WorldWideScience

Sample records for agricultural residues gasification

  1. Fixed (slow moving) bed updraft gasification of agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Vigouroux, Rolando Zanzi [Royal Institute of Technology (KTH), Stockholm (Sweden). Dept. of Chemical Engineering and Technology], E-mail: rolando@ket.kth.se; Escalona, Ronoldy Faxas [University of Oriente, Santiago de Cuba (Cuba). Fac. of Mechanical Engineering], E-mail: faxas@fim.uo.edu.cu

    2009-07-01

    Birch, in form of pellets has been gasified in updraft fixed-bed gasifier using air as oxidation agent. The main objectives were to study the effect of the treatment conditions on the distribution of the products and the composition of product gas. The influence of the air flow rates on the composition of the producer gas has been studied. The amount of the biomass used in the experiments was varied between 1 and 4 kg and the flow rate of the air was varied from 1.1 to 2.6 m3/h. Increased airflow rates favored higher temperatures. Excessively high airflow rates resulted in fast consumption of the biomass and it also favored combustion over gasification and thus formation of lower amounts of combustible products. High airflow rates caused also higher yields of tars, due to the shorter residence time of the tar-rich gas in the gasifier and thus unfavorable conditions for tar cracking. (author)

  2. Experimental determination of bed agglomeration tendencies of some common agricultural residues in fluidized bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, E.; Rao, A.N. [Anna University, Madras (India). Centre for New and Renewable Sources of Energy; Ohman, M.; Nordin, A. [Umea University (Sweden). Energy Technology Centre; Gabra, M. [Lulea University of Technology (Sweden). Div. of Energy Engineering; Liliedahl, T. [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1998-12-31

    Ever increasing energy demand and the polluting nature of existing fossil fuel energy sources demonstrate the need for other non-polluting and renewable sources of energy. The agricultural residues available in abundance in many countries can be used for power generation. The fluidized bed technology seems to be suitable for converting a wide range of agricultural residues into energy, due to its inherent advantages of fuel flexibility, low operating temperature and isothermal operating condition. The major ash-related problem encountered in fluidized beds is agglomeration which, in the worst case, may result in total defluidization and unscheduled downtime. The initial agglomeration temperature for some common tropical agricultural residues were experimentally determined by using a newly developed method based on the controlled fluidized bed agglomeration test. The agricultural residues chosen for the study were rice husk, bagasse, cane trash and olive flesh. The results showed that the initial agglomeration temperatures were less than the initial deformation temperature predicted by the ASTM standard ash fusion tests for all fuels considered. The initial agglomeration temperatures of rice husk and bagasse were more than 1000{sup o}C. The agglomeration of cane trash and olive flesh was encountered at relatively low temperatures and their initial agglomeration temperatures in gasification were lower than those in combustion with both bed materials. The use of lime as bed material instead of quartz improved the agglomeration temperature of cane trash and olive flesh in combustion and decreased the same in gasification. The results indicate that rice husk and bagasse can be used in the fluidized bed for energy generation since their agglomeration temperatures are sufficiently high. (author)

  3. Return of phosphorus in agricultural residues and urban sewage sludge to soil using biochar from low-temperature gasification as fertilizer product

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jensen, Lars Stoumann; Grønlund, Mette;

    The return of residual products from bioenergy generation to soils is a step towards closing nutrient cycles, which is especially important for nutrients produced from non-renewable resources such as phosphorus (P). Low-temperature gasification is an innovative process efficiently generating energy...... from different biomass fuels, such as agricultural residues and waste streams, and at the same time producing a biochar product potentially valuable for soil amendment. In pot experiments, different residual products originating from low-temperature gasification were tested for their P-fertilizing...... potential with spring barley as a test crop. Biochar resulting from gasification of pure wheat straw showed the best P fertilizer value, however, because of the low P content, extremely high amounts had to be applied when crop P demand should be met, which came along with an over-fertilization of potassium...

  4. Return of phosphorus in agricultural residues and urban sewage sludge to soil using biochar from low-temperature gasification as fertilizer product

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jensen, Lars Stoumann; Grønlund, Mette;

    from different biomass fuels, such as agricultural residues and waste streams, and at the same time producing a biochar product potentially valuable for soil amendment. In pot experiments, different residual products originating from low-temperature gasification were tested for their P...... fertilization purposes. Operationally defined P pools in soil obtained by sequential chemical extraction of the biochar-amended soils could be related to the observations made in the pot experiments. The results emphasize the potential of combining different feedstocks for thermal conversion processes when......-fertilizing potential with spring barley as a test crop. Biochar resulting from gasification of pure wheat straw showed the best P fertilizer value, however, because of the low P content, extremely high amounts had to be applied when crop P demand should be met, which came along with an over-fertilization of potassium...

  5. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.;

    2011-01-01

    with geochemical modelling were carried out both on fresh and aged samples. The results showed that the material is comparable to residues from wood combustion and the leaching behaviour was dominated by Ca-containing minerals and solid solutions. Heavy metals were detected in very low concentrations in the bulk......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  6. Investigation of agricultural residues gasification for electricity production in Sudan as an example for biomass energy utilization under arid climate conditions in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Bakhiet, Arig G.

    2008-05-15

    This study examines the possibility of electricity production through gasification of agricultural residues in Sudan. The study begins in Chapter 1, by providing general contextual analysis of the energy situation (production and consumption patterns) in Sudan with specific focus on electricity. It proceeded to study the potential of Petroleum, Biomass and other renewable sources for electricity production. Dramatic increase in electricity production was found to be essential especially through decentralised power plants as the current electricity production services cover {proportional_to} 13 % of the population of Sudan. Biomass potential in Sudan justifies the use of agricultural residues as energy source; its potential was estimated by {proportional_to} 350000 TJ/a. Further, the urban centres of arid regions in western Sudan were identified as the target group for this study. In chapter 2, specific investigations for selected study area through field work using statistical tools such as questionnaires, interviews and field observation show that income is highly correlated to electricity consumption. The flat rate system did not result in higher consumption thus the assumption that this consumption will not drastically change in the next 10 years could be accepted. As orientation value for BGPP, 8000 tons of GN.S are available annually, the average electricity consumption is {proportional_to} 4 kWh/day/family while acceptable price could be 40 SDD/kWh (0.15 Euro). In chapter 3, literature review was carried to spot out the comparative merits of the gasification technology and the most optimum gasifying and electricity production system. As a result downdraft gasifier and ICE were suggested as suitable systems. In chapter 4, fuel properties and fuel properties of agricultural residues were studied, different samples were tested and the results were presented. The main conclusions derived were: fuel properties of agricultural residues are modifiable properties, so

  7. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  8. Gasification characteristics of auto shredder residue

    International Nuclear Information System (INIS)

    Given the large volume of used tyre waste generated each year it is imperative that suitable re-use and disposal techniques are developed for dealing with this problem; presently these include rethreading, reprocessing for use as safe playground and sports surfaces, use as noise reduction barriers and utilisation as a fuel source. This paper reports on pilot scale studies designed to investigate the suitability of automotive waste for energy recovery via gasification. The study was carried out into auto shredder residue, which is a mixture of three distinct waste streams: tyres, rubber/plastic and general automotive waste. The tests included proximate, ultimate and elemental analysis, TGA, as well as calorific value determinations. In addition, the waste was tested in a desktop gasifier, and analysis was carried out to determine the presence and type of combustible gases. It was concluded that tyre waste and rubber/plastic waste are quite suitable fuels for gasification. (author)

  9. Carbon Dioxide Sorption Capacities of Coal Gasification Residues

    OpenAIRE

    Thomas Kempka; T. Fernandez-Steeger; Li, D.; Schulten, M.; Schlüter, R; B. M. Krooss

    2011-01-01

    Underground coal gasification is currently being considered as an economically and environmentally sustainable option for development and utilization of coal deposits not mineable by conventional methods. This emerging technology in combination with carbon capture and sorptive CO2 storage on the residual coke as well as free-gas CO2 storage in the cavities generated in the coal seams after gasification could provide a relevant contribution to the development of Clean Coal Technologies. Three ...

  10. Microorganism screening for ethanol production using gasification gas from agricultural residue%生物质气化气发酵生产乙醇优良菌株的筛选

    Institute of Scientific and Technical Information of China (English)

    王风芹; 张炎达; 谢慧; 彭一丁; 宋安东

    2015-01-01

    利用农业废弃物合成气发酵生产燃料乙醇不仅可以缓解中国的能源危机,也是减轻环境污染、促进农业可持续发展和改善农村环境的重要举措。该文对实验室富集获得的4个菌系及国内外报道较多的4个菌株发酵生物质合成气生产燃料乙醇的潜力进行了研究。结果表明:菌株LP-fm4、Clostridium sp. P11和A-fm4发酵生物质合成气生产乙醇的净产量分别为179.23、152.92和115.08 mg/L;菌体比生长速率分别为1.46、1.66和1.18 d-1;乙醇比生成速率分别3.50、2.05和0.78 d-1,单位菌体生成乙醇的量分别为2252.90、1450.20和1132.37 mg/g,显著高于其他菌株(群)。多重比较分析与综合性状聚类分析结果表明前两者为利用合成气高效发酵乙醇的理想菌体,菌 A-fm4为具有潜力菌体。以期为未来农业废弃物合成气乙醇发酵提供了优良的菌种资源。%Ethanol is one of the most important alternative biofuels, which provides a net energy gain, has environmental benefits and is economically competitive. Ethanol production from syngas anaerobic fermentation appears to be a potential and promising technology compared to the existing chemical conversion techniques. Currently, syngas fermentation is being developed as one option towards the production of bio-ethanol from biomass. Agricultural residue biomass such as corn stalks and wheat stalks, has been an important part of the biomass resource in the world. Much attention has been attracted on the conversation and utilization of these biomasses with high value. The gasification of the agricultural residue biomass is a mature and industrialized technology up to now. Gasification of agricultural lignocellulosic residue followed by syngas fermentation to produce bio-ethanol is being explored owing to the low cost and availability of agricultural residue feedstock. The process can not only change trash to treasure but also be of benefit to reduce

  11. 生物质气化气发酵生产乙醇优良菌株的筛选%Microorganism screening for ethanol production using gasification gas from agricultural residue

    Institute of Scientific and Technical Information of China (English)

    王风芹; 张炎达; 谢慧; 彭一丁; 宋安东

    2015-01-01

    利用农业废弃物合成气发酵生产燃料乙醇不仅可以缓解中国的能源危机,也是减轻环境污染、促进农业可持续发展和改善农村环境的重要举措。该文对实验室富集获得的4个菌系及国内外报道较多的4个菌株发酵生物质合成气生产燃料乙醇的潜力进行了研究。结果表明:菌株LP-fm4、Clostridium sp. P11和A-fm4发酵生物质合成气生产乙醇的净产量分别为179.23、152.92和115.08 mg/L;菌体比生长速率分别为1.46、1.66和1.18 d-1;乙醇比生成速率分别3.50、2.05和0.78 d-1,单位菌体生成乙醇的量分别为2252.90、1450.20和1132.37 mg/g,显著高于其他菌株(群)。多重比较分析与综合性状聚类分析结果表明前两者为利用合成气高效发酵乙醇的理想菌体,菌 A-fm4为具有潜力菌体。以期为未来农业废弃物合成气乙醇发酵提供了优良的菌种资源。%Ethanol is one of the most important alternative biofuels, which provides a net energy gain, has environmental benefits and is economically competitive. Ethanol production from syngas anaerobic fermentation appears to be a potential and promising technology compared to the existing chemical conversion techniques. Currently, syngas fermentation is being developed as one option towards the production of bio-ethanol from biomass. Agricultural residue biomass such as corn stalks and wheat stalks, has been an important part of the biomass resource in the world. Much attention has been attracted on the conversation and utilization of these biomasses with high value. The gasification of the agricultural residue biomass is a mature and industrialized technology up to now. Gasification of agricultural lignocellulosic residue followed by syngas fermentation to produce bio-ethanol is being explored owing to the low cost and availability of agricultural residue feedstock. The process can not only change trash to treasure but also be of benefit to reduce

  12. Co-gasification of pelletized wood residues

    Energy Technology Data Exchange (ETDEWEB)

    Carlos A. Alzate; Farid Chejne; Carlos F. Valdes; Arturo Berrio; Javier De La Cruz; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    A pelletization process was designed which produces cylindrical pellets 8 mm in length and 4 mm in diameter. These ones were manufactured using a blend of Pinus Patula and Cypress sawdust and coal in proportions of 0%, 5%, 10%, 20%, and 30% v/v of coal of rank sub-bituminous extracted from the Nech mine (Amaga-Antioquia). For this procedure, sodium carboxymethyl cellulose (CMC) was used as binder at three different concentrations. The co-gasification experiments were carried out with two kinds of mixtures, the first one was composed of granular coal and pellets of 100% wood and the second one was composed of pulverized wood and granular coal pellets. All samples were co-gasified with steam by using an electrical heated fluidized-bed reactor, operating in batches, at 850{sup o}C. The main components of the gaseous product were H{sub 2}, CO, CO{sub 2}, CH{sub 4}, and N{sub 2} with approximate quantities of 59%, 6.0%, 20%, 5.0%, and 9.0% v/v, respectively, and the higher heating values ranged from between 7.1 and 9.5 MJ/Nm{sup 3}.

  13. Carbonaceous residues from biomass gasification as catalysts for biodiesel production

    Institute of Scientific and Technical Information of China (English)

    Rafael Luque; Antonio Pineda; Juan C. Colmenares; Juan M. Campelo; Antonio A. Romero; Juan Carlos Serrano-Ruiz; Luisa F. Cabeza; Jaime Cot-Gores

    2012-01-01

    Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation,generating clogging of filters and issues related with the purity of syngas production.To date,these waste residues find no useful applications and they are generally disposed upon generation in the gasification process.A detailed analysis of these residues pointed out the presence of high quantities of Ca (>30 wt%).TG experiments indicated that a treatment under air at moderate temperatures (400-800 ℃) decomposed the majority of carbon species,while XRD indicated the presence of a crystalline CaO phase.CaO enriched valorized materials turned out to be good heterogeneous catalysts for biodiesel production from vegetable oils,providing moderate to good activities (50%-70% after 12 h) to fatty acid methyl esters in the transesterification of sunflower oil with methanol.

  14. Evaluation of cyclone gasifier performance for gasification of sugar cane residue - Pt. 1: gasification of bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Gabra, M.; Pettersson, E.; Kjellstrom, B. [Lulea University of Technology (Sweden). Div. of Energy Engineering; Backman, R. [Abo Akademi University, Abo (Finland). Div. of Chemical Engineering

    2001-11-01

    A method for avoiding excessive amount of alkali compounds and carryover particles in producer gas from gasification of sugar cane residue has been studied and evaluated. The cane sugar residue is gasified in a two-stage combustor at atmospheric pressure, where the first stage is a cyclone gasifier. The cyclone works as particle separator as well. This paper covers the results obtained for gasification of bagasse. Bagasse powder was injected into the cyclone with air and steam as transport medium. The gasification tests were made with two feeding rates, 39 and 52 kg/h. Seven experiments were conducted with the equivalence ratio being varied. The heating values of the producer gas are sufficient for stable gas turbine combustion. About 60-70% of the alkali input with fuel was separated from the producer gas in the cyclone. However the total alkali contents of the producer gas was found to be higher than in ABB Stal PFBC gas turbines and at least an order of magnitude higher than what is required by most gas turbine manufacturers for operation of a gas turbine. The carryover particles concentrations in the producer gas were found to be in the range of that for PFBC gas turbines, but higher than what is required by most gas turbine manufacturers for operation of a gas turbine. Samples studied with scanning electronic microscope give indication that most of the carryover particles are below 10{mu}m in size. Fly ash-melting tests have not shown any major ash melting up to 1200{sup o}C, but it was found that some of the particles entrained with producer gas were partially melted. Integrated experiments with a gas turbine need to be done for accurate evaluation of the possibilities to use the producer gas from the gasification of bagasse to run a gas turbine without problems of hard deposits and corrosion on the turbine blades. In part 2 of this two-part paper the results from cane trash gasification tests are reported. (author)

  15. Pyrolysis and gasification-melting of automobile shredder residue.

    Science.gov (United States)

    Roh, Seon Ah; Kim, Woo Hyun; Yun, Jin Han; Min, Tae Jin; Kwak, Yeon Ho; Seo, Yong Chil

    2013-10-01

    Automobile shredder residue (ASR) from end-of-life vehicles (ELVs) in Korea has commonly been disposed of in landfills. Due to the growing number of scrapped cars and the decreasing availability of landfill space, effective technology for reducing ASR is needed. However ASR is a complex mixture, and finding an appropriate treatment is not easy on account of the harmful compounds in ASR. Therefore, research continues to seek an effective treatment technology. However most studies have thus far been performed in the laboratory, whereas few commercial and pilot studies have been performed. This paper studies the pyrolysis and gasification-melting of ASR. The pyrolyis characteristics have been analyzed in a thermogravimetric analyzer (TGA), a Lindberg furnace, and a fixed-bed pyrolyzer to study the fundamental characteristics of ASR thermal conversion. As a pilot study, shaft-type gasification-melting was performed. High-temperature gasification-melting was performed in a 5000 kg/day pilot system. The gas yield and syngas (H2 and CO) concentration increase when the reaction temperature increases. Gas with a high calorific value of more than 16,800 kJ/m3 was produced in the pyrolyzer. From the gasification-melting process, syngas of CO (30-40%) and H2(10-15%) was produced, with 5% CH4 produced as well. Slag generation was 17% of the initial ASR, with 5.8% metal content and 4% fly ash. The concentration of CO decreases, whereas the H2, CO2, and CH4 concentrations increase with an increase in the equivalence ratio (ER). The emission levels of dioxin and air pollution compounds except nitrogen oxides (NO(x)) were shown to satisfy Korean regulations.

  16. Alcohol production from agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  17. Alcohol production from agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  18. Climate Effect of Bioenergy and Agriculture Integration Based on Lowtar Gasification of Wood Chips

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    bioenergy and agricultural system through a polygenerating energy system, producing electricity, district heatand fertile biocharfor agricultural soil application. The case analysisis based on utilization of forest residues from a sustainably harvested forest. Quantification of the biogenic global warming......To mitigate the increasing pressure on Earth ́s biosphere through increased concentration of carbon dioxide in the atmosphere, processes in the anthroposphere must change from being fossil-to renewable resource driven. Bioenergy utilization of forest residues can be a step towards achieving...... potential is included in the analysis, by accounting for both the atmospheric load of biogenic carbon emissions and the carbon captured by forest re-growth. The energy conversion is based on thermal gasification. The gasifier allows changing the carbon conversion fraction, from the conventional maximum...

  19. Agricultural Residues Based Composites 1. Preparation of Fibrous Agricultural Residues

    International Nuclear Information System (INIS)

    The aim of this study is to use agricultural residues as bagasse, cotton stalks, rice straw, linen and linen fibers, which are produced in Egypt in huge amounts annually to produce composites with cement or gypsum. Also the effect of physical and chemical treatments of the fibers and the addition of some additives to the composites was studied. The mechanical properties of the produced composites also the effect of its firing at temperatures up to 800 degree C was tested after dipping in water for different time intervals (1-90 days). In this paper we considered only the preparation of different types of fibers, its grinding and separation to different fiber lengths (ca. 0.4 to 1.5 mm). The percent of each fiber length and its chemical and physical analysis is found

  20. Hydrothermal catalytic gasification of fermentation residues from a biogas plant

    International Nuclear Information System (INIS)

    Biogas plants, increasing in number, produce a stream of fermentation residue with high organic content, providing an energy source which is by now mostly unused. We tested this biomass as a potential feedstock for catalytic gasification in supercritical water (T ≥ 374 °C, p ≥ 22 MPa) for methane production using a batch reactor system. The coke formation tendency during the heat-up phase was evaluated as well as the cleavage of biomass-bound sulfur with respect to its removal from the process as a salt. We found that sulfur is not sufficiently released from the biomass during heating up to a temperature of 410 °C. Addition of alkali salts improved the liquefaction of fermentation residues with a low content of minerals, probably by buffering the pH. We found a deactivation of the carbon-supported ruthenium catalyst at low catalyst-to-biomass loadings, which we attribute to sulfur poisoning and fouling in accordance with the composition of the fermentation residue. A temperature of 400 °C was found to maximize the methane yield. A residence time dependent biomass to catalyst ratio of 0.45 g g−1 h−1 was found to result in nearly full conversion with the Ru/C catalyst. A Ru/ZrO2 catalyst, tested under similar conditions, was less active. -- Highlights: ► Fermentation residue of a biogas plant could be successfully liquefied with a low rate of coke formation. ► Liquefaction resulted in an incomplete removal of biomass-bound sulfur. ► Low catalyst loadings result in incomplete conversion, implicating catalyst deactivation. ► At 400 °C the observed conversion to methane was highest. ► A residence time dependent biomass to catalyst ratio of 0.45 g g−1 h−1 was determined to yield nearly complete conversion

  1. Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective

    International Nuclear Information System (INIS)

    Highlights: • A dynamic LCA is proposed considering time-varying factors. • Dynamic LCA is used to highlight GHG emission hotspots of gasification projects. • Indicators are proposed to reflect GHG emission performance. • Dynamic LCA alters the static LCA results. • Crop residue gasification project has high GHG abatement potential. - Abstract: Bioenergy from crop residues is one of the prevailing sustainable energy sources owing to the abundant reserves worldwide. Amongst a wide variety of energy conversion technologies, crop residue gasification has been regarded as promising owing to its higher energy efficiency than that of direct combustion. However, prior to large-scale application of crop residue gasification, the lifetime environmental performance should be investigated to shed light on sustainable strategies. As traditional static life cycle assessment (LCA) does not include temporal information for dynamic processes, we proposed a dynamic life cycle assessment approach, which improves the static LCA approach by considering time-varying factors, e.g., greenhouse gas characterization factors and energy intensity. As the gasification project can reduce greenhouse gas (GHG) discharge compared with traditional direct fuel combustion, trade-offs between the benefits of global warming mitigation and the impact on global warming of crop residue gasification should be considered. Therefore, indicators of net global warming mitigation benefit and global warming impact mitigation period are put forward to justify the feasibility of the crop residue gasification project. The proposed dynamic LCA and indicators were then applied to estimate the life cycle global warming impact of a crop residue gasification system in China. Results show that the crop residue gasification project has high net global warming mitigation benefit and a short global warming impact mitigation period, indicating its prominent potential in alleviating global warming impact. During

  2. Characterization of Residual Particulates from Biomass Entrained Flow Gasification

    DEFF Research Database (Denmark)

    Qin, Ke; Lin, Weigang; Fæster, Søren;

    2013-01-01

    Biomass gasification experiments were carried out in a bench scale entrained flow reactor, and the produced solid particles were collected by a cyclone and a metal filter for subsequent characterization. During wood gasification, the major part of the solid material collected in the filter is soot...

  3. Agricultural residue availability in the United States.

    Science.gov (United States)

    Haq, Zia; Easterly, James L

    2006-01-01

    The National Energy Modeling System (NEMS) is used by the Energy Information Administration (EIA) to forecast US energy production, consumption, and price trends for a 25-yr-time horizon. Biomass is one of the technologies within NEMS, which plays a key role in several scenarios. An endogenously determined biomass supply schedule is used to derive the price-quantity relationship of biomass. There are four components to the NEMS biomass supply schedule including: agricultural residues, energy crops, forestry residues, and urban wood waste/mill residues. The EIA's Annual Energy Outlook 2005 includes updated estimates of the agricultural residue portion of the biomass supply schedule. The changes from previous agricultural residue supply estimates include: revised assumptions concerning corn stover and wheat straw residue availabilities, inclusion of non-corn and non-wheat agricultural residues (such as barley, rice straw, and sugarcane bagasse), and the implementation of assumptions concerning increases in no-till farming. This article will discuss the impact of these changes on the supply schedule. PMID:16915628

  4. Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study

    International Nuclear Information System (INIS)

    The downdraft gasification technology has an increased interest among researchers worldwide due to the possibility to produce mechanical and electrical power from biomass in small-scale to an affordable price. The research is generally focused on improvement of the performance and optimizing of a certain gasifier, on testing different fuels, on increasing the user-friendliness of the gasifier and on finding other uses for the product gas than in an IC-engine, for example liquid fuel production. The main objective with the gasification tests presented here is to further contribute in the field by studying the impact of the char bed properties such as char bed porosity and pressure drop on the gasification performance as well as the impact of fuel particle size and composition on the gasification process in one and the same gasifier. In addition, there is very little gasification data available in literature of 'before disregarded' fuels such as sugar cane bagasse from sugar/alcohol production and empty fruit bunch (EFB) from the palm-oil production. By pelletizing these residues, it is possible to introduce them into downdraft gasification technology which has been done in this study. The results show that one and the same reactor can be used for a variety of fuels in pellet form, but at varying air-fuel ratios, temperature levels, gas compositions and lower heating values. Gasification of wood pellets results in a richer producer gas while EFB pellets give a poorer one with higher contents of non-combustible compounds. In this gasification study, there is almost linear relation between the air-fuel ratio and the cold-gas efficiency for the studied fuels: Higher air-fuel ratios result in better efficiency. The pressure drop in the char bed is higher for more reactive fuels, which in turn is caused by low porosity char beds.

  5. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  6. Efficient gasification of wet biomass residue to produce middle caloric gas

    Institute of Scientific and Technical Information of China (English)

    Guangwen Xu; Takahiro Murakami; Toshiyuki Suda; Hidehisa Tani; Yutaka Mito

    2008-01-01

    Various process residues represent a kind of biomass resource already concentrated but containing water as much as 60 wt.%.These materials are generally treated as waste or simply combusted directly to generate heat.Recently,we attempted to convert them into middle caloric gas to substitute for natural gas,as a chemical or a high-rank gaseous fuel for advanced combustion utilities.Such conversion is implemented through dual fluidized bed gasification (DFBG).Concerning the high water content of the fuels,DFBG was suggested to accomplish either with high-efficiency fuel drying in advance or direct decoupling of fuel drying/pyrolysis from char gasification and tar/hydrocarbon reforming.Along with fuel drying,calcium-based catalyst can be impregnated into the fuel,without much additional cost,to increase the fuel's gasification reactivity and to reduce tar formation.This article reports the Ca impregnation method and its resulting effects on gasification reactivity and tar suppression ability.Meanwhile,the principle of directly gasifying wet fuel with decoupled dual fluidized bed gasification (D-DFBG) is also highlighted.

  7. Development of gasification and melting system for energy recovery from automobile shredder residue

    International Nuclear Information System (INIS)

    As one of the efforts to increase recycling rate of end of life vehicles enforcing by the governmental regulation, automobile shredder residue (ASR) was considered to treat by a thermal method with converting waste to energy. Gasification and melting experimental processes of lab (1 kg/ hour) and pilot (5 ton/ day) scale were installed. ASR collected from a domestic shredding company was experimented at a lab-scale and pilot-scale gasification and melting process which is similar to the shaft type gasification melting furnace. The characteristics of syngas, tar and residue (slag) generated from a conversion process (gasification and melting) were analyzed to provide the information to further utilize them as fuel and recyclable materials in scaled up plants. A series of experiments have been conducted with various air equivalent ratios (ERs), and syngas compositions, carbon conversion efficiency, heating value of syngas, yield and characteristics of slag were analyzed. Finally, slags generated from the process were recycled with various alternative technologies. In summary, energy conversion technology of ASR with the least production of residue by gasification and slag utilization has been developed. The main components in product gas were H2, CO, CH4 and CO2; and concentrations of C2H4 and C2H6 were less. This can be used as clean fuel gas whose heating value ranged from 2.5 to 14.0 MJ/ m3. Most of slag generated from the process can further be fabricated to valuable and usable products. Such combined technology would result in achieving almost zero waste release from ELVs. (author)

  8. Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Susanjib; Kumar, Amit [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2010-02-15

    In this study, forest residues (limbs, tops, and branches) and straw (from wheat and barley) are considered for producing biohydrogen in Western Canada for upgrading of bitumen from oil sands. Two types of gasifiers, namely, the Battelle Columbus Laboratory (BCL) gasifier and the Gas Technology Institute (GTI) gasifier are considered for biohydrogen production. Production costs of biohydrogen from forest and agricultural residues from a BCL gasification plant with a capacity of 2000 dry tonnes/day are 1.17 and 1.29/kg of H{sub 2}, respectively. For large-scale biohydrogen plant, GTI gasification is the optimum technology. The delivered-biohydrogen costs are 2.19 and 2.31/kg of H{sub 2} at a plant capacity of 2000 dry tonnes/day from forest and agricultural residues, respectively. Optimum capacity for biohydrogen plant is 3000 dry tonnes/day for both residues in a BCL gasifier. In a GTI gasifier, although the theoretical optimum sizes are higher than 3000 dry tonnes/day for both feedstocks, the cost of production of biohydrogen is flat above a plant size of 3000 dry tonnes/day. Hence, a plant at the size of 3000 dry tonnes/day could be built to minimize risk. Carbon credits of 119 and 124/tonne of CO{sub 2} equivalent are required for biohydrogen from forest and agricultural residues, respectively. (author)

  9. Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Tarud, J.; Phillips, S.

    2011-08-01

    This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

  10. Fermentation, gasification and pyrolysis of carbonaceous residues towards usage in fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sequeira, C.A.C.; Santos, D.M.F. [Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001, Lisboa (Portugal); Brito, P.S.D.; Mota, A.F.; Carvalho, J.L.; Rodrigues, L.F.F.T.T.G. [Escola Superior de Tecnologia e Gestao de Portalegre, Apartado 148, 7300-901 Portalegre (Portugal); Barrio, D.B.; Justo, D.M. [Facultad de Ciencias, Universidad de Valladolid, c/Real de Burgos sin, 47011 Valladolid (Spain)

    2007-07-15

    In this paper, the technologies of fermentation, gasification and pyrolysis of carbonaceous residues for the production of biohydrogen and other gaseous, liquid or solid fuels, are analysed. The energetic, economic and environmental advantages of linking these energy areas with the fuel cell engines are stressed. In addition, the current status of fuel cell technologies, namely their historic trends, basic electrode mechanisms, cell types, market drivers and leading issues, are reviewed. (author)

  11. Pressurised gasification of wet ethanol fermentation residue for synthesis gas production.

    Science.gov (United States)

    Koido, Kenji; Hanaoka, Toshiaki; Sakanishi, Kinya

    2013-03-01

    Pressurised steam gasification of wet biomass in a fixed-bed downdraft gasifier was implemented to identify reaction conditions yielding the highest synthesis gas concentration and efficiency, and to examine the generation of sulphur compounds. The gasification of lignin-rich fermentation residue derived from a bench-plant for bioethanol production from woody biomass was investigated at p=0.99MPa and T=750-900°C for steam to biomass ratios (S/B) of 3.4-17 and equivalence ratios (φ) of 3.3-∞. The results showed that the highest concentration of around 70mol% was obtained at T⩾850°C, φ=13 and S/B=3.4, the highest efficiency of 0.26 was obtained at T=900°C, φ=3.3 and S/B=3.4, and sulphur compounds were H2S and COS. For the production of BTL synthesis gas, pressurised gasification has the potential to convert the wet residue below 77.3wt.% moisture contents.

  12. Studies on pyrolysis and gasification of automobile shredder residue in China.

    Science.gov (United States)

    Ni, Feijian; Chen, Ming

    2014-10-01

    With increasing automobile ownerships in China, the number of end-of-life vehicles has also rapidly increased. However, the automobile shredder residue generated during the dismantling of end-of-life vehicles in China is not treated properly and has caused great resource waste and environmental problems. In this work, automobile shredder residue from a domestic end-of-life vehicles dismantling company was comprehensively studied through element analysis, combustion heat experiment, proximate analysis, and thermogravimetric analysis. The feasibility of using pyrolysis combined with gasification to treat and recycle automobile shredder residue was investigated. The produced gas, oil, and residue yield was measured and the correlation between their yield and the experimental temperature and ratio of air to automobile shredder residue feed was studied. It is found that when ratio of air and experimental temperature are 1.5 mol kg(-1) and 900 °C, respectively, the heat energy of the gas produced per kilogram treated automobile shredder residue reaches a maximum value of 11.28 MJ. The characteristics of pyrolysis oil and solid residue were studied. The solid residue takes up 4.65%~5.57% of the original end-of-life vehicles weight. This greatly helps to reach the target of a 95% recycling rate.

  13. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

    2009-11-03

    This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

  14. Evaluation of cyclone gasifier performance for gasification of sugar cane residue - Pt. 1: gasification of cane trash

    Energy Technology Data Exchange (ETDEWEB)

    Gabra, M.; Pettersson, E.; Kjellstrom, B. [Lulea University of Technology (Sweden). Div. of Energy Engineering; Backman, R. [Abo Akademi University, Abo (Finland). Div. of Chemical Engineering

    2001-11-01

    In Part 1 of this two-part paper, results from gasification of bagasse in a cyclone gasifier have been reported. In this paper results from gasification of cane trash in the same cyclone gasifier are presented. The cane trash powder is injected into the cyclone with air as transport medium. The gasification tests were made with two feeding rates, 39 and 46 kg/h at two equivalence ratios of 0.25 and 0.20 and the gasification temperature ranging from 820{sup o}C to 850{sup o}C. It was found that the heating value of the producer gas is in the range of 4.5-4.8 MJ/Nm{sup 3} (dry gas), which is sufficient for stable gas turbine combustion. Significant alkali separation has been achieved in the cyclone stage. However, the alkali levels and carryover particle concentrations in the producer gas were found to be higher than allowable in a gas turbine. Despite high ash melting temperatures found by the TGA-DTA, deposition problems cannot be excluded since some carryover particles in the producer gas seem to have been melted and since some gasification of K and Na compounds is indicated. As an overall assessment, cane trash appears as a more problematic fuel than bagasse for this application. Integrated experiments with a gas turbine need to be done for accurate evaluation of the possibilities to use the producer gas from the gasification of cane trash to run a gas turbine without problems of hard deposits and corrosion on the turbine blades. (author)

  15. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process.

    Science.gov (United States)

    Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen

    2016-04-01

    A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process. PMID:26849201

  16. Focus on agricultural residues: Microstructure of almond hull (abstract)

    Science.gov (United States)

    Agricultural residues have historically been used as animal feed or burned for disposal. These residues, therefore, have little economic value and may end up becoming disposal problems because tighter air quality control measures may limit burning of the residues. Therefore, value-added products mad...

  17. Effect of rice husk gasification residue application on herbicide behavior in micro paddy lysimeter.

    Science.gov (United States)

    Ok, Junghun; Pisith, Sok; Watanabe, Hirozumi; Thuyet, Dang Quoc; Boulange, Julien; Takagi, Kazuhiro

    2015-06-01

    Effects of rice husk gasification residues (RHGR) application on the fate of herbicides, butachlor and pyrazosulfuron-ethyl, in paddy water were investigated using micro paddy lysimeters (MPLs). The dissipation of both herbicides in paddy water was faster in the RHGR treated MPL than in the control MPL. The average concentrations of butachlor and pyrazosulfuron-ethyl in paddy water in the lysimeter treated with RHGR during 21 days were significantly reduced by 51% and 48%, respectively, as compared to those in the lysimeter without RHGR application. The half-lives (DT50) of butachlor in paddy water for control and treatment were 3.1 and 2.3 days respectively, and these values of pyrazosulfuron-ethyl were 3.0 and 2.2 days, respectively. Based on this study, RHGR application in rice paddy environment is an alternative method to reduce the concentration of herbicide in paddy field water and consequently to reduce potential pollution to aquatic environment.

  18. Gasification of coal as efficient means of environment protection and hydrogenation of heavy oils residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S. [Fossil Fuel Institute, Moscow (Russian Federation)

    1995-12-31

    The Russia`s more then 50% of coals produced in its European part contain over 2,5% of sulphur, and the coals containing less than 1.5% of sulphurs comprise ca.20%. Thus, utilisation of the sulphide coals is inevitable, and there a problem arises concerning the technology of their sensible use and considering the requirements on the environment protection. Russia`s specialists have developed a design and construction for a steam-gas installation with a closed cycle gasification of the solid fuel. The gasification process will proceed in the fluidized bed under forced pressure of the steam-air blast. Characteristic features of this process are the following: a higher efficiency (the capacity of one gas generator is 3-3,5 times larger than that attained in the present gas generators of the Lurgy`s type): 2-2,5 times decreased fuel losses as compared to the Winkler`s generators; retention of the sensible heat, resulting in an increased total energy efficiency. The main task for petroleum refining industry at the present stage is the increase of depth of oil processing with the aim to intensify motor fuel production. One of the ways to solve the problem is to involve heavy oil residues into the processing. But the high metal and asphaltenes contents in the latter make the application of traditional methods and processes more difficult. Up to now there is no simple and effective technology which could give the opportunity to use oil residues for distillate fractions production. In Fossil fuel institute a process for hydrogenation of high boiling oil products, including with high sulphur, vanadium and nickel contents ones, into distillates and metals concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with tar, dispersed and then subjected to additional supercavitation in a special apparatus.

  19. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However, similar approach for

  20. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  1. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitabi......In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling...

  2. The water footprint of biofuel produced from forest wood residue via a mixed alcohol gasification process

    Science.gov (United States)

    Chiu, Yi-Wen; Wu, May

    2013-09-01

    Forest residue has been proposed as a feasible candidate for cellulosic biofuels. However, the number of studies assessing its water use remains limited. This work aims to analyze the impacts of forest-based biofuel on water resources and quality by using a water footprint approach. A method established here is tailored to the production system, which includes softwood, hardwood, and short-rotation woody crops. The method is then applied to selected areas in the southeastern region of the United States to quantify the county-level water footprint of the biofuel produced via a mixed alcohol gasification process, under several logistic systems, and at various refinery scales. The results indicate that the blue water sourced from surface or groundwater is minimal, at 2.4 liters per liter of biofuel (l/l). The regional-average green water (rainfall) footprint falls between 400 and 443 l/l. The biofuel pathway appears to have a low nitrogen grey water footprint averaging 25 l/l at the regional level, indicating minimal impacts on water quality. Feedstock mix plays a key role in determining the magnitude and the spatial distribution of the water footprint in these regions. Compared with other potential feedstock, forest wood residue shows promise with its low blue and grey water footprint.

  3. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification

    International Nuclear Information System (INIS)

    Presently, there is a growing need for handling automobile shredder residues - ASR or 'car fluff'. One of the most promising methods of treatment ASR is pyrolysis. Apart of obvious benefits of pyrolysis: energy and metals recovery, there is serious concern about the residues generated from that process needing to be recycled. Unfortunately, not much work has been reported providing a solution for treatment the wastes after pyrolysis. This work proposes a new system based on a two-staged process. The ASR was primarily treated by microwave pyrolysis and later the liquid and solid products become the feedstock for the high temperature gasification process. The system development is supported within experimental results conducted in a lab-scale, batch-type reactor at the Royal Institute of Technology (KTH). The heating rate, mass loss, gas composition, LHV and gas yield of producer gas vs. residence time are reported for the steam temperature of 1173 K. The sample input was 10 g and the steam flow rate was 0.65 kg/h. The conversion reached 99% for liquids and 45-55% for solids, dependently from the fraction. The H2:CO mol/mol ratio varied from 1.72 solids and 1.4 for liquid, respectively. The average LHV of generated gas was 15.8 MJ/N m3 for liquids and 15 MJ/N m3 for solids fuels.

  4. Stoichiometric, mass, energy and exergy balance analysis of countercurrent fixed-bed gasification of post-consumer residues

    International Nuclear Information System (INIS)

    Air-blown gasification studies were conducted on a countercurrent fixed-bed gasifier for municipal residue-based Refuse Derived Fuel (RDF) pellets and compared with the mass and energy performance features of gasifier with other biomass and residual fuels. The mass conversion efficiency and cold gas efficiency (CGE) of the gasifier were observed to be 83% and 73%, respectively for RDF pellets. The higher heating value and global energy content of the producer gas generated from gasification of RDF pellets was observed to be 5.58 MJ Nm-3 and 12.2 MJ kg-1, respectively. The tar content in the gas generated from RDF pellets was observed to be about 45% less than the tar content in the gas generated from wood chips (WC). Empirical stoichiometric equations were developed to describe the gasification of different fuels. A complete thermodynamic analysis was performed to determine the magnitudes of various inefficiencies and irreversibilities involved in the process. It was evaluated for RDF pellets that 27% of the exergy or available energy input was dissipated in the system due to various irreversibilities taking place in the gasification process. The second law CGE was observed to be highest for RDF pellets i.e. 56% followed by charred soybean straw pellets and WC. Thermal energy in the form of sensible heat energy accounted for 6-7% of the total energy; the available energy accounted for 2-3% of the total energy output of the process

  5. Hydraulic flow characteristics of agricultural residues for denitrifying bioreactor media

    Science.gov (United States)

    Denitrifying bioreactors are a promising technology to mitigate agricultural subsurface drainage nitrate-nitrogen losses, a critical water quality goal for the Upper Mississippi River Basin. This study was conducted to evaluate the hydraulic properties of agricultural residues that are potential bio...

  6. Crop residues reuse to improve agricultural soil quality

    OpenAIRE

    Cornejo, Jennifer Moreno; Cano, Angel Faz

    2008-01-01

    Since the 70´s in The Autonomous Community of the Region of Murcia, the irrigated agricultural area has increased, especially in the agrarian district “Comarca del Campo de Cartagena”, (South East of Spain). As a consequence, the amount of crop residues generated has gone up too. At the present, harvest residues constitute a very serious environmental problem because, in most cases, these residues are dehydrated on the land and burned later on with subsequent negative consequences...

  7. Bioenergy from agricultural residues in Ghana

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe

    There are strong incentives for increased bioenergy production in Ghana, since it may bring energy self-sufficiency for farmers and communities, cleaner fuels, and the possibility for closing the nutrient-cycle. Therefore, this PhD thesis is investigating production of residue-based ethanol...

  8. Comparative study on the combustion and gasification of solid recovered fuels. Emphasis on residues characterisation and chlorine partitioning

    OpenAIRE

    Balampanis, Dimitris E.

    2009-01-01

    Thermal treatment is recognised as a valid option within the waste management hierarchy for the recovery of the energy content of waste. Recent developments in the field are signposted from emergent technologies and the standardisation of solid recovered fuels. This work comparatively examines the fluidized bed combustion and gasification of a novel material; East London’s solid recovered fuel. Emphasis is given on the characterisation of the solid residues produced from the two thermal ...

  9. Logging and Agricultural Residue Supply Curves for the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Kerstetter, James D.; Lyons, John Kim

    2001-01-01

    This report quantified the volume of logging residues at the county level for current timber harvests. The cost of recovering logging residues was determined for skidding, yearding, loading, chipping and transporting the residues. Supply curves were developed for ten candidate conversion sites in the Pacific Northwest Region. Agricultural field residues were also quantified at the county level using five-year average crop yields. Agronomic constraints were applied to arrive at the volumes available for energy use. Collection costs and transportation costs were determined and supply curves generated for thirteen candidate conversion sites.

  10. Cellulosic ethanol production from agricultural residues in Nigeria

    International Nuclear Information System (INIS)

    Nigeria′s Biofuels Policy introduced in 2007 mandates a 10% blend (E10) of bioethanol with gasoline. This study investigates the potential for the development of a cellulosic ethanol industry based on the availability of agricultural residues and models the number of commercial processing facilities that could be sited in the six Geo-political zones. The potential for cellulosic ethanol production from agricultural residues in Nigeria is 7556 km3 per annum exceeding the mandate of 10% renewable fuel required and providing the potential for 12 large- and 11 medium-scale processing facilities based on the use of a single feedstock. Cassava and yam peelings provided in excess of 80% of the process residues available with enough feedstock to supply 10 large-scale facilities with a fairly even distribution across the zones. Sorghum straw, millet straw and maize stalks represented 75% of the potential resource available from field residues with the potential to supply 2 large- and 7 medium-scale processing facilities, all of which would be located in the north of the country. When a multi-feedstock approach is used, this provides the potential for either 29 large- or 58 medium-scale facilities based on outputs of 250 and 125 km3 per annum respectively. - Highlights: • Nigeria′s Biofuels Policy mandates a 10% blend of bioethanol with gasoline. • Total bioethanol production from agricultural residues was 7556 km3 per annum. • Process residues offer the greatest potential accounting for 62% of production. • Nigeria has the potential for 12 large- and 11 medium scale commercial. • The use of mixed feedstocks significantly increases the potential for production

  11. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Runcang Sun; Huaiyu Zhan

    2004-01-01

    Various lignocellulosic materials such as wood,agricultural and forest residues has the potential to be valuable substitute for, or complement to,commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world′s total straw pulp. However,huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  12. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    FengXu; RuncangSun; HuaiyuZhan

    2004-01-01

    Various lignocellulosic materials such as wood, agricultural and forest residues has the potential to be valuable substitute for, or complement to, commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world's total straw pulp. However, huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  13. Pretreaments of Chinese Agricultural residues to increase biogas production

    OpenAIRE

    Wang, Yu

    2010-01-01

    Development of biological conversion of lignocellulosic biomass to biogas is one approach to utilize straw comprehensively. However, high lignin contents of lignocellulosic materials results in low degradation. The main aim of this study was to investigate the appropriate pre-treatment to increase biogas production from Chinese agricultural residues. In this study, Chinese corn stalk, rice plant and wheat straw were evaluated as substrates by applying three different pre-treatments. The inves...

  14. Performance evaluation of natural draft based agricultural residues charcoal system

    Energy Technology Data Exchange (ETDEWEB)

    Patil, K.N.; Ramana, P.V.; Singh, R.N. [Sardar Patel Renewable Energy Research Inst., Gujarat (India)

    2000-07-01

    A natural draft based agricultural residues charcoal reactor has been described herein along with its performance details. Instead of releasing pyrogases into the atmosphere, these gases are burnt inside the charcoal reactor, offering better energy efficiency and environmental acceptability. Agricultural residues like arhar stalks (Cajanus cajan), saw mill woody waste, Ipomoea (Ipomoea fistulasa, Syn. Ipomoea Carnea) and babul wood (Acacia nilotica), all sun dried, were used as the feedstocks for charcoal making. Saleable charcoal (SC) yield was in the range of 28 to 47% dry basis (db) with the maximum from saw mill woody waste and the minimum from Ipomoea. Fixed carbon (FC) content in the SC varies from 69 to 77% (db) in the agricultural residues based charcoal. Babul wood charring gave the highest SC yield (50%, db) and the best quality charcoal in terms of FC (80%, db). Economic analysis revealed that if the system developed was operated annually for 4000 h, the user could have a net profit of around Rs.l,00,000/-(US $2500). (author)

  15. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  16. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  17. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  18. Microbiological Production of Surfactant from Agricultural Residuals for IOR Application

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

    2002-04-01

    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

  19. Hydrothermal Liquefaction of Agricultural and Biorefinery Residues Final Report – CRADA #PNNL/277

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Fjare, K. A.; Dunn, B. C.; McDonald, S. L.; Dassor, G.

    2010-07-28

    This project was performed as a Cooperative Research and Development Agreement (CRADA) with the participants: Archer-Daniels-Midland Company (ADM), ConocoPhillips (COP), and Pacific Northwest National Laboratory (PNNL). Funding from the federal government was provided by the Office of the Biomass Program within the Energy Efficiency and Renewable Energy assistant secretariat as part of the Thermochemical Conversion Platform. The three-year project was initiated in August 2007 with formal signing of the CRADA (#PNNL/277) in March 3, 2008 with subsequent amendments approved in November of 2008 and August of 2009. This report describes the results of the work performed by PNNL and the CRADA partners ADM and COP. It is considered Protected CRADA Information and is not available for public disclosure. The work conducted during this project involved developing process technology at PNNL for hydrothermal liquefaction (HTL) of agricultural and biorefinery residues and catalytic hydrothermal gasification (CHG) of the aqueous byproduct from the liquefaction step. Related work performed by the partners included assessment of aqueous phase byproducts, hydroprocessing of the bio-oil product and process analysis and economic modeling of the technology.

