WorldWideScience

Sample records for agricultural plants isolation

  1. Isolation of Mercury-Resistant Fungi from Mercury-Contaminated Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Reginawanti Hindersah

    2018-02-01

    Full Text Available Illegal gold mining and the resulting gold mine tailing ponds on Buru Island in Maluku, Indonesia have increased Mercury (Hg levels in agricultural soil and caused massive environmental damage. High levels of Hg in soil lowers plant productivity and threatens the equilibrium of the food web. One possible method of handling Hg-contaminated soils is through bioremediation, which could eliminate Hg from the rhizosphere (root zone. In this study, indigenous fungi isolated from Hg-contaminated soil exhibited Hg-resistance in vitro. Soil samples were collected from the rhizosphere of pioneer plants which grew naturally in areas contaminated with gold mine tailing. The fungi’s capacity for Hg-resistance was confirmed by their better growth in chloramphenicol-boosted potato dextrose agar media which contained various HgCl2 concentrations. Four isolates exhibited resistance of up to 25 mg kg−1 of Hg, and in an experiment with young Chinese cabbage (Brassica rapa L. test plants, two fungi species (including Aspergillus were demonstrated to increase the soil’s availability of Hg. The results suggest that Hg-resistant indigenous fungi can mobilize mercury in the soil and serve as potential bioremediation agents for contaminated agricultural land.

  2. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  3. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; van Wees, Saskia C M|info:eu-repo/dai/nl/185445373

    2014-01-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the

  4. Antagonistic Bioactivity of Endophytic Actinomycetes Isolated from Medicinal Plants

    Directory of Open Access Journals (Sweden)

    M. Gangwar

    2011-10-01

    Full Text Available Endophytic actinomycetes are promising biocontrol agents for use in agriculture and have been isolated from various plant species. In the present study, 40 endophytic actinomycetes were isolated from roots, stems and leaves of three medicinal plants viz. Aloe vera, Mentha arvensis and Ocimum sanctum. The identification revealed that the majority of the isolates were Streptomyces spp. and the rest were identified as Saccharopolyspora spp., Micromonospora spp. and Actinopolyspora spp. The dual tests revealed that nine endophytic actinomycete isolates displayed a wide spectrum activity against nine fungal phytopathogens. Out of 8 isolates, 90% inhibited the growth of at least one or more phytopathogenic fungi and Saccharopolyspora 0-9 (Out of 8 isolates, 90% inhibited the growth of at least one or more phytopathogenic fungi and Saccharopolyspora 0-9 exhibited antagonistic activity against Aspergillus niger, Aspergillus flavus, Alternaria brassicicola, Botrytis cinerea, Penicillium digitatum, Fusarium oxysporum, Penicillium pinophilum, Phytophthora dresclea and Colletotrichum falcatum.

  5. Biosurfactants in agriculture.

    Science.gov (United States)

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.

  6. Plant biotechnology patents: applications in agriculture and medicine.

    Science.gov (United States)

    Hefferon, Kathleen

    2010-06-01

    Recent advances in agricultural biotechnology have enabled the field of plant biology to move forward in great leaps and bounds. In particular, recent breakthroughs in molecular biology, plant genomics and crop science have brought about a paradigm shift of thought regarding the manner by which plants can be utilized both in agriculture and in medicine. Besides the more well known improvements in agronomic traits of crops such as disease resistance and drought tolerance, plants can now be associated with topics as diverse as biofuel production, phytoremediation, the improvement of nutritional qualities in edible plants, the identification of compounds for medicinal purposes in plants and the use of plants as therapeutic protein production platforms. This diversification of plant science has been accompanied by the great abundance of new patents issued in these fields and, as many of these inventions approach commercial realization, the subsequent increase in agriculturally-based industries. While this review chapter is written primarily for plant scientists who have great interest in the new directions being taken with respect to applications in agricultural biotechnology, those in other disciplines, such as medical researchers, environmental scientists and engineers, may find significant value in reading this article as well. The review attempts to provide an overview of the most recent patents issued for plant biotechnology with respect to both agriculture and medicine. The chapter concludes with the proposal that the combined driving forces of climate change, as well as the ever increasing needs for clean energy and food security will play a pivotal role in leading the direction for applied plant biotechnology research in the future.

  7. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    Science.gov (United States)

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  8. Potential applications of plant probiotic microorganisms in agriculture and forestry

    Directory of Open Access Journals (Sweden)

    Luciana Porto de Souza Vandenberghe

    2017-07-01

    Full Text Available Agriculture producers, pushed by the need for high productivity, have stimulated the intensive use of pesticides and fertilizers. Unfortunately, negative effects on water, soil, and human and animal health have appeared as a consequence of this indiscriminate practice. Plant probiotic microorganisms (PPM, also known as bioprotectants, biocontrollers, biofertilizers, or biostimulants, are beneficial microorganisms that offer a promising alternative and reduce health and environmental problems. These microorganisms are involved in either a symbiotic or free-living association with plants and act in different ways, sometimes with specific functions, to achieve satisfactory plant development. This review deals with PPM presentation and their description and function in different applications. PPM includes the plant growth promoters (PGP group, which contain bacteria and fungi that stimulate plant growth through different mechanisms. Soil microflora mediate many biogeochemical processes. The use of plant probiotics as an alternative soil fertilization source has been the focus of several studies; their use in agriculture improves nutrient supply and conserves field management and causes no adverse effects. The species related to organic matter and pollutant biodegradation in soil and abiotic stress tolerance are then presented. As an important way to understand not only the ecological role of PPM and their interaction with plants but also the biotechnological application of these cultures to crop management, two main approaches are elucidated: the culture-dependent approach where the microorganisms contained in the plant material are isolated by culturing and are identified by a combination of phenotypic and molecular methods; and the culture-independent approach where microorganisms are detected without cultivating them, based on extraction and analyses of DNA. These methods combine to give a thorough knowledge of the microbiology of the studied

  9. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    OpenAIRE

    Joanna Kazimierowicz

    2014-01-01

    Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  10. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    Directory of Open Access Journals (Sweden)

    Joanna Kazimierowicz

    2014-04-01

    Full Text Available Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  11. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    Biotechnology in plant nutrient management for agricultural production in the tropics: ... and yields, marker assisted selection breeding, to develop new uses for agricultural products, to facilitate early maturation and to improve food and feed ...

  12. Plant-parasitic nematodes in Hawaiian agriculture

    Science.gov (United States)

    Hawaii’s diverse and mild climate allows for the cultivation of many crops. The introduction of each crop plant brought along its associated nematode pests. These plant-parasitic nematodes became established and are now endemic to the islands. Plantation agriculture determined the major nematode ...

  13. Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L. rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Karnwal Arun

    2017-06-01

    Full Text Available The use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. The objective of our research was to access the plant growth promotion traits of Pseudomonas aeruginosa, P. fluorescens and Bacillus subtilis isolated from the maize (Zea mays L. rhizosphere. In vitro studies showed that isolates have the potential to produce indole acetic acid (IAA, hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical to P. aeruginosa strain DSM 50071 and P. aeruginosa strain NBRC 12689 (AK20 and AK31, while two others were 98% identical to P. fluorescens strain ATCC 13525, P. fluorescens strain IAM 12022 (AK18 and AK45 and one other was 99% identical to B. subtilis strain NCDO 1769 (AK38. Our gnotobiotic study showed significant differences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting effects on rice.

  14. Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants.

    Science.gov (United States)

    Dollhofer, Veronika; Callaghan, Tony M; Griffith, Gareth W; Lebuhn, Michael; Bauer, Johann

    2017-07-01

    Bioaugmentation with anaerobic fungi (AF) is promising for improved biogas generation from lignocelluloses-rich substrates. However, before implementing AF into biogas processes it is necessary to investigate their natural occurrence, community structure and transcriptional activity in agricultural biogas plants. Thus, AF were detected with three specific PCR based methods: (i) Copies of their 18S genes were found in 7 of 10 biogas plants. (ii) Transcripts of a GH5 endoglucanase gene were present at low level in two digesters, indicating transcriptional cellulolytic activity of AF. (iii) Phylogeny of the AF-community was inferred with the 28S gene. A new Piromyces species was isolated from a PCR-positive digester. Evidence for AF was only found in biogas plants operated with high proportions of animal feces. Thus, AF were most likely transferred into digesters with animal derived substrates. Additionally, high process temperatures in combination with long retention times seemed to impede AF survival and activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Overview of plant dosimetry in agricultural commodities

    International Nuclear Information System (INIS)

    Khedkar, Kalpana C.

    2014-01-01

    Extensive research carried out for more than three decades at Bhabha Atomic Research Centre, Bombay and other laboratories in India had conclusively established application of radiation processing of food for catering to the domestic and export market. A major milestone of food irradiation was reached in the country when Board of Radiation and Isotope Technology, a constituent unit of Department of Atomic Energy had set up 'SPICE PLANT' at Vashi, Navi Mumbai in the year 2000. It was first demonstration plant for radiation processing of spices for hygienisation purpose. For expanding scope of applications in agricultural sector, the next step in this direction was taken by BARC for setting up 'KRUSHAK' plant at Lasalgaon, Nashik. This was the first plant for low dose application of gamma radiation in agricultural commodities i.e. for sprout inhibition in onion and potatoes

  16. Arabidopsis thaliana: A model host plant to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    JUAN GONZÁLEZ

    2006-01-01

    Full Text Available One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and strawberries. Botrytis also causes secondary soft rot of fruits and vegetables during storage, transit and at the market. In many plant-pathogen interactions, resistance often is associated with the deposition of callose, accumulation of autofluorescent compounds, the synthesis and accumulation of salicylic acid as well as pathogenesis-related proteins. Arabidopsis thaliana has been used as a plant model to study plant-pathogen interaction. The genome of Arabidopsis has been completely sequenced and this plant serves as a good genetic and molecular model. In this study, we demonstrate that Chilean field isolates infect Arabidopsis thaliana and that Arabidopsis subsequently activates several defense response mechanisms associated with a hypersensitive response. Furthermore, we propose that Arabidopsis may be used as a model host species to analyze the diversity associated with infectivity among populations of Botrytis cinerea field isolates

  17. Hydroxylation of the Herbicide Isoproturon by Fungi Isolated from Agricultural soil

    DEFF Research Database (Denmark)

    Rønhede, S.; Jensen, Bo; Rosendahl, Søren

    2005-01-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N......Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl...

  18. Biogas plants in the Swiss agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A

    1985-01-01

    Description of the systems of Swiss biogas plants, gas production rates and the use of the gas for heating the biogas digesters and apartments, for agriculture, cheese factories, and for the production of electricity.

  19. Isolation, Characterization, Screening, Formulation and Evaluation of Plant Growth Promoting Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Puja Kumari

    2017-10-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are bioresources which may be viewed as a novel and potential tool for providing substantial benefits to the agriculture. Soil is the dynamic living matrix and the major source of food security providing various resources of plant growth and maintaining life processes. PGPR are originally defined as root- colonizing bacteria that cause either plant growth promotion or biological control of plant diseases. Chemical fertilizers are used for killing pathogens, increase crop yield but long term use of chemical fertilizers lead to adverse effect to the soil profile and is the reason for decrease in soil productivity, on the other hand PGPR promote plant growth directly by either facilitating resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. PGPR is the indispensable part of rhizosphere biota that when grown in association with the host plants can stimulate the growth of the host. PGPR seemed as successful rhizobacteria in getting established in soil ecosystem due to their high adaptability in a wide variety of environments, faster growth rate and biochemical versatility to metabolize a wide range of natural and xenobiotic compounds. Isolated PGPRs from selective crop rizosphere soil were used for further growth promotion and biocontrol studies in the green house and field. Different studies have been carrying out to develop some new bioformulations and evaluate their efficacy in promoting crop seedlings growth characteristics. Field trials were performed to evaluate selective crops with formulations of several plants PGPR in a production system. The present review highlights the Plant growth promoting rhizobacteria as an alternative of chemical fertilizer for sustainable, environment friendly agriculture.

  20. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review

    Institute of Scientific and Technical Information of China (English)

    Shobhit Raj VIMAL; Jay Shankar SINGH; Naveen Kumar ARORA; Surendra SINGH

    2017-01-01

    The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry.The impact of soil nutrient imbalance,mismanaged use of chemicals,high temperature,flood or drought,soil salinity,and heavy metal pollutions,with regard to food security,is increasingly being explored worldwide.This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems.Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity,drought,pollutions,etc.) stresses.The plant growth-promoting rhizobacteria (PGPR) and mycorrhizae,a key component of soil microbiota,could play vital roles in the maintenance of plant fitness and soil health under stressed environments.The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield.A combination of plant,stress-tolerant microbe,and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem.Agriculture land use patterns with the proper exploitation of plant-microbe associations,with compatible beneficial microbial agents,could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience.However,the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.

  1. Isolation and Characterization of Aerobic Denitrifiers from Agricultural Soil

    OpenAIRE

    ÇELEN, Ebru; KILIÇ, Mehmet Akif

    2004-01-01

    Denitrification is generally considered an anaerobic process. However, in recent years it has been shown that bacteria can also reduce nitrate to nitrite under aerobic conditions. The characterization of biologically available nitrogen forms and their biological cycling mechanisms is important for ecological and agricultural implications. In this study, aerobic nitrate reducers were isolated from greenhouse soil. Using a nitrate reduction assay, it was found that 39 out of 60 isolates can red...

  2. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion.

    Science.gov (United States)

    da Silva, J F; Barbosa, R R; de Souza, A N; da Motta, O V; Teixeira, G N; Carvalho, V S; de Souza, A L S R; de Souza Filho, G A

    2015-11-30

    Each year, approximately 170 million metric tons of chemical fertilizer are consumed by global agriculture. Furthermore, some chemical fertilizers contain toxic by-products and their long-term use may contaminate groundwater, lakes, and rivers. The use of plant growth-promoting bacteria may be a cost-effective strategy for partially replacing conventional chemical fertilizers, and may become an integrated plant nutrient solution for sustainable crop production. The main direct bacteria-activated mechanisms of plant growth promotion are based on improvement of nutrient acquisition, siderophore biosynthesis, nitrogen fixation, and hormonal stimulation. The aim of this study was to isolate and identify bacteria with growth-promoting activities from sugarcane. We extracted the bacterial isolate SCB4789F-1 from sugarcane leaves and characterized it with regard to its profile of growth-promoting activities, including its ability to colonize Arabidopsis thaliana. Based on its biochemical characteristics and 16S rDNA sequence analysis, this isolate was identified as Pantoea ananatis. The bacteria were efficient at phosphate and zinc solubilization, and production of siderophores and indole-3-acetic acid in vitro. The isolate was characterized by Gram staining, resistance to antibiotics, and use of carbon sources. This is the first report on zinc solubilization in vitro by this bacterium, and on plant growth promotion following its inoculation into A. thaliana. The beneficial effects to plants of this bacterium justify future analysis of inoculation of economically relevant crops.

