Graduate Center of CUNY, 365 Fifth Ave, New York, NY 10016 (United States); Tamargo, Maria C. [The Graduate Center of CUNY, 365 Fifth Ave, New York, NY 10016 (United States); Department of Chemistry, City College of CUNY, 160 Convent Ave, New York, NY 10031 (United States)

    2014-07-15

    We report our recent experiments with type-II ZnTe/ZnSe stacked submonolayer quantum dots that show the dependence of photoluminescence (PL) emission energy on the magnetic field. This is explained as due to the excitonic Aharonov-Bohm (AB) effect. The AB oscillations in energy are observed for each of the contributing emission bands and are correlated with the changes in the magneto-PL emission intensity. We propose that interplay of magneto-excitonic behavior, the Coulomb interaction and mixing of angular momentum states are responsible for the observed behavior of the AB excitons depending on the magnetic field ranges. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer.

    Science.gov (United States)

    Lovey, Daniel A; Gomez, Sergio S; Romero, Rodolfo H

    2011-10-26

    We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model. PMID:21970845

  11. Topological phases reviewed: The Aharonov Bohm, Aharonov Casher, and He McKellar Wilkens phases

    International Nuclear Information System (INIS)

    There are three topological phases related to electromagnetic interactions in quantum mechanics: 1. The Aharonov Bohm phase acquired when a charged particle encircles a magnetic field but travels through a field free region. 2. The Aharonov Casher phase acquired when a magnetic dipole encircles electric charges but travels through a charge free region. 3. The He McKellar Wilkens phase acquired when an electric dipole encircles magnetic charges but travels through a charge free region. We review the conditions under which these phases are indeed topological and their experimental realisation. Because the He McKellar Wilkens phase has been recently observed we pay particular attention to how the basic concept of 'an electric dipole encircles magnetic charges' was realised experimentally, and discuss possible future experimental realisations

  12. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires

    Science.gov (United States)

    Wang, Li-Xian; Li, Cai-Zhen; Yu, Da-Peng; Liao, Zhi-Min

    2016-02-01

    Three-dimensional Dirac semimetals, three-dimensional analogues of graphene, are unusual quantum materials with massless Dirac fermions, which can be further converted to Weyl fermions by breaking time reversal or inversion symmetry. Topological surface states with Fermi arcs are predicted on the surface and have been observed by angle-resolved photoemission spectroscopy experiments. Although the exotic transport properties of the bulk Dirac cones have been demonstrated, it is still a challenge to reveal the surface states via transport measurements due to the highly conductive bulk states. Here, we show Aharonov-Bohm oscillations in individual single-crystal Cd3As2 nanowires with low carrier concentration and large surface-to-volume ratio, providing transport evidence of the surface state in three-dimensional Dirac semimetals. Moreover, the quantum transport can be modulated by tuning the Fermi level using a gate voltage, enabling a deeper understanding of the rich physics residing in Dirac semimetals.

  13. Topological phases reviewed: The Aharonov Bohm, Aharonov Casher, and He McKellar Wilkens phases

    Energy Technology Data Exchange (ETDEWEB)

    McKellar, B. H. J. [ARC Centre of Excellence for Particle Physics at the Terrascale, School of Physics, University of Melbourne (Australia); He, X-G. [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Klein, A. G. [School of Physics, University of Melbourne (Australia)

    2014-03-05

    There are three topological phases related to electromagnetic interactions in quantum mechanics: 1. The Aharonov Bohm phase acquired when a charged particle encircles a magnetic field but travels through a field free region. 2. The Aharonov Casher phase acquired when a magnetic dipole encircles electric charges but travels through a charge free region. 3. The He McKellar Wilkens phase acquired when an electric dipole encircles magnetic charges but travels through a charge free region. We review the conditions under which these phases are indeed topological and their experimental realisation. Because the He McKellar Wilkens phase has been recently observed we pay particular attention to how the basic concept of 'an electric dipole encircles magnetic charges' was realised experimentally, and discuss possible future experimental realisations.

  14. Mode Dependency of Quantum Decoherence Studied via an Aharonov-Bohm Interferometer

    Science.gov (United States)

    Lo, Tung-Sheng; Lin, Yiping; Wu, Phillip M.; Ling, Dah-Chin; Chi, C. C.; Chen, Jeng-Chung

    2016-02-01

    We investigate the dependence of decoherence on the mode number M in a multiple-mode Aharonov-Bohm (AB) interferometer. The design of the AB interferometer allows us to precisely determine M by the additivity rule of ballistic conductors; meanwhile, the decoherence rate is simultaneously deduced by the variance of the AB oscillation amplitude. The AB amplitude decreases and fluctuates with depopulating M . Moreover, the normalized amplitude exhibits a maximum at a specific M (˜9 ). Data analysis reveals that the charge-fluctuation-induced dephasing, which depends on the geometry and the charge relaxation resistance of the system, could play an essential role in the decoherence process. Our results suggest that the phase coherence, in principle, can be optimized using a deliberated design and pave one of the ways toward the engineering of quantum coherence.

  15. Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer

    Institute of Scientific and Technical Information of China (English)

    YIN Hai-Tao; L(U) Tian-Quan; LIU Xiao-Jie; XUE Hui-Jie

    2009-01-01

    @@ We investigate the spin accumulation in a double quantum dot Aharonov-Bohm (AB) interferometer in which both the Rashba spin-orbit (RSO) interaction and intradot Coulomb interaction are taken into account. Due to the existence of the RSO interaction, the electron, flowing through different arms of the AB ring, will acquire a spin-dependent phase factor in the tunnel-coupling strengths. This phase factor will induce various interesting interference phenomena. It is found that the electrons of the different spin directions can accumulate in the two dots by properly adjusting the bias and the intradot level with a fixed RSO interaction strength. Moreover, both the magnitude and direction of the spin accumulation in each dot can be conveniently controlled and tuned by the gate voltage acting on the dot or the bias on the lead.

  16. Spin-polarized quantum transport through an Aharonov-Bohm quantum-dot-ring

    Institute of Scientific and Technical Information of China (English)

    Wang Jian-Ming; Wang Rui; Liang Jiu-Qing

    2007-01-01

    In this paper the quantum transport through an Aharonov-Bohm (AB) quantum-dot-ring with two dot-array arms described by a single-band tight-binding Hamiltonian is investigated in the presence of additional magnetic fields applied to the dot-array arms to produce spin flip of electrons. A far richer interference pattern than that in the charge transport alone is found. Besides the usual AB oscillation the tunable spin polarization of the current by the magnetic flux is a new observation and is seen to be particularly useful in technical applications. The spectrum of transmission probability is modulated by the quantum dot numbers on the up-arc and down-arc of the ring, which, however, does not affect the period of the AB oscillation.

  17. Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Lovey, Daniel A; Gomez, Sergio S; Romero, Rodolfo H, E-mail: rhromero@exa.unne.edu.ar [Instituto de Modelado e Innovacion Tecnologica, CONICET, and Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400) Corrientes (Argentina)

    2011-10-26

    We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model. (paper)

  18. Vacuum polarization of planar charged fermions with Coulomb and Aharonov-Bohm potentials

    Science.gov (United States)

    Khalilov, V. R.; Mamsurov, I. V.

    2016-02-01

    Vacuum polarization of charged massless fermions is investigated in the superposition of Coulomb and Aharonov-Bohm (AB) potentials in 2 + 1 dimensions. For this purpose, we construct the Green function of the two-dimensional Dirac equation with Coulomb and AB potentials (via the regular and irregular solutions of the radial Dirac equation) and then calculate the vacuum polarization charge density in the so-called subcritical and supercritical regimes. In the supercritical regime, the Green function has a discontinuity in the complex plane of “energy” due to the singularities on the negative energy axis; these singularities are situated on the unphysical sheet and related to the creation of infinitely many quasistationary fermionic states with negative energies. We expect that our results will be helpful in gaining deeper understanding of the fundamental problem of quantum electrodynamics which can be applied to the problems of charged impurity screening in graphene taking into consideration the electron spin.

  19. Aharonov-Bohm phases in a quantum LC circuit

    CERN Document Server

    Cao, ChunJun; Zhitnitsky, Ariel R

    2015-01-01

    We study novel types of contributions to the partition function of the Maxwell system defined on a small compact manifold. These contributions, often not addressed in the perturbative treatment with physical photons, emerge as a result of tunneling transitions between topologically distinct but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that this effect is highly sensitive to a small external electric field, which should be contrasted with the conventional Casimir effect where the vacuum photons are essentially unaffected by any external field. Furthermore, photons will be emitted from the vacuum in response to a time-dependent electric field, similar to the dynamical Casimir effect in which real particles are radiated from the vacuum due to the time-dependent boundary conditions. We also propose an experimental setup using a quantum LC circuit to detect this novel effect. We expect physical electric charges to a...

  20. On the delta function normalization of the wave functions of the Aharonov-Bohm scattering of a Dirac particle

    International Nuclear Information System (INIS)

    In a previous paper, we found the most general boundary conditions for the Aharonov-Bohm scattering of a Dirac particle. We found the resulting wave functions but we did not worry about delta normalizing them. As is well know, in practice, it is not easy to evaluate the diverging integrals occurring in the process. The purpose of this paper is to evaluate those integrals and present the resulting delta normalized eigenfunctions. (author)

  1. Creation of planar charged fermions in Coulomb and Aharonov-Bohm potentials

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V.R. [Moscow State University, Faculty of Physics, Moscow (Russian Federation)

    2013-08-15

    The creation of charged fermions from the vacuum by a Coulomb field in the presence of an Aharonov-Bohm (AB) potential are studied in 2+1 dimensions. The process is governed by a (singular) Dirac Hamiltonian that requires the supplementary definition in order for it to be treated as a self-adjoint quantum-mechanical operator. By constructing a one-parameter self-adjoint extension of the Dirac Hamiltonian, specified by boundary conditions, we describe the (virtual bound) quasistationary states with ''complex energy'' emerging in an attractive Coulomb potential, derive for the first time, complex equations (depending upon the electron spin and the extension parameter) for the quasistationary state ''complex energy''. The constructed self-adjoint Dirac Hamiltonians in Coulomb and AB potentials are applied to provide a correct description to the low-energy electron excitations, as well as the creation of charged quasiparticles from the vacuum in graphene by the Coulomb impurity in the presence of AB potential. It is shown that the strong Coulomb field can create charged fermions for some range of the extension parameter. (orig.)

  2. Bound states of massive fermions in Aharonov-Bohm-like fields

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V.R. [Moscow State University, Faculty of Physics, Moscow (Russian Federation)

    2014-01-15

    Bound states of massive fermions in Aharonov-Bohm (AB)-like fields have analytically been studied. The Hamiltonians with the (AB)-like potentials are essentially singular and therefore require specification of a one-parameter self-adjoint extension. We construct self-adjoint Dirac Hamiltonians with the AB potential in 2+1 dimensions that are specified by boundary conditions at the origin. It is of interest that for some range of the extension parameter the AB potential can bind relativistic charged massive fermions. The bound-state energy is determined by the AB magnetic flux and depends upon the fermion spin and extension parameter; it is a periodical function of the magnetic flux. We also construct self-adjoint Hamiltonians for the so-called Aharonov-Casher (AC) problem, show that nonrelativistic neutral massive fermions can be bound by the (AC) background, determine the range of the extension parameter in which fermion bound states exist, and find their energies as well as wave functions. (orig.)

  3. Creation of planar charged fermions in Coulomb and Aharonov-Bohm potentials

    CERN Document Server

    Khalilov, V R

    2013-01-01

    The creation of charged fermions from the vacuum by a Coulomb field in the presence of an Aharonov--Bohm (AB) potential are studied in 2+1 dimensions. The process is governed by a (singular) Dirac Hamiltonian that requires the supplementary definition in order for it to be treated as a self-adjoint quantum-mechanical operator. By constructing a one-parameter self-adjoint extension of the Dirac Hamiltonian, specified by boundary conditions, we describe the (virtual bound) quasistationary states with "complex energy" emerging in an attractive Coulomb potential, derive for the first time, complex equations (depending upon the electron spin and the extension parameter) for the quasistationary state "complex energy". The constructed self-adjoint Dirac Hamiltonians in Coulomb and AB potentials are applied to provide a correct description to the low-energy electron excitations, as well as the creation of charged quasiparticles from the vacuum in graphene by the Coulomb impurity in the presence of AB potential. It is...

  4. Dephasing in an Aharonov-Bohm interferometer containing a lateral double quantum dot induced by coupling with a quantum dot charge sensor

    International Nuclear Information System (INIS)

    We theoretically investigated the dephasing in an Aharonov-Bohm interferometer containing a lateral double quantum dot induced by coupling with a quantum dot charge sensor. We employed the interpolative second-order perturbation theory to include the charge sensing Coulomb interaction. It is shown that the visibility of the Aharonov-Bohm oscillation of the linear conductance decreases monotonically as the sensing Coulomb interaction increases. In particular, for a weak sensing interaction regime, the visibility decreases parabolically, and it behaves linearly for a strong sensing interaction regime.

  5. Induced fermion number, phase-shift flip, and the axial anomaly in the Aharonov-Bohm potential

    International Nuclear Information System (INIS)

    The spectral properties of the Dirac and the Klein-Gordon equations in the Aharonov-Bohm potential are discussed. The density of states for different self-adjoint extensions is calculated. The presence of the bound state manifests itself by asymmetric differential scattering cross sections. The results are applied to several physical quantities: the total energy, induced fermion-number, and the axial anomaly. The predictions of a persistent current in the presence of a cosmic string and a gravitational vortex are made. (author) 41 refs.; 1 fig

  6. Tunable spin-dependent Andreev reflection in a four-terminal Aharonov-Bohm interferometer with coherent indirect coupling and Rashba spin-orbit interaction.

    Science.gov (United States)

    Bai, Long; Zhang, Rong; Duan, Chen-Long

    2012-01-01

    : Using the nonequilibrium Green's function method, we theoretically study the Andreev reflection(AR) in a four-terminal Aharonov-Bohm interferometer containing a coupled double quantum dot with the Rashba spin-orbit interaction (RSOI) and the coherent indirect coupling via two ferromagnetic leads. When two ferromagnetic electrodes are in the parallel configuration, the spin-up conductance is equal to the spin-down conductance due to the absence of the RSOI. However, for the antiparallel alignment, the spin-polarized AR occurs resulting from the crossed AR (CAR) and the RSOI. The effects of the coherent indirect coupling, RSOI, and magnetic flux on the Andreev-reflected tunneling magnetoresistance are analyzed at length. The spin-related current is calculated, and a distinct swap effect emerges. Furthermore, the pure spin current can be generated due to the CAR when two ferromagnets become two half metals. It is found that the strong RSOI and the large indirect coupling are in favor of the CAR and the production of the strong spin current. The properties of the spin-related current are tunable in terms of the external parameters. Our results offer new ways to manipulate the spin-dependent transport. PMID:23228047

  7. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A. G., E-mail: smirnov@lpi.ru [I. E. Tamm Theory Department, P. N. Lebedev Physical Institute, Leninsky Prospect 53, Moscow 119991 (Russian Federation)

    2015-12-15

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to the three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.