  20. Hydrothermal processing of fermentation residues in a continuous multistage rig – Operational challenges for liquefaction, salt separation, and catalytic gasification

    International Nuclear Information System (INIS)

    Fermentation residues are a waste stream of biomethane production containing substantial amounts of organic matter, and thus representing a primary energy source which is mostly unused. For the first time this feedstock was tested for catalytic gasification in supercritical water (T ≥ 374 °C, p ≥ 22 MPa) for methane production. The processing steps include hydrothermal liquefaction, salt separation, as well as catalytic gasification over a ruthenium catalyst in supercritical water. In continuous experiments at a feed rate of 1 kg h−1 a partial liquefaction and carbonization of some of the solids was observed. Significant amounts of heavy tars were formed. Around 50% of the feed carbon remained in the rig. Furthermore, a homogeneous coke was formed, presumably originating from condensed tars. The mineralization of sulfur and its separation in the salt separator was insufficient, because most of the sulfur was still organically bound after liquefaction. Desalination was observed at a salt separator set point temperature of 450 °C and 28 MPa; however, some of the salts could not be withdrawn as a concentrated brine. At 430 °C no salt separation took place. Higher temperatures in the salt separator were found to promote tar and coke formation, resulting in conflicting process requirements for efficient biomass liquefaction and desalination. In the salt separator effluent, solid crystals identified as struvite (magnesium ammonium phosphate) were found. This is the first report of struvite formation from a supercritical water biomass conversion process and represents an important finding for producing a fertilizer from the separated salt brine. - Highlights: • Continuous processing of fermentation residues in sub- and supercritical water. • Continuous separation of salt brines at supercritical water conditions. • Struvite crystals (magnesium ammonium phosphate) were recovered from the effluent. • Separation of sulfur from the biomass could not

  1. Thermal behavior of the major constituents of some agricultural biomass residues during pyrolysis and combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Haykiri-Acma, H. [Istanbul Technical Univ., Istanbul (Turkey). Dept. of Chemical Engineering, Chemical and Metallurgical Engineering Faculty

    2006-07-01

    The importance of woody agricultural waste as a renewable energy source was discussed with reference to its low cost, abundance, and carbon dioxide neutrality. Direct combustion of biomass waste fuels is not recommended due to its low density, high moisture content and low calorific energy. Rather, thermal conversion processes such as pyrolysis, gasification or carbonization are preferred for biomass. The performance and the energy recovery potentials of these processes depend on the process conditions as well as the physical and chemical properties of the biomass species. Therefore, the structure and components of biomass must be known. In this study, agricultural biomass samples of almond shell, walnut shell, hazelnut shell, rapeseed, olive residue, and tobacco waste were first analytically treated to remove extractive matter to obtain extractive-free samples. Specific analytic procedures were then applied to biomass samples in order to isolate their individual biomass constituents such as lignin and holocellulose. Untreated biomass samples and their isolated constituents were exposed to non-isothermal pyrolysis and combustion processes in a thermogravimetric analyzer. Pyrolysis experiments were conducted under dynamic nitrogen atmospheres of 40 mL-min, while dynamic dry air atmosphere with the same flow rate was applied in the combustion experiments. The study showed that the pyrolysis and combustion characteristics of the biomass samples differed depending on their properties. Aliphatic and oxygen rich holocellulose and cellulose were found to be the reactive components in biomass. Lignin was more stable during thermal processes. When extractive matter from the biomass samples was removed, pyrolysis at lower temperatures was terminated. 10 refs., 4 tabs., 3 figs.

  2. Bed Agglomeration During the Steam Gasification of a High Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.; Gray, Michel J.; Fernandez, Carlos A.; Saraf, Laxmikant; Garcia-Perez, Manuel; Wolcott, Michael P.

    2015-11-13

    This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compounds was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.

  3. Gasificación catalítica de lodos de aguas residuales. // Catalytic gasification of residual waters muds.

    Directory of Open Access Journals (Sweden)

    L. M. García Rojas

    2005-05-01

    Full Text Available A partir de la necesidad de encontrar nuevas alternativas energéticas, se estudia en este trabajo la posibilidad de reducir agran escala la cantidad de alquitranes que acompaña al gas obtenido de la gasificación en lecho fluidizado de los lodos delas depuradoras de aguas residuales, este estudio conduce a una posible utilización de este gas en la generación deelectricidad, Para propiciar tal reducción se han empleado catalizadores secundarios reemplazando, en parte ocompletamente, la arena utilizada como agente fluidizante. Además la presencia de vapor de agua, que puede actuar comoreactante para el reformado de hidrocarburos, también puede ser beneficiosa a la hora de reducir la cantidad de alquitranesen el gas, por lo que, junto con la sustitución de la arena por un catalizador, se han realizado experimentos alimentandovapor de agua al reactor.Palabras claves: Gasificación, lecho fluidizado y lodos.____________________________________________________________________________Abstract.Starting from the necessity of finding new energy alternatives, it is presented in this paper the possibility to reduce in greatscale the quantity of tars that accompanies the gas obtained of the gasification in fluidized bed of muds in residual waters,this study leads to a possible use of this gas in the electricity generation, For propitiate such reduction a secondary catalystshas been used replacing, partly or completely, the sand used as fluidity agent. Also the presence of water steam that can actas reactant for the hydrocarbons reformed, it can also be beneficial when reducing the quantity of tars in the gas, for that,together with the substitution of sand for a catalyst, it have been carried out experiments feeding water steam to the reactor.Key words: Catalytic gasification, fluidity channel, muds.

  4. Does gasification and biochar amendment provide a viable solution to balance greenhouse gas emissions, energy requirements and orchard residue management?

    Science.gov (United States)

    Pereira, Engil; Suddick, Emma; Six, Johan

    2015-04-01

    By converting biomass residue to biochar, we can generate power cleanly and sequester carbon resulting in overall greenhouse gas (GHG) savings when compared to typical fossil fuel burning and waste disposal. This on-farm research study provides a long-term and high frequency assessment of GHG emissions from biochar amended-soils in an organic walnut orchard in the Central Valley of California, USA. We also estimated the GHG offsets from the conversion of walnut residue into energy through gasification at the on-site walnut processing plant. Soil fluxes of carbon dioxide (CO2) and nitrous oxide (N2O) were monitored over 29 months in a 3.6 ha walnut orchard following management and precipitation events. We compared four treatments: control, biochar, compost, and biochar combined with compost. Events involving resource inputs such as fertilization or cover crop mowing induced the largest N2O peaks with average 0.13 kg N2O-N ha-1 day-1, while precipitation events produced the highest CO2 fluxes in average 0.124 Mg CO2-C ha-1 day-1. Biochar alone decreased N2O fluxes in two out of 23 measured events, however, not with enough significant magnitude to modify annual or seasonal totals. This indicates that biochar-induced decreases in N2O fluxes may occasionally occur without significant changes in total emissions. Additionally, biochar alone or in combination with compost did not alter annual or seasonal cumulative CO2 emissions. For this particular study, the conversion of orchard waste into energy and C sequestration through biochar amendment offset 100.3 Mg CO2-Ceq year-1. Thus, given that biochar did not alter cumulative GHG emissions from soils, we conclude that, in the scenario of this study, the use of biochar as a strategy to decrease farm-level GHG emissions is obtained through the gasification of orchard residue into energy and through biochar C sequestration, and not as a tool to decrease soil CO2 and N2O emissions.

  5. Estimating bioenergy potentials of common African agricultural residues

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Kádár, Zsófia; Schmidt, Jens Ejbye

    Asking a bioenergy researcher about the composition of wheat straw, he would know it by heart. But if enquiring about typical African biomasses – it would be another case. Until now, biomasses common to African countries have not received the same scientific attention as biomasses from Europe......, North America or Brazil. For that reason, it is difficult to estimate bioenergy potentials in the African region. As a part of an on‐going research collaboration investigating production of 2g biofuels in Ghana, this study have analysed 13 common African agricultural residues: yam peelings, cassava...... peelings, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches (EFB). This was done to establish detailed compositional mass balances, enabling estimations of accurate bioenergy...

  6. Reequipment of a GST-power plant operating with natural gas for the adaptation to coal gas - gasification of residual substances. Umruestung eines GuD-Erdgaskraftwerkes auf Kohlegas - Vergasung von Reststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Jelich, W. (Babcock Lentjes Kraftwerkstechnik GmbH, Oberhausen (Germany)); Klauke, F. (Babcock Lentjes Kraftwerkstechnik GmbH, Oberhausen (Germany)); Koenig, D. (Babcock Lentjes Kraftwerkstechnik GmbH, Oberhausen (Germany))

    1994-04-01

    The paper deals with the possibility of readjusting a planned GST gas-fired power station to brown coal gasification plant to be installed at a later date. It comments on measures to be taken into consideration for the natural gas power plant project with regard to a subsequent reequipment of the plant. In addition to this, the article describes the gasification technology as well as the components needed for gasification quoting data on the efficiency, availability and experience gained from the operation of existing plants. In conclusion, the paper gives a brief description of the disposal of residues by gasification. (orig.)

  7. Perspectives of the generation of carbon credits on the basis of the attainment of a fertilizer - exploitation of residues of biomass of brazilian agriculture

    International Nuclear Information System (INIS)

    In this work, whose approach is unknown in literature, the main lines of direction for the implementation of a Mechanism of Clean Development are presented, as well as the possibilities of generation of Certified Reduction of Emission and its valuation. By means of adjusted systems, indicated in literature, the approach amounts of carbonic gas had been raised that could be gotten, choosing itself for this work, the process of gasification of residues of biomass in some Brazilian agricultural cultures. In relation to the carbonic gas produced in the process it is suggested that to quantify the carbon credits, the capture is made through its setting in the production of a fertilizer that had its approach value searched in the market. To prove this possibility experiments in laboratory scale had become, holding back the CO2 in the fertilizer ammonium bicarbonate. Thermogravimetric analyses, spectra infra-red ray, X-rays diffraction and CHN had been made and had confirmed that the product was the fertilizer ammonium bicarbonate. For the numerical values, it had been consulted in referring bibliographies, the Brazilian agricultural cultures with indices of production of known residues, establishing then a numerical database for the formation of the corresponding values. The results of this wok allow to affirm that a great potentiality for the exploitation of the resultant gases of the gasification of the residues of biomass, mainly of the carbonic gas in the production of a fertilizer exists and, with the possibility of implementation of a Mechanism of Clean Development in the country. (author)

  8. Biofilter Treating Ammonia Gas Using Agricultural Residues Media

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2012-01-01

    Full Text Available Problem statement: Agricultural residues such as manure and sugarcane bagasse are wastes from agro-industry which has low value and requires some sustainable waste management method. In this research, a mixture of manure fertilizer and sugarcane bagasse is used as a biofilter media for an ammonia gas removal application. The aim of this research is to study the ammonia gas removal efficiency of such media. Approach: The experiments were conducted in laboratory-scale biofilters. Two inlet ammonia gas concentrations were used which are 500 and 1,000 ppm. Three ratios of manure fertilizer and sugarcane bagasse were studied including 1:3, 1:5 and 1:7 by volume. All experiments were conducted for a period of 40 days. Two Empty Bed Retention Time (EBRT of these experiments were used which is 39s and 78s. The moisture content of the biofilter media was maintained at 45-60% by adding water. Results: The maximum ammonia gas removal efficiency at 89.93% is observed from the following conditions: 500 ppm of the inlet ammonia gas concentration, the manure fertilizer and sugarcane bagasse mixture ratio of 1:5 and the EBRT of 78s. The important factors of the ammonia gas removal in biofiltration process are the inlet ammonia gas concentration and the EBRT. Conclusion: The experimental results showed that the mixture of manure fertilizer and sugarcane bagasse is an effective biofilter media for ammonia gas removal applications. However, the biofilter is more effective at low inlet ammonia gas concentration, while the ratio of manure fertilizer and sugarcane bagasse has no significant effect on the ammonia gas removal efficiency. Therefore, using both residues as biofilter media for ammonia gas removal application is an alternative sustainable way to such manage argo-industry waste.

  9. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    Science.gov (United States)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  10. Ruminal Methanogen Community in Dairy Cows Fed Agricultural Residues of Corn Stover, Rapeseed, and Cottonseed Meals.

    Science.gov (United States)

    Wang, Pengpeng; Zhao, Shengguo; Wang, Xingwen; Zhang, Yangdong; Zheng, Nan; Wang, Jiaqi

    2016-07-13

    The purpose was to reveal changes in the methanogen community in the rumen of dairy cows fed agricultural residues of corn stover, rapeseed, and cottonseed meals, compared with alfalfa hay or soybean meal. Analysis was based on cloning and sequencing the methyl coenzyme M reductase α-subunit gene of ruminal methanogens. Results revealed that predicted methane production was increased while population of ruminal methanogens was not significantly affected when cows were fed diets containing various amounts of agricultural residues. Richness and diversity of methanogen community were markedly increased by addition of agricultural residues. The dominant ruminal methanogens shared by all experimental groups belonged to rumen cluster C, accounting for 71% of total, followed by the order Methanobacteriales (29%). Alterations of ruminal methanogen community and prevalence of particular species occurred in response to fed agricultural residue rations, suggesting the possibility of regulating target methanogens to control methane production by dairy cows fed agricultural residues. PMID:27322573

  11. Polyphenols from different agricultural residues: extraction, identification and their antioxidant properties

    OpenAIRE

    Vijayalaxmi, S.; Jayalakshmi, S. K.; K. Sreeramulu

    2014-01-01

    Agricultural residues like sugarcane bagasse (SCB), corn husk (CH), peanut husk (PNH), coffee cherry husk (CCH), rice bran (RB) and wheat bran (WB) are low-value byproducts of agriculture. They have been shown to contain significant levels of phenolic compounds with demonstrated antioxidant properties. In this study, the effects of two types of solvent extraction methods: solid–liquid extraction (SLE) and hot water extraction on the recovery of phenolic compounds from agricultural residues we...

  12. Agricultural valorization of organic residues: Operational tool for determining the nitrogen mineral fertilizer equivalent

    OpenAIRE

    Brockmann, Doris; Négri, Ophélie; Helias, Arnaud

    2014-01-01

    Organic residues from agriculture and waste and wastewater treatment can be used as organic fertilizers or soil amendments due to their nutrient and organic matter contents. In order to replace mineral fertilizers by organic residues at equivalent nutrient and fertilizer values, the mineral fertilizer equivalent (MFE) of the organic residue must be known. A simple Excel-tool was developed that allowed determination of the nitrogen MFE of organic residues based on their nitrogen content and co...

  13. Agricultural and forestry residues for decentralized energy generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Missagia, Bruna

    2011-10-11

    Regular electricity access is a key element for the economic development and social welfare of rural areas. Decentralized energy generation has the advantage of using local resources, increasing employment and reducing transmission and distribution losses. Brazil is a tropical country, endowed with vast arable land, plentiful precipitation levels, and a large supply of human labour. Furthermore, it has strong regional distinctions with geographical, cultural and economical differences. Forestry and agriculture, important activities in the Brazilian economy, are dependent on local people and are deeply connected to traditions, nature and culture. Furthermore, these activities generate a significant amount of residues that could be used in conversion technologies for biomass, based on type, availability and market demand. When biomass were used to generate energy locally, community members could have business opportunities, improving local economy and life quality of individuals while diversifying the Brazilian energy matrix, which is mostly based on hydropower. Alternatives for implementing small-scale decentralized biomass schemes are dependent on the screening of the existing biomass supply chains, the implementation of adapted technologies for local conditions and the exploration of local resources. The present research carried out a detailed field work in order to evaluate the potential of Brazilian biomass in different regions. The author identified crucial needs, usual constraints and possible challenges of rural electrification and economic development in Brazil. Several case studies and social groups were investigated in the Federal States of Minas Gerais, Sao Paulo and Para to identify different resource management strategies, which biomass technology was applied and the needs of the local population. It was concluded that the compaction of biomass to generate solid biofuels with uniform properties could be a cost-effective alternative for communities

  14. MONITORING OF PESTICIDE RESIDUES IN AGRICULTURAL PRODUCTS IN THE YEARS 2003 AND 2004 IN SLOVENIA

    Directory of Open Access Journals (Sweden)

    Helena BAŠA ČESNIK

    2006-10-01

    Full Text Available Agricultural Institute of Slovenia was performing national monitoring for pesticide residues in agricultural products according to the Decree on Monitoring of Pesticides in Foodstuffs and in Agricultural Products (Offi cial Gazette of the Republic of Slovenia No. 13/99. Constant measurements are necessary due to intensive agricultural production and use of chemical substances for plant protection. Due to the nutrition characteristic for the Slovenians pesticide residues are monitored each year in the samples of potato, lettuce and apples; the choice of other agricultural products and active substances analysed are adapted to the guidelines indicated in the EU recommendations. In the years 2003 and 2004 we analysed the presence of pesticide residues in 361 samples of agricultural products: caulifl ower, head cabbage, grapes, apples, strawberries, potatoes, peppers, tomatoes, wheat and lettuce from eight different growing areas of Slovenia. All agricultural products were analysed in 2003 for the presence of 51 active substances and in 2004 for the presence of 57 active substances. The maximum residue level (MRL was exceeded by 6.6 % samples inspected. Potato contributed a major share to this, since in 5.0 % of samples exceeded values of dithiocarbamate residues were determined, however, they were the only active substance found in potato. In 39.1 % of analysed samples residues lower than MRL were determined, in 54.3 % of samples residues were not found or they were below the level of detection method. The greatest number of pesticide residues which did not exceed MRLs was found in fruit, f. ex.: eight in apples and six in strawberries. Residues of dithiocarbamates were the most frequently found active substance in agricultural products.

  15. The Impacts of Agricultural Machinery Purchase Subsidies on Mechanized Crop Residue Recycling

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Crop residue recycling can improve the quality of the cropland,and it has multiple economic and ecological benefits.However,such practice is with low adoption due to different constraints.In this paper,we use the survey data from Baoding,Hebei province,and use the probit model to explore how the agricultural machinery purchase subsidies affect the mechanized crop residue recycling.The results showed that several factors that affect farmers in adopting the practice of mechanized crop residue crop recycling.Among these factors,the cost of adopting such practice is significant.The agricultural machinery purchase subsidies can effectively reduce the cost of such practice,as well as promote mechanized crop residue recycling.The paper also proposed several actions in the future.They include increasing the subsidies on agricultural machinery purchase and increasing farmers’ awareness on crop residue recycling.

  16. A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential

    Energy Technology Data Exchange (ETDEWEB)

    Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

    2012-10-01

    Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

  17. Residues of atrazine in agricultural areas of Serbia

    Directory of Open Access Journals (Sweden)

    N. NESKOVIC

    2002-12-01

    Full Text Available In this paper the results of a five-year investigation of the pollution of soil, as well as of surface and groundwater by atrazine are reported. The soil samples were collected from different localities, from the tillage level, at two depths (0–15 and 15–30 cm during the period September-November from 1995 to 1999. The surface and groundwater samples were taken from the same localities during the same period. The residues were detected by the ELISA test. The results showed that almost all the analysed soil samples contained residues of atrazine. These quantities varied from 0.02 to 0.10 mg/kg (0–15 cm, and up to 0.05 mg/kg (15–30 cm, depending on the locality, soil type and the year of investigation. Concerning the residues in the surface and groundwater, it was found that most of the analysed samples contained atrazine residues. In the case of the surface water, the quantity of the residues ranged from 1.0 to 4.13 mg/L, whill the ground water contained up to 0.3 mg/L depending on the locality and the year of investigation.

  18. Biogas from Agricultural Residues as Energy Source in Hybrid Concentrated Solar Power

    NARCIS (Netherlands)

    Corré, W.J.; Conijn, J.G.

    2016-01-01

    This paper explores the possibilities of sustainable biogas use for hybridisation of Concentrated Solar Power (HCSP) in Europe. The optimal system for the use of biogas from agricultural residues (manure and crop residues) in HCSP involves anaerobic digestion with upgrading of biogas to biomethan

  19. Energy from agricultural residues and consequences for land requirements for food production

    NARCIS (Netherlands)

    Nonhebel, Sanderine

    2007-01-01

    Using biomass as an energy source is often mentioned as an option to mitigate the enhancing greenhouse effect. Biomass for energy purposes can be obtained from dedicated energy crops and/or from agricultural residues. The available amount of residues is large and suggests a significant energy potent

  20. High temperature steam gasification of solid wastes: Characteristics and kinetics

    Science.gov (United States)

    Gomaa, Islam Ahmed

    Greater use of renewable energy sources is of pinnacle importance especially with the limited reserves of fossil fuels. It is expected that future energy use will have increased utilization of different energy sources, including biomass, municipal solid wastes, industrial wastes, agricultural wastes and other low grade fuels. Gasification is a good practical solution to solve the growing problem of landfills, with simultaneous energy extraction and nonleachable minimum residue. Gasification also provides good solution to the problem of plastics and rubber in to useful fuel. The characteristics and kinetics of syngas evolution from the gasification of different samples is examined here. The characteristics of syngas based on its quality, distribution of chemical species, carbon conversion efficiency, thermal efficiency and hydrogen concentration has been examined. Modeling the kinetics of syngas evolution from the process is also examined. Models are compared with the experimental results. Experimental results on the gasification and pyrolysis of several solid wastes, such as, biomass, plastics and mixture of char based and plastic fuels have been provided. Differences and similarities in the behavior of char based fuel and a plastic sample has been discussed. Global reaction mechanisms of char based fuel as well polystyrene gasification are presented based on the characteristic of syngas evolution. The mixture of polyethylene and woodchips gasification provided superior results in terms of syngas yield, hydrogen yield, total hydrocarbons yield, energy yield and apparent thermal efficiency from polyethylene-woodchips blends as compared to expected weighed average yields from gasification of the individual components. A possible interaction mechanism has been established to explain the synergetic effect of co-gasification of woodchips and polyethylene. Kinetics of char gasification is presented with special consideration of sample temperature, catalytic effect of ash

  1. Tropical agricultural residues and their potential uses in fish feeds: the Costa Rican situation

    NARCIS (Netherlands)

    Ulloa Rojas, J.B.; Weerd, van J.H.; Huisman, E.A.; Verreth, J.A.J.

    2004-01-01

    In Costa Rica as many other tropical countries, the disposal problem of agricultural wastes is widely recognized but efforts to find solutions are not equal for different sectors. This study describes the situation of major agricultural residues in Costa Rica, identifying the activities with higher

  2. Evaluation of two agricultural residues as ligno-cellulosic filler in polymer composites

    Science.gov (United States)

    Rationale: Agricultural residues refer to the waste stream coming from agricultural production and processing operations. These materials are often rich in ligno-cellulosic fibers, but offer no significant value at present. The processing plants usually pay for disposal of these waste streams, howev...

  3. Environmental and economic evaluations of energy recovery from agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.P.; Antonopoulos, A.A.; Sobek, A.A.

    1979-08-01

    Agricultural and forestry residues have been converted to energy for centuries. The technologies employed range from straightforward approaches such as combustion to produce heat to more involved approaches such as pyrolysis of the residues to produce medium-Btu synthetic gas, charcoal, and oil. Thus there is no one technology that can be characterized as the best or most promising for conversion of agricultural and forestry residues into energy. Therefore, to accurately assess the potential of agricultural and forestry residues as energy resources, an array of current conversion options should be addressed. Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems ae examined. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

  4. Economic value of crop residues in African smallholder agriculture

    OpenAIRE

    Berazneva, Julia

    2013-01-01

    This paper contributes to our understanding of the use and management of crop residues in East African highlands and farmers' decision-making associated with this important on-farm resource. Using the data from a socio-economic and household production survey of a sample of 310 households in 15 villages in western Kenya conducted in 2011-2012, the analysis shows that the decision to allocate maize residues to organic fertilizer and the amount of such allocation among Kenyan farmers is in uenc...

  5. Comparative life cycle assessment (LCA) of construction and demolition (C&D) derived biomass and U.S. northeast forest residuals gasification for electricity production.

    Science.gov (United States)

    Nuss, Philip; Gardner, Kevin H; Jambeck, Jenna R

    2013-04-01

    With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion. Using inventory data from pilot processes, this work assesses the cradle-to-gate environmental burdens of plasma gasification as a route capable of transforming construction and demolition (C&D) derived biomass (CDDB) and forest residues into electricity. Results indicate that the environmental burdens associated with CDDB and forest residue gasification may be similar to conventional electricity generation. Land occupation is lowest when CDDB is used. Environmental impacts are to a large extent due to coal cogasified, coke used as gasifier bed material, and fuel oil cocombusted in the steam boiler. However, uncertainties associated with preliminary system designs may be large, particularly the heat loss associated with pilot scale data resulting in overall low efficiencies of energy conversion to electricity; a sensitivity analysis assesses these uncertainties in further detail. PMID:23496419

  6. Characterization of natural fiber from agricultural-industrial residues

    International Nuclear Information System (INIS)

    Natural fibers show great potential for application in polymer composites. However, instead of the production of inputs for this purpose, an alternative that can also minimize solid waste generation is the use of agro-industrial waste for this purpose, such as waste-fiber textiles, rice husks residues and pineapple crowns. In this work the characterization of these three residues and evaluate their properties in order to direct the application of polymer composites. Was analyzed the moisture, density, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis of the fibers. The results show that the use of these wastes is feasible both from an environmental standpoint and because its properties suitable for this application. (author)

  7. Computational fluid dynamics (CFD) analysis of the combustion process of a leather residuals gasification fuel gas: influence of fuel moisture content

    Energy Technology Data Exchange (ETDEWEB)

    Antonietti, Anderson Jose; Beskow, Arthur Bortolin; Silva, Cristiano Vitorino da [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Erechim, RS (Brazil)], E-mails: arthur@uricer.edu.br, mlsperb@unisinos.br; Indrusiak, Maria Luiza Sperb [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)], E-mail: cristiano@uricer.edu.br

    2010-07-01

    This work presents a numerical study of the combustion process of leather residuals gasification gas, aiming the improvement of the process efficiency, considering different concentrations of water on the gas. The heating produced in this combustion process can be used to generation of thermal and/or electrical energy, for use at the leather industrial plant. However, the direct burning of this leather-residual-gas into the chambers is not straightforward. The alternative in development consists in processing this leather residuals by gasification or pyrolysis, separating the volatiles and products of incomplete combustion, for after use as fuel in a boiler. At these processes, different quantities of water can be used, resulting at different levels of moisture content in this fuel gas. This humidity can affect significantly the burning of this fuel, producing unburnt gases, as the carbon monoxide, or toxic gases as NOx, which must have their production minimized on the process, with the purpose of reducing the emission of pollutants to the atmosphere. Other environment-harmful-gases, remaining of the chemical treatment employed at leather manufacture, as cyanide, and hydrocarbons as toluene, must burn too, and the moisture content has influence on it. At this way, to increase understanding of the influence of moisture in the combustion process, it was made a numerical investigation study of reacting flow in the furnace, evaluating the temperature field, the chemical species concentration fields, flow mechanics and heat transfer at the process. The commercial CFD code CFX Ansys Inc. was used. Considering different moisture contents in the fuel used on the combustion process, with this study was possible to achieve the most efficient burning operation parameters, with improvement of combustion efficiency, and reduction of environmental harmful gases emissions. It was verified that the different moisture contents in the fuel gas demand different operation conditions

  8. Potential for rural electrification based on biomass gasification in Cambodia

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hitofumi [Ecosystems Research Group, School of Plant Biology, The University of Western Australia, Crawley, WA 6009 (Australia); JICA study team for ' The Master Plan Study on Rural Electrification by Renewable Energy in The Kingdom of Cambodia' , Phnom Penh (Democratic Kampuchea); Katayama, Akio [JICA study team for ' The Master Plan Study on Rural Electrification by Renewable Energy in The Kingdom of Cambodia' , Phnom Penh (Democratic Kampuchea); Nippon Koei Co. Ltd., Tokyo 102-0083 (Japan); Sah, Bhuwneshwar P. [JICA study team for ' The Master Plan Study on Rural Electrification by Renewable Energy in The Kingdom of Cambodia' , Phnom Penh (Democratic Kampuchea); Pasco Corporation, Tokyo 153-0043 (Japan); Toriu, Tsuyoshi [JICA study team for ' The Master Plan Study on Rural Electrification by Renewable Energy in The Kingdom of Cambodia' , Phnom Penh (Democratic Kampuchea); Sojitz Research Institute, Ltd., Tokyo 107-0052 (Japan); Samy, Sat; Pheach, Phon [Ministry of Industry, Mines and Energy, Phnom Penh (Democratic Kampuchea); Adams, Mark A. [School of Biological Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052 (Australia); Grierson, Pauline F. [Ecosystems Research Group, School of Plant Biology, The University of Western Australia, Crawley, WA 6009 (Australia)

    2007-09-15

    Around 76% of the 10,452 villages of Cambodia will still be without electricity in the year 2010. We examined the potential of biomass gasification fuelled by alternative resources of agricultural residues and woody biomass to increase rural power supply, using geographic and social economic databases provided by the Royal Government of Cambodia. About 77% of villages currently without electricity have sufficient land available for tree planting for electricity generation based on a requirement of 0.02 ha per household. Among 8008 villages with sufficient land, we assumed that those villages that had greater than 10% of households owning a television (powered by a battery or a generator) would have both a high electricity demand and a capacity to pay for electricity generation. Those 6418 villages were considered appropriate candidates for mini-grid installation by biomass gasification. This study demonstrated that while agricultural residues such as rice husks or cashew nut shells may have high energy potential, only tree farming or plantations would provide sufficient sustainable resources to supply a biomass gasification system. Cost per unit electricity generation by biomass gasification is less than diesel generation when the plant capacity factor exceeds 13%. In order to ensure long-term ecological sustainability as well as appropriate tree-farming technology for farmers, there is an urgent need for studies aimed at quantifying biomass production across multiple rotations and with different species across Cambodia. (author)

  9. Pesticide residue assessment in three selected agricultural production systems in the Choluteca River Basin of Honduras

    International Nuclear Information System (INIS)

    There is a basic lack of information about the presence of pesticide residues in the environment in Central America. Over the period of February 1995 to June 1997, river, well, lagoon and spring water samples, as well as soil, fish tissue, lagoon bed sediments and some foodstuffs were taken from the greater Cholutecan River Basin of Honduras and analyzed for pesticide residues. These were collected at three separate sites (La Lima, Zamorano and Choluteca), each characterized by differing agricultural production systems. The main pesticide residues found in soil samples were dieldrin and p,p'-DDT, while river water samples were found to have detectable levels of heptachlor, endosulfan and chlorpyrifos, with lagoon and well water also being shown to contain heptachlor. These pesticides detected were in more than 20% of the samples assessed. In river water samples more pesticide residues at higher concentrations were found to be associated with areas of more intensive agricultural production. The fewest pesticides with lowest concentrations were found in the small subwatershed associated with traditional agricultural production. Although the pesticides found in the soils at the three sites were generally similar they tended to be higher in the southern part of the Cholutecan watershed, followed by the central zone, with the lowest concentrations being found in the more traditional production zone. In lagoon and well water samples more pesticides, but mostly in lower concentrations were detected at the traditional production site than at the others. Ten pesticide compounds were detected in fish tissue, mainly organochlorines, some of which were also found in lagoon sediments. In terms of food products, almost no pesticides were detected in vegetables, but the kidney adipose tissue taken from slaughtered cows was shown to have a tendency to contain some organochlorines. Spring water in the traditional agricultural production zone contained three organochlorine compounds

  10. Comparison between aerobic and anaerobic co-composting of agricultural residues.

    Science.gov (United States)

    El Sebaie, O D; Hussin, A H; Shalaby, E E; Mohamed, M G; Lbrahem, M T

    2000-01-01

    Fertile soil is the most important resource for food production. The agricultural area in Egypt is limited to 6 million faddans. This limited area has derived many farmers to use several types of chemical fertilizers, to enhance the fertility of the land and hence the productivity. Excessive application of chemical fertilizer lead to the build up of these residuals because they are superfluous. This will cause waste of money and also soil pollution. Ultimately, this would adversely affect the ecological system in the soil and surrounding environment, especially water bodies. Composting of organic solid wastes will address some of the problems of solid waste disposal and gives a beneficial product which may replace the expensive chemical fertilizers. Other organic compostable solid wastes could be utilized to produce this compost. Agricultural residues are cheap raw materials for such compost and are available in vast quantities as well. This compost can be used as a soil conditioner to improve soil characteristics and its productivity. Crop residues mixed with manure, may be co-composted to give a soil conditioner. Agricultural residues, about 106 million tons/year, may produce about 55 million tons/year of compost. Three co-composting were carried out at the experimental station of the Faculty of Agriculture in Abis. Two aerobic co-composting of winter and summer crop residues and one anaerobic co-composting inter rop esidue were produced. The development of the co-composting processes controlled by the temperature, moisture content, and chemical composition was studied. The aerobic co-composting of winter crop residues was found to be the best experiment as it complied with the standards of the Ministry of Agriculture Decree No. 100/1967. This co-compost is expected to be free from pathogenic microorganisms as the dominant temperature was almost about 50 degrees C from the 42nd day till the 101st day of the experiment. PMID:17219853

  11. Separation and characterisation of sulphur-free lignin from different agricultural residues

    NARCIS (Netherlands)

    Rossberg, Christine; Bremer, Martina; Machill, Susanne; Koenig, Swetlana; Kerns, Gerhard; Boeriu, Carmen; Windeisen, Elisabeth; Fischer, Steffen

    2015-01-01

    Wheat straw, as one of the most abundant agricultural residues in Europe, was subjected to alkaline pulping, microwave-assisted alkaline pulping and organosolv pulping using formic acid and hydrogen peroxide. The obtained lignins were characterised by means of Klason-lignin, FT-IR spectroscopy, e

  12. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    Energy Technology Data Exchange (ETDEWEB)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  13. Compositional analysis and projected biofuel potentials from common West African agricultural residues

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Kádár, Zsófia; Schmidt, Jens Ejbye

    2014-01-01

    In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses of the res......In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses...... bioethanol (kg TS)−1 based on starch and cellulose alone due to their high starch content and low content of un-biodegradable lignin and ash. A complete biomass balance was done for each of the 13 residues, providing a basis for further research into the production of biofuels or biorefining from West...

  14. Feasibility study for anaerobic digestion of agricultural crop residues. Dynatech report No. 1935

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Buivid, M. G.; Wilson, E. H.

    1979-07-31

    The objective of this study was to provide cost estimates for the pretreatment/digestion of crop residues to fuel gas. A review of agricultural statistics indicated that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of wheat straw, corn stover, and rice straw for small farm-, cooperative-, and industrial scales. The small farm scale processed the residue from an average size US farm (400 acres), and the other sizes were two and three orders of magnitude greater. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low cost chemicals can be utilized. Additional development is necessary in this area. Use of low cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

  15. Residual Levels and New Inputs of Chlorinated POPs in Agricultural Soils from Taihu Lake Region

    Institute of Scientific and Technical Information of China (English)

    GAO Hong-Jian; JIANG Xin; WANG Fang; BIAN Yong-Rong; WANG Dai-Zhang; DEND Jian-Cai; YAN Dong-Yun

    2005-01-01

    Selected persistent organochlorine pesticides (OCPs), including 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT)and its principal metabolites 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), hexachlorocyclohexane (HCH) and its isomers (α-, β-, γ-, and δ-HCH), hexachlorobenzene (HCB), endosulfan, dieldrin, and endrin were quantified to determine current levels of organochlorine pesticides, to assess the ecotoxicological potential, and to distinguish previous and current inputs in agricultural soils from the Taihu Lake region.Gas chromatography equipped with a 63Ni electron-capture detector (GC-ECD) system was employed. Thirteen OCPs were detectable in all soil samples, with DDTs being the main residues, and HCHs had the second highest level of OCP residues. Although OCP residual levels were lower than those in 1990s, the residual levels for most of the DDTs and some of HCHs were still higher than the national environmental standards for agricultural soils. The ratios of DDT/DDE and γ-/α-HCH in twelve soils indicated that new inputs could be present in the soils. Thus, efforts should be made to completely ban the production of OCPs and their use in agriculture so as to reduce the threat of OCPs to food quality and human health.

  16. Study on the Agricultural Residues Burning and PM2.5 Change in China by Remote Sensing Technology

    Science.gov (United States)

    Yin, Shuai; Wang, Xiufeng; Zhong, Guosheng; Sun, Zhongyi; Tani, Hiroshi

    2016-04-01

    Agricultural residues are materials left over from the production of crops. The total amount of agricultural residues in China is about 660 million tons every year, while a large proportion of that is burnt directly on the croplands. Agricultural residues burning is a significant source of air pollution in developing countries including China. In this study, the MODIS MOD14A1 products were used to derive the daily fire spots of China. Then, the agricultural residues burning spots were obtained by extracting with the area of croplands which is from MODIS MCD12Q1 products. After vectorization of agricultural residues burning pixels and with the help of fishnet, the burning density distribution maps were eventually completed. According to the statistics, there were 71,237 pixels of agricultural residues burning in 2014. The pixels mainly focused on April, June and October, the number of which were 11,628, 10,912 and 20,965 respectively. The results show that the distribution of agricultural residues burning is closely connected with ploughing and harvesting activities and it is more severe in north China. The air quality data of 150 cities in China were also used to obtain the daily and monthly distribution maps of PM2.5 by Kriging interpolation method. The maps indicate that the PM2.5 is always higher in north China than that in south China. Comparing the results of agricultural residues burning points with the results of PM2.5, we found the agricultural residues burning can cause the PM2.5 increase, especially in June, the agricultural residues burning region was spatially and temporally consistent with the PM2.5 increase region in this month.

  17. Green house gas emissions from open field burning of agricultural residues in India.

    Science.gov (United States)

    Murali, S; Shrivastava, Rajnish; Saxena, Mohini

    2010-10-01

    In India, about 435.98 MMT of agro-residues are produced every year, out of which 313.62 MMT are surplus. These residues are either partially utilized or un-utilised due to various constraints. To pave the way for subsequent season for agriculture activity, the excess crop residues are burnt openly in the fields, unmindful of their ill effects on the environment. The present study has been undertaken to evaluate the severity of air pollution through emission of green house gases (GHGs) due to open field burning of agro-residues in India. Open field burning of surplus agro-residues in India results in the emission of GHG. Emissions of CH4 and N2O in 1997-98 and 2006-07 have been 3.73 and 4.06 MMT CO2 equivalent, which is an increase of 8.88% over a decade. About three-fourths of GHG emissions from agro-residues burning were CH4 and the remaining one-fourth were N2O. Burning of wheat and paddy straws alone contributes to about 42% of GHGs. These GHG emissions can be avoided once the agro-residues are employed for sustainable, cost-effective and environment- friendly options like power generation.

  18. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)

    2008-07-01

    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  19. Green house gas emissions from open field burning of agricultural residues in India.

    Science.gov (United States)

    Murali, S; Shrivastava, Rajnish; Saxena, Mohini

    2010-10-01

    In India, about 435.98 MMT of agro-residues are produced every year, out of which 313.62 MMT are surplus. These residues are either partially utilized or un-utilised due to various constraints. To pave the way for subsequent season for agriculture activity, the excess crop residues are burnt openly in the fields, unmindful of their ill effects on the environment. The present study has been undertaken to evaluate the severity of air pollution through emission of green house gases (GHGs) due to open field burning of agro-residues in India. Open field burning of surplus agro-residues in India results in the emission of GHG. Emissions of CH4 and N2O in 1997-98 and 2006-07 have been 3.73 and 4.06 MMT CO2 equivalent, which is an increase of 8.88% over a decade. About three-fourths of GHG emissions from agro-residues burning were CH4 and the remaining one-fourth were N2O. Burning of wheat and paddy straws alone contributes to about 42% of GHGs. These GHG emissions can be avoided once the agro-residues are employed for sustainable, cost-effective and environment- friendly options like power generation. PMID:22312795

  20. Feasibility study for anaerobic digestion of agricultural crop residues. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Buivid, M. G.; Wilson, E. H.

    1979-10-01

    This study provides cost estimates for the pretreatment/digestion of crop residues to fuel gas. Agricultural statistics indicate that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of sheat straw, corn stover, and rice straw for small farm, cooperative, and industrial scales. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low-cost chemicals can be utilized. Use of low-cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low-cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

  1. Tropical agricultural residues and their potential uses in fish feeds: the Costa Rican situation.

    Science.gov (United States)

    Ulloa, J B; van Weerd, J H; Huisman, E A; Verreth, J A J

    2004-01-01

    In Costa Rica as many other tropical countries, the disposal problem of agricultural wastes is widely recognized but efforts to find solutions are not equal for different sectors. This study describes the situation of major agricultural residues in Costa Rica, identifying the activities with higher amounts produced and, the potential use of these residues in fish feeds. In Costa Rica, during the 1993-1994 production season, major agricultural sectors (crop and livestock) generated a total amount of 3.15-3.25 million MT of residues (classified in by-products: used residues and wastes: not used residues). Some residues are treated to turn them into valuable items or to diminish their polluting effects (e.g., the so-called by-products). About 1.56-1.63 million MT of by-products were used for different purposes (e.g. fertilization, animal feeding, fuel, substrates in greenhouses). However, the remainder (1.59-1.62 million MT) was discharged into environment causing pollution. About 1.07-1.2 million MT wastes came from major crop systems (banana, coffee, sugarcane and oil palm) whereas the remainder came from animal production systems (porcine and poultry production, slaughtering). These data are further compared to residues estimates for the 2001-2002 production season coming from the biggest crops activities. Unfortunately, most of the studied wastes contain high levels of moisture and low levels of protein, and also contain variable amounts of antinutritional factors (e.g., polyphenols, tannins, caffeine), high fibre levels and some toxic substances and pesticides. All these reasons may limit the use of these agricultural wastes for animal feeding, especially in fish feeds. The potential use of the major vegetable and animal residues in fish feeds is discussed based on their nutritional composition, on their amount available over the year and on their pollution risks. Other constraints to use these wastes in fish feeds are the extra costs of drying and, in most cases

  2. Tropical agricultural residues and their potential uses in fish feeds: the Costa Rican situation.

    Science.gov (United States)

    Ulloa, J B; van Weerd, J H; Huisman, E A; Verreth, J A J

    2004-01-01

    In Costa Rica as many other tropical countries, the disposal problem of agricultural wastes is widely recognized but efforts to find solutions are not equal for different sectors. This study describes the situation of major agricultural residues in Costa Rica, identifying the activities with higher amounts produced and, the potential use of these residues in fish feeds. In Costa Rica, during the 1993-1994 production season, major agricultural sectors (crop and livestock) generated a total amount of 3.15-3.25 million MT of residues (classified in by-products: used residues and wastes: not used residues). Some residues are treated to turn them into valuable items or to diminish their polluting effects (e.g., the so-called by-products). About 1.56-1.63 million MT of by-products were used for different purposes (e.g. fertilization, animal feeding, fuel, substrates in greenhouses). However, the remainder (1.59-1.62 million MT) was discharged into environment causing pollution. About 1.07-1.2 million MT wastes came from major crop systems (banana, coffee, sugarcane and oil palm) whereas the remainder came from animal production systems (porcine and poultry production, slaughtering). These data are further compared to residues estimates for the 2001-2002 production season coming from the biggest crops activities. Unfortunately, most of the studied wastes contain high levels of moisture and low levels of protein, and also contain variable amounts of antinutritional factors (e.g., polyphenols, tannins, caffeine), high fibre levels and some toxic substances and pesticides. All these reasons may limit the use of these agricultural wastes for animal feeding, especially in fish feeds. The potential use of the major vegetable and animal residues in fish feeds is discussed based on their nutritional composition, on their amount available over the year and on their pollution risks. Other constraints to use these wastes in fish feeds are the extra costs of drying and, in most cases

  3. Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues

    International Nuclear Information System (INIS)

    Microcrystalline cellulose (MCC) was prepared from local agricultural residues, namely, bagasse, rice straw, and cotton stalks bleached pulps. Hydrolysis of bleached pulps was carried out using hydrochloric or sulfuric acid to study the effect of the acid used on the properties of produced microcrystalline cellulose such as degree of polymerization (DP), crystallinity index (CrI), crystallite size, bulk density, particle size, and thermal stability. The mechanical properties of tablets made from microcrystalline cellulose of the different agricultural residues were tested and compared to commercial grade MCC. The use of rice straw pulp in different proportions as a source of silica to prepare silicified microcrystalline cellulose (SMCC) was carried out. The effect of the percent of silica on the mechanical properties of tablets before and after wet granulation was tested

  4. Agricultural practices and residual corn during spring crane and waterfowl migration in Nebraska

    Science.gov (United States)

    Sherfy, M.H.; Anteau, M.J.; Bishop, A.A.

    2011-01-01

    Nebraska's Central Platte River Valley (CPRV) is a major spring-staging area for migratory birds. Over 6 million ducks, geese, and sandhill cranes (Grus canadensis) stage there en route to tundra, boreal forest, and prairie breeding habitats, storing nutrients for migration and reproduction by consuming primarily corn remaining in fields after harvest (hereafter residual corn). In springs 2005-2007, we measured residual corn density in randomly selected harvested cornfields during early (n=188) and late migration (n=143) periods. We estimated the mean density of residual corn for the CPRV and examined the influence of agricultural practices (post-harvest field management) and migration period on residual corn density. During the early migration period, residual corn density was greater in idle harvested fields than any other treatments of fields (42%, 48%, 53%, and 92% more than grazed, grazed and mulched, mulched, and tilled fields, respectively). Depletion of residual corn from early to late migration did not differ among post-harvest treatments but was greatest during the year when overall corn density was lowest (2006). Geometric mean early-migration residual corn density for the CPRV in 2005-2007 (42.4 kg/ha; 95% CI=35.2-51.5 kg/ha) was markedly lower than previously published estimates, indicating that there has been a decrease in abundance of residual corn available to waterfowl during spring staging. Increases in harvest efficiency have been implicated as a cause for decreasing corn densities since the 1970s. However, our data show that post-harvest management of cornfields also can substantially influence the density of residual corn remaining in fields during spring migration. Thus, managers may be able to influence abundance of high-energy foods for spring-staging migratory birds in the CPRV through programs that influence post-harvest management of cornfields. ?? 2011 The Wildlife Society.

  5. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    Science.gov (United States)

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  6. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    Science.gov (United States)

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  7. Substitution of fossil fuels by using low temperature pyrolysis of agricultural residues

    International Nuclear Information System (INIS)

    Externally heated rotary kiln pyrolysis reactor is used as a new process technology for the conversion of biomass into useful primary energy products. A 3 MW pyrolysis pilot plant is being operated for a period of two years using agricultural residues. Several analytical methods are applied to provide an insight into the complex process of pyrolysis. Fundamentals for an advanced pyrolysis model approach will be obtained by the results of the pilot plant. (author)

  8. Anaerobic Treatment of Agricultural Residues and Wastewater - Application of High-Rate Reactors

    OpenAIRE

    Parawira, Wilson

    2004-01-01

    The production of methane via anaerobic digestion of agricultural residues and industrial wastewater would benefit society by providing a clean fuel from renewable feedstocks. This would reduce the use of fossil-fuel-derived energy and reduce environmental impact, including global warming and pollution. Limitation of carbon dioxide and other emissions through emission regulations, carbon taxes, and subsidies on biomass energy is making anaerobic digestion a more attractive and competitive tec...

  9. Preliminary biological study of SPA residue after therapy and its agricultural us

    Directory of Open Access Journals (Sweden)

    Teresa Kłapeć

    2013-12-01

    Full Text Available Introduction: Spa residue is an undehydrated therapeutic peat, which belongs to the group of peloids, a natural organic material widely used in spa therapy. Once used for therapy, it cannot be reused due to the loss of adsorptive properties. The aim of the study was the biological and parasitological assessment of spa residue to view the chances for fertilization of soils. Material and methods: In this study 80 samples of spa residues, from 7 spa resorts in Poland were investigated for Salmonella bacteria, bacteria of the general and faecal coliform group, anaerobic sulphites-reducing bacteria of Clostridium perfringens type and the eggs of intestinal nematodes (Ascaris, Trichuris and Toxocara. Microbiological and parasitological analyses of the residue were conducted based on the Polish Standards: PN-Z-19000-1/2001, PN-Z-19000- 4/2001, and Microbiological and Parasitological Guidelines for Sanitary Evaluation of Soils, Institute of Rural Health, Lublin 1995. Results: In the investigated samples of the residue neither Salmonella bacteria nor the eggs of intestinal nematodes Ascaris, Trichuris or Toxocara were found. The titres of coliform group bacteria, fecal coli bacteria, and Clostridium perfringens bacteria were within the range 1–1012, and did not exceed the limit values set for fertilizers and soils. Conclusions: Therefore, it is suggested to reuse spa residue after therapy for agricultural purposes (e.g. soil fertilization.

  10. PLANT PROTECTION PRODUCT RESIDUES IN AGRICULTURAL PRODUCTS OF SLOVENE ORIGIN FOUND IN 2008

    Directory of Open Access Journals (Sweden)

    Helena BAŠA ČESNIK

    2012-01-01

    Full Text Available In the year 2008, 166 apple, bean, carrot, cucumber, lettuce, pear, potato and spinach samples from Slovene producers were analysed for plant protection product residues. The samples were analysed for the presence of 158 different active compounds using three analytical methods. In two samples (1.2% exceeded maximum residue levels (MRLs were determined which is better than the results of the monitoring of pesticide residues in the products of plant origin in the 27 European Union, Member States (EU MS and 2 European Free Trade Association (EFTA States: Norway and Iceland in 2008 (2.2%. The most frequently found active substance in agricultural products was dithiocarbamates. Products which contained 4 or more active substances per sample were apples and pears.