  3. Study on design method for seismically isolated FBR plants

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Ohtori, Yasuki; Ishida, Katsuhiko; Sawada, Yoshihiro; Shiojiri; Hiroo; Mazda, Taiji

    1998-01-01

    CRIEPI conducted 'Demonstration test on FBR seismic isolation system' from 1987 to 1996 under contract with Ministry of International Trade and Industry, Japan. In the demonstration test, base isolation technologies are prepared and demonstrated to apply to FBR and the design guidelines are proposed. In this report overall contents of the design guidelines entitled Design guidelines for seismically base isolated FBR plants' are included. The design guidelines, as a rule, are limited to apply to FBR plants where entire reactor building is isolated in the horizontal direction using laminated rubber bearings as isolators. The design guidelines and its concepts, however, will be useful for the development of similar guidelines for other isolation systems using different type of isolation methods and other nuclear facilities. The design guidelines consist of three parts and appendices. The first part is 'Policy for Safety Design of Base Isolated FBR Plants' specifying the principles and the requirements in the planning and the design for the safety of base isolated FBR plants. The second part is Policy for Seismic Design of Base Isolated FBR' describing the principles and the requirements in the seismic design and the evaluation of safety for base isolated FBR plants. The third part is 'Design Methods for Seismic Isolated FBR Plants' detailing the methods, procedures and parameters to be used in the design and the evaluation of safety fro base isolated FBR plants. In appendices examples of design procedures for base isolated reactor building and laminated rubber bearings as well as various test data on laminated rubber bearings, etc. are shown. (author)

  4. The development of base-isolated APWR plants

    International Nuclear Information System (INIS)

    Tanaka, T.; Nitta, T.

    2001-01-01

    The full text follows: The seismic design of nuclear power stations plays a critical role in the assurance of plant safety in Japan, and standardization of design is difficult to achieve because every site is subject to different seismic conditions. However, the introduction of seismic -isolation devices is one way to rationally achieve safety assurance and promote design standardization. Base-isolated APWR (advanced pressurized water reactor) plants were developed by applying seismic -isolation devices to APWR plants. The introduction of seismic -isolation devices, which are installed between the ground and buildings, largely decreases the effect of seismic force on buildings. Therefore, the limitation of building shape and eccentricity, which are undertaken in order to prevent the floating of buildings, could be eliminated. This permits the flexibility of building layouts, which result in a reduction of building volume. At the same time, the thickness of the buildings walls that are specific to nuclear power stations, can also be decreased except radiation shield. As for the base-isolated APWR equipment design, the rational design of support structures for equipment and pipings is possible, because the floor response acceleration is greatly reduced. For the cost reduction, it has been confirmed that the base-isolated APWR plants are more economical than traditional APWR plants even after the additionally required expenses for seismic-isolation devices are taken into account. This is primarily because of the rational design of the buildings and equipment which is possible as described above. Another advantage is that building standardization can be promoted because the seismic-isolation devices are able to control the seismic force transmitted to the buildings. This is accomplished by arranging the characteristics of the isolation devices according to the seismic conditions of each site. The introduction of these devices to nuclear power stations is nearly ready

  5. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  6. One foot in the furrow: linkages between agriculture, plant pathology, and public health.

    Science.gov (United States)

    Scholthof, Karen-Beth G

    2003-01-01

    Plant pathology is a field of biology that focuses on understanding the nature of disease in plants as well as on more practical aspects of preventing and controlling plant diseases in crop plants that are important to agriculture. Throughout history, plant diseases have had significant effects on human health and welfare. Several examples, in both historical and contemporary contexts, are presented in this review to show how plant pathogens, biotechnology, and farming practices have affected public health. Specific topics illustrating clear linkages between agriculture and human health include allergens in the environment, food-safety and agricultural practices, mycotoxigenic fungi, agrobioterrorism, and the biological control of plant diseases. The further argument is made that in order to monitor and ensure that good health and safety practices are maintained from "farm to fork," public health specialists may benefit from the resources and expertise of agricultural scientists.

  7. Geographical view on agricultural land and structural changes plant production Montenegro

    Directory of Open Access Journals (Sweden)

    G. Rajović

    2014-03-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE This paper analyzes agricultural land and structural changes in plant production Montenegro. The Montenegro represents a significant potential for agricultural development, but plant production insufficiently developed in relation to natural resources and the demands of intensive agricultural production. Average possession by agricultural holdings in 1960 amounts is 5.34 ha with only 2.05 ha arable area per agricultural holdings. Yet more unfavorable is the situation with arable surfaces. Namely, agricultural holdings in the Montenegro in 1960 are on average dispose with maximum of 0.74 ha of arable land. Judging by the size of the cultivated area, production volume, as well as according other parameters, plant production in the Montenegro in 2007, mainly used for meeting need households. A smaller area for is market. The role of the Montenegrin village and agriculture must be first-rate, as are its potentials, the main power future development of Montenegro. This requires radically new relationship between society and science to agriculture and the countryside. Instead of the existing approach in which they observed the preventive as producers of cheap food has to be developed a new concept, a comprehensive agricultural and rural development, which will be based on demographic, natural, economic and socio-cultural potential of Montenegro. 

  8. Agricultural Plant Pest Control. Manual 93.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  9. Identification and isolation of bacteria containing OPH enzyme for biodegradation of organophosphorus pesticide diazinon from contaminated agricultural soil

    Directory of Open Access Journals (Sweden)

    Sara Mobarakpoor

    2015-04-01

    Full Text Available Background: Organophosphorus insecticide diazinon has been widely used in agriculture and has the ability to transfer and accumulate in soil, water and animal tissues, and to induce toxicity in plants, animals and humans. In humans, diazinon inhibits nerve transmission by inactivating acetylcholinesterase enzyme. The present study was carried out to identify bacteria containing OPH enzyme for biodegradation of diazinon from contaminated agricultural soil. Methods: In this study, 8 contaminated agricultural soil samples that were exposed to pesticides, especially diazinon in the last two decades, were collected from the farms of Hamedan province. After preparing the media, for isolation of several bacterial strains containing OPH enzyme that are capable of biodegrading organophosphorus pesticides by diazinon enzymatic hydrolysis, bacterial genomic DNA extraction, plasmid product sequencing, phylogenetic sequence processing and phylogenetic tree drawing were carried out. Results: Eight bacterial strains, capable of secreting OPH enzyme, were isolated from soil samples, one of which named BS-1 with 86% similarity to Bacillus safensis displayed the highest organophosphate-hydrolyzing capability and can be used as a source of carbon and phosphorus. Conclusion: It can be concluded that the isolated bacterial strain identified in this study with OPH enzyme secretion has the potential for biodegradation of organophosphorus pesticides, especially diazinon in invitro conditions. Also, further studies such as the environmental stability and interaction, production strategies, safety, cost-benefit, environmental destructive parameters, and, toxicological, genetic and biochemical aspects are recommended prior to the application of bacterial strains in the field-scale bioremediation.

  10. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste.

    Science.gov (United States)

    Kim, Sang Yoon; Lee, Sang Yeob; Weon, Hang-Yeon; Sang, Mee Kyung; Song, Jaekyeong

    2017-01-10

    Bacillus species have been widely used as biological control agents in agricultural fields due to their ability to suppress plant pathogens. Bacillus velezensis M75 was isolated from cotton waste used for mushroom cultivation in Korea, and was found to be antagonistic to fungal plant pathogens. Here, we report the complete genome sequence of the M75 strain, which has a 4,007,450-bp single circular chromosome with 3921 genes and a G+C content of 46.60%. The genome contained operons encoding various non-ribosomal peptide synthetases and polyketide synthases, which are responsible for the biosynthesis of secondary metabolites. Our results will provide a better understanding of the genome of B. velezensis strains for their application as biocontrol agents against fungal plant pathogens in agricultural fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.

    Science.gov (United States)

    Gouda, Sushanto; Kerry, Rout George; Das, Gitishree; Paramithiotis, Spiros; Shin, Han-Seung; Patra, Jayanta Kumar

    2018-01-01

    The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands.

    Science.gov (United States)

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.

  13. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands

    Directory of Open Access Journals (Sweden)

    Gopu Venkadesaperumal

    2014-12-01

    Full Text Available Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans and EM9 (Exiguobacterium sp. of 24 studied isolates. Seeds (Chili and tomato inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.

  14. Waste Isolation Pilot Plant Overview

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-27

    The mission of Waste Isolation Pilot Plant (WIPP) is to demonstrate the safe, environmentally sound, cost effective, permanent disposal of Transuranic (TRU) waste left from production of nuclear weapons.

  15. The role of plants on isolation barrier systems

    International Nuclear Information System (INIS)

    Link, S.O.; Downs, J.L.; Waugh, W.J.

    1994-11-01

    Surface barriers are used to isolate buried wastes from the environment. Most have been built for short-term isolation. The need to isolate radioactive wastes from the environment requires that the functional integrity of a barrier be maintained for thousands of years. Barrier function strongly depends on vegetation. Plants reduce wind and water erosion and minimize drainage, but may transport contaminants if roots extend into buried wastes. Our review of the function of plants on surface barriers focuses on the role of plants across mesic to arid environments and gives special consideration to studies done at Hanford. The Hanford Barrier Development Program was created to design and test an earthen cover system to inhibit water infiltration, plant and animal intrusion, and wind and water erosion, while isolating buried wastes for at least 1000 years. Studies at the Hanford have shown that plants will significantly interact with the barrier. Plants transpire soil water back into the atmosphere. Deep-rooted perennials best recycle water; soil water may drain through the root zone of shallow-rooted annuals. Lysimeter studies indicate that a surface layer of fine soil with deep-rooted plants precludes drainage even with three times normal precipitation. The presence of vegetation greatly reduces water and wind erosion, but deep-rooted plants pose a threat of biointrusion and contaminant transport. The Hanford barrier includes a buried rock layer and asphalt layer to prevent biointrusion

  16. Detection of Beta-lactamase gene in the culturable bacteria isolated from agricultural, pasture and mining soils around mines in Hamedan, Iran

    Directory of Open Access Journals (Sweden)

    Nayereh Younessi

    2017-09-01

    Full Text Available Introduction: Growing evidence exists that agriculture affects antibiotic resistance in human pathogens. Beta-lactam antibiotics are the most commonly used antimicrobial agents in many countries. The abundance of beta-lactamase encoding genes can be used as an indicator of antibiotic resistance in the environment. So, to determine the beta-lactamase resistance genes, the abundance of culturable bacteria having bla-TEM genesin the soils under different land uses wasexamined. Materials and methods: 44 Gram-positive and 34 Gram-negative bacteria plated on nutrient agar were isolated from agricultural, pasture and mining soils and selected to study the presence of TEM-class gene using PCR amplification. Antibiotic sensitivity test of bla-TEM+isolateswas done adopting the Kirby-Bauer disk diffusion method and antibiotic discs used were: ampicillin, amoxicillin, vancomicin, streptomycin, tetracycline and gentamicin. Finally, five multi-drug resistant and bla-TEM+ isolates were identified using universal primers. Results: The highest level of beta-lactamase genes was observed in the Gram-positive and Gram-negative isolates from the pasture soils. In the agricultural and mining soils, a high abundance of bla-TEM+ isolateswasfound which also showed resistance to beta-lactam antibiotics. The identified multi-drug resistant and bla-TEM+ isolates were from these genera: Achromobacter, Bacillus, Brevibacillus, Aminobacter and Brevundimonas. Discussion and conclusion: The high number of bla-TEM+ bacteria in all the soils may be attributed to the other important feature of bla genes which is their capability to extrude toxic compounds like heavy metals in contaminated environments. Sensitivity of some bla-TEM+ bacteria to beta-lactam antibiotics was interesting. This result shows that bla-TEM genes confer resistance to beta-lactamase inhibitors in a different degree. Some of the identified isolates were pathogen. These pathogens in soils can transfer to plants

  17. Plant genetics poised to revolutionize agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.R.; Evans, D.A.; Ammirato, P.V.

    1984-05-01

    The biotechnology tools of somaclonal variation, gametoclonal variation, protoplast fusion technology and clonal propagation offer a shorter fuse than recombinant DNA technology for development of new plant varieties fine-tuned for industrial and consumer agricultural products. DNA Plant Technology Corporation (DNAP) has an aggressive somaclonal variation program for development of tomato varieties. Gametoclonal variation has commercial opportunities for some cereals such as wheat and rice. Protoplast fusion technology has greatest application to crops such as tobacco, tomato, potato, carrot, rapeseed, lettuce and alfalfa. Clonal propagation is especially useful in root and tuber crops and is currently providing the means for large scale propagation and mechanical delivery systems.

  18. [Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].

    Science.gov (United States)

    Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin

    2013-01-04

    To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

  19. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    Science.gov (United States)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  20. Isolation and selection of plant growth-promoting bacteria associated with sugarcane

    Directory of Open Access Journals (Sweden)

    Ariana Alves Rodrigues

    2016-06-01

    Full Text Available Microorganisms play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and increase the resistance to biotic and abiotic stress. This study aimed at isolating and characterizing plant growth-promoting bacteria associated with sugarcane, as well as assessing their ability to promote plant growth. Endophytic bacteria from leaf, stem, root and rhizosphere were isolated from the RB 867515 commercial sugarcane variety and screened for indole acetic acid (IAA production, ability to solubilize phosphate, fix nitrogen and produce hydrogen cyanide (HCN, ammonia and the enzymes pectinase, cellulase and chitinase. A total of 136 bacteria were isolated, with 83 of them presenting some plant growth mechanism: 47 % phosphate solubilizers, 26 % nitrogen fixers and 57 % producing IAA, 0.7 % HCN and chitinase, 45 % ammonia, 30 % cellulose and 8 % pectinase. The seven best isolates were tested for their ability to promote plant growth in maize. The isolates tested for plant growth promotion belong to the Enterobacteriaceae family and the Klebsiella, Enterobacter and Pantoea genera. Five isolates promoted plant growth in greenhouse experiments, showing potential as biofertilizers.