  8. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    International Nuclear Information System (INIS)

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to the three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions

  9. Quantum geometric phase in Majorana's stellar representation: mapping onto a many-body Aharonov-Bohm phase.

    Science.gov (United States)

    Bruno, Patrick

    2012-06-15

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined. PMID:23004240

  10. Spin-dependent quantum interference in Aharonov-Bohm ring embedded with two double-quantum-dot molecules.

    Science.gov (United States)

    Wang, Xiaofei; Liu, Xiaojie; Zhao, Xueyang; Yin, Haitao; Wan, Weilong; Feng, Li

    2014-03-01

    The spin polarized transport properties through an Aharonov-Bohm ring embedded with a double quantum dot-molecule in each arm with Rashba spin-orbit (RSO) interaction is theoretically studied in the framework of the equation of motion of Green's function. Based on molecular state representation, the anti-resonance phenomenon in the conductance spectrum is readily explained. We found that the position of antiresonant peaks in conductance spectrum is determined by the interdot coupling strengths. Moreover, the magnitude of conductance of each spin component can be manipulated by the Rashba spin orbit interaction strength. Especially only one spin component electron can be allowed to transport through this structure by modulating the strength of RSO interaction properly. PMID:24745284

  11. Single-slit electron diffraction with Aharonov-Bohm phase: Feynman's thought experiment with quantum point contacts.

    Science.gov (United States)

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-10

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics. PMID:24483873

  12. A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov-Bohm fields

    Energy Technology Data Exchange (ETDEWEB)

    Ikhdair, Sameer M., E-mail: sikhdair@neu.edu.tr [Physics Department, Near East University, 922022 Nicosia, North Cyprus (Turkey); Hamzavi, Majid, E-mail: majid.hamzavi@gmail.com [Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)

    2012-11-01

    Using the Nikiforov-Uvarov (NU) method, the energy levels and the wave functions of an electron confined in a two-dimensional (2D) pseudoharmonic quantum dot are calculated under the influence of temperature and an external magnetic field inside dot and Aharonov-Bohm (AB) field inside a pseudodot. The exact solutions for energy eigenvalues and wave functions are computed as functions of the chemical potential parameters, applied magnetic field strength, AB flux field, magnetic quantum number and temperature. Analytical expression for the light interband absorption coefficient and absorption threshold frequency are found as functions of applied magnetic field and geometrical size of quantum pseudodot. The temperature dependence energy levels for GaAs semiconductor are also calculated.

  13. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction.

    Science.gov (United States)

    Bulgakov, Evgeny N; Sadreev, Almas F

    2016-07-01

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase. PMID:27165662

  14. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov-Bohm interferometers.

    Science.gov (United States)

    Hou, Dong; Wang, Shikuan; Wang, Rulin; Ye, LvZhou; Xu, RuiXue; Zheng, Xiao; Yan, YiJing

    2015-03-14

    Several recent advancements for the hierarchical equations of motion (HEOM) approach are reported. First, we propose an a priori estimate for the optimal number of basis functions for the reservoir memory decomposition. Second, we make use of the sparsity of auxiliary density operators (ADOs) and propose two ansatzs to screen out all the intrinsic zero ADO elements. Third, we propose a new truncation scheme by utilizing the time derivatives of higher-tier ADOs. These novel techniques greatly reduce the memory cost of the HEOM approach, and thus enhance its efficiency and applicability. The improved HEOM approach is applied to simulate the coherent dynamics of Aharonov-Bohm double quantum dot interferometers. Quantitatively accurate dynamics is obtained for both noninteracting and interacting quantum dots. The crucial role of the quantum phase for the magnitude of quantum coherence and quantum entanglement is revealed. PMID:25770531

  15. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    Science.gov (United States)

    Smirnov, A. G.

    2015-12-01

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to the three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.

  16. Quantum motion of a point particle in the presence of the Aharonov-Bohm potential in curved space

    Science.gov (United States)

    Silva, Edilberto O.; Ulhoa, Sérgio C.; Andrade, Fabiano M.; Filgueiras, Cleverson; Amorim, R. G. G.

    2015-11-01

    The nonrelativistic quantum dynamics of a spinless charged particle in the presence of the Aharonov-Bohm potential in curved space is considered. We chose the surface as being a cone defined by a line element in polar coordinates. The geometry of this line element establishes that the motion of the particle can occur on the surface of a cone or an anti-cone. As a consequence of the nontrivial topology of the cone and also because of two-dimensional confinement, the geometric potential should be taken into account. At first, we establish the conditions for the particle describing a circular path in such a context. Because of the presence of the geometric potential, which contains a singular term, we use the self-adjoint extension method in order to describe the dynamics in all space including the singularity. Expressions are obtained for the bound state energies and wave functions.

  17. Single-Slit Electron Diffraction with Aharonov-Bohm Phase: Feynman's Thought Experiment with Quantum Point Contacts

    Science.gov (United States)

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-01

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.

  18. Non-relativistic fermions interacting through the Chern-Simons field and the Aharonov-Bohm scattering amplitude

    International Nuclear Information System (INIS)

    Starting from the non-relativistic field theory of spin- fermions interacting through the Abelian Chern-Simons term, we show that the quantized field theory leads, in the two-particle sector, to a two-particle Aharonov-Bohm-like Schroedinger equation with an antisymmetric (fermionic) wavefunction and without a delta function term. Calculating perturbatively the field-theoretic two-particle scattering amplitude up to one-loop order, we show that, in contrast to the scalar theory, the contribution of all the one-loop diagrams is finite and null, and that of the tree level ones coincides with the exact amplitude. Further, the Pauli matter-magnetic field interaction term is shown not to contribute to the amplitude to this order. (author)

  19. Single-particle density of states for the Aharonov-Bohm potential and the instability of matter with anomalous magnetic moment in 2+1 dimensions

    International Nuclear Information System (INIS)

    In the nonrelativistic case it has been found that whenever the relation mc2/e2 m) is satisfied, where α is a flux, gm is magnetic moment, and X(α,gm) is some function that is nonzero only for gm>2, then the matter is unstable against formation of the flux α. The result persists down to gm=2 provided the Aharonov-Bohm potential is supplemented with a short range attractive potential. The results are obtained by calculating the change of the density of states induced by the Aharonov-Bohm potential. The Krein-Friedel formula for this long-ranged potential is shown to be valid when supplemented with zeta function regularization. (author). 23 refs

  20. The Single-Particle density of States, Bound States, Phase-Shift Flip, and a Resonance in the Presence of an Aharonov-Bohm Potential

    OpenAIRE

    Moroz, Alexander

    1995-01-01

    Both the nonrelativistic scattering and the spectrum in the presence of the Aharonov-Bohm potential are analyzed. The single-particle density of states (DOS) for different self-adjoint extensions is calculated. The DOS provides a link between different physical quantities and is a natural starting point for their calculation. The consequences of an asymmetry of the S matrix for the generic self-adjoint extension are examined. I. Introduction II. Impenetrable flux tube and the density of state...

  1. Comment on "Role of potentials in the Aharonov-Bohm effect"

    Science.gov (United States)

    Aharonov, Yakir; Cohen, Eliahu; Rohrlich, Daniel

    2015-08-01

    Are the electromagnetic scalar and vector potentials dispensable? Vaidman [Phys. Rev. A 86, 040101(R) (2012)], 10.1103/PhysRevA.86.040101 has suggested that local interactions of gauge-invariant quantities, e.g., magnetic torques, suffice for the description of all quantum electromagnetic phenomena. We analyze six thought experiments that challenge this suggestion. All of them have explanations in terms of local interactions of gauge-dependent quantities, and, in addition, some have explanations in terms of nonlocal interactions of gauge-invariant quantities. We claim, however, that two of our examples have no gauge-invariant formal description and that, in general, no local description can dispense with electromagnetic potentials.

  2. Single electron bipolar conductance switch driven by the molecular Aharonov-Bohm effect.

    Science.gov (United States)

    Lee, Joonhee; Tallarida, Nicholas; Rios, Laura; Perdue, Shawn M; Apkarian, Vartkess Ara

    2014-06-24

    We demonstrate a conductance switch controlled by the spin-vibronic density of an odd electron on a single molecule. The junction current is modulated by the spin-flip bistability of the electron. Functional images are provided as wiring diagrams for control of the switch's frequency, amplitude, polarity, and duty-cycle. The principle of operation relies on the quantum mechanical phase associated with the adiabatic circulation of a spin-aligned electron around a conical intersection. The functional images quantify the governing vibronic Hamiltonian. PMID:24824563

  3. Exciton storage in type-II quantum dots using the optical Aharonov-Bohm effect

    Energy Technology Data Exchange (ETDEWEB)

    Climente, Juan I.; Planelles, Josep, E-mail: josep.planelles@uji.es [Departament de Química Física i Analítica, Universitat Jaume I, E-12080 Castelló (Spain)

    2014-05-12

    We investigate the bright-to-dark exciton conversion efficiency in type-II quantum dots subject to a perpendicular magnetic field. To this end, we take the exciton storage protocol recently proposed by Simonin and co-workers [Phys. Rev. B 89, 075304 (2014)] and simulate its coherent dynamics. We confirm the storage is efficient in perfectly circular structures subject to weak external electric fields, where adiabatic evolution is dominant. In practice, however, the efficiency rapidly degrades with symmetry lowering. Besides, the use of excited states is likely unfeasible owing to the fast decay rates. We then propose an adaptation of the protocol which does not suffer from these limitations.

  4. Transport, Aharonov-Bohm, and Topological Effects in Graphene Molecular Junctions and Graphene Nanorings

    OpenAIRE

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2015-01-01

    The unique ultra-relativistic, massless, nature of electron states in two-dimensional extended graphene sheets, brought about by the honeycomb lattice arrangement of carbon atoms in two-dimensions, provides ingress to explorations of fundamental physical phenomena in graphene nanostructures. Here we explore the emergence of new behavior of electrons in atomically precise segmented graphene nanoribbons (GNRs) and graphene rings with the use of tight-binding calculations, non-equilibrium Green'...

  5. Quantum Particle on a Rotating Loop: Topological Quenching due to a Coriolis-Aharonov-Bohm Effect

    OpenAIRE

    Weigert, S.

    1995-01-01

    A particle is assumed to move along a one-dimensional loop such as an ellipse that rotates in a plane. Because of the centrifugal force the particle is subjected to a symmetric double-well potential. Classically, the Coriolis force does not affect the motion of the particle, whereas the corresponding term in the Lagrangian influences the properties of the quantum system: its ground state turns out to be degenerate for a discrete set of angular velocities. The analogy between a constant magnet...

  6. The single-particle density of states, bound states, phase-shift flip, and a resonance in the presence of an Aharonov-Bohm potential

    International Nuclear Information System (INIS)

    Both the nonrelativistic scattering and the spectrum in the presence of the Aharonov-Bohm potential are analyzed, and the single-particle density of states for different self-adjoint extensions is calculated, which is shown to be a symmetric and periodic function of the flux depending only on the distance from the nearest integer. The Aharonov-Casher theorem on the number of zero modes is corrected for the singular field configuration. The Hall resistivity is calculated in the dilute vortex limit. The magnetic moment coupling and not the spin is shown to be the primary source for the phase-shift flip that may occur even in its absence. The total energy of the system consisting of particles and field is discussed. (author) 65 refs.; 5 figs.; 1 tab

  7. The interplay between the Aharonov-Bohm interference and parity selective tunneling in graphene nanoribbon rings

    International Nuclear Information System (INIS)

    We report on a numerical study of the Aharonov–Bohm (AB) effect and parity selective tunneling in pn junctions based on rectangular graphene rings where the contacts and ring arms are all made of zigzag nanoribbons. We find that when applying a magnetic field to the ring, the AB interference can reverse the parity symmetry of incoming waves and hence can strongly modulate the parity selective transmission through the system. Therefore, the transmission between two states of different parity exhibits the AB oscillations with a π−phase shift, compared to the case of states of the same parity. On this basis, it is shown that interesting effects, such as giant (both positive and negative) magnetoresistance and strong negative differential conductance, can be achieved in this structure. Our study thus presents a new property of the AB interference in graphene nanorings, which could be helpful for further understanding the transport properties of graphene mesoscopic systems. (paper)

  8. Half-period Aharonov-Bohm oscillations in disordered rotating optical ring cavities

    CERN Document Server

    Li, Huanan; Shapiro, Boris

    2016-01-01

    There exists an analogy between Maxwell equations in a rotating frame and Schr\\"odinger equation for a charged particle in the presence of a magnetic field. We exploit this analogy to point out that electromagnetic phenomena in the rotating frame, under appropriate conditions, can exhibit periodicity with respect to the angular velocity of rotation. In particular, in disordered ring cavities one finds the optical analog of the Al'tshuler-Aronov-Spivak effect well known in mesoscopic physics of disordered metals.

  9. Observation of Aharonov-Bohm and Al'tshuler-Aronov-Spivak oscillations in the background of universal conductance fluctuations in silicon nanowires

    Science.gov (United States)

    Mtsuko, Davie; Aslan, Tahir; Ncube, Siphephile; Coleman, Christopher; Wamwangi, Daniel; Bhattacharyya, Somnath

    2016-02-01

    Magnetoresistance (MR) oscillations of multiple periodicities are recorded in singly connected silicon nanowires of diameter ≈50 \\text{nm} . At 100 K we observe oscillations of periodicity ≈1.78 \\text{T} and 0.444 T corresponding to h/e and h/4e Aharonov-Bohm (AB) oscillations, whereas at 10 K we record periodicities of 0.98 T, 0.49 T and 0.25 T corresponding to h/e, h/2e (Al'tshuler-Aronov-Spivak (AAS)) and h/4e oscillations. At 2.5 K we find magnetoresistance oscillations with multiple periodicities of 1.3 T, 0.52 T, and 0.325 T corresponding to AB and AAS oscillations. The h/2e and h/4e peaks can be attributed to the interference of time-reversed paths originating from the core orbits that scatter coherently on the surface of the nanowires multiple times. We also observed 20 mT and 60 mT oscillations of small amplitude superimposed on a quasi-periodic background which we attribute to the quantum interference of special surface states associated with skipping orbits that propagate quasi-ballistically. The aperiodic fluctuations in the MR at all temperatures are universal conductance fluctuations (UCF) originating from randomly spaced impurity scattering in the core of the nanowire.

  10. Pure spin polarized transport based on Rashba spin-orbit interaction through the Aharonov-Bohm interferometer embodied four-quantum-dot ring

    Institute of Scientific and Technical Information of China (English)

    Wu Li-Jun; Han Yu

    2013-01-01

    The spin-polarized linear conductance spectrum and current-voltage characteristics in a four-quantum-dot ring embodied into Aharonov-Bohm (AB) interferometer are investigated theoretically by considering a local Rashba spin-orbit interaction.It shows that the spin-polarized linear conductance and the corresponding spin polarization are each a function of magnetic flux phase at zero bias voltage with a period of 2π,and that Hubbard U cannot influence the electron transport properties in this case.When adjusting appropriately the structural parameter of inter-dot coupling and dot-lead coupling strength,the electronic spin polarization can reach a maximum value.Furthermore,by adjusting the bias voltages applied to the leads,the spin-up and spin-down currents move in opposite directions and pure spin current exists in the configuration space in appropriate situations.Based on the numerical results,such a model can be applied to the design of a spin filter device.

  11. An "unreasonable effectiveness" of Hilbert transform for the transition phase behavior in an Aharonov-Bohm two-path interferometer

    Science.gov (United States)

    Englman, R.

    2016-08-01

    The recent phase shift data of Takada et al. (Phys. Rev. Lett. 113 (2014) 126601) for a two level system are reconstructed from their current intensity curves by the method of Hilbert transform, for which the underlying Physics is the principle of causality. An introductory algebraic model illustrates pedagogically the working of the method and leads to newly derived relationships involving phenomenological parameters, in particular for the sign of the phase slope between the resonance peaks. While the parametrization of the experimental current intensity data in terms of a few model parameters shows only a qualitative agreement for the phase shift, due to the strong impact of small, detailed variations in the experimental intensity curve on the phase behavior, the numerical Hilbert transform yields a satisfactory reproduction of the phase.

  12. A Note on the Sagnac Effect and Current Terrestrial Experiments

    CERN Document Server

    Ruggiero, Matteo Luca

    2014-01-01

    We focus on the Sagnac effect for light beams in order to evaluate if the higher order relativistic corrections of kinematic origin could be relevant for actual terrestrial experiments. Moreover, we discuss to what extent the analogy with the Aharonov-Bohm effect holds true in a fully relativistic framework.