  11. THERMOSELECT. Continuous environment-friendly treatment of residues by gasification and direct melting; THERMOSELECT. Unterbrechungslose umweltgerechte Restabfallbehandlung durch Vergasung und Direkteinschmelzung

    Energy Technology Data Exchange (ETDEWEB)

    Gaeng, P.; Klein, K.; Stahlberg, R.; Weisenburger, P. [Thermoselect Suedwest GmbH, Karlsruhe (Germany)

    1996-12-31

    The Thermoselect process comprises waste compaction, degassing, gasification with pure oxygen, and melting of inorganic components in a continuous closed cycle process. The high-quality products can be recycled almost completely: The synthesis gas can be used as feedstock or combusted, also in high-efficiency power generation processes. The other products, e.g. the high-grade mineral and metal granulates, can be utilized without restrictions. The residual fraction which must be dumped is very small. (orig) [Deutsch] Mit Thermoselect ist eine neue Technik auf dem Markt, die durch die konsequente Umsetzung der Verfahrensschritte Abfallverdichtung, Entgasung, Vergasung mit reinem Sauerstoff und Einschmelzung der anorganischen Muellbestandteile in einem unterbrechungslosen geschlossenen Prozess hochwertige Produkte aus Abfaellen erzeugt, die nahezu vollstaendig verwertet werden koennen. Das erzeugte Synthesegas kann sowohl stofflich als auch thermisch genutzt werden, wobei der Einsatz von stromerzeugungsverfahren mit hohen Wirkungsgraden moeglich ist. Die ubrigen Produkte, z.B. das mineralische und das metallische Granulat, erreichen eine Qualitaet, die eine uneingeschraenkte Nutzung zulaesst. Die Anteile der z.Zt. noch zu entsorgenden Reststoffe ist gering, wobei derzeit meist wirtschafatliche Gruende deren Entsorgung nahelegen. (orig)

  12. Gasificación con aire en lecho fluidizado de los residuos sólidos del proceso industrial de la naranja//Air gasification in fluidized bed of solid residue the orange industrial process

    Directory of Open Access Journals (Sweden)

    Leonardo Aguiar-Trujillo

    2012-12-01

    Full Text Available La industria procesadora de la naranja genera elevados volúmenes de residuos sólidos. Este residuo se ha utilizado en la alimentación animal y en procesos bioquímicos; pero no se ha aprovechado a través de la gasificación. El objetivo del trabajo fue determinar el aporte energético por medio del proceso de gasificación, realizándose estudios de los residuos sólidos de naranja, utilizando aire en reactor de lecho fluidizado burbujeante (variando la temperatura de gasificación, relación estequiométrica y altura del lecho. En el proceso se utilizó un diseño de experimento factorial completo de 2k, valorando la influencia de las variables independientes y sus interacciones en las respuestas, con un grado de significación del 95 %. Se obtuvieron los parámetros para efectuar el proceso de gasificación de los residuos sólidos de naranja, obteniendo un gas de bajo poder calórico, próximo a 5046 kJ/m3N, demostrando sus cualidades para su aprovechamiento energético.Palabras claves: gasificación con aire, lecho fluidizado, residuo de naranja._______________________________________________________________________________AbstractThe orange industrial process generates high volumes of solid residue. This residue has been used as complement in the animal feeding and biochemical processes; but it has not taken advantage through of the gasification process. The objective of the work was to determine the energy contribution by means ofthe gasification process, were carried out studies of the orange solid residue, using air in reactor of bubbling fluidized bed (varying the gasification temperature, air ratio and bed height. In the process a design of complete factorial experiment of 2k, was used, valuing the influence of the independent variables and its interactions in the answers, using a confidence level of 95 %. Were obtained the parameters to make the process of gasification of the orange solid residue, obtaining a gas of lower heating

  13. Anaerobic fermentation of agricultural residue: potential for improvement and implementation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, W. J.; Capener, H. R.; Dell& #x27; orto, S.

    1978-02-01

    The results of studies designed to evaluate the potential of rapidly improving the technology of anaerobic fermentation of agricultural residues and methods of implementing it in existing agricultural operations are reported. The main objectives of this study were to: identify simple and low cost anaerobic fermentor design criteria that would be appropriate in small agricultural operations, develop high rate fermentor concepts that would enable multiple product recovery from the reactor, expand the information base particularly in the area of temperature influence on the process, and to review sociological and economic issues relating to implementation of fermentation technology. This study has identified several major anaerobic fermentation concepts which illustrate that the technology may be rapidly improved. A simple reactor design utilizing an unmixed plug flow concept was shown to be comparable to the more complex completely mixed reactor when using dairy cow residue. A high rate thermophilic reactor designed to encourage flotation of particulate solids illustrated that liquid, solid, and gaseous products can be generated within the anaerobic fermentor thus eliminating an additional dewatering unit process. A third reactor concept involved extension of the anaerobic attached microbial film expanded bed to the treatment of cow manure slurries. A high rate of methane generation was recorded. Comprehensive thermophilic fermentation studies (60/sup 0/C) indicated that the increased temperature resulted in little improvement in total quantity or the rate of yield of gas over that obtained with mesophilic fermentation with reactor retention periods greater than 10 days. Finally, other areas where preliminary date were obtained are noted.

  14. Screening of pesticide residues in soil and water samples from agricultural settings

    Directory of Open Access Journals (Sweden)

    Djouaka Rousseau F

    2006-03-01

    Full Text Available Abstract Background The role of agricultural practices in the selection of insecticide resistance in malaria vectors has so far been hypothesized without clear evidence. Many mosquito species, Anopheles gambiae in particular, lay their eggs in breeding sites located around agricultural settings. There is a probability that, as a result of farming activities, insecticide residues may be found in soil and water, where they exercise a selection pressure on the larval stage of various populations of mosquitoes. To confirm this hypothesis, a study was conducted in the Republic of Benin to assess the environmental hazards which can be generated from massive use of pesticides in agricultural settings. Methods Lacking an HPLC machine for direct quantification of insecticide residues in samples, this investigation was performed using indirect bioassays focussed on the study of factors inhibiting the normal growth of mosquito larvae in breeding sites. The speed of development was monitored as well as the yield of rearing An. gambiae larvae in breeding sites reconstituted with water and soil samples collected in agricultural areas known to be under pesticide pressure. Two strains of An. gambiae were used in this indirect bioassay: the pyrethroid-susceptible Kisumu strain and the resistant Ladji strain. The key approach in this methodology is based on comparison of the growth of larvae in test and in control breeding sites, the test samples having been collected from two vegetable farms. Results Results obtained clearly show the presence of inhibiting factors on test samples. A normal growth of larvae was observed in control samples. In breeding sites simulated by using a few grams of soil samples from the two vegetable farms under constant insecticide treatments (test samples, a poor hatching rate of Anopheles eggs coupled with a retarded growth of larvae and a low yield of adult mosquitoes from hatched eggs, was noticed. Conclusion Toxic factors

  15. Gasification and combustion technologies of agro-residues and their application to rural electric power systems in India

    Science.gov (United States)

    Bharadwaj, Anshu

    Biomass based power generation has the potential to add up to 20,000 MW of distributed capacity in India close to the rural load centers. However, the present production of biomass-based electricity is modest, contributing a mere 300 MW of installed capacity. In this thesis, we shall examine some of the scientific, technological and policy issues concerned with the generation and commercial viability of biomass-based electric power. We first consider the present status of biomass-based power in India and make an attempt to understand the reasons for low utilization. Our analysis suggests that the small-scale biomass power plants (Factor (PLF) that adversely affects their economic viability. Medium Scale units (0.5 MW--5 MW) do not appear attractive because of the costs involved in the biomass transportation. There is thus a merit in considering power plants that use biomass available in large quantities in agro-processing centers such as rice or sugar mills where power plants of capacities in excess of 5 MW are possible without biomass transportation. We then simulate a biomass gasification combustion cycle using a naturally aspirated spark ignition engine since it can run totally on biomass gas. The gasifier and engine are modeled using the chemical equilibrium approach. The simulation is used to study the impact of fuel moisture and the performance of different biomass feedstock. Biomass power plants when used for decentralized power generation; close to the rural load centers can solve some of the problems of rural power supply: provide voltage support, reactive power and peak shaving. We consider an innovative option of setting up a rural electricity micro-grid using a decentralized biomass power plant and selected a rural feeder in Tumkur district, Karnataka for three-phase AC load flow studies. Our results suggest that this option significantly reduces the distribution losses and improves the voltage profiles. We examine a few innovative policy options for

  16. A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process

    OpenAIRE

    Monlau, Florian; Sambusiti, Cécilia; Antoniou, N; Barakat, Abdellatif; Zabaniotou, A.

    2015-01-01

    In a full-scale anaerobic digestion plant, agricultural residues are generally converted into biogas and digestate, the latter usually produced in large amount. Generally, biogas is converted into heat, often lost, and electricity, which is completely valorized or it is sold to the public grid. In this context, the aim of this study was to investigate the feasibility to combine anaerobic digestion and pyrolysis processes in order to increase the energy recovery from agricultural residues and ...

  17. Agriculture-industrial residues x natural gas. An economic of energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Avellar, L.H.N. [Pos-Graduacao em Engenharia Mecanica, Guaratingueta, SP (Brazil); Carrocci, L.R.; Silveira, J.L.; Oliva, V.J. [Universidade Estadul Paulista, Guaratingueta, SP (Brazil). Faculdade de Engenharia de Guaratingueta

    1999-07-01

    In this paper are presented following, as it's main objective, an economic analysis between biogas coming from agriculture-industrial-residues and natural gas. Above all, also make part of this work, illustrating figures of the most used types of biodigestors in Brazil and all of world, and briefly descriptions of the most used control and reduction technologies of the pollutants emissions from the combustion process through in the atmosphere. Must emphasise, above technical-scientific importance of this work, it's social -economic part at the poignant of the residues seizing with considerable calorific power for the energy generation, thereby promoting the ambiental pollution retrenchment (also detach here), looking for, in a coming future, the sustainable development at all of it completeness.

  18. Sustainable Activated Carbons from Agricultural Residues Dedicated to Antibiotic Removal by Adsorption

    Institute of Scientific and Technical Information of China (English)

    Jonatan Torres-Perez; Claire Gerente; Yves Andres

    2012-01-01

    The. objectives.of this study are to convert at laboratory s.cale agric.ultural residues into activated carbons (AC) with specific properties, to characterize them and to test them in adsorption reactor for tetracycline removal, a common antibiotic. Two new ACs were produced by direct activation with steam from beet pulp (BP-H2O) and peanut hu_lls (PH-H2O) in environmental friendly conditions BP-H2O and PH-H2Opresentcarbon content rangedcarbons with different intrinsic properties.

  19. Conservation agriculture increases soil organic carbon and residual water content in upland crop production systems

    Directory of Open Access Journals (Sweden)

    Victor B. Ella

    2016-01-01

    Full Text Available Conservation agriculture involves minimum soil disturbance, continuous ground cover, and diversified crop rotations or mixtures. Conservation agriculture production systems (CAPS have the potential to improve soil quality if appropriate cropping systems are developed. In this study, five CAPS including different cropping patterns and cover crops under two fertility levels, and a plow-based system as control, were studied in a typical upland agricultural area in northern Mindanao in the Philippines. Results showed that soil organic carbon (SOC at 0- 5-cm depth for all CAPS treatments generally increased with time while SOC under the plow-based system tended to decline over time for both the high (120, 60 and 60 kg N P K ha-1 and moderate (60-30-30 kg N P K ha-1 fertility levels. The cropping system with maize + Stylosanthes guianensis in the first year followed by Stylosanthes guianensis and fallow in the second year, and the cassava + Stylosanthes guianensis exhibited the highest rate of SOC increase for high and moderate fertility levels, respectively. After one, two, and three cropping seasons, plots under CAPS had significantly higher soil residual water content (RWC than under plow-based systems. Results of this study suggest that conservation agriculture has a positive impact on soil quality, while till systems negatively impact soil characteristics.

  20. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application

    NARCIS (Netherlands)

    Ho, A.; Reim, A.; Kim, S.Y.; Meima-Franke, M.; Termorshuizen, Aad J; De Boer, W.; Van der Putten, W.H.; Bodelier, P.L.E.

    2015-01-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even

  1. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application

    NARCIS (Netherlands)

    Ho, A.; Reim, A.; Kim, S.; Meima-Franke, M.; Termorshuizen, A.; Boer, de W.; Putten, van der W.H.; Bodelier, P.

    2015-01-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and eve

  2. Strength Properties of Bio-composite Lumbers from Lignocelluloses of Oil Palm Fronds Agricultural Residues

    Directory of Open Access Journals (Sweden)

    Mohd Sukhairi Mat Rasat

    2013-01-01

    Full Text Available The physical and strength properties of bio-composite lumbers from agricultural residues of oil palm fronds were studied. Resins of phenol formaldehyde and urea formaldehyde were used as the binders. The oil palm fronds were obtained from an oil palm plantation in Kota Belud, Sabah. The fronds were segregated into three (3 groups of matured, intermediate and young of oil palm fronds. The leaflets and the epidermis were removed from the fronds before they were sliced longitudinally into thin layers. The layers were then compressed into uniform thickness of 2 - 3 mm. The layers were air-dried and later mixed with resins using 12-15% of phenol and urea formaldehyde and recompressed with other layers forming the bio-composite lumbers. The bio-composite lumbers were then tested for their physical and strength properties. Testing was conducted in accordance to the International Organization for standardization (ISO standard. The result on the physical and strength properties shows that the oil palm fronds bio-composite lumbers to be at par with solid rubberwood. Statistical analysis indicated significant differences between bio-composite lumbers made from each groups and portion, but no differences were observed in the type of resin used. The bio-composite lumbers from oil palm fronds agricultural residues has potential to be used as an alternative to wood to overcome the shortage in materials in the wood industry.

  3. The National Agricultural Laboratories of Brazil and the control of residues and contaminants in food.

    Science.gov (United States)

    de Queiroz Mauricio, A; Lins, E S

    2012-01-01

    The laboratory activity of the Ministry of Agriculture, Livestock and Food Supply in Brazil has a history that is richer than most people are aware of. The institutions that today are known as National Agricultural Laboratory - Lanagros - were once a smaller initiative that suffered ups and downs throughout the decades. The recognition that the Lanagros have today - as reference centres with open communication channels with some of the world's greater laboratories in residue and contaminants in food analyses - is the fruit of several years of hard work, good ideas and a strong will never to let down society. Today the Lanagros act not only by performing analyses for the monitoring and investigation programmes, but also in the research and development of analytical methods, providing technical advice on the elaboration of guidelines and normatives, international negotiation and the evaluation of other laboratories. The Lanagros work in an ISO 17025 environment, and they are now being directed and prepared to be able to respond to outbreaks and crises related to the presence of residues and contaminants in food, with the readiness, quickness and reliability that an emergency requires. Investments are allocated strategically and have been giving concrete results, all to the benefit of consumers. PMID:22087508

  4. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    Energy Technology Data Exchange (ETDEWEB)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  5. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].

    Science.gov (United States)

    Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang

    2011-05-01

    Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period.

  6. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India

    Energy Technology Data Exchange (ETDEWEB)

    Vadrevu, Krishna Prasad, E-mail: krisvkp@yahoo.com [Department of Geography, University of Maryland, College Park, Maryland (United States); Ellicott, Evan [Department of Geography, University of Maryland, College Park, Maryland (United States); Badarinath, K.V.S. [National Remote Sensing Center, Atmospheric Science Section, Hyderabad (India); Vermote, Eric [Department of Geography, University of Maryland, College Park, Maryland (United States)

    2011-06-15

    Agricultural residue burning is one of the major causes of greenhouse gas emissions and aerosols in the Indo-Ganges region. In this study, we characterize the fire intensity, seasonality, variability, fire radiative energy (FRE) and aerosol optical depth (AOD) variations during the agricultural residue burning season using MODIS data. Fire counts exhibited significant bi-modal activity, with peak occurrences during April-May and October-November corresponding to wheat and rice residue burning episodes. The FRE variations coincided with the amount of residues burnt. The mean AOD (2003-2008) was 0.60 with 0.87 (+1{sigma}) and 0.32 (-1{sigma}). The increased AOD during the winter coincided well with the fire counts during rice residue burning season. In contrast, the AOD-fire signal was weak during the summer wheat residue burning and attributed to dust and fossil fuel combustion. Our results highlight the need for 'full accounting of GHG's and aerosols', for addressing the air quality in the study area. - Highlights: > MODIS data could capture rice and wheat residue burning events. > The total FRP was high during the rice burning season than the wheat. > MODIS AOD variations coincided well with rice burning events than wheat. > AOD values exceeding one suggested intense air pollution. - This research work highlights the satellite derived fire products and their potential in characterizing the agricultural residue burning events and air pollution.

  7. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    Science.gov (United States)

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  8. Imperium/Lanzatech Syngas Fermentation Project - Biomass Gasification and Syngas Conditioning for Fermentation Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-12-474

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, E.

    2014-09-01

    LanzaTech and NREL will investigate the integration between biomass gasification and LanzaTech's proprietary gas fermentation process to produce ethanol and 2,3-butanediol. Using three feed materials (woody biomass, agricultural residue and herbaceous grass) NREL will produce syngas via steam indirect gasification and syngas conditioning over a range of process relevant operating conditions. The gasification temperature, steam-to-biomass ratio of the biomass feed into the gasifier, and several levels of syngas conditioning (based on temperature) will be varied to produce multiple syngas streams that will be fed directly to 10 liter seed fermenters operating with the Lanzatech organism. The NREL gasification system will then be integrated with LanzaTech's laboratory pilot unit to produce large-scale samples of ethanol and 2,3-butanediol for conversion to fuels and chemicals.

  9. Effects of gamma irradiation on chemical compositions of some agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M.R.; Zarkawi, M. (Atomic Energy Commission, Damascus (Syrian Arab Republic))

    1994-03-01

    An experiment was carried out to study the effects of different doses of [gamma] irradiation on the changes in the crude fibre contents of cottonwood, wheat straw, barley straw, lentils straw, maize straw and maize cobs. Ground samples of the 6 residues were irradiated by [gamma] irradiation at doses of 0, 10, 50 and 100 kilogray (kGy) under identical conditions of temperature and humidity and analyzed for total nitrogen (N), crude fibre (CF), neutral-detergent fibre (NDF), acid-detergent fibre (ADF) and acid-detergent lignin (ADL). Irradiation is one of the physical methods used to decrease crude fibre contents and increase the mono-saccharide products in wheat straw, particularly, glucose and xylose. Irradiation appears to cause a random depolymerisation and decomposition of cellulose. The aim of the present work is to study the effects of different doses of [gamma] irradiation on the changes of crude fibre contents in the most locally-available agricultural residues (cottonwood, wheat straw, barley straw, lentils straw, maize straw and maize cobs) as an attempt to improve their nutritive values, consequently utilizing them in ruminant diets. (author).

  10. FEASIBILITY OF REMOVING FURFURALS FROM SUGAR SOLUTIONS USING ACTIVATED BIOCHARS MADE FROM AGRICULTURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Isabel Lima

    2011-06-01

    Full Text Available Lignocellulosic feedstocks are often prepared for ethanol fermentation by treatment with a dilute mineral acid catalyst that hydrolyzes the hemicellulose and possibly cellulose into soluble carbohydrates. The acid-catalyzed reaction scheme is sequential, whereby the released monosaccharides are further degraded to furans and other chemicals that are inhibitory to the subsequent fermentation step. This work tests the use of agricultural residues (e.g., plant waste as starting materials for making activated biochars to adsorb these degradation products. Results show that both furfural and hydroxymethylfurfural (HMF are adsorbed by phosphoric acid-activated and steam-activated biochars prepared from residues collected from cotton and linen production. Best results were obtained with steam-activated biochars. The activated biochars adsorbed about 14% (by weight of the furfurals at an equilibrium concentration of 0.5 g/L, and by adding 2.5% of char to a sugar solution, with either furfural or HMF (at 1 g/L, 99% of the furans were removed.

  11. Impact of agriculture crop residue burning on atmospheric aerosol loading – a study over Punjab State, India

    Directory of Open Access Journals (Sweden)

    Darshan Singh

    2010-02-01

    Full Text Available The present study deals with the impact of agriculture crop residue burning on aerosol properties during October 2006 and 2007 over Punjab State, India using ground based measurements and multi-satellite data. Spectral aerosol optical depth (AOD and Ångström exponent (α values exhibited larger day to day variation during crop residue burning period. The monthly mean Ångström exponent "α" and turbidity parameter "β" values during October 2007 were 1.31±0.31 and 0.36±0.21, respectively. The higher values of "α" and "β" suggest turbid atmospheric conditions with increase in fine mode aerosols over the region during crop residue burning period. AURA-OMI derived Aerosol Index (AI and Nitrogen dioxide (NO2 showed higher values over the study region during October 2007 compared to October 2006 suggesting enhanced atmospheric pollution associated with agriculture crop residue burning.

  12. Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities.

    Science.gov (United States)

    Givaudan, Nicolas; Binet, Françoise; Le Bot, Barbara; Wiegand, Claudia

    2014-09-01

    This study investigates if acclimatization to residual pesticide contamination in agricultural soils is reflected in detoxification, antioxidant enzyme activities and energy budget of earthworms. Five fields within a joint agricultural area exhibited different chemical and farming histories from conventional cultivation to organic pasture. Soil multiresidual pesticide analysis revealed up to 9 molecules including atrazine up to 2.4 ng g(-1) dry soil. Exposure history of endogeic Aporrectodea caliginosa and Allolobophora chlorotica modified their responses to pesticides. In the field, activities of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus(®), 0.1 μg active ingredient epoxiconazole g(-1) dry soil, RoundUp Flash(®), 2.5 μg active ingredient glyphosate g(-1) dry soil, and their mixture), revealed that environmental pre-exposure accelerated activation of the detoxification enzyme sGST towards epoxiconazole. PMID:24874794

  13. Bioenergy production for CO2-mitigation and rural development via valorisation of low value crop residues and their upgrade into energy carriers: a challenge for sunflower and soya residues.

    Science.gov (United States)

    Zabaniotou, A; Kantarelis, E; Skoulou, V; Chatziavgoustis, Th

    2010-01-01

    The present study concerns the energetic valorization of sunflower and soya residues by air fixed-bed gasification. The main process parameters that have been investigated were the temperature and air equivalence ratio. Experimental results indicated that the high temperature and air had a positive effect in gas yield for both residues by ensuring mild oxidative conditions. Gasification gas composition showed different trends of H(2)/CO ratio for the two residues at low equivalence ratios. The LHV of the produced gas from both residues varied from 6.84 to 12 MJ/Nm(3). The energy recovery achieved via gasification could reach 0.07 and 0.02 per acre of cultivated area for the sunflower and soya residues, respectively, in terms of tons of oil equivalent. Sunflower shown higher oil production and energy recovery than soya did. The results of the present study indicate the viability of alternative energy production from agricultural biomass by gasification. Such residues could comprise an attractive renewable source of energy for covering additional energy demands in agricultural regions through exploitation in small gasification systems.

  14. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. PMID:26413801

  15. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides.

  16. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  17. Mitigation of dimethazone residues in soil and runoff water from agricultural field.

    Science.gov (United States)

    Antonious, George F

    2011-01-01

    Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.

  18. Kinetics of gasification and combustion of residues, biomass and coal in a bubbling fluidized bed; Die Kinetik der Vergasung und Verbrennung unterschiedlicher Abfaelle, Biomassen und Kohlen in der blasenbildenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, S.; Krumm, W. [Siegen Univ. (Gesamthochschule) (Germany). Lehrstuhl fuer Energie- und Umweltverfahrenstechnik

    1998-09-01

    The combustion and gasification characteristics of Rhenish brown coal, domestic waste, waste plastics, wood and sewage sludge were investigated in a bubbling atmospheric fluidized bed in the laboratory scale. The materials were pyrolyzed in the fluidized bed in a nitrogen atmosphere. The residual coke was combuted in the presence of oxygen with varying operating parameters or else gasified in the presence of carbon dioxide. The different materials were characterized by global combustion rates, and kinetic parameters were determined for residual coke combustion. (orig.) [Deutsch] Das Verbrennungs- und Vergasungsverhalten von Rheinischer Braunkohle, Hausmuell, Restkunststoff, Holz und Klaerschlamm wurde in einer blasenbildenden, atmosphaerischen Laborwirbelschicht untersucht. Die Einsatzstoffe wurden in der mit Stickstoff fluidisierten Wirbelschicht pyrolysiert. Der verbleibende Restkoks wurde anschliessend unter Variation der Betriebsparameter mit Sauerstoff verbrannt oder mit Kohlendioxid vergast. Die unterschiedlichen Einsatzstoffe wurden durch globale Vebrennungsraten charakterisiert. Fuer die Restkoksverbrennung wurden kinetische Parameter ermittelt. (orig.)

  19. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback

    Directory of Open Access Journals (Sweden)

    Veronica Arthurson

    2009-04-01

    Full Text Available Anaerobic digestion is an optimal way to treat organic waste matter, resulting in biogas and residue. Utilization of the residue as a crop fertilizer should enhance crop yield and soil fertility, promoting closure of the global energy and nutrient cycles. Consequently, the requirement for production of inorganic fertilizers will decrease, in turn saving significant amounts of energy, reducing greenhouse gas emissions to the atmosphere, and indirectly leading to global economic benefits. However, application of this residue to agricultural land requires careful monitoring to detect amendments in soil quality at the early stages.

  20. The use of biogas plant fermentation residue for the stabilisation of toxic metals in agricultural soils

    Science.gov (United States)

    Geršl, Milan; Šotnar, Martin; Mareček, Jan; Vítěz, Tomáš; Koutný, Tomáš; Kleinová, Jana

    2015-04-01

    Our department has been paying attention to different methods of soil decontamination, including the in situ stabilisation. Possible reagents to control the toxic metals mobility in soils include a fermentation residue (FR) from a biogas plant. Referred to as digestate, it is a product of anaerobic decomposition taking place in such facilities. The fermentation residue is applied to soils as a fertiliser. A new way of its use is the in situ stabilisation of toxic metals in soils. Testing the stabilisation of toxic metals made use of real soil samples sourced from five agriculturally used areas of the Czech Republic with 3 soil samples taken from sites contaminated with Cu, Pb and Zn and 2 samples collected at sites of natural occurrence of Cu, Pb and Zn ores. All the samples were analysed using the sequential extraction procedure (BCR) (determine the type of Cu, Pb and Zn bonds). Stabilisation of toxic metals was tested in five soil samples by adding reagents as follows: dolomite, slaked lime, goethite, compost and fermentation residue. A single reagent was added at three different concentrations. In the wet state with the added reagents, the samples were left for seven days, shaken twice per day. After seven days, metal extraction was carried out: samples of 10 g soil were shaken for 2 h in a solution of 0.1M NH4NO3 at a 1:2.5 (g.ml-1), centrifuged for 15 min at 5,000 rpm and then filtered through PTFE 0.45 μm mesh filters. The extracts were analysed by ICP-OES. Copper The best reduction of Cu concentration in the extract was obtained at each of the tested sites by adding dolomite (10 g soil + 0.3 g dolomite). The concentration of Cu in the leachate decreased to 2.1-18.4% compare with the leachate without addition. Similar results were also shown for the addition of fermentation residue (10 g soil + 1 g FR). The Cu concentration in the leachate decreased to 16.7-26.8% compared with the leachate without addition. Lead The best results were achieved by adding

  1. Agricultural residues and energy crops as potentially economical and novel substrates for microbial production of butanol (a biofuel)

    Science.gov (United States)

    This review describes production of acetone butanol ethanol (ABE) from a variety of agricultural residues and energy crops employing biochemical or fermentation processes. A number of organisms are available for this bioconversion including Clostridium beijerinckii P260, C. beijerinckii BA101, C. a...

  2. Linking Energy- and Land-Use Systems: Energy Potentials and Environmental Risks of Using Agricultural Residues in Tanzania

    Directory of Open Access Journals (Sweden)

    Julia C. Terrapon-Pfaff

    2012-02-01

    Full Text Available This paper attempts to assess whether renewable energy self-sufficiency can be achieved in the crop production and processing sector in Tanzania and if this could be accomplished in an environmentally sustainable manner. In order to answer these questions the theoretical energy potential of process residues from commercially produced agricultural crops in Tanzania is evaluated. Furthermore, a set of sustainability indicators with focus on environmental criteria is applied to identify risks and opportunities of using these residues for energy generation. In particular, the positive and negative effects on the land-use-system (soil fertility, water use and quality, biodiversity, etc. are evaluated. The results show that energy generation with certain agricultural process residues could not only improve and secure the energy supply but could also improve the sustainability of current land-use practices.

  3. Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering.

    Science.gov (United States)

    Zhao, Xinqing; Xiong, Liang; Zhang, Mingming; Bai, Fengwu

    2016-09-01

    Production of fuel ethanol from lignocellulosic feedstocks such as agricultural and forestry residues is receiving increasing attention due to the unsustainable supply of fossil fuels. Three key challenges include high cellulase production cost, toxicity of the cellulosic hydrolysate to microbial strains, and poor ability of fermenting microorganisms to utilize certain fermentable sugars in the hydrolysate. In this article, studies on searching of natural microbial strains for production of unique cellulase for biorefinery of agricultural and forestry wastes, as well as development of strains for improved cellulase production were reviewed. In addition, progress in the construction of yeast strains with improved stress tolerance and the capability to fully utilize xylose and glucose in the cellulosic hydrolysate was also summarized. With the superior microbial strains for high titer cellulase production and efficient utilization of all fermentable sugars in the hydrolysate, economic biofuels production from agricultural residues and forestry wastes can be realized. PMID:27067672

  4. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues

    Directory of Open Access Journals (Sweden)

    Cioabla Adrian

    2012-06-01

    Full Text Available Abstract Background Presently, different studies are conducted related to the topic of biomass potential to generate through anaerobic fermentation process alternative fuels supposed to support the existing fossil fuel resources, which are more and more needed, in quantity, but also in quality of so called green energy. The present study focuses on depicting an optional way of capitalizing agricultural biomass residues using anaerobic fermentation in order to obtain biogas with satisfactory characteristics.. The research is based on wheat bran and a mix of damaged ground grains substrates for biogas production. Results The information and conclusions delivered offer results covering the general characteristics of biomass used , the process parameters with direct impact over the biogas production (temperature regime, pH values and the daily biogas production for each batch relative to the used material. Conclusions All conclusions are based on processing of monitoring process results , with accent on temperature and pH influence on the daily biogas production for the two batches. The main conclusion underlines the fact that the mixture batch produces a larger quantity of biogas, using approximately the same process conditions and input, in comparison to alone analyzed probes, indicating thus a higher potential for the biogas production than the wheat bran substrate. Adrian Eugen Cioabla, Ioana Ionel, Gabriela-Alina Dumitrel and Francisc Popescu contributed equally to this work

  5. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use.

    Science.gov (United States)

    Govasmark, Espen; Stäb, Jessica; Holen, Børge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-01

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg(-1) DM) and copper (23-93 mg kg(-1) DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg(-1) DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg(-1)) and ∑ PAH 16 (0.2-1.98 mg kg(-1) DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low. PMID:21865025

  6. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2016-03-01

    Full Text Available A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC, and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.

  7. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    Energy Technology Data Exchange (ETDEWEB)

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen; David J. Muth; Jane M. F. Johnson; John M. Baker; Hero T. Gollany; Jeff M. Novak; Diane E. Stott; Gary E. Varvel

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soil water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.

  8. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan

    International Nuclear Information System (INIS)

    This paper discusses the use of agricultural residue in Japan as an energy resource, based on the amounts produced and availability. The main agricultural residues in Japan are rice straw and rice husk. Based on a scenario wherein these residues are collected as is the rice product, we evaluate the size, cost, and CO2 emission for power generation. Rice residue has a production potential of 12 Mt-dry year-1, and 1.7 kt of rice straw is collected for each storage location. As this is too small an amount even for the smallest scale of power plant available, 2-month operation per year is assumed. Assuming a steam boiler and turbine with an efficiency of 7%, power generation from rice straw biomass can supply 3.8 billion(kW)h of electricity per year, or 0.47% of the total electricity demand in Japan. The electricity generated from this source costs as much as 25 JPY (kW h)-1 (0.21 US$ (kW h)-1, 1 US$=120 JPY), more than double the current price of electricity. With heat recovery at 80% efficiency, the simultaneous heat supplied via cogeneration reaches 10% of that supplied by heavy oil in Japan. Further cost incentives will be required if the rice residue utilization is to be introduced. It will also be important to develop effective technologies to achieve high efficiency even in small-scale processes. If Japanese technologies enable the effective use of agricultural residue abroad as a result of Japanese effort from the years after 2010, the resulting reduction of greenhouse gas emission can be counted under the framework of the Kyoto Protocol

  9. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  10. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  11. Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues.

    Science.gov (United States)

    Chanitnun, Kankiya; Pinphanichakarn, Pairoh

    2012-07-01

    Streptomyces sp. CH7 was found to efficiently produce glucose(xylose) isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose) isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its K m values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its V max values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85°C and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60°C after 30 min. These findings indicate that glucose(xylose) isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae. PMID:24031932

  12. Environmental and economic evaluation of energy recovery from agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems are examined by quantifying the residuals generated and the land, water, and material requirements per 10/sup 12/ Btu of energy generated. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. These data are also computed on the basis of 10/sup 12/ Btu of energy recovered. The cost, residual, material, land, and water data were then organized into a format acceptable for input into the SEAS data management program. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

  13. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    Science.gov (United States)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the

  14. Groundwater Pollution from Underground Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions.In our investigation, the possible processes of groundwater pollution originating from underground coal gasification (UCG) were analyzed.Typical pollutants were identified and pollution control measures are proposed.Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification.Typical organic pollutants include phenols, benzene, minor components such as PAHs and heterocyclics.Inorganic pollutants involve cations and anions.The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants, which can be predicted by mathematical modeling.The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow velocity, the degree of dispersion and the adsorption and reactions of the various contaminants.The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity.Possible pollution control measures regarding UCG include identifying a permanently, unsuitable zone, setting a hydraulic barrier and pumping contaminated water out for surface disposal.Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.

  15. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity

    Science.gov (United States)

    Li, Chunlin; Hu, Yunjie; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Wang, Xinming; Mellouki, Abdelwahid

    2016-09-01

    Size-resolved effective density, mixing state, and hygroscopicity of smoke particles from five kinds of agricultural residues burning were characterized using an aerosol chamber system, including a volatility/hygroscopic tandem differential mobility analyzer (V/H-TDMA) combined with an aerosol particle mass analyzer (APM). To profile relationship between the thermodynamic properties and chemical compositions, smoke PM1.0 and PM2.5 were also measured for the water soluble inorganics, mineral elements, and carbonaceous materials like organic carbon (OC) and elemental carbon (EC). Smoke particle has a density of 1.1-1.4 g cm-3, and hygroscopicity parameter (κ) derived from hygroscopic growth factor (GF) of the particles ranges from 0.20 to 0.35. Size- and fuel type-dependence of density and κ are obvious. The integrated effective densities (ρ) and hygroscopicity parameters (κ) both scale with alkali species, which could be parameterized as a function of organic and inorganic mass fraction (forg &finorg) in smoke PM1.0 and PM2.5: ρ-1 =finorg ·ρinorg-1 +forg · ρorg-1 and κ =finorg ·κinorg +forg ·κorg . The extrapolated values of ρinorg and ρorg are 2.13 and 1.14 g cm-3 in smoke PM1.0, while the characteristic κ values of organic and inorganic components are about 0.087 and 0.734, which are similar to the bulk density and κ calculated from predefined chemical species and also consistent with those values observed in ambient air. Volatility of smoke particle was quantified as volume fraction remaining (VFR) and mass fraction remaining (MFR). The gradient temperature of V-TDMA was set to be consistent with the splitting temperature in the OC-EC measurement (OC1 and OC2 separated at 150 and 250 °C). Combing the thermogram data and chemical composition of smoke PM1.0, the densities of organic matter (OM1 and OM2 correspond to OC1 and OC2) are estimated as 0.61-0.90 and 0.86-1.13 g cm-3, and the ratios of OM1/OC1 and OM2/OC2 are 1.07 and 1.29 on average

  16. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity

    Science.gov (United States)

    Li, Chunlin; Hu, Yunjie; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Wang, Xinming; Mellouki, Abdelwahid

    2016-09-01

    Size-resolved effective density, mixing state, and hygroscopicity of smoke particles from five kinds of agricultural residues burning were characterized using an aerosol chamber system, including a volatility/hygroscopic tandem differential mobility analyzer (V/H-TDMA) combined with an aerosol particle mass analyzer (APM). To profile relationship between the thermodynamic properties and chemical compositions, smoke PM1.0 and PM2.5 were also measured for the water soluble inorganics, mineral elements, and carbonaceous materials like organic carbon (OC) and elemental carbon (EC). Smoke particle has a density of 1.1-1.4 g cm-3, and hygroscopicity parameter (κ) derived from hygroscopic growth factor (GF) of the particles ranges from 0.20 to 0.35. Size- and fuel type-dependence of density and κ are obvious. The integrated effective densities (ρ) and hygroscopicity parameters (κ) both scale with alkali species, which could be parameterized as a function of organic and inorganic mass fraction (forg &finorg) in smoke PM1.0 and PM2.5: ρ-1 =finorg · ρinorg-1 +forg · ρorg-1 and κ =finorg ·κinorg +forg ·κorg . The extrapolated values of ρinorg and ρorg are 2.13 and 1.14 g cm-3 in smoke PM1.0, while the characteristic κ values of organic and inorganic components are about 0.087 and 0.734, which are similar to the bulk density and κ calculated from predefined chemical species and also consistent with those values observed in ambient air. Volatility of smoke particle was quantified as volume fraction remaining (VFR) and mass fraction remaining (MFR). The gradient temperature of V-TDMA was set to be consistent with the splitting temperature in the OC-EC measurement (OC1 and OC2 separated at 150 and 250 °C). Combing the thermogram data and chemical composition of smoke PM1.0, the densities of organic matter (OM1 and OM2 correspond to OC1 and OC2) are estimated as 0.61-0.90 and 0.86-1.13 g cm-3, and the ratios of OM1/OC1 and OM2/OC2 are 1.07 and 1.29 on average

  17. CO{sub 2} and steam gasification of a grapefruit skin char

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Montesinos, F.; Cordero, T.; Rodriguez-Mirasol, J.; Rodriguez, J.J. [University of Pinar del Rio, Pinar del Rio (Cuba). Dept. of Chemistry

    2002-03-01

    A kinetic study on the gasification of carbonized grapefruit (Citrus Aurantium) skin with CO{sub 2} and with steam is presented. The chars from this agricultural waste show a comparatively high reactivity, which can be mostly attributed to the catalytic effect of the inorganic matter. The ash content of the carbonized substrate used in this work falls around 15% (db) potassium being the main metallic constituent. The reactivity for both, CO{sub 2} and steam gasification, increases at increasing conversion and also does the reactivity per unit surface area, consistently with the aforementioned catalytic effect. Lowering the ash content of the char by acid washing leads to a decrease of reactivity thus confirming the catalytic activity of the inorganic matter present in the starting material. Saturation of this catalytic effect was not detected within the conversion range investigated covering in most cases up to 0.85 - 0.9. Apparent activation energy values within the range of 200-250 kJ/mol have been obtained for CO{sub 2} gasification whereas the values obtained for steam gasification fall mostly between 130 and 170 kJ/mol. These values become comparable with the reported in the literature for other carbonaceous raw materials including chars from biomass residues and coals under chemical control conditions. 28 refs., 6 figs., 5 tabs.

  18. Conservation Agriculture in Lesotho: Residue Use Patterns Among CA adopters vs. Non-Adopters

    OpenAIRE

    Wilcox, M.D.; Bisangwa, E.; Lambert, Dayton M.; Marake, Makoala V.; Walker, F.R.; Eash, Neal S.; Moore, Keith M.; Park, W M

    2012-01-01

    Recent efforts by the Government of Lesotho, non-government organizations (NGOs), and international attention have focused on developing conservation agriculture (CA) practices adapted to the cultural, economic, and agro-ecological conditions in Lesotho. Understanding the influence of the introduction of CA technologies on soil erosion, yields, labor allocation and gender roles is of critical importance for successfully deploying sustainable agriculture technologies.

  19. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    OpenAIRE

    Hansen, Veronika; Müller-Stöver, Dorette; Ahrenfeldt, Jesper; Holm, Jens Kai; Henriksen, Ulrik Birk; Hauggaard-Nielsen, Henrik

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, res...

  20. A Survey of Determination for Organophosphorus Pesticide Residue in Agricultural Products

    Directory of Open Access Journals (Sweden)

    Wen Li

    2013-04-01

    Full Text Available In order to find a fast, high efficient determination method of Organophosphorus Pesticides (OPPs residue because OPPs widely used in crops pest control fields in China are causing fearful risks for environment as well as animals and human health, traditional and advanced determination methods were discussed in the study. Based on the spectrum analysis technology combined colorimetric OPPs residue detection experiments in leafy vegetables showed that the absorbance of color reaction between OPPs residues and suitable colorimetric reagents can be distinguished in ppm level of OPPs residues. The detection limit of chlorpyrifos after color reaction with 0.5% Pbcl2 in acetic acid solution is 0.5 ppm. The conclusion was drawn that the detection technologies were diversified, however, a simple, efficient, rapid and nondestructive detection method is lacking and the spectrum analysis technology combined colorimetric can be a new fast and efficient determination method in the future.

  1. Steam gasification of oil palm trunk waste for clean syngas production

    International Nuclear Information System (INIS)

    Highlights: ► Initial high values of syngas flow rate are attributed to rapid devolatilization. ► Over 50% of syngas generated was obtained during the first five minutes of the process. ► Increase in steam flow rate resulted in reduced gasification time. ► Variation in steam flow rate slightly affected the apparent thermal efficiency. ► Oil palm yielded more energy than that from mangrove wood, paper and food waste. -- Abstract: Waste and agricultural residues offer significant potential for harvesting chemical energy with simultaneous reduction of environmental pollution, providing carbon neutral (or even carbon negative) sustained energy production, energy security and alleviating social concerns associated with the wastes. Steam gasification is now recognized as one of the most efficient approaches for waste to clean energy conversion. Syngas generated during the gasification process can be utilized for electric power generation, heat generation and for other industrial and domestic uses. In this paper results obtained from the steam assisted gasification of oil palm trunk waste are presented. A batch type gasifier has been used to examine the syngas characteristics from gasification of palm trunk waste using steam as the gasifying agent. Reactor temperature was fixed at 800 °C. Results show initial high values of syngas flow rate, which is attributed to rapid devolatilization of the sample. Approximately over 50% of the total syngas generated was obtained during the first five minutes of the process. An increase in steam flow rate accelerated the gasification reactions and resulted in reduced gasification time. The effect of steam flow rate on the apparent thermal efficiency has also been investigated. Variation in steam flow rate slightly affected the apparent thermal efficiency and was found to be very high. Properties of the syngas obtained from the gasification of oil palm trunk waste have been compared to other samples under similar operating

  2. Conservation agriculture and tillage effects on soil organic matter and residual moisture content in selected upland crop production systems in the Philippines

    OpenAIRE

    Ella, Victor B.; Manuel R. Reyes; Padre, R.; Mercado, Agustin R., Jr.

    2014-01-01

    This presentation describes a study to analyze the influence of conservation agriculture and tillage on soil organic matter and residual moisture content in selected upland crop production systems in the Philippines LTRA-12 (Conservation agriculture for food security in Cambodia and the Philippines)

  3. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  4. Agriculture

    International Nuclear Information System (INIS)

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on agriculture describes how climate change will affect primary agriculture production in Canada with particular focus on potential adaptation options, and vulnerability of agriculture at the farm level. Agriculture is a vital part of the Canadian economy, although only 7 per cent of Canada's land mass is used for agricultural purposes due to the limitations of climate and soils. Most parts of Canada are expected to experience warmer conditions, longer frost-free seasons and increased evapotranspiration. The impacts of these changes on agriculture will vary depending on precipitation changes, soil conditions, and land use. Northern regions may benefit from longer farming seasons, but poor soil conditions will limit the northward expansion of agricultural crops. Some of the negative impacts associated with climate change on agriculture include increased droughts, changes in pest and pathogen outbreaks, and moisture stress. In general, it is expected that the positive and negative impacts of climate change would offset each other. 74 refs., 2 tabs., 1 fig

  5. Pesticide residues in some herbs growing in agricultural areas in Poland.

    Science.gov (United States)

    Malinowska, Elżbieta; Jankowski, Kazimierz

    2015-12-01

    The aim of this paper was to assess residue content of plant protection products in selected herbs: Achillea millefolium L., Cichorium intybus L., Equisetum arvense L., Polygonum persicaria L., Plantago lanceolata L., and Plantago major L. The study comprises herbs growing in their natural habitat, 1 and 10 m away from crop fields. The herbs, 30 plants of each species, were sampled during the flowering stage between 1 and 20 July 2014. Pesticide residue content was measured with the QuECHERS method in the dry matter of leaves, stalks, and inflorescence, all mixed together. Out of six herb species growing close to wheat and maize fields, pesticide residues were found in three species: A. millefolium L., E. arvense L., and P. lanceolata L. Most plants containing the residues grew 1 m away from the wheat field. Two active substances of fungicides were found: diphenylamine and tebuconazole, and one active substance of insecticides: chlorpyrifos-ethyl. Those substances are illegal to use on herbal plants. Samples of E. arvense L. and P. lanceolata L. contained two active substances each, which constituted 10% of all samples, while A. millefolium L. contained one substance, which is 6.6% of all samples.

  6. Pesticide residues in some herbs growing in agricultural areas in Poland.

    Science.gov (United States)

    Malinowska, Elżbieta; Jankowski, Kazimierz

    2015-12-01

    The aim of this paper was to assess residue content of plant protection products in selected herbs: Achillea millefolium L., Cichorium intybus L., Equisetum arvense L., Polygonum persicaria L., Plantago lanceolata L., and Plantago major L. The study comprises herbs growing in their natural habitat, 1 and 10 m away from crop fields. The herbs, 30 plants of each species, were sampled during the flowering stage between 1 and 20 July 2014. Pesticide residue content was measured with the QuECHERS method in the dry matter of leaves, stalks, and inflorescence, all mixed together. Out of six herb species growing close to wheat and maize fields, pesticide residues were found in three species: A. millefolium L., E. arvense L., and P. lanceolata L. Most plants containing the residues grew 1 m away from the wheat field. Two active substances of fungicides were found: diphenylamine and tebuconazole, and one active substance of insecticides: chlorpyrifos-ethyl. Those substances are illegal to use on herbal plants. Samples of E. arvense L. and P. lanceolata L. contained two active substances each, which constituted 10% of all samples, while A. millefolium L. contained one substance, which is 6.6% of all samples. PMID:26612566

  7. Laboratory tests to assess optimal agricultural residue traits for an abrasive weed control system

    Science.gov (United States)

    One of the biggest challenges to organic agricultural production and herbicide resistant crops in industrialized countries today is the non-chemical control of weed plants. Studies of new tools and methods for weed control have been motivated by an increased consumer demand for organic produce and c...

  8. Soil and water contamination with carbofuran residues in agricultural farmlands in Kenya following the application of the technical formulation Furadan.

    Science.gov (United States)

    Otieno, Peter O; Lalah, Joseph O; Virani, Munir; Jondiko, Isaac O; Schramm, Karl-Werner

    2010-02-01

    This study was undertaken to determine the concentrations of carbofuran residues in water, soil and plant samples from selected sites in the farmlands in Kenya and to demonstrate the impact of Furadan use on the local environment. Soil, water and plant samples obtained from agricultural farmlands where the technical formulation Furadan has been used extensively showed high environmental contamination with concentrations of carbofuran and its two toxic metabolites 3-hydroxycarbofuran and 3-ketocarbofuran, separately, ranging from 0.010-1.009 mg/kg of dry surface soil, 0.005-0.495 mg/L in water samples from two rivers flowing through the farms and bdl-2.301 mg/L in water samples from ponds and dams located close to the farms. Maize plant samples contained these residues in concentrations ranging from 0.04-1.328 mg/kg of dry plant tissue. The significantly high concentration levels of carbofuran and its metabolites, 3-ketocarbofuran and 3-hydroxycarbofuran, found in various matrices demonstrate that Furadan was used extensively in the two areas and that there was environmental distribution and exposure of residues in water which posed risks when used for domestic purposes or as drinking water for animals in two wildlife conservancies where the dams and ponds are located. Surface soil contamination was also high and posed risks through run-off into the dams and rivers as well as through secondary exposure to small birds and mammals.

  9. The effect of gamma irradiation on crude fibre NDF, ADF, and ADL of some Syrian agricultural residues

    International Nuclear Information System (INIS)

    The effects of 150 KGy of gamma irradiation on crude fibre and its main components (cellulose, hemicellulose-cellulose and lignin) and on neutral detergent fibre (NDF), acid detergent lignin (ADL), and acid detergent fibre (ADF) were investigated. The results indicate that gamma irradiation decreased Cf content by 30%, 28%, 29%, and 17% for cottonwood, lentils straw, apple-tree pruning products and olive-oil cake, respectively. NDF values also decreased by 5%, 23%, 13% and 3% for, cottonwood, lentils straw, olive-oil cake and apple-tree pruning products respectively. Gamma irradiation (150 KGy) had no effects on ADF and ADL for lentils straw, apple-tree pruning products and olive-oil cake whereas, ADF decreased by 8.5% and ADL by 8.3 for cottonwood. Hemicellulose content increased by 12% for cottonwood while decreased by 54% for lentils straw and by 33% for apple-tree pruning products with no effects for olive-oil cake. Cellulose content decreased by 8.6% for cottonwood whereas no effects for the remaining residues were seen. Gamma irradiation treatment improved the nutritive value of the agriculture residues examined. The reduction in crude fibre content varies with the residue. (author). 15 refs., 5 tabs

  10. Lab-Scale Investigations During Combustion of Agricultural Residues and Selected Polish Coals

    OpenAIRE

    Kordylewski Włodzimierz K.; Mościcki Krzysztof J.; Witkowski Karol J.

    2014-01-01

    Preliminary lab-scale investigations were conducted on slagging abatement in biomass-firing by fuel mixing. Three agriculture biomass fuels and olive cake were used in the experiments. Polish lignites and bituminous coals were examined as anti-sintering additives. The effects of chlorine release, potassium retention and ash sintering were examined by heating samples of biomass fuels and additives in the muffle oven and, next, firing them in the laboratory down-fired furnace at the temperature...

  11. Gasification-based biomass

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  12. Radiative Gasification Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This apparatus, developed at EL, determines gasification rate (mass loss rate) of a horizontally oriented specimen exposed in a nitrogen environment to a controlled...