  1. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health

    Energy Technology Data Exchange (ETDEWEB)

    Machado, J.; Campos, A. [Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Vasconcelos, V. [Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P 4069-007 Porto (Portugal); Freitas, M., E-mail: maf@ess.ipp.pt [Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Polytechnic Institute of Porto, Department of Environmental Health, School of Allied Health Technologies, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, P 440-330 Gaia (Portugal)

    2017-02-15

    Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is also evidence that edible terrestrial plants can bioaccumulate cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health. - Highlights:

  2. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health

    International Nuclear Information System (INIS)

    Machado, J.; Campos, A.; Vasconcelos, V.; Freitas, M.

    2017-01-01

    Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is also evidence that edible terrestrial plants can bioaccumulate cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health. - Highlights:

  3. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    Science.gov (United States)

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. WIPP: Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1984-01-01

    The following aspects of the Waste Isolation Pilot Plant are discussed briefly: history and site selection; salt as a disposal medium; transporting waste materials; early key events; impacts on New Mexico; project organization; and site certification profile

  5. Isolation of plant growth promoting rhizobacteria of guava plants (Psidium guajava

    Directory of Open Access Journals (Sweden)

    Blanca Estela Gómez Luna

    2012-09-01

    Full Text Available Guava production for 2008 in the state of Guanajuato was 177 ha in area planted and the same number of area harvested, production in 1,130.80 Ton. In traditional farming practices have made excessive use of mineral fertilizers, which, if it is true, ensure a good production are expensive and come to cause imbalances in agroecosystems by contamination of soil, water, and food. In this work we evaluated the effect of Bacillus subtilis strains as plant growth promoter rhizobacteria in guava plants under greenhouse conditions. We used three strains were inoculated potted plant with guava. We measured the height, number of branches and leaves. Guava orchards of 2 then display of soil were taken for the isolation andcharacterization of rhizobacteria. Selective medium was used with 1 - carboxylic acid, -1 - aminocyclopropane and selecting bacteria with ACC desaminase activity. For the isolates were determined antibiotic resistance, confrontation with fungal pathogens, plant growth tests in vitro and BIOLOG metabolic profiles. We found 30 isolates with ACC activities, 7 have the effect of biological control and 5 had effect on root development in vitro. The use of growth promotingrhizobacteria are an excellent alternative for improving the production of guavas, growing very little is known of themicroflora associated with the rhizosphere and the ecological role they have in the ground.

  6. Horizontal and vertical seismic isolation of a nuclear power plant

    International Nuclear Information System (INIS)

    Ikonomou, A.S.

    1983-01-01

    This paper presents a study for the horizontal and vertical seismic isolation of a nuclear power plant with a base isolation system, developed by the author, called the Alexisismon. This system -- which comprises different schemes for horizontal or vertical or both horizontal and vertical isolation -- is a linear system based on the principle of separation of functions. That is, horizontal and vertical isolation are realized through different components and act independently from each other. As far as horizontal isolation is concerned, the role of transmitting vertical loads is uncoupled from the role of inducing horizontal restoring forces so that both functions can be performed without instability. It is possible either to provide both horizontal and vertical isolation to the whole nuclear plant or to isolate the whole plant horizontally and to provide vertical isolation to sensitive and costly equipment only. When the fundamental period of the plant or equipment is 2 seconds and when the vertical displacements are of the order of + or - 20 inches, the structure or equipment are protected against earthquakes up to 1.10 and 1.30 g for actual and 0.60 and 1.50 g for artificial accelerograms. In both cases all the isolation elements behave elastically up to these acceleration limits as well as the superstructure and equipment

  7. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    Science.gov (United States)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  8. Agricultural biogas plants – A systematic analysis of strengths, weaknesses, opportunities and threats

    International Nuclear Information System (INIS)

    Brudermann, Thomas; Mitterhuber, Corinna; Posch, Alfred

    2015-01-01

    In this paper, we discuss the prospects of agricultural biogas plants. We conducted an integrated SWOT–AHP analysis for such plants in Austria in order to identify strengths, weaknesses, opportunities and threats (SWOT factors), and to weight the factors identified based on expert judgments, calculated according to the Analytic Hierarchy Process (AHP) method. The results show that financial aspects are dominant in three of the four SWOT categories. Technological aspects and issues regarding utilization seem to play a relatively minor role. Factors that are not directly under the control of plant operators are currently perceived as crucial for the success of agricultural biogas plants. We conclude that such plants will only succeed in contributing to sustainable energy supply goals when economic and political conditions are favorable over the long term. - Highlights: • Integrated SWOT–AHP analysis for agricultural biogas plants in Austria. • Quantification of weighting factors based on expert judgments. • Financial aspects dominate over technological and environmental aspects. • Sophisticated and flexible subsidy schemes are crucial for the further diffusion of the technology

  9. Potential for Producing Biogas from Agricultural Waste in Rural Plants in Poland

    Directory of Open Access Journals (Sweden)

    Magdalena Muradin

    2014-08-01

    Full Text Available This article is an overview of the current situation as well as future prospects for biogas production in rural plants in Poland. Our research has focused on the management of agricultural waste. While Poland’s agriculture and its local food industry have substantial potential, many barriers persist to the development not only of biogas plants but also in every other renewable source of energy. The main obstacles have to do with politically motivated economic factors. Our interest has been in larger plants having sufficient capacities to produce in excess of 500 kW of electricity. The paper also presents a case study of a biogas plant supply by organic, agrifood waste mixed with silage.

  10. Novel, non-symbiotic isolates of Neorhizobium from a dryland agricultural soil.

    Science.gov (United States)

    Soenens, Amalia; Imperial, Juan

    2018-01-01

    Semi-selective enrichment, followed by PCR screening, resulted in the successful direct isolation of fast-growing Rhizobia from a dryland agricultural soil. Over 50% of these isolates belong to the genus Neorhizobium , as concluded from partial rpoB and near-complete 16S rDNA sequence analysis. Further genotypic and genomic analysis of five representative isolates confirmed that they form a coherent group within Neorhizobium , closer to N. galegae than to the remaining Neorhizobium species, but clearly differentiated from the former, and constituting at least one new genomospecies within Neorhizobium. All the isolates lacked nod and nif symbiotic genes but contained a repABC replication/maintenance region, characteristic of rhizobial plasmids, within large contigs from their draft genome sequences. These repABC sequences were related, but not identical, to repABC sequences found in symbiotic plasmids from N. galegae , suggesting that the non-symbiotic isolates have the potential to harbor symbiotic plasmids. This is the first report of non-symbiotic members of Neorhizobium from soil.

  11. Plant pathogen culture collections: it takes a village to preserve these resources vital to the advancement of agricultural security and plant pathology.

    Science.gov (United States)

    Kang, Seogchan; Blair, Jaime E; Geiser, David M; Khang, Chang-Hyun; Park, Sook-Young; Gahegan, Mark; O'Donnell, Kerry; Luster, Douglas G; Kim, Seong H; Ivors, Kelly L; Lee, Yong-Hwan; Lee, Yin-Won; Grünwald, Niklaus J; Martin, Frank M; Coffey, Michael D; Veeraraghavan, Narayanan; Makalowska, Izabela

    2006-09-01

    ABSTRACT Plant pathogen culture collections are essential resources in our fight against plant disease and for connecting discoveries of the present with established knowledge of the past. However, available infrastructure in support of culture collections is in serious need of improvement, and we continually face the risk of losing many of these collections. As novel and reemerging plant pathogens threaten agriculture, their timely identification and monitoring depends on rapid access to cultures representing the known diversity of plant pathogens along with genotypic, phenotypic, and epidemiological data associated with them. Archiving such data in a format that can be easily accessed and searched is essential for rapid assessment of potential risk and can help track the change and movement of pathogens. The underexplored pathogen diversity in nature further underscores the importance of cataloguing pathogen cultures. Realizing the potential of pathogen genomics as a foundation for developing effective disease control also hinges on how effectively we use the sequenced isolate as a reference to understand the genetic and phenotypic diversity within a pathogen species. In this letter, we propose a number of measures for improving pathogen culture collections.

  12. Creating an agricultural world order: regional plant protection problems and international phytopathology, 1878-1939.

    Science.gov (United States)

    Castonguay, Stéphane

    2010-01-01

    Beginning in 1878 with the International Phylloxera Convention of Berne, international conventions have sought to relieve national agricultural industries from two specific burdens. First, by defining phytosanitary practices to be enforced by national plant protection services, these conventions attempted to prevent the introduction of plant diseases and pests into national territories from which they were previously absent. Second, by standardizing these practices - especially through the design of a unique certificate of inspection - the conventions attempted to eliminate barriers such as quarantines affection international agricultural trade. The succession of phytopathological conventions seemed to epitomize the coalescence of an international community against agricultural pests. What actually coalesced was bio-geopolitics wherein plant pathologists and economic entomologists from North America and the British Empire questioned the so-called internationality of the environmental and economic specificities of continental European agriculture, embodied in "international" conventions. Although an international phenomenon, the dissemination of agricultural pests provided opportunities for cooperation on a strictly regional albeit transnational basis that pitted bio-geopolitical spaces against each other. This article retraces the formation of these spaces by analyzing the deliberations of committees and congresses that gathered to define an international agricultural order based on the means to prevent the spread of plant diseases and pests.

  13. PRODUCTION, ECONOMIC AND ENVIRONMENTAL EFFECTS OF AGRICULTURAL BIOGAS PLANT IN KOSTKOWICE

    Directory of Open Access Journals (Sweden)

    Karol Węglarzy

    2017-06-01

    Full Text Available This paper presents the economic and ecological effect of Kostkowice Agricultural biogas plant based on a four year study carried out on the prototype installation. Agricultural biogas plant is part of the nature of the research conducted for twenty years at the National Research Institute of Animal PIB Experimental Station. Prof. Mieczyslaw Czaja relates to various aspects of environmental protection. It describes the economic justification for the production of energy from waste biomass (manure, slurry, wastes from feeding table, by the characteristics of substrates and products. It was found that agricultural biogas plant in rural areas are an important link in energy security, mainly due to the very high availability. Ecological effect is presented as effect of the installation solutions for the reduction of pollution of water, soil and air. Reducing greenhouse gas emissions through the recycling of environmentally harmful by-products of animal production of electricity and thermal energy, which is a substitute for environmentally harmful fossil fuels. The advantage of substances digestate is odorless, which is important both in an effort to improve the work culture in agriculture and improving living conditions in rural communities and it is an indisputable argument for the use of biomass for energy purposes.

  14. Association of Antibiotic Resistance in Agricultural Escherichia coli Isolates with Attachment to Quartz▿

    Science.gov (United States)

    Liu, Ping; Soupir, Michelle L.; Zwonitzer, Martha; Huss, Bridgette; Jarboe, Laura R.

    2011-01-01

    Surface water can be contaminated by bacteria from various sources, including manure from agricultural facilities. Attachment of these bacteria to soil and organic particles contributes to their transport through the environment, though the mechanism of attachment is unknown. As bacterial attachment to human tissues is known to be correlated with antibiotic resistance, we have investigated here the relationship between bacterial attachment to environmental particles and antibiotic resistance in agricultural isolates. We evaluated 203 Escherichia coli isolates collected from swine facilities for attachment to quartz, resistance to 13 antibiotics, and the presence of genes encoding 13 attachment factors. The genes encoding type I, EcpA, P pili, and Ag43 were detected, though none was significantly related to attachment. Quartz attachment was positively and significantly (P amoxicillin/streptomycin/tetracycline/sulfamethazine/tylosin/chlortetracycline and negatively and significantly (P < 0.0038) related to combined resistance to nalidixic acid/kanamycin/neomycin. These results provide clear evidence for a link between antibiotic resistance and attachment to quartz in agricultural isolates. We propose that this may be due to encoding by the responsible genes on a mobile genetic element. Further exploration of the relationship between antibiotic resistance and attachment to environmental particles will improve the understanding and modeling of environmental transport processes, with the goal of preventing human exposure to antibiotic-resistant or virulent microorganisms. PMID:21821756

  15. Association of antibiotic resistance in agricultural Escherichia coli isolates with attachment to quartz.

    Science.gov (United States)

    Liu, Ping; Soupir, Michelle L; Zwonitzer, Martha; Huss, Bridgette; Jarboe, Laura R

    2011-10-01

    Surface water can be contaminated by bacteria from various sources, including manure from agricultural facilities. Attachment of these bacteria to soil and organic particles contributes to their transport through the environment, though the mechanism of attachment is unknown. As bacterial attachment to human tissues is known to be correlated with antibiotic resistance, we have investigated here the relationship between bacterial attachment to environmental particles and antibiotic resistance in agricultural isolates. We evaluated 203 Escherichia coli isolates collected from swine facilities for attachment to quartz, resistance to 13 antibiotics, and the presence of genes encoding 13 attachment factors. The genes encoding type I, EcpA, P pili, and Ag43 were detected, though none was significantly related to attachment. Quartz attachment was positively and significantly (P amoxicillin/streptomycin/tetracycline/sulfamethazine/tylosin/chlortetracycline and negatively and significantly (P < 0.0038) related to combined resistance to nalidixic acid/kanamycin/neomycin. These results provide clear evidence for a link between antibiotic resistance and attachment to quartz in agricultural isolates. We propose that this may be due to encoding by the responsible genes on a mobile genetic element. Further exploration of the relationship between antibiotic resistance and attachment to environmental particles will improve the understanding and modeling of environmental transport processes, with the goal of preventing human exposure to antibiotic-resistant or virulent microorganisms.

  16. Biocontrol and Plant Growth Promotion Characterization of Bacillus Species Isolated from Calendula officinalis Rhizosphere.