  13. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运∗%Electron transport through a two-terminal Aharonov-Bohm interferometer coupled with linear di-quantum dot molecules

    Institute of Scientific and Technical Information of China (English)

    白继元; 贺泽龙; 李立; 韩桂华; 张彬林; 姜平晖; 樊玉环

    2015-01-01

    A two-terminal Aharonov-Bohm (A-B) interferometer coupled with linear di-quantum dot molecules is presented. By employing Keldysh non-equilibrium Green’s function technique, the conductance without introducing time-dependent external field and the average current with applying time-dependent external field are theoretically studied. In the absence of time-dependent external field, two identical linear di-quantum dot molecules embedded respectively in the two arms of A-B interferometer lead to degeneracy energy levels. The central resonance peak at εd = 0 in the conductance spectrum splits into two resonance peaks as the inter-coupling strength of di-quamtum dot increases over a threshold. In the case that the two linear di-quantum dot molecules are different, three or four resonance peaks appear in the conductance spectrum. When tuning magnetic fluxψ=π, the destructive quantum interference of electron waves in the A-B interferometer takes place. The conversion between 0 and 1 for conductance is performed by switching on/off the magnetic flux, which suggests a new physical scheme of quantum switches. The effect of Rashba spin-orbit interaction on the conductance is discussed. The functionality of spin filter is suggested through adjusting the Rashba spin-orbit coupling strength and the external magnetic flux. When time-dependent external field is applied, the notable side-band effect appears in the average current curve. A series of resonance peaks is produced, with the peak-peak separation of~ω. Two main peaks become reduced as the amplitude of time-dependent external field increases, however, the sideband peaks grow gradually. This indicates that both the magnitude and the position of average current resonance peak are controllable by adjusting the amplitude of time-dependent external field. The sideband effect remains always in the average current curve no matter how much the frequency of time-dependent external field changes. But the increase in the

  14. Gravitational Aharonov–Bohm effect due to noncommutative BTZ black hole

    Energy Technology Data Exchange (ETDEWEB)

    Anacleto, M.A., E-mail: anacleto@df.ufcg.edu.br; Brito, F.A., E-mail: fabrito@df.ufcg.edu.br; Passos, E., E-mail: passos@df.ufcg.edu.br

    2015-04-09

    In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov-Bohm effect due to spacetime noncommutativity.

  15. Gravitational Aharonov–Bohm effect due to noncommutative BTZ black hole

    International Nuclear Information System (INIS)

    In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov-Bohm effect due to spacetime noncommutativity

  16. Quantum Effects of Electric Fields and Potentials on Electron Motion: An Introduction to Theoretical and Practical Aspects

    Science.gov (United States)

    Matteucci, G.

    2007-01-01

    In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic…

  17. Darwin-Lagrangian analysis for the interaction of a point charge and a magnet: considerations related to the controversy regarding the Aharonov-Bohm and Aharonov-Casher phase shifts

    International Nuclear Information System (INIS)

    The classical electromagnetic interaction of a point charge and a magnet is discussed by first calculating the interaction of a point charge with a simple model magnetic moment and then suggesting a multiparticle limit. The Darwin-Lagrangian is used to analyse the electromagnetic behaviour of the model magnetic moment (composed of two oppositely charged particles of different masses in an initially circular Coulomb orbit) interacting with a passing point charge. Considerations of force, energy, momentum and centre of energy are treated through second order in 1/c. The changing magnetic moment is found to put a force back on a passing charge; this force is of order 1/c2 and depends upon the magnitude of the magnetic moment. The limit of a many-particle magnet arranged as a toroid is discussed. It is suggested that in the multiparticle limit, the electric fields of the passing charge are screened out of the body of the magnet while the magnetic fields of the passing charge penetrate into the body of the magnet. This is consistent with our understanding of the penetration of electromagnetic velocity fields into ohmic conductors. The proposed multiparticle limit is consistent with the conservation laws for energy and momentum, as well as constant motion of the centre of energy, and Newton's third law for the net Lorentz forces on the magnet and on the point charge. The work corresponds to a classical electromagnetic analysis of the interaction which is basic to understanding the controversy over the Aharonov-Bohm and Aharonov-Casher phase shifts and represents a refutation of the suggestions of Aharonov, Pearle and Vaidman

  18. Observation of an Effective Magnetic field for Light

    CERN Document Server

    Tzuang, Lawrence D; Nussenzveig, Paulo; Fan, Shanhui; Lipson, Michal

    2013-01-01

    Photons are neutral particles that do not interact directly with a magnetic field. However, recent theoretical work has shown that an effective magnetic field for photons can exist if the phase of light would change with its propagating direction. This direction-dependent phase indicates the presence of an effective magnetic field as shown for electrons experimentally in the Aharonov-Bohm experiment. Here we replicate this experiment using photons. In order to create this effective magnetic field, we construct an on-chip silicon-based Ramsey-type interferometer. This interferometer has been traditionally used to probe the phase of atomic states, and here we apply it to probe the phase of photonic states. We experimentally observe a phase change, i.e. an effective magnetic field flux from 0 to 2pi. In an Aharonov-Bohm configuration for electrons, considering the device geometry, this flux corresponds to an effective magnetic field of 0.2 Gauss.

  19. Entangled Hanbury Brown Twiss effects with edge states

    OpenAIRE

    Buttiker, Markus; Samuelsson, Martin Peter; Sukhorukov, Eugene

    2003-01-01

    Electronic Hanbury Brown Twiss correlations are discussed for geometries in which transport is along adiabatically guided edge channels. We briefly discuss partition noise experiments and discuss the effect of inelastic scattering and dephasing on current correlations. We then consider a two-source Hanbury Brown Twiss experiment which demonstrates strikingly that even in geometries without an Aharonov-Bohm effect in the conductance matrix (second-order interference), correlation functions can...

  20. Novel interference effects and a new Quantum phase in mesoscopic systems

    OpenAIRE

    Deo, P. Singha; Jayannavar, A. M.

    2000-01-01

    Mesoscopic systems have provided an opportunity to study quantum effects beyond the atomic realm. In these systems quantum coherence prevails over the entire sample. We discuss several novel effects related to persistent currents in open systems which do not have analogues in closed systems. Some phenomena arising simultaneously due to two non-classical effects namely, Aharonov-Bohm effect and quantum tunneling are presented. Simple analysis of sharp phase jumps observed in double-slit Aharon...

  1. Effects of lateral asymmetry on electronic structure of strained semiconductor nanorings in a magnetic field

    Science.gov (United States)

    Milošević, M. M.; Tadić, M.; Peeters, F. M.

    2008-11-01

    The influence of lateral asymmetry on the electronic structure and optical transitions in elliptical strained InAs nanorings is analyzed in the presence of a perpendicular magnetic field. Two-dimensional rings are assumed to have elliptical inner and outer boundaries oriented in mutually orthogonal directions. The influence of the eccentricity of the ring on the energy levels is analyzed. For large eccentricity of the ring, we do not find any Aharonov-Bohm effect, in contrast to circular rings. Rather, the single-particle states of the electrons and the holes are localized as in two laterally coupled quantum dots formed in the lobes of the nanoring. Our work indicates that the control of shape is important for the existence of the Aharonov-Bohm effect in semiconductor nanorings.

  2. Effects of lateral asymmetry on electronic structure of strained semiconductor nanorings in a magnetic field

    International Nuclear Information System (INIS)

    The influence of lateral asymmetry on the electronic structure and optical transitions in elliptical strained InAs nanorings is analyzed in the presence of a perpendicular magnetic field. Two-dimensional rings are assumed to have elliptical inner and outer boundaries oriented in mutually orthogonal directions. The influence of the eccentricity of the ring on the energy levels is analyzed. For large eccentricity of the ring, we do not find any Aharonov-Bohm effect, in contrast to circular rings. Rather, the single-particle states of the electrons and the holes are localized as in two laterally coupled quantum dots formed in the lobes of the nanoring. Our work indicates that the control of shape is important for the existence of the Aharonov-Bohm effect in semiconductor nanorings.

  3. Quark confinement and the fractional quantum Hall effect

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-Jun; GENG Wen-Tong

    2008-01-01

    Working in the physics of Wilson factor and Aharonov-Bohm effect,we find in the fluxtubequark system the topology of a baryon consisting of three heavy flavor quarks resembles that of the fractional quantum Hall effect(FQHE)in condensed matter.This similarity yields the result that the constituent quarks of baryon have the"filling factor"1/3.thus the previous conjecture that quark confinement is a correlation effect is confirmed.Moreover,by deriving a Hamiltonian of the system analogous to that of FQHE,we predict an energy gap for the ground state of a heavy three-quark system.

  4. A Note on the Sagnac Effect for Matter Beams

    CERN Document Server

    Ruggiero, Matteo Luca

    2014-01-01

    We study the Sagnac effect for matter beams, in order to estimate the kinematic corrections to the basic formula, deriving from the position and the extension of the interferometer, and discuss the analogy with the Aharonov-Bohm effect. We show that the formula for the Sagnac time delay is the same for matter and light beams in arbitrary stationary space-times, provided that a suitable condition on the speed of the beams is fulfilled. Hence, the same results obtained for light beams apply to matter beams.

  5. An experimental proposal to test the physical effect of the vector potential

    Science.gov (United States)

    Wang, Rui-Feng

    2016-01-01

    There are two interpretations of the Aharonov-Bohm (A-B) effect. One interpretation asserts that the A-B effect demonstrates that the vector potential is a physical reality that can result in the phase shift of a moving charge in quantum mechanics. The other interpretation asserts that the phase shift of the moving charge results from the interaction energy between the electromagnetic field of the moving charge and external electromagnetic fields. This paper briefly reviews these two interpretations and analyzes their differences. In addition, a new experimental scheme is proposed to determine which interpretation is correct.

  6. On the effects of a screw dislocation and a linear potential on the harmonic oscillator

    Science.gov (United States)

    Bueno, M. J.; Furtado, C.; Bakke, K.

    2016-09-01

    Quantum effects on the harmonic oscillator due to the presence of a linear scalar potential and a screw dislocation are investigated. By searching for bound states solutions, it is shown that an Aharonov-Bohm-type effect for bound states and a restriction of the values of the angular frequency of the harmonic oscillator can be obtained, where the allowed values are determined by the topology of the screw dislocation and the quantum numbers associated with the radial modes and the angular momentum. As particular cases, the angular frequency and the energy levels associated with the ground state and the first excited state of the system are obtained.

  7. Sagnac Effect in the Kerr-Newman and Reissner-Nordstr(o)m Fields

    Institute of Scientific and Technical Information of China (English)

    HU Ping-Hui; WANG Yong-Jiu

    2006-01-01

    @@ By means of a formal analogy with the Aharonov-Bohm effect, the Sagnac time delay and the corresponding Sagnac phase shift in the Kerr-Newman and Reissner-Nordstrom spacetimes are discussed. We find that the effect depends on the properties of the source of the gravitational field. The contributions made by the electric charge of the gravitational source can be employed to weaken it in the Kerr-Newman spacetime, even if a phase shift and a time delay still appear. This is due to the properties of the rotating source of the gravitational field.

  8. Two Approaches to Fractional Statistics in the Quantum Hall Effect: Idealizations and the Curious Case of the Anyon

    Science.gov (United States)

    Shech, Elay

    2015-09-01

    This paper looks at the nature of idealizations and representational structures appealed to in the context of the fractional quantum Hall effect, specifically, with respect to the emergence of anyons and fractional statistics. Drawing on an analogy with the Aharonov-Bohm effect, it is suggested that the standard approach to the effects—(what we may call) the topological approach to fractional statistics—relies essentially on problematic idealizations that need to be revised in order for the theory to be explanatory. An alternative geometric approach is outlined and endorsed. Roles for idealizations in science, as well as consequences for the debate revolving around so-called essential idealizations, are discussed.

  9. Effective (2+1)-dimensional field theory of fermions: fermion mass generation with Kaluza-Klein fermions and gauge field

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovsky, V.Ch., E-mail: zhukovsk@phys.msu.ru [Faculty of Physics, Moscow State University, 119991, Moscow (Russian Federation); Stepanov, E.A., E-mail: stepanov@physics.msu.ru [Faculty of Physics, Moscow State University, 119991, Moscow (Russian Federation)

    2012-12-05

    Generation of mass on two-dimensional brane in three-dimensional model with four-fermion interaction including external gauge field A{sub 3} is considered. In the framework of this model the generated mass proves to be lighter than Kaluza-Klein modes, thus indicating to a possibility of solving the mass hierarchy problem. Dependence of the effective potential and the coupling constant on characteristics of the model such as compactification radius, gauge field and phase shift parameter was also obtained. It is demonstrated that the generated mass, besides the dynamic part, includes also a kinematic (topological) contribution, i.e. the Aharonov-Bohm phase.

  10. Aharonov-Bohm磁通对反铁磁链中的孤立子的影响%Effect of the Aharonov-Bohm Flux on the Soliton in Antiferromagnetic Chain

    Institute of Scientific and Technical Information of China (English)

    许长谭

    2004-01-01

    该文采用Holstein-Primakoff变换、双子格模型、相干态表示、含时微扰原理和多重尺度方法,研究了具有Aharonov-Bohm磁通时,一维反铁磁链中的孤立子激发问题,探讨了Aharonov-Bohm磁通对孤立子产生的效应,结果表明Aharonov-Bohm磁通对孤立子的峰值、宽度、能量和自旋空间排列等均产生影响.

  11. Geometric Phase for Fermionic Quasiparticles Scattering by Disgyration in Superfluids

    OpenAIRE

    de Andrade, L. C. Garcia; Carvalho, A. M. de M.; Furtado, C.

    2004-01-01

    We consider a Volovik's analog model for description of a topological defects in a superfluid and we investigate the scattering of quasiparticles in this background. The analog of the gravitational Aharonov-Bohm in this system is found. An analysis of this problem employing loop variables is considered and corroborates for the existence of the Aharonov-Bohm effect in this system. The results presented here may be used to study the Aharonov-Bohm effect in superconductors.

  12. Uniform asymptotic formula for the Aharonov Bohm wavefield

    Science.gov (United States)

    Hannay, J. H.

    2016-06-01

    A uniform asymptotic formula for the Aharonov–Bohm wavefield (that of a plane quantum wave scattered by a thin straight solenoid) far away from the solenoid is obtained in a direct way. Actually quite good accuracy is achieved even down to one wavelength away. The error is numerically of order radius^(‑3/2) for all values of polar angle, including directly forwards. Several previous formulas, uniform and otherwise, for the far field limit exist in the literature. All contain the essential ingredient: the Fresnel integral (complex error function), but ordinarily the error in these formulas is of order radius^(‑1/2) in the forwards direction where the Fresnel contribution is most important.

  13. Aharonov-Bohm Phase in High Density Quark Matter

    CERN Document Server

    Chatterjee, Chandrasekar

    2015-01-01

    Stable non-Abelian vortices, that are color magnetic flux tubes as well as superfluid vortices, are present in the color-flavor locked (CFL) phase of dense quark matter with di-quark condensations. We calculate the Aharanov-Bohm phases of charged particles, that is, electrons, muons and CFL mesons made of tetra quarks around a non-Abelian vortex.

  14. Topological Charge Screening in Disordered Aharonov-Bohm Wavefunctions

    Science.gov (United States)

    Houston, Alexander; Hannay, John; Taylor, Alexander; Dennis, Mark

    Free electrical charges are typically subject to screening relations. For example, in ionic fluids and Coulomb gases there is screening (both global and local) of the electrical charges, described by the first and second Stillinger-Lovett sum rules. A topological analogy governs the statistical behaviour of the nodal points in Gaussian random superpositions of plane waves. These nodal points are integer topological charges, i.e. vortices and antivortices of the complex wavefunction, whose sign is that of the phase circulation. Such superpositions are known to model high energy eigenfunctions in the presence of wave chaos, and display topological charge screening in the bulk. We investigate how these screening relations are affected by the introduction of a magnetic flux line, which may be fractional in strength. We find that the global screening relation is broken, with the average total topological charge of the vortices given by the flux strength, and that the local screening of the flux itself shows unexpected features.