  13. Automotive fuels from biomass via gasification

    International Nuclear Information System (INIS)

    There exists already a market of bio-automotive fuels i.e. bioethanol and biodiesel produced from food crops in many countries. From the viewpoint of economics, environment, land use, water use and chemical fertilizer use, however, there is a strong preference for the use of woody biomass and various forest/agricultural residues as the feedstock. Thus, the production of 2nd generation of bio-automotive fuels i.e. synthetic fuels such as methanol, ethanol, DME, FT-diesel, SNG and hydrogen through biomass gasification seems promising. The technology of producing synthetic fuels is well established based on fossil fuels. For biomass, however, it is fairly new and the technology is under development. Starting from the present market of the 1st generation bio-automotive fuels, this paper is trying to review the technology development of the 2nd generation bio-automotive fuels from syngas platform. The production of syngas is emphasized which suggests appropriate gasifier design for a high quality syngas production. A number of bio-automotive fuel demonstration plant will be presented, which gives the state of the art in the development of BTS (biomass to synthetic fuels) technologies. It can be concluded that the 2nd generation bio-automotive fuels are on the way to a breakthrough in the transport markets of industrial countries especially for those countries with a strong forest industry. (author)

  14. Pesticide residues in bovine milk from a predominantly agricultural state of Haryana, India.

    Science.gov (United States)

    Sharma, H R; Kaushik, A; Kaushik, C P

    2007-06-01

    One hundred forty seven samples of bovine milk were collected from 14 districts of Haryana, India during December 1998-February 1999 and analysed for the presence of organochlorine pesticide (OCPs) residues. summation operator HCH, summation operator DDT, summation operator endosulfan and aldrin were detected in 100%, 97%, 43% and 12% samples and with mean values of 0.0292, 0.0367, 0.0022 and 0.0036 microg/ml, respectively. Eight percent samples exceeded the maximum residue limit (MRL) of 0.10 mg/kg as recommended by WHO for summation operator HCH, 4% samples of 0.05 mg/kg for alpha-HCH, 5% samples of 0.01 mg/kg for gamma-HCH, 26% samples of 0.02 mg/kg for beta-HCH as recommended by PFAA and 24% samples of 0.05 mg/kg as recommended by FAO for summation operator DDT. Concentrations of beta-HCH and p,p'-DDE were more as compared to other isomers and metabolites of HCH and DDT. PMID:17180431

  15. Rapid screening of flonicamid residues in environmental and agricultural samples by a sensitive enzyme immunoassay.

    Science.gov (United States)

    Liu, Zhenjiang; Zhang, Zhen; Zhu, Gangbing; Sun, Jianfan; Zou, Bin; Li, Ming; Wang, Jiagao

    2016-05-01

    A fast and sensitive polyclonal antibody-based enzyme-linked immunosorbent assay (ELISA) was developed for the analysis of flonicamid in environmental and agricultural samples. Two haptens of flonicamid differing in spacer arm length were synthesized and conjugated to proteins to be used as immunogens for the production of polyclonal antibodies. To obtain most sensitive combination of antibody/coating antigen, two antibodies were separately screened by homologous and heterologous assays. After optimization, the flonicamid ELISA showed that the 50% inhibitory concentration (IC50 value) was 3.86mgL(-1), and the limit of detection (IC20 value) was 0.032mgL(-1). There was no cross-reactivity to similar tested compounds. The recoveries obtained after the addition of standard flonicamid to the samples, including water, soil, carrot, apple and tomato, ranged from 79.3% to 116.4%. Moreover, the results of the ELISA for the spiked samples were largely consistent with the gas chromatography (R(2)=0.9891). The data showed that the proposed ELISA is an alternative tool for rapid, sensitive and accurate monitoring of flonicamid in environmental and agricultural samples. PMID:26897400

  16. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

    Directory of Open Access Journals (Sweden)

    Christos Nitsos

    2015-01-01

    Full Text Available Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  17. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    Science.gov (United States)

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  18. Chronic dietary risk characterization for pesticide residues: a ranking and scoring method integrating agricultural uses and food contamination data.

    Science.gov (United States)

    Nougadère, Alexandre; Reninger, Jean-Cédric; Volatier, Jean-Luc; Leblanc, Jean-Charles

    2011-07-01

    A method has been developed to identify pesticide residues and foodstuffs for inclusion in national monitoring programs with different priority levels. It combines two chronic dietary intake indicators: ATMDI based on maximum residue levels and agricultural uses, and EDI on food contamination data. The mean and 95th percentile of exposure were calculated for 490 substances using individual and national consumption data. The results show that mean ATMDI exceeds the acceptable daily intake (ADI) for 10% of the pesticides, and the mean upper-bound EDI is above the ADI for 1.8% of substances. A seven-level risk scale is presented for substances already analyzed in food in France and substances not currently sought. Of 336 substances analyzed, 70 pesticides of concern (levels 2-5) should be particularly monitored, 22 of which are priority pesticides (levels 4 and 5). Of 154 substances not sought, 36 pesticides of concern (levels 2-4) should be included in monitoring programs, including 8 priority pesticides (level 4). In order to refine exposure assessment, analytical improvements and developments are needed to lower the analytical limits for priority pesticide/commodity combinations. Developed nationally, this method could be applied at different geographic scales.

  19. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion

    International Nuclear Information System (INIS)

    There is a large, unutilised energy potential in agricultural waste fractions. In this pilot-scale study, the efficiency of a simple two-stage anaerobic digestion process was investigated for stabilisation and biomethanation of solid potato waste and sugar beet leaves, both separately and in co-digestion. A good phase separation between hydrolysis/acidification and methanogenesis was achieved, as indicated by the high carbon dioxide production, high volatile fatty acid concentration and low pH in the acidogenic reactors. Digestion of the individual substrates gave gross energy yields of 2.1-3.4 kWh/kg VS in the form of methane. Co-digestion, however, gave up to 60% higher methane yield, indicating that co-digestion resulted in improved methane production due to the positive synergism established in the digestion liquor. The integrity of the methane filters (MFs) was maintained throughout the period of operation, producing biogas with 60-78% methane content. A stable effluent pH showed that the methanogenic reactors had good ability to withstand the variations in load and volatile fatty acid concentrations that occurred in the two-stage process. The results of this pilot-scale study show that the two-stage anaerobic digestion system is suitable for effective conversion of semi-solid agricultural residues as potato waste and sugar beet leaves

  20. Residues of Organochlorine Pesticides (OCPs) in Agricultural Soils of Zhangzhou City, China

    Institute of Scientific and Technical Information of China (English)

    YANG Dan; CHEN Wei; YANG Jun-Hua; XU Mei-Hui; QI Shi-Hua; ZHANG Jia-Quan; TAN Ling-Zhi; ZHANG Jun-Peng; ZHANG Yuan; XU Feng; XING Xin-Li; HU Ying

    2012-01-01

    A soil survey was conducted in Zhangzhou City,an important agricultural region in south of the Fujian Province,China.93 surface soil samples were collected in the paddy fields,vegetable lands,orchards and tea plantations from Zhangzhou City.An additional soil profile was sampled in a paddy field as previous research had indicated high concentrations of organochlorine pesticides (OCPs) in the paddy fields.Dichlorodiphenyltrichloroethanes (DDTs) ranged from 0.64-78.07 ng g-1 dry weight and hexachlorocyclohexanes (HCHs) ranged from 0.72-30.16 ng g-1 dry weight in the surface soil of the whole study region.Ratios of α-HCH/γ-HCH < 4 and o,p'-DDT/p,p'-DDT > 1 in all soil samples suggested that lindane and dicofol were widely applied in this region in the past.Concentrations of HCHs and DDTs in soils from the four land use types followed the orders:paddy fields > vegetable lands > tea plantations > orchards and tea plantations > orchards > paddy fields > vegetable lands,respectively.Analyses of the data showed no correlation (r < 0.1) between elevation and OCPs contents in paddy fields,orchards and vegetable lands,indicated no significantly different features in distribution of HCHs and DDTs in the soils from low lying plains and mountains and the unsystematic usage of OCPs,and highlighted the fragmented nature of agricultural production in Zhangzhou,as well as the reemission of OCPs from the soils,where high OCPs concentrations were found,in Longhai of Zhangzhou.In addition,no obvious relationship between the OCPs and total organic carbon (TOC) (r < 0.3) was observed in the soil profile.The mean contribution of dicofol in total DDTs was 66% in the whole Zhangzhou region.The approximate burdens of HCHs and DDTs in the surface layer of 0-20 cm were 0.44 and 1.55 t,respectively.The storage of both HCHs and DDTs in soil surface layer (0-20 cm) accounts for 40% burden of the soil layer of 0-50 cm (1.10 t HCHs and 3.87 t DDTs),in which the highest

  1. Effects of gamma irradiation on cell-wall constituents of some agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M.R.; Zarkawi, M. [Atomic Energy Commission, Damascus (Syrian Arab Republic)

    1994-12-01

    The effects of 150 kilogray (kGy) of {gamma} irradiation on cell-wall constituents of cottonwood (CW), lentils straw (LS), apple pruning products (AP) and olive cake (OC) were investigated. Samples were irradiated by {gamma} irradiation at a dose level of 150 kGy under identical conditions of temperature and humidity and analyzed for crude fibre (CF), neutral-detergent fibre (NDF), acid detergent fibre (ADF) and acid-detergent lignin (ADL). The results indicate that {gamma} irradiation decreased CF contents by about 29% for CW, LS and AP and by 17% for OC. NDF values were also decreased by about 4% for CW and OC, and by about 12% for LS and AP. {gamma} irradiation treatment also decreased ADF values only for CW by 8%. ADL contents decreased by 8% for CW and 5% for OC with no effects for LS and AP. The percentage of cellulose (CL):CF ratio increased by 30, 34, 38 and 20% for CW, LS, AP and OC, respectively. Also, the percentage of hemicellulose (HCL):CF increased for 57% for CW and 16% for OC and decreased by 7% for LS and AP. The percentage of HCL:ADL increased by 22% for CW but decreased by 33% for LS and AP with no changes for OC. There were no changes in CL:ADL ratio for all residues. (Author).

  2. Pelletizing of rice straws: A potential solid fuel from agricultural residues

    International Nuclear Information System (INIS)

    Full text: Rice straw is the dry stalks of rice plants, after the grain and chaff have been removed. More than 1 million tonnes of rice straw are produced in MADA in the northern region of Peninsular Malaysia annually. Burning in the open air is the common technique of disposal that contribute to air pollution. In this paper, a technique to convert these residues into solid fuel through pelletizing is presented. The pellets are manufactured from rice straw and sawdust in a disc pelletizer. The pellet properties are quite good with good resistance to mechanical disintegration. The pellets have densities between 1000 and 1200 kg/ m3. Overall, converting rice straw into pellets has increased its energy and reduced moisture content to a minimum of 8 % and 30 % respectively. The gross calorific value is about 15.6 MJ/ kg which is lower to sawdust pellet. The garnering of knowledge in the pelletization process provides a path to increase the use of this resource. Rice straw pellets can become an important renewable energy source in the future. (author)

  3. Lab-Scale Investigations During Combustion of Agricultural Residues and Selected Polish Coals

    Directory of Open Access Journals (Sweden)

    Kordylewski Włodzimierz K.

    2014-06-01

    Full Text Available Preliminary lab-scale investigations were conducted on slagging abatement in biomass-firing by fuel mixing. Three agriculture biomass fuels and olive cake were used in the experiments. Polish lignites and bituminous coals were examined as anti-sintering additives. The effects of chlorine release, potassium retention and ash sintering were examined by heating samples of biomass fuels and additives in the muffle oven and, next, firing them in the laboratory down-fired furnace at the temperature in the range of 800-1150ºC. The obtained slag samples were analysed on: chlorine and potassium content, sintering tendency and crystalline components. Among the examined coals lignite from Turów mine and bituminous coal from Bolesław Śmiały mine appeared to be the most effective in potassium retention in aluminosilicate and chlorine release from slag. Possibly the major factor of these coals which reduced ash sintering was relatively high content of kaolinite

  4. Optimization of Thermostable Alpha-Amylase Production Via Mix Agricultural-Residues and Bacillus amyloliquefaciens

    Directory of Open Access Journals (Sweden)

    Shalini RAI

    2014-03-01

    Full Text Available This study reports utilization of mixture of wheat and barley bran (1:1 for the production of thermostable alpha-amylase enzyme through a spore former, heat tolerant strain of Bacillus amyloliquefaciens in solid state fermentation. Maximum yield of alpha-amylase (252.77 U mL-1 was obtained in following optimized conditions, inoculums size 2 mL (2 × 106 CFU/mL, moisture 80%, pH 7±0.02, NaCl (3%, temperature 38±1°C, incubation for 72 h, maltose (1% and tryptone (1%. After SSF crude enzyme was purified via ammonium sulfate precipitation, ion exchange and column chromatography by DEAE Cellulose. Purified protein showed a molecular weight of 42 kDa by SDS-PAGE electrophoresis. After purification, purified enzyme was characterized against several enzymes inhibitors such as temperature, NaCl, pH, metal and surfactants. Pure enzyme was highly active over broad temperature (50-70°C, NaCl concentration (0.5-4 M, and pH (6-10 ranges, indicating it’s a thermoactive and alkali-stable nature. Moreover, CaCl2, MnCl2, =-mercaptoethanol were found to stimulate the amylase activity, whereas FeCl3, sodium dodecyl sulfate (SDS, CuCl3 and ethylenediaminetetraacetic acid (EDTA strongly inhibited the enzyme. Moreover, enzyme specificity and thermal stability conformed by degradation of different soluble starch up to 55°C. Therefore, the present study proved that the extracellular alpha-amylase extracted through wheat flour residues by organism B. amyloliquefaciens MCCB0075, both have considerable potential for industrial application owing to its properties.

  5. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology.

    Science.gov (United States)

    Ebadipour, N; Lotfabad, T Bagheri; Yaghmaei, S; RoostaAzad, R

    2016-01-01

    Biosurfactants are surface-active compounds capable of reducing surface tension and interfacial tension. Biosurfactants are produced by various microorganisms. They are promising replacements for chemical surfactants because of biodegradability, nontoxicity, and their ability to be produced from renewable sources. However, a major obstacle in producing biosurfactants at the industrial level is the lack of cost-effectiveness. In the present study, by using corn steep liquor (CSL) as a low-cost agricultural waste, not only is the production cost reduced but a higher production yield is also achieved. Moreover, a response surface methodology (RSM) approach through the Box-Behnken method was applied to optimize the biosurfactant production level. The results found that biosurfactant production was improved around 2.3 times at optimum condition when the CSL was at a concentration of 1.88 mL/L and yeast extract was reduced to 25 times less than what was used in a basic soybean oil medium (SOM). The predicted and experimental values of responses were in reasonable agreement with each other (Pred-R(2) = 0.86 and adj-R(2) = 0.94). Optimization led to a drop in raw material price per unit of biosurfactant from $47 to $12/kg. Moreover, the biosurfactant product at a concentration of 84 mg/L could lower the surface tension of twice-distilled water from 72 mN/m to less than 28 mN/m and emulsify an equal volume of kerosene by an emulsification index of (E24) 68% in a two-phase mixture. These capabilities made these biosurfactants applicable in microbial enhanced oil recovery (MEOR), hydrocarbon remediation, and all other petroleum industry surfactant applications. PMID:25748124

  6. Physical and chemical characterizations of biochars derived from different agricultural residues

    Directory of Open Access Journals (Sweden)

    K. Jindo

    2014-08-01

    Full Text Available Biochar has received large attention as a strategy to tackle against carbon emission. Not only carbon fixation has been carried out but also other merits for agricultural application due to unique physical and chemical character such as absorption of contaminated compounds in soil, trapping ammonia and methane emission from compost, and enhancement of fertilizer quality. In our study, different local waste feed stocks (rice husk, rice straw, wood chips of apple tree (Malus Pumila and oak tree (Quercus serrata, in Aomori, Japan, were utilized for creating biochar with different temperature (400–800 °C. Concerning to the biochar production, the pyrolysis of lower temperature had more biochar yield than higher temperature pyrolysis process. On the contrary, surface areas and adsorption characters have been increased as increasing temperature. The proportions of carbon content in the biochars also increased together with increased temperatures. Infrared-Fourier spectra (FT-IR and 13C-NMR were used to understand carbon chemical compositions in our biochars, and it was observed that the numbers of the shoulders representing aromatic groups, considered as stable carbon structure appeared as the temperature came closer to 600 °C, as well as in FT-IR. In rice materials, the peak assigned to SiO2, was observed in all biochars (400–800 °C in FT-IR. We suppose that the pyrolysis at 600 °C creates the most recalcitrant character for carbon sequestration, meanwhile the pyrolysis at 400 °C produces the superior properties as a fertilizer by retaining volatile and easily labile compounds which promotes soil microbial activities.

  7. Combustion and gasification of renewable fuels (sewage sludge, organic residues, rape oil); Verbrennung und Vergasung von regenerativen Brennstoffen (Klaerschlamm, organische Reststoffe, Rapsoel)

    Energy Technology Data Exchange (ETDEWEB)

    Brunne, T. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Koppe, K. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Topf, N. [VER Verwertung und Entsorgung von Reststoffen GmbH, Dresden (Germany); Liebisch, G. [VER Verwertung und Entsorgung von Reststoffen GmbH, Dresden (Germany)

    1995-12-31

    Renewable energy sources are one of the points of main effort of this energy research program. Thermal residue and biomass energy utilization have been studied recently at the Chair of Power Plant Engineering at the Dresden University of Technology to gain further practical knowledge. Three examples are given of biogenic energy sources. The efficiency of such fuels can only be evaluated considering the complex interaction of various individual measures. The present contribution of biogenic energy sources to energy production is small from the economic point of view but technical improvements and a more efficient development are expected. The ecological value of renewable energy sources cannot be doubted because each kilowatt hour that is generated using them makes a contribution to pollution abatement. (orig.) [Deutsch] Erneuerbare Energien bilden einen Schwerpunkt des Energieforschungsprogramms. Die Professur fuer Kraftwerkstechnik an der TU Dresden hat sich in juengster Zeit mit der thermischen Verwertung von Reststoffen und der energetischen Nutzung von Biomasse verstaerkt beschaeftigt und weitere Erkenntnisse ueber die praktische Umsetzung gewonnen. Die hier an drei Beispielen geschilderte Untersuchung biogener Energietraeger kann hinsichtlich der Beurteilung ihrer Wirtschaftlichkeit nur im komplexen Zusammenspiel vieler einzelner Massnahmen beurteilt werden. Auch wenn sie aus wirtschaftlichen Gruenden vorerst nur einen geringen Beitrag zur Energieerzeugung leisten, koennen sie technisch weiter verbessert und effizienter erschlossen werden. Unbestritten ist ihr oekologischer Beitrag, weil jede aus diesen erneuerbaren Energien erzeugte Kilowattstunde unsere Umwelt entlastet. (orig.)

  8. Agricultural residues based composites II-gypsum plaster-fiber composites

    International Nuclear Information System (INIS)

    It is planned to get rid of some agricultural wastes, which form major environmental problems, to be used for the production of some valuable economic composites with gypsum plaster for wide important applications. Bagasse, cotton stalks, rice straw or linen fibers were blended with gypsum plaster to form the composites. Effect of each of the fiber type, length, content, and modification on the physicomechanical properties of the resulted composites were followed after different hydration conditions. Moreover, some selected composites were further investigated for their microstructure and thermal insulation properties. Results indicated that addition of fibers decreased the bulk density and mechanical properties of the composites. Density of composites with long fibers is lower than those contain short varieties although the compressive strength (CS)gave the reverse trend. Density and mechanical properties decreased as the added fibers ratio was increased. Strength of all composites increased on ageing. Cotton stalks composites gave 23 % increase in CS on using 2 % of 1.25 mm fiber than neat plaster. 2 % fiber addition of 0.8 mm gave almost the same results as the neat. The results of composites with more than 2 % fiber addition were lower than the neat gypsum. The CS of gypsum with 2 % linen fibers (1.25 mm) was higher than that of neat gypsum plaster, whereas, at 4 % fiber addition the CS was nearly the same as neat gypsum pastes. The composites with higher linen fiber contents than 4 % showed lower CS than neat gypsum paste. The modulus of rupture (MOR) of rice straw or Bagasse composites with 1.25 mm were slightly higher than that of 0.8 mm fiber length, but lower than the neat gypsum. Heat treatment at 105 degree C for 24 hours of cotton stalks decreased their properties. Acetylation of rice straw for different acetylation contents decreased their density, unaffected the CS and improved the MOR of the composites. Addition of CMC to cotton stalks has no benefit

  9. Vertical distribution of agriculture crop residue burning aerosol observed by space-borne lidar CALIOP - A case study over the Indo-Gangetic Basin (IGB)

    Science.gov (United States)

    Mishra, A. K.; Shibata, T.

    2011-12-01

    Agriculture crop residue burning is one of the important sources of trace gas emissions and aerosol loading over the Indo-Gangetic Basin (IGB). It is also one of the main causes for dense atmospheric brown clouds (ABCs) formation over South Asian region. Present study deals with spatial and vertical variability of aerosol optical and microphysical properties during the crop residue burning season (October and November) over the IGB. MODIS (MODerate resolution Imaging Spectroradiometer) fire location data and MODIS AOD data confirms the crop residue burning activities over irrigated cropland of the IGB during October and November, 2009. Large values (> 0.7) of MODIS AOD (aerosol optical depth) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) backscatter (>0.006 km-1 sr-1 below 1.0 km altitude) are suggesting enhanced atmospheric pollution associated with agriculture crop residue burning. The increase in tropospheric columnar NO2 and surface CO concentration during October and November also emphasized the significant contribution of crop residue burning activities in enhanced anthropogenic pollution over the IGB. Vertical distribution of backscatter coefficients showed trapping of biomass (crop residues) burning aerosol within boundary layer. Spatial variation of aerosol backscatter and AOD showed large value above north-west part of IGB, major area of crop residue burning activities. The results of this study will be very useful in quantification of optical properties of atmospheric brown clouds and its effect on climate.

  10. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils.

    Science.gov (United States)

    Manolikaki, Ioanna I; Mangolis, Argirios; Diamadopoulos, Evan

    2016-10-01

    Biochars have a high variability in chemical composition, which is influenced by pyrolysis conditions and type of biomass. Essential macronutrient P retained in biochar could be released and made available to plants, enhancing plant growth. This study was conducted in order to evaluate whether biochar, produced from agricultural residues, could release P in water, as well as study its potential effect on plant growth and P uptake. Biochar samples were prepared from rice husks, grape pomace and olive tree prunings by pyrolysis at 300 °C and 500 °C. These samples were used for P batch successive leaching experiments in order to determine P release in water. Subsequently, rice husk and grape pomace biochars, produced by pyrolysis at 300 °C, were applied to two temperate soils with highly different pH. A three-month cultivation period of ryegrass (Lolium perenne L.) was studied in threefold replication, while three harvests were accomplished. Treatments comprised control soils (without amendment) and soils amended only with biochar. Results of P leaching tests showed a continuous release of P from all biochars as compared to raw biomass samples, for which the highest P concentrations were detected during the first extraction. Grape pomace and rice husk biochars pyrolyzed at 500 °C showed higher levels of water-extractable P, as compared to their corresponding raw biomass. Biochars, at 500 °C, leached more P in all four extractions, compared to biochars at 300 °C, apart from olive tree prunings biochars, where both pyrolysis temperatures presented a similar trend. Concerning plant yield of ryegrass, rice husk and grape pomace biochars showed positive statistically significant effects on plant yield only in slightly acidic soil in second and third harvests. In terms of P uptake of ryegrass, grape pomace biochars depicted positive significant differences (P < 0.05) in third harvest, in slightly acidic soil, while in first and second harvests positive

  11. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils.

    Science.gov (United States)

    Manolikaki, Ioanna I; Mangolis, Argirios; Diamadopoulos, Evan

    2016-10-01

    Biochars have a high variability in chemical composition, which is influenced by pyrolysis conditions and type of biomass. Essential macronutrient P retained in biochar could be released and made available to plants, enhancing plant growth. This study was conducted in order to evaluate whether biochar, produced from agricultural residues, could release P in water, as well as study its potential effect on plant growth and P uptake. Biochar samples were prepared from rice husks, grape pomace and olive tree prunings by pyrolysis at 300 °C and 500 °C. These samples were used for P batch successive leaching experiments in order to determine P release in water. Subsequently, rice husk and grape pomace biochars, produced by pyrolysis at 300 °C, were applied to two temperate soils with highly different pH. A three-month cultivation period of ryegrass (Lolium perenne L.) was studied in threefold replication, while three harvests were accomplished. Treatments comprised control soils (without amendment) and soils amended only with biochar. Results of P leaching tests showed a continuous release of P from all biochars as compared to raw biomass samples, for which the highest P concentrations were detected during the first extraction. Grape pomace and rice husk biochars pyrolyzed at 500 °C showed higher levels of water-extractable P, as compared to their corresponding raw biomass. Biochars, at 500 °C, leached more P in all four extractions, compared to biochars at 300 °C, apart from olive tree prunings biochars, where both pyrolysis temperatures presented a similar trend. Concerning plant yield of ryegrass, rice husk and grape pomace biochars showed positive statistically significant effects on plant yield only in slightly acidic soil in second and third harvests. In terms of P uptake of ryegrass, grape pomace biochars depicted positive significant differences (P < 0.05) in third harvest, in slightly acidic soil, while in first and second harvests positive

  12. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Murdy, Rachel Campbell; Mak, Michelle [Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Misra, Manjusri; Mohanty, Amar K. [Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, ON N1G 2W1 (Canada)

    2015-05-22

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance.

  13. Unexpected stimulation of soil methane uptake by bio-based residue application: An emerging property of agricultural soils offsetting greenhouse gas balance.

    Science.gov (United States)

    Ho, Adrian; Reim, Andreas; Ruijs, Rienke; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; Putten, Wim H. vd.; Bodelier, Paul L. E.

    2016-04-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over two months. Unexpectedly, after amendments with specific residues we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotrophic population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus spp. may facilitate methane oxidation in the agricultural soils. Studies are under way to identify the active methane-oxidizers at near atmospheric methane concentrations using PLFA-Stable isotope probing (SIP). While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that the methane oxidation rate can be stimulated, leading to higher soil methane uptake. Moreover, the addition of

  14. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    Science.gov (United States)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  15. Gasification - Status and technology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2012-06-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect gasification and pressurized oxygen-blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them are based on conventional techniques with well-proven components that are commercially available while others, more advantageous solutions, still need further development.

  16. Gasification to petrochemicals

    International Nuclear Information System (INIS)

    Gasification is often used to convert coal, petroleum coke and heavy hydrocarbons to gaseous products for hydrogenation in oil refining and upgrading. Gasification produces a variety of byproducts that can be used to produce petrochemicals. Primary petrochemical derivatives from sulfur, nitrogen, and oxygen can enhance the overall economics of the gasification process, and gasification by-products can be combined with other hydrocarbon feedstocks to produce a variety of secondary and tertiary petrochemical products. This presentation examined the potential for primary, secondary and tertiary petrochemicals derived from Alberta's oil sands industry. The gasification units associated with oil sands processing plants are the largest in the world, which suggests that syngas and other gasification products will benefit from economies of scale. A proposed flow scheme for oil sands bitumen using a naphtha cracker to create ethylene and other petrochemicals was presented as well as flow schemes for the creation of light hydrocarbons, syngas and aromatics. Ammonia and methanol synthesis processes from natural gas were reviewed, as well as issues concerning acetic acid synthesis and phenol synthesis from benzene and propylene. It was concluded that all the products and feedstocks reviewed in the analysis are readily transported and have established markets. refs., tabs., figs

  17. Experimental study of gasification of herb residues of Ganmaoqingre granules in pilot-scale dual-loop circulating fluidized bed%感冒清热颗粒中药渣中试规模循环流化床气化实验

    Institute of Scientific and Technical Information of China (English)

    范鹏飞; 李景东; 刘艳涛; 董玉平; 梁敬翠; 盖超; 张彤辉

    2014-01-01

    The effect of properties of herb residue and air equivalence ratio on the gasification characteristics of Gangmaoqingre granules was investigated. Experiments were conducted in a pilot-scale dual-loop circulating fluidized bed. With the increase of water content,gasification temperature gradually decreased,the contents of tar and CO2 increased,while CO content and carbon conversion rate decreased. Besides,H2 content,gas calorific value and gasification efficiency increased first and then decreased. Smaller particle size contributed to lower tar content and gas calorific value. However,gas yield,gasification efficiency and carbon conversion increased gradually. With the decrease of particle size,H2,CH4,CO,CnHm contents and gasification temperature increased while CO2 content decreased. With the increase of air equivalence ratio,concentration of combustible gas, especially CO,gas calorific value and tar content gradually decreased. Besides,gasification temperature,gas yield and carbon conversion rate gradually increased. But gasification efficiency increased first and then decreased. When water content was smaller than 4% ,granularity was smaller than 4mm and air equivalence ratio was between 0.25 and 0.27,gasification efficiency would be higher,gasification result would be better.%以感冒清热颗粒中药渣为原料,在双回路循环流化床中试设备中进行热解气化实验,研究原料含水率、原料粒径以及空气当量比ER对其气化特性的影响。结果表明:①随着原料含水率的提高,炉内平均温度降低,产生的燃气中焦油含量、CO2含量明显提高;CO含量、气体产率、碳转化率显著降低;H2含量、燃气热值以及气化效率均呈现先增大后减小的趋势。②原料粒径越小,反应炉内平均温度越高,燃气中焦油含量越低,燃气热值和气体产率越高,气化效率以及碳转化率越高;H2、CH4、CO、CnHm含量增加,CO2含量减少。③随着ER的

  18. Fate and residues of pesticides and other agriculturally significant chemicals in livestock and poultry as determined by radiotracer techniques

    International Nuclear Information System (INIS)

    Studies in the author's laboratories during this 5-year program have involved the use of radioisotope techniques (radiocarbon, tritium) to evaluate the fate of several agriculturally-significant chemicals in food animals. Included were studies of the fate of radiolabeled preparations of the organophosphorus insecticide, RH-0994, in a lactating cow; of the organophosphorus insecticide, coumaphos, after dermal application to goats as a pour on formulation; of the synthetic pyrethroid insecticide, resmethrin, in lactating cattle and laying hens; of the growth promoting drug, β-estradiol, after intramuscular injection into steer calves; of the environmental contaminants 4-chlorophenyl methyl sulfide and -sulfone in cattle and sheep; of the potent photosensitizer, xanthotoxin, in a goat, in bovine rumen fluid, and in laying hens; and of the trichothecene mycotoxin, T-2 toxin, in bovine rumen fluid. In these studies, particular emphasis was placed upon elucidation of the chemical nature of metabolic products generated, and upon quantification as appropriate of residues retained by edible tissues or secreted into milk or eggs. (author)

  19. Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams.

    Science.gov (United States)

    Ardanuy, Mònica; Antunes, Marcelo; Velasco, José Ignacio

    2012-02-01

    Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO(2) dissolution, a clean process which avoids the use of chemical blowing agents. With the aim of studying the influence of the fibre characteristics on the resultant foams, two chemical treatments were applied to the barley straw in order to increase the α-cellulose content of the fibres. The chemical composition, morphology and thermal stability of the fibres and composites were analyzed. Results indicate that fibre chemical treatment and later foaming of the composites resulted in foams with characteristic closed-cell microcellular structures, their specific storage modulus significantly increasing due to the higher stiffness of the fibres. The addition of the fibres also resulted in an increase in the glass transition temperature of PP in both the solid composites and more significantly in the foams.

  20. PRODUCTION OF LIPASES IN SOLID-STATE FERMENTATION BY Aspergillus niger F7-02 WITH AGRICULTURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Olayinka Quadri Adio

    2015-06-01

    Full Text Available In this study mould strains screened and molecularly identified as Aspergillus niger F7-02 was used to produced extracellular lipase in Solid State Fermentation (SSF process. Different agricultural residues were combined in different ratios as carbon, nitrogen and elemental sources in the solid culture medium. The optimization of the culture medium was carried out for such parameters as incubation time (24 h - 96 h, inoculum concentration (0.5 – 3.0%, w/v, initial moisture content (40 – 70%, w/v, and initial pH (6 – 8 for maximum yield. The maximum lipase activity of 76.7 U/ml was obtained with a medium containing rice bran (RB, palm kernel cake (PKC, groundnut cake (GNC and starch (S at the ratio of 5:5:3:1 (%w/w with optimum conditions of 60% moisture, 1% inoculum and a pH of 7.0 with an incubation temperature of 30 oC and incubation time of 72 h.

  1. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper;

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two...... an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements....

  2. Bioenergy: Agricultural Crop Residues

    Science.gov (United States)

    The increasing cost of fossil fuels especially natural gas and petroleum as well as a desire to curtail greenhouse gas emissions are driving the expansion of bioenergy. Plant biomass (woody, grain and nongrain) is a potential energy source. Prior to the Industrial Revolution, plant biomass was a maj...

  3. Second stage gasifier in staged gasification and integrated process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  4. Assessment of the Potential of Biomass Gasification for Electricity Generation in Bangladesh

    Directory of Open Access Journals (Sweden)

    Barun Kumar Das

    2014-01-01

    Full Text Available Bangladesh is an agriculture based country where more than 65 percent of the people live in rural areas and over 70% of total primary energy consumption is covered by biomass, mainly agricultural waste and wood. Only about 6% of the entire population has access to natural gas, primarily in urban areas. Electricity production in Bangladesh largely depends on fossil fuel whose reserve is now under threat and the government is now focusing on the alternating sources to harness electricity to meet the continuous increasing demand. To reduce the dependency on fossil fuels, biomass to electricity could play a vital role in this regard. This paper explores the biomass based power generation potential of Bangladesh through gasification technology—an efficient thermochemical process for distributed power generation. It has been estimated that the total power generation from the agricultural residue is about 1178 MWe. Among them, the generation potential from rice husk, and bagasses is 1010 MWe, and 50 MWe, respectively. On the other hand, wheat straw, jute stalks, maize residues, lentil straw, and coconut shell are also the promising biomass resources for power generation which counted around 118 MWe. The forest residue and municipal solid waste could also contribute to the total power generation 250 MWe and 100 MWe, respectively.

  5. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk;

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... in the char conversion process. Comprehensive global equilibrium calculations predicted important characteristics of the inorganic ash residue. Equilibrium calculations predict the formation of liquid salt if sufficient amounts of Ca are added and according to experiments as well as calculations calcium binds...

  6. Pyrolysis and Gasification of Industrial Waste Towards Substitution Fuels Valorisation

    OpenAIRE

    Jung, Céline Gisèle

    2010-01-01

    Industrial waste is usually sorted in order to valorise most of minerals, polymers and metals. This sorting does generate a sorting residue with a rather high calorific value. The present study shows the opportunities of producing gaseous or liquid substitution fuels by pyrolysis or gasification of industrial sorting residues. By the use of the predictive model, it is possible to evaluate, for various inputs (tyres, fluffs, mixed plastics and biomass residues), the mass en energy balance for ...

  7. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper;

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two...... major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, respectively, optimized for energy conversion. Stability of carbon in GB against microbial degradation was...

  8. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  9. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  10. Rethinking Bioenergy from an Agricultural Perspective: Ethical Issues Raised by Perennial Energy Crop and Crop Residue Production in the UK and Denmark

    DEFF Research Database (Denmark)

    Shortall, Orla

    The aim of this project is to explore the social and ethical dimensions of the agricultural production of perennial energy crop and crop residues for energy. Biomass – any living or recently living matter – is being promoted in industrialised countries as part of the transition from fossil fuels...... agriculture including the biorefinery strategy; multifunctional perennial energy crop production on environmentally marginal land; and ecologically integrated multipurpose biomass production through agroforestry production. There is also an argument which cuts across the paradigms and maintains...

  11. Catalytic Gasification of Lignocellulosic Biomass

    NARCIS (Netherlands)

    Chodimella, V.P.; Seshan, K.; Schlaf, Marcel; Zhang, Z. Conrad

    2015-01-01

    Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid biom

  12. Nitrous oxide and N-leaching losses from agricultural soil: Influence of crop residue particle size, quality and placement

    DEFF Research Database (Denmark)

    Ambus, P.; Jensen, E.S.; Robertson, G.P.

    2001-01-01

    Incorporation of crop residues provides a source of readily available C and N, and previous works indicate that farming strategies where crop residues are used for soil fertility purposes may lead to increased emissions of N2O. Information on the importance of different residue management on the ...

  13. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  14. Rapid toxicity screening of gasification ashes.

    Science.gov (United States)

    Zhen, Xu; Rong, Le; Ng, Wei Cheng; Ong, Cynthia; Baeg, Gyeong Hun; Zhang, Wenlin; Lee, Si Ni; Li, Sam Fong Yau; Dai, Yanjun; Tong, Yen Wah; Neoh, Koon Gee; Wang, Chi-Hwa

    2016-04-01

    The solid residues including bottom ashes and fly ashes produced by waste gasification technology could be reused as secondary raw materials. However, the applications and utilizations of these ashes are very often restricted by their toxicity. Therefore, toxicity screening of ash is the primary condition for reusing the ash. In this manuscript, we establish a standard for rapid screening of gasification ashes on the basis of in vitro and in vivo testing, and henceforth guide the proper disposal of the ashes. We used three different test models comprising human cell lines (liver and lung cells), Drosophila melanogaster and Daphnia magna to examine the toxicity of six different types of ashes. For each ash, different leachate concentrations were used to examine the toxicity, with C0 being the original extracted leachate concentration, while C/C0 being subsequent diluted concentrations. The IC50 for each leachate was also quantified for use as an index to classify toxicity levels. The results demonstrated that the toxicity evaluation of different types of ashes using different models is consistent with each other. As the different models show consistent qualitative results, we chose one or two of the models (liver cells or lung cells models) as the standard for rapid toxicity screening of gasification ashes. We may classify the gasification ashes into three categories according to the IC50, 24h value on liver cells or lung cells models, namely "toxic level I" (IC50, 24h>C/C0=0.5), "toxic level II" (C/C0=0.05types of ashes generated in gasification plants every day. Subsequently, appropriate disposal methods can be recommended for each toxicity category. PMID:26923299

  15. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations

    Science.gov (United States)

    Vijayakumar, K.; Safai, P. D.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-09-01

    Agriculture crop residue burning in the tropics is a major source of the global atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. In this paper, we study the effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India during a smoke event that occurred between 09 and 17 November 2013, with the help of satellite measurements and model simulation data. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains (IGP) over large regions. Additionally, ECMWF winds at 850 hPa have been used to trace the source, path and spatial extent of smoke events. Most of the smoke aerosols, during the study period, travel from a west-to-east pathway from the source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO show a layer of thick smoke extending from surface to an altitude of about 3 km. Smoke aerosols emitted from biomass burning activity from Punjab have been found to be a major contributor to the deterioration of local air quality over the NE Indian region due to their long range transport.

  16. Characterization and comparison of a agricultural and forestry residues for energy purpose; Caracterizacao e comparacao de residuos agricolas e florestais para a producao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jofran Luiz de; Silva, Jadir Nogueira da; Pereira, Emanuele Graciosa; Machado, Cassio Silva; Bezerra, Maria da Conceicao Trindade [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], Emails: jofranluiz@yahoo.com.br, jadir@ufv.br

    2010-07-01

    The large volume of waste generated by the industry of wood processing and agriculture is a problem existing in almost all regions of Brazil. Several environmental problems occur as contamination of soil and groundwater due to the accumulation and improper disposal of residues from forestry and agriculture industries. Brazil has agricultural and economic conditions to develop and take advantage of technologies to use wood and other biomass for energy purposes, for being privileged in terms of territorial extension, sunlight and water, essential factors for biomass production on a large scale. The wood chips and coffee husks are low cost residues, renewable and sometimes under utilized, they are environmentally friendly and potentially capable of generating heat, steam and electric power, thus they can contribute as an alternative fuel for generation of energy. In this context, this study aims to characterize and compare residues from the production of coffee and furniture industry. The biomasses were characterized and analyzed for density, heating value, proximate analysis (volatiles, ash and fixed carbon) and elemental composition. Results indicates large energy potential for coffee husks, with HHV equals to 18,6 MJ/Kg slightly higher than the HHV of the eucalyptus chip (17,3 MJ/Kg). (author)

  17. GASIFICATION FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  18. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain

    Science.gov (United States)

    Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  19. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Jianmin Gao

    Full Text Available The application of crop residues combined with Nitrogen (N fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat, individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV under 80% WFPS (the water filled pore space in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0, 200 kg N ha-1 (N200, 250 kg N ha-1 (N250, maize residue plus N200 (MN200, maize residue plus N250 (MN250, wheat residue plus N200 (WN200 and wheat residue plus N250 (WN250. Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O

  20. Influence of agricultural residues interpretation and allocation procedures on the environmental performance of bioelectricity production – A case study on woodchips from apple orchards

    International Nuclear Information System (INIS)

    Highlights: • An LCA of bioelectricity production from apple woody residues (AWRs) is performed. • Two AWRs interpretation are investigated: by-products and co-products. • Different allocation procedures are used for upstream and downstream emissions. • AWRs guarantee significant environmental benefits, when interpreted as by-products. - Abstract: Agricultural woody residues are available in massive quantities and provide a considerable potential for energy production. However, to encourage environmentally sustainable bioenergy strategies, it is necessary to assess the environmental performance of each specific bioenergy chain. Life cycle assessment (LCA) is recognized to be one of the best methodologies to evaluate the environmental burdens of bioenergy chains. The application of LCA to bioenergy from agricultural residues requires practitioners to make choices on how to interpret agricultural residues (i.e. by-products or co-products) and on how to allocate emissions among the different products generated along the bioenergy chain. These are among the most debated issues in the LCA community, given their potentially large influence on final LCA outcomes. A uniform consensus on these issues is still lacking, and no single method is equally suitable for all solutions. The aim of this paper is to assess how different ways of agricultural residue interpretation and different allocation methods (both of upstream and downstream emissions), affect the environmental performance of bioenergy production fed by agricultural residues. In order to address the issue, we perform a full attributional LCA of the electricity production in a combustion combined heat and power plant (CHP) fed with woody residues from apple orchards (AWRs), as a case study. Bioelectricity production from CHP fed with agricultural residues is a good example of a multifunctional process, since multiple products (e.g. grain, fruit, straw, wood, etc.) and energy (e.g. heat and power) are co

  1. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    Science.gov (United States)

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were amended plots, in spite of increased soil organic matter, factor of metal retention. Indeed, DOC, also increased by amendments, favours the

  2. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    . In Europe during World War II, wood-fueled gasifiers (or ‘gas generators’) were used to power cars during shortages of oil-based fuels. Sparked by oil price crises in 1970s and 1980s, further development in gasification technologies focused mainly on coal as a fuel to substitute for oil-based products...

  3. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  4. Coal gasification and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Bell, D.; Towler, B.

    2010-07-01

    This book approaches coal gasification and related technologies from a process engineering point of view, with topics chosen to aid the process engineer who is interested in a complete, coal-to-products system. It provides a perspective for engineers and scientists who analyze and improve components of coal conversion processes. The first topic describes the nature and availability of coal. Next, the fundamentals of gasification are described, followed by a description of gasification technologies and gas cleaning processes. The conversion of syngas to electricity, fuels and chemicals is then discussed. Finally, process economics are covered. Emphasis is given to the selection of gasification technology based on the type of coal fed to the gasifier and desired end product: E.g., lower temperature gasifiers produce substantial quantities of methane, which is undesirable in an ammonia synthesis feed. This book also reviews gasification kinetics which is informed by recent papers and process design studies by the US Department of Energy and other groups. Approaches coal gasification and related technologies from a process engineering point of view, providing a perspective for engineers and scientists who analyze and improve components of coal conversion processes - Describes the fundamentals of gasification, gasification technologies, and gas cleaning processes - Emphasizes the importance of the coal types fed to the gasifier and desired end products - Covers gasification kinetics.

  5. Entrained flow gasification of coal/bio-oil slurries

    DEFF Research Database (Denmark)

    Feng, Ping; Lin, Weigang; Jensen, Peter Arendt;

    2016-01-01

    Coal/bio-oil slurry (CBS) is a new partial green fuel for bio-oil utilization. CBS reacts with gasification agents at high temperatures and converts into hydrogen and carbon monoxide. This paper provides a feasibility study for the gasification of CBS in an atmospheric entrained flow reactor...... for syngas production. Experiments have shown that CBS can be successfully processed and gasified in the entrained flow reactor to produce syngas with almost no tar content and low residual carbon formation. High reactor temperature and steam/carbon ratio is favourable for H2 production. At 1400 °C...

  6. Biomass Gasification Combined Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  7. Catalytic gasification of biomass

    Science.gov (United States)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  8. Fuel gas production from animal and agricultural residues and biomass. Quarterly coordination meeting, December 11-12, 1978, Denver, Colorado. Second Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D L; Ashare, E; Wentworth, R L

    1979-01-05

    The tenth quarterly coordination meeting of the methane production group of the Fuels from Biomass Systems Branch, US Department of Energy was held at Denver, Colorado, December 11-12, 1978. Progress reports were presented by the contractors and a site visit was made to the Solar Energy Research Institute, Golden, Colorado. A meeting agenda, a list of attendees, and progress are presented. Report titles are: pipeline fuel gas from an environmental feedlot; operation of a 50,000 gallon anaerobic digester at the Monroe State Dairy Farm near Monroe, Washington; anaerobic fermentation of livestock and crop residues; anaerobic fermentation of agricultural residues - potential for improvement and implementation; heat treatment of organics for increasing anaerobic biodegradability; and biological conversion of biomass to methane. (DC)

  9. Bioaccessibility of environmentally Aged 14C-Atrazine Residues in an Agriculturally Used Soil and its Particle-Size Aggregates

    OpenAIRE

    Jablonowski, N.D.; Modler, J.; A. Schäffer; Burauel, P.

    2008-01-01

    After 22 years of aging under natural conditions in an outdoor lysimeter the bioaccessibility of C-14-labeled atrazine soil residues to bacteria was tested. Entire soil samples as well as sand-sized, silt-sized, and clay-sized aggregates (> 20, 20-2, and < 2 mu m aggregate size, respectively) were investigated under slurried conditions. The mineralization of residual radioactivity in the outdoor lysimeter soil reached up to 4.5% of the total C-14-activity after 16 days, inoculated with Pseudo...

  10. Interactions between residue placement and earthworm ecological strategy affect aggregate turnover and N2O dynamics in agricultural soil

    NARCIS (Netherlands)

    Giannopoulos, G.; Pulleman, M.M.; Groenigen, van J.W.

    2010-01-01

    Previous laboratory studies using epigeic and anecic earthworms have shown that earthworm activity can considerably increase nitrous oxide (N2O) emissions from crop residues in soils. However, the universality of this effect across earthworm functional groups and its underlying mechanisms remain unc

  11. Gasification from waste organic materials

    Directory of Open Access Journals (Sweden)

    Santiago Ramírez Rubio

    2011-08-01

    Full Text Available This article describes the fixed bed biomass gasifier operation designed and built by the Clean Development Mechanisms and Energy Management research group, the gasifier equipment and the measurement system. The experiment involved agro-industrial residues (biomass such wood chips, coconut shell, cocoa and coffee husk; some temperatures along the bed, its pressure, inlet air flow and the percentage of carbon monoxide and carbon dioxide in the syngas composition were measured. The test results showed that a fuel gas was being obtained which was suitable for use with an internal combustion engine for generating electricity because more carbon monoxide than carbon dioxide was being obtained during several parts of the operation. The gasification experimentation revealed that a gasifier having these characteristics should be ideal for bringing energy to areas where it is hard to obtain it (such as many rural sites in Latin-America or other places where large amounts of agro-industrial wastes are produced. Temperatures of around 1,000°C were obtained in the combustion zone, generating a syngas having more than 20% carbon monoxide in its composition, thereby leading to obtaining combustible gas.

  12. The Impact of Post Harvest Agricultural Crop Residue Fires on Volatile Organic Compounds and Formation of Secondary Air Pollutants in the N.W. Indo-Gangetic Plain

    Science.gov (United States)

    Sinha, V.; Chandra, P.; Kumar, V.; Sarkar, C.

    2015-12-01

    The N.W. Indo-Gangetic Plain (IGP) is an agriculturally and demographically important region of the world. Every year during the post harvest months of April-May and October-November, large scale open burning of wheat straw and paddy straw occurs in the region impairing the regional air quality and resulting in air pollution episodes. Here, using online in-situ measurements from the IISER Mohali Atmospheric Chemistry Facility (Sinha et al., Atmos Chem Phys, 2014), which is located at a regionally representative suburban site in the agricultural state of Punjab, India, we investigated the effects of this activity on gas phase chemistry. The online data pertaining to the pre harvest and post harvest paddy residue fires in 2012, 2013 and 2014 were analyzed to understand the effect of this anthropogenic activity on atmospheric chemistry and regional air quality with respect to health relevant VOCs such as benzenoids and isocyanic acid and trace gases such as ozone and carbon monoxide. These compounds showed marked increases (factor of 2-3 times higher) in their concentrations which correlated with the biomass combustion tracers such as acetonitrile. Emissions from the paddy residue fires did not result in significant enhancement of ambient ozone in 2012 but instead sustained hourly daytime ozone concentrations at ~ 50 ppb during the late post monsoon season, despite decreases in solar radiation and temperature. Results of such massive perturbations to ambient chemical composition, reactivity and formation of secondary pollutants and its implications for human health will be presented in this paper.