    Science.gov (United States)

    Ait Kaki, Asma; Kacem Chaouche, Noreddine; Dehimat, Laid; Milet, Asma; Youcef-Ali, Mounia; Ongena, Marc; Thonart, Philippe

    2013-12-01

    The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn't produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6-52 μg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P Bacillus strains isolated in this work may be further used as bioinoculants to improve the production of C. officinalis and other crop systems.

  17. Potential Applications of Polyamines in Agriculture and Plant Biotechnology.

    Science.gov (United States)

    Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.

  18. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review

    Directory of Open Access Journals (Sweden)

    Pravin Vejan

    2016-04-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism of the PGPR for plant growth and the role of the PGPR as biofertilizer—thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  19. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    Science.gov (United States)

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-04-29

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  20. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    Science.gov (United States)

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  1. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105).

    Science.gov (United States)

    Rungin, Siriwan; Indananda, Chantra; Suttiviriya, Pavinee; Kruasuwan, Worarat; Jaemsaeng, Ratchaniwan; Thamchaipenet, Arinthip

    2012-10-01

    An endophytic Streptomyces sp. GMKU 3100 isolated from roots of a Thai jasmine rice plant (Oryza sativa L. cv. KDML105) showed the highest siderophore production on CAS agar while phosphate solubilization and IAA production were not detected. A mutant of Streptomyces sp. GMKU 3100 deficient in just one of the plant growth promoting traits, siderophore production, was generated by inactivation of a desD-like gene encoding a key enzyme controlling the final step of siderophore biosynthesis. Pot culture experiments revealed that rice and mungbean plants inoculated with the wild type gave the best enhancement of plant growth and significantly increased root and shoot biomass and lengths compared with untreated controls and siderophore-deficient mutant treatments. Application of the wild type in the presence or absence of ferric citrate significantly promoted plant growth of both plants. The siderophore-deficient mutant clearly showed the effect of this important trait involved in plant-microbe interaction in enhancement of growth in rice and mungbean plants supplied with sequestered iron. Our results highlight the value of a substantial understanding of the relationship of the plant growth promoting properties of endophytic actinomycetes to the plants. Endophytic actinomycetes, therefore, can be applied as potentially safe and environmentally friendly biofertilizers in agriculture.

  2. Transfer Factor of Co-60 and Cs-137 from Agricultural Soil to Agricultural Plant of Rice and Beans

    International Nuclear Information System (INIS)

    Suzie, D; Cerdas, T; Susilah, S; Umbara, H

    1996-01-01

    A study to estimate transfer factor of Co-60 and Cs-137 radionuclides from agricultural soil to agricultural plant of beans and rice in Serpong Nuclear Research Center Complex has been carried out. The soil used was that from off site Serpong Nuclear Research Center Complex, the agricultural plant samples were rice with variety of Cisadane, Situgintung, Seratus Malam, and Atomita 4, and for beans were peanut with variety of AH 1781 SI (parent) and A 20 psj (daughter), soybean with variety of Kerinci (parent) and Camar (daughter), and greenbean with variety of Manyar (parent) and Camar (daughter), which obtained from PAIR-BATAN Pasar Jumat. 10 kg of soil was put on the container which layered with plastic. The soil was contaminated with Co-60 and Cs-137 with activity concentration of 10 Bq/kg. Samples were counted with gamma spectrometer. The value of transfer factor was obtained by comparing activity concentration of agricultural plant with that of agricultural soil. The results of transfer factor of Co-60 for rice and beans were 0.12 x 10-2 and 1.05 x 10-2, respectively and the transfer factor of Cs-137 for rice and beans were 0.83 x 10-2 and 2.09 x 10-2, respectively. The gamma emmitter radionuclides counted from the soil of Serpong Nuclear Research Center Complex were Th-228, U-235, Ra-226, Ac-228 and K-40, with activities concentration as background were 35.39 - 101.60; 32.14 - 74.50; 23.37 - 28.57; 20.90 - 31.28 and 5.97 - 8.13 Bq/kg, respectively

  3. Novel, non-symbiotic isolates of Neorhizobium from a dryland agricultural soil

    Directory of Open Access Journals (Sweden)

    Amalia Soenens

    2018-05-01

    Full Text Available Semi-selective enrichment, followed by PCR screening, resulted in the successful direct isolation of fast-growing Rhizobia from a dryland agricultural soil. Over 50% of these isolates belong to the genus Neorhizobium, as concluded from partial rpoB and near-complete 16S rDNA sequence analysis. Further genotypic and genomic analysis of five representative isolates confirmed that they form a coherent group within Neorhizobium, closer to N. galegae than to the remaining Neorhizobium species, but clearly differentiated from the former, and constituting at least one new genomospecies within Neorhizobium. All the isolates lacked nod and nif symbiotic genes but contained a repABC replication/maintenance region, characteristic of rhizobial plasmids, within large contigs from their draft genome sequences. These repABC sequences were related, but not identical, to repABC sequences found in symbiotic plasmids from N. galegae, suggesting that the non-symbiotic isolates have the potential to harbor symbiotic plasmids. This is the first report of non-symbiotic members of Neorhizobium from soil.

  4. Ultrasonic Sensing of Plant Water Needs for Agriculture

    Directory of Open Access Journals (Sweden)

    Tomas Gómez Álvarez-Arenas

    2016-07-01

    Full Text Available Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70% corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively, These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  5. Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants

    International Nuclear Information System (INIS)

    Radmann, Elisangela Martha; Vieira Camerini, Felipe; Duarte Santos, Thaisa; Vieira Costa, Jorge Alberto

    2011-01-01

    Highlights: → Microalgae can help reduce global warming. → Synechococcus nidulans and Chlorella vulgaris were isolated in a thermoelectric plant. → Microalgae were compared with Spirulina and Scenedesmus obliquus for CO 2 fixation. → Microalgae were exposed to CO 2 , SO 2 and NO, simulating a gas from coal combustion. → C. vulgaris and Spirulina sp. showed 13.43% of maximum daily fixation. - Abstract: Microalgae have been studied for their potential use in foodstuffs, agriculture, in the treatment of wastewater and, in particular, in the reduction of atmospheric carbon dioxide, the main cause of global warming. Thermoelectricity plants account for 22% of CO 2 emitted into the atmosphere and native microalgae may be more tolerant to the gases emitted from burning fossil fuels. In the study presented here, microalgae were isolated from ponds next to a Thermoelectricity Plant, located in southern Brazil, and identified as Synechococcus nidulans and Chlorella vulgaris. The isolated microalgae were grown and compared with two different strains of microalgae, Spirulina sp. and Scenedesmus obliquus, for CO 2 biofixation. The microalgae were exposed to 12% CO 2 , 60 ppm of SO 2 and 100 ppm of NO, simulating a gas from coal combustion. The C. vulgaris had similar behavior to Spirulina sp., with 13.43% of maximum daily fixation. The microalgae with the greater fixing capacity were C. vulgaris and Spirulina sp. and these can be grown in electric power plants for CO 2 biofixation of the coal combustion gas, which would help reduce global warming.

  6. Plant mutation breeding and application of isotopic tracer in Chinese agriculture

    International Nuclear Information System (INIS)

    Liang Qu

    1993-03-01

    The progress and achievements made in plant mutation breeding and application of isotopic tracer in Chinese agriculture are outlined. Plant mutation breeding is well developed not only in improvement of crops but also in methodology of mutation induction. More than 325 mutant varieties and hundreds of various valuable mutants of 29 different species have been obtained. The mutant cultivars released have covered more than 10 million hectares in total area. The systematic studies on methodology such as techniques for mutagenic treatment, development of various mutagens, screening and selecting techniques of mutation etc. have been carried out in China. The techniques of radioisotopic tracer used in many research fields are described. Application of isotopic tracer in studies of fertilization and plant nutrition, environment protection, nitrogen-fixation, animal production and diagnosis of diseases, and so on, have made great achievements and benefits in China. Many kinds of labelled compounds, especially of labelled agro-chemicals have been synthesized in the Institute for Application of Atomic Energy (IAAE). Chinese Academy of Agricultural Sciences (CAAS). The proposals for the region cooperation in Asia on application of atomic energy in agriculture are included

  7. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    Science.gov (United States)

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  8. In vivo assessment of plant extracts for control of plant diseases: A sesquiterpene ketolactone isolated from Curcuma zedoaria suppresses wheat leaf rust.

    Science.gov (United States)

    Han, Jae Woo; Shim, Sang Hee; Jang, Kyoung Soo; Choi, Yong Ho; Dang, Quang Le; Kim, Hun; Choi, Gyung Ja

    2018-02-01

    As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.

  9. An efficient DNA isolation method for tropical plants

    African Journals Online (AJOL)

    walkinnet

    2013-05-08

    May 8, 2013 ... 2Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, P. R. ... yielded high-quality DNA from 10 tropical plants including cassava, rubber tree, banana, etc. ..... Major Projects (GrantNo.

  10. Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum.

    Science.gov (United States)

    Saleh, A A; Ahmed, H U; Todd, T C; Travers, S E; Zeller, K A; Leslie, J F; Garrett, K A

    2010-01-01

    Agricultural and wild ecosystems may interact through shared pathogens such as Macrophomina phaseolina, a generalist clonal fungus with more than 284 plant hosts that is likely to become more important under climate change scenarios of increased heat and drought stress. To evaluate the degree of subdivision in populations of M. phaseolina in Kansas agriculture and wildlands, we compared 143 isolates from maize fields adjacent to tallgrass prairie, nearby sorghum fields, widely dispersed soybean fields and isolates from eight plant species in tallgrass prairie. Isolate growth phenotypes were evaluated on a medium containing chlorate. Genetic characteristics were analysed based on amplified fragment length polymorphisms and the sequence of the rDNA-internal transcribed spacer (ITS) region. The average genetic similarity was 58% among isolates in the tallgrass prairie, 71% in the maize fields, 75% in the sorghum fields and 80% in the dispersed soybean fields. The isolates were divided into four clusters: one containing most of the isolates from maize and soybean, two others containing isolates from wild plants and sorghum, and a fourth containing a single isolate recovered from Solidago canadensis in the tallgrass prairie. Most of the sorghum isolates had the dense phenotype on media containing chlorate, while those from other hosts had either feathery or restricted phenotypes. These results suggest that the tallgrass prairie supports a more diverse population of M. phaseolina per area than do any of the crop species. Subpopulations show incomplete specialization by host. These results also suggest that inoculum produced in agriculture may influence tallgrass prairie communities, and conversely that different pathogen subpopulations in tallgrass prairie can interact there to generate 'hybrids' with novel genetic profiles and pathogenic capabilities.

  11. Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture ▿ †

    Science.gov (United States)

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S.; Viterbo, Ada; Yarden, Oded

    2011-01-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents. PMID:21666030

  12. Plant growth promoting potential of endophytic bacteria isolated ...

    African Journals Online (AJOL)

    Endophytic microorganisms are able to promote plant growth through various mechanisms, such as production of plant hormones and antimicrobial substances, as well as to provide the soil with nutrients, for instance, inorganic phosphate. This study aimed to evaluate the potential of endophytic bacteria isolated from ...

  13. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant.

    Science.gov (United States)

    Garuti, Mirco; Langone, Michela; Fabbri, Claudio; Piccinini, Sergio

    2018-01-01

    The implementation of hydrodynamic cavitation (HC) pretreatment for enhancing the methane potential from agricultural biomasses was evaluated in a full scale agricultural biogas plant, with molasses and corn meal as a supplementary energy source. HC batch tests were run to investigate the influence on methane production, particle size and viscosity of specific energy input. 470kJ/kgTS was chosen for the full-scale implementation. Nearly 6-months of operational data showed that the HC pretreatment maximized the specific methane production of about 10%, allowing the biogas plant to get out of the fluctuating markets of supplementary energy sources and to reduce the methane emissions. HC influenced viscosity and particle size of digestate, contributing to reduce the energy demand for mixing, heating and pumping. In the light of the obtained results the HC process appears to be an attractive and energetically promising alternative to other pretreatments for the degradation of biomasses in biogas plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Isolation valve control device for nuclear power plant

    International Nuclear Information System (INIS)

    Yukinori, Shigeru.

    1990-01-01

    The present invention provides an isolation valve control device for detecting pipeline rupture accidents in a BWR type nuclear power plant at an early stage to close an isolation valve thereby reducing the amout of radioactivity released to the circumstance. That is, isolation valves are disposed in the pipeline for each of the systems in the nuclear power plant and flow ratemeters are disposed to at least two positions in each of the pipelines. If a meaningful difference is shown for the measured values by these flow ratemeters, the isolation valve is closed. In this way, if pipeline rupture such as leak before break (LBB) is caused to a portion of a system pipelines, the measured value from the flow ratemeters at the downstream of the pipeline is lowered. Accordingly, when a meaningful difference is formed between the value of the flow ratematers at the upstream and the downstream, occurrence of pipe rutpture between both of the flow ratemeters can be detected. As a result, the isolation valves of the system can be closed. According to the present invention, it is possible to detect the pipeline rupture at an early stage irrespective of the kind of the systems, diameter of the pipelines and the magnitude of the ruptured area, and the isolation valve can be closed. (I.S.)

  15. Spices, condiments and medicinal plants in Ethiopia, their taxonomy and agricultural significance

    NARCIS (Netherlands)

    Jansen, P.C.M.

    1981-01-01

    The book is the third in a series of publications on useful plants of Ethiopia. It describes 12 spices and condiments and 13 medicinal plants, both from a taxonomic and an agricultural viewpoint.

    The extensive botanical description of each taxon is accompanied by a full-page

  16. Cytogenetic changes induced by aqueous ferrofluids in agricultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Racuciu, Mihaela [Faculty of Sciences, Lucian Blaga University, 10 Blvd. Victoriei, Sibiu 550012 (Romania)]. E-mail: mracuciu@yahoo.com; Creanga, Dorina [Faculty of Physics, Al. I. Cuza University, 11A Blvd.Copou, Iasi 700506 (Romania)

    2007-04-15

    In this paper, the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of agricultural plants when cultivated in the presence of different concentrations of aqueous ferrofluid, ranging between 10 and 250 {mu}L/L. The agricultural species (Zea mays) with a major role in the life of people was chosen for the experimental project. The water-based ferrofluid was prepared following the chemical co-precipitation method, using tetramethylammonium hydroxide as magnetite core stabilizer. Microscopic investigations (cytogenetic tests) resulted in the evaluation of the mitotic and chromosomal aberration index. They appeared to increase following ferrofluid addition.