  15. Aharonov-Bohm phase in high density quark matter

    Science.gov (United States)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    2016-03-01

    Stable non-Abelian vortices, which are color magnetic flux tubes as well as superfluid vortices, are present in the color-flavor locked phase of dense quark matter with diquark condensations. We calculate the Aharanov-Bohm phases of charged particles, that is, electrons, muons, and color-flavor locked mesons made of tetraquarks around a non-Abelian vortex.

  16. Hidden superconformal symmetry of the spinless Aharonov-Bohm system

    Czech Academy of Sciences Publication Activity Database

    Correa, F.; Falomir, H.; Jakubský, Vít; Plyushchay, M. S.

    2010-01-01

    Roč. 43, č. 7 (2010), 075202/1-075202/27. ISSN 1751-8113 Institutional research plan: CEZ:AV0Z10480505 Keywords : SELF-ADJOINT EXTENSIONS * QUANTUM - MECHANICS * CARBON NANOTUBES Subject RIV: BE - Theoretical Physics Impact factor: 1.641, year: 2010

  17. Limiting analytic form for Aharonov-Bohm diffraction pattern

    International Nuclear Information System (INIS)

    It is considered a two-slit diffraction experiment with a magnetic flux confined to an unaccessible region between two rectangular slits. A leading order analytic form for the asymmetry in the resulting diffraction pattern is obtained. The corrections to the expressions are bounded and disappear in the limit of long wavelengths and/or infinite source-slit-screen spacing. Using the analytic form obtained, is is obtained a non-zero value for the asymmetry in the number of electrons scattered to the left and to the right but a zero value for their average displacement. (author)

  18. Neutron in a Strong Magnetic Field: Finite Volume Effects

    CERN Document Server

    Tiburzi, Brian C

    2014-01-01

    We investigate the neutron's response to magnetic fields on a torus with the aid of chiral perturbation theory, and expose effects from non-vanishing holonomies. The determination of such effects necessitates non-perturbative treatment of the magnetic field; and, to this end, a strong-field power counting is employed. Using a novel coordinate-space method, we find the neutron propagates in a coordinate-dependent effective potential that we obtain by integrating out charged pions winding around the torus. Knowledge of these finite volume effects will aid in the extraction of neutron properties from lattice QCD computations in external magnetic fields. In particular, we obtain finite volume corrections to the neutron magnetic moment and magnetic polarizability. These quantities have not been computed correctly in the literature. In addition to effects from non-vanishing holonomies, finite volume corrections depend on the magnetic flux quantum through an Aharonov-Bohm effect. We make a number of observations tha...

  19. Anomalous Hall Effect in Geometrically Frustrated Magnets

    Directory of Open Access Journals (Sweden)

    D. Boldrin

    2012-01-01

    space mechanism based on spin chirality that was originally applied to the pyrochlore Nd2Mo2O7 appears unsatisfactory. Recently, an orbital description based on the Aharonov-Bohm effect has been proposed and applied to both the ferromagnetic pyrochlores Nd2Mo2O7 and Pr2Ir2O7; the first of which features long-ranged magnetic order while the latter is a chiral spin liquid. Two further examples of geometrically frustrated conducting magnets are presented in this paper—the kagome-like Fe3Sn2 and the triangular PdCrO2. These possess very different electronic structures to the 3-dimensional heavy-metal pyrochlores and provide new opportunities to explore the different origins of the AHE. This paper summarises the experimental findings in these materials in an attempt to unite the conflicting theoretical arguments.

  20. Casimir effect for scalar current densities in topologically nontrivial spaces

    CERN Document Server

    Bellucci, S; Saharyan, N A

    2015-01-01

    We evaluate the Hadamard function and the vacuum expectation value (VEV) of the current density for a charged scalar field, induced by flat boundaries in spacetimes with an arbitrary number of toroidally compactified spatial dimensions. The field operator obeys the Robin conditions on the boundaries and quasiperiodicity conditions with general phases along compact dimensions. In addition, the presence of a constant gauge field is assumed. The latter induces Aharonov-Bohm-type effect on the VEVs. There is a region in the space of the parameters in Robin boundary conditions where the vacuum state becomes unstable. The stability condition depends on the lengths of compact dimensions and is less restrictive than that for background with trivial topology. The vacuum current density is a periodic function of the magnetic flux, enclosed by compact dimensions, with the period equal to the flux quantum. It is explicitly decomposed into the boundary-free and boundary-induced contributions. In sharp contrast to the VEVs...

  1. Impurity effects on energy levels and far-infrared spectra of nanorings

    Science.gov (United States)

    Hui, Pan; Jia-Lin, Zhu

    2003-11-01

    The effects of a positively charged impurity on the energy levels and far-infrared spectra of one and two electrons in semiconductor nanorings under magnetic fields are studied. The effects of the nanoring size and the impurity position are also discussed. It is shown that the electron-electron interaction and electron-impurity one in nanorings are strongly dependent on the nanoring size and the impurity position. Based on the studies of the impurity and field effects, the impurity-induced Aharonov-Bohm oscillations of the far-infrared spectra are found. The results predict a possibility of observing phenomena related to electron-impurity interaction in a nanoring in the future.

  2. Impurity effects on energy levels and far-infrared spectra of nanorings

    International Nuclear Information System (INIS)

    The effects of a positively charged impurity on the energy levels and far-infrared spectra of one and two electrons in semiconductor nanorings under magnetic fields are studied. The effects of the nanoring size and the impurity position are also discussed. It is shown that the electron-electron interaction and electron-impurity one in nanorings are strongly dependent on the nanoring size and the impurity position. Based on the studies of the impurity and field effects, the impurity-induced Aharonov-Bohm oscillations of the far-infrared spectra are found. The results predict a possibility of observing phenomena related to electron-impurity interaction in a nanoring in the future

  3. Impurity effects on energy levels and far-infrared spectra of nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Pan Hui; Zhu Jialin [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2003-11-05

    The effects of a positively charged impurity on the energy levels and far-infrared spectra of one and two electrons in semiconductor nanorings under magnetic fields are studied. The effects of the nanoring size and the impurity position are also discussed. It is shown that the electron-electron interaction and electron-impurity one in nanorings are strongly dependent on the nanoring size and the impurity position. Based on the studies of the impurity and field effects, the impurity-induced Aharonov-Bohm oscillations of the far-infrared spectra are found. The results predict a possibility of observing phenomena related to electron-impurity interaction in a nanoring in the future.

  4. Experimental realization of strong effective magnetic fields in an optical lattice.

    Science.gov (United States)

    Aidelsburger, M; Atala, M; Nascimbène, S; Trotzky, S; Chen, Y-A; Bloch, I

    2011-12-16

    We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed. PMID:22243087

  5. Thermospin effects in parallel coupled double quantum dots in the presence of the Rashba spin-orbit interaction and Zeeman splitting

    Institute of Scientific and Technical Information of China (English)

    Xue Hui-Jie; Lü Tian-Quan; Zhang Hong-Chen; Yin Hai-Tao; Cui Lian; He Ze-Long

    2012-01-01

    The thermoelectric and the thermospin transport properties,including electrical conductivity,Seebeck coefficient,thermal conductivity,and thermoelectric figure of merit,of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique.The periodic Anderson model is used to describe the quantum dot system,the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered.The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects.We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.

  6. Aharonov–Bohm phase for an electromagnetic wave background

    OpenAIRE

    Bright, Max; Singleton, Douglas; Yoshida, Atsushi

    2015-01-01

    The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in {\\it time-dependent} potentials . In particular, we focus on the case of a charged particle moving in the time varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential ({\\it i.e.} $\\oint A_\\mu dx ^\\mu$) and field ({\\it i.e.} $\\frac{1}{2}\\int F_{\\mu \

  7. Multisubband transport and magnetic deflection of Fermi electron trajectories in three terminal junctions and rings.

    Science.gov (United States)

    Poniedziałek, M R; Szafran, B

    2012-02-29

    We study the electron transport in three terminal junctions and quantum rings looking for the classical deflection of electron trajectories in the presence of intersubband scattering. We indicate that although the Aharonov-Bohm oscillations and the Lorentz force effects co-exist in the low subband transport, for higher Fermi energies a simultaneous observation of both effects is difficult and calls for carefully formed structures. In particular, in quantum rings with channels wider than the input lead the Lorentz force is well resolved but the Aharonov-Bohm periodicity is lost in chaotic scattering events. In quantum rings with equal lengths of the channels and T-shaped junctions the Aharonov-Bohm oscillations are distinctly periodic but the Lorentz force effects are not well pronounced. We find that systems with wedge-shaped junctions allow for observation of both the periodic Aharonov-Bohm oscillations and the magnetic deflection. PMID:22277600

  8. Coulomb-Blockade Oscillations in Semiconductor Nanostructures

    OpenAIRE

    Houten, van, H.; Beenakker, C. W. J.; Staring, A.A.M.

    2005-01-01

    I. Introduction (Preface, Basic properties of semiconductor nanostructures). II. Theory of Coulomb-blockade oscillations (Periodicity of the oscillations, Amplitude and lineshape). III. Experiments on Coulomb-blockade oscillations (Quantum dots, Disordered quantum wires, Relation to earlier work on disordered quantum wires). IV. Quantum Hall effect regime (The Aharonov-Bohm effect in a quantum dot, Coulomb blockade of the Aharonov-Bohm effect, Experiments on quantum dots, Experiments on disor...

  9. Quantum interference in an electron-hole graphene ring system

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, D.; Schmidt, H.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2 30167 Hannover (Germany)

    2013-12-04

    Quantum interference is observed in a graphene ring system via the Aharonov Bohm effect. As graphene is a gapless semiconductor, this geometry allows to study the unique situation of quantum interference between electrons and holes in addition to the unipolar quantum interference. The period and amplitude of the observed Aharonov-Bohm oscillations are independent of the sign of the applied gate voltage showing the equivalence between unipolar and dipolar interference.

  10. Coulomb blockade double-dot Aharonov-Bohm interferometer: giant fluctuations

    OpenAIRE

    Li, Feng; Jiao, HuJun; Luo, JuYan; Li, Xin-Qi; Gurvitz, S. A.

    2008-01-01

    Electron transport through two parallel quantum dots is a kind of solid-state realization of double-path interference. We demonstrate that the inter-dot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems.

  11. Gate controlled Aharonov-Bohm-type oscillations from single neutral excitons in quantum rings

    OpenAIRE

    Ding, F.; Akopian, N.; B. Li; Perinetti, U.; Govorov, A.; Peeters, F. M.; Bof Bufon, C.C.; Deneke, C; Chen, Y. H.; Rastelli, A; Schmidt, O. G.; V. Zwiller

    2010-01-01

    We report on a magnetophotoluminescence study of single self-assembled semiconductor nanorings which are fabricated by molecular-beam epitaxy combined with AsBr3 in situ etching. Oscillations in the neutral exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we control the period of the oscillations with a gate potential that modifies the exciton confinement. We infer from the experimental results, combined with calculati...

  12. The persistent current in an Aharonov-Bohm ring with a side-coupled quantum dot

    Institute of Scientific and Technical Information of China (English)

    Zhou Bo; Wu Shao-Quan; Sun Wei-Li; Zhou Xiao-Lin

    2004-01-01

    We have investigated the persistent current in a mesoscopic ring with a side-coupled quantum dot. The problems are probed by using the one-impurity Anderson Hamiltonian and are treated with the slave boson mean field theory. It is shown that the persistent current in this system has the spin fluctuations, and the charge transfers between the two subsystems are suppressed in the limit of △/TKo < 1. The minimum value of the persistent current for ζK/L = 5 of the odd parity system provides an opportunity to detect the Kondo screening cloud.

  13. Scattering and self-adjoint extensions of the Aharonov-Bohm Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, Cesar R [Departamento de Matematica-UFSCar, Sao Carlos, Sao Paulo 13560-970 (Brazil); Pereira, Marciano, E-mail: marciano@uepg.b [Departamento de Matematica e EstatIstica-UEPG, Ponta Grossa, Parana 84030-900 (Brazil)

    2010-09-03

    We consider the Hamiltonian operator associated with planar sections of infinitely long cylindrical solenoids and with a homogeneous magnetic field in their interior. First, in the Sobolev space H{sup 2}, we characterize all generalized boundary conditions on the solenoid border compatible with quantum mechanics, i.e. the boundary conditions, so that the corresponding Hamiltonian operators are self-adjoint. Then we study and compare the scattering of the most usual boundary conditions, that is, Dirichlet, Neumann and Robin.

  14. Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons

    Science.gov (United States)

    Wang, Li-Xian; Yan, Yuan; Zhang, Liang; Liao, Zhi-Min; Wu, Han-Chun; Yu, Da-Peng

    2015-10-01

    Topological insulators have exotic surface states that are massless Dirac fermions, manifesting special magnetotransport properties, such as the Aharonov-Bohm effect, Shubnikov-de Haas oscillations, and weak antilocalization effects. In the surface Dirac cone, the band structures are typically closely related to the p-orbitals and possess helical orbital texture. Here we report on the tunability of the transport properties via the interaction between the magnetic field and the spin-orbital angular momentum of the surface states in individual Bi2Se3 nanoribbons. Because the surface states have a large Landé factor and helical spin-orbital texture, the in-plane magnetic field induced Zeeman energy will result in the deformation of the Dirac cone, which gives rise to spin polarization of the surface states. The spin-dependent scattering of the conducting electrons on the existing local magnetic moments produces a giant negative magnetoresistance. The negative magnetoresistance is robust with a ratio of -20% at 2 K and -0.5% at 300 K under 14 T. The results are valuable for possible orbital-electronics based on topological insulators.Topological insulators have exotic surface states that are massless Dirac fermions, manifesting special magnetotransport properties, such as the Aharonov-Bohm effect, Shubnikov-de Haas oscillations, and weak antilocalization effects. In the surface Dirac cone, the band structures are typically closely related to the p-orbitals and possess helical orbital texture. Here we report on the tunability of the transport properties via the interaction between the magnetic field and the spin-orbital angular momentum of the surface states in individual Bi2Se3 nanoribbons. Because the surface states have a large Landé factor and helical spin-orbital texture, the in-plane magnetic field induced Zeeman energy will result in the deformation of the Dirac cone, which gives rise to spin polarization of the surface states. The spin-dependent scattering of

  15. Effects of magnetic impurities on electron transmission in a quantum nanoring

    Directory of Open Access Journals (Sweden)

    L Eslami

    2010-03-01

    Full Text Available In this paper we study the Aharonov-Bohm oscillations of transmission coefficient for an electron passing through a quantum nanoring with two identical magnetic impurities using quantum waveguide theory. It is shown that the Aharonov-Bohm oscillations are independent of the coupling constant between the electron and magnetic impurities for the singlet spin state of impurities, while for the other spin states of impurities the Aharonov-Bohm oscillations decrease rapidly with an increasing coupling constant. For a triplet spin state of impurities, we can use this system as a quantum NOT gate with an efficiency upper than 50% by adjusting the coupling constant between the electron and magnetic impurities and the magnetic flux passing through the ring.