  13. NETL, USDA design coal-stabilized biomass gasification unit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-09-30

    Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

  14. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    . Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio...... remained nearly unchanged with varying mixing ratio during straw/wood co-gasification, while increased gradually with increasing biomass mixing ratio during biomass/coal co-gasification. A mathematic model of biomass entrained flow gasification was developed. The model included mixing, drying and pyrolysis......, char-gas and soot-gas reactions, detailed gas-phase reactions, and mass and heat transfer. The model could reasonable predict the yields of syngas products obtained in the biomass gasification experiments. Moreover, the simulation results suggest that the soot can be completely converted and thereby...

  15. Variation on the amount of winter cover crops residues on weeds incidence and soil seed bank during an agricultural year

    Directory of Open Access Journals (Sweden)

    Márcia Maria Mauli

    2011-08-01

    Full Text Available This study analyzed possible interferences associated to the amount of crop residues produced by the black oats and the consortium of black oats, common vetch and forage turnip on weeds incidence and soil seed bank. It was a field trial with seven treatments and five replications. The cover crop was sown at throwing, cut at 100 days and residues were put on each respective plot, using a proportion of normal amount of produced straw, either its half and double. The heaviest weights were obtained from cover crop consortium and their application decreased weeds incidence in such area. The seeds bank and other analyzed parameters did not show statistical differences. According to these results, it was concluded that winter cover crop could be used in crops rotation with soybean.

  16. Characterization of natural fiber from agricultural-industrial residues; Caracterizacao de fibras naturais provenientes de residuos agroindustriais

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Karen S.; Spinace, Marcia A.S., E-mail: marcia.spinace@ufabc.edu.br [Centro de Ciencias Naturais e Humanas, CCNH, Universidade Federal do ABC - UFABC, Campus de Santo Andre, SP (Brazil)

    2011-07-01

    Natural fibers show great potential for application in polymer composites. However, instead of the production of inputs for this purpose, an alternative that can also minimize solid waste generation is the use of agro-industrial waste for this purpose, such as waste-fiber textiles, rice husks residues and pineapple crowns. In this work the characterization of these three residues and evaluate their properties in order to direct the application of polymer composites. Was analyzed the moisture, density, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis of the fibers. The results show that the use of these wastes is feasible both from an environmental standpoint and because its properties suitable for this application. (author)

  17. Gasification of ‘Loose’ Groundnut Shells in a Throathless Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Aondoyila Kuhe

    2015-07-01

    Full Text Available In this paper, gasification potential of biomass residue was investigated using a laboratory scale throatless downdraft gasifier. Experimental results of groundnut shell was gasified in the throatless downdraft gasifier to produce a clean gas with a calorific value of around 5.92 MJ/Nm3 and a combustible fraction of 45% v/v. Low moisture (8.6% and ash content (3.19% are the main advantages of groundnut shells for gasification. It is suggested that gasification of shell waste products is a clean energy alternative to fossil fuels. The product gas can be used efficiently for heating and possible usage in internal combustion engines.

  18. Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  19. Centralized coke gasification study

    Energy Technology Data Exchange (ETDEWEB)

    du Plessis, Duke [Alberta Innovates (Canada); Pietrusik, Debbie [Alberta Finance and Enterprise (Canada)

    2011-07-01

    By the year 2020 Alberta will produce 3 million barrels of bitumen per day. Refining bitumen yields several by-products such as petroleum coke and off-gasses. These products can be further utilized as a low cost feedstock for additional applications to increase revenue. Alberta currently has the largest amount of coke stockpiled in the world. The presentation explores what is the most profitable way to use this coke and what future technologies would improve the economic and environmental impact of the process. The development of methane and hydrogen becomes competitive at intermediate gas and oil prices. The next generation of gasification technologies is going to be cheaper, efficient and much smaller. Pilot projects have shown positive results. Economies of scale can be reached simply by only 20-30% of annual coke production. The high cost of the current technology is creating the biggest challenge but new technologies and process innovations have the potential to drive down cost.

  20. Materials of Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  1. Suitable conditions for xylanases activities from Bacillus sp. GA2(1 and Bacillus sp. GA1(6 and their properties for agricultural residues hydrolysis

    Directory of Open Access Journals (Sweden)

    Sudathip Chantorn

    2016-04-01

    Full Text Available Bacillus sp. GA2(1 and Bacillus sp. GA1(6 were isolated from soybean field in Khon Kaen province, Thailand. Crude enzymes from both isolates showed the activities of cellulase, xylanase, and mannanase at 37°C for 24 h. The highest xylanase activities of Bacillus sp. GA2(1 and Bacillus sp. GA1(6 were 1.58±0.25 and 0.82±0.16 U/ml, respectively. The relative xylanase activities from both strains were more than 60% at pH 5.0 to 8.0. The optimum temperature of xylanases was 50°C in both strains. The residual xylanase activities from both strains were more than 70% at 60°C for 60 min. Five agricultural wastes (AWs, namely coffee residue, soybean meal, potato peel, sugarcane bagasse, and corn cobs, were used as substrates for hydrolysis properties. The highest reducing sugar content of 101±1.32 µg/ml was obtained from soybean meal hydrolysate produced by Bacillus sp. GA2(1 xylanase.

  2. Plasma Gasification of Municipal Solid Waste: A Review

    OpenAIRE

    Kartik Gonawala

    2014-01-01

    Utilization of plasma gasification in waste to energy is one of the novel applications meeting todays need for waste disposal. In this application, plasma arc, gasifies the carbon based part of waste materials such as municipal solid waste, sludge, agricultural waste, etc. and generating a synthetic gas which can be used to produce energy through engine generators, gas turbines and boilers. The non-carbon based part of the waste materials can be vitrified into glass and reusab...

  3. Anaerobic digestion of selected Italian agricultural and industrial residues (grape seeds and leather dust): combined methane production and digestate characterization.

    Science.gov (United States)

    Caramiello, C; Lancellotti, I; Righi, F; Tatàno, F; Taurino, R; Barbieri, L

    2013-01-01

    A combined experimental evaluation of methane production (obtained by anaerobic digestion) and detailed digestate characterization (with physical-chemical, thermo-gravimetric and mineralogical approaches) was conducted on two organic substrates, which are specific to Italy (at regional and national levels). One of the substrates was grape seeds, which have an agricultural origin, whereas the other substrate was vegetable-tanned leather dust, which has an industrial origin. Under the assumed experimental conditions of the performed lab-scale test series, the grape seed substrate exhibited a resulting net methane production of 175.0 NmL g volatile solids (VS)(-1); hence, it can be considered as a potential energy source via anaerobic digestion. Conversely, the net methane production obtained from the anaerobic digestion of the vegetable-tanned leather dust substrate was limited to 16.1 NmL gVS(-1). A detailed characterization of the obtained digestates showed that there were both nitrogen-containing compounds and complex organic compounds present in the digestate that was obtained from the mixture of leather dust and inoculum. As a general perspective of this experimental study, the application of diversified characterization analyzes could facilitate (1) a better understanding of the main properties of the obtained digestates to evaluate their potential valorization, and (2) a combination of the digestate characteristics with the corresponding methane productions to comprehensively evaluate the bioconversion process.

  4. Anaerobic fermentation of agricultural residues: potential for improvement and implementation. Seventh quarter progress report, December 16, 1977--March 15, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, W.J.; Guest, R.W.; Loehr, R.C.; Price, D.R.; Gunkel, W.W.; Van Soest, P.J.

    1978-01-01

    This is the seventh progress report of an on-going three year research effort to contribute to the development of a new and/or improved technology that will result in wide spread use of an anaerobic fermentation in agriculture to generate a renewable clean energy source. Activities are now concentrating on full-scale and pilot-scale demonstration of simplified fermentors for manures. Activities for the seventh quarter year, extending from December 16, 1977 to March 15, 1978, have included the following: completion of construction of the full scale conventional control fermenter; completion of construction, testing and startup of the random mix fermenter; installation of feed and effluent lines, electrical wiring, boilers, gas lines and controls; successful testing of the ram pump; conclusion of the 35/sup 0/C studies with the pilot scale plug flow fermenter and the initiation of the low temperature (25/sup 0/C) studies; and preparation of a detailed outline to the design manual. As of March 15, 1978, the overall progress achieved with the major components of the project was estimated to be about 2.5 months behind the work plan schedule. As detailed in the last progress report, much of this delay has been due to the winter weather (i.e., cold temperatures, snow, frozen ground, etc.) which has interfered with excavation and other outdoor construction activities.

  5. Anaerobic digestion of selected Italian agricultural and industrial residues (grape seeds and leather dust): combined methane production and digestate characterization.

    Science.gov (United States)

    Caramiello, C; Lancellotti, I; Righi, F; Tatàno, F; Taurino, R; Barbieri, L

    2013-01-01

    A combined experimental evaluation of methane production (obtained by anaerobic digestion) and detailed digestate characterization (with physical-chemical, thermo-gravimetric and mineralogical approaches) was conducted on two organic substrates, which are specific to Italy (at regional and national levels). One of the substrates was grape seeds, which have an agricultural origin, whereas the other substrate was vegetable-tanned leather dust, which has an industrial origin. Under the assumed experimental conditions of the performed lab-scale test series, the grape seed substrate exhibited a resulting net methane production of 175.0 NmL g volatile solids (VS)(-1); hence, it can be considered as a potential energy source via anaerobic digestion. Conversely, the net methane production obtained from the anaerobic digestion of the vegetable-tanned leather dust substrate was limited to 16.1 NmL gVS(-1). A detailed characterization of the obtained digestates showed that there were both nitrogen-containing compounds and complex organic compounds present in the digestate that was obtained from the mixture of leather dust and inoculum. As a general perspective of this experimental study, the application of diversified characterization analyzes could facilitate (1) a better understanding of the main properties of the obtained digestates to evaluate their potential valorization, and (2) a combination of the digestate characteristics with the corresponding methane productions to comprehensively evaluate the bioconversion process. PMID:24191456

  6. Gasification experience with biomass and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, H.P.; Adlhoch, W. [Rheinbraun AG, Cologne (Germany)

    1996-12-31

    The HTW process is particularly favourable for the gasification of low-rank feedstocks. During various tests - performed in b-bench- scale, pilot-scale and industrial scale units - consequences with regard to feedstock preparation. Gasification behaviour, corrosion, emission and residual matter were carefully studied for a large number of different feedstocks. Information is now available for optimal utilisation of several types of biomass and waste materials in relation to plant operation, emission and residue utilization. Different types of biomass were tested in bench-scale conditions in an atmospheric HTW process development unit. Industrial-scale experience concerning biomass is available from the Gasification plant at Oulu, Finland, which operated from 1988 to 1991, producing ammonia synthesis gas from dried Finnish peat. During several test campaigns performed at the HTW demonstration plant sewage sludge, loaded coke and used plastics were co-gasified at feeding rates of up to 5 t/h. Operability, conversion efficiency, syngas contaminants, solid residue characteristics and emissions were monitored very carefully. Co-gasification in a dried lignite mixture allows synthesis gas for methanol production to be obtained also from waste materials. Thus, waste is converted into a useful chemical feedstock. For both sewage sludge and loaded coke, conversion efficiency and syngas yield were sufficient. Within the scope of a solid residue characterization various contaminants, including chlorine, sulphur, heavy metals and other trace elements or organic compounds, their formation and/or release were detected. Emissions were well below the limits. However, an increase in the benzene and naphthalene concentrations in the crude gas occurred. Thus, a commercial application requires additional gas treatment. In the next few years, feedstock recycling of mixed plastics household waste from Duales System Deutschland GmbH will call for a plant capacity of 350 000 to 400 000

  7. An analysis of producing ethanol and electric power from woody residues and agricultural crops in East Texas

    Science.gov (United States)

    Ismayilova, Rubaba Mammad

    The increasing U.S. dependence on imported oil; the contribution of fossil fuels to the greenhouse gas emissions and the climate change issue; the current level of energy prices and other environmental concerns have increased world interest in renewable energy sources. Biomass is a large, diverse, readily exploitable resource. This dissertation examines the biomass potential in Eastern Texas by examining a 44 county region. This examination considers the potential establishment of a 100-megawatt (MW) power plant and a 20 million gallon per year (MMGY) ethanol plant using lignocellulosic biomass. The biomass sources considered are switchgrass, sugarcane bagasse, and logging residues. In the case of electricity generation, co-firing scenarios are also investigated. The research analyzes the key indicators involved with economic costs and benefits, environmental and social impacts. The bioenergy production possibilities considered here were biofeedstock supported electric power and cellulosic ethanol production. The results were integrated into a comprehensive set of information that addresses the effects of biomass energy development in the region. The analysis indicates that none of the counties in East Texas have sufficient biomass to individually sustain either a 100% biomass fired power plant or the cellulosic ethanol plant. Such plants would only be feasible at the regional level. Co-firing biomass with coal, however, does provide a most attractive alternative for the study region. The results indicate further that basing the decision solely on economics of feedstock availability and costs would suggest that bioenergy, as a renewable energy, is not a viable energy alternative. Accounting for some environmental and social benefits accruing to the region from bioenergy production together with the feedstock economics, however, suggests that government subsidies, up to the amount of accruing benefits, could make the bioenergies an attractive business opportunity

  8. Study on Semi-Gasification Combustion Technology of Stover

    Directory of Open Access Journals (Sweden)

    Zhao Qing-Ling

    2013-04-01

    Full Text Available In order to develop a mechanism of clean and efficient combustion, this study studied the combustion mechanism of stover semi-gasification by a clean stove designed. The experimental material was corn Stover briquettes. Process of semi-gasification combustion can be divided into two parts: gasification stage and combustion stage. First, under the low primary air amount, stover gives off partly combustible gas (Volatile matter. Then, the combustible gas rises and burns in the upper Furnace when it meets higher secondary air amount. At the same time, the residue remained in bottom Furnace keeps on gasifying and burning under high temperature until the fuel is exhausted. In the process, two phases (solid and gas combustion becomes into one phase (gas combustion. Due to inadequate primary air and low temperature of semi-gasification chamber (550-750℃, all the ash was loose and no slag was found. Moreover, combustible gas produced was directly completely burned off and no tar appeared in the emissions. According to the result, the combustion thermal efficiency of clean stove (75% is up to 75% and higher than primary stove (below 12%.

  9. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper;

    2015-01-01

    major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, respectively, optimized for energy conversion. Stability of carbon in GB against microbial degradation......Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two...... was assessed in a shortterm soil incubation study and compared to the traditional practice of direct incorporation of cereal straw. The GBs were chemically and physically characterized to evaluate their potential to improve soil quality parameters. After 110 days of incubation, about 3% of the added GB carbon...

  10. Gasification of cyanobacterial in supercritical water.

    Science.gov (United States)

    Zhang, Huiwen; Zhu, Wei; Xu, Zhirong; Gong, Miao

    2014-01-01

    Cyanobacterial collected from eutrophic freshwater lakes constituted intractable waste with a rich algae biomass content. Supercritical water gasification (SCWG) was proposed to treat the cyanobacterial and to produce hydrogen for energy. The H 2 yield reached 2.92 mol/kg at reaction conditions of 500 °C, 30 min and 22 MPa; this yield accounted for 26% of the total gaseous products. Abundant ammonia and dissolved reactive phosphorous were concentrated in the liquid product, which could be recovered and used as a liquid fertilizer. Solid residue, which accounted only for about 1% of the wet weight, was mainly composed of coke and ash. The efficiency of H 2 production was better than that from other biomass, because of the abundant organic matter in cyanobacterial. Thus, cyanobacterial are an ideal biomass feedstock for H 2 production from SCWG. PMID:25176482

  11. Policy Impact on Economic Viability of Biomass Gasification Systems in Indonesia

    Directory of Open Access Journals (Sweden)

    Pranpreya Sriwannawit

    2016-03-01

    Full Text Available Indonesia is facing challenges on the lack of electricity access in rural areas and the management of agricultural waste. The utilization of waste-to-energy technology can help in mitigating these issues. The aim of this paper is to assess the economic viability of a biomass gasification system for rural electrification by investigating its competitiveness in relation to various government supports. Financial modelling is applied to calculate Net Present Value (NPV, Internal Rate of Return (IRR, and Levelized Cost of Electricity (LCOE. NPV and IRR results indicate that biomass gasification is an economically viable option when appropriate financial government supports exist. LCOE result indicates that biomass gasification system is already more economically competitive compared to diesel generator even without additional support but it is less competitive compared to the national electricity grid tariff. In conclusion, the biomass gasification system is an economically viable option for rural electrification in Indonesian context.

  12. Straw Gasification in a Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Hindsgaul, Claus; Henriksen, Ulrik Birk;

    2002-01-01

    residues were examined after the test. No agglomeration or sintering was observed in the ash residues. The tar content was measured both by solid phase amino adsorption (SPA) method and cold trapping (Petersen method). Both showed low tar contents (~42 mg/Nm3 without gas cleaning). The particle content......Additive-prepared straw pellets were gasified in the 100 kW two-stage gasifier at The Department of Mechanical Engineering of the Technical University of Denmark (DTU). The fixed bed temperature range was 800-1000°C. In order to avoid bed sintering, as observed earlier with straw gasification...

  13. Survey of biomass gasification. Volume II. Principles of gasification

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B. (comp.)

    1979-07-01

    Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

  14. A review on gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kirubakaran, V. [Rural Technology Centre, Gandhigram Rural University, Gandhigram 624302, Tamil Nadu (India); Sivaramakrishnan, V. [Department of Mechanical Engineering, Saranathan College of Engineering, Tiruchirapalli 620012, Tamil Nadu (India); Nalini, R. [Department of Renewable Energy, Periyar Maniyammai College of Technology for Women, Vallam 613403, Tamil Nadu (India); Sekar, T. [Department of Petrochemical Technology, Anna University, Tiruchirappalli, Tamil Nadu (India); Premalatha, M.; Subramanian, P. [Centre for Energy and Environmental Science and Technology (CEESAT), National Institute of Technology, Tiruchirapalli 620015, Tamil Nadu (India)

    2009-01-15

    Studies on the effect of size, structure, environment, temperature, heating rate, composition of biomass and ash are reviewed. Based on the observations reported so far, auto-gasification of biomass by the bio-oxygen and the catalytic ash would be feasible. The auto-gasification may be explained in terms of heterogeneous catalytic reaction. Better understanding of auto-gasification is possible by further studies carrying out on the effect of heating rate on auto-gasification. (author)

  15. The Development of a Curriculum for Renewable Energy: A Case Study of Charcoal Briquettes from Agricultural Residues for Environmental Literacy of Secondary School Students at Samaki Wittaya Municipality School

    Science.gov (United States)

    Klakayan, Jagree; Singseewo, Adisak

    2016-01-01

    This research aimed to (1) design a curriculum on Production of Charcoal Briquettes from Agricultural Residues, (2) implement the designed curriculum, and (3) study and compare the learning achievements of Matthayomsuksa 3 students at Samakee Wittaya Municipality School in terms of knowledge, learning skills, and participation in the production of…

  16. Coal gasification: A multiple talent

    Energy Technology Data Exchange (ETDEWEB)

    Schreurs, H.

    1996-12-31

    Coal Gasification is on a pressurized route to commercial application. Ground breaking was performed by the Cool Water, Tennessee Eastman and UBE plants. Now several technical and commercial demonstrations are underway not only to show the readiness of the technology for commercial application. Another goal is further developed to reduce costs and to rise efficiency. The main feature of coal gasification is that it transforms a difficult-to-handle fuel into an easy-to-handle one. Through a high efficient gas-turbine cycle-power production becomes easy, efficient and clean. Between gasification and power production several more or less difficult hurdles have to be taken. In the past several studies and R and D work have been performed by Novem as by others to get insight in these steps. Goals were to develop easier, more efficient and less costly performance of the total combination for power production. This paper will give an overview of these studies and developments to be expected. Subjects will be fuel diversification, gas treating and the combination of Integrated Coal Gasification Combined Cycle with several cycle and production of chemical products. As a conclusion a guide will be given on the way to a clean, efficient and commercial acceptable application of coal gasification. A relation to other emerging technologies for power production with coal will be presented.

  17. Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA)

    International Nuclear Information System (INIS)

    The project Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA) was implemented with long-term partners from Egypt and Germany leaded by the Department Waste Management and Material Flow from September 2011 until October 2013. Aim of the project was the development of technologies for the utilization of agricultural wastes and residues at the example of rice straw, with the focus on the energetic and material use. In the long term a contribution to climate protection and natural resource management could be reached. The focus was on investigations in the field of biogas, ethanol and butanol production including pretreatment as well as the material use in horticulture. The results show that the biogas and ethanol production with adapted pretreatments of rice straws is possible. The technical adaptation of a biogas plant (eo-digestion) would be associated with about 20% higher investment costs and higher operating costs with an approximately 15% higher energy demand. In Germany, however, this may still economically by the substitution of expensive or difficult available energy crops (reduction of substrate costs by 30 to 35% for a 600 kWel-BGP using maize silage). The investigated solutions for material use in Egypt showed good results, which in some cases exceeded the expectations. By the use of rice straw imported peat substrates could be substitute or irrigation water saved, what is ecologically and economically useful. The production of ethanol from rice straw was implemented on laboratory scale and preconditions for investigations in semi-industrial and partly pilot scale were created. The bilateral project'' was funded in the framework of the German-Egypt-Research-Fond (GERF) by the German Federal Ministry of Education and Research (BMBF) and the Egyptian Science and Technology Development Fund in Egypt (STDF). The total budget

  18. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.

    Science.gov (United States)

    Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng

    2015-08-01

    Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (pglyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction (NaHCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction (HCl-glyphosate) and concomitantly reduced that of the NaHCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution pH on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils.

  19. Environmental benefits of underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification,gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward.

  20. Historical development of underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Olness, D.; Gregg, D.W.

    1977-06-30

    The development of underground coal gasification is traced through a discussion of the significant, early experiments with in situ gasification. Emphasized are the features of each experiment that were important in helping to alter and refine the process to its present state. Experimental details, coal characteristics, and gasification data are supplied for many of the experiments. 69 refs.

  1. Pesticide Residues on the Quality and Safety of Agricultural Products of Impact Analysis%农药残留对农产品质量安全的影响分析

    Institute of Scientific and Technical Information of China (English)

    赵锡澄

    2012-01-01

      概述当今农产品质量安全的情况、农药残留对农产品质量安全的影响,讨论如何在现今形势下尽量减少农药残留,提高农产品质量安全,为人类健康最大程度的谋求福利。%  The paper summarized the situation of the quality and safety of agricultural products, pesticide residues on the influence of the quality and safety of agricultural products, and finally discusses how to in the current situation, try to reduce the pesticide residue, improve the quality and safety of agricultural products, for human health maximum benefits.

  2. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  3. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  4. Quantitative analysis of dicamba residues in raw agricultural commodities with the use of ion-pairing reagents in LC-ESI-MS/MS.

    Science.gov (United States)

    Guo, Hongyue; Riter, Leah S; Wujcik, Chad E; Armstrong, Daniel W

    2016-03-01

    A sensitive and selective HPLC-MS/MS method was developed for the quantitative analysis of dicamba residues in raw agricultural commodities (RACs). Instead of analysis in the traditionally used negative electrospray ionization (ESI) mode, these anionic compounds were detected in positive ESI with the use of ion-pairing reagents. In this approach, only a small amount (60µM) of a commercially available dicationic ion-pairing reagent was introduced into the post-column sample stream. This method has been validated in six different types of RACs including corn grain, corn stover, cotton seed, soybean, soy forage and orange with satisfactory quantitative accuracy and precision. The limits of quantitation (LOQ) values for these analytes were 1.0 to 3.0µg/kg. The standard curves were linear over the range of the tested concentrations (3.0 to 500µg/kg), with correlation coefficient (r) values≥0.999. Evaluation of ionization effects in RAC matrix extracts using diluent blanks for comparison showed no significant matrix effects were present. PMID:26717820

  5. Gasification techniques and fluidized-bed gasification of biomass - ways of optimising combustion and energy utilisation. Vergasungstechniken und Wirbelschichtvergasung von Biomasse - Wege zur Optimierung der Verbrennung und der Energienutzung

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, W. (Wamsler Umwelttechnik, Muenchen (Germany))

    1994-01-01

    To date, electricity can only be generated from biomass via steam production. There are no gasification techniques available for generating electricity from biomass at an industrial scale. The paper describes the current stage of development and two possible applications of a gasification technique whose attractivity lies not only in direct electricity production and utilisation of residual heat (block-type thermal power station). The gasification is also a way of compensating the drawbacks of solid fuel combustion compared with gas combustion. (orig./EF)

  6. Gasification-based energy production systems for different size classes - Potential and state of R and D

    International Nuclear Information System (INIS)

    (Conference paper). Different energy production systems based on biomass and waste gasification are being developed in Finland. In 1986-1995 the Finnish gasification research and development activities were almost fully devoted to the development of simplified IGCC power systems suitable to large-scale power production based on pressurized fluid-bed gasification, hot gas cleaning and a combined-cycle process. In the 1990's the atmospheric-pressure gasification activities aiming for small and medium size plants were restarted in Finland. Atmospheric-pressure fixed-bed gasification of wood and peat was commercialized for small-scale district heating applications already in the 1980's. Today research and development in this field aims at developing a combined heat and power plant based on the use of cleaned product gas in internal combustion engines. Another objective is to enlarge the feedstock basis of fixed-bed gasifiers, which at present are limited to the use of piece-shaped fuels such as sod peat and wood chips. Intensive research and development is at present in progress in atmospheric-pressure circulating fluidized-bed gasification of biomass residues and wastes. This gasification technology, earlier commercialized for lime-kiln applications, will lead to co-utilization of local residues and wastes in existing pulverized coal fired boilers. The first demonstration plant is under construction in Finland and there are several projects under planning or design phase in different parts of Europe. 48 refs., 1 fig., 1 tab

  7. The Effect of Gasification Biochar on Soil Carbon Sequestration, Soil Quality and Crop Growth

    DEFF Research Database (Denmark)

    Hansen, Veronika

    New synergies between agriculture and the energy sector making use of agricultural residues for bioenergy production and recycling recalcitrant residuals to soil may offer climate change mitigation potential through the substitution of fossil fuels and soil carbon sequestration. However, concerns...

  8. Plasma gasification process: Modeling, simulation and comparison with conventional air gasification

    International Nuclear Information System (INIS)

    Highlights: ► Plasma/conventional gasification are modeled via Gibbs energy minimization. ► The model is applied to wide range of feedstock, tire, biomass, coal, oil shale. ► Plasma gasification show high efficiency for tire waste and coal. ► Efficiency is around 42% for plasma and 72% for conventional gasification. ► Lower plasma gasification efficiency justifies hazardous waste energy recovery. - Abstract: In this study, two methods of gasification are developed for the gasification of various feedstock, these are plasma gasification and conventional air gasification. The two methods are based on non-stoichiometric Gibbs energy minimization approach. The model takes into account the different type of feedstocks, which are analyzed at waste to energy lab at Masdar Institute, oxidizer used along with the plasma energy input and accurately evaluates the syngas composition. The developed model is applied for several types of feedstock, i.e. waste tire material, coal, plywood, pine needles, oil shale, and municipal solid waste (MSW), algae, treated/untreated wood, instigating air/steam as the plasma gas and only air as oxidizer for conventional gasification. The results of plasma gasification and conventional air gasification are calculated on the bases of product gas composition and the process efficiency. Results of plasma gasification shows that high gasification efficiency is achievable using both tire waste material and coal, also, the second law efficiency is calculated for plasma gasification that shows a relative high efficiency for tire and coal as compare to other feedstock. The average process efficiency for plasma gasification is calculated to be around 42%. On other hand the result of conventional gasification shows an average efficiency of 72%. The low efficiency of plasma gasification suggest that if only the disposal of hazard waste material is considered then plasma gasification can be a viable option to recover energy.

  9. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide

    Science.gov (United States)

    Praphulla Chandra, Boggarapu; Sinha, Vinayak

    2016-04-01

    benzene and ensure compliance with the NAAQS. Calculations of excessive lifetime cancer risk due to benzene amount to 25 and 10 per million inhabitants for children and adults, respectively, exceeding the USEPA threshold of 1 per million inhabitants. Annual exposure to isocyanic acid was close to 1 ppb, the concentration considered to be sufficient to enhance risks for cardiovascular diseases and cataracts. This study makes a case for urgent mitigation of post-harvest paddy residue fires as the unknown synergistic effect of multi-pollutant exposure due to emissions from this anthropogenic source may be posing grave health risks to the population of the N.W. IGP. This work has been published very recently and the citation to the complete work is: B.P. Chandra, Vinayak Sinha, Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide, Environment International, Volume 88, March 2016, Pages 187-197, ISSN 0160-4120, http://dx.doi.org/10.1016/j.envint.2015.12.025.

  10. Biomass gasification in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    This reports summarizes the activities, industries, and plants on biomass gasification in the Netherlands. Most of the initiatives somehow relate to waste streams, rather than clean biomass, which may seem logic for a densely populated country as the Netherlands. Furthermore, there is an increasing interest for the production of SNG (Substitute Natural Gas) from biomass, both from governments and industry.

  11. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

    2003-02-01

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and

  12. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Nasrullah, M.

    2011-12-15

    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  13. Strategy for research, development and demonstration of thermal biomass gasification in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Morten Tony

    2011-12-15

    Technology for thermal gasification of biomass is one of the key elements to make the vision of an energy system without fossil fuels a reality. Gasification technology can enhance the flexibility needed to maintain a future energy system with a large share of wind power. Furthermore, gasification has advantages in terms of ash recycling and utilisation of vast but challenging biomass residues. Danish companies are globally well advanced with this technology and the market for gasification technology is great in both Denmark and abroad. There is a clear need for targeted technology RD and D in order to reach the last stretch to a commercial breakthrough. The project ''Strategy for research, development and demonstration of thermal biomass gasification in Denmark'' is the Danish industrys contribution to the development of biomass gasification and goes into detail with the RD and D needs. The project has been conducted by FORCE Technology for DI Bioenergy with funding from EUDP, Energinet.dk, DI Bioenergy and FORCE Technology and five stakeholder companies. (LN)

  14. Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden

    International Nuclear Information System (INIS)

    Highlights: ► Biorefineries can produce ethanol, biogas, heat and power efficiently with profit. ► Location of plant is decided by raw material supply in the region. ► Increased production of high value compounds affects profitability. ► Energy efficiency is increased by availability of heat sinks. ► Several locations may be suitable for construction of a biorefinery plant. -- Abstract: This study presents a survey of the most important techno-economic factors for the implementation of biorefineries based on agricultural residues, in the form of straw, and biochemical conversion into ethanol and biogas, together with production of electricity and heat. The paper suggests locations where the necessary conditions can be met in Sweden. The requirements identified are regional availability of feedstock, the possibility to integrate with external heat sinks, appropriate process design and the scale of the plant. The scale of the plant should be adapted to the potential, regional, raw-material supply, but still be large enough to give economies of scale. The integration with heat sinks proved to be most important to achieve high energy-efficiency, but it was of somewhat less importance for the profitability. Development of pentose fermentation, leading to higher ethanol yields, was important to gain high profitability. Promising locations were identified in the county of Östergötland where integration with an existing 1st generation ethanol plant and district heating systems (DHSs) is possible, and in the county of Skåne where both a significant, potential straw supply and integration potential with DHSs are available.

  15. The joint food and agriculture organization of the united nations/world health organization expert committee on food additives and its role in the evaluation of the safety of veterinary drug residues in foods

    OpenAIRE

    MacNeil, James D.

    2005-01-01

    The Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) recommended the evaluation of food additives at the international level through the establishment of an expert committee or committees. These committees evaluated the safety of food additives present as residues resulting from the use of pesticides or veterinary pharmaceuticals. The results of these meetings include international harmonization on acceptable daily intake of these compounds...

  16. International Seminar on Gasification 2008

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen (ed.)

    2008-11-15

    In total 20 international and national experts were invited to give presentations (The PPT-presentations are collected in this volume).The seminar was divided into three parts: Production technologies; Applications - Gas turbines and gas Engines - Biomethane as vehicle fuel- Syngas in industrial processes; Strategy, policy and vision. Production of synthetic fuels through gasification of biomass is expected to develop rapidly due to political ambitions related to the strong fossil fuel dependency, especially within the transportation sector, security of supply issues and the growing environmental concern. Techniques that offer a possibility to produce high quality fuels in an efficient and sustainable way are of great importance. In this context gasification is expected to play a central part. The indirect gasification concept has been further developed in recent years and there are now pilot and demonstration plants as well as commercial plants in operation. The RandD activities at the semi-industrial plant in Guessing, Austria have resulted in the first commercial plant, in Oberwart. The design data is 8.5 MW{sub th} and 2.7 MW{sub e} which gives an electric efficiency of 32 % and the possibility to produce biomethane. In this scale conventional CHP production based on combustion of solid biomass and the steam cycle would result in a poor electric efficiency. Metso Power has complemented the 12 MW{sub th} CFB-boiler at Chalmers University of Technology, Gothenburg, Sweden with a 2 MW{sub th} indirect gasifier. The gasifier is financed by Gothenburg Energy and built for RD purposes. Gothenburg Energy in collaboration with E.ON Sweden will in a first stage build a 20 MW plant for biomethane production (as vehicle fuel and for grid injection) in Gothenburg based on the indirect gasification technology. The plant is expected to be in operation in 2012. The next stage involves an 80 MW plant with a planned start of operation in 2015. Indirect gasification of biomass

  17. Gasification of high ash, high ash fusion temperature bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  18. Hydrogen production from marine biomass by hydrothermal gasification

    International Nuclear Information System (INIS)

    Highlights: • Supercritical water gasification of Posidonia oceanica was studied. • The output was mainly composed of hydrogen, methane and carbon dioxide. • Maximum hydrogen yield was obtained with biomass loading of 0.08 (g/mL) at 600 °C. • Maximum hydrogen and methane yields were 10.37 and 6.34 mol/kg, respectively. • The results propose an alternative solution to the landfill of marine biomass. - Abstract: The hydrothermal gasification of Posidonia oceanica was investigated in a batch reactor without adding any catalysts. The experiments were carried out in the temperature range of 300–600 °C with different biomass loading ranges of 0.04–0.12 (g/mL) in the reaction time of 1 h. The product gas was composed of hydrogen, methane, carbon dioxide, carbon monoxide and a small amount of C2–C4 compounds. The results showed that the formation of gaseous products, gasification efficiency and yield distribution of produced gases were intensively affected by biomass loading and temperature. The yields of hydrogen (10.37 mol/kg) and methane (6.34 mol/kg) were attained at 600 °C using biomass loading of 0.08 (g/mL). The results are very promising in terms of deployment of the utilization of marine biomass for hydrogen and/or methane production to industrial scale applications, thereby proposing an alternative solution to the landfill of P. oceanica residues

  19. From waste to energy -- Catalytic steam gasification of broiler litter

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.A.; Sheth, A.C.

    1999-07-01

    In 1996, the production of broiler chickens in the US was approximately 7.60 billion head. The quantity of litter generated is enormous. In 1992, the Southeast region alone produced over five million tons of broiler litter. The litter removed from the broiler houses is rich in nutrients and often spread over land as a fertilizer. Without careful management, the associated agricultural runoff can cause severe environmental damage. With increasing broiler litter production, the implementation of alternative disposal technologies is essential to the sustainable development of the poultry industry. A process originally developed for the conversion of coals to clean gaseous fuel may provide an answer. Catalytic steam gasification utilities an alkali salt catalyst and steam to convert a carbonaceous feedstock to a gas mixture composed primarily of carbon monoxide, carbon dioxide, hydrogen, and methane. The low to medium energy content gas produced may be utilized as an energy source or chemical feedstock. Broiler litter is an attractive candidate for catalytic steam gasification due to its high potassium content. Experiments conducted in UTSI's bench-scale high-pressure fixed bed gasifier have provided data for technical and economic feasibility studies of the process. Experiments have also been performed to examine the effects of temperature, pressure, and additional catalysts on the gasification rate.

  20. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

  1. The development of solid fuel gasification systems for cost-effective power generation with low environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kurkela, E.; Staahlberg, P.; Laatikainen-Luntama, J.; Ranta, J.; Hepola, J.; Kangasmaa, K. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1997-10-01

    Relatively low carbon conversion is a disadvantage related to the air-blown fluidised-bed coal-biomass co-gasification process. Low carbon conversion is due to different reactivities and ash sintering behaviour of coal and biomass which leads to compromises in definition of gasification process conditions. In certain cases co-gasification may also lead to unexpected deposit formations or corrosion problems in downstream components especially when high alkali metal or chlorine containing biomass feedstocks are co-gasified with coal. During the reporting period, the work focused on co-gasification of coal and wood waste. The objectives of the present work were to find out the optimum conditions for improving the carbon conversion and to study the formation of different gas impurities. The results based on co-gasification tests with a pressurised fluidised-bed gasifies showed that in co-gasification even with only 15 % coal addition the heavy tar concentration was decreased significantly and, simultaneously, an almost total carbon conversion was achieved by optimising the gasification conditions. The study of filter fines recirculation and solid residues utilisation was started by characterizing filter dust. The work was carried out with an entrained-flow reactor in oxidising, inert and reducing gas conditions. The aim was to define the conditions required for achieving increased carbon conversion in different reactor conditions

  2. Fuel Flexibility in Gasification

    Energy Technology Data Exchange (ETDEWEB)

    McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K. (U.S. DOE National Energy Technology Laboratory); Lui, Alain P.; Batton, William A. (Parsons Infrastructure and Technology Group, Inc.)

    2001-11-06

    coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the

  3. Solid biofuels production from agricultural residues and processing by-products by means of torrefaction treatment: the case of sunflower chain

    OpenAIRE

    Daniele Duca; Giovanni Riva; Ester Foppa Pedretti; Giuseppe Toscano; Chiara Mengarelli; Giorgio Rossini

    2014-01-01

    The high heterogeneity of some residual biomasses makes rather difficult their energy use. Their standardisation is going to be a key aspect to get good quality biofuels from those residues. Torrefaction is an interesting process to improve the physical and chemical properties of lignocellulosic biomasses and to achieve standardisation. In the present study torrefaction has been employed on residues and by-products deriving from sunflower production chain, in particular sunflower stalks, husk...

  4. Trace metal transformations in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A. [and others

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  5. International Seminar on Gasification 2008

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen (ed.)

    2008-11-15

    In total 20 international and national experts were invited to give presentations (The PPT-presentations are collected in this volume).The seminar was divided into three parts: Production technologies; Applications - Gas turbines and gas Engines - Biomethane as vehicle fuel- Syngas in industrial processes; Strategy, policy and vision. Production of synthetic fuels through gasification of biomass is expected to develop rapidly due to political ambitions related to the strong fossil fuel dependency, especially within the transportation sector, security of supply issues and the growing environmental concern. Techniques that offer a possibility to produce high quality fuels in an efficient and sustainable way are of great importance. In this context gasification is expected to play a central part. The indirect gasification concept has been further developed in recent years and there are now pilot and demonstration plants as well as commercial plants in operation. The RandD activities at the semi-industrial plant in Guessing, Austria have resulted in the first commercial plant, in Oberwart. The design data is 8.5 MW{sub th} and 2.7 MW{sub e} which gives an electric efficiency of 32 % and the possibility to produce biomethane. In this scale conventional CHP production based on combustion of solid biomass and the steam cycle would result in a poor electric efficiency. Metso Power has complemented the 12 MW{sub th} CFB-boiler at Chalmers University of Technology, Gothenburg, Sweden with a 2 MW{sub th} indirect gasifier. The gasifier is financed by Gothenburg Energy and built for RD purposes. Gothenburg Energy in collaboration with E.ON Sweden will in a first stage build a 20 MW plant for biomethane production (as vehicle fuel and for grid injection) in Gothenburg based on the indirect gasification technology. The plant is expected to be in operation in 2012. The next stage involves an 80 MW plant with a planned start of operation in 2015. Indirect gasification of biomass

  6. The direct observation of alkali vapor species in biomass combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    French, R J; Dayton, D C; Milne, T A

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  7. Gasification of biomass chars in steam-nitrogen mixture

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)]. E-mail: hanzade@itu.edu.tr; Yaman, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Kucukbayrak, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)

    2006-05-15

    Some agricultural and waste biomass samples such as sunflower shell, pinecone, rapeseed, cotton refuse and olive refuse were first pyrolyzed in nitrogen, and then, their chars were gasified in a gas mixture of steam and nitrogen. Experiments were performed using the thermogravimetric analysis technique. Pyrolysis of the biomass samples was performed at a heating rate of 20 K/min from ambient to 1273 K in a dynamic nitrogen atmosphere of 40 cm{sup 3} min{sup -1}. The obtained chars were cooled to ambient temperature and then gasified up to 1273 K in a dynamic atmosphere of 40 cm{sup 3} min{sup -1} of a mixture of steam and nitrogen. Derivative thermogravimetric analysis profiles from gasification of the chars were derived, and the mass losses from the chars were interpreted in terms of temperature. It was concluded that gasification characteristics of biomass chars were fairly dependent on the biomass properties such as ash and fixed carbon contents and the constituents present in the ash. Different mechanisms in the three temperature intervals, namely water desorption at lower temperatures, decomposition of hydroxide minerals to oxide minerals and formation of carbon monoxide at medium temperatures and production of hydrogen at high temperatures govern the behavior of the char during the gasification process. The chars from pinecone and sunflower shell could be easily gasified under the mentioned conditions. In order to further raise the conversion yields, long hold times should be applied at high temperatures. However, the chars from rapeseed and olive refuse were not gasified satisfactorily. Low ash content and high fixed carbon content biomass materials are recommended for use in gasification processes when char from pyrolysis at elevated temperatures is used as a feedstock.

  8. The Effect of Agricultural Machinery Purchase Subsidies on Mechanized Crop Residue Recycling%农机补贴对农户机械化秸秆还田的影响

    Institute of Scientific and Technical Information of China (English)

    田琪; 杜欣; 张恒铭; 周建华

    2011-01-01

    By adopting the investigation data of Baoding City.Hebei Province and the Probit mode ,study the effects of agricultural machinery purchase subsidies on mechanized crop residue recycling are analyzed. The results showed that several factors that affect fanners in adopting the practice of mechanized crop residue crop recycling. Among these factors,the cost of adopting such practice is significant. The agricultural machinery purchase subsidies can effectively reduce the cost of such practice,as well as promote mechanized crop residue recycling. The countermeasures on the problems are put forward. In the first place,the government should continue to increase the agricultural machinery purchase subsidies of crop residue recycling and alleviate the burden of the owners of agricultural machines; in the second place,the government should intensify the promotion and education on the owners of agriculture machines and farmers to increase their awareness on crop residue recycling; in the third place, the government should perfect rural security mechanism to abate the risks of rural areas caused by rural labor transfer.%采用河北省保定市的调查数据,运用Probit模型,研究农机补贴对农户采用机械化秸秆还田技术的影响,结果表明,农户是否机械化秸秆还田受到多种因素的影响,其中,机械化秸秆还田成本对其是否采用影响显著,农机补贴可以有效地降低机械化秸秆还田才价格,推动机械化秸秆还田的普及.提出了相应的对策建议:继续加大对秸秆还田的农机补贴,减轻农机主的负担;加强对农机主的技术培训和对农民的宣传教育,使秸秆还田理念深入人心;健全农村保障机制,降低劳动力外移给农村带来的风险.

  9. Progress in biogas. Biogas production from agricultural biomass and organic residues. Pt. 1 and 2. Proceedings (oral presentations and poster presentations); Fortschritt beim Biogas. Biogas aus landwirtschaftlicher Biomasse and organischen Reststoffen. T. 1 und 2. Tagungsband. Vortraege and Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the International Conference ''Progress in Biogas - Biogas production from agricultural biomass and organic residues'' at the University Hohenheim (Stuttgart, Federal Republic of Germany) from 18th to 21st September, 2007, the following lectures were held: (1) Global relevance and potential of bioenergy for regional development; (2) Biogas electricity for France feed-in tariff and some other things to know before entering French market; (3) Policy drivers and future prospects for on-farm anaerobic digestion in Northern Ireland; (4) Biogas in Belgium, a swot analysis; (5) Status and prospects of biogas energy use in Ukraine; (6) Recent developments in Chinese agricultural biogas production; (7) Opportunities for agricultural based biogas systems in the province of Ontario, Canada; (8) Pre-treatment and digestion of separated collected household waste in Sweden; (9) To the problem of monitoring measures and prophylaxis measures with the utilization of organic residual substances in biological gas facilities from hygienic view; (10) Fermenting residues from biological gas facilities - nutrients and pollutants, possibilities of application in the agriculture; (11) Treatment and utilization of fermentation residues; (12) Potential of residual gas of NaWaRo feeded biogas plants in Baden-Wuerttemberg; (13) Operating analytics of biogas plants to improve efficiency and to ensure process stability; (14) The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion; (15) Co-digestion plant in dairy cattle farm in Emilia Romagna region (Italy); (16) Facing operational problems in a biodigeser in Yuvientsa - Amazonian Region of Ecuador; (17) Biogas plant instead of milk cow - payment and occupation with the use of grassilage; (18) Biogas in ecologic agriculture - experiences from 3 years of fermentation of grass-clover ley; (19) Combined solar-biogas basis for the

  10. Pulsed combustion process for black liquor gasification

    Energy Technology Data Exchange (ETDEWEB)

    Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

    1991-02-01

    The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

  11. Review and analysis of biomass gasification models

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles; Coronas, Alberto

    2010-01-01

    The use of biomass as a source of energy has been further enhanced in recent years and special attention has been paid to biomass gasification. Due to the increasing interest in biomass gasification, several models have been proposed in order to explain and understand this complex process, and th...

  12. Green Gasification Technology for Wet Biomass

    Directory of Open Access Journals (Sweden)

    W. H. Chong

    2010-12-01

    Full Text Available The world now is facing two energy related threats which are lack of sustainable, secure and affordable energy supplies and the environmental damage acquired in producing and consuming ever-increasing amount of energy. In the first decade of the twenty-first century, increasing energy prices reminds us that an affordable energy plays an important role in economic growth and human development. To overcome the abovementioned problem, we cannot continue much longer to consume finite reserves of fossil fuels, the use of which contributes to global warming. Preferably, the world should move towards more sustainable energy sources such as wind energy, solar energy and biomass. However, the abovementioned challenges may not be met solely by introduction of sustainable energy forms. We also need to use energy more efficiently. Developing and introducing more efficient energy conversion technologies is therefore important, for fossil fuels as well as renewable fuels. This assignment addresses the question how biomass may be used more efficiently and economically than it is being used today. Wider use of biomass, a clean and renewable feedstock may extend the lifetime of our fossil fuels resources and alleviate global warming problems. Another advantage of using of biomass as a source of energy is to make developed countries less interdependent on oil-exporting countries, and thereby reduce political tension. Furthermore, the economies of agricultural regions growing energy crops benefit as new jobs are created. Keywords: energy, gasification, sustainable, wet biomass

  13. Analysis of energy recovery potential using innovative technologies of waste gasification

    International Nuclear Information System (INIS)

    Highlights: ► Energy recovery from waste by gasification was simulated. ► Two processes: high temperature gasification and gasification associated to plasma. ► Two types of feeding waste: Refuse Derived Fuel (RDF) and pulper residues. ► Different configurations for the energy cycles were considered. ► Comparison with performances from conventional Waste-to-Energy process. - Abstract: In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

  14. Hazelnut shell to hydrogen-rich gaseous products via catalytic gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Dept. of Chemical Engineering, Konya (Turkey)

    2004-01-15

    The gasification of biomass is a thermal treatment, which results in a high production of gaseous products and small quantities of char and ash. Steam reforming of hydrocarbons, partial oxidation of heavy oil residues, selected steam reforming of aromatic compounds, and gasification of coals and solid wastes to yield a mixture of H{sub 2} and CO (syngas), followed by a water-gas shift reaction to produce H{sub 2} and CO{sub 2}, are well-established processes. The samples, both untreated and impregnated with a catalyst, were pyrolyzed and gasified at 770, 925, 975, and 1025 K, and 975, 1075, 1175, and 1225 K temperatures, respectively. K{sub 2}CO{sub 3} was used as a catalyst, 10.0, 20.0, 30.0, and 50.0 wt% of the shell sample, in the catalytic-pyrolysis runs. The ratios of water-to-hazelnut shell were 0.7 and 1.9 in steam gasification runs. The total volume and the yield of gas from both pyrolysis and gasification increase with increasing temperature. The highest hydrogen-rich gas yield was obtained from the catalytic gasification run (water/hazelnut shell = 1.9) at 1225 K. (Author)

  15. PLASMA GASIFICATION OF WASTE PLASTICS

    Directory of Open Access Journals (Sweden)

    Tadeusz Mączka

    2013-01-01

    Full Text Available The article presents the process of obtaining liquid fuels and fuel gas in the process of plasma processing of organic materials, including waste plastics. The concept of plasma pyrolysis of plastics was presented and on its basis a prototype installation was developed. The article describes a general rule of operating the installation and its elements in the process and basic operation parameters determined during its start-up. Initial results of processing plastics and the directions further investigations are also discussed. The effect of the research is to be the design of effective technology of obtaining fuels from gasification/pyrolysis of organic waste and biomass.