  17. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    Science.gov (United States)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with

  18. Characterization of Effective Rhizobacteria Isolated from Velvet Bean (Mucuna Pruriens) to Enhance Plant Growth

    International Nuclear Information System (INIS)

    Saleem, A. R.; Mahmood, T.; Batool, A.; Khalid, A.

    2016-01-01

    Rhizobacteria with plant growth promoting ability exist in association with plant roots and ameliorate over all plant development and yield. Numerous species of rhizobacteria have been identified with plant growth promoting ability, which can be attributed to multiple microbial characteristics. In the current study rhizobacterial isolates with best plant growth promotion traits were subjected to screening for plant growth promotion under axenic condition. The results of lab assays revealed that out of five rhizobacterial isolates three of bacterial isolate were Gram -ve and two of them were Gram +ve bacterial group. All isolates found positive for the auxin production and ACC-demainase activity. The isolate HS9 showed highest ACC activity (331 ketobutyrate nmol mg-1 biomass hr-1) and auxin production (3.85 without L-TRP). PGPR increase plant growth by reducing the ethylene release and its inhibitory effects, the role of isolates to decrease ethylene effects was affirmed via classical triple response assay on velvet bean. Furthermore, isolate were assessed for resistance test, three efficient strains (G9, HS9 and H38) exhibited antibiotic resistance for streptomycin, kanamycin and rifampicin at 100 mg L-1in TSB medium. For the purpose of co-inoculation, all three isolates showed positive relation to grow together. The results concluded that rhizobacteria selected from rain fed areas were found effective to improve plant growth with their multiple growth enhancing traits. Therefore, PGPR with various characteristics could be a better option for inoculation and co-inoculation to improve plant growth in well watered and water stressed environment. (author)

  19. Hydroxylation of the Herbicide Isoproturon by Fungi Isolated from Agricultural Soil

    OpenAIRE

    Rønhede, Stig; Jensen, Bo; Rosendahl, Søren; Kragelund, Birthe B.; Juhler, René K.; Aamand, Jens

    2005-01-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N′,N′-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N′-methylurea. In soils, however, hydroxylated metaboli...

  20. Agriculture on Mars: Soils for Plant Growth

    Science.gov (United States)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  1. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions.

    Science.gov (United States)

    Huang, X-F; Zhou, D; Guo, J; Manter, D K; Reardon, K F; Vivanco, J M

    2015-03-01

    The aim of this study was to evaluate effects of PGPR (plant growth-promoting rhizobacteria) isolated from rainforest soil on different plants under limited nitrogen conditions. Bacterial isolates from a Peruvian rainforest soil were screened for plant growth-promoting effects on Arabidopsis (Col-0). Four selected isolates including one Bacillus subtilis, two B. atrophaeus and one B. pumilus significantly promoted growth of Zea mays L. and Solanum lycopersicum under greenhouse conditions. Moreover, the PGPRs significantly promoted growth of S. lycopersicum in both low and nitrogen-amended soil conditions. These PGPR strains were further studied to obtain insights into possible mechanisms of plant growth promotion. Volatile chemicals from those isolates promoted Arabidopsis growth, and the expression of genes related to IAA production was induced in the Arabidopsis plants treated with PGPRs. Further, selected PGPR strains triggered induced systemic resistance (ISR) against Pseudomonas syringae pv tomato DC3000 in Arabidopsis. PGPR strains isolated from the rainforest soil promoted the plant growth of Arabidopsis, corn and tomato. New PGPR that have wider adaptability to different crops, soils and environmental conditions are needed to decrease our reliance on agricultural amendments derived from fossil-based fuels. The PGPRs isolated from a nonagricultural site constitute new plant growth-promoting strains that could be developed for agricultural uses. © 2014 The Society for Applied Microbiology.

  2. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  3. Biosynthesis of Bio surfactant by Egyptian Local Bacterial Isolates Using Different Agricultural Wastes

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.

    2014-01-01

    Fifteen bacterial isolates were isolated from sea water from the coast of the General Petroleum Company on Suez Gulf. They were screened for bio surfactant production using emulsification activity and haemolytic activity. The most potent isolate B11 were selected according to two parameters: The ability to grow and produce surfactant and its haemolytic activity on blood agar plates. The isolate B11 was characterized and identified as Bacillus licheniformis according to API system. The isolate was subjected to different doses of gamma irradiation in a trial to improve its ability for bio surfactant production which resulted in a passive effect on bio surfactant production. Three types of agricultural wastes (Rice straw, Cane Bagasse, Corn straw) were used as fertilizers for bio surfactant biosynthesis by the promising isolate in concentrations of 1, 2, 3, 4, 5 g/l. At five g/l concentration cane bagasse gave high production of bio surfactant with maximum capacity at (32%) flowed by rice straw at 18% and corn straw at 9.8 %.

  4. Weed Suppressing Potential and Isolation of Potent Plant Growth Inhibitors from Castanea crenata Sieb. et Zucc

    Directory of Open Access Journals (Sweden)

    Phung Thi Tuyen

    2018-02-01

    Full Text Available This study isolated, determined, and quantified plant growth inhibitors in Japanese chestnut (Castanea crenata Sieb. et Zucc, a deciduous species native to Japan and Korea. In laboratory assays, C. crenata leaves showed strong inhibition on germination and seedling growth of Echinochloa crus-galli (barnyardgrass, Lactuca sativa (lettuce, and Raphanus sativus (radish. Laboratory and greenhouse trials showed that leaves of C. crenata appeared as a promising material to manage weeds, especially the dicot weeds. By GC-MS and HPLC analyses, gallic, protocatechuic, p-hydroxybenzoic, caffeic, ferulic, ellagic, and cinnamic acids were identified and quantified, of which ellagic acid was present in the highest quantity (2.36 mg/g dried leaves. By column chromatography and spectral data (1H- and 13C-NMR, IR, and LC-MS analysis, a compound identified as 2α,3β,7β,23-tetrahydroxyurs-12-ene-28-oic acid (1 was purified from the methanolic leaf extract of C. crenata (0.93 mg/g dried leaves. This constituent showed potent inhibition on growth of E. crus-galli, a problematic weed in agricultural practice. The inhibition of the compound 1 (IC50 = 2.62 and 0.41 mM was >5 fold greater than that of p-hydroxybenzoic acid (IC50 = 15.33 and 2.11 mM on shoot and root growth of E. crus-galli, respectively. Results suggest that the isolated the compound 1 has potential to develop natural herbicides to manage E. crus-galli. This study is the first to isolate and identify 2α,3β,7β,23-tetrahydroxyurs-12-ene-28-oic acid in a plant and report its plant growth inhibitory potential.

  5. Isolation and Molecular Characterization of a Model Antagonistic Pseudomonas aeruginosa Divulging In Vitro Plant Growth Promoting Characteristics

    Directory of Open Access Journals (Sweden)

    Bushra Uzair

    2018-01-01

    Full Text Available The use of microbial technologies in agriculture is currently expanding quite rapidly with the identification of new bacterial strains, which are more effective in promoting plant growth. In the present study 18 strains of Pseudomonas were isolated from soil sample of Balochistan coastline. Among isolated Pseudomonas strains four designated as SP19, SP22, PS24, and SP25 exhibited biocontrol activities against phytopathogenic fungi, that is, Rhizopus microsporus, Fusarium oxysporum, Aspergillus niger, Alternaria alternata, and Penicillium digitatum; PS24 identified as Pseudomonas aeruginosa by 16srRNA gene bank accession number EU081518 was selected on the basis of its antifungal activity to explore its potential as plant growth promotion. PS24 showed multiple plant growth promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA, siderophore, and HCN production. In order to determine the basis for antifungal properties, antibiotics were extracted from King B broth of PS24 and analyzed by TLC. Pyrrolnitrin antibiotic was detected in the culture of strain PS24. PS24 exhibited antifungal activities found to be positive for hydrogen cyanide synthase Hcn BC gene. Sequencing of gene of Hcn BC gene of strain PS24 revealed 99% homology with the Pseudomonas aeruginosa strain PA01. The sequence of PS24 had been submitted in gene bank accession number KR605499. Ps. aeruginosa PS24 with its multifunctional biocontrol possessions can be used to bioprotect the crop plants from phytopathogens.

  6. Lusus naturae:climate and invasions of plant pathogens modify agricultural and forest lands

    Directory of Open Access Journals (Sweden)

    Salvatore Moricca

    2009-10-01

    Full Text Available The ecological and economic sustainability of agricultural and forest systems of many advanced and underdeveloped Countries are strongly threatened by the increasing introduction of exotic plant pathogens. This article provides an overview of the main causes behind these invasions. Some important diseases caused by non native phytopathogens, whose arrival in the past century had a disastrous impact on the environment and economy of vast rural areas of our Country are reported. Some dangerous, emerging pathogens, which are literally destroying whole territories in various parts of the Planet, with severe damage to agricultural crops, landscape, economy and local tourism are also reported. Action strategies to prevent immigration of unwanted pathogens, and mitigation strategies, aimed at the development of various measures to mitigate the negative effects of plant parasites already established in the territory are then discussed. Finally, it is highlighted how such a far-reaching problem can be properly tackled only with the active contribution of governments, institutions responsible for plant health monitoring (warning services, research, and agricultural, tourism and transport operators.

  7. Wild plant food in agricultural environments: a study of occurrence, management, and gathering rights in Northeast Thailand.

    NARCIS (Netherlands)

    Price, L.L.

    1997-01-01

    This article examines the gathering of wild plant foods in agricultural environments and utilizes research conducted among rice cultivators in northeast Thailand as the case study. The management of wild food plants and gathering rights on agricultural land are closely linked to women's roles as

  8. Isolation and identification of Metarhizium anisopliae from Chilo ...

    African Journals Online (AJOL)

    *

    2012-04-12

    Apr 12, 2012 ... 1Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (Key Laboratory of ... Keywords: Metarhizium anisopliae, isolation, identification, Chilo venosatus, culture medium, biological control. .... with a Leica microscope and average values were compared for all.

  9. Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research

    Science.gov (United States)

    Piperno, Dolores R.

    2017-01-01

    The development of agricultural societies, one of the most transformative events in human and ecological history, was made possible by plant and animal domestication. Plant domestication began 12,000–10,000 y ago in a number of major world areas, including the New World tropics, Southwest Asia, and China, during a period of profound global environmental perturbations as the Pleistocene epoch ended and transitioned into the Holocene. Domestication is at its heart an evolutionary process, and for many prehistorians evolutionary theory has been foundational in investigating agricultural origins. Similarly, geneticists working largely with modern crops and their living wild progenitors have documented some of the mechanisms that underwrote phenotypic transformations from wild to domesticated species. Ever-improving analytic methods for retrieval of empirical data from archaeological sites, together with advances in genetic, genomic, epigenetic, and experimental research on living crop plants and wild progenitors, suggest that three fields of study currently little applied to plant domestication processes may be necessary to understand these transformations across a range of species important in early prehistoric agriculture. These fields are phenotypic (developmental) plasticity, niche construction theory, and epigenetics with transgenerational epigenetic inheritance. All are central in a controversy about whether an Extended Evolutionary Synthesis is needed to reconceptualize how evolutionary change occurs. An exploration of their present and potential utility in domestication study shows that all three fields have considerable promise in elucidating important issues in plant domestication and in agricultural origin and dispersal research and should be increasingly applied to these issues. PMID:28576881

  10. Radioactive-waste isolation pilot plant

    International Nuclear Information System (INIS)

    Weart, W.D.

    1977-01-01

    The objective of the Waste Isolation Pilot Plant (WIPP) program is to demonstrate the suitability of bedded salt, specifically, the bedded salt deposits in the Los Medanos area of southeastern New Mexico, as a disposal medium for radioactive wastes. Our program responsibilities include site selection considerations, all aspects of design and development, technical guidance of facility operation, environmental impact assessment, and technical support to ERDA for developing public understanding of the facility

  11. THE USE OF CHEMICALS AS PLANT REGULATORS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 8.

    Science.gov (United States)

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS, THIS MODULE IS SPECIFICALLY CONCERNED WITH CHEMICALS AS PLANT REGULATORS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS INCLUDE -- (1) CHEMICALS AS MODIFIERS OF PLANT GROWTH, (2)…

  12. Isolation of Retroelement from Plant Genomic DNA

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Pat Heslop-Harrison ### Abstract: Retroelements and their derivatives are an ubiquitous and abundant component of plant genomes. From the 1990s, PCR based techniques have been developed to isolate the elements from genomic DNA of different plants, and the methods and primers used are presented here. Major classes of retroelements include the Ty1-copia, the Ty3-gypsy and the LINE (non-LTR) groups. Mixed PCR products representing the full heterogeneous pool of retrotransposo...

  13. Assessment of transformability of bacteria associated with tomato and potato plants

    NARCIS (Netherlands)

    Overbeek, van L.S.; Ray, J.L.; Elsas, van J.D.

    2007-01-01

    Transformation of plant-associated bacteria by plant DNA has never been demonstrated in agricultural fields. In total 552 bacterial isolates from stems of Ralstonia solanacearum-infected and healthy tomato plants and from stems and leaves of healthy potato plants were tested for natural genetic

  14. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    Science.gov (United States)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  15. Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial

    Science.gov (United States)

    Prasetya, A. T.; Mursiti, S.; Maryan, S.; Jati, N. K.

    2018-04-01

    Extraction and isolation of papaya seeds and leaves (Carica papaya L) has been performed using n-hexane and ethanol solvents. Further isolation of the extract obtained using ethyl acetate and diethyl ether solvents. The result of the phytochemical test of papaya extract obtained by mixture of an active compound of flavonoids, alkaloids, tannins, steroids, and saponins. Ethyl acetate isolates containing only flavonoids and diethyl ether isolates contain only alkaloids. Extracts and isolates from papaya plants had gram-positive antibacterial activity greater than the gram-negative bacteria, but both did not have antifungal activity. Papaya extracts have greater antibacterial activity than flavonoid isolates and alkaloid isolates. Strong antibacterial inhibitory sequences are extracts of papaya plants, flavonoid isolates, and alkaloid isolates.