  16. The Aharanov-Bohm effect, magnetic monopoles and reversal in spin-ice lattices.

    Science.gov (United States)

    Pollard, Shawn D; Zhu, Yimei

    2013-06-01

    The proof of the Aharonov-Bohm (AB) effect has been one of the most important experiments of the last century and used as essential evidence for the theory of gauge fields. In this article, we look at its fundamental relation to the Dirac monopole and string. Despite the Dirac string being invisible to the AB effect, it can be used to study emergent quasiparticles in condensed matter settings that behave similar to the fundamental monopoles and strings between them. We utilize phase-imaging method based on the AB effect to study the ordering in a one-model system - that of frustrated spin ice - to understand the ordering processes that occur during a magnetic field reversal cycle. The reversal is linked to the propagation of monopole defects linked by flux channels, reminiscent of Dirac strings. Monopole interactions govern the defect densities within the lattice. Furthermore, we exploit these interactions to propose a new ordering method in which high degrees of ground-state ordering can be achieved in a frustrated system. PMID:23549453

  17. Resonant Transmission through Serially Connected Hexagonal Nanorings with Magnetic Flux Effects

    Science.gov (United States)

    Hedin, Eric; Joe, Yong

    Nanostructures composed of six quantum dots (QDs) connected in a ring are linked together in a linear chain with each ring separated by a coupling segment from adjoining rings. A tight-binding model is used to obtain the electron transmission through an arbitrary number of rings in series as a function of energy, external magnetic field, coupling parameters, and QD site energy values. Modifications of the transmission band structure as a function of external field, due to the Aharonov-Bohm and Zeeman effects, demonstrate control over the conductance properties of the linear chain of nano-rings. Resonant transmission effects (with electron energy equal to the QD site energy values) show a complex dependence upon an interplay of magnetic flux, inter-ring coupling, and the strength of the coupling between the ring system and the external leads. For specific values of lead and ring couplings, nearly full transmission (ballistic transport) is seen to occur across a broad energy range, independent of the number of rings in series. Partially supported by BSU ASPiRE program.

  18. Transport measurements of the topological surface states in Bi2Te3 nanoribbon field effect devices

    Science.gov (United States)

    Jauregui, Luis A.; Pettes, Michael T.; Shi, Li; Rokhinson, Leonid P.; Chen, Yong P.

    2013-03-01

    We have grown nanoribbons (NRs) of Bi2Te3, a prototype topological insulator, by CVD and characterized them by TEM, Raman Spectroscopy and EDS. We fabricate backgated field effect devices where the chemical potential can be tuned and ambipolar field effect has been observed. The as-grown NRs are n-type and the 4-terminal resistance (R4p) versus temperature (T) shows a metallic behavior. Applying a sufficiently negative Vg, the R4p vs T displays an insulating behavior that saturates in a plateau at T < 100K, suggesting a metallic surface conduction dominant at low temperatures. Aharonov-Bohm (AB) oscillations of surface conducting carriers are observed in the magneto-resistance (MR) with a magnetic (B) field parallel to the NR axis. We have also measured the Shubnikov de Haas (SdH) oscillations with the B-field perpendicular to the NR axis at different carrier densities (n). The extrapolated Landau level crossing at 1/B = 0 is 0.5 and the extracted cyclotron mass from the T-dependence of the SdH oscillations is proportional to √{ n}, providing direct evidence of the Dirac fermion nature of the topological surface state. Gate-tunable weak anti-localization is observed and the extracted number of decoupled coherent conduction channels is 2 at the charge neutrality point.

  19. Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons.

    Science.gov (United States)

    Wang, Li-Xian; Yan, Yuan; Zhang, Liang; Liao, Zhi-Min; Wu, Han-Chun; Yu, Da-Peng

    2015-10-28

    Topological insulators have exotic surface states that are massless Dirac fermions, manifesting special magnetotransport properties, such as the Aharonov-Bohm effect, Shubnikov-de Haas oscillations, and weak antilocalization effects. In the surface Dirac cone, the band structures are typically closely related to the p-orbitals and possess helical orbital texture. Here we report on the tunability of the transport properties via the interaction between the magnetic field and the spin-orbital angular momentum of the surface states in individual Bi2Se3 nanoribbons. Because the surface states have a large Landé factor and helical spin-orbital texture, the in-plane magnetic field induced Zeeman energy will result in the deformation of the Dirac cone, which gives rise to spin polarization of the surface states. The spin-dependent scattering of the conducting electrons on the existing local magnetic moments produces a giant negative magnetoresistance. The negative magnetoresistance is robust with a ratio of -20% at 2 K and -0.5% at 300 K under 14 T. The results are valuable for possible orbital-electronics based on topological insulators. PMID:26400635

  20. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.

    2010-03-10

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  1. Effect of electric field on the spectrum and the persistent current of a quantum ring with two electrons (Ⅱ)——additional effect of a charged impurity

    Institute of Scientific and Technical Information of China (English)

    Wu Hong

    2008-01-01

    This paper studies the effect of a charged impurity together with or without an external homogeneous electric field on a quantum ring threaded by a magnetic field B and containing two electrons. The potential caused by the impurity has been plotted which is helpful to the understanding of the electronic structures inside the ring. The deep valley appearing in the potential curve is the source of localization, which affects seriously the Aharonov-Bohm oscillation (ABO) of the energy and persistent current. It also causes the fluctuation of the total orbital angular momentum L of the pair of electrons. It is found that the appearance of the impurity reduces the domain of the fractional ABO. During the increase of B, the domain of the integral ABO may appear earlier when B is even quite small. The transition from the localized states to extended states has also been studied. Furthermore, it has deduced a set of related formulae for a transformation, by which an impurity with a charge ep placed at an arbitrary point Rp is equivalent to an impurity with a revised charge ep placed at the X-axis with a revised radial distance Rp. This transformation facilitates the calculation and make the analysis of the physical result clearer.

  2. On the single-valuedness of wave functions in multiply connected spaces

    International Nuclear Information System (INIS)

    The following three conditions are shown to be insufficient for the appearance of the Aharonov-Bohm effect: 1) multiconnectedness of the space accessible for the incident particles; 2) nontrivial curlless vector magnetic potential in this multiconnected region; 3) single-valuedness of the used wave functions. A counterexample is given in which in the same multiconnected space with nonzero vector magnetic potential and single-valued wave functions the Aharonov-Bohm effect may or may not exist. This fact depends on the specific configuration of the magnetic field. It is studied which of these peculiarities are responsible for the appearance of the Aharonov-Bohm effect. The single-valuedness of the wave functions plays a guiding role in this analysis

  3. Helical mode and supercurrent measured on the topological surface states of Bi2Te3 nanoribbon field effect devices

    Science.gov (United States)

    Jauregui, Luis A.; Pettes, Michael T.; Shi, Li; Rokhinson, Leonid P.; Chen, Yong P.

    2014-03-01

    Topological superconductivity can be proximity induced by coupling s-wave superconductors with spin-helical electron systems, such as the surface of 3D topological insulators (TIs), where the energy bands follow Dirac dispersion and the electronic states possess helical spin-momentum locking. We have grown Bi2Te3 nanoribbons (NRs) by vapor liquid solid method and characterized their crystalline structure by TEM and Raman spectroscopy. We fabricate backgated field effect devices where the chemical potential (μ) can be tuned from bulk bands to surface states and ambipolar field effect has been observed. The temperature dependence of the resistance and Shubnikov de Haas oscillations show suppressed bulk conduction with surface conduction dominating and a pi-Berry's phase. The Aharonov-Bohm oscillations (ABO), measured with a magnetic field parallel to the NR axis, have a period equal to one flux quanta with conductance maxima at half flux quanta (pi-ABO), for μ close to the charge neutrality point. Such pi-ABO is a direct evidence of the existence of 1D helical modes at half flux quanta. We have also fabricated Josephson junctions on our TI NR devices with inter-electrode separations up to 200 nm, and measured supercurrent with a proximity induced gap of 0.5meV at 0.25K.

  4. Effect of electric field on the electronic spectrum and the persistent current of a quantum ring with two electrons

    Institute of Scientific and Technical Information of China (English)

    Wu Hong; Bao Cheng-Guang

    2006-01-01

    The effect of an electric field E on a narrow quantum ring that contains two electrons and is threaded by a magnetic flux B has been investigated. Localization of the electronic distribution and suppression of the AharonovBohm oscillation (ABO) are found in the two-electron ring, which are similar to those found in a one-electron ring.However, the period of ABO in a two-electron ring is reduced by half compared with that in a one-electron ring.Furthermore, during the variation of B, the persistent current of the ground state may undergo a sudden change in sign.This change is associated with a singlet-triplet transition and has no counterpart in one-electron rings. For a given E,there exists a threshold of energy. When the energy of the excited state exceeds the threshold, the localization would disappear and the ABO would recover. The value of the threshold is proportional to the magnitude of E. Once the threshold is exceeded, the persistent current is much stronger than the current of the ground state at E = 0.

  5. Topological quantum scattering under the influence of a nontrivial boundary condition

    Science.gov (United States)

    Mota, Herondy

    2016-04-01

    We consider the quantum scattering problem of a relativistic particle in (2 + 1)-dimensional cosmic string spacetime under the influence of a nontrivial boundary condition imposed on the solution of the Klein-Gordon equation. The solution is then shifted as consequence of the nontrivial boundary condition and the role of the phase shift is to produce an Aharonov-Bohm-like effect. We examine the connection between this phase shift and the electromagnetic and gravitational analogous of the Aharonov-Bohm effect and compare the present results with previous ones obtained in the literature, also considering non-relativistic cases.

  6. Quantum Transport in Semiconductor Nanostructures

    OpenAIRE

    Beenakker, C. W. J.; Houten, van, H.

    2004-01-01

    I. Introduction (Preface, Nanostructures in Si Inversion Layers, Nanostructures in GaAs-AlGaAs Heterostructures, Basic Properties). II. Diffusive and Quasi-Ballistic Transport (Classical Size Effects, Weak Localization, Conductance Fluctuations, Aharonov-Bohm Effect, Electron-Electron Interactions, Quantum Size Effects, Periodic Potential). III. Ballistic Transport (Conduction as a Transmission Problem, Quantum Point Contacts, Coherent Electron Focusing, Collimation, Junction Scattering, Tunn...

  7. Enhanced Magnetoabsorption Oscillations in Semiconductor Nanorings

    Science.gov (United States)

    Citrin, David; Maslov, Alex

    2003-03-01

    We present calculations of the interband optical absorption of semiconductor nanoscale rings including essential excitonic effects. We show that an in-plane electric field can significantly enhance the depth of magnetoabsorption oscillations due to Aharonov-Bohm like effects in the optical properties.

  8. Theory of phase-sensitive measurement of photon-assisted tunneling through a quantum dot

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Wingreen, Ned S.

    1998-01-01

    Recent double-slit interference experiments [Schuster et al., Nature (London) 385, 417 (1997)] have demonstrated the possibility of probing the phase of the complex transmission coefficient of a quantum dot via the Aharonov-Bohm effect. We propose an extension of these experiments: an ac voltage...

  9. Suppression of decoherence in a graphene monolayer ring

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, D., E-mail: smirnov@nano.uni-hannover.de; Rode, J. C.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2014-08-25

    The influence of high magnetic fields on coherent transport is investigated. A monolayer graphene quantum ring is fabricated and the Aharonov-Bohm effect is observed. For increased magnitude of the magnetic field, higher harmonics appear. This phenomenon is attributed to an increase of the phase coherence length due to reduction of spin flip scattering.

  10. Testing Atom and Neutron Neutrality with Atom Interferometry

    OpenAIRE

    Arvanitaki, Asimina; Dimopoulos, Savas; Geraci, Andrew A.; Hogan, Jason; Kasevich, Mark

    2007-01-01

    We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10^{-28}e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10^{-28}e, 7 orders of magnitude below current bounds.

  11. Problems in Quantum Mechanics with Solutions

    CERN Document Server

    d'Emilio, Emilio

    2011-01-01

    242 solved problems of several degrees of difficulty in nonrelativistic Quantum Mechanics, ranging from the themes of the crisis of classical physics, through the achievements in the framework of modern atomic physics, down to the still alive, more intriguing aspects connected e.g. with the EPR paradox, the Aharonov--Bohm effect, quantum teleportation.

  12. Quantum Corrections to Scattering Amplitude in Conical Space-time

    CERN Document Server

    Shiraishi, Kiyoshi

    2015-01-01

    It is known that the vacuum polarization of zero-point field arises around a conical singularity generated by an infinite, straight cosmic string. In this paper we study quantum electromagnetic corrections to the gravitational Aharonov-Bohm effect around a cosmic string. We find the scattering amplitude from a conical defect for charged Klein-Gordon field.

  13. Nontrivial systems and the necessity of the scalar quantum mechanics axioms

    Science.gov (United States)

    Kotůlek, Jan

    2009-06-01

    We discuss the necessity of the axioms of scalar quantum mechanics introduced by Paschke and clearly demonstrate their geometric and/or physical meaning. We show that reasonable nonrelativistic quantum mechanics is exactly specified by the axioms. A system describing the electric Aharonov-Bohm effect is presented. It illustrates the topological obstructions for the existence of a Hamiltonian.

  14. Nontrivial systems and the necessity of the scalar quantum mechanics axioms

    International Nuclear Information System (INIS)

    We discuss the necessity of the axioms of scalar quantum mechanics introduced by Paschke and clearly demonstrate their geometric and/or physical meaning. We show that reasonable nonrelativistic quantum mechanics is exactly specified by the axioms. A system describing the electric Aharonov-Bohm effect is presented. It illustrates the topological obstructions for the existence of a Hamiltonian.

  15. Casimir effect for scalar current densities in topologically nontrivial spaces

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Saharian, A.A.; Saharyan, N.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2015-08-15

    We evaluate the Hadamard function and the vacuum expectation value (VEV) of the current density for a charged scalar field, induced by flat boundaries in spacetimes with an arbitrary number of toroidally compactified spatial dimensions. The field operator obeys the Robin conditions on the boundaries and quasiperiodicity conditions with general phases along compact dimensions. In addition, the presence of a constant gauge field is assumed. The latter induces Aharonov-Bohm-type effect on the VEVs. There is a region in the space of the parameters in Robin boundary conditions where the vacuum state becomes unstable. The stability condition depends on the lengths of compact dimensions and is less restrictive than that for background with trivial topology. The vacuum current density is a periodic function of the magnetic flux, enclosed by compact dimensions, with the period equal to the flux quantum. It is explicitly decomposed into the boundary-free and boundary-induced contributions. In sharp contrast to the VEVs of the field squared and the energy-momentum tensor, the current density does not contain surface divergences. Moreover, for Dirichlet condition it vanishes on the boundaries. The normal derivative of the current density on the boundaries vanish for both Dirichlet and Neumann conditions and is nonzero for general Robin conditions. When the separation between the plates is smaller than other length scales, the behavior of the current density is essentially different for non-Neumann and Neumann boundary conditions. In the former case, the total current density in the region between the plates tends to zero. For Neumann boundary condition on both plates, the current density is dominated by the interference part and is inversely proportional to the separation. (orig.)

  16. Beyond the Dirac Phase Factor: Dynamical Quantum Phase-Nonlocalities in the Schrödinger Picture

    Directory of Open Access Journals (Sweden)

    Konstantinos Moulopoulos

    2011-11-01

    Full Text Available Generalized solutions of the standard gauge transformation equations are presented and discussed in physical terms. They go beyond the usual Dirac phase factors and they exhibit nonlocal quantal behavior, with the well-known Relativistic Causality of classical fields affecting directly the phases of wavefunctions in the Schrödinger Picture. These nonlocal phase behaviors, apparently overlooked in path-integral approaches, give a natural account of the dynamical nonlocality character of the various (even static Aharonov-Bohm phenomena, while at the same time they seem to respect Causality. For particles passing through nonvanishing magnetic or electric fields they lead to cancellations of Aharonov-Bohm phases at the observation point, generalizing earlier semiclassical experimental observations (of Werner & Brill to delocalized (spread-out quantum states. This leads to a correction of previously unnoticed sign-errors in the literature, and to a natural explanation of the deeper reason why certain time-dependent semiclassical arguments are consistent with static results in purely quantal Aharonov-Bohm configurations. These nonlocalities also provide a remedy for misleading results propagating in the literature (concerning an uncritical use of Dirac phase factors, that persists since the time of Feynman’s work on path integrals. They are shown to conspire in such a way as to exactly cancel the instantaneous Aharonov-Bohm phase and recover Relativistic Causality in earlier “paradoxes” (such as the van Kampen thought-experiment, and to also complete Peshkin’s discussion of the electric Aharonov-Bohm effect in a causal manner. The present formulation offers a direct way to address time-dependent single- vs double-slit experiments and the associated causal issues—issues that have recently attracted attention, with respect to the inability of current theories to address them.