  16. Development and operation of a 30 ton/ day gasification and melting plant for municipal solid wastes

    International Nuclear Information System (INIS)

    As one of the efforts to increase recycling rate of end of life vehicles enforcing by the governmental regulation, automobile shredder residue (ASR) was considered to treat by a thermal method with converting waste to energy. Gasification and melting experimental processes of lab (1 kg/ hour) and pilot (5 ton. day) scale were installed. ASR collected from a domestic shredding company was experimented at a lab-scale and pilot-scale gasification and melting process which is similar to the shaft type gasification melting furnace. The characteristics of syngas, tar and residue (slag) generated from a conversion process (gasification and melting) were analyzed to provide the information to further utilize them as fuel and recyclable materials in scaled up plants. A series of experiments have been conducted with various air equivalent ratios (ERs), and syngas compositions, carbon conversion efficiency, heating value of syngas, yield and characteristics of slag were analyzed. Finally, slags generated from the process were recycled with various alternative technologies. In summary, energy conversion technology of ASR with the least production of residue by gasification and slag utilization has been developed. The main components in product gas were H2, CO, CH4 and CO2; and concentrations of C2H4 and C2H6 were less. This can be used as clean fuel gas whose heating value ranged from 2.5 to 14.0 MJ/ m3. Most of slag generated from the process can further be fabricated to valuable and usable products. Such combined technology would result in achieving almost zero waste release from ELVs. (author)

  17. Macauba gasification; Gaseificacao da macauba

    Energy Technology Data Exchange (ETDEWEB)

    Santos Filho, Jaime dos; Oliveira, Eron Sardinha de [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Vitoria da Conquista, BA (Brazil)], E-mail: jaime@ifba.edu.br; Silva, Jadir Nogueira da; Galvarro, Svetlana Fialho Soria [Universidade Federal de Vicosa (UFV), MG (Brazil); Chaves, Modesto Antonio [Universidade Estadual do Sudoeste da Bahia (UESB), Itapetinga, BA (Brazil). Dept. de Engenharia de Alimentos

    2009-07-01

    For development of a productive activity, with reduced environmental degradation, the use of renewable energy sources as an important option. The gasification has been increasing among the ways of obtaining energy from biomass, and consists of a process where the necessary oxygen to the complete combustion of a fuel it is restricts and, in high temperatures it generates fuel gas of high-quality. In this direction, this work is justified and has its importance as the study of a renewable energy source, macauba coconut (Acrocomia aculeata [Jacq] Lodd), with the gasification process. The objective of this study is to build a biomass concurrent gasifier and evaluate the viability to provide heating for dehydration of fruits, using the macauba coconut as fuel. It was measured the temperature in five points distributed in both gasifier and combustor chamber, being the input area of primary combustor air and also the speed of rotation of the electric motor, using a factorial 3X3 experimental design with three repetitions and interval of measurements of five minutes. The analytical results take to infer that the macauba coconut have potential to be gasified and used for the dehydration of fruits. (author)

  18. Gasification combined cycle power generation - process alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Korhonen, M.

    1988-01-01

    Interest in Integrated Gasification Combined Cycle (IGCC) power plants has recently increased also in Finland. The IGCC systems offer the potential of superior efficiency and environmental performance over conventional pulverized coal or peat fired boilers. Potential applications are both large-scale electricity production from coal and medium-scale combined heat and electricity production. In the latter case, the gasification process should also be applicable to peat and wood. Several IGCC processes have been developed in USA and in Europe. These processes differ from each other in many respects. Nearest to commercialization are processes, which employ oxygen gasification and cold gas cleanup. The Cool Water plant, which was brought into operation in 1984 in USA, has demonstrated the feasibility of an IGCC system using Texaco entrained-bed gasifier. Several pressurized fluidized-bed and fixed-bed gasification processes have also reached a pilot or demonstration stage with a wide variety of coals from lignite to hard coal. Pressurized fluidized-bed gasification of peat (Rheinbraun-HTW-process) will also be demonstrated at the peat ammonia plant of Kemira Oy, which will be commissioned in 1988 in Oulu, Finland. Oxygen gasification and cold gas cleanup are, however, economically viable only in large-scale applications. Technology is being developed to simplify the IGCC system, in order to reduce its capital costs and increase its efficiency. Air gasification combined with ho gas cleanup seems to have a great potential of improving the competitiveness of the IGCC system.

  19. Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

  20. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis

  1. Gasification of Kentucky bluegrass (Poa pratensis l.) straw in a farm-scale reactor

    International Nuclear Information System (INIS)

    A novel gasification reactor was designed for conversion of grass straw to synthesis gas. Our design goal was to improve synthetic gas yield and thermal stability at a scale suitable for on-farm use at a cost similar to that of a combine harvester. The reactor that was constructed and tested in this study follows the newly emerging design technique whereby the endothermic pyrolysis or gasification and exothermic char combustion co-exist in the same reactor. It operates in a dual mode where straw gasification occurs in the annulus of an outer tube and an inner (draft) tube. Our trials established that the dual-mode operation could be performed without material flow problems. Sustained tests demonstrated reactor stability at gasification temperatures up to 650 deg. C and successful gasification of Kentucky bluegrass straw utilizing combustion heat from the inner tube. Calculated equivalence ratios of combustion in the inner tube ranged from 0.3 to 0.78 indicating fuel lean combustion of residual char without slagging. Carbon conversion ranged between 35.4 and 44.8%. Energy recovery, estimated as the ratio of the heat of combustion of the gas to that of the dry-ash-free feedstock, ranged from 14.7% to 30.92%. The estimated heating value for the synthesis gas ranged from 1.27 to 2.85 MJ m-3. Although these conversion parameters are low, a proof of the design concept was established. They can be improved with little modification by increasing the residence time in the draft tube and complete isolation of the gaseous products of combustion and the gasification. More tests are required to evaluate the economic feasibility of the farm-scale unit

  2. Progress in biogas. Biogas production from agricultural biomass and organic residues. Pt. 1 and 2. Proceedings (oral presentations and poster presentations); Fortschritt beim Biogas. Biogas aus landwirtschaftlicher Biomasse and organischen Reststoffen. T. 1 und 2. Tagungsband. Vortraege and Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the International Conference ''Progress in Biogas - Biogas production from agricultural biomass and organic residues'' at the University Hohenheim (Stuttgart, Federal Republic of Germany) from 18th to 21st September, 2007, the following lectures were held: (1) Global relevance and potential of bioenergy for regional development; (2) Biogas electricity for France feed-in tariff and some other things to know before entering French market; (3) Policy drivers and future prospects for on-farm anaerobic digestion in Northern Ireland; (4) Biogas in Belgium, a swot analysis; (5) Status and prospects of biogas energy use in Ukraine; (6) Recent developments in Chinese agricultural biogas production; (7) Opportunities for agricultural based biogas systems in the province of Ontario, Canada; (8) Pre-treatment and digestion of separated collected household waste in Sweden; (9) To the problem of monitoring measures and prophylaxis measures with the utilization of organic residual substances in biological gas facilities from hygienic view; (10) Fermenting residues from biological gas facilities - nutrients and pollutants, possibilities of application in the agriculture; (11) Treatment and utilization of fermentation residues; (12) Potential of residual gas of NaWaRo feeded biogas plants in Baden-Wuerttemberg; (13) Operating analytics of biogas plants to improve efficiency and to ensure process stability; (14) The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion; (15) Co-digestion plant in dairy cattle farm in Emilia Romagna region (Italy); (16) Facing operational problems in a biodigeser in Yuvientsa - Amazonian Region of Ecuador; (17) Biogas plant instead of milk cow - payment and occupation with the use of grassilage; (18) Biogas in ecologic agriculture - experiences from 3 years of fermentation of grass-clover ley; (19) Combined solar-biogas basis for the

  3. Thermodynamic approach to biomass gasification

    International Nuclear Information System (INIS)

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H2. The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H2. An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  4. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  5. Corrosion during gasification of biomass and waste

    OpenAIRE

    Källström, Rikard

    1993-01-01

    The gasification of biomass and waste results in severe atmospheric corrosion conditions. The problems arise because of the low oxygen content which prevents the metal forming stable and protective oxide surface layer. Consequently it is possible for the aggressive sulphur and chlorine present in the gas to attack the metal. In the Studsvik CFB gasification pilot plant, which uses RDF (Refuse Derived Fuel), the performance of 20 metallic and ceramic materials has been studied. Materials teste...

  6. Fuel gas production from animal and agricultural residues and biomass. Quarterly coordination meeting, March 15-16, 1979, Tampa, Florida. Third quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D L; Ashare, E; Wentworth, R L

    1979-04-24

    The eleventh quarterly coordination meeting of the methane production group of the Fuels From Biomass Systems Branch, US Department of Energy was held at Tampa, Florida, March 15-16, 1979. Progress reports were presented by the contractors and a site visit was made to Kaplan Industries, Bartow, Florida to see the Hamilton Standard demonstration facility for digestion of environmental feedlot residue to methane. A meeting agenda, a list of attendees, and progress reports are presented.

  7. Analysing performance of bio-refinery systems by integrating black liquor gasification with chemical pulp mills

    OpenAIRE

    Naqvi, Muhammad Raza

    2012-01-01

    Mitigation of climate change and energy security are major driving forces for increased biomass utilization. The pulp and paper industry consumes a large proportion of the biomass worldwide including bark, wood residues, and black liquor. Due to the fact that modern mills have established infrastructure for handling and processing biomass, it is possible to lay foundation for future gasification based bio-refineries to poly-produce electricity, chemicals or bio-fuels together with pulp and pa...

  8. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    OpenAIRE

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2013-01-01

    Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil...

  9. Diesel power plants based on biomass gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1996-12-31

    The aim of the project was to assess the competitiveness and market potential of small-scale power plant concepts based on biomass gasification and on diesel/gas engines, and to study the effect of process parameters on the efficiency of the circulating fluidized-bed gasifier and on the formation of tarry impurities. Alternative diesel/gas engine power plant concepts based on gasification in scale 6-50 MW{sub e} were assessed. In the basic version, where the electricity is generated only by the a diesel/gas engine, the efficiency level of 37 % is achieved in power generation. When steam cycle is added to the process the efficiency of power generation increases to 44-48 %. The efficiencies achieved in the process are very high compared with those of biomass power plant processes on a commercial level or under development. The most significant potential of biomass-based power generation is made up by wastes of sugar industries in south and Central America and in Asia. There are also very extensive growth potentials of bioenergy use in the NAFTA countries (USA, Canada and Mexico) and in Europe. In Europe, the bioenergy use is expected to grow most sharply in Italy, Spain, Germany and Poland. Carbon conversion obtained in the gasifier was in the range of 99.0-99.9 % for sawdust and 96-98 % for forest residue chips. The tar content of the product gas 10-15 g/m- m{sup 3}{sub n}, for sawdust in the gasification temperature of 830-930 deg C and with sand as circulating fluid-bed. When dolomite was used as circulating fluid-bed, the tar contents were 2-3 g/m{sup 3}{sub n} at as low temperatures as 880-890 deg C. The tar content of gas can be reduced sharply by phasing of gasification air and by using catalytic circulating fluid-bed material Bioenergy Research Programme; LIEKKI 2 Research Programme. 26 refs., 40 figs.

  10. Solid biofuels production from agricultural residues and processing by-products by means of torrefaction treatment: the case of sunflower chain

    Directory of Open Access Journals (Sweden)

    Daniele Duca

    2014-11-01

    Full Text Available The high heterogeneity of some residual biomasses makes rather difficult their energy use. Their standardisation is going to be a key aspect to get good quality biofuels from those residues. Torrefaction is an interesting process to improve the physical and chemical properties of lignocellulosic biomasses and to achieve standardisation. In the present study torrefaction has been employed on residues and by-products deriving from sunflower production chain, in particular sunflower stalks, husks and oil press cake. The thermal behaviour of these materials has been studied at first by thermogravimetric analysis in order to identify torrefaction temperatures range. Afterwards, different residence time and torrefaction temperatures have been tested in a bench top torrefaction reactor. Analyses of raw and torrefied materials have been carried out to assess the influence of the treatment. As a consequence of torrefaction, the carbon and ash contents increase while the volatilisation range reduces making the material more stable and standardised. Mass yield, energy yield and energy densification reach values of about 60%, 80% and 1.33 for sunflower stalks and 64%, 85% and 1.33 for sunflower oil press cake respectively. As highlighted by the results, torrefaction is more interesting for sunflower stalks than oil cake and husks due to their different original characteristics. Untreated oil press cake and husks, in fact, already show a good high heating value and, for this reason, their torrefaction should be mild to avoid an excessive ash concentration. On the contrary, for sunflower stalks the treatment is more useful and could be more severe.

  11. Study of some applications of residual sludges in agriculture using 15N, 32P, 65Zn, 109Cd and 203Hg

    International Nuclear Information System (INIS)

    Application of residual sludges increases dry matter production. This effect is due to the low C/N of these matters. The possible risks depend on the alteration of ions mobility as PO4---, Zn++, Hg++ and Cd++, which are often very strongly absorbed by soil particules. For these investigations, use of radioactive tracers is necessary. We have shown, with 65Zn++, that zinc of sludges is not available for ray-grass and, with 32PO4, that phosphorus mobility declines with lime-treated sludges. The use of isotopic dilution kinetics allows to shown that Hg++ and Cd++ are not absorbed in too acidic soils

  12. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  13. Environmental and economic performance of plasma gasification in Enhanced Landfill Mining.

    Science.gov (United States)

    Danthurebandara, Maheshi; Van Passel, Steven; Vanderreydt, Ive; Van Acker, Karel

    2015-11-01

    This paper describes an environmental and economic assessment of plasma gasification, one of the viable candidates for the valorisation of refuse derived fuel from Enhanced Landfill Mining. The study is based on life cycle assessment and life cycle costing. Plasma gasification is benchmarked against conventional incineration, and the study indicates that the process could have significant impact on climate change, human toxicity, particulate matter formation, metal depletion and fossil depletion. Flue gas emission, oxygen usage and disposal of residues (plasmastone) are the major environmental burdens, while electricity production and metal recovery represent the major benefits. Reductions in burdens and improvements in benefits are found when the plasmastone is valorised in building materials instead of landfilling. The study indicates that the overall environmental performance of plasma gasification is better than incineration. The study confirms a trade-off between the environmental and economic performance of the discussed scenarios. Net electrical efficiency and investment cost of the plasma gasification process and the selling price of the products are the major economic drivers. PMID:26119012

  14. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  15. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    International Nuclear Information System (INIS)

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the

  16. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (EUROPEAN OFFICE), Am Seestern 8, 40547 Dusseldorf (Germany); Ishida, Yoshihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

    2015-03-15

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the

  17. Persistence of organophosphorus pesticides in aquatic environments. Coordinated programme on isotope-tracer-aided research and monitoring on agricultural residue - biological interactions in aquatic environment

    International Nuclear Information System (INIS)

    A radiometric enzymic assay method was developed for quick measuring of organophosphorous insecticides in water samples. All steps of the assay procedure were carried out in scintillation vials. 50 μl enzyme solution (acetylcholinesterase of electric eel) and 50 μl buffer pH 7 were pipetted into the vial followed by 100 μl of water sample or aqueous solution of the insecticide and the mixture was incubated for 60 minutes. 50 μl 3H-acetylcholine were added to the vial and the enzymic reaction stopped after 10 minutes by adding 200 μl buffer solution pH 2.5. 10 ml scintillation cocktail were then added and after shaking and 30 minutes standing the radioactivity was determined in a liquid scintillation spectrometer. Acetylcholine remained in the water phase while 3H-acetic acid released in enzymic hydrolysis may be extracted by an organic solvent. By this method, not only the parent compound but also some of its degradation products, which possess some anticholinesteratic activity can be measured. The method is suitable for combination with thin-layer chromatography for identification purposes. Using this method, we studied the degradation of the organophosphorous insecticides malathion, parathion, DDVP and imidan. The degradation in distilled water and natural water was compared. For example, the half-time of malathion in distilled water at room temperature was 6 days while in natural water (Danube river) it was 4 hours. The degradation processes were also studied in model systems containing sediment and water. Degradation was faster in models containing solid particles than in filtered water. The radiometric enzymic method was tested as analytical procedure for residue monitoring. Since 1978 a residue monitoring programme was in progress in the Danube river near Budapest. Occasionally high residue levels were detected in spring and early summer. The radiometric enzymic method has proved to be a useful analytical method for anticholinesterase pesticides in water

  18. Produção de biossurfactante por Aspergillus fumigatus utilizando resíduos agroindustriais como substrato Solid-state biosurfactant production by Aspergillus fumigatus using agricultural residues as substrate

    Directory of Open Access Journals (Sweden)

    Gabriel Luis Castiglioni

    2009-01-01

    Full Text Available The objective of this study was to investigate biosurfactant production in solid state by Aspergillus fumigatus in fixed-bed column bioreactors using substrate based on agricultural residues. Without a supplementary carbon source the highest emulsifying activity (EA was 11.17 emulsifying units (EU g-1 of substrate at an aeration rate of 148 mL h-1g-1 but in the presence of diesel oil the highest EA value was 9.99 EU g-1 at an aeration rate of 119 mL h-1g-1 of substrate while supplementation with soya oil resulted in only 8.47 EU g-1 of substrate at an aeration rate of 119 mL h-1g-1.

  19. 农产品农药残留速测技术的应用探讨%Application of Instant Inspection Techniques of Pesticide Residues in Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    王娇

    2012-01-01

    The application of instant inspection techniques in detecting pesticides residues in vegetables can effectively prevent poisonous vegetables into the market, creating positive social benefits. This article examines the necessity and feasibility in applying instant inspection techniques as well as its advantages and drawbacks in a bid to provide reference for its promotion and application.%应用农药残留速测技术检测蔬菜的农药残留,可有效的防止“毒菜”进入市场,具有良好的社会效益。分析应用农药残留速测技术的必要性和可行性,通过适用性试验,探讨此法的优点及存在的问题,为其推广应用提供参考。

  20. The influence of chlorine on the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Scala, C. von; Struis, R.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Chlorides of the heavy metals copper, lead and zinc inhibit the CO{sub 2}-gasification reaction of charcoal. This is observed either by impregnation the wood with the salts before pyrolysis or by mechanically mixing the salts with the charcoal before gasification. Charcoal impregnated or mixed with ammonium chloride reacts more slowly than untreated charcoal. Treating the charcoal with HCl also influences negatively the gasification reactivity, indicating that chlorine plays an important role in the gasification. (author) 2 figs., 4 refs.

  1. Gasification of wood in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, L.C. de; Marti, T.; Frankenhaeuser, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A first series of gasification experiments with our fluidized bed gasifier was performed using clean sawdust as fuel. The installation and the analytical systems were tested in a parametric study in which gasification temperature and equivalence ratio were varied. The data acquired will serve to establish the differences between the gasification of clean wood and the gasification of Altholz (scrapwood) and wood/plastics mixtures. (author) 1 fig., 3 tabs., 5 refs.

  2. Plasma Treatments and Biomass Gasification

    International Nuclear Information System (INIS)

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  3. Hydrothermal Gasification for Waste to Energy

    Science.gov (United States)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  4. Plasma gasification of organic containing substances as a promising way of development of alternative renewable power engineering

    Science.gov (United States)

    Rutberg, Ph G.; Bratsev, A. N.; Kuznetsov, V. A.; Kumkova, I. I.; Popov, V. E.; Surov, A. V.

    2012-12-01

    The paper deals with perspectives of large-scale implementation of the plasma gasification process of solid organic-containing substances as a source of renewable energy. First of all, such substances as wood waste, agriculture waste, solid household waste are considered. Thanks to the process of the plasma high-temperature gasification the energy of their combustion can be completely converted into the energy of the synthesis gas combustion, which use as a fuel for the combined cycle allows electricity generation with efficiency of ~60 %. Thus, if the psychogenesis production wastes are considered, this technology enables avoiding additional emission of carbon dioxide into biosphere as for production of biomass from biosphere it is extracted the same amount of carbon dioxide as is emitted at its combustion. The report represents the realized and developing designs of plasma gasification, their advantages and deficiencies.

  5. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A. [ATEKO a.s., Hradec Kralove (Czech Republic)

    1996-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  6. Persistence and degradation of pesticide residues in different agricultural soils, related to biological activity. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Laboratory studies and small-scale field experiments were conducted involving pesticides extensively used in agricultural practice in Brazil (the insecticides aldrin, carbaryl and parathion, and the fungicides carbendazim and metalaxyl) with emphasis on biological activity and soil organic matter content. The ability of fungi isolated from soils of southern, centre and northern regions of Brazil to degrade 14C-aldrin and its metabolites was assayed in culture growth medium. Results showed that the microorganism Penicilium sp. was able to metabolize the parent compound or one of its metabolites added to the medium. Field studies performed with soils packed into PVC tubes showed that added 14C-aldrin leached fastest in the soil poor in organic matter. 14C-carbaryl was used to evaluate the effects of addition of carbon sources on its persistence and degradation in soils rich and poor in organic matter. It was found that cellulose can influence the behaviour of carbaryl in soil low in organic matter by interfering with microorganismal population. Studies on the degradation of 14C-parathion by soil kept moist with and without repeated applications demonstrated that microbial population was modified by the repeated treatment. The adsorption, movement and persistence of the fungicide 14C-carbendazim was examined in Brazilian soils differing in organic matter content. Soils with highest levels of organic matter showed higher sorption coefficients and lower mobility. Carbendazim was very persistent in all soils. The metabolite 2-benzimidazolecarbamate was the main degradation product detected. Experiments with 14C-metalaxyl showed that sorption coefficients in the Humic Gley soil were 0.8 and in the Dark Red Latosol soil 0.3. Data are in agreement with the high mobility of 14C-metalaxyl in soil thin-layers. Also, a metabolite was detected in percentages varying from 3 to 10% specially in the Humic Gley soil samples

  7. Biomass Gasification Technology Assessment: Consolidated Report

    Energy Technology Data Exchange (ETDEWEB)

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  8. ADVANCED GASIFICATION BY-PRODUCT UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

    2005-04-01

    The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  9. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view

    Energy Technology Data Exchange (ETDEWEB)

    Kronbauer, Marcio A. [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Izquierdo, Maria [School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL (United Kingdom); Dai, Shifeng [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Waanders, Frans B. [School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom 2531 (South Africa); Wagner, Nicola J. [School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Mastalerz, Maria [Indiana Geological Survey, Indiana University, Bloomington, IN 47405-2208 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Taffarel, Silvio R.; Bizani, Delmar [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); and others

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO{sub 3} versus Al{sub 2}O{sub 3} determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates. - Highlights: • Coal waste geochemisty can provide increased environmental information in coal-mining areas. • Oxidation is the major process for mineral transformation in coal ashes. • The electron bean methodology has been applied to investigate neoformed minerals.

  10. Dynamic models of staged gasification processes. Documentation of gasification simulator; Dynamiske modeller a f trinopdelte forgasningsprocesser. Dokumentation til forgasser simulator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    In connection with the ERP project 'Dynamic modelling of staged gasification processes' a gasification simulator has been constructed. The simulator consists of: a mathematical model of the gasification process developed at Technical University of Denmark, a user interface programme, IGSS, and a communication interface between the two programmes. (BA)

  11. Biological production of hydrogen from agricultural raw materials and residues with a subsequent methanisation step; Biologische Wasserstoffproduktion aus landwirtschaftlichen Roh- und Reststoffen mit nachfolgender Methanstufe

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Stegmann, R. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer AbfallRessourcenWirtschaft

    2007-07-01

    In order to examine the thermophile fermentative production from biohydrogen, discontinuous attempts were accomplished at a temperature of 60 C. As an inoculum, heat-treated sewage sludge was used. Glucose was used as a substrate. The fermenting residues of the hydrogen attempts were used as a substrate in a methane reactor in order to examine a two-stage system. The hydrogen attempts in the anaerobic test system were operated with a hydraulic retention time by 3.3 days and were performed during a period of 300 days. The optimal space load amounts to 5 g (l*d). The production rate at hydrogen amounts to 1.2 Nl/(l{sub R}*d). The yields amount to between 200 and 250 Nml/g oTS. In the case of an overloading of the system with substrate, the hydrogen production decreases drastically due to poor yields. Biological hydrogen production by fermentation possesses the potential to become a component for a lasting emission-free power supply. The thermophile approach ensures a simultaneous hygienization. As a fermenting remainder treatment a downstream methanation stage is possible.

  12. Production of Hydrogen from Underground Coal Gasification

    Science.gov (United States)

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  13. High-Btu coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-01-01

    This evaluation provides estimates of performance and cost data for advanced technology, high-Btu, coal gasification facilities. The six processes discussed reflect the current state-of-the-art development. Because no large commercial gasification plants have yet been built in the United States, the information presented here is based only on pilot-plant experience. Performance characteristics that were investigated include unit efficiencies, product output, and pollution aspects. Total installed plant costs and operating costs are tabulated for the various processes. The information supplied here will assist in selecting energy conversion units for an Integrated Community Energy System (ICES).

  14. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  15. Bioenergy from crops and biomass residues: a consequential life-cycle assessment including land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    to represent the actual environmental impacts. This study quantified the GHG emissions associated with a number of scenarios involving bioenergy production (as combined-heat-and-power, heating, and transport biofuel) from energy crops, industrial/agricultural residues, algae, and the organic fraction...... of municipal solid waste. Four conversion pathways were considered: combustion, fermentation-to-ethanol, fermentation-to-biogas, and thermal gasification. A total of 80 bioenergy scenarios were assessed. Consequential life-cycle assessment (CLCA) was used to quantify the environmental impacts. CLCA aimed...... at identifying all the consequences associated with the establishment of bioenergy systems compared with the reference (current use of fossil and biomass resource). The modelling was facilitated with the LCA-model EASETECH. The functional unit was 1 unit-energy produced (i.e., 1 kWh electricity, 1 MJ heat or 1...

  16. Pressurized pyrolysis and gasification behaviour of black liquor and biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.; Backman, R.; Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-01

    The objective of this project is to obtain basic experimental data on pyrolysis and gasification of various black liquors and biofuels at elevated pressures, and to model these processes. Liquor-to-liquor differences in conversion behavior of single liquor droplets during gasification at atmospheric pressure were investigated. The applicability of a rate equation developed for catalyzed gasification of carbon was investigated with regard to pressurized black liquor gasification. A neural network was developed to simulate the progression of char conversion during pressurized black liquor gasification. Pyrolysis of black liquor in a pressurized drop-tube furnace was investigated in collaboration with KTH in Stockholm. (author)

  17. Gasification of corn and clover grass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Pedro D' Jesus; Nikolaos Boukis; Bettina Kraushaar-Czarnetzki; Eckhard Dinjus [Chemisch-Physikalische Verfahren (ITC-CPV), Forschungszentrum Karlsruhe (Germany). Institut fuer Technische Chemie

    2006-05-15

    The influence of pressure, temperature, residence time, and alkali addition on the gasification of corn starch, clover grass and corn silage in supercritical water was investigated. Changing the pressure did not alter the gasification yield. An increase in the temperature notably improved the conversion of biomass. Residence time variations revealed that with longer residence time, gasification yield was improved until a maximum was reached. Gas composition changed with residence time and temperature. Potassium addition affected the gasification yield of corn starch, but did not influence the gasification yield of the potassium-containing natural products of clover grass and corn silage. 22 refs., 5 figs., 3 tabs.

  18. Report of the Advisory Committee on Agriculturally Derived Fuels to the Texas Energy and Natural Resources Advisory Council

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Reagan V.; Clayton, Bill; Armstrong, Bob; Walton, Bill; Baen, Jr., Spencer; Carmichael, Jack; Cowley, Raymond; Quick, Joe; King, Carl; Harp, Elbert; Nelson, Bill; Wagoner, Ed; McDonald, Dr., Richard; Swanson, Stan

    1979-09-03

    For the purpose of the Committee, biomass was defined as the volume of living material or residues of living material (organic material) available in Texas for conversion into energy. Statistical reports from the Texas Agricultural Experiment Station and other sources indicate that in addition to surplus and distressed grains and certain other crops, there are roughly 27 million tons of agricultural residues currently being left in the fields or at the processing plants after harvest. The average annual residue from five crops - sorghum, corn, wheat, rice and cotton - is more than 20 million tons with a theoretical heat value of 270 trillion Btus. This represents 64 percent of the total energy input for Texas agriculture in 1973. Additionally, 4.1 million tons of dry manure is economically recoverable from Texas feedlots which could be converted into 14 trillion Btus of energy each year in the form of methane gas. Municipal solid waste, much of which is comprised of residues of living materials, currently amounts to about 13 million tons annually. The principal processes for converting the referenced resources into energy include: (1) direct combustion; (2) fermentation; (3) gasification/pyrolysis; (4) anaerobic digestion; and (5) petroculture - the production of certain non-traditional plants. Texas produces huge quantities of biomass, and has the potential of producing even more, which can be converted through various processes into significant quantities of usable energy to help meet the needs of the agricultural industry and the general public. Some of the technology required for the conversion processes is already sufficiently advanced to support immediate production and use while others will require additional research and development. The report discusses the current level of development of the relevant technologies.

  19. Gasification of waste from furniture industries for generation of sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.L.; Silva, J.N.; Pereira, E.G.; Machado, C.S.; Da Conceicao, M.; Bezerra, T. [Federal Univ. of Vicosa, Minas Gerais State (Brazil)

    2010-07-01

    The global interest in renewable energy is attributed to the decline in fossil fuel sources and the need for technical, economic, social and environmental sustainability. This study focused on the new techniques that have been developed for the use of biomass for energy from wood wastes from the forest-based industry. As an energy source, wood waste contributes positively to the environment by reducing environmental problems related to contamination of soil, air and water through improper disposal of waste. Biomass gasification has the advantage of converting biomass into a combustible gas that can be used for heat generation, electricity and synthesis of chemicals. Syngas produced from gasification of eucalyptus residues has significant potential, with an average High Heating Value of 6.60 MJ/m{sup 3}, and regular composition during the process, with predominance of carbon monoxide, followed by hydrogen, carbon dioxide and methane.

  20. Use of antibiotics in animal agriculture and the fate of antibiotic residues and resistance genes in the environment after land application of swine manure

    International Nuclear Information System (INIS)

    Full text: Two swine confinement facilities, designated sites A and C were the focus of study. The antibiotic regimens at both sites included chlortetracycline and tylosin. Hog manure at these sites was treated in open, unlined lagoons before being applied as fertilizer to onsite (site A) and offsite (Site C) farm fields. Sites differed in their sub-surface geology, and each site was outfitted with a network of groundwater sampling wells for the monitoring of chemical contaminants, antibiotic residues, bacterial indicators of faecal contamination, and antibiotic resistance genes. Sterile containers were used to collect water from waste lagoons and wells once in 2000, and twice in 2001 and 2002. Additionally, the presence of antibiotic resistance genes was investigated from soil samples collected from 2005 to 2007 from seven different fields that were amended with manure. DNA was extracted from water and soil samples. Detection of antibiotic resistance genes was accomplished by PCR using primers that have been described elsewhere. These primer sets targeted three major groups of antibiotic resistance genes: 1) four classes of genes (tet(M), tet(O), tet(Q), tet(W)) conferring resistance to tetracycline by means of ribosomal protection proteins; 2) three classes of genes (tet(C), tet(H), tet(Z)) conferring resistance to tetracycline by means of efflux pump proteins; 3) eight RNA methylase genes (tlr(B), tlr(D), erm(A), erm(B), erm(C), erm(F), erm(G), erm(Q)) conferring resistance to macrolide antibiotics, including tylosin and erythromycin, as well as to the lincosamide antibiotics and Streptogramin-B. The RNA methylases tlr(B) and tlr(D) have been found in tylosin-producing strains of soil bacteria, while the other six erm genes come from a diversity of pathogenic, human commensal, and environmental bacteria. These genes were selected as targets based on preliminary surveys of lagoon and groundwater and upon the antibiotic usage of the study sites. Presence

  1. Commercialization Development of Crop Straw Gasification Technologies in China

    Directory of Open Access Journals (Sweden)

    Zhengfeng Zhang

    2014-12-01

    Full Text Available Crop straw gasification technologies are the most promising biomass gasification technologies and have great potential to be further developed in China. However, the commercialization development of gasification technology in China is slow. In this paper, the technical reliability and practicability of crop straw gasification technologies, the economic feasibility of gas supply stations, the economic feasibility of crop straw gasification equipment manufacture enterprises and the social acceptability of crop straw gasification technologies are analyzed. The results show that presently both the atmospheric oxidation gasification technology and the carbonization pyrolysis gasification technology in China are mature and practical, and can provide fuel gas for households. However, there are still a series of problems associated with these technologies that need to be solved for the commercialization development, such as the high tar and CO content of the fuel gas. The economic feasibility of the gas supply stations is different in China. Parts of gas supply stations are unprofitable due to high initial investment, the low fuel gas price and the small numbers of consumers. In addition, the commercialization development of crop straw gasification equipment manufacture enterprises is hindered for the low market demand for gasification equipment which is related to the fund support from the government. The acceptance of the crop straw gasification technologies from both the government and the farmers in China may be a driving force of further commercialization development of the gasification technologies. Then, the crop straw gasification technologies in China have reached at the stage of pre-commercialization. At this stage, the gasification technologies are basically mature and have met many requirements of commercialization, however, some incentives are needed to encourage their further development.

  2. Single-stage fluidized-bed gasification

    Science.gov (United States)

    Lau, F. S.; Rue, D. M.; Weil, S. A.; Punwani, D. V.

    1982-04-01

    The single-stage fluidized-bed gasification process, in addition to being a simple system, maximizes gas production and allows the economic exploitation of small peat deposits. The objective of this gasification project is to conduct experiments in order to obtain data for designing a single-stage fluidized-bed gasifier, and to evaluate the economics of converting peat to synthesis gas and to SNG by this process. An existing high-temperature and high-pressure process development unit (PDU) was modified to permit the direct feeding of peat to the fluidized bed. Peat flows by gravity from the feed hopper through a 6-inch line to the screw-feeder conveyor. From there, it is fed to the bottom tee section of the reactor and transported into the gasification zone. Oxygen and steam are fed through a distributing ring into the reactor. Gasification reactions occur in the annulus formed by the reactor tube and a central standpipe. Peat ash is discharged from the reactor by overflowing into the standpipe and is collected in a solids receiver.

  3. Multi Staged Gasification Systems - A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Huber, M.B.; Koidl, F.; Kreutner, G.; Giovannini, A. (MCI - Univ. of Applied Science for Environmental-, Process- and Biotechnology, A-6020 Innsbruck (Austria)); Kleinhappl, M.; Roschitz, C.; Hofbauer, H. (Austrian Bioeneregy Centre, Graz (Austria)); Gruber, F. (GE Jenbacher, Jenbach (Austria)); Krueger, J. (SynCraft Engineering, Schwaz (Austria))

    2008-10-15

    Multi-staged fixed bed (MFB) gasification systems represent one of the most promising and effective methods of transforming solid biomass into power and heat (CHP). The underlying magic of this gasification process is, that a clean producer gas suitable for gas engines at high cold-gas efficiency rates can be produced. These two attributes allow multi-staged gasification systems to minimize the efforts for gas cleaning, while maximizing the energy retrieval out of the biomass. Though already demonstrated in small-scale, MFB gasification becomes a challenge when thinking of commercial-sized plants above 150kW{sub el}. In such a dimension especially the pressure loss over the char bed and bulk instabilities become the major process obstacles. After years of investigation the MCI developed a new process pathway which allows avoiding these bottle necks while maintaining the advantages of MFB systems. The core of the new staged alignment is the combination of a partial-oxidation-accelerator with a floating-bed-reduction-reactor. The process has already achieved technical proof of concept during ongoing investigations at a 250 kW{sub th} pilot plant in Jenbach and will be upscaled to demonstration plant size as soon as sufficient long time experience is gained

  4. Wood gasification system for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Heijden, S.; Szladow, A.J.; Barabas, M.; Sirianni, G.

    1981-08-01

    A 65 kVA generation system using wood gasification for electricity production has been tested. The system efficiency, operability and response to load variations was determined. For a range of electric output from 5 to 45 kW, the overall efficiency varied from 9 to 20 percent. Changes in gas composition with load variation did not affect gas heating values. 3 refs.

  5. Catalytic and Noncatalytic Gasification of Pyrolysis Oil

    NARCIS (Netherlands)

    Rossum, van Guus; Kersten, Sascha R.A.; Swaaij, van Wim P.M.

    2007-01-01

    Gasification of pyrolysis oil was studied in a fluidized bed over a wide temperature range (523−914 °C) with and without the use of nickel-based catalysts. Noncatalytically, a typical fuel gas was produced. Both a special designed fluid bed catalyst and a crushed commercial fixed bed catalyst showed

  6. New field-based agricultural biomass burning trace gas, PM2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China

    Science.gov (United States)

    Zhang, Tianran; Wooster, Martin J.; Green, David C.; Main, Bruce

    2015-11-01

    Despite policy attempts to limit or prevent agricultural burning, its use to remove crop residues either immediately after harvest (e.g. field burning of wheat stubble) or after subsequent crop processing (e.g. "bonfires" of rice straw and rapeseed residues) appears to remain widespread across parts of China. Emission factors for these types of small but highly numerous fire are therefore required to fully assess their impact on atmospheric composition and air pollution. Here we describe the design and deployment of a new smoke measurement system for the close-range sampling of key gases and particles within smoke from crop residue fires, using it to assess instantaneous mixing ratios of CO and CO2 and mass concentrations of black carbon (BC) and PM2.5 from wheat stubble, rice straw, and rapeseed residue fires. Using data of our new smoke sampling system, we find a strong linear correlation between the PM2.5 mass and BC, with very high PM2.5 to BC emission ratios found in the smouldering phase (up to 80.7 mg m-3.(mg m-3)-1) compared to the flaming phase (2.0 mg m-3.(mg m-3)-1). We conclude that the contribution of BC to PM2.5 mass was as high as 50% in the flaming phase of some burns, whilst during smouldering it sometimes decreased to little over one percent. A linear mixing model is used to quantify the relative contribution of each combustion phase to the overall measured smoke composition, and we find that flaming combustion dominated the total emission of most species assessed. Using time series of trace gas concentrations from different fire cases, we calculated 'fire integrated' trace gas emission factors (EFs) for wheat, rice and rapeseed residue burns as 1739 ± 19 g kg-1, 1761 ± 30 g kg-1and 1704 ± 27 g kg-1 respectively for CO2, and 60 ± 12 g kg-1, 47 ± 19 g kg-1 and 82 ± 17 g kg-1 respectively for CO. Where comparisons were possible, our EFs agreed well with those derived via a simultaneously-deployed open path Fourier transform infrared (OP

  7. Gasification of hazelnut shells in a downdraft gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Dogru, M.; Howarth, C.R.; Akay, G.; Keskinler, B. [University of Newcastle (United Kingdom). Dept. of Chemical and Process Engineering; Malik, A.A. [Waste to Energy Ltd., Sudbury (United Kingdom)

    2002-05-01

    -scale gasifiers can make an important contribution to the economy of rural areas where the residues of nuts are abundant. It is also suggested that gasification of shell waste products is a clean alternative to fossil fuels and the product gas can be directly used in internal gas combustion engines, thus warranting further investment/encouragement by authorities to exploit this valuable resource. (author)

  8. Innovative gasification technology for future power generation

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, K.; Shadle, L.J. [Dept. of Energy, Morgantown, WV (United States); Sadowski, R.S. [Jacobs-Sirrine Engineers, Inc., Greenville, SC (United States)

    1995-07-01

    Ever tightening environmental regulations have changed the way utility and non-utility electric generation providers currently view their fuels choices. While coal is still, by far, the major fuel utilized in power production, the general trend over the past 20 years has been to switch to low-sulfur coal and/or make costly modifications to existing coal-fired facilities to reach environmental compliance. Unfortunately, this approach has led to fragmented solutions to balance our energy and environmental needs. To date, few integrated gasification combined-cycle (IGCC) suppliers have been able to compete with the cost of other more conventional technologies or fuels. One need only look at the complexity of many IGCC approaches to understand that unless a view toward IEC is adopted, the widespread application of such otherwise potentially attractive technologies will be unlikely in our lifetime. Jacobs-Sirrine Engineers and Riley Stoker Corporation are working in partnership with the Department of Energy`s Morgantown Energy Technology Center to help demonstrate an innovative coal gasification technology called {open_quotes}PyGas{trademark},{close_quotes} for {open_quotes}pyrolysis-gasification{close_quotes}. This hybrid variation of fluidized-bed and fixed-bed gasification technologies is being developed with the goal to efficiently produce clean gas at costs competitive with more conventional systems by incorporating many of the principles of IEC within the confines of a single-gasifier vessel. Our project is currently in the detailed design stage of a 4 ton-per-hour gasification facility to be built at the Fort Martin Station of Allegheny Power Services. By locating the test facility at an existing coal-fired plant, much of the facility infrastructure can be utilized saving significant costs. Successful demonstration of this technology at this new facility is a prerequisite to its commercialization.

  9. Biomass gasification, stage 2 LTH. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bjerle, I.; Chambert, L.; Hallgren, A.; Hellgren, R.; Johansson, Anders; Mirazovic, M.; Maartensson, R.; Padban, N.; Ye Zhicheng [comps.] [Lund Univ. (Sweden). Dept. of Chemical Engineering II

    1996-11-01

    This report presents the final report of the first phase of a project dealing with a comprehensive investigation on pressurized biomass gasification. The intention with the project first phase was firstly to design, install and to take in operation a PCFB biomass gasifier. A thorough feasibility study was made during the first half year including extensive calculations on an internal circulating fluidized bed concept. The experimental phase was intended to study pressurized gasification up to 2.5 MPa (N{sub 2}, air) at temperatures in the interval 850-950 deg C. The more specific experimental objective was to examine the impact from various process conditions on the product formation as well as on the function of the different systems. The technical concept has been able to offer novel approaches regarding biomass feeding and PCFB gasification. The first gasification test run was made in December 1993 after almost 18 months of installation work. Extensive work was made during 1994 and the first half of 1995 to find the balance of the PCFB gasifier. It turned out to be very difficult to find operating parameters such that gave a stable circulation of the bed material during gasification mode. Apparently, the produced gas partly changed the pressure profile over the riser which in turn gave unstable operation. After a comprehensive investigation involving more than 100 hours of tests runs it was decided to leave the circulating bed concept and focus on bubbling bed operations. The test rig is currently operating as a bubbling bed gasifier. 4 refs, 24 figs, 6 tabs

  10. Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA); Klimaschutz, Naturressourcenschutz und Bodenverbesserung durch kombinierte energetische und stoffliche Verwertung lignozelluloser landwirtschaftlicher Abfaelle und Reststoffe

    Energy Technology Data Exchange (ETDEWEB)

    Schuech, Andrea; Nelles, Michael; Tscherpel, Burckhard; El Behery, Ahmed; Menanz, Rania; Bahl, Hubert; Scheel, Michael; Nipkow, Mareen

    2015-07-01

    The project Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA) was implemented with long-term partners from Egypt and Germany leaded by the Department Waste Management and Material Flow from September 2011 until October 2013. Aim of the project was the development of technologies for the utilization of agricultural wastes and residues at the example of rice straw, with the focus on the energetic and material use. In the long term a contribution to climate protection and natural resource management could be reached. The focus was on investigations in the field of biogas, ethanol and butanol production including pretreatment as well as the material use in horticulture. The results show that the biogas and ethanol production with adapted pretreatments of rice straws is possible. The technical adaptation of a biogas plant (eo-digestion) would be associated with about 20% higher investment costs and higher operating costs with an approximately 15% higher energy demand. In Germany, however, this may still economically by the substitution of expensive or difficult available energy crops (reduction of substrate costs by 30 to 35% for a 600 kWel-BGP using maize silage). The investigated solutions for material use in Egypt showed good results, which in some cases exceeded the expectations. By the use of rice straw imported peat substrates could be substitute or irrigation water saved, what is ecologically and economically useful. The production of ethanol from rice straw was implemented on laboratory scale and preconditions for investigations in semi-industrial and partly pilot scale were created. The bilateral project'' was funded in the framework of the German-Egypt-Research-Fond (GERF) by the German Federal Ministry of Education and Research (BMBF) and the Egyptian Science and Technology Development Fund in Egypt (STDF). The total budget

  11. Aprovechamiento de residuos sólidos en un sistema hidro-orgánico de agricultura urbana Use of solid residues in a hydro-organic culture systems of urban agriculture

    Directory of Open Access Journals (Sweden)

    Consuelo Montes Rojas

    2008-12-01

    Full Text Available La investigación tuvo por objeto diseñar un sistema hidroorgánico de producción de hortalizas en áreas pequeñas, con el fin de contribuir a la seguridad alimentaria de la población urbana y al aprovechamiento de los residuos sólidos de la ciudad de Popayán. Se diseñó un sistema a partir de material reciclado y se evaluó utilizando tres tratamientos como fuente nutricional (Lixiviado orgánico, Lixiviado orgánico suplementado, solución nutritiva común y como indicador biológico cilantro (Coriandrum sativum l.. La respuesta de las plantas fue evaluada por crecimiento y desarrollo. El sistema para producción urbana de hortalizas permitió obtener producciones hasta de 627 g m-2, superando la producción en agricultura tradicional (227 g. La mejor fuente nutricional fue la solución nutritiva comercial.The research objective was to design hydroorganic crop systems to produce vegetables in small areas, to contribute to the security food of urban population and the use of the solid residues. An alternative system was design for urban agricultural of vegetable with recycled material. To describe the source nutritional response of Coriandrum sativum were evaluating three treatments (organic leached, leached organic supplemented, common nutritional solution. The response of plant was characterized by growth and plants development. In the alternative systems for urban crop of vegetables the production/plant was of 627 g m-2, surpassing the results in traditional agriculture (227g. The best nutritional source was common nutritional solution.

  12. Potential application of gasification to recycle food waste and rehabilitate acidic soil from secondary forests on degraded land in Southeast Asia.

    Science.gov (United States)

    Yang, Zhanyu; Koh, Shun Kai; Ng, Wei Cheng; Lim, Reuben C J; Tan, Hugh T W; Tong, Yen Wah; Dai, Yanjun; Chong, Clive; Wang, Chi-Hwa

    2016-05-01

    Gasification is recognized as a green technology as it can harness energy from biomass in the form of syngas without causing severe environmental impacts, yet producing valuable solid residues that can be utilized in other applications. In this study, the feasibility of co-gasification of woody biomass and food waste in different proportions was investigated using a fixed-bed downdraft gasifier. Subsequently, the capability of biochar derived from gasification of woody biomass in the rehabilitation of soil from tropical secondary forests on degraded land (adinandra belukar) was also explored through a water spinach cultivation study using soil-biochar mixtures of different ratios. Gasification of a 60:40 wood waste-food waste mixture (w/w) produced syngas with the highest lower heating value (LHV) 5.29 MJ/m(3)-approximately 0.4-4.0% higher than gasification of 70:30 or 80:20 mixtures, or pure wood waste. Meanwhile, water spinach cultivated in a 2:1 soil-biochar mixture exhibited the best growth performance in terms of height (a 4-fold increment), weight (a 10-fold increment) and leaf surface area (a 5-fold increment) after 8 weeks of cultivation, owing to the high porosity, surface area, nutrient content and alkalinity of biochar. It is concluded that gasification may be an alternative technology to food waste disposal through co-gasification with woody biomass, and that gasification derived biochar is suitable for use as an amendment for the nutrient-poor, acidic soil of adinandra belukar. PMID:26921564

  13. Hydrogen production by supercritical water gasification of alkaline black liquor

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Changqing; Guo, Liejin; Chen, Yunan; Lu, Youjun [Xi' an Jiatong Univ. (China)

    2010-07-01

    Black liquor was gasified continuously in supercritical water successfully and the main gaseous products were H{sub 2}, CO{sub 2} and CH{sub 4} with little amount of CO, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. The increase of the temperature and the decrease of the flow rate and black liquor concentration enhanced SCWG of black liquor. The change of the system pressure had limited influence on the gasification effect. The maximal COD removal efficiency of 88.69 % was obtained at the temperature of 600 C. The pH values of the aqueous residue were all decreased to the range of 6.4{proportional_to}8 while the pH value of cooling effluence below 360 C increased to about 11 and the sodium content was much higher than that in the aqueous residue. The reaction rate for COD degradation in supercritical water was obtained by assuming pseudo first order reaction. And the activation energy and pre-exponential for COD removal in SCWG were 74.38kJ/mol and 1.11 x 10{sup 4} s{sup -1} respectively. (orig.)

  14. Gasification Plant Cost and Performance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air

  15. Removal and Conversion of Tar in Syngas from Woody Biomass Gasification for Power Utilization Using Catalytic Hydrocracking

    OpenAIRE

    Jiu Huang; Klaus Gerhard Schmidt; Zhengfu Bian

    2011-01-01

    Biomass gasification has yet to obtain industrial acceptance. The high residual tar concentrations in syngas prevent any ambitious utilization. In this paper a novel gas purification technology based on catalytic hydrocracking is introduced, whereby most of the tarry components can be converted and removed. Pilot scale experiments were carried out with an updraft gasifier. The hydrocracking catalyst was palladium (Pd). The results show the dominant role of temperature and flow rate. At a cons...

  16. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... of Availability Hydrogen Energy California's Integrated Gasification Combined Cycle Project... availability of the Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary... the Hydrogen Energy California's (HECA) Integrated Gasification Combined Cycle Project, which would...