  16. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented

  17. Rock mechanics activities at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Francke, C.; Saeb, S.

    1996-01-01

    The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed

  18. Fumonisin and T-2 toxin production of Fusarium spp. isolated from complete feed and individual agricultural commodities used in shrimp farming.

    Science.gov (United States)

    Anukul, Nampeung; Maneeboon, Thanapoom; Roopkham, Chanram; Chuaysrinule, Chananya; Mahakarnchanakul, Warapa

    2014-02-01

    Fusarium spp. are plant pathogens producing fumonisins and trichothecenes that both affect human and animal health. In the present study, 40 fungal strains were isolated and species identified from 35 shrimp feed samples and from 61 agricultural raw materials. F. verticillioides was the predominant species (85 %) mostly found in corn and soybean meal, while no Fusarium contamination was detected in shrimp feed. Levels of 10 % of F. oxysporum were isolated from peanut and 5 % of F. equiseti contamination in corn and peanut. To determine the ability of toxin production, enzyme-linked immunosorbent assay, polymerase chain reaction, and ultra-pressure liquid chromatography-tandem mass spectrometry were performed. All but four of the fumonisin-producing strains contained the FUM1 gene. No Fusarium synthesized T-2 toxin nor contained the Tri5 gene. This survey brings more data on mycotoxin contamination in the food chain of animal feed production, and leads to the awareness of the use of contaminated raw materials in shrimp farming.

  19. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the ...

    African Journals Online (AJOL)

    Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth by a wide variety of mechanisms. The use of PGPR is steadily increasing in agriculture and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. Here, we have isolated and ...

  20. Seismic isolation of nuclear power plants - EDF's philosophy

    International Nuclear Information System (INIS)

    Coladant, C.

    1989-01-01

    The elastomer bearing pads used since 1963 as supports for prestressed concrete pressure vessels (PCPVs) was quickly chosen by Electricite de France (ED) to improve the capability of nuclear power plants (NPPs) to withstand strong earthquakes and to reduce the seismic loads on structures and equipment. The standardized units for 900 and 1,300 MW(e) pressurized water reactor (PWR) plants have moderate seismic design loads of 0.2 and 0.15 g, respectively. These design loads were exceeded by the site dependent spectra of Cruas (France) and Koeberg (South Africa). To keep the plant design unchanged and to take the advantages of standardization, these units were put on laminated bearings with or without sliding plates. For the future French 1,500 MW(e) fast breeder reactors (FBRs), which are more sensitive to seismic loads, the base isolation is considered by EDF at the beginning of the design, even for low ground motions of 0.1 g. The buildings are placed on laminated bearings while the reactor block is supported by springs and dampers. The isolated plant has identical costs as a conventional design such as SPX1 at Creys-Malville

  1. Seismic isolation of nuclear power plants using sliding isolation bearings

    Science.gov (United States)

    Kumar, Manish

    Nuclear power plants (NPP) are designed for earthquake shaking with very long return periods. Seismic isolation is a viable strategy to protect NPPs from extreme earthquake shaking because it filters a significant fraction of earthquake input energy. This study addresses the seismic isolation of NPPs using sliding bearings, with a focus on the single concave Friction Pendulum(TM) (FP) bearing. Friction at the sliding surface of an FP bearing changes continuously during an earthquake as a function of sliding velocity, axial pressure and temperature at the sliding surface. The temperature at the sliding surface, in turn, is a function of the histories of coefficient of friction, sliding velocity and axial pressure, and the travel path of the slider. A simple model to describe the complex interdependence of the coefficient of friction, axial pressure, sliding velocity and temperature at the sliding surface is proposed, and then verified and validated. Seismic hazard for a seismically isolated nuclear power plant is defined in the United States using a uniform hazard response spectrum (UHRS) at mean annual frequencies of exceedance (MAFE) of 10-4 and 10 -5. A key design parameter is the clearance to the hard stop (CHS), which is influenced substantially by the definition of the seismic hazard. Four alternate representations of seismic hazard are studied, which incorporate different variabilities and uncertainties. Response-history analyses performed on single FP-bearing isolation systems using ground motions consistent with the four representations at the two shaking levels indicate that the CHS is influenced primarily by whether the observed difference between the two horizontal components of ground motions in a given set is accounted for. The UHRS at the MAFE of 10-4 is increased by a design factor (≥ 1) for conventional (fixed base) nuclear structure to achieve a target annual frequency of unacceptable performance. Risk oriented calculations are performed for

  2. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review

    Science.gov (United States)

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    2009-01-01

    Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...

  3. Waste Isolation Pilot Plant No-migration variance petition

    International Nuclear Information System (INIS)

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program

  4. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology

    Directory of Open Access Journals (Sweden)

    Seham M. Hamed

    2018-03-01

    Full Text Available Marine macroalgae are plant-like organisms with simple internal structures that generally live in coastal areas. They mainly include different communities of red, brown and green macroalgae. Marine macroalgae commonly occupy intertidal and sublittoral-to-littoral zones on rocks and other hard substrata. They are considered to be an excellent natural biosource in different aspects of agricultural fields. They have great proficiency in improving soil physical and chemical properties. Marine macroalgae are also characterized by producing a large array of biologically active biocidal substances against plant-infecting pathogens. Unfortunately, most available literatures on marine macroalgae and their derivatives mainly focused on their pharmaceutical applications but their potential utilization in sustainable agriculture development is still often regarded as a secondary goal. However, a relatively considerable dataset on marine macroalgae showed that they could play a major role in plant protection and improvement. This review summarizes different aspects of potential macroalgal applications in agriculture. Commercial production and exploitation of specific compounds with interesting biotechnological importance from marine macroalgae including microbicides, nematicides, insecticides, biofertilizers, biostimulators and soil conditioners are highlighted and discussed in detail. Bioactive compounds like fatty acids (in particular polyunsaturated fatty acids (PUFAs, proteins (amino acids, bioflavonoids, sulfated polysaccharides, carotenoids, polyphenols and carbohydrates are considered to have bactericidal, antiviral and fungicidal effects against some plant-infecting pathogens. These biocontrol agents provide multiple benefits and act as useful pointers for improving cultivation practices in diverse habitats. Marine macroalgae can be generally considered as promising multifunctional bioinoculants and ecofriendly environmental tools in recent trends

  5. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  6. Waste Isolation Pilot Plant 1999 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  7. Medicinal Plants Based Products Tested on Pathogens Isolated from Mastitis Milk

    Directory of Open Access Journals (Sweden)

    Claudia Pașca

    2017-09-01

    Full Text Available Bovine mastitis a major disease that is commonly associated with bacterial infection. The common treatment is with antibiotics administered intramammary into infected quarters of the udder. The excessive use of antibiotics leads to multidrug resistance and associated risks for human health. In this context, the search for alternative drugs based on plants has become a priority in livestock medicine. These products have a low manufacturing cost and no reports of antimicrobial resistance to these have been documented. In this context, the main objective of this study was to determine the antimicrobial effect of extracts and products of several indigenous, or acclimatized plants on pathogens isolated from bovine mastitis. A total of eleven plant alcoholic extracts and eight plant-derived products were tested against 32 microorganisms isolated from milk. The obtained results have shown an inhibition of bacterial growth for all tested plants, with better results for Evernia prunastri, Artemisia absinthium, and Lavandula angustifolia. Moreover, E. prunastri, Populus nigra, and L. angustifolia presented small averages of minimum inhibitory and bactericidal concentrations. Among the plant-derived products, three out of eight have shown a strong anti-microbial effect comparable with the effect of florfenicol and enrofloxacin, and better than individual plant extracts possibly due to synergism. These results suggest an important anti-microbial effect of these products on pathogens isolated from bovine mastitis with a possible applicability in this disease.

  8. Forest Distribution on Small Isolated Hills and Implications on Woody Plant Distribution under Threats of Global Warming

    Directory of Open Access Journals (Sweden)

    Chi-Cheng Liao

    2012-09-01

    Full Text Available Treelines have been found to be lower in small isolated hilltops, but the specific dynamics behind this unique phenomenon are unknown. This study investigates the distribution patterns of woody plants in Yangmingshan National Park (YMSNP, Northern Taiwan in search of the limitation mechanisms unique to small isolated hills, and to evaluate potential threats under global warming. Forests distributed between 200 to 900 m above sea level (ASL. Remnant forest fragments between 400 and 900 m ASL, have the highest species richness, and should be protected to ensure future forest recovery from the former extensive artificial disturbance. The lower boundary is threatened by urban and agricultural development. The lack of native woody species in these low elevation zones may cause a gap susceptible to invasive species. A consistent forest line at 100 m below mountain tops regardless of elevation suggests a topography-induced instead of an elevation-related limiting mechanism. Therefore, upward-shift of forests, caused by global warming, might be limited at 100 m below hilltops in small isolated hills because of topography-related factors. The spatial range of woody plants along the altitudinal gradient, thus, is likely to become narrower under the combined pressures of global warming, limited elevation, exposure-related stress, and artificial disturbance. Management priorities for forest recovery are suggested to include preservation of remnant forest fragments, increasing forest connectivity, and increasing seedling establishment in the grasslands.

  9. Effect of Fusarium isolates and their filtrates on respiratory rate and chemical analysis of squash plants.

    Science.gov (United States)

    El-Shenawy, Z; Mansour, M A; El-Behrawi, S

    1978-01-01

    The highly pathogenic isolate stimulated the emergence of the squash seedlings first, caused, however, the highest death rate of the seedlings finally. Fusarium isolates and their culture filtrates inhibited the respiratory rate of squash plants significantly. However, F. oxysporum isolates inhibited respiration more than F. solani isolates. Seasonal changes of respiration decline show that the respiratory rate decreased with plant growth in the case of infested soil and of plants injected with culture filtrates. However, spraying Fusarium culture filtrates on the foliage gave opposite results when the plants grew older. Fusarium solani isolates decreased nitrogen content of squash stems and leaves, while F. oxysporum isolates gave reverse results. Injecting Fusarium culture filtrate into the plant decreased nitrogen content of both stems and leaves, while spraying the foliage with the filtrates increased nitrogen content more than that of the control. Phosphorus content of the stems of squash plants, sown in infested soil, was less than in the control when the plants were treated with F. solani and higher when they were treated with F. oxysporum isolates. On the other hand, the phosphorus content of squash leaves was higher than in the control. In the case of injected plants, however, the phosphorus content in stems and leaves was equal to that of the control or less, and with sprayed plants it was higher than in the control. Infesting the soil with Fusarium isolates and spraying the foliage with their culture filtrates increased potassium content of squash stems and leaves, while injecting the filtrates into the plants decreased potassium content of both stems and leaves.

  10. Selection of diazotrophic bacteria isolated from wastewater treatment plant sludge at a poultry slaughterhouse for their effect on maize plants

    Directory of Open Access Journals (Sweden)

    Jorge Avelino Rodriguez Lozada

    Full Text Available ABSTRACT The economic and environmental costs of nitrogen fertilization have intensified the search for technologies that reduce mineral fertilization, for example atmospheric nitrogen-fixing (diazotrophic bacteria inoculation. In this context, the present study addressed the isolation and quantification of diazotrophic bacteria in the sludge from treated wastewater of a poultry slaughterhouse; a description of the bacteria, based on cell and colony morphology; and an assessment of growth and N content of maize plants in response to inoculation. Sixteen morphotypes of bacteria were isolated in six N-free culture media (JMV, JMVL, NFb, JNFb, LGI, and LGI-P. The bacteria stained gram-positive, with 10 rod- and six coccoid-shaped isolates. To evaluate the potential of bacteria to promote plant growth, maize seeds were inoculated. The experiment consisted of 17 treatments (control plus 16 bacterial isolates and was carried out in a completely randomized design with six replicates. The experimental units consisted of one pot containing two maize plants in a greenhouse. Forty-five days after planting, the variables plant height, leaf number, stem diameter, root and shoot fresh and dry weight, and N content were measured. The highest values were obtained with isolate UFV L-162, which produced 0.68 g total dry matter per plant and increased N content to 22.14 mg/plant, representing increments of 74 and 133%, respectively, compared with the control. Diazotrophs inhabit sludge from treated wastewater of poultry slaughterhouses and can potentially be used to stimulate plant development and enrich inoculants.

  11. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented

  12. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented.

  13. Waste Isolation Pilot Plant Safety Analysis Report. Volume 5

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  14. Waste Isolation Pilot Plant Safety Analysis Report. Volume 4

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  15. Waste Isolation Pilot Plant Safety Analysis Report. Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection: Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating control and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  16. Waste Isolation Pilot Plant Safety Analysis Report. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  17. Optimization of FTA technology for large scale plant DNA isolation ...

    African Journals Online (AJOL)

    GRACE

    2006-05-02

    May 2, 2006 ... product yields and quality are sufficient for reliable scoring, distinguishing heterozygous from homozygous plants ... food and agriculture, testing drug discovery, transgenic, ... container. For QPM ... mM EDTA, pH 8). The FTA ...

  18. The benefits and problems of base seismic isolation for LMFBR reactor plants

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1988-01-01

    The use of seismic isolation as an approach to aseismic design has gained increasing interest as a viable and efficient engineering solution to earthquake ground motion both within and outside of the nuclear field. Seismic isolation design is fundamentally different from conventional design practice. In the conventional approach, seismic loads are resisted by making the structures, equipment, piping, and associated supports strong enough to resist seismic loads and to provide high levels of ductility. The use of seismic isolation approaches the problem by decoupling the structure (and its contents) from the seismic input resulting from ground shaking. Because LMFBR systems operate at virtually atmospheric pressure, vessels, piping, and associated components tend to be quite thin-walled. The problem is that these thin-walled items have little inherent resistance to earthquake effects and are vulnerable to seismic load effects. As a result, earthquake loads have an even greater influence on LMR designs than they already are in LWR plants. The potential benefits of seismic isolation for an LMR plant are considerable, including minimization of high-cost commodities such as stainless steel, large reductions in internal equipment loads, increased margins of safety for beyond-design-basis loads, and enhancement of plant standardization design. There are, of course, a number of issues and concerns in the use of seismic isolation for a nuclear power plant. These issues cover a number of items such as the lack of experience in actual earthquakes, effects of long-period ground motion, effect of vertical loads, traveling waves, and other related concerns. This paper presents an evaluation of the benefits and problems in the use of seismic isolation in LMR plants. 12 refs, 7 figs

  19. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.