  17. Numerical studies of relativistic corrections to Fermion dynamics and the Aharonov-Casher effect

    International Nuclear Information System (INIS)

    Dirac equation with minimal electromagnetic coupling yields, in the weakly relativistic regime, the Pauli equation for two-component minimally-interacting electron endowed with magnetic moment coupling and the right value of the Lande g-factor, g=2. On the other hand, another remarkable feature associated with spinning particles is the coupling of the magnetic dipole moment to an electric field, which gives rise to the so-called Aharonov-Casher phase for the wave function of the test particle. This phase shift shows up even though there is no force acting on the particle, just as in the familiar case of the Aharonov-Bohm effect. The most accurate experimental measurements of the spin-electric field interaction are carried out with atomic systems. This work sets out to investigate how the Aharonov-Casher effect may be related to the relativistic regime: in practical terms, how it may appear by means of relativistic corrections to the Schroedinger equation, once an external electromagnetic field is switched on. One should understand at which order of velocities the Aharonov-Casher shift arises, either by adding up higher-order gradient terms to the Schroedinger equation or by carrying out the non-relativistic limit of Dirac equation with higher-derivative terms. The latter has very interesting consequences whenever adjoined to the Dirac equation, leading to a rich excitation spectrum and inducing interesting couplings in the low-energy regime. In view of the calculational complexity inherent to the task of finding solutions to these higher-derivatives partial differential equations, wave-function solutions and phase shifts have to be searched for with the help of numerical methods and computer-algebra software. (author)

  18. Numerical studies of relativistic corrections to Fermion dynamics and the Aharonov-Casher effect

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Filho, L.G. [Universidade do Estado, Resende, RJ (Brazil). Faculdade de Tecnologia]. E-mail: gonzaga@fat.uerj.br; Helayel-Neto, J.A.; Murga, J.L.C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mail: helayel@cbpf.br

    2004-05-01

    Dirac equation with minimal electromagnetic coupling yields, in the weakly relativistic regime, the Pauli equation for two-component minimally-interacting electron endowed with magnetic moment coupling and the right value of the Lande g-factor, g=2. On the other hand, another remarkable feature associated with spinning particles is the coupling of the magnetic dipole moment to an electric field, which gives rise to the so-called Aharonov-Casher phase for the wave function of the test particle. This phase shift shows up even though there is no force acting on the particle, just as in the familiar case of the Aharonov-Bohm effect. The most accurate experimental measurements of the spin-electric field interaction are carried out with atomic systems. This work sets out to investigate how the Aharonov-Casher effect may be related to the relativistic regime: in practical terms, how it may appear by means of relativistic corrections to the Schroedinger equation, once an external electromagnetic field is switched on. One should understand at which order of velocities the Aharonov-Casher shift arises, either by adding up higher-order gradient terms to the Schroedinger equation or by carrying out the non-relativistic limit of Dirac equation with higher-derivative terms. The latter has very interesting consequences whenever adjoined to the Dirac equation, leading to a rich excitation spectrum and inducing interesting couplings in the low-energy regime. In view of the calculational complexity inherent to the task of finding solutions to these higher-derivatives partial differential equations, wave-function solutions and phase shifts have to be searched for with the help of numerical methods and computer-algebra software. (author)

  19. Thermoelectric properties of quantum dot with Fano-Rashba effect

    International Nuclear Information System (INIS)

    Full text. The main challenge in the field of spintronics is to achieve the injection, modulation, and detection of electron spin in nanometer scale structures. In 1990, a spin transistor was proposed, based on the electron spin precession controlled by an external electric field via spin-orbit coupling. On the other hand, Quantum dots (QDs) are very promising nano structures due to their physical properties and applications as electronic devices. Fano and Dicke effects were also found to be present in QD configurations. On the other hand, Song described how a spin filter may be achieved in open QD systems by exploiting Fano resonances that occur in their transmission characteristic. In a QD in which the spin degeneracy of carrier is lifted, they showed that the Fano effect may be used as an effective means to generate spin polarization of transmitted carriers and that electrical detection of the resulting polarization should be possible. The Rashba spin-orbit interaction arises from a structure inversion asymmetry resulting from the asymmetry of the in-plane confining potential in semiconductor heterostructures. This effect causes a spin splitting proportional to k. In general, the condition for the Fano effect is the presence of two scattering channels at least: the discrete level and continuum band. The Fano effect in electronic transport through a single-electron transistor allows to alter the interference between the two paths by changing the voltages on various gates. Kobayashi et al. reported the first tunable Fano experiment in which a well-defined Fano system is realized in an Aharonov-Bohm ring with a QD embedded in one of its arms. Recently, Fano-type resonances due to the interaction of electron states with opposite spin orientation have been studied. Here we investigate the thermoelectric properties of electronic Rashba quantum dot coupled to ferromagnetic leads. The aim of our study is to probe the role of Fano-Rashba effect in thermoelectric effects

  20. The Nonlocal Pancharatnam Phase in Two-Photon Interferometry

    OpenAIRE

    Mehta, Poonam; Samuel, Joseph; Sinha, Supurna

    2010-01-01

    We propose a polarised intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a pair of Hanbury Brown-Twiss photons. The setup involves two polarised thermal sources illuminating two polarised detectors. Varying the relative polarisation angle of the detectors introduces a two photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect. The ge...

  1. Maxwell Duality, Lorentz Invariance, and Topological Phase

    CERN Document Server

    Dowling, J P; Franson, J D; Dowling, Jonathan P.; Williams, Colin P.

    1999-01-01

    We discuss the Maxwell electromagnetic duality relations between the Aharonov-Bohm, Aharonov-Casher, and He-McKellar-Wilkens topological phases, which allows a unified description of all three phenomena. We also elucidate Lorentz transformations that allow these effects to be understood in an intuitive fashion in the rest frame of the moving quantum particle. Finally, we propose a realistic set up for measuring and interpreting the He-McKellar-Wilkens phase directly in an experiment.

  2. Topological Raman band in the carbon nanohorn.

    Science.gov (United States)

    Sasaki, Ken-ichi; Sekine, Yoshiaki; Tateno, Kouta; Gotoh, Hideki

    2013-09-13

    Raman spectroscopy has been used in chemistry and physics to investigate the fundamental process involving light and phonons. The carbon nanohorn introduces a new subject to Raman spectroscopy, namely topology. We show theoretically that a photoexcited carrier with a nonzero winding number activates a topological D Raman band through the Aharonov-Bohm effect. The topology-induced D Raman band can be distinguished from the ordinary D Raman band for a graphene edge by its peak position. PMID:24074113

  3. Magnetic modulation of the tunnelling between defect states in antidot superlattices.

    Science.gov (United States)

    Movilla, J L; Planelles, J

    2012-07-11

    We show theoretically that the tunnelling between properly designed defects in periodic antidot lattices can be strongly modulated by applied magnetic fields. Further, transport channels made up of linear arrangements of tunnel-coupled defects can accommodate Aharonov-Bohm cages, suggesting a magnetic control of the transport through the system. Evidence supporting an unusual robustness of the caging effect against electron-electron interactions is also provided. PMID:22713775

  4. Robust surface states in epitaxial Bi(111) thin films

    Science.gov (United States)

    Zhu, Kai; Jin, Xiaofeng

    Bulk Bi a prototype semimetal with trivial electronic band topology. Unanticipatedly, we show the Altshuler-Aronov-Spivak and Aharonov-Bohm effects in epitaxial Bi(111) thin films. Meanwhile, we clearly identify the interaction of the top and bottom surface states via quantum tunneling by the electrical conductance and weak anti-localization measurements. These results have significantly enriched our understanding about the electronic structure of Bi, which might be helpful for clearing up some of its longstanding subtle issues.

  5. Flux periodicities and quantum hair on holographic superconductors.

    Science.gov (United States)

    Montull, Marc; Pujolàs, Oriol; Salvio, Alberto; Silva, Pedro J

    2011-10-28

    Superconductors in a cylindrical geometry respond periodically to a cylinder-threading magnetic flux, with the period changing from hc/2e to hc/e depending on whether the Aharonov-Bohm effects are suppressed. We show that holographic superconductors present a similar phenomenon, and that the different periodicities follow from classical no-hair theorems. We also give the Ginzburg-Landau description of the period-doubling phenomenon. PMID:22107621

  6. Transport and quantum interference in ferromagnetic (Ga,Mn)As nanostructures; Transportuntersuchungen von Quanteninterferenzeffekten in ferromagnetischen (Ga,Mn)As Nanostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Konrad

    2007-09-15

    In the framework of the thesis presented here for the first time quantum interference effects in ferromagnetic semiconductors could be uniquely detected. For this wire and ring structures with line widths of few nanometers were fabricated and universal conductivity fluctuations and Aharonov-Bohm oscillations at very low temperatures (<20 mK) were studied. From the analysis of the temperature and length dependence of the fluctuations knowledge about the coherence length and the scattering processes connected with this could be obtained.

  7. Complementarity in Wormhole Chromodynamics

    OpenAIRE

    Lo, Hoi-Kwong; Lee, Kai-Ming; Preskill, John

    1993-01-01

    The electric charge of a wormhole mouth and the magnetic flux ``linked'' by the wormhole are non-commuting observables, and so cannot be simultaneously diagonalized. We use this observation to resolve some puzzles in wormhole electrodynamics and chromodynamics. Specifically, we analyze the color electric field that results when a colored object traverses a wormhole, and we discuss the measurement of the wormhole charge and flux using Aharonov-Bohm interference effects. We suggest that wormhol...

  8. Nonlocality, Self-Adjointness and Theta-Vacuum in Quantum Field Theory in Spaces with Nontrivial Topology

    OpenAIRE

    Sitenko, Yu. A.

    1997-01-01

    We consider an analogue of the Aharonov-Bohm effect in quantum field theory: the fermionic vacuum attains nontrivial quantum numbers in the background of a magnetic vortex even in the case when the spatial region of nonvanishing external field strength is excluded. The dependence of the vacuum quantum numbers on the value of the vortex flux and the choice of the condition on the boundary of the excluded region is determined.

  9. Moessbauer experiment to observe significance of vector potentials in quantum theory

    International Nuclear Information System (INIS)

    As a powerful method to confirm the Aharonov-Bohm effect in bound states, we propose the Moessbauer experiment with 53I129 nucleus fixed at the center of toroidal magnet. With a toroid of major radius 10 cm, minor radius 1.5 cm and 6000 turns of coil, we estimate the energy shift -1.1x10-8eV for the electric current of 1 mA. (author)

  10. Time dependent electromagnetic fields and 4-dimensional Stokes' theorem

    CERN Document Server

    Andosca, Ryan

    2016-01-01

    Stokes' theorem is central to many aspects of physics -- electromagnetism, the Aharonov-Bohm effect, and Wilson loops to name a few. However, the pedagogical examples and research work almost exclusively focus on situations where the fields are time-independent so that one need only deal with purely spatial line integrals ({\\it e.g.} $\\oint {\\bf A} \\cdot d{\\bf x}$) and purely spatial area integrals ({\\it e.g.} $\\int (\

  11. Quantum Theory of Strings in Abelian Higgs Model

    OpenAIRE

    Akhmedov, E. T.; Chernodub, M. N.; Polikarpov, M.I.; Zubkov, M.A.

    1995-01-01

    Starting from the Abelian Higgs field theory, we construct the theory of quantum Abrikosov--Nielsen--Olesen strings. It is shown that in four space -- time dimensions in the limit of infinitely thin strings, the conformal anomaly is absent, and the quantum theory exists. We also study an analogue of the Aharonov--Bohm effect: the corresponding topological interaction is proportional to the linking number of the string world sheet and the particle world trajectory. The creation operators of th...

  12. Proposal for an experiment to measure the Hausdorff dimension of quantum mechanical trajectories

    OpenAIRE

    Kr{ö}ger, H.

    1997-01-01

    We make a proposal for a Gedanken experiment, based on the Aharonov-Bohm effect, how to measure in principle the zig-zagness of the trajectory of propagation (abberation from its classical trajectory) of a massive particle in quantum mechanics. Experiment I is conceived to show that contributions from quantum paths abberating from the classical trajectory are directly observable. Experiment II is conceived to measure average length, scaling behavior and critical exponent (Hausdorff dimension)...

  13. Spectra of cylindrical quantum dots: The effect of electrical and magnetic fields together with AB flux field

    Energy Technology Data Exchange (ETDEWEB)

    Ikhdair, Sameer M., E-mail: sikhdair@neu.edu.tr [Physics Department, Near East University, 922022, Nicosia, North Cyprus, Mersin 10 (Turkey); Hamzavi, Majid, E-mail: majid.hamzavi@gmail.com [Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Sever, Ramazan, E-mail: sever@metu.edu.tr [Physics Department, Middle East Technical University, 06531 Ankara (Turkey)

    2012-12-01

    We study the spectral properties of electron quantum dots (QDs) confined in 2D parabolic harmonic oscillator influenced by external uniform electrical and magnetic fields together with an Aharonov-Bohm (AB) flux field. We use the Nikiforov-Uvarov method in our calculations. Exact solutions for the energy levels and normalized wave functions are obtained for this exactly soluble quantum system. Based on the computed one-particle energetic spectrum and wave functions, the interband optical absorption GaAs spherical shape parabolic QDs is studied theoretically and the total optical absorption coefficient is calculated.

  14. Quantum Theory of Large Systems of Non-Relativistic Matter

    OpenAIRE

    Froehlich, J.; Studer, U. M.; Thiran, E.

    1995-01-01

    1. Introduction 2. The Pauli Equation and its Symmetries {2.1} Gauge-Invariant Form of the Pauli Equation {2.2} Aharonov-Bohm Effect {2.3} Aharonov-Casher Effect 3. Gauge Invariance in Non-Relativistic Quantum Many-Particle Systems {3.1} Differential Geometry of the Background {3.2} Systems of Spinning Particles Coupled to External Electromagnetic and Geometric Fields {3.3} Moving Coordinates and Quantum-Mechanical Larmor Theorem 4. Some Key Effects Related to the $U(1) \\times SU(2)$ Gauge In...

  15. Geometric-phase atom optics and interferometry

    Science.gov (United States)

    Zygelman, B.

    2015-10-01

    We illustrate how geometric gauge forces and topological phase effects emerge in atomic and molecular systems without employing assumptions that rely on adiabaticity. We show how geometric magnetism may be harnessed to engineer novel quantum devices including a velocity sieve, a component in mass spectrometers, for neutral atoms. We introduce and outline a possible experimental setup that demonstrates topological interferometry for neutral spin-1/2 systems. For that two-level system, we study the transition from Abelian to non-Abelian behavior and explore its relation to the molecular Aharonov-Bohm effect.

  16. Synthetic gauge fields for vibrational excitations of trapped ions.

    Science.gov (United States)

    Bermudez, Alejandro; Schaetz, Tobias; Porras, Diego

    2011-10-01

    The vibrations of a collection of ions in a microtrap array can be described in terms of tunneling phonons. We show that the vibrational couplings may be tailored by using a gradient of the trap frequencies together with a periodic driving of the trapping potentials. These ingredients allow us to induce effective gauge fields on the vibrational excitations, such that phonons mimic the behavior of charged particles in a magnetic field. In particular, microtrap arrays are well suited to realize a quantum simulator of the famous Aharonov-Bohm effect and observe the paradigmatic edge states typical from quantum-Hall samples and topological insulators. PMID:22107274

  17. Gauge Field Optics with Anisotropic Media

    CERN Document Server

    Liu, Fu

    2014-01-01

    By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.