  17. Gasification reactivity of various coals at a high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji; Miura, Koichi; Xu, Ji-Jun

    1987-06-20

    Eighteen ranks of coal and twelve ranks of deashed coal were gasified with steam at 1185/sup 0/C by a high-heating rate thermobalance reactor to examine the gasification of coal in the high temperature of 1000/sup 0/C or higher. The minerals have catalytic action on the gasification of low grade coal even at the temperature as high as 1185/sup 0/C, while the minerals contained in high grade coal (C-content: higher than 75%) do not affect it. In the chemical reaction rate-determining gasification process of coal and deashed coal with negligible catalytic action, the gasification rate is lowered with decreasing of the pare surface area of char and with increasing of crystalline size of carbon. Even in the gasification at high temperature, the gasification rate is raised with increasing of the amount of oxygen trapped in the char (by flash desorption method).(25 refs, 10 figs, 1 tab)

  18. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    Science.gov (United States)

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up. PMID:26210232

  19. Minerals in the Ash and Slag from Oxygen-Enriched Underground Coal Gasification

    Directory of Open Access Journals (Sweden)

    Shuqin Liu

    2016-03-01

    Full Text Available Underground coal gasification (UCG is a promising option for the recovery of low-rank and inaccessible coal resources. Detailed mineralogical information is essential to understand underground reaction conditions far from the surface and optimize the operation parameters during the UCG process. It is also significant in identifying the environmental effects of UCG residue. In this paper, with regard to the underground gasification of lignite, UCG slag was prepared through simulation tests of oxygen-enriched gasification under different atmospheric conditions, and the minerals were identified by X-Ray diffraction (XRD and a scanning electron microscope coupled to an energy-dispersive spectrometer (SEM-EDS. Thermodynamic calculations performed using FactSage 6.4 were used to help to understand the transformation of minerals. The results indicate that an increased oxygen concentration is beneficial to the reformation of mineral crystal after ash fusion and the resulting crystal structures of minerals also tend to be more orderly. The dominant minerals in 60%-O2 and 80%-O2 UCG slag include anorthite, pyroxene, and gehlenite, while amorphous substances almost disappear. In addition, with increasing oxygen content, mullite might react with the calcium oxide existed in the slag to generate anorthite, which could then serve as a calcium source for the formation of gehlenite. In 80%-O2 UCG slag, the iron-bearing mineral is transformed from sekaninaite to pyroxene.

  20. Interpretation of biomass gasification yields regarding temperature intervals under nitrogen-steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2007-04-15

    Gasification of some agricultural waste biomass samples (sunflower shell, pine cone, cotton refuse, and olive refuse) and colza seed was performed using a thermogravimetric analyzer at temperatures up to 1273 K with a constant heating rate of 20 K/min under a dynamic nitrogen-steam atmosphere. Derivative thermogravimetric analysis profiles of the samples were derived from the non-isothermal thermogravimetric analysis data. Gasification yields of the biomass samples at temperature intervals of 473-553 K, 553-653 K, 653-773 K, 773-973 K, and 973-1173 K were investigated considering the successive stages of ''evolution of carbon oxides'', ''start of hydrocarbon evolution'', ''evolution of hydrocarbons'', ''dissociation'', and ''evolution of hydrogen'', respectively. Although, there were some interactions between these stages, some evident relations were observed between the gasification yields in a given stage and the chemical properties of the parent biomass materials. (author)

  1. Basic equations of channel model for underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The underground coal gasification has advantages of zero rubbish, nonpollution, low cost and high safety. According to the characteristics of the gasification, the channel model of chemical fluid mechanics is used to set up the fluid equations and chemical equations by some reasonable suppositions in this paper, which lays a theoretical foundation on requirements of fluid movement rules in the process of underground coal gasification.

  2. Biomass integrated CFB gasification combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Hirschfelder, H. (Lurgi Umwelt GmbH, Frankfurt am Main (Germany))

    1998-01-01

    This paper presents an overview on the Lurgi-Circulating Fluidized Bed technology (CFB). CFB units are state of the art and have proven their capability of converting biomass, waste or coal into power and/or steam. CFB reactors are in commercial operation for reduction processes and for combustion and gasification of solid fuels. In this paper reduction processes are not considered. The fact, that world-wide over 80 CFB combustion plants using Lurgi technology are commercially operating proves that this technology is well accepted. Lurgi's CFB gasification technology is at present applied in two industrial plants. It is the key process for the advanced biomass or waste utilisation plants. The paper focuses on CFB fuel gas production for combined cycle plants (IGCC) and for cofiring into existing boiler plants. 5 refs., 4 figs.

  3. Biomass integrated CFB gasification combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Hirschfelder, H. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany)

    1998-12-31

    This paper presents an overview on the Lurgi-Circulating Fluidized Bed technology (CFB). CFB units are state of the art and have proven their capability of converting biomass, waste or coal into power and/or steam. CFB reactors are in commercial operation for reduction processes and for combustion and gasification of solid fuels. In this paper reduction processes are not considered. The fact, that world-wide over 80 CFB combustion plants using Lurgi technology are commercially operating proves that this technology is well accepted. Lurgi`s CFB gasification technology is at present applied in two industrial plants. It is the key process for the advanced biomass or waste utilisation plants. The paper focuses on CFB fuel gas production for combined cycle plants (IGCC) and for cofiring into existing boiler plants. 5 refs., 4 figs.

  4. Robustness studies on coal gasification process variables

    Directory of Open Access Journals (Sweden)

    RLJ Coetzer

    2004-12-01

    Full Text Available Optimisation of the Sasol-Lurgi gasification process was carried out by utilising the method of Factorial Experimental Design on the process variables of interest from a specifically equipped full-scale test gasifier. The process variables that govern gasification are not always fully controllable during normal operation. This paper discusses the application of statistical robustness studies as a method for determining the most efficient combination of process variables that might be hard-to-control during normal operation. Response surface models were developed in the process variables for each of the performance variables. It will be shown how statistical robustness studies provided the optimal conditions for sustainable gasifier operability and throughput. In particular, the optimum operability region is significantly expanded towards higher oxygen loads by changing and controlling the particle size distribution of the coal.

  5. Technology of Gasification of Liquefied Natural Gas

    Science.gov (United States)

    Tonkonog, V. G.; Bayanov, I. M.; Tonkonog, M. I.; Mubarakshin, B. R.

    2016-07-01

    A flow diagram of gasification of a cryogenic liquid, which is based on the utilization of the liquid's internal energy to obtain a vapor phase, has been presented. The limiting steam fractions of the two-phase flow in a gasifier have been evaluated as applied to the problems of gasification of methane. Consideration has been given to the conditions of phase separation in the field of mass forces. A numerical scheme of solution of a system of gasdynamic equations for the two-phase flow in a cylindrical coordinate system in a three-dimensional formulation has been implemented. The results of numerical modeling of the conditions of precipitation of particles with a diameter of 2 to 10 μm from a swirling dispersed flow have been presented; the role of the particle size in the dynamics of the process of phase separation has been established.

  6. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  7. Char-recirculation biomass gasification system--a site-specific feasibility study

    International Nuclear Information System (INIS)

    A site-specific feasibility study was conducted for a char-recirculation biomass gasification plant which would dispose of the chippable solid residues of the area sawmills. The plant would receive green hardwood chips and convert them into active charcoal while producing process steam and electrical power. An economic analysis was performed on the basis of not-for-profit operation, marketing crushed active charcoal to a broker at a discounted price, and displacing purchased electric power. Given a market for the active charcoal, the plant was judged to be economically viable

  8. Bench-scale experiment design for developing co-pyrolysis and co-gasification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kandiyoti, R. [Imperial College London, London (United Kingdom). Dept. of Chemical Engineering

    2004-07-01

    Important technical issues must be resolved before co-pyrolysis and co-gasification technologies can be offered as commercially viable processes. Clearly, issues such as solids handling and solids injection require solutions developed at actual plant or pilot scale. However, research on numerous other residual problems can be carried out effectively, rapidly, and inexpensively at bench-scale level. This article describes several cases where problems encountered during pilot or plant scale operation can be studied by experiments at bench-top levels; the designs of the bench-scale reactors used in these studies are presented and discussed. 34 refs., 6 figs., 2 tabs.

  9. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  10. Gasification performance of switchgrass pretreated with torrefaction and densification

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Various

    2014-08-01

    The purpose of this study was to investigate gasification performance of four switchgrass pretreatments (torrefaction at 230 and 270 °C, densification, and combined torrefaction and densification) and three gasification temperatures (700, 800 and 900 °C). Gasification was performed in a fixed-bed externally heated reactor with air as an oxidizing agent. Switchgrass pretreatment and gasification temperature had significant effects on gasification performance such as gas yields, syngas lower heating value (LHV), and carbon conversion and cold gas efficiencies. With an increase in the gasification temperature, yields of H2 and CO, syngas LHV, and gasifier efficiencies increased whereas CH4, CO2 and N2 yields decreased. Among all switchgrass pretreatments, gasification performance of switchgrass with combined torrefaction and densification was the best followed by that of densified, raw and torrefied switchgrass. Gasification of combined torrefied and densified switchgrass resulted in the highest yields of H2 (0.03 kg/kg biomass) and CO (0.72 kg/kg biomass), highest syngas LHV (5.08 MJ m-3), CCE (92.53%), and CGE (68.40%) at the gasification temperature of 900 °C.

  11. Gasification Product Improvement Facility (GPIF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  12. Substitute natural gas from biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tunaa, Per (Lund Inst. of Technology, Lund (SE))

    2008-03-15

    Biomass is by many considered as the only alternative to phase-out the usage of fossil fuels such as natural gas and oil especially for the transportation sector where alternative solutions, such as hydrogen fuel cells and batteries, are not yet fully developed. Thermal gasification or other methods such as pyrolysis of the biomass must be applied in order to produce an intermediate product suitable for further upgrading to either gaseous or liquid products. This thesis will evaluate the possibilities of producing, substitute natural gas, (SNG) from biomass gasification by using computer simulation. Three different gasification techniques were evaluated; entrained-flow, fluidized-bed and indirect gasification coupled with two different desulphurisation systems and two methanation processes. The desulphurisation systems were a zinc oxide bed and a Rectisol wash system. Methanation were performed by a series of adiabatic reactors with gas recycling and by an isothermal reactor. The impact on SNG efficiency from system pressure, isothermal methanation temperature and PSA methane recovery were evaluated as well. The results show that the fluidized-bed and the indirect gasifier have the highest SNG efficiency. Furthermore there are little to no difference between the methanation processes and small differences for the gas cleanup systems. SNG efficiencies in excess of 50 % were possible for all gasifiers. SNG efficiency is defined as the energy in the SNG product divided by the total input to the system from biomass, drying and oxygen. Increasing system pressure has a negative impact on SNG efficiency as well as increasing operating costs due to increased power for compression. Isothermal methanation temperature has no significant impact on SNG efficiency. Recovering as much methane as possible in the PSA is the most important parameter. Recovering methane that has been dissolved in condensed process water increases the SNG efficiency by 2-10% depending on system.

  13. High temperature steam gasification of wastewater sludge

    International Nuclear Information System (INIS)

    High temperature steam gasification is one of the most promising, viable, effective and efficient technology for clean conversion of wastes to energy with minimal or negligible environmental impact. Gasification can add value by transforming the waste to low or medium heating value fuel which can be used as a source of clean energy or co-fired with other fuels in current power systems. Wastewater sludge is a good source of sustainable fuel after fuel reforming with steam gasification. The use of steam is shown to provide value added characteristics to the sewage sludge with increased hydrogen content as well total energy. Results obtained on the syngas properties from sewage sludge are presented here at various steam to carbon ratios at a reactor temperature of 1173 K. Effect of steam to carbon ratio on syngas properties are evaluated with specific focus on the amounts of syngas yield, syngas composition, hydrogen yield, energy yield, and apparent thermal efficiency. The apparent thermal efficiency is similar to cold gas efficiency used in industry and was determined from the ratio of energy in syngas to energy in the solid sewage sludge feedstock. A laboratory scale semi-batch type gasifier was used to determine the evolutionary behavior of the syngas properties using calibrated experiments and diagnostic facilities. Results showed an optimum steam to carbon ratio of 5.62 for the range of conditions examined here for syngas yield, hydrogen yield, energy yield and energy ratio of syngas to sewage sludge fuel. The results show that steam gasification provided 25% increase in energy yield as compared to pyrolysis at the same temperature.

  14. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Kurkela, E.; Staahlberg, P.; Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  15. Gasification of refuse-derived fuel in a high throughput gasification system

    International Nuclear Information System (INIS)

    Increasing quantities of municipal wastes have led to the development of numerous technologies for combustion or gasification of these wastes. Under sponsorship of the Department of Energy, Battelle has completed a preliminary investigation of gasification of prepared municipal wastes [refuse derived fuel (RDF)] to produce a medium Btu gas without oxygen in its High Throughput Gasification system. A successful test program was conducted in a 12 TPD Process Research Unit (PRU) to provide data on product gas composition and production rates possible with the RDF feedstock. Test data generated during the program were compared to an extensive data base generated with wood in the research unit. Results of this test program are presented along with data on waste water characteristics from the PRU. Data generated during the experimental program were used in the generation of a process conceptual design. A preliminary economic evaluation based on this design indicates that the Battelle process provides significant economic benefits when compared to mass burn technologies

  16. Earthworm tolerance to residual agricultural pesticide contamination

    DEFF Research Database (Denmark)

    Givaudan, Nicolas; Binet, Françoise; Le Bot, Barbara;

    2014-01-01

    conventional cultivation to organic pasture. Soil multiresidual pesticide analysis revealed up to 9 molecules including atrazine up to 2.4 ng g -1 dry soil. Exposure history of endogeic Aporrectodea caliginosa and Allolobophora chlorotica modified their responses to pesticides. In the field, activities...

  17. Sustainable nanomaterials using waste agricultural residues

    Science.gov (United States)

    Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. Learning from nature, one can produce a wide variety of nanoparticles using completely safe and benign materials such as ...

  18. Coal gasification. Quo vadis?; Kohlevergasung. Quo Vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Graebner, Martin; Meyer, Bernd [Technische Univ. Bergakademie Freiberg (Germany). Dept. of Energy Process Engineering and Chemical Engineering

    2010-11-15

    To summarize, it can be stated for coal gasification that in the last decade, an increase of synthesis gas capacity of 17.7 GW was observed, mainly concentrated in the Chinese region (15.3 GW). All these plants produce chemicals, primarily ammonia and methanol. Most of the announced North American and European IGCC projects (partly including CO{sub 2} capture) are either on hold or canceled. Hence, the development shows that mono-power generation applying CCS is not feasible under the current boundary conditions. If one poses the question ''Coal gasification - Quo vadis?'', it would be instructive to develop new strategies keeping in mind boundary conditions like oil depletion, climate protection, coal properties and grid instabilities. Since lots of chemical raw materials contain carbon, a carbon source for the post-oil era has to be identified. As only gasification processes are able to condition coal for chemical utilization, they indicate the direction for further development. In this context it is advisable to combine the production os chemicals and power. Modern polygeneration plants or ''energy factories'' would allow the highest creation of value at minimized CO{sub 2} emissions and flexible load deploying processes tailored to coal quality. The experiences of the recently constructed plants will enrich research and development so that concept design could successfully materialize as technical installations. (orig.)

  19. Sewage Sludge Gasification for CHP Applications

    Energy Technology Data Exchange (ETDEWEB)

    McCahey, S.; Huang, Y.; McMullan, J.T.

    2003-07-01

    Many routes previously available for sewage sludge disposal within the European Union are now prohibited or constrained by environmental legislation. Meanwhile, sewage sludge production increases annually as more rigorous treatment processes are used. This paper introduces an ongoing project, supported by the European Commission FP5 Programme, which seeks to examine the key technical environmental and economic issues relating to the gasification of sewage sludge for utilisation in CHP applications and ultimately to establish the commercial viability of the process. Sewage sludge treatment data has been collected by country and region and a database compiled. Laboratory and pilot plant scale gasification trials are underway and two small engines and a generator have been installed and commissioned. This paper discusses the concurrent development of ECLIPSE process simulation models for the three selected gasification processes, namely fluidised bed, spouted bed and fixed bed. These models have been validated and are being used to predict the behaviour of appropriately sized commercial scale plant, enabling informed decisions regarding technical suitability. The next step in this project is to determine capital costs and economic performance. Process routes will be identified that offer the most cost effective routes to reducing environmental burdens by using sewage sludge in CHP applications. (author)

  20. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1995-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  1. Addendum to industrial market assessment of the products of mild gasification

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., ``Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  2. Addendum to industrial market assessment of the products of mild gasification

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  3. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuen dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y. [VTT Energy, Espoo (Finland)

    1996-12-01

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (1) suitability to small scale electricity production (<5-10 MWe), (2) reliable operation with realistically available biomass feedstocks, and (3) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (1) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (2) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers. The studies are scheduled to be completed in March 1996. (author)

  4. 我国与欧盟主要农产品的重金属限量标准比较%Comparison of Heavy Metal Maximum Residue Limit Standard in Main Agricultural Products Between China and EU

    Institute of Scientific and Technical Information of China (English)

    赵凤霞; 王正平; 宋学立; 朱景伟; 孙卉卉; 高相彬; 王海涛

    2014-01-01

    The heavy metal maximum residue limit standard of agricultural products between China and EU was compared to protect health of consumers and meet the demand of export trade development of agricultural products in China and main hazard of Pb,Cd,Hg,Sn,As,Cr and Ni to human body was discussed in the paper.The Pb MRLs of most agricultural products such as cereal,fruits and vegetables in China is no difference with in EU but the Pb MRLs of most agricultural products such as poultry & meat, aquatic animals and dairy products in China is higher than EU.The Cd MRLs of cereal,beans,fruits, vegetables,livestock liver and kidney is no difference with EU but the Cd MRLs of poultry & meat and aquatic products in China is higher than EU.The Hg MRLs of aquatic products is in accord with EU basically and the Hg content in cereal,vegetables,meats,dairy products,eggs and edible mushrooms is regulated in detail.The Sn MRLs of beverages in China is a little more than EU.Total As and inorganic As content in most agricultural products was regulated in GB2762 - 2012.The Ni MRLs of grease and grease products such as hydrogenated vegetable oil and products containing hydrogenated vegetable oil is 1.0 mg/kg.The suggestions to reduce heavy metal content in agricultural products is proposed according to the current status of high heavy metal content in some agricultural products in China compared with developed countries.%为了保护我国消费者的健康,满足农产品出口贸易发展的要求,通过收集整理,简述了 Pb、Cd、Hg、锡(Sn)、As、Cr 和镍(Ni)等几种重金属对人体的主要危害,并对这几种重金属在我国和欧盟主要农产品中的限量标准进行了详细的对比分析。结果表明:Pb,我国谷物、水果和蔬菜等大部分农产品中的限量标准与欧盟一致,禽畜肉类、水产动物类和乳品类等部分农产品中限量标准高于欧盟;Cd,我国的谷物、豆类、水果、蔬菜、禽畜肝脏

  5. Cultivo do cogumelo Pleurotus sajor-caju em diferentes resíduos agrícolas Cultivation of the mushroom Pleurotus sajor-caju in different agricultural residues

    Directory of Open Access Journals (Sweden)

    Eustáquio Souza Dias

    2003-12-01

    Full Text Available Diferentes resíduos agrícolas disponíveis na região sul de Minas Gerais foram testados para o cultivo do cogumelo Pleurotus sajor-caju. Foram avaliados os seguintes substratos: palha de feijão pura (PFP, palha de milho pura (PMP, casca de café pura (CCP, palha de feijão enriquecida com 2% de calcário, 2% de gesso e 10% de farelo de trigo (PFE, palha de milho enriquecida (PME e casca de café enriquecida (CCE. Todos os substratos receberam 2% de inoculante e foram incubados a 24°C. Após a colonização, os sacos foram mantidos abertos em ambiente a 24°C e umidade a 80%. PFP, PFE e PME apresentaram os melhores resultados na produção de cogumelos, com uma eficiência biológica de 85,7; 81,4 e 83,4%, respectivamente. A palha de feijão foi considerada o melhor resíduo para a produção do cogumelo P. sajor-caju, porque apresentou a melhor eficiência biológica sem necessidade de enriquecimento.Several agricultural residues available in the South of Minas Gerais were tested for cultivation of the mushroom Pleurotus sajor-caju. The following substrates were investigated: Bean (BS, Corn (CS straws and Coffee husk (CH without nutrient supplementation and straws of bean (BSS, corn (CSS and coffee husk (CHS supplemented with 2% of CaCO3, 2% of gypsum and 10% of wheat flour. All the substrates were inoculated with 2% of spawn and incubated at 24ºC. After the fungi had colonized the substrate, the plastic bags were open and maintained at room temperature with 80% of humidity. BS, BSS and CSS showed higher mushroom production than the others, showing a biological efficiency of 85.7, 81.4 and 83.6% respectively. The beans straw (BS without nutrient supplementation was considered the best residue for the growth and cultivation of the mushroom Pleurotus sajor-caju. This substrate showed higher levels of biological efficiency than the others substrates analysed.

  6. Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution

    International Nuclear Information System (INIS)

    Highlights: ► Gasification of sugarcane bagasse has been investigated using a semi batch reactor. ► Global reaction mechanism combining pyrolysis and gasification reactions is presented. ► High flow rates of syngas supported fragmentation and secondary reactions. ► CO flow rate increased at higher heating rates at the expense of CO2 production. ► At high temperatures merger between pyrolysis and char gasification occurs. -- Abstract: Steam gasification of sugarcane bagasse has been investigated. A semi batch reactor with a fixed amount of sugarcane bagasse sample placed in steady flow of high temperature steam at atmospheric pressure has been used. The gasification of bagasse was examined at reactor and steam temperatures of 800, 900 and 1000 °C. The evolution of syngas flow rate and chemical composition has been monitored. The evolution of chemical composition and total flow rate of the syngas has been used to formulate a global reaction mechanism. The mechanism combines pyrolysis reaction mechanisms from the literature and steam gasification/reforming reactions. Steam gasification steps include steam–hydrocarbons reforming, char gasification and water gas shift reactions. Evidence of fragmentation, secondary ring opening reactions and tertiary reactions resulting in formation of gaseous hydrocarbons is supported by higher flow rates of syngas and hydrogen at high heating rates and high reactor temperatures. Increase in carbon monoxide flow rate at the expense of carbon dioxide flow rate with the increase in reactor temperature has been observed. This increase in the ratio of CO/CO2 flow rate confirms the production of CO and CO2 from the competing reaction routes. At 1000 °C gasification a total merging between the pyrolysis step and the char gasification step has been observed. This is attributed to acceleration of char gasification reactions and acceleration of steam–hydrocarbons reforming reactions. These hydrocarbons are the precursors to char

  7. Characteristics of Organochlorine Pesticide Residues in Agricultural Soil of Chongming Island in Shanghai%上海崇明岛农田土壤中有机氯农药残留特征

    Institute of Scientific and Technical Information of China (English)

    吕金刚; 毕春娟; 陈振楼; 周婕成

    2011-01-01

    Thirty surface soil samples were collected to investigate the residue concentrations of organochlorine pesticides (OCPs) in agricultural soil of Chongming Island in July 2008. Those samples were extracted using accelerated solvent extraction (ASE) and determined by gas chromatography with an electron capture detector ( GC-μECD). Results showed that the concentrations of OCPs ( dry weight) ranged between 3.11-117.47 ng·g-1, with mean value of 26.25 ng·g-1. Two major contaminants of OCPs were DDTs and HCHs, the concentration of which varied from 0. 14 ng·g-1 to 77.89 ng·g-1 and from 1. 14 ng.g-l to 22.43 ng·g-1 , respectively. At the same times, hexachlorobenzene (0. 23-11.63 ng·g-1), aldrin (0. 03-0. 75 ng·g-1 ), heptaehlor epoxide (0. 05-1.44 ng·g-1), dieldrin (0.05-5.33 ng·g-1 ) , endrin ( ND-14.66 ng·g-1 ) and mirex (0. 03-10. 58 ng·g-1 ) could also be detected. Most of DDTs had been degraded to DDD and DDE, with tae major compounds of DDE (about 64.7% ), and the recent existed DDT was the residue of early input. All of the four isomers of I-CHs were detected, and the contents of α-HCH ( about 48.1% ) and β-HCH ( about 33.4% ) were the maximum. The highest OCPs residues appeared in the soil of farm cultivation compared to greenhouse cultivation and ordinary open-air cultivation.%为研究崇明岛农田土壤中有机氯农药(OCPs)的残留特征,于2008年7月采集崇明岛农田表层土壤30个.利用加速溶剂萃取仪(ASE)萃取,使用气相色谱-电子捕获检测器(GC-μECD)分析.结果表明,在采集的土壤样品(干重)中,OCPs的含量范围为3.11~117.47 ng.g-1(平均值26.25 ng.g-1);主要组分DDTs和HCHs的含量范围分别为0.14~77.89 ng.g-1(平均值15.80 ng.g-1)和1.14~22.43 ng.g-1(平均值4.52 ng.g-1),另外六氯苯(

  8. Coal gasification. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

  9. Supercritical Water Gasification of Biomass: A Literature and Technology Overview

    NARCIS (Netherlands)

    Yakaboylu, O.; Harinck, J.; Smit, K.G.; De Jong, W.

    2014-01-01

    The supercritical water gasification process is an alternative to both conventional gasification as well as anaerobic digestion as it does not require drying and the process takes place at much shorter residence times; a few minutes at most. The drastic changes in the thermo-physical properties of w

  10. Enhanced-hydrogen gas production through underground gasification of lignite

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-qin; WANG Yuan-yuan; ZHAO Ke; YANG Ning

    2009-01-01

    Underground coal gasification is one of the clean technologies of in-situ coal utilization. Hydrogen production from underground gasification of lignite was investigated in this study based on simulation experiments. Pyrolysis of lignite, gasification activity, oxygen-steam gasification and the effect of groundwater influx were studied. As well, the advantages of lignite for stable underground gasification were analyzed. The results indicate that lignite has a high activity for gasification. Coal pyrolysis is an important source of hydrogen emission. Under special heating conditions, hydrogen is released from coal seams at temperatures above 350 ℃ and reaches its maximum value between 725 and 825 ℃. Gas with a hydrogen concentration of 40% to 50% can be continuously obtained by oxygen-steam injection at an optimum ratio of steam to oxygen, while lignite properties will ensure stable gasification. Groundwater influx can be utilized for hydrogen preparation under certain geological conditions through pressure control. Therefore, enhanced-hydrogen gas production through underground gasification of lignite has experimentally been proved.

  11. A review of biomass gasification technologies in Denmark and Sweden

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    This report provides an overview of existing technologies and projects in Denmark and Sweden with a focus on the Öresund region. Furthermore it presents the research and development of biomass gasification in the region and these two countries. The list of existing gasification plants from labora...

  12. Hydrodynamic study on gasification of biomass in a fluidized bed gasifier

    Directory of Open Access Journals (Sweden)

    S.BASKARA SETHUPATHY

    2012-01-01

    Full Text Available Current scenario of energy insecurity urges us to realize the importance of alternate energy sources. In country with variety of vegetation like India, Biomass finds its place of which fluidized bed gasification of biomass could be more effective. This paper emphasizes the importance of a fluidized bed gasifier for energy conversion of agro-residues for useful purposes. Coconut Shell and Ground nut shell of gross calorific value 19.43MJ/kg and 14.91 MJ/kg respectively are taken for the study. The particle size is restricted not to exceed 3mm. Various empirical correlations involved in fluidization are studied and their interdependence is detailed. From various published data, importance of inert materials and their relative proportions with biomass fuels are studied and optimum biomass to sand ratio is fixed as 10 to 15% by mass. Equations for predicting the minimum fluidization velocities of these mixtures are also discussed. Variations of Fluidization parameters such asminimum fluidization velocity, bubble rise velocity, expanded bed height with respect to temperature, equivalence ratio, particle size is studied and their quantification is analyzed. A 108 mm internal diameter and 1400 mm high FBG is used for the study. Fuel is fed through screw feeder and air is supplied through blower. In the down stream side cyclone separator is placed after which the sampling and burner lines are connected. A regression model is developed and the feasibility of gasifying coconut shell and groundnut shell are discussed. Earlier and present work of coconut shell gasification proves fluidized bed gasification is more appropriate for agro residues.

  13. Residual Momentum

    NARCIS (Netherlands)

    D.C. Blitz (David); J.J. Huij (Joop); M.P.E. Martens (Martin)

    2011-01-01

    textabstractConventional momentum strategies exhibit substantial time-varying exposures to the Fama and French factors. We show that these exposures can be reduced by ranking stocks on residual stock returns instead of total returns. As a consequence, residual momentum earns risk-adjusted profits th

  14. Pyrolysis and gasification behavior of black liquor under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.

    1997-11-01

    The purpose of this study has been to enhance the understanding of the processes involved in pressurized black liquor gasification. Gasification is known to occur in three stages: drying, pyrolysis and char gasification. The work presented here focuses on the pyrolysis and gasification stages. Experiments were carried out primarily in two laboratory-scale reactors. A pressurized grid heater was used to study black liquor pyrolysis under pressurized conditions. Char yields and the fate of elements in the liquor, as well as the degree of liquor swelling, were measured in this device. A pressurized thermogravimetric reactor was used to measure the rate of the char gasification process under different temperatures and pressures and in various gas atmospheres. Pyrolysis experiments were also carried out in this device, and data on swelling behavior, char yields and component release were obtained 317 refs.

  15. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  16. Combining a 2-D multiphase CFD model with a Response Surface Methodology to optimize the gasification of Portuguese biomasses

    International Nuclear Information System (INIS)

    Highlights: • A multiphase CFD model was combined with RSM. • Gasification optimal operating conditions were found in a pilot scale reactor. • Syngas quality indices were optimized in a biomass gasification process. • Propagation of error methodology was combined with a CFD model and RSM. - Abstract: This paper presents a study to evaluate the potential of Portuguese biomasses (coffee husks, forest residues and vine pruning residues) to produce syngas for different applications. By using a 2-D Eulerian–Eulerian approach within the CFD framework, a design of several computer experiments was developed and were used as analysis tools the response surface method (RSM) and the propagation of error (POE) approach. The CFD model was validated under experimental results collected at a semi-industrial reactor. For design purposes, temperature, steam to biomass ratio (SBR) and the type of biomass were selected as input factors. The responses were the H2 generation, the H2/CO ratio, the CH4/H2 ratio, the carbon conversion and the cold gas efficiency. It was concluded that after an optimization procedure to determine the operating conditions, vine pruning residues could show very promising results considering some of the typical syngas indice standards for commercial purposes. From the optimization procedure, it was also concluded that forest residues are preferable for domestic natural gas applications and vine pruning residues for fuel cells and integrated gasification systems application. By using the RSM combined with POE, it was verified that the operating conditions to get higher performances do not always coincide with those necessary to obtain a stable syngas composition

  17. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  18. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  19. Prevention of the ash deposits by means of process conditions in biomass gasification; Biomassapolttoaineiden tuhkan kuonaantumiskaeyttaeytymisen estaeminen prosessiolosuhteiden avulla

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Laatikainen-Luntama, J.; Nieminen, M.; Kurkela, E.; Korhonen, J. [VTT Energy, Espoo (Finland)

    1997-10-01

    In fluidised-bed gasification, various types of deposits and agglomerates may be formed by biomass ash in the bed, in upper zones of the reactor, for instance in cyclones. These may decisively hamper the operation of the process. The aim of the project was to obtain data on the detrimental fouling behaviour of the ash of different types of biomass in fluidised-bed gasification, and on the basis of these data to determine the process conditions and ways of preventing this kind of behaviour. Different types of biomass fuel relevant to energy production such as straw, wood residue were be used as samples. The project consisted of laboratory studies and fluidised-bed reactor tests including ash behaviour studied both in the bed and freeboard. In laboratory tests, the sample material was characterised as a function of different process parameters. In fluid-bed reactors, the most harmful biomasses were tested using process variables such as temperature, bed material and the gasification agents. Bubbling fluidised-bed gasification tests with wheat straw showed that agglomerates with different sizes and structures formed in the bed depending on the temperature, the feed gas composition and bed material. Agglomerates consisted of molten ash which sintered with bed material and other solids. In all BFB tests, freeboard walls were slicked by ash agglomerates (different amounts) which, however, were easily removable. The results of this project and the earlier pilot-scale gasification experience obtained with the same feedstocks showed that useful characteristic data about ash behaviour can be obtained using laboratory tests and small scale reactors. (orig.)

  20. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Harold Schobert

    2006-02-01

    With the recent passing of new legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2004 to August 31, 2005. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  1. GASIFICATION BASED BIOMASS CO-FIRING

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate

  2. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  3. Nordic seminar on biomass gasification and combustion

    International Nuclear Information System (INIS)

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs

  4. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  5. Combustion of spent shales from the Rotem deposit. Pt. 1. Concurrent thermal processes: Pyrolysis and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zabicky, J. (Ben-Gurion Univ. of the Negev, Beersheba (Israel). Institutes for Applied Research Ben-Gurion Univ. of the Negev, Beersheba (Israel). M.R. Bloch Center for Coal Research); Wohlfarth, A. (Pama - Energy Resources Development Ltd., Arava (Israel))

    1991-06-01

    Spent shales prepared by the Fisher method from oil shales of the Rotem deposit/Israel were studied in a continuous fluidized bed reactor at 700-900deg C under atmospheric pressure, using mixtures of nitrogen and carbon dioxide as the fluidizing gas. A set of simultaneus processes takes place, including pyrolysis of the organic residue in the spent shales, decomposition of calcium carbonate, dehydration of clay phases, decomposition of pyrites, reduction of anhydrite to calcium sulfide and other minor reactions. An important secondary process is gasification of the organic residue by carbon dioxide produced by carbonate decomposition or combustion. The extent to which these reactions take place depends on temperature, composition of the fluidizing gas, particle size of the spent shales, and mean residence time of the particles in the reactor. (orig.).

  6. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper; Holm, Jens Kai;

    2012-01-01

    Recycling of residual products of bioenergy conversion processes is important for adding value to the technologies and as a potential beneficial soil fertility amendment. In this study, two different ash materials originating from low temperature circulating fluidized bed (LT-CFB) gasification...... not significantly altered after ash application. SA was generally able to increase the levels of Olsen-P and of the ammonium acetate/acetic acid-extractable K in soil as well as to improve the yield of barley and maize, whereas faba bean did not react positively to ash amendment. CP did not show beneficial effects...... on soil nutrient levels or on crop biomass. We conclude from the results of this study, that—depending on the feedstock used—ashes from LT-CFB gasification of plant biomass can be used to replace mineral fertilizers if they are applied according to their nutrient content, the crop demand, and soil...

  7. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette; Munkholm, Lars Juhl;

    2016-01-01

    Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil degradat......Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil......, the addition of straw resulted in a high soil respiration rate, and about 80% of the added carbonwas respired at the end of the incubation. However, the addition of straw increased aggregate stability and decreased clay dispersibility. Results from Fourier transformed infrared photoacoustic spectroscopy...... sugars, and that increased stability against microbial degradation in biochar amended soil was related to highly condensed aromatic groups. Addition of nutrients (N, P and S) together with straw resulted in higher soil respiration compared to the straw treatment, but did not cause differences in other...

  8. Agricultural Production.

    Science.gov (United States)

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  9. Coal gasification. (Latest citations from the EI compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The bibliography contains citations concerning the development and assessment of coal gasification technology. Combined-cycle gas turbine power plants are reviewed. References also discuss dry-feed gasification, gas turbine interface, coal gasification pilot plants, underground coal gasification, gasification with nuclear heat, and molten bath processes. Clean-coal based electric power generation and environmental issues are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  11. In Situ Causticizing for Black Liquor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Scott Alan Sinquefield

    2005-10-01

    Black liquor gasification offers a number of attractive incentives to replace Tomlinson boilers but it also leads to an increase in the causticizing load. Reasons for this have been described in previous reports (FY04 ERC, et.al.). The chemistries have also been covered but will be reviewed here briefly. Experimental results of the causticizing reactions with black liquor are presented here. Results of the modeling work were presented in detail in the Phase 1 report. They are included in Table 2 for comparison but will not be discussed in detail. The causticizing agents were added to black liquor in the ratios shown in Table 1, mixed, and then spray-dried. The mixture ratios (doping levels) reflect amount calculated from the stoichiometry above to achieve specified conversions shown in the table. The solids were sieved to 63-90 microns for use in the entrained flow reactors. The firing conditions are shown in Table 2. Pictures and descriptions of the reactors can be found in the Phase 1 annual report. Following gasification, the solids (char) was collected and analyzed by coulometric titration (for carbonate and total carbon), and by inductively coupled plasma emission spectroscopy (ICP) for a wide array of metals.

  12. Combustion, pyrolysis, gasification, and liquefaction of biomas

    Science.gov (United States)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  13. Investigations on catalyzed steam gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    The purpose of the study is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from December 1977 to October 1980. The study was comprised of laboratory studies, process development, and economic analyses. The laboratory studies were conducted to develop operating conditions and catalyst systems for generating methane-rich gas, synthesis gases, hydrogen, and carbon monoxide; these studies also developed techniques for catalyst recovery, regeneration, and recycling. A process development unit (PDU) was designed and constructed to evaluate laboratory systems at conditions approximating commercial operations. The economic analyses, performed by Davy McKee, Inc. for PNL, evaluated the feasibility of adapting the wood-to-methane and wood-to-methanol processes to full-scale commercial operations. Plants were designed in the economic analyses to produce fuel-grade methanol from wood and substitute natural gas (SNG) from wood via catalytic gasification with steam.

  14. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the

  15. Wabash River coal gasification repowering project: Public design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  16. Kinetics of Pyrolysis and Gasification Using Thermogravimetric and Thermovolumetric Analyses

    Directory of Open Access Journals (Sweden)

    Czerski Grzegorz

    2016-03-01

    Full Text Available The carbon dioxide gasification process of Miscanthus giganteus biomass was examined using two methods. First an isothermal thermovolumetric method was applied. The measurement was conducted at 950°C and pressure of 0.1 MPa. Based on the continuous analysis of different kinds of gases formed during the gasification process, the thermovolumetric method allowed the determination of yields and composition of the resulting gas as well as the rate constant of CO formation. Then a non-isothermal thermogravimetric method was applied, during which the loss of weight of a sample as a function of temperature was recorded. In the course of the measurement, the temperature was raised from ambient to 950°C and the pressure was 0.1 MPa. As a result, a change in the carbon conversion degree was obtained. Moreover, TGA methods allow distinguishing various stages of the gasification process such as primary pyrolysis, secondary pyrolysis and gasification, and determining kinetic parameters for each stage. The presented methods differs from each other as they are based either on the analysis of changes in the resulting product or on the analysis of changes in the supplied feedstock, but both can be successfully used to the effective examination of kinetics of the gasification process. In addition, an important advantage of both methods is the possibility to carry out the gasification process for different solid fuels as coal, biomass, or solid waste in the atmosphere of a variety of gasification agents.

  17. Supercritical gasification for the treatment of o-cresol wastewater

    Institute of Scientific and Technical Information of China (English)

    WEI Chao-hai; HU Cheng-sheng; WU Chao-fei; YAN Bo

    2006-01-01

    The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure,catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%,respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.

  18. Gasification of various types of tertiary coals: A sustainability approach

    International Nuclear Information System (INIS)

    Highlights: ► Production energy by burning of coals including high rate of ash and sulfur is harmful to environment. ► Energy production via coal gasification instead of burning is proposed for sustainable approach. ► We calculate exergy and environmental destruction factor of gasification of some tertiary coals. ► Sustainability index, improvement potential of gasification are evaluated for exergy-based approach. - Abstract: The utilization of coal to produce a syngas via gasification processes is becoming a sustainability option because of the availability and the economic relevance of this fossil source in the present world energy scenario. Reserves of coal are abundant and more geographically spread over the world than crude oil and natural gas. This paper focuses on sustainability of the process of coal gasification; where the synthesis gas may subsequently be used for the production of electricity, fuels and chemicals. The coal gasifier unit is one of the least efficient step in the whole coal gasification process and sustainability analysis of the coal gasifier alone can substantially contribute to the efficiency improvement of this process. In order to evaluate sustainability of the coal gasification process energy efficiency, exergy based efficiency, exergy destruction factor, environmental destruction factor, sustainability index and improvement potential are proposed in this paper.

  19. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  20. A contrast study on different gasifying agents of underground coal gasification at Huating Coal Mine

    Institute of Scientific and Technical Information of China (English)

    WANG Zuo-tang; HUANG Wen-gang; ZHANG Peng; XIN Lin

    2011-01-01

    To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasification and two-stage gasification were studied contrastively based on field trial at the Huating UCG project. The results indicate that the average low heat value of gas from air experiment is the lowest (4.1 MJ/Nm3) and the water gas from two-stage gasification experiment is the highest (10.72 MJ/Nm3). The gas productivity of air gasification is the highest and the pure oxygen steam gasification is the lowest. The gasification efficiency of air gasification, air-steam gasification, oxygen-enriched steam gasification, pure oxygen steam gasification and two-stage gasification is listed in ascending order, ranging from 69.88% to 84.81%. Described a contract study on results of a field test using steam and various levels of oxygen enrichment of 21%, 32%, 42% and 100%. The results show that, with the increasing of O2 content in gasifying agents, the gas caloricity rises, and the optimal O2 concentration range to increase the gas caloricity is 30%~40%. Meanwhile, the consumption of O2 and steam increase, and the air consumption and steam decomposition efficiency fall.

  1. Agricultural Waste.

    Science.gov (United States)

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014. PMID:27620093

  2. Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis

    Directory of Open Access Journals (Sweden)

    Lydia Fryda

    2015-11-01

    Full Text Available The growing need for food, energy and materials demands a resource efficient approach as the world’s population keeps increasing. Biochar is a valuable product that can be produced in combination with bio-energy in a cascading approach to make best use of available resources. In addition, there are resources that have not been used up to now, such as, e.g., many agro-residues that can become available. Most agro-residues are not suitable for high temperature energy conversion processes due to high alkali-content, which results in slagging and fouling in conventional energy generation systems. Using agro-residues in thermal processes, therefore, logically moves to lower temperatures in order to avoid operational problems. This provides an ideal situation for the combined energy and biochar production. In this work a slow pyrolysis process (an auger reactor at 400 °C and 600 °C is used as well as two fluidized bed systems for low-temperature (600 °C–750 °C gasification for the combined energy and biochar generation. Comparison of the two different processes focuses here on the biochar quality parameters (physical, chemical and surface properties, although energy generation and biochar quality are not independent parameters. A large number of feedstock were investigated on general char characteristics and in more detail the paper focuses on two main input streams (woody residues, greenhouse waste in order to deduct relationships between char parameters for the same feedstock. It is clear that the process technology influences the main biochar properties such as elemental- and ash composition, specific surface area, pH, in addition to mass yield quality of the gas produced. Slow pyrolysis biochars have smaller specific surface areas (SA and higher PAH than the gasification samples (although below international norms but higher yields. Higher process temperatures and different gaseous conditions in gasification resulted in lower biochar

  3. Mathematical model for the gasification of coal under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Biba, V.; Macak, J.; Kloss, E.; Malecha, J.

    1978-01-01

    A mathematical model for the the high-pressure gasification of solid fuels in the charged layer is presented which permits the quantitative description of the the static behavior of the generator. Deals with the parameters of reaction kinetics and of the transfer of matter and energy which are necessary for developing the model of a fixed-bed reactor. To obtain a practical model, simplifications are needed which concern the gasification, degasification, and drying processes. They are dealt with individually. For calculating the concentration and temperature profiles for the solid and gas phases along the gasification bed height, a system of differential equations was obtained which was supplemented by some algebraic equations.

  4. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1996-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  5. Removal of ammonia from producer gas in biomass gasification: integration of gasification optimisation and hot catalytic gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hongrapipat, Janjira; Saw, Woei-Lean; Pang, Shusheng [University of Canterbury, Department of Chemical and Process Engineering, Christchurch (New Zealand)

    2012-12-15

    Ammonia (NH{sub 3}) is one of the main contaminants in the biomass gasification producer gas, which is undesirable in downstream applications, and thus must be removed. When the producer gas is used in integrated gasification combined cycle (IGCC) technology, NH{sub 3} is the main precursor of nitrogen oxides (NO{sub x}) formed in gas turbine, whereas in Fischer-Tropsch synthesis and in integrated gasification fuel cell (IGFC) technology, the NH{sub 3} gas poisons the catalysts employed. This paper presents a critical review on the recent development in the understanding of the NH{sub 3} formation in biomass gasification process and in the NH{sub 3} gas cleaning technologies. The NH{sub 3} gas concentration in the producer gas can firstly be reduced by the primary measures taken in the gasification process by operation optimisation and using in-bed catalytic materials. Further removal of the NH{sub 3} gas can be implemented by the secondary measures introduced in the post-gasification gas-cleaning process. Focus is given on the catalytic gas cleaning in the secondary measures and its advantages are analysed including energy efficiency, impacts on environment and recyclability of the catalyst. Based on the review, the most effective cleaning process is proposed with integration of both the primary and the secondary measures for application in a biomass gasification process. (orig.)

  6. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  7. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    Science.gov (United States)

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels.

  8. Co-gasification of meat and bone meal with coal in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Cascarosa; L. Gasco; G. Gea; J.L. Sanchez; J. Arauzo [Universidad de Zaragoza (Spain). Thermochemical Processes Group

    2011-08-15

    After the Bovine Spongiform Encephalopathy illness appeared, the meat and bone meat (MBM) produced from animal residues became an important waste. In spite of being a possible fuel due to its heating value (around 21.4 MJ/kg), an important fraction of the meat and bone meal is being sent to landfills. The aim of this work is to evaluate the co-gasification of low percentages of meat and bone meal with coal in a fluidised bed reactor as a potential waste management alternative. The effect of the bed temperature (800-900{sup o}C), the equivalence ratio (0.25-0.35) and the percentage of MBM in the solid fed (0-1 wt.%) on the co-gasification product yields and properties is evaluated. The results show the addition of 1 wt.% of MBM in a coal gasification process increases the gas and the liquid yield and decreases the solid yield at 900{sup o}C and 0.35 of temperature and equivalence ratio operational conditions. At operational conditions of 900{sup o}C and equivalence ratio of 0.35, the specific yield to gas (y{sub gas}) increases from 3.18 m{sup 3}(STP)/kg to 4.47 m{sup 3}(STP)/kg. The gas energy yield decreased 24.1% and the lower heating value of the gas decreases from 3.36 MJ/m{sup 3}(STP) to 2.16 MJ/m{sup 3}(STP). The concentration of the main gas components (H{sub 2}, CO and CO{sub 2}) hardly varies with the addition of MBM, however the light hydrocarbon concentrations decrease and the H{sub 2}S concentration increases at the higher temperature (900{sup o}C). 32 refs., 9 figs., 7 tabs.

  9. Study on Incineration/ Pyrolysis/ Gasification Characteristics of Urethane/ Styrofoam Generated from Home Appliances Waste

    International Nuclear Information System (INIS)

    According to the report of the Korean Association of Electronics Environment (KAEE), 1.44 million units of refrigerators, 1.15 million units of washing machines, 886 thousand units of televisions, and 327 thousand units of air conditioners were discarded in 2006. From such wastes more than 90 wt.% of valuable materials are recovered. Polyurethane/ styrofoam, used to reduce noise and thermally insulating agent in such electric appliances is hard to recycle and handle by any treatment processes. Urethane/ Styrofoam waste recycling consists of 3 parts material recycling, mechanical recycling and energy recycling. The material recycling involves shredding polyurethane for using as raw materials preparing various appliances. This is not easy however, active attempts are being made. The chemical recycling using thermal depolymerization is reduction from polyurethane to raw material polymer. The energy recycling is incineration of polyurethane for cogeneration, RDF (refuse dericed fuel) etc. Most of Urethane/ Styrofoam waste in Korea is sent to cement kilns as auxiliary fuel or is disposed off at landfill sites. Considering the limited landfill capacity and environmental problems associated to land filling, alternative treatment methods such as incineration, pyrolysis and gasification are evaluated for polyurethane/styrofoam disposal. In this study, we considered recovery and recycling of polyurethane/ styrofoam using 3 thermal treatment process (incineration, pyrolysis and gasification). The evaluation of 3 experimental conditions will suggest the energy recovery possibility and the hazard analysis of generated gas and residues. In addition, heating value of oil generated by pyrolysis will also be assessed. Results on possibility of energy recovery by analyzing syngas composition, heating value and carbon conversion efficiency during gasification experiment will also be presented. (author)

  10. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    Science.gov (United States)

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. PMID:26164851

  11. Effects of three industrial wastes on kinetic characteristics of petroleum coke-CO{sub 2} gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zou Jian-hui; Zhou Zhi-jie; Dai Zheng-hua; Liu Hai-feng; Wang Fu-chen; Yu Zun-hong [East China University of Science & Technology, Shanghai (China). Institute of Clean Coal Technology

    2008-07-01

    Three industrial wastes including black liquor from papermaking industry, coal slag, and sludge were used as catalysts for petroleum coke-CO{sub 2} gasification. The gasification kinetics characteristics with and without a catalyst were studied using a pressurized thermo gravimetric analyzer (TGA). It is shown that gasification rate increases with increasing conversion and then decreases after reaching a maximal rate for noncatalytic gasification, while decreases in whole course for catalytic gasification. The proposed normal distribution function model describes well the kinetic curve for both noncatalytic and catalytic gasification. The calculated activation energy of noncatalytic petroleum coke-CO{sub 2} gasification is 197.7 kJ/mol, which is in accordance with the reported data. The activities of three catalysts are contributed to the content of metal species. The black liquor in papermaking industry rich in Na species has the best activity, and its gasification rate is six times as that of noncatalytic gasification. 19 refs., 11 figs., 4 tabs.