    Science.gov (United States)

    Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S

    2013-10-01

    Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF

  20. Possible applications of power from Temelin nuclear power plant in agriculture of the South Bohemian Region

    International Nuclear Information System (INIS)

    Hosek, V.

    1989-01-01

    The agricultural organizations in the South Bohemian Region have suggested the use of low-potential waste heat from the Temelin nuclear power plant in processing feed potatoes, fodder drying, mushroom production, heating greenhouses and agricultural buildings, drying corn and processing vegetables. Greenhouses should be built on an area of 30 hectares. Hydroponics is expected to be used. The location of the greenhouse area relative to the power plant is described. (M.D.). 6 tabs

  1. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale.

    Science.gov (United States)

    Bernardo, Pauline; Charles-Dominique, Tristan; Barakat, Mohamed; Ortet, Philippe; Fernandez, Emmanuel; Filloux, Denis; Hartnady, Penelope; Rebelo, Tony A; Cousins, Stephen R; Mesleard, François; Cohez, Damien; Yavercovski, Nicole; Varsani, Arvind; Harkins, Gordon W; Peterschmitt, Michel; Malmstrom, Carolyn M; Martin, Darren P; Roumagnac, Philippe

    2018-01-01

    Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plant-associated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km 2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8-35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature.

  2. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    Science.gov (United States)

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  3. Whole-Genome Sequence of Bradyrhizobium elkanii Strain UASWS1016, a Potential Symbiotic Biofertilizer for Agriculture.

    Science.gov (United States)

    Crovadore, Julien; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Schulz, Torsten; Lefort, François

    2016-10-06

    Bradyrhizobium elkanii UASWS1016 has been isolated from a wet oxidation sewage plant in Italy. Fully equipped for ammonia assimilation, heavy metal resistances, and aromatic compounds degradation, it carries a large type IV secretion system, specific of plant-associated microbes. Deprived of toxins, it could be considered for agricultural and environmental uses. Copyright © 2016 Crovadore et al.

  4. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises.

    Science.gov (United States)

    de Oliveira, Jhones Luiz; Campos, Estefânia Vangelie Ramos; Bakshi, Mansi; Abhilash, P C; Fraceto, Leonardo Fernandes

    2014-12-01

    This review article discusses the use of nanotechnology in combination with botanical insecticides in order to develop systems for pest control in agriculture. The main types of botanical insecticides are described, together with different carrier systems and their potential uses. The botanical insecticides include those based on active principles isolated from plant extracts, as well as essential oils derived from certain plants. The advantages offered by the systems are highlighted, together with the main technological challenges that must be resolved prior to future implementation of the systems for agricultural pest control. The use of botanical insecticides associated with nanotechnology offers considerable potential for increasing agricultural productivity, while at the same time reducing impacts on the environment and human health.

  5. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  6. Waste Isolation Pilot Plant, Land Management Plan

    International Nuclear Information System (INIS)

    1993-01-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives

  7. Waste Isolation Pilot Plant, Land Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  8. Experimental evaluation of admission and disposition of artificial radionuclides including transuranium elements in agricultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozhakhanov, T.; Lukashenko, S. [Institute of radiation safety and ecology (Kazakhstan)

    2014-07-01

    Processes of radionuclides migration and transfer to agricultural plants are quite well developed worldwide, but the information on character of accumulation of {sup 241}Am and {sup 239+240}Pu transuranium radionuclides in agricultural plants is still fragmentary. Even in generalized materials of worldwide studies, IAEA guide, accumulation coefficient (AC) can have wide range of values (5-6 orders), no data exists on radionuclides' distribution in different organs of plants and they are given for joined groups of plants and types of soils. That is why the main aim of this work was to obtain basic quantitative parameters of radionuclides' migration in 'soil-plant' system, and firs of all- for transuranium elements.. In 2010 a series of experiments with agricultural plants was started at the territory of the former Semipalatinsk Test Site aimed to investigate entry of artificial radionuclides by crop products in natural climatic conditions. To conduct the experiment for study of coefficient of radionuclides' accumulation by agricultural corps, there was chosen a land spot at the STS territory, characterized by high concentration of radionuclides: {sup 241}Am - n*10{sup 4} Bq/kg, {sup 137}Cs - n*10{sup 3} Bq/kg, {sup 90}Sr - n*10{sup 3} Bq/kg and {sup 239+240}Pu- n*10{sup 5} Bq/kg. As objects of investigation, cultures, cultivated in Kazakhstan have been selected: wheat (Triticum vulgare), barley (Hordeum vulgare), oat (Avena sativa L.), water melon (Citrullus vulgaris), melon (Cucumis melo), potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), tomato (Solanum lycopersicum), sunflower (Helianthus cultus), onion (Allium cepa), carrot (Daucus carota), parsley(Petroselinum vulgare)and cabbage (Brassica oleracea). Investigated plants have been planted within the time limits, recommended for selected types of agricultural plants. Cropping system included simple agronomic and amelioration measures. Fertilizers were not

  9. The contribution of Slovenian biogas plants to the reduction of agricultural sector green house emissions

    Directory of Open Access Journals (Sweden)

    Romana MARINŠEK LOGAR

    2015-12-01

    Full Text Available Agriculture is a source of emissions of the greenhouse gas methane into the environment. These emissions can be reduced by appropriate storage of animal slurry and manure, with proper fertilization and processing of organic agricultural waste into biogas, where methane is captured and used as an energy source. Biogas is a renewable source of energy that is produced by microbial anaerobic digestion in biogas plants. As a substrate in biogas plants using different types of organic biomass such as animal manure and slurry, crop residues, spoilt silage, waste from food processing industry and biodegradable industrial and municipal waste. Biogas can be used to produce heat and electricity or purified to biomethane as a fuel for vehicles. Digestate can be used as a high-quality fertilizer. Biogas as a renewable energy source represents a replacement for fossil fuels, thus reducing greenhouse gas emissions from fossil sources. The system of financial supports for electricity produced from biogas is applied in Slovenia. There were 24 operating biogas plants in Slovenia in year 2014. Slovenian biogas plants currently produce the majority of biogas from energy crops. As only the minority of biogas is produced from animal excrements we will primarily support the development of agricultural microbiogas plants that will use animal excrements and organic waste biomass from agri-food sector as substrates.

  10. Current challenges and future perspectives of plant and agricultural biotechnology.

    Science.gov (United States)

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Anti-Inflammatory Activity of Compounds Isolated from Plants

    Directory of Open Access Journals (Sweden)

    R.M. Perez G.

    2001-01-01

    Full Text Available This review shows over 300 compounds isolated and identified from plants that previously demonstrated anti-inflammatory activity. They have been classified in appropriate chemical groups and data are reported on their pharmacological effects, mechanisms of action, and other properties.

  12. Decentralized power plants. Steam engines in an agriculture cooperative in Paraguay, plant extension in cooperation with the GTZ

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    About 1 cent are the running costs to generate 1 kWh - less than three years is the time for return of investment: tThat are the facts of steam engines using tungfruit shells as a fuel. The more oil prices are rising the more efficiently will such plants work. The way an agricultural cooperative in Paraquay changed their power supply is a good example for varying decentralized power plants - and how to save oil.

  13. Isolation and application of SO{sub X} and NO{sub X} resistant microalgae in biofixation of CO{sub 2} from thermoelectricity plants

    Energy Technology Data Exchange (ETDEWEB)

    Radmann, Elisangela Martha; Vieira Camerini, Felipe; Duarte Santos, Thaisa [Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande-RS 96201-900 (Brazil); Vieira Costa, Jorge Alberto, E-mail: dqmjorge@furg.br [Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande-RS 96201-900 (Brazil)

    2011-09-15

    Highlights: {yields} Microalgae can help reduce global warming. {yields} Synechococcus nidulans and Chlorella vulgaris were isolated in a thermoelectric plant. {yields} Microalgae were compared with Spirulina and Scenedesmus obliquus for CO{sub 2} fixation. {yields} Microalgae were exposed to CO{sub 2}, SO{sub 2} and NO, simulating a gas from coal combustion. {yields} C. vulgaris and Spirulina sp. showed 13.43% of maximum daily fixation. - Abstract: Microalgae have been studied for their potential use in foodstuffs, agriculture, in the treatment of wastewater and, in particular, in the reduction of atmospheric carbon dioxide, the main cause of global warming. Thermoelectricity plants account for 22% of CO{sub 2} emitted into the atmosphere and native microalgae may be more tolerant to the gases emitted from burning fossil fuels. In the study presented here, microalgae were isolated from ponds next to a Thermoelectricity Plant, located in southern Brazil, and identified as Synechococcus nidulans and Chlorella vulgaris. The isolated microalgae were grown and compared with two different strains of microalgae, Spirulina sp. and Scenedesmus obliquus, for CO{sub 2} biofixation. The microalgae were exposed to 12% CO{sub 2}, 60 ppm of SO{sub 2} and 100 ppm of NO, simulating a gas from coal combustion. The C. vulgaris had similar behavior to Spirulina sp., with 13.43% of maximum daily fixation. The microalgae with the greater fixing capacity were C. vulgaris and Spirulina sp. and these can be grown in electric power plants for CO{sub 2} biofixation of the coal combustion gas, which would help reduce global warming.

  14. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    Science.gov (United States)

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  15. Screening of endophytic plant growth-promoting bacteria isolated ...

    African Journals Online (AJOL)

    Probiotic bacteria, inhabiting the endosphere of plants, presents a major opportunity to develop cheap and eco-friendly alternatives to synthetic agrochemicals. Using standard microbiological procedures, culturable bacteria were isolated from the endosphere (root, stem and leaf) of two Nigerian rice varieties (Ofada and ITA ...

  16. Antifungal activity of plant growth-promoting rhizobacteria isolates ...

    African Journals Online (AJOL)

    Seven plant growth-promoting rhizobacterial (PGPR) strains were isolated from the rhizoplane and rhizosphere of wheat from four different sites of Pakistan. These strains were analyzed for production of indole acetic acid (IAA), phosphorous solublization capability and inhibition of Rhizoctonia solani on rye agar medium.

  17. Eavesdropping on plant-insect-microbe chemical communications in agricultural ecology: a virtual issue on semiochemicals

    Science.gov (United States)

    Studies of plant-insect interactions, and more recently the interactions among plants, insects, and microbes, have revealed that volatiles often facilitate insect movement, aggregation, and host location by herbivores, predators and parasitoids, all of which could be used to help protect agriculture...

  18. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  19. 3-D pneumatic seismic isolation of nuclear power plants

    International Nuclear Information System (INIS)

    Beliaev, V.S.; Vinogradov, V.V.; Kostarev, V.V.; Kuzmitchev, V.P.; Privalov, S.A.; Siro, V.A.; Krylova, I.N.; Dolgaya, A.A.; Uzdin, A.M.; Vasiliev, A.V.

    2002-01-01

    This paper describes the work carried at the Russian Federation Research Center of Fundamental Engineering (RCFE), in development of innovative pneumatic multicomponent low-frequency seismic isolation bearings for advanced nuclear power plants.This device incorporates both supporting spherical elements, which provide displacements in the horizontal direction, and pneumatic dampers with rubber diaphragms for displacement in the vertical direction. To decrease the relative displacements of the isolated object the system uses viscoelastic dampers. Damping devices had been specially elaborated for the reactor building seismic isolation system as a result of substantial advances in the design and operation of the HD-type hydrodampers, created at the CKTI VIBROSEISM. The procedures developed have been used for comparison of the test and computer data on model isolated steel structure (MISS) and isolated rigid mass (IRM) isolators produced by ENEA and KAERI. Most recent work has concentrated on the development of mathematical models of isolators and isolated nuclear structures. Force-deformation characteristics of the HDRB model had been calculated on the basis of a special method of non-linear elastic theory using the continual transformations method. (author)

  20. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    Science.gov (United States)

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    Science.gov (United States)

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  2. Isolation, Characterization, and Genetic Diversity of Ice Nucleation Active Bacteria on Various Plants

    Directory of Open Access Journals (Sweden)

    DIANA ELIZABETH WATURANGI

    2009-06-01

    Full Text Available Ice nucleation active (INA bacteria is a group of bacteria with the ability to catalyze the ice formation at temperature above -10 °C and causing frost injury in plants. Since, most of the literature on INA bacteria were from subtropical area, studies of INA bacteria from tropical area are needed. We sampled eight fruits and 36 leaves of 21 plant species, and then identified through biochemical and genetic analysis. INA bacteria were characterized for INA protein classification, pH stability, and optimization of heat endurance. We discovered 15 INA bacteria from seven plants species. Most of bacteria are oxidase and H2S negative, catalase and citrate positive, gram negative, and cocoid formed. These INA bacteria were classified in to three classes based on their freezing temperature. Most of the isolates were active in heat and pH stability assay. Some isolates were analysed for 16S rRNA gene. We observed that isolates from Morinda citrifolia shared 97% similiarity with Pseudomonas sp. Isolate from Piper betle shared 93% similarity with P. pseudoalcaligenes. Isolate from Carica papaya shared 94% similarity with Pseudomonas sp. While isolate from Fragaria vesca shared 90% similarity with Sphingomonas sp.

  3. Isolation, Characterization, and Genetic Diversity of Ice Nucleation Active Bacteria on Various Plants

    Directory of Open Access Journals (Sweden)

    DIANA ELIZABETH WATURANGI

    2009-06-01

    Full Text Available Ice nucleation active (INA bacteria is a group of bacteria with the ability to catalyze the ice formation at temperature above -10 oC and causing frost injury in plants. Since, most of the literature on INA bacteria were from subtropical area, studies of INA bacteria from tropical area are needed. We sampled eight fruits and 36 leaves of 21 plant species, and then identified through biochemical and genetic analysis. INA bacteria were characterized for INA protein classification, pH stability, and optimization of heat endurance. We discovered 15 INA bacteria from seven plants species. Most of bacteria are oxidase and H2S negative, catalase and citrate positive, gram negative, and cocoid formed. These INA bacteria were classified in to three classes based on their freezing temperature. Most of the isolates were active in heat and pH stability assay. Some isolates were analysed for 16S rRNA gene. We observed that isolates from Morinda citrifolia shared 97% similiarity with Pseudomonas sp. Isolate from Piper betle shared 93% similarity with P. pseudoalcaligenes. Isolate from Carica papaya shared 94% similarity with Pseudomonas sp. While isolate from Fragaria vesca shared 90% similarity with Sphingomonas sp.