  18. Transverse Force on Quarks in Deep-Inelastic Scattering

    Science.gov (United States)

    Burkardt, Matthias

    2015-10-01

    Transverse single-spin asymmetries are not the only observable where the transverse force on quarks in DIS plays a role. For example, higher-twist effects in polarized inclusive DIS can be related to that force. Furthermore the torque due to that force is relevant when comparing the Jaffe-Manohar with the Ji definition for quark orbital angular momentum. I explain the origin of that force in semi-classical pictures and discuss connections and differences with the Aharonov-Bohm effect.

  19. Charged particle scattering on two infinite cylindrical solenoids

    International Nuclear Information System (INIS)

    Charged particle scattering on two infinitely parallel cylindrical solenoids with similar by value and inverse by the sign magnetic fields is considered. Scattering amplitude is calculated in the 1st Born and high energy approximations. In both cases the differential cross section is nonsingular and the integral one - finite. Specific examples demonstrating that in one and the same multi-connection space under nontrivial vector-potentials and unambigous wave functions Aharonov-Bohm (AB) effect can exist but it can be absent as well. It is shown that an alternative AB effect interpretation as scattering in magnetic field leakages meets sufficient difficulties

  20. Electron Orbital Magnetic Moments in the Armchair Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing-Zhe; CHEN Xing; LIU Guang-Nua; HAN Ru-Shan

    2008-01-01

    @@ Based on the density functional theory, we calculate the band structure of an armchair carbon nanotube in an axial magnetic field. The result shows that there are two kinds of magnetic moments with different symmetries. One is the Aharonov Bohm-type magnetic moment which can be easily understood with classical picture, the other belonging to the valence, and conduction sub-bands should be explained by quantum mechanics. We use an effective mass model to analyse the magnetic moments and by comparing with the result of first-principle calculation, we conclude that the effective mass model is reasonable to estimate the change of the band gap in magnetic fields.

  1. Some Inconvenient Truths

    CERN Document Server

    Woodard, R P

    2015-01-01

    A recent paper by Fr\\"ob employs the linearized Weyl-Weyl correlator to construct the tensor power spectrum. Although his purpose was to argue that infrared divergences and secular growth in the graviton propagator are gauge artefacts, a closer examination of the problem leads to the opposite conclusion. The analogies with the BMS symmetries of graviton scattering on a flat background, and with the Aharonov-Bohm effect of quantum mechanics, suggest that de Sitter breaking secular growth is likely to be observable in graviton loop effects. And a recent result for the vacuum polarization does seem to show it.

  2. Is Quantum Mechanics Incompatible with Newton's First Law

    OpenAIRE

    Rabinowitz, Mario

    2007-01-01

    Quantum mechanics (QM) clearly violates Newton's First Law of Motion (NFLM) in the quantum domain for one of the simplest problems, yielding an effect in a force-free region much like the Aharonov-Bohm effect. In addition, there is an incompatibility between the predictions of QM in the classical limit, and that of classical mechanics (CM) with respect to NFLM. A general argument is made that such a disparity may be found commonly for a wide variety of quantum predictions in the classical lim...

  3. Some inconvenient truths

    Science.gov (United States)

    Woodard, R. P.

    2016-05-01

    A recent paper by Fröb employs the linearized Weyl-Weyl correlator to construct the tensor power spectrum. Although his purpose was to argue that infrared divergences and secular growth in the graviton propagator are gauge artefacts, a closer examination of the problem leads to the opposite conclusion. The analogies with the BMS symmetries of graviton scattering on a flat background, and with the Aharonov-Bohm effect of quantum mechanics, suggest that de Sitter breaking secular growth is likely to be observable in graviton loop effects. And a recent result for the vacuum polarization does seem to show it.

  4. Dynamics of a neutron in electromagnetic fields and quantum phase interference

    International Nuclear Information System (INIS)

    The dynamics of a neutral spinning particle in electromagnetic fields is investigated. The interference with unpolarized neutron beams is reasonably interpreted as the observation of spin precession in electromagnetic fields which has a dynamical origin. It is shown that only for a particular choice of the initial polarization of the spin the conditions for the Aharonov-Casher topological phase shift and the scalar Aharonov-Bohm effect can be fulfilled. The recent experiment on the Aharonov-Casher phase shift with neutron interferometry can be considered as a test of a new anyon model, which is a result of spin precession in the local electric field. (orig.)

  5. Quantum Electronic Transport of Topological Surface States in β-Ag2Se Nanowire.

    Science.gov (United States)

    Kim, Jihwan; Hwang, Ahreum; Lee, Sang-Hoon; Jhi, Seung-Hoon; Lee, Sunghun; Park, Yun Chang; Kim, Si-In; Kim, Hong-Seok; Doh, Yong-Joo; Kim, Jinhee; Kim, Bongsoo

    2016-04-26

    Single-crystalline β-Ag2Se nanostructures, a new class of 3D topological insulators (TIs), were synthesized using the chemical vapor transport method. The topological surface states were verified by measuring electronic transport properties including the weak antilocalization effect, Aharonov-Bohm oscillations, and Shubnikov-de Haas oscillations. First-principles band calculations revealed that the band inversion in β-Ag2Se is caused by strong spin-orbit coupling and Ag-Se bonding hybridization. These investigations provide evidence of nontrivial surface state about β-Ag2Se TIs that have anisotropic Dirac cones. PMID:27018892

  6. Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice.

    Science.gov (United States)

    Mukherjee, Sebabrata; Thomson, Robert R

    2015-12-01

    We experimentally demonstrate the photonic realization of a dispersionless flat band in a quasi-one-dimensional photonic lattice fabricated by ultrafast laser inscription. In the nearest neighbor tight binding approximation, the lattice supports two dispersive and one nondispersive (flat) band. We experimentally excite superpositions of flat-band eigenmodes at the input of the photonic lattice and show the diffractionless propagation of the input states due to their infinite effective mass. In the future, the use of photonic rhombic lattices, together with the successful implementation of a synthetic gauge field, will enable the observation of Aharonov-Bohm photonic caging. PMID:26625021

  7. On the Landau system in noncommutative phase-space

    Science.gov (United States)

    Gangopadhyay, Sunandan; Saha, Anirban; Halder, Aslam

    2015-12-01

    We consider the Landau system in a canonically noncommutative phase-space. A set of generalized transformations containing scaling parameters is derived which maps the NC problem to an equivalent commutative problem. The energy spectrum admits NC corrections which are computed using the explicit NC variables as well as the commutative-equivalent variables. Their exact matching solidifies the evidence of the equivalence of the two approaches. We also obtain the magnetic length and level degeneracy, which admit NC corrections. We further study the Aharonov-Bohm effect where the phase-shift is found to alter due to noncommutativity and also depends on the scaling parameters.

  8. Electron holography

    CERN Document Server

    Tonomura, Akira

    1999-01-01

    This book is an introduction to electron holography, a newly developed technique for observing and measuring microscopic structures of matter and fields using the wave nature of electrons It describes principles, experimental details, and observation examples for vortices in superconductors, the magnetic domain structure in ferromagnets, and for fundamental phenomena of quantum mechanics such as the single-electron build up of an interference pattern and the Aharonov-Bohm effect The most recent information in this rapidly evolving field is included in this new edition, for example, the dynamical observation of vortices in superconductors

  9. The quaternionic commutator bracket and its implications

    CERN Document Server

    Arbab, Arbab I

    2014-01-01

    A quaternionic commutator bracket for position and momentum shows that the quaternionic wave function, \\emph{viz.} $\\widetilde{\\psi}=(\\frac{i}{c}\\,\\psi_0\\,,\\vec{\\psi})$, represents a state of a particle with orbital angular momentum, $L=3\\,\\hbar$, resulting from the internal structure of the particle. This angular momentum can be attributed to spin of the particle. The vector $\\vec{\\psi}$, points along the direction of $\\vec{L}$. When a charged particle is placed in an electromagnetic fields the interaction energy reveals that the magnetic moments interact with the electric and magnetic fields giving rise to terms similar to Aharonov-Bohm and Aharonov-Casher effects.

  10. Surface state dominated transport in topological insulator Bi{sub 2}Te{sub 3} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hamdou, Bacel, E-mail: bhamdou@physnet.uni-hamburg.de; Gooth, Johannes; Dorn, August; Nielsch, Kornelius, E-mail: knielsch@physnet.uni-hamburg.de [Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg (Germany); Pippel, Eckhard [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2013-11-04

    We report on low temperature magnetoresistance measurements on single-crystalline Bi{sub 2}Te{sub 3} nanowires synthesized via catalytic growth and post-annealing in a Te-rich atmosphere. The observation of Aharonov-Bohm oscillations indicates the presence of topological surface states. Analyses of Subnikov-de Haas oscillations in perpendicular magnetoresistance yield extremely low two-dimensional carrier concentrations and effective electron masses, and very high carrier mobilities. All our findings are in excellent agreement with theoretical predictions of massless Dirac fermions at the surfaces of topological insulators.

  11. Dark Strings and their Couplings to the Standard Model

    CERN Document Server

    Hyde, Jeffrey M; Vachaspati, Tanmay

    2013-01-01

    We consider the Standard Model extended by a hidden sector U(1)_X symmetry that is spontaneously broken at the TeV scale by the vacuum expectation value of an additional scalar field. We study "dark string" solutions in this model and their properties due to the Higgs portal and gauge kinetic mixing operators. We find that dark strings effectively interact with Higgs and Z bosons by linear couplings, and with leptons and baryons via Aharonov-Bohm couplings, thus possibly leading to new cosmological constraints on dark matter models with spontaneously broken extra U(1) symmetry factors.

  12. Alternative expression for the electromagnetic Lagrangian

    CERN Document Server

    Saldanha, Pablo L

    2015-01-01

    We propose an alternative expression for the Lagrangian density that governs the interaction of a charged particle with external electromagnetic fields. The proposed Lagrangian is written in terms of the local superposition of the particle fields with the applied electromagnetic fields, not in terms of the particle charge and of the electromagnetic potentials as is usual. The total Lagrangian for a set of charged particles assumes a simple elegant form with the alternative formulation, giving an aesthetic support for it. The proposed Lagrangian is equivalent to the traditional one in their domain of validity and provides an interesting description of the Aharonov-Bohm effect.

  13. Electron holography

    CERN Document Server

    Tonomura, Akira

    1993-01-01

    Holography was devised for breaking through the resolution limit of electron microscopes The advent of a "coherent" field emission electron beam has enabled the use of Electron Holography in various areas of magnetic domain structures observation, fluxon observation in superconductors, and fundamental experiments in physics which have been inaccessible using other techniques After examining the fundamentals of electron holography and its applications to the afore mentioned fields, a detailed discussion of the Aharonov-Bohm effect and the related experiments is presented Many photographs and illustrations are included to elucidate the text

  14. Optical absorption in semiconductor nanorings under electric and magnetic fields

    Science.gov (United States)

    Zhang, Tong-Yi; Cao, Jun-Cheng; Zhao, Wei

    2005-01-01

    The optical absorption in semiconductor nanorings under a lateral DC field and a perpendicular magnetic field is numerically simulated by coherent wave approach. The exciton dominated optical absorption is compared with the free-carrier interband absorption to demonstrate the key role of Coulomb interaction between electron and hole. The influence of the lateral DC field and the perpendicular magnetic field on the optical absorption are discussed in detail. It shows that the lateral DC field can significantly enhance the Aharonov-Bohm effect of the neutral excitons in semiconductor nanorings.

  15. Interband optical spectra of magnetoexcitons in semiconductor nanorings: Electron-hole spatial correlation

    Science.gov (United States)

    Citrin, D. S.; Maslov, A. V.

    2005-08-01

    An analytic model [R. A. Römer and M. E. Raikh, Phys. Rev. B 62, 7045 (2000); K. Moulopoulos and M. Constantinou, Phys. Rev. B 70, 235327 (2004)] for magnetoexcitons in nanoscale semiconductor rings is extended to calculate directly the linear optical properties. The spectroscopic properties exhibit pronounced Φ0=hc/e excitonic Aharonov-Bohm oscillations in the threading magnetic flux Φ when the ring radius R is less than the effective exciton Bohr radius a0 . The electron-hole spatial correlation induced by an optical field as a function of nanoring radius and threading magnetic flux is studied.

  16. Transport through quantum rings

    Science.gov (United States)

    António, B. A. Z.; Lopes, A. A.; Dias, R. G.

    2013-07-01

    The transport of fermions through nanocircuits plays a major role in mesoscopic physics. Exploring the analogy with classical wave scattering, basic notions of nanoscale transport can be explained in a simple way, even at the level of undergraduate solid state physics courses, and more so if these explanations are supported by numerical simulations of these nanocircuits. This paper presents a simple tight-binding method for the study of the conductance of quantum nanorings connected to one-dimensional leads. We show how to address the effects of applied magnetic and electric fields and illustrate concepts such as Aharonov-Bohm conductance oscillations, resonant tunneling and destructive interference.

  17. Anomalous phase shift in a twisted quantum loop

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Hisao [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Shima, Hiroyuki, E-mail: taira@eng.hokudai.ac.j [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)

    2010-09-03

    The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.

  18. Anomalous phase shift in a twisted quantum loop

    International Nuclear Information System (INIS)

    The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.

  19. Quantum theory a two-time success story

    CERN Document Server

    Struppa, Daniele C

    2013-01-01

    Yakir Aharonov is one of the leading figures in the foundations of quantum physics. His contributions range from the celebrated Aharonov-Bohm effect (1959), to the more recent theory of weak measurements (whose experimental confirmations were recently ranked as the two most important results of physics in 2011). This volume will contain 27 original articles, contributed by the most important names in quantum physics, in honor of Aharonov's 80-th birthday.Sections include 'Quantum mechanics and reality,' with contributions from Nobel Laureates David Gross and Sir Anthony Leggett and Yakir Aharo

  20. Phase Interference in a Multi-level Quantum-Dot System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu-Ming; CHEN Xiao-Shuang; LU Wei

    2009-01-01

    @@ Considering phase interference, we investigate coherent transport in a quantum dot by using a thermopower. In the single process of the electronic transport through the quantum dot, it is shown that the phase interference between the levels of a quantum dot is like the Aharonov-Bohm effect. The result indicates that the thermopower is very sensitive to phase interference. It is also found that the phase-difference change of the different levels of the quantum dot can determine the shape of the thermopower.

  1. Phase transitions in hexagonal, graphene-like lattice sheets and nanotubes under the influence of external conditions

    Science.gov (United States)

    Ebert, D.; Klimenko, K. G.; Kolmakov, P. B.; Zhukovsky, V. Ch.

    2016-08-01

    In this paper we consider a class of (2+1)D schematic models with four-fermion interactions that are effectively used in studying condensed-matter systems with planar crystal structure, and especially graphene. Symmetry breaking in these models occurs due to a possible appearance of condensates. Special attention is paid to the symmetry properties of the appearing condensates in the framework of discrete chiral and C, P and T transformations. Moreover, boundary conditions corresponding to carbon nanotubes are considered and their relations with the effect of an applied external magnetic field are studied. To this end we calculated the effective potential for the nanotube model including effects of finite temperature, density and an external magnetic field. As an illustration we made numerical calculations of the chiral symmetry properties in a simpler Gross-Neveu model with only one condensate taken into account. We also investigated the phase structure of the nanotube model under the influence of the Aharonov-Bohm effect and demonstrated that there is a nontrivial relation between the magnitude of the Aharonov-Bohm phase, compactification of the spatial dimension and thermal restoration of the originally broken chiral symmetry.

  2. On the Landau system in noncommutative phase-space

    CERN Document Server

    Gangopadhyay, Sunandan; Halder, Aslam

    2014-01-01

    We consider a charged particle moving in a two dimensional plane in presence of a background magnetic field perpendicular to the plane, i.e. the Landau system in a phase-space where the coordinates and momenta both follow canonical noncommutative algebra. In this set up, we study the Aharonov-Bohm effect and the Landau levels. For the Aharonov-Bohm effect, the phase-shift is found to contain corrections due to phase-space noncommutativity and agrees with those in the literature upto first order in the noncommutative parameters. We obtain the magnetic length and degeneracy of the Landau levels, both are seen to admit NC corrections. The Landau levels are seen to get altered due to phase-space noncommutativity as well. This energy spectrum of the Landau system is computed from two different perspectives, namely the explicit NC variable approach and the commutative-equivalent approach. The results match exactly, solidifying the evidence in favor of the equivalence of the two approaches.