  12. Allothermal gasification of biomass into chemicals and secondary energy carriers

    Energy Technology Data Exchange (ETDEWEB)

    Zwart, R.W.R. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2009-09-15

    The outline of this presentation on the title subject states: Motivation for polygeneration; Allothermal gasification: the MILENA at ECN; Primary gas cleaning: the OLGA for tar removal; Possible secondary energy carriers; Possible chemicals; Polygeneration concept and its feasibility.

  13. STUDY OF THE STEAM GASIFICATION OF ORGANIC WASTES

    Science.gov (United States)

    Chemical kinetic data describing the pyrolysis/gasification characteristics of organic waste (biomass) materials is needed for the design of improved conversion reactors. Unfortunately, little data is available in the literature on the pyrolysis kinetics of waste materials, and e...

  14. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  15. Application and development status of coal gasification technology in China

    Institute of Scientific and Technical Information of China (English)

    BU Xue-peng; XU Zhen-gang

    2004-01-01

    Introduced the application and development status of coal gasification technology in China. The most widely used coal gasification technology in China is the atmospheric fixed-bed gasifier, its total number is about 9 000. About 30 pressurized fixed-bed gasifiers are in operation, and more than 10 atmospheric fluidized-bed gasifiers were used. There are 13 Texaco entrained-flow bed gasifiers are under operation,10 Texaco and 11 Shell gasifiers that are being installed or imported. About 10 underground gasifiers are under running now. The present R&D of coal gasification technologies are to improve the operation and controlling level of fixed-bed gasification technology, and developing or demonstration of fluidized-bed and entrained-flow bed gasifiers.

  16. Steam and air plasma gasification of bituminous coal and petrocoke

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available This paper presents a numerical analysis and experimental investigation of two very different solid fuels, low-rank bituminous coal of 40 % ash content and petrocoke of 3 % ash content, gasification under steam and air plasma conditions with an aim of producing synthesis gas. Numerical analysis was fulfilled using the software package TERRA for equilibrium computation. Using the results of the numerical simulation, experiments on plasma steam gasification of the petrocoke and air and steam gasification of the coal were conducted in an original installation. Nominal power of the plasma installation is 100 kWe and sum consumption of the reagents is up to 20 kg/h. High quality synthesis gas was produced in the experiments on solid fuels plasma gasification. It has been found that the synthesis gas content at about 97.4 vol.% can be produced. Comparison between the numerical and experimental results showed satisfactory agreement. 

  17. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  18. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The

  19. Gasification Studies Task 4 Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, Kevin; Fletcher, Thomas; Pugmire, Ronald; Smith, Philip; Sutherland, James; Thornock, Jeremy; Boshayeshi, Babak; Hunsacker, Isaac; Lewis, Aaron; Waind, Travis; Kelly, Kerry

    2014-02-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical processes (Subtask 4.4) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation. Highlights of this work include: • Verification and validation activities performed with the Arches coal gasification simulation tool on experimental data from the CANMET gasifier (Subtask 4.1). • The simulation of multiphase reacting flows with coal particles including detailed gas-phase chemistry calculations using an extension of the one-dimensional turbulence model’s capability (Subtask 4.2). • The demonstration and implementation of the Reverse Monte Carlo ray tracing (RMCRT) radiation algorithm in the ARCHES code (Subtask 4.3). • Determination of steam and CO{sub 2} gasification kinetics of bituminous coal chars at high temperature and elevated pressure under entrained-flow conditions (Subtask 4.4). In addition, attempts were made to gain insight into the chemical structure differences between young and mature coal soot, but both NMR and TEM characterization efforts were hampered by the highly reacted nature of the soot. • The development, operation, and demonstration of in-situ gas phase measurements from the University of Utah’s pilot-scale entrained-flow coal gasifier (EFG) (Subtask 4.6). This subtask aimed at acquiring predictable, consistent performance and characterizing the

  20. Potential electrical energy generation in Brazil with biomass waste by gasification process; Potencial para geracao de energia eletrica no Brasil com residuos de biomassa atraves da gaseificacao

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, Rachel Martins

    2009-01-15

    The adoption of new technologies for generating electricity is based on technical, economic and environmental analysis. An important factor for choose the technology to be adopted is the raw material available for this purpose. Given the energy application below the potential of agricultural and urban solid waste, the growing demand for energy and the existence of environmental concerns, this thesis aims to emphasize the technology of gasification as an alternative for energy use of agricultural and urban solid waste. Thus, it describes the technology's state of the art, its maturity and improvement. Of great importance for understanding this process, it is needed to add the conclusions derived from experience in the gasification pilot plant at the University of Louvain la Neuve, Belgium. Considering the waste selected, the quantity available and the technology chosen, it is estimated the potential for electric energy that could be generated if the inputs were gasified. (author)

  1. Utilization of chemical looping strategy in coal gasification processes

    Institute of Scientific and Technical Information of China (English)

    Liangshih Fan; Fanxing Li; Shwetha Ramkumar

    2008-01-01

    Three chemical looping gasification processes, i. e. Syngas Chemical Looping (SCL) process, Coal Direct Chemical Looping (CDCL) process, and Calcium Looping process (CLP), are being developed at the Ohio State University (OSU). These processes utilize simple reaction schemes to convert carbonaceous fuels into products such as hydrogen, electricity, and synthetic fuels through the transformation of a highly reactive, highly recyclable chemical intermediate. In this paper, these novel chemical looping gasification processes are described and their advantages and potential challenges for commercialization are discussed.

  2. Single particle studies of black liquor gasification under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.; Backman, R.; Hupa, M.; Backman, P.; Ek, P.; Hulden, S.T.; Kullberg, M.; Sorvari, V.

    1997-10-01

    The purpose of this project is to provide experimental data relevant to pressurized black liquor gasification concepts. Specifically, the following two goals will be achieved: Data on swelling, char yields and component release during pressurized pyrolysis of small samples of black liquor will be obtained. The reactivity and physical behavior of single black liquor droplets during simultaneous pyrolysis and gasification will be investigated. The structure and composition of black liquor char during formation and conversion will be studied. (orig.)

  3. Ground subsidence resulting from underground gasification of coal. [36 refs

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, D W

    1977-03-29

    Ground subsidence has been found to be a very significant physical phenomenon that must be dealt with in the design and operation of an underground coal gasification process. This report deals with the types of subsidence that one might expect, and how they affect the process. A brief theory of bending subsidence is presented, and the experience the Soviets had while operating their commercial underground gasification stations is reviewed.

  4. Syngas production from downdraft gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Study on gasification of OPF (oil palm fronds) is scarce although the biomass constitutes more than 24% of the total oil palm waste. The lack of research related to gasification of oil palm fronds calls for a study on gasification behaviour of the fuel. In this paper the effects of reactor temperature and ER (equivalence ratio) on gas composition, calorific value and gasification efficiency of downdraft gasification of OPF were investigated. The heating value of syngas and the values of cold gas and carbon conversion efficiencies of gasification obtained were found to be comparable with woody biomass. The study showed that oxidation zone temperature above 850 °C is favourable for high concentration of the fuel components of syngas CO, H2 and CH4. Average syngas lower heating value of 5.2 MJ/Nm3 was obtained for operation with oxidation zone temperatures above 1000 °C, while no significant change in heating value was observed for temperature higher than 1100 °C. The average and peak heating values of 4.8 MJ/Nm3 and 5.5 MJ/Nm3, and cold gas efficiency of 70.2% at optimum equivalence ratio of 0.37 showed that OPF have a high potential as a fuel for gasification. - Highlights: • Kinetic study of pyrolysis and combustion of OPF (oil palm fronds) was done. • Experimental study on syngas production utilizing OPF and parametric study was done. • OPF was found to have a comparable performance with wood in downdraft gasification

  5. Hot gas desulphurisation with dolomite sorbent in coal gasification

    OpenAIRE

    Álvarez Rodríguez, Ramón; Clemente Jul, María del Carmen

    2008-01-01

    Gasification technologies are among the most promising electrical power generation options both from an environmental and efficiency point of view, as they allow efficient, environmentally-friendly use of national coal, as well as other carbonaceous materials mixed with coal, including high sulphur by-products.During gasification, sulphur is converted mainly into H2S and secondly into COS, and control of these has been researched using several H2S adsorbents. The aim of this paper was advance...

  6. The technical and economic feasibility of Cynara cardunculus L. gasification

    OpenAIRE

    Gómez García, Alberto

    2012-01-01

    This PhD Thesis analyses the technical and economic feasibility of the gasification of one of the most promising energy crops in terms of biomass yield and plantation costs: Cynara cardunculus L. (cynara). The aim of this analysis is to assess the bioenergy production via fluidized bed gasification (FBG) and the ulterior treatment of the synthesis gas (syngas) produced in the FBG reactor to adequate it to end-use applications such as gas turbines and internal combustion engines. To achieve th...

  7. Progress in biogas II - Biogas production from agricultural biomass and organic residues. Pt. 1. Proceedings; Progress in Biogas II - Biogasproduktion aus landwirtschaftlicher Biomasse und organischen Reststoffen. T. 1. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    Within the International Congress at the University of Hohenheim (Stuttgart, Federal Republic of Germany) from 29th March to 1st April, 2011, the following lectures were held: (1) Biogas in Europe (F. Scholwin); (2) Biogas development in China: International Cooperation to up-scale the technology (Z. Li); (3) The methane to markets initiative and opportunities for livestock manure digesters in the United states (C. Voell); (4) Biogas for sanitation in Africa - experiences from creating a sustainable market 2003 to 2010 (M. Lebofa); (5) Are biogas plants in Baden-Wuerttemberg efficient? (M. Stanull); (6) The Estonian theoretical and practical biogas production potential and economically feasible feed-in-tariff for renewable electricity for micro CHP using biogas (A. Oja); (7) Biomass potentials for biogas utilization and the effects on sustainability in Kalugo (P. Fiedler); (8) An Integrated Energy System applied to Milking Dairy Cows (I. Bywater); (9) WINUBIO-Alternative technology to improve Austria's biogas capacity (V. Steinmueller); (10) Interdisciplinary approaches to advances in sustainable biogas production in Europe (S. Kusch); (11) Problems encountered in disseminating biogas technology in Uganda (G. Mabudo); (12) reasons to the success to biogas program in Nepal (K. Dawadi); (13) Effects of increasing biomass production for energetic utilization on soil fertility in the German Federal State on Brandenburg (J. Zimmer); (14) Biogas plants as part of sustainable development within peasant family farms in Germany - Interim results of an empirical field study (A. Bischoff); (15) Life cycle assessment of heat and power generation in biogas fed combined heat and power plants under German conditions (J. Lansche); (16) Biogas from lignocellulosic biomass: interest of pretreatments (H. Carrere); (17) Effect of physical and thermal pre-treatments on biogas yield of some agricultural by-products (P. Balsari); (18) Extrusion pre-treatment of green waste for

  8. Desempenho dinâmico de um trator agrícola utilizando biodiesel destilado de óleo residual Dynamic performance of an agricultural tractor utilizing distilled biodiesel from spent oil

    Directory of Open Access Journals (Sweden)

    Ana M. Soranso

    2008-10-01

    Full Text Available Propôs-se, com este trabalho, avaliar o desempenho dinâmico de um trator agrícola funcionando com biodiesel destilado (50% etílico + 50% metílico em função das proporções de biodiesel e diesel de petróleo (0 e 100%, 5 e 95%, 15 e 85%, 25 e 75%, 50 e 50%, 75 e 25% e 100 e 0% respectivamente. O experimento foi realizado na área do Departamento de Engenharia Rural da Universidade Estadual Paulista - UNESP, Campus de Jaboticabal, SP, localizado na latitude 21º 14' 28" S e longitude 48º 17'12" W. Utilizou-se um trator 4 x 2 TDA com potência de 73,6 kW (100 cv no motor e um trator de lastro. O biodiesel utilizado foi produzido à base de óleo residual de fritura de alimentos, o delineamento experimental foi inteiramente casualizado (DIC, com 7 tratamentos e 5 repetições, totalizando 35 observações, e os resultados evidenciaram que a mistura biodiesel e diesel de petróleo influenciou significativamente as variáveis consumo horário volumétrico, consumo horário mássico, consumo de combustível por área trabalhada e consumo específico. Quando o trator operou com 100% de biodiesel (B100 o consumo específico aumentou em média 18% em relação ao diesel (B0.The objective of this study was to evaluate the dynamic performance of an agricultural tractor utilizing distilled biodiesel (50% ethylic + 50% methylic as a function of the proportion of biodiesel and diesel of petroleum (0 and 100%, 5 and 95%, 15 and 85%, 25 and 75%, 50 and 50%, 75 and 25% and 100 and 0%, respectively. This research was done in the area of the Department of Rural Engineering of the Paulista State University (UNESP, Jaboticabal Campus, SP, located in the latitude 21º 14' 28" S and longitude 48º 17'12" W. A tractor 4 x 2 FWA was used, with a 73.6 kW (100 HP motor and a ballast tractor. The biodiesel used was produced from spent oil from food frying. The experimental design was entirely randomized, with 7 treatments and 5 repetitions, totaling 35 observations

  9. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...

  10. Gasification reactivity of various coals at a high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji; Miura, Koichi; Xu, Ji-Jun; Yamada, Yoshikuni

    1986-10-23

    Eighteen ranks of coal and the coal deashed by acid-(hydrochlonic acid and hydrofluoric acid) treatment were used for the experiment to investigate the factors governing the gasification reaction of coal at a temperature as high as 1000/sup 0/C or over. A thermobalance type reactor possible to rapidly increase the temperature was used as the gasifier. The gasification rate was measured gasifying by steam and carbon dioxide at 1185/sup 0/C. The relationships of the gasification rate with the coal rank, C(%), the pore surface area of char, the size of a crystal of carbon and the amount of oxygen taken up by the char were investigated. The result indicates as follows: the gasification activities of coal vary according to the ranks of coal; the gasification rate decreases with the increase of coal rank representing the structure of graphite of carbon; and the amount of oxygen taken up to the surface is closely related to the rate of gasification independent of the effect of catalytic action. (9 figs, 1 tab, 4 refs)

  11. Subtask 4.2 - Coal Gasification Short Course

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Galbreath

    2009-06-30

    Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

  12. Study on pyrolysis and gasification of wood in MSW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to develop municipal solid waste(MSW) pyrolysis/gasification and melting technology with low emission and high efficiency, it was planed that all the main components in MSW and some typical kinds of MSW were pyrolyzed/gasified to propose an expert system for raw MSW. In this paper, wood, which was a prevalent component in MSW, was pyrolyzed and gasified in fluidized-bed reactors at different apparent excess air ratios (EARs), temperatures and fluidizing velocities. For pyrolysis, with temperature increasing from 400℃ to 700℃, the yield of pyrolysis char decreased while that of pyrolysis gas increased (in this paper respectively from 28% to 20% and from 10% to 35%), and when temperature was 500℃, the yield of pyrolysis tar reached the highest,up to 38% in this paper. It was the optimum for gasification when temperature was 600℃ and apparent EAR was 0.4. Under the experimental conditions of this paper, gasification efficiency achieved 73%, lower heat value(LHV) reached 5800 kJ/(Nm3) and yield of syngas was 2.01 Nm3/kg. Lower fluidizing velocity was useful to upgrade gasification efficiency and LHV of syngas for wood gasification. Based on the results, the reactive courses and mechanism were analyzed respectively for wood pyrolysis and gasification.

  13. Solar coal gasification reactor with pyrolysis gas recycle

    Science.gov (United States)

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  14. 如何看待“农村剩余劳动力向非农产业和城镇转移是工业化和现代化的必然趋势%How to Look on the Viewpoint that It is the Inevitable Trend of Industrialization and Urbanization for the Residual Rural Labor Forces to Shift to Non-agricultural Industries or Cities and Towns

    Institute of Scientific and Technical Information of China (English)

    李宁辉

    2003-01-01

    Under the huge framework of China's entry into WTO, by using GTAP model, the author experimentally analyses that the shift of rural residual labor forces to non-agricultural industries or cities and towns is vital to improve the income of rural residents and narrow the gap both between rural areas and ur ban areas and between regions.

  15. RDF gasification with water vapour: influence of process temperature on yield and products composition

    International Nuclear Information System (INIS)

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950oC or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling

  16. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    Energy Technology Data Exchange (ETDEWEB)

    Cascarosa, Esther [Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), Universidad de Zaragoza (Spain); Boldrin, Alessio, E-mail: aleb@env.dtu.dk [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, Thomas [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark)

    2013-11-15

    Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.

  17. Autothermal two-stage gasification of low-density waste-derived fuels

    International Nuclear Information System (INIS)

    In order to increase the efficiency of waste utilization in thermal conversion processes, pre-treatment is advantageous. With the Herhof Stabilat[reg] process, residual domestic waste is upgraded to waste-derived fuel by means of biological drying and mechanical separation of inerts and metals. The dried and homogenized waste-derived Stabilat[reg] fuel has a relatively high calorific value and contains high volatile matter which makes it suitable for gasification. As a result of extensive mechanical treatment, the Stabilat[reg] produced is of a fluffy appearance with a low density. A two-stage gasifier, based on a parallel-arranged bubbling fluidized bed and a fixed bed reactor, has been developed to convert Stabilat[reg] into hydrogen-rich product gas. This paper focuses on the design and construction of the configured laboratory-scale gasifier and experience with its operation. The processing of low-density fluffy waste-derived fuel using small-scale equipment demands special technical solutions for the core components as well as for the peripheral equipment. These are discussed here. The operating results of Stabilat[reg] gasification are also presented

  18. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    International Nuclear Information System (INIS)

    Highlights: • GHG savings are in the order of 600–1000 kg CO2-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management

  19. Gasification for power, CHP and polygeneration Biomass Gasification for Combined Heat Power (CHP) Applications: the GAMECO Project

    OpenAIRE

    Authier, O; Khalfi, Az-Eddine; Sanchez, L.; Aleman, Y; Delebarre, A; Mauviel, G; Dufour, A; Rogaume, Y; Poirier, J.; Kerhoas, J

    2014-01-01

    International audience Air-blown fluidised bed biomass gasification is a well adapted technology for Combined Heat Power (CHP) applications with syngas valorisation in a gas engine. However, it is not mature yet. Despite promising prototypes, CHP gasification needs further improvements to become the reference technology in the medium-size CHP market. This is the purpose of the GAMECO project, which aims at improving an existing technology by optimising its operation, increasing its feedsto...

  20. Energy recovery from sewage sludge by means of fluidised bed gasification.

    Science.gov (United States)

    Gross, Bodo; Eder, Christian; Grziwa, Peter; Horst, Juri; Kimmerle, Klaus

    2008-01-01

    Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures--gasification, gas cleaning and electric and thermal power generation--are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes. PMID:17919896

  1. Analysing performance of bio-refinery systems by integrating black liquor gasification with chemical pulp mills

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, Muhammad R.

    2012-07-01

    Mitigation of climate change and energy security are major driving forces for increased biomass utilization. The pulp and paper industry consumes a large proportion of the biomass worldwide including bark, wood residues, and black liquor. Due to the fact that modern mills have established infrastructure for handling and processing biomass, it is possible to lay foundation for future gasification based bio-refineries to poly-produce electricity, chemicals or bio-fuels together with pulp and paper products. There is a potential to export electricity or bio-fuels by improving energy systems of existing chemical pulp mills by integrating gasification technology. The present study investigates bio-fuel alternatives from the dry black liquor gasification (BLG) system with direct causticization and direct methane production from the catalytic hydrothermal gasification (CHG) system. The studied systems are compared with bio-fuel alternatives from the Chemrec BLG system and the improvements in the energy systems of the pulp mill are analyzed. The results are used to identify the efficient route based on system performance indicators e.g. material and energy balances to compare BLG systems and the conventional recovery boiler system, potential biofuel production together with biomass to biofuel conversion efficiency, energy ratios, potential CO{sub 2} mitigation combining on-site CO{sub 2} reduction using CO{sub 2} capture and potential CO{sub 2} offsets from biofuel use, and potential motor fuel replacement. The results showed that the dry BLG system for synthetic natural gas (SNG) production offers better integration opportunities with the chemical pulp mill in terms of overall material and energy balances. The biofuel production and conversion efficiency are higher in the CHG system than other studied configurations but at a cost of larger biomass import. The dry BLG system for SNG production achieved high biomass to biofuel efficiency and considerable biofuel production

  2. Bio-refinery system integrated with pulp and paper mills using black liquor gasification

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, Muhammad

    2010-07-01

    Mitigation of climate change and energy security are major driving forces for increased biomass energy utilization. The pulp and paper industry consumes a large proportion of biomass worldwide that include bark, wood residues, and black liquor. Due to the fact that modern pulp and paper industries have established infrastructure for handling and processing biomass, it is possible to lay foundation for future gasification based bio-refineries to co-produce electricity, chemicals or bio-fuels together with pulp and paper products. There is a potential to export electricity or bio-fuels by improving today's existing chemical pulp and paper mills integrating gasification technology.The present study evaluates the energy conversion performance of integrated black liquor gasification (BLG) within the chemical pulp mills in comparison with conventional pulp mill energy system. The objective is to investigate and compare various BLG technologies and bio-fuel production routes. The comparison is performed to identify the advantageous route based on system performance indicators e.g. bio-fuel production potential, fuel to product efficiency (FTPE), biomass import, overall system thermal energy efficiency, on-site CO{sub 2} reduction using carbon capture, and potential CO{sub 2} offsets from bio-fuel use in transport sector.The study on a variety of BLG configurations shows promising results for potential bio-fuel production offering significant contributions toward fossil fuel savings, emission reductions, and improved energy security. Methanol, synthetic natural gas (SNG) and dimethyl ether (DME) show promising features as potential fuel candidates. The comparative results show significantly larger bio-fuel production potential of black liquor conversion to SNG from catalytic hydrothermal gasification than DME, methanol or SNG production from the dry BLG (DBLG) and Chemrec BLG (CBLG) systems. The energy ratio of SNG production from the CHG system is higher than DME and

  3. Analysis and co-ordination of the activities concerning gasification of biomass. Summary country report, Denmark and Norway

    International Nuclear Information System (INIS)

    The analysis summarises the coordination of activities concerning the gasification of biomass in Denmark and Norway. The total quantity of available biomass for energy production in Denmark corresponds to ca. 115 PJ of which ca. 40% is utilized - and this constitutes ca. 6% of the country's total energy consumption. The resulting energy from biomass is currently mostly used for heating purposes utilizing small wood/straw household or farm stoves in addition to ca. 100 district heating systems. There is a tendency to use biomass fuels for electric power production as in the case of all major waste incineration plants and about 10 fully or partly wood/straw-fired cogeneration plants which are found within the range of 2 -20 MWe. A table shows details of all Danish biomass gasification plants and information is given on the types of biomass, under the titles of residue products and energy crops, most relevant to energy production in Denmark. Data is presented on the consumption of renewable energy in Denmark, recalculated in fuel equivalents, and Danish national energy policy and related legislation are described. Information on Norway's use of biomass as fuel is given under the headings of primary consumption, biomass sources and use, legislation, and brief evaluations of commercial gasification plants, pilot and demonstration plants, and laboratory plants and studies. It has recently been decided to speed up the development of small-scale gasification plants for combined heat and electricity production using biomass as fuel in Denmark. Total Norwegian energy consumption is 25% higher than Denmark's, and biomass fuels cover only 3.6% of this. (ARW) 32 refs

  4. On the purifying chamber which makes organic substance into the bio gasification; Yukibutsu wo baiogasuka suru jokaso ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tanba, Fumio [Nagoya University, Aichi (Japan); Oseki, Hiroaki; Sakurai, Yoshimasa

    1999-03-31

    The total energy which the mankind uses is taken in as an energy for being effective by eating agricultural products got through the photosynthesis called 1/15000 of solar energy which falls on the earth, and the process must be to use this solar energy which produces excretory substance by collecting. It will be important that this process does not put on the failure in the earth either and that it closes it as possible keeping system. Various excreted organic substances are contained in the source excreted, and it can be simply made bio gasification they all and the maintenance also describe the easy purifying chamber. (NEDO)

  5. Performance analysis of municipal solid waste gasification with steam in a Plasma Gasification Melting reactor

    International Nuclear Information System (INIS)

    Highlights: ► A process simulation model was used to simulate the PGM. ► Heat supply from both plasma and internal combustion is beneficial for PGM due to favored tar cracking. ► Steam injection has positive effects on syngas yield and LHV. ► The optimal syngas LHV can be obtained at PER = 0.14, SAMR = 0.8 and ER = 0.055. -- Abstract: Plasma Gasification Melting (PGM) is a novel gasification technology which offers a promising treatment of low-heating-value fuels like municipal solid waste (MSW), medical waste (MW) and other types of waste. By considering the differences in pyrolysis characteristics between cellulosic fractions and plastics in MSW, a semi-empirical model was developed to predict the performance of the PGM process. The measured results of MSW air and steam gasification in a PGM demo-reactor are demonstrated and compared with the model predicted results. Then, the effects of dimensionless operation parameters (ER, PER, and SAMR) are discussed. It was found that all three numbers have positive effects on system cold gas efficiency (CGE). The reasons can be attributed to promoted tar cracking by enhanced heat supply. The effects of PER and ASME on syngas LHV are also positive. The influence of ER on syngas pyrolysis can be divided into two parts. When 0.04 < ER < 0.065, the effect of ER is on LHV positive; when 0.065 < ER < 0.08, the effect of ER is positive. This phenomenon was explained by two contradictory effects of ER. It is also found that interactions exist between operation parameters. For example, increasing PER narrows the possible range of ER while increasing SAMR broadens possible ER range. Detail extents for those operation parameters are demonstrated and discussed in this paper. Finally, the optimal point aiming at obtaining maximum syngas LHV and system CGE are given.

  6. New projects for CCGTs with coal gasification (Review)

    Science.gov (United States)

    Olkhovskii, G. G.

    2016-10-01

    Perspectives of using coal in combined-cycle gas turbine units (CCGTs), which are significantly more efficient than steam power plants, have been associated with preliminary coal gasification for a long time. Due to gasification, purification, and burning the resulting synthesis gas at an increased pressure, there is a possibility to intensify the processes occurring in them and reduce the size and mass of equipment. Physical heat evolving from gasification can be used without problems in the steam circuit of a CCGT. The downside of these opportunities is that the unit becomes more complex and expensive, and its competitiveness is affected, which was not achieved for CCGT power plants with coal gasification built in the 1990s. In recent years, based on the experience with these CCGTs, several powerful CCGTs of the next generation, which used higher-output and cost-effective gas-turbine plants (GTPs) and more advanced systems of gasification and purification of synthesis gas, were either built or designed. In a number of cases, the system of gasification includes devices of CO vapor reforming and removal of the emitted CO2 at a high pressure prior to fuel combustion. Gasifiers with air injection instead of oxygen injection, which is common in coal chemistry, also find application. In this case, the specific cost of the power station considerably decreases (by 15% and more). In units with air injection, up to 40% air required for separation is drawn from the intermediate stage of the cycle compressor. The range of gasified coals has broadened. In order to gasify lignites in one of the projects, a transfer reactor was used. The specific cost of a CCGT with coal gasification rose in comparison with the period when such units started being designed, from 3000 up to 5500 dollars/kW.

  7. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal.

    Science.gov (United States)

    Malkow, Thomas

    2004-01-01

    Within the context of European Union (EU) energy policy and sustainibility in waste management, recent EU regulations demand energy efficient and environmentally sound disposal methods of Municipal Solid Waste (MSW). Currently, landfill with its many drawbacks is the preferred option in the EU and many other industrialised countries. Within the waste management hierarchy thermal disposal especially incineration is a viable and proven alternative. But, the dominating method, mass-burn grate incineration has drawbacks as well particularly hazardous emissions and harmful process residues. In recent years, pyrolysis and gasification technologies have emerged to address these issues and improve the energy output. To keep the many players in the field comprehensively informed and up-to-date, novel and innovative technology approaches emphasising European developments are reviewed. PMID:14672726

  8. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    Science.gov (United States)

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant.

  9. Progress in biogas II - Biogas production from agricultural biomass and organic residues. Pt. 1. Proceedings; Progress in Biogas II - Biogasproduktion aus landwirtschaftlicher Biomasse und organischen Reststoffen. T. 1. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    Within the International Congress at the University of Hohenheim (Stuttgart, Federal Republic of Germany) from 29th March to 1st April, 2011, the following lectures were held: (1) Biogas in Europe (F. Scholwin); (2) Biogas development in China: International Cooperation to up-scale the technology (Z. Li); (3) The methane to markets initiative and opportunities for livestock manure digesters in the United states (C. Voell); (4) Biogas for sanitation in Africa - experiences from creating a sustainable market 2003 to 2010 (M. Lebofa); (5) Are biogas plants in Baden-Wuerttemberg efficient? (M. Stanull); (6) The Estonian theoretical and practical biogas production potential and economically feasible feed-in-tariff for renewable electricity for micro CHP using biogas (A. Oja); (7) Biomass potentials for biogas utilization and the effects on sustainability in Kalugo (P. Fiedler); (8) An Integrated Energy System applied to Milking Dairy Cows (I. Bywater); (9) WINUBIO-Alternative technology to improve Austria's biogas capacity (V. Steinmueller); (10) Interdisciplinary approaches to advances in sustainable biogas production in Europe (S. Kusch); (11) Problems encountered in disseminating biogas technology in Uganda (G. Mabudo); (12) reasons to the success to biogas program in Nepal (K. Dawadi); (13) Effects of increasing biomass production for energetic utilization on soil fertility in the German Federal State on Brandenburg (J. Zimmer); (14) Biogas plants as part of sustainable development within peasant family farms in Germany - Interim results of an empirical field study (A. Bischoff); (15) Life cycle assessment of heat and power generation in biogas fed combined heat and power plants under German conditions (J. Lansche); (16) Biogas from lignocellulosic biomass: interest of pretreatments (H. Carrere); (17) Effect of physical and thermal pre-treatments on biogas yield of some agricultural by-products (P. Balsari); (18) Extrusion pre-treatment of green waste for

  10. Options for sustainability improvement and biomass use in Malaysia : Palm oil production chain and biorefineries for non-food use of residues and by-products including other agricultural crops

    NARCIS (Netherlands)

    Dam, van J.E.G.

    2009-01-01

    The Division Biobased Products of the WUR institute A&F was approached by the Dutch Ministry of Agriculture, Nature and Food Quality with a policy support question about the potential of Bio-based economic developments in Malaysia. Malaysia is one of the major international trade partners of the

  11. An Experimental and Numerical Investigation of Fluidized Bed Gasification of Solid Waste

    OpenAIRE

    Sharmina Begum; Mohammad G. Rasul; Delwar Akbar; David Cork

    2013-01-01

    Gasification is a thermo-chemical process to convert carbon-based products such as biomass and coal into a gas mixture known as synthetic gas or syngas. Various types of gasification methods exist, and fluidized bed gasification is one of them which is considered more efficient than others as fuel is fluidized in oxygen, steam or air. This paper presents an experimental and numerical investigation of fluidized bed gasification of solid waste (SW) (wood). The experimental measurement of syngas...

  12. Guideline for safe and eco-friendly biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Vos, J.; Knoef, H. (BTG biomass technology group, Enschede (Netherlands)); Hauth, M. (Graz Univ. of Technology. Institute of Thermal Engineering, Graz (Austria)) (and others)

    2009-11-15

    The objective of the Gasification Guide project is to accelerate the market penetration of small-scale biomass gasification systems (< 5 MW fuel power) by the development of a Guideline and Software Tool to facilitate risk assessment of HSE aspects. The Guideline may also be applied in retrofitting or converting old thermal plants in the Eastern European countries - with rich biomass recourses - to new gasification plants. The objective of this document is to guide key target groups identifying potential hazards and make a proper risk assessment. The software tool is an additional aid in the risk assessment. This guideline is intended to be a training tool and a resource for workers and employers to safely design, fabricate, construct, operate and maintain small-scale biomass gasification facilities. The Guideline is applicable with the following constraints: 1) The maximum scale of the gasification plant was agreed to be about 1 MW{sub e}. The reason is that large companies do have normally their safety rules in place; 2) This means in principle only fixed bed gasifier designs. However, most parts are also valid to other designs and even other thermal conversion processes; 3) The use of contaminated biomass is beyond the scope of this Guideline. The Guideline contains five major chapters; Chapter 2 briefly describes the gasification technology in general. Chapter 3 gives an overview of major legal framework issues on plant permission and operation. The legal frame is changing and the description is based on the situation by the end of 2007. Chapter 4 explains the theory behind the risk assessment method and risk reduction measures. Chapter 5 is the heart of the Guideline and gives practical examples of good design, operation and maintenance principles. The practical examples and feedback have been received throughout the project and the description is based on mid-2009. Chapter 6 describes the best techniques currently available for emission abatement which are

  13. Coal gasification characteristics in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.; Lee, S.H.; Kim, S.D. [Korea Advanced Institute of Science and Technology, Taejon (Republic of Korea). Dept. of Chemical Engineering and Energy & Environmental Research Center

    2001-10-26

    Subbituminous coal (Shenwha) was gasified at atmospheric pressure in a downer reactor (0.1 m.I.D. x 5.0 high). The effects of reaction temperature (750-850{degree}C), steam/coal mass ratio (0.23 - 0.86), O{sub 2}/H{sub 2}O mole ratio (0.81) and coal feeding rate (5.3-9.0 kg h{sup -1}) on the composition of product gas, carbon conversion, cold gas efficiency, gas yield and calorific value have been determined. In the case of steam injection into the loop-seal, compositions of the product gas (vol. %; N{sub 2} free basis) in the gasification ration are H{sub 2}, CH{sub 4}, CO, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 6} and C{sub 3}H{sub 8} with a calorific value of 13.0-15.2 MJ/m{sup 3}. By changing the reactant gas supplied into the loop-seal for solid circulating from steam to air, product gas yield and carbon conversion increase, whereas calorific value of the product gas decreases from 13.0-15.2 to 6.3-10.6 with reaction temperature. 22 refs., 12 figs., 1 tab.

  14. Preparation of gasification feedstock from leafy biomass.

    Science.gov (United States)

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw. PMID:26289326

  15. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  16. Biomass thermal conversion : pelletisation of lignocelluloses and the effect on the gasification process

    OpenAIRE

    Kallis, Kyriakos Xenofon

    2012-01-01

    Agricultural residues and energy crops constitute an important part of the energy chain although they are not being used extensively in the energy generation processes since they are associated with disadvantages such as low bulk and energy densities and handling problems. One solution is the pelletisation of these residues, which solves a great deal of these problems and enables the competition of biomass with other types of fuels. A large amount of work, concerning the combus...

  17. Survey of biomass gasification. Volume III. Current technology and research

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  18. Peat gasification and new alternatives of electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Solantaus, Y.

    1986-01-01

    Electricity, chemicals and liquid fuels can be produced from peat by gasification. If the product gas is used in a gas turbine, the efficiency of electricity production is higher in a combined gasification-gas turbine plant than in a conventional condensation power plant. If the gas is first led to chemical conversion and the unreacted gas is then burnt in a gas turbine, for example, octane boosters for liquid fuels and electricity can be produced in the same plant. Experimental knowhow of gasification and new syntheses have been critically evaluated in a work carried out at the Laboratory of Fuel Processing Technology of VTT. Concepts have been developed for processes, and then the actual techno-economic evaluations have been carried out. THe gasification-gas turbine plant may in the future offer a competitive alternative to the present energy production methods. Combined process alternatives based on gasification are fairly attractive also with regard to environmental protection. The feasibility of the production of chemicals and liquid fuel blend components is hihgly dependent on the prices of other raw materials.

  19. EXPERIMENTAL STUDY ON BIO-OIL PYROLYSIS/GASIFICATION

    Directory of Open Access Journals (Sweden)

    Mou Zhang

    2010-02-01

    Full Text Available This study aims to understand the mechanism of bio-oil gasification and the influence of operating parameters on the properties of the gas products. Firstly, the pyrolysis/gasification of bio-oil was performed using a thermogravimetric analyzer (TGA. The evaporation of gas products from bio-oil were measured on-line with coupled Fourier Transform Infrared Spectroscopy (FTIR. The main gas products were CO, CO2, CH4, H2O, and light hydrocarbons, etc. Organics mainly evolved out at lower temperature (100-200°C, while the cracking of heavy hydrocarbon components took place at higher temperature (>200°C. Simultaneously, the gasification behavior of bio-oil was investigated in a fixed bed gasification reactor under different temperature and residence time. The gas product evolving was checked using micro-gas chromatography. It was observed that the yield of CO and H2 increased with increasing gasification temperature above 600°C, and the maximum value was obtained at 800°C. Prolonging the residence time was not favorable for the upgrading of syngas quality.

  20. Co-gasification of oil sand coke with coal

    Energy Technology Data Exchange (ETDEWEB)

    Vejahati, Farshid; Gupta, Rajender [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2013-07-01

    Gasification of oil sand delayed coke with sub-bituminous and lignite coals was performed in an atmospheric entrained flow gasifier using steam and oxygen as gasifying agents. The underlying objective of this work was to assess the effects of the operating variables (i.e. temperature, oxygen and steam concentrations) and coal/coke blending ratio on gasification performance in a high-temperature in order to find the possible synergies in co-gasification of the fuels. Experiments were conducted at 1,400 C, using steam and oxygen to carbon weight ratios of (0.36-1.08) and (0.07-0.2), respectively in N{sub 2} carrier gas. The coke to coal weight ratios of 1/3, 1/2, and 2/3 were used for the blending tests. Particle size of 53-90 {mu}m with d{sub 50} = 75 {mu}m were used. In terms of char reactivity, blending did not show any significant positive effect. Slight deviations from linear additive line are in the order of experiment error. Gasification efficiency was also following a linear additive trend once more pointing out the lack of synergy in entrained flow gasification systems. The results however, showed that higher coke content clearly favored the H{sub 2} production.

  1. Feasibility study of gasification of oil palm fronds

    Directory of Open Access Journals (Sweden)

    S.A. Sulaiman

    2015-12-01

    Full Text Available Considering the large and consistent supply, oil palm fronds could be a promising source of biomass energy through gasification. There is very scarce information on the characteristics of oil palm fronds, which is vital in deciding if such biomass is technically suitable for gasification. In the present work, the feasibility of oil palm fronds for biomass gasification is studied. The study is conducted experimentally via standard tests to determine their thermochemical characteristics. Ultimate analysis is conducted to determine the contents of carbon, nitrogen, hydrogen and sulphide in oil palm fronds. Proximate analysis is performed to identify the burning characteristics of the biomass. The energy content in the fronds is determined by using a bomb calorie meter and is around 18 MJ/kg. The ignitability of the fronds is also studied experimentally to assess the ease to start-up combustion of the fronds. The characteristics of the flame of the resulting syngas from gasification of oil palm fronds are qualitatively studied. Simulated syngas composition study reveals potentials of 22% CO, 1.3% H2, 18.5% CO2 and traces of CH4. The study is extended to computer simulation to predict composition of the syngas. It is found from this work that oil palm fronds are feasible for gasification and has a good potential as a renewable energy source.

  2. Gaseous fuels production from dried sewage sludge via air gasification.

    Science.gov (United States)

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  3. Investigation of polycyclic aromatic hydrocarbons from coal gasification

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-cang; JIN Bao-sheng; ZHONG Zhao-ping; HUANG Ya-ji; XIAO Rui; LI Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  4. Gaseous fuels production from dried sewage sludge via air gasification.

    Science.gov (United States)

    Werle, Sebastian; Dudziak, Mariusz

    2014-06-17

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. PMID:24938297

  5. The Effect of Temperature on the Gasification Process

    Directory of Open Access Journals (Sweden)

    Marek Baláš

    2012-01-01

    Full Text Available Gasification is a technology that uses fuel to produce power and heat. This technology is also suitable for biomass conversion. Biomass is a renewable energy source that is being developed to diversify the energy mix, so that the Czech Republic can reduce its dependence on fossil fuels and on raw materials for energy imported from abroad. During gasification, biomass is converted into a gas that can then be burned in a gas burner, with all the advantages of gas combustion. Alternatively, it can be used in internal combustion engines. The main task during gasification is to achieve maximum purity and maximum calorific value of the gas. The main factors are the type of gasifier, the gasification medium, biomass quality and, last but not least, the gasification mode itself. This paper describes experiments that investigate the effect of temperature and pressure on gas composition and low calorific value. The experiments were performed in an atmospheric gasifier in the laboratories of the Energy Institute atthe Faculty of Mechanical Engineering, Brno University of Technology.

  6. Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.

    Science.gov (United States)

    Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.

  7. Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier

    Directory of Open Access Journals (Sweden)

    Reem Ahmed

    2014-01-01

    Full Text Available Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER. It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5 at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.

  8. Tar Management and Recycling in Biomass Gasification and Syngas Purification

    Science.gov (United States)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.

  9. Gasification of solid waste — potential and application of co-current moving bed gasifiers

    NARCIS (Netherlands)

    Groeneveld, M.J.; Swaaij, van W.P.M.

    1979-01-01

    A review is given of gasification processes for solid fuels with special emphasis on waste gasification. Although the co-current moving bed gasifier has not been under consideration for a long time, it offers interesting possibilities for waste gasification. Some operational data are given. Two pote

  10. APPRAISAL OF THE POPULATION THREAT RISK BY CARBON LEAKAGE PRODUCED BY UNDERGROUND COAL GASIFICATION

    OpenAIRE

    Šofranko, Marian; Škvareková, Erika; Laciak, Marek

    2013-01-01

    The UCG /underground coal gasification/ technology could increase energy production resulting in improving the economic situation. Even if the risk of accidents may occur in the both coal gasification and underground mining, the other parameters suggest that the coal gasification method is much safer that the underground mining.

  11. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    . The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...

  12. 7 CFR 29.427 - Pesticide residue standards.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed...

  13. PFB air gasification of biomass. Investigation of product formation and problematic issues related to ammonia, tar and alkali

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader

    2000-09-01

    Fluidised bed thermal gasification of biomass is an effective route that results in 100 % conversion of the fuel. In contrast to chemical, enzymatic or anaerobic methods of biomass treatment, the thermal conversion leaves no contaminated residue after the process. The product gas evolved within thermal conversion can be used in several applications such as: fuel for gas turbines, combustion engines and fuel cells, and raw material for production of chemicals and synthetic liquid fuels. This thesis treats a part of the experimental data from two different gasifiers: a 90 kW{sub th} pressurised fluidised bubbling bed gasifier at Lund University and a 18 MW{sub th} circulating fluidised bed gasifier integrated with gas turbine (IGCC) in Vaernamo. A series of parallel and consecutive chemical reactions is involved in thermal gasification, giving origin to formation of a variety of products. These products can be classified within three major groups: gases, tars and oils, and char. The proportion of these categories of species in the final product is a matter of the gasifier design and the process parameters. The thesis addresses the technical and theoretical aspects of the biomass thermochemical conversion and presents a new approach in describing the gasification reactions. There is an evidence of fuel effect on the characteristics of the final products: a mixture of plastic waste (polyethylene) and biomass results in higher concentration of linear hydrocarbons in the gas than gasification of pure biomass. Mixing the biomass with textile waste (containing aromatic structure) results in a high degree of formation of aromatic compounds and light tars. Three topic questions within biomass gasification, namely: tar, NO{sub x} and alkali are discussed in the thesis. The experimental results show that gasification at high ER or high temperature decreases the total amount of the tars and simultaneously reduces the contents of the oxygenated and alkyl-substituted poly

  14. Utilização de água residuária de origem doméstica na agricultura: estudo do estado nutricional do cafeeiro Use of wastewater of domestic origin in agriculture: a study of nutritional status of coffee

    Directory of Open Access Journals (Sweden)

    Salomão de S. Medeiros

    2008-04-01

    Full Text Available Neste trabalho o objetivo principal foi investigar o estado nutricional do cafeeiro em resposta à aplicação de água residuária filtrada de origem doméstica, como fonte de nutrientes e comparar os resultados com os obtidos com o manejo convencional. O experimento foi implantado na Unidade Piloto de Tratamento de Água Residuária e Agricultura Irrigada, localizada na Universidade Federal de Viçosa - UFV. O delineamento experimental constituiu-se de 18 unidades experimentais, cada uma composta de oito plantas. O experimento foi montado no delineamento em blocos casualizados (linhas de plantio com três repetições, cujo resultados permitiram concluir que a adoção do manejo com água residuária foi mais efetivo na melhoria do estado nutricional do cafeeiro que o manejo convencional.The objective of this work was to investigate nutritional status of coffee in response to application of filtered domestic wastewater and to compare the results with conventional agricultural management. The experiment was carried out at the Sewer Treatment Pilot Plant (EPTE, DEA/UFV. The experimental design consisted of 18 plots, each with eight plants. The treatments were distributed in randomized blocks design (planting lines with three repetitions. According to the results, it may be concluded that the adoption of the management with wasterwater was more effective to improve nutritional status of coffee in comparison to conventional management.

  15. Steam gasification of coal, project prototype plant nuclear process heat

    International Nuclear Information System (INIS)

    This report describes the tasks, which Bergbau-Forschung has carried out in the field of steam gasification of coal in cooperation with partners and contractors during the reference phase of the project. On the basis of the status achieved to date it can be stated, that the mode of operation of the gas-generator developed including the direct feeding of caking high volatile coal is technically feasible. Moreover through-put can be improved by 65% at minimum by using catalysts. On the whole industrial application of steam gasification - WKV - using nuclear process heat stays attractive compared with other gasification processes. Not only coal is conserved but also the costs of the gas manufactured are favourable. As confirmed by recent economic calculations these are 20 to 25% lower. (orig.)

  16. Coal gasification. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    A number of the processes for converting coal to gas supported by US DOE have reached the pilot plant stage. Laboratory research is also continuing in order to develop data for verifying the feasibility of the specific process and for supporting the operation of the plant. Responsibility for designing, constructing, and operating these pilot plants is given. The most successful test to date was completed in the pilot plant of the BI-GAS Process. The HYGAS Process pilot plant continued testing with Illinois bituminous coal to acquire data necessary to optimize the design of a commercial demonstration plant using the HYGAS process. The Synthane Process pilot plant continued studies of Illinois No. 6 coal. Other processes discussed are: Agglomerating Burner Process, Liquid Phase Methanation Process, Molten Salt Gasification Process, Advanced Coal Gasification System, and Lo-Btu Gasification of Coal for Electric Power Generation. Each project is described briefly with funding, history, and progress during the quarter. (LTN)

  17. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  18. Reactivities of Shenfu Chars Toward Gasification with Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-wei; WEI Xian-yong; ZONG Zhi-min; WANG Tao-xia; XIE Rui-lun; DING Ming-jie; CAI Ke-ying; HUANG Yao-guo; GAO Jin-sheng; WU You-qing

    2007-01-01

    Five Shenfu char samples were prepared from Shenfu raw coal at different temperatures (950, 1100, 1200, 1300 and 1400 ℃) using a muffle furnace. Demineralization of the char samples was performed by treating them with 10% nitric acid for 10 min in a CEM Discover microwave reactor. The gasification of the chars, and corresponding demineralized chars, in a carbon dioxide (CO2) atmosphere was conducted in a Netzsch STA 409C131F temperature-programmed thermogravimetry apparatus. The effects of charring temperature and demineralization on the gasification reactivity of chars were systematically investigated. The results show that a char formed at a lower temperature is more reactive except for demineralized char formed at 1100 ℃, which is less reactive than char formed at 1200 ℃. Demineralization decreases the char reactivities toward gasification with CO2 to a small extent.

  19. UTILIZATION OF AQUEOUS-TAR CONDENSATES FORMED DURING GASIFICATION

    Directory of Open Access Journals (Sweden)

    Anna Kwiecińska

    2016-11-01

    Full Text Available Gasification of solid fuels is an alternative process for energy production using conventional and renewable fuels. Apart from desired compounds, i.e. carbon oxide, hydrogen and methane, the produced gas contains complex organic (tars and inorganic (carbonizate, ammonia contaminants. Those substances, together with water vapor, condensate during cooling of the process gas, what results in the formation of aqueous-tar condensate, which requires proper methods of utilization. The management of this stream is crucial for commercialization and application of the gasification technology. In the paper the treatment of aqueous-tar condensates formed during biomass gasification process is discussed. The removal of tars from the stream was based on their spontaneous separation. The aqueous stream was subjected to ultrafiltration operated at different pressures. Such a treatment configuration enabled to obtain highly concentrated retentate, which could be recycled to the gasifier, and filtrate, which could be subjected to further treatment.

  20. PYROLYSIS AND GASIFICATION OF MUNICIPAL AND INDUSTRIAL WASTES BLENDS

    Directory of Open Access Journals (Sweden)

    Martino Paolucci

    2010-01-01

    Full Text Available Gasification could play an important role in the treatment of municipal solid wastes. However, some problems may arise when using unsorted materials due to the difficulties of obtaining a feed with consistent physical characteristics and chemical properties. To overcome this problem, a new type of gasifier consisting of three stages, namely a pyrolytic stage followed by gasification and a reforming stage, was considered. Theoretical calculations made on the proposed gasification scheme shows better performance than a previously studied two-stage gasifier because of its ability of reaching the same final temperature of the syngas with a lower oxygen injection and a better oxygen partition ratio between the stages. The reduced amount of oxygen allows to obtain an improved syngas quality with higher return in the final products, such as hydrogen, electricity and so on.