  3. Discrete gauge theories

    CERN Document Server

    Bais, F A

    1995-01-01

    In these lecture notes, we present a self-contained discussion of planar gauge theories broken down to some finite residual gauge group H via the Higgs mechanism. The main focus is on the discrete H gauge theory describing the long distance physics of such a model. The spectrum features global H charges, magnetic vortices and dyonic combinations. Due to the Aharonov-Bohm effect, these particles exhibit topological interactions. Among other things, we review the Hopf algebra related to this discrete H gauge theory, which provides an unified description of the spin, braid and fusion properties of the particles in this model. Exotic phenomena such as flux metamorphosis, Alice fluxes, Cheshire charge, (non)abelian braid statistics, the generalized spin-statistics connection and nonabelian Aharonov-Bohm scattering are explained and illustrated by representative examples. Preface: Broken symmetry revisited, 1 Basics: 1.1 Introduction, 1.2 Braid groups, 1.3 Z_N gauge theory, 1.3.1 Coulomb screening, 1.3.2 Survival o...

  4. Phase coherent transport in (Ga,Mn)As

    Energy Technology Data Exchange (ETDEWEB)

    Neumaier, D.; Wagner, K.; Reinwald, M.; Wegscheider, W.; Weiss, D. [Universitaet Regensburg (Germany); Wurstbauer, U. [Universitaet Regensburg (Germany); Universitaet Hamburg (Germany)

    2009-07-01

    The low temperature conductance of mesoscopic samples is altered by quantum interference effects, caused by the electron's wave nature. Information on the relevant quantum mechanical transport properties is needed to understand charge transport in general and to design more sophisticated structures in particular. In this talk I review our investigations on universal conductance fluctuations, Aharonov-Bohm oscillations and weak localization in the diluted magnetic semiconductor (Ga,Mn)As. Analyzing universal conductance fluctuations in (Ga,Mn)As nanowires results in a phase coherence length of {approx}100 nm at 20 mK with a 1/{radical}(T) temperature dependency. This agrees well with values extracted from the amplitude of periodic Aharonov-Bohm oscillations observed in (Ga,Mn)As nanorings. To investigate weak localization in (Ga,Mn)As, arrays of wires were fabricated to suppress universal conductance fluctuations by ensemble averaging. The magnetoconductance of the (Ga,Mn)As wire arrays displays a pronounced low temperature anomaly ascribed to weak localization. A comparison of phase coherent transport in (Ga,Mn)As with nonmagnetic materials and conventional ferromagnets is given.

  5. Magnetic-field effects in graphene nanorings: armchair versus zigzag edge terminations

    Science.gov (United States)

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2013-03-01

    Dirac quasiparticles in narrow graphene nanorings exhibit characteristic differences in their behavior depending on the shape (e.g., trigonal vs. hexagonal) and the type of edge terminations (armchair vs. zigzag). The differences are manifested in the tight-binding single-particle spectra as a function of the magnetic field B and in the patterns of the Aharonov-Bohm oscillations. The symmetry of shape leads to the appearance of three-member (triangles) or six-member (hexagons) braid bands.[2] With the exception of the formation of the braid bands, the characteristic differences maintain in the energy spectra of the continuous Dirac-Weyl equation for a circular ring of finite width. These differences will be further analyzed with the help of a relativistic superlattice model. Supported by the U.S. D.O.E. (FG05-86ER-45234)

  6. Electron-phonon interaction effect on persistent current in a one-dimensional quantum ring by using a simple model

    Science.gov (United States)

    Omidi, Mahboubeh; Faizabadi, Edris

    2015-09-01

    We use a simple model to study the electron-phonon interaction influences on persistent current in a one-dimensional quantum ring enclosed by a magnetic flux. With increasing the temperature, persistent current amplitude is reduced, especially in a quantum ring with two ions per primitive cell (diatomic ring) because of the participation of optical phonons. Furthermore, the periodicity of the Aharonov-Bohm oscillations changes to Φ0 / 2 (Φ0 is magnetic flux quantum). In a diatomic ring, by increasing the difference between left and right nearest-neighbor hopping integrals at zero temperature, persistent current variations show a transition from metallic to insulator against distinctive behavior at nonzero temperature.

  7. Controlling the magnetic susceptibility in an artificial elliptical quantum ring by magnetic flux and external Rashba effect

    Energy Technology Data Exchange (ETDEWEB)

    Omidi, Mahboubeh, E-mail: mah-omidi@iust.ac.ir; Faizabadi, Edris [School of Physics, Iran University of Science and Technology, 16846 Tehran (Iran, Islamic Republic of)

    2015-03-21

    Magnetic susceptibility is investigated in a man-made elliptical quantum ring in the presence of Rashba spin-orbit interactions and the magnetic flux. It is shown that magnetic susceptibility as a function of magnetic flux changes between negative and positive signs periodically. The periodicity of the Aharonov-Bohm oscillations depends on the geometry of the region where magnetic field is applied, the eccentricity, and number of sites in each chain ring (the elliptical ring is composed of chain rings). The magnetic susceptibility sign can be reversed by tuning the Rashba spin-orbit strength as well. Both the magnetic susceptibility strength and sign can be controlled via external spin-orbit interactions, which can be exploited in spintronics and nanoelectronics.

  8. Control of tripod-scheme cold-atom wavepackets by manipulating a non-Abelian vector potential

    International Nuclear Information System (INIS)

    Tripod-scheme cold atoms interacting with laser beams have attracted considerable interest for their role in synthesizing effective non-Abelian vector potentials. Such effective vector potentials can be exploited to realize an all-optical imprinting of geometric phases onto matter waves. By working on carefully designed extensions of our previous work, we show that coherent lattice structure of cold-atom sub-wavepackets can be formed and that the non-Abelian Aharonov-Bohm effect can be easily manifested via the translational motion of cold atoms. We also show that by changing the frame of reference, effects due to a non-Abelian vector potential may be connected with a simple dynamical phase effect, and that under certain conditions it can be understood as an Abelian geometric phase in a different frame of reference. Results should help design better schemes for the control of cold-atom matter waves.

  9. Magnetic monopole field exposed by electrons

    CERN Document Server

    Béché, A; Van Tendeloo, G; Verbeeck, J

    2013-01-01

    Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

  10. Anyons

    International Nuclear Information System (INIS)

    An elementary introduction is given to the concept of anyons-quantum particles whose 'statistics' interpolate smoothly between those of bosons and fermions. Such particles - or quasi-particle excitations - can occur in two-dimensional systems in which the particles experience strong short-range mutual repulsions. These circumstances effectively mean that one has to apply quantum mechanics to a configuration space in which some points are excluded (i.e. it has 'holes') - namely, those points where two particles would coincide. The Aharonov-Bohm effect provides the simplest physical example of quantum mechanics in such a non-simply connected space, and is also fundamental to a simple model for anyons. A qualitative introduction is given to two currently proposed physical applications of anyons: high temperature superconductivity, and the (fractional) quantum Hall effect. (author)

  11. Controlling local currents in molecular junctions

    CERN Document Server

    Yadalam, Hari Kumar

    2016-01-01

    The effect of non-equilibrium constraints and dephasing on the circulating currents in molecular junctions are analyzed. Circulating currents are manifestations of quantum effects and can be induced either by externally applied bias or an external magnetic field through the molecular system. In symmetric Aharonov-Bohm ring, bond currents have two contributions, bias driven and magnetic field driven. We analyze the competition between these two contributions and show that, as a consequence, current through one of the branches can be completely suppressed. We then study the effect of asymmetry (as a result of chemical substitution) on the current pathways inside the molecule and study asymmetry induced circulating currents (without magnetic field) by tuning the coupling strength of the substituent (at finite bias).

  12. Creation of two-dimensional Coulomb crystals of ions in oblate Paul traps for quantum simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Bryce; Freericks, James K. [Georgetown University, Department of Physics, Washington, DC (United States); Stork, Marybeth [Washington University, Department of Physics and Astronomy, St. Louis, Missouri (United States); Dadic, Danilo; Campbell, Wesley C. [University of California Los Angeles, Department of Physics and Astronomy, Los Angeles, CA (United States)

    2015-01-04

    We develop the theory to describe the equilibrium ion positions and phonon modes for a trapped ion quantum simulator in an oblate Paul trap that creates two-dimensional Coulomb crystals in a triangular lattice. By coupling the internal states of the ions to laser beams propagating along the symmetry axis, we study the effective Ising spin-spin interactions that are mediated via the axial phonons and are less sensitive to ion micromotion. We find that the axial mode frequencies permit the programming of Ising interactions with inverse power law spin-spin couplings that can be tuned from uniform to with DC voltages. Such a trap could allow for interesting new geometrical configurations for quantum simulations on moderately sized systems including frustrated magnetism on triangular lattices or Aharonov-Bohm effects on ion tunneling. The trap also incorporates periodic boundary conditions around loops which could be employed to examine time crystals. (orig.)

  13. Geometry and Dynamics of a Coupled 4D-2D Quantum Field Theory

    CERN Document Server

    Bolognesi, Stefano; Evslin, Jarah; Konishi, Kenichi; Ohashi, Keisuke; Seveso, Luigi

    2015-01-01

    Geometric and dynamical aspects of a coupled 4D-2D interacting quantum field theory - the gauged nonAbelian vortex - are investigated. The fluctuations of the internal 2D nonAbelian vortex zeromodes excite the massless 4D Yang-Mills modes and in general give rise to divergent energies. This means that the well-known 2D CP(N-1) zeromodes associated with a nonAbelian vortex become nonnormalizable. Moreover, all sorts of global, topological 4D effects such as the nonAbelian Aharonov-Bohm effect come into play. These topological global features and the dynamical properties associated with the fluctuation of the 2D vortex moduli modes are intimately correlated, as shown concretely here in a U(1) x SU(N) x SU(N) model with scalar fields in a bifundamental representation of the two SU(N) factor gauge groups.

  14. Confined electronic states and their modulations in graphene nanorings

    Science.gov (United States)

    Zhu, Jia-Lin; Wang, Xingyuan; Yang, Ning

    2012-09-01

    Confined electronic states in quantum rings formed by spatially modulated finite Dirac gap (FDGQR) in graphene are systematically studied by series-expansion method, and are compared with those in infinite-mass-boundary and one-dimensional quantum rings. The shape-size effect of FDGQR is illustrated to be distinct from that in graphene quantum dots. The Aharonov-Bohm effect in FDGQR is clearly shown by the energy spectrum and the optical-transition probabilities. The FDGQR coupled with the electrostatic-potential induced nanoring is found useful for modulating the Dirac electronic states and the optical-transition probabilities. These results may help us to understand and to control the quantum behaviors of confined electronic states in graphene.

  15. Plane waves as tractor beams

    CERN Document Server

    Forgács, Péter; Romańczukiewicz, Tomasz

    2013-01-01

    It is shown that in a large class of systems plane waves can act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode having a larger wave number, in which case excess momentum is created behind the scatterer. Such a tractor beam or negative radiation pressure effect arises naturally in systems where the coupling between the scattering channels is due to Aharonov-Bohm (AB) gauge potentials. It is demonstrated that this effect is also present if the AB potential is an induced, ("artificial") gauge potential such as the one found in J. March-Russell, J. Preskill, F. Wilczek, Phys. Rev. Lett. 58 2567 (1992).

  16. Asymmetric coherent transmission for single particle diode and gyroscope

    CERN Document Server

    Yang, S; Sun, C P

    2009-01-01

    We study the single particle scattering process in a coherent multi-site system consisting of a tight-binding ring threaded by an Aharonov-Bohm flux and several attaching leads. The asymmetric behavior of scattering matrix is discovered analytically in the framework of both Bethe Ansatz and Green's function formalism. It is found that, under certain conditions, a three-site electronic system can behave analogous to a perfect semiconductor diode where current flows only in one direction. The general result is also valid for a neutral particle system since the effective magnetic flux may be implemented by a globe rotation. This observation means that the three-site system can serve as an orientation measuring gyroscope due to the approximate linear dependence of the current difference of two output leads on the rotational angular velocity.

  17. Shot noise in the hybrid triple-quantum-dot interferometer coupled to superconductor and normal terminals

    Science.gov (United States)

    Zhao, Hong-Kang; Wang, Jian; Wang, Qing

    2014-04-01

    The shot noise of a hybrid triple-quantum-dot (TQD) interferometer has been investigated by employing the nonequilibrium Green's function method, and the general shot noise formula has been derived. The oscillation behaviors of transmission coefficients and shot noise versus the Aharonov-Bohm phase ϕ exhibit asymmetric Fano resonance structure and blockade effect. Sub-Poissonian and super-Poissonian behaviors of shot noise appear in different regimes of terminal bias eVγ contributed by the Andreev reflection, and correlation of Andreev tunneling with the normal electron transport. The inverse resonance and resonance structures emerge in the shot noise and Fano factor with respect to one of the gate voltages in different regimes of eVγ. The asymmetric structure can be enhanced by modifying the energy levels and gate biases of the TQD. The self-correlation and cross-correlation of current components contribute to the enhancement and suppression of shot noise.

  18. Dynamic spin-flip shot noise of mesoscopic transport through a toroidal carbon nanotube

    Science.gov (United States)

    Zhao, H. K.; Zhang, J.; Wang, J.

    2015-01-01

    The shot noise in a toroidal carbon nanotube (TCN) interferometer under the perturbation of a rotating magnetic field (RMF) has been investigated. A general shot noise formula has been derived by calculating the current correlation. It was found that photon absorption and emission induce novel features of dynamic shot noise. The oscillatory behavior of shot noise and Fano factor vary with the Aharonov-Bohm (AB) magnetic flux, and they are sensitively dependent on the Zeeman energy, frequency of RMF, and source-drain bias. By adjusting the Zeeman energy, the AB oscillation structures of shot noise and Fano factor show valley-to-peak transformation. The shot noise increases nonlinearly with increasing the Zeeman energy and photon energy. The enhancement and asymmetry of shot noise can be attributed to the spin-flip effect.

  19. Shot Noise in a Mesoscopic Interferometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-Biao; WANG Shun-Jin; LI Lei

    2006-01-01

    The charge conductance and the shot noise in an Aharonov-Bohm interferometer with double quantum dots embedded and coupled to each other by a capacity are studied in the framework of the equation of motion of Green's flunction.From the impurity Anderson model Hamiltonian,the equations of motion of nonequilibrium Green functions are derived and solved including the effects of two body correlations under Lacrolx's approximation.Our results show that the conductance,the shot noise,and the Fano factor (the ratio of the shot noise to the Poisson noise)as functions of the magnetic flux oscillate with the period of h/e,and their oscillation behaviour is similar to the resuIts of the experiment replacing the capacitive coupling by tunnelling between the two dots.The experiment is suggested to test the results.

  20. Flux sensitivity of quantum spin Hall rings

    Science.gov (United States)

    Crépin, F.; Trauzettel, B.

    2016-01-01

    We analyze the periodicity of persistent currents in quantum spin Hall loops, partly covered with an s-wave superconductor, in the presence of a flux tube. Much like in normal (non-helical) metals, the periodicity of the single-particle spectrum goes from Φ0 = h / e to Φ0 / 2 as the length of the superconductor is increased past the coherence length of the superconductor. We further analyze the periodicity of the persistent current, which is a many-body effect. Interestingly, time reversal symmetry and parity conservation can significantly change the period. We find a 2Φ0-periodic persistent current in two distinct regimes, where one corresponds to a Josephson junction and the other one to an Aharonov-Bohm setup.