  4. Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential.

    Science.gov (United States)

    Koeck, Daniela E; Zverlov, Vladimir V; Liebl, Wolfgang; Schwarz, Wolfgang H

    2014-07-01

    Clostridium thermocellum is among the most prevalent of known anaerobic cellulolytic bacteria. In this study, genetic and phenotypic variations among C. thermocellum strains isolated from different biogas plants were determined and different genotyping methods were evaluated on these isolates. At least two C. thermocellum strains were isolated independently from each of nine different biogas plants via enrichment on cellulose. Various DNA-based genotyping methods such as ribotyping, RAPD (Random Amplified Polymorphic DNA) and VNTR (Variable Number of Tandem Repeats) were applied to these isolates. One novel approach - the amplification of unknown target sequences between copies of a previously discovered Random Inserted Mobile Element (RIME) - was also tested. The genotyping method with the highest discriminatory power was found to be the amplification of the sequences between the insertion elements, where isolates from each biogas plant yielded a different band pattern. Cellulolytic potentials, optimal growth conditions and substrate spectra of all isolates were characterized to help identify phenotypic variations. Irrespective of the genotyping method used, the isolates from each individual biogas plant always exhibited identical patterns. This is suggestive of a single C. thermocellum strain exhibiting dominance in each biogas plant. The genotypic groups reflect the results of the physiological characterization of the isolates like substrate diversity and cellulase activity. Conversely, strains isolated across a range of biogas plants differed in their genotyping results and physiological properties. Both strains isolated from one biogas plant had the best specific cellulose-degrading properties and might therefore achieve superior substrate utilization yields in biogas fermenters. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Baloda, S.; Boye, Mette

    2001-01-01

    From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural so...... spp., and for bacitracin, erythromycin, penicillin and streptomycin for the B. cereus group. Variations in resistance levels were observed when soil before and after spread of animal waste was compared, indicating an effect from spread of animal waste.......From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil......, when possible, were collected. Soil from a well-characterized Danish farm soil (Hojbakkegaard) was collected for comparison. The Psudomonas spp. and B. cereus were chosen as representative for Gram-negative and Gram-positive indigenous soil bacteria to test the effect of spread of animal waste...

  6. Isolation and identification mould micoflora inhabiting plant leaf litter from Mount Lawu, Surakarta, Central Java

    Directory of Open Access Journals (Sweden)

    MUHAMMAD ILYAS

    2007-04-01

    Full Text Available A study on isolation and identification mould inhabiting plant leaf litter had been conducted. The objective of the study was to isolate and identify mould inhabiting plant leaf litter from Mount Lawu, Surakarta, Central Java. The mould isolation was based on washing and filtering with membrane isolation method. The result showed that 39 moulds generas with 55 species varians, one group identified in class level, and three groups of unidentified mould isolates had been isolated. Taxas distributions showed that there were endophyte and phytopatogen mould isolates had been isolated such as Fusarium, Pestalotiopsis, Phoma, and Coelomycetes. However, typical soil taxa and common saprobic fungi such as Aspergillus, Cunninghamella, Mucor, Paecilomyces, Penicillium, Rhizopus, and Trichoderma remain dominated the resulted isolates.

  7. Waste Isolation Pilot Plant 2001 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  8. Waste Isolation Pilot Plant 2001 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, Inc.

    2002-01-01

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment

  9. Using microbial community interactions within plant microbiomes to advance an evergreen agricultural revolution

    Science.gov (United States)

    Innovative plant breeding and technology transfer fostered the Green Revolution, which transformed agriculture worldwide by increasing grain yields in developing countries. The Green Revolution temporarily alleviated world hunger, but also reduced biodiversity, nutrient cycling, and carbon sequestr...

  10. Electronic isolators used in safety systems of US nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, J.R.

    1986-01-01

    An evaluation program has been conducted for electronic isolators used in safety systems of US nuclear power plants. As a result of the program, some recommendations are made for test methods that can be used to ensure that isolation devices are being qualified adequately to satisfy IEEE-279 requirements. These recommendations are based on studies made on National Standards; conversations held with utility personnel, Nuclear Steam System Suppliers, Architect Engineers, and the isolator vendor staff; and analysis of actual tests performed on sample isolators

  11. Agricultural use of municipal wastewater treatment plant ...

    Science.gov (United States)

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  12. Fungi isolated from the rhizosphere of spring cruciferous plants

    Directory of Open Access Journals (Sweden)

    Barbara Majchrzak

    2013-12-01

    Full Text Available Fungal communities isolated from the rhizosphere of spring cruciferous plants were analysed in the study. It was found that the rhizosphere of crucifers was colonized primarily by fungi of the order Mucorales and of the genus Fusarium. Members of the genus Fusarium dominated in the rhizoplane. The roots of cruciferous plants secrete glucosinolates – secondary metabolites known for their antifungal properties, thus affecting the communities of soil-dwelling fungi.

  13. Biotechnology for Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal

    Directory of Open Access Journals (Sweden)

    Bal Krishna Joshi

    2017-05-01

    Full Text Available Agricultural biodiversity is the basis of human life and food security. Nepal with 577 cultivated species possesses huge diversity at varietal as well as landrace levels. In most agricultural crops the rapid genetic erosion due to several reasons is a common phenomenon. Thus, considering the importance of agricultural biodiversity declared by Convention on Biological Diversity for sustainable food production, National Agriculture Genetic Resources Center (NAGRC has been established for conservation and sustainable utilization of agricultural biodiversity. This paper thus delineates the application of biotechnological tools adopted by NAGRC for effective and efficient conservation and use of agricultural plant genetic resources (APGRs. Among the adopted technologies, tissue bank using shoot tip culture of vegetatively propagating and recalcitrant crops eg potato, sugarcane, banana, sweet potato, etc are in function. Under the molecular marker technology, currently random amplified polymorphic DNA (RAPD and simple sequence repeat (SSR markers have been used for developing DNA profiles, identifying duplicates in the collections, assessing genetic diversity and screening accessions against economic traits. DNA bank has also been created for storing DNA of indigenous crops and these DNA can be accessed for research and study. Genotypic database has been developed for chayote, finger millet, wheat and maize for identification and selection of the accessions.

  14. Bacterial microflora characteristics of plant samples from contaminated by radionuclides Chernobyl area

    International Nuclear Information System (INIS)

    Zelena, Pavlina; Shevchenko, Julia; Molozhava, Olha; Berezhna, Valentina; Shylina, Julia; Guscha, Mykola

    2015-01-01

    Two serious nuclear accidents during the last quarter century (Chernobyl, 1986 and Fukushima, 2011) contaminated large agricultural areas with radioactivity. In radioactive areas all components of ecosystems, including microorganisms, exposed to ionizing radiation. The aim of this study was isolation and identification of dominant bacteria from plant samples, which were collected from the area of radioactive contamination and to compare it with bacteria isolated from plant collected in a non-radioactive area by their qualitative composition, physiological, biochemical and pathogenic characteristics. Bacteria were isolated from plant samples grown in a radioactive field located 5 km from the Chernobyl Nuclear Power Plant (CNPP). Physiological, biochemical and pathogenic properties were characterized from nine pure bacterial isolates. The common features of bacteria from radionuclide contaminated plant samples were increased synthesis of mucus and capsule creation. It was found that all selected isolates produce catalase, therefore, bacteria were resistant to oxidative stress. The increased pathogenicity of most bacteria isolated from the plant grown in radioactive Chernobyl area compare to the isolates from the plant without radioactive contamination was established from the phytopathogenic tests. Consequently, bacterial isolates from the plants grown in the radioactive environment tends to dominate enterobacteria similar to agents of opportunistic infections. (author)

  15. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture.

    Science.gov (United States)

    Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G; Romero-Gomez, Sergio de J; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V; Alvarez-Arquieta, Luz de L; Torres-Pacheco, Irineo

    2017-01-01

    Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called "elicitors" that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed.

  16. Transportation of part supply improvement in agricultural machinery assembly plant

    Science.gov (United States)

    Saysaman, Anusit; Chutima, Parames

    2018-02-01

    This research focused on the problem caused by the transportation of part supply in agricultural machinery assembly plant in Thailand, which is one of the processes that are critical to the whole production process. If poorly managed, it will affect transportation of part supply, the emergence of sink cost, quality problems, and the ability to respond to the needs of the customers in time. Since the competition in the agricultural machinery market is more intense, the efficiency of part transportation process has to be improved. In this study, the process of transporting parts of the plant was studied and it was found that the efficiency of the process of transporting parts from the sub assembly line to its main assembly line was 83%. The approach to the performance improvement is done by using the Lean tool to limit wastes based on the ECRS principle and applying pull production system by changing the transportation method to operate as milkrun for transportation of parts to synchronize with the part demands of the main assembly line. After the transportation of parts from sub-assembly line to the main assembly line was improved, the efficiency raised to 98% and transportation process cost was saved to 540,000 Baht per year.

  17. Ecological prevalence, genetic diversity and epidemiological aspects of Salmonella isolated from tomato agricultural regions of the Virginia Eastern Shore

    Directory of Open Access Journals (Sweden)

    Rebecca L. Bell

    2015-05-01

    Full Text Available Virginia is the third largest producer of fresh-market tomatoes in the United States. Tomatoes grown along the eastern shore of Virginia are implicated almost yearly in Salmonella illnesses. Traceback implicates contamination occurring in the pre-harvest environment. To get a better understanding of the ecological niches of Salmonella in the tomato agricultural environment, a two-year study was undertaken at a regional agricultural research farm in Virginia. Environmental samples, including tomato (fruit, blossoms and leaves, irrigation water, surface water and sediment, were collected over the growing season. These samples were analyzed for the presence of Salmonella using modified FDA-BAM methods. Molecular assays were used to screen the samples. Over 1500 samples were tested. Seventy-five samples tested positive for Salmonella yielding over 230 isolates. The most commonly isolated serovars were S. Newport and S. Javiana with pulsed-field gel electrophoresis yielding 39 different patterns. Genetic diversity was further underscored among many other serotypes, which showed multiple PFGE subtypes. Whole genome sequencing of several S. Newport isolates collected in 2010 compared to clinical isolates associated with tomato consumption showed very few single nucleotide differences between environmental isolates and clinical isolates suggesting a source link to Salmonella contaminated tomatoes. Nearly all isolates collected during two growing seasons of surveillance were obtained from surface water and sediment sources pointing to these sites as long-term reservoirs for persistent and endemic contamination of this environment.

  18. Complete genome sequences of three tomato spotted wilt virus isolates from tomato and pepper plants in Korea and their phylogenetic relationship to other TSWV isolates.

    Science.gov (United States)

    Lee, Jong-Seung; Cho, Won Kyong; Kim, Mi-Kyeong; Kwak, Hae-Ryun; Choi, Hong-Soo; Kim, Kook-Hyung

    2011-04-01

    Tomato spotted wilt virus (TSWV) infects numerous host plants and has three genome segments, called L, M and S. Here, we report the complete genome sequences of three Korean TSWV isolates (TSWV-1 to -3) infecting tomato and pepper plants. Although the nucleotide sequence of TSWV-1 genome isolated from tomato is very different from those of TSWV-2 and TSWV-3 isolated from pepper, the deduced amino acid sequences of the five TSWV genes are highly conserved among all three TSWV isolates. In phylogenetic analysis, deduced RdRp protein sequences of TSWV-2 and TSWV-3 were clustered together with two previously reported isolates from Japan and Korea, while TSWV-1 grouped together with a Hawaiian isolate. A phylogenetic tree based on N protein sequences, however, revealed four distinct groups of TSWV isolates, and all three Korean isolates belonged to group II, together with many other isolates, mostly from Europe and Asia. Interestingly, most American isolates grouped together as group I. Together, these results suggested that these newly identified TSWV isolates might have originated from an Asian ancestor and undergone divergence upon infecting different host plants.

  19. Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L. under soilless agricultural systems

    Directory of Open Access Journals (Sweden)

    Subhrajit Saha

    2016-12-01

    Full Text Available Traditional agricultural systems are challenged by globally declining resources resulting from climate change and growing population. Alternative agricultural practices such as aquaponics (includes crop plant and aquatic species and hydroponics (includes crop plant only have the potential to generate high yield per unit area using limited land, water, and no soil. A soilless agricultural study was conducted at the Georgia Southern University, Statesboro, GA, USA from August to November, 2015. The growth, yield, quality, and nutrition of basil (Ocimum basilicum L. cultivar Aroma 2, were compared between aquaponic and hydroponic systems using crayfish (Procambarus spp. as the aquatic species. Non-circulating floating raft systems were designed using 95 L polyethylene tanks. Equal amounts of start-up fertilizer dose were applied to both systems. The objective was to understand how the additional nutritional dynamics associated with crayfish influence the basil crop. Both fresh and dry basil plant weights were collected after harvest, followed by leaf nutrient analysis. Leaf chlorophyll content, water pH, nitrogen and temperature were measured periodically. Aquaponic basil (AqB showed 14%, 56%, and 65% more height, fresh weight, and dry weight, respectively, compared to hydroponic basil (HyB. It is logical to assume that crayfish waste (excreta and unconsumed feed has supplied the additional nutrients to AqB, resulting in greater growth and yield. The chlorophyll content (plant quality or leaf nutrients, however, did not differ between AqB and HyB. Further research is needed to investigate aquaponic crayfish yield, overall nutritional dynamics, cost-benefit ratio, and other plant characteristics under soilless systems.

  20. Draft Genome Sequences of 17 Isolates of the Plant Pathogenic Bacterium Dickeya

    OpenAIRE

    Pritchard, Leighton; Humphris, Sonia; Saddler, Gerry S.; Elphinstone, John G.; Pirhonen, Minna; Toth, Ian K.

    2013-01-01

    Dickeya (formerly Erwinia chrysanthemi) species cause diseases on a wide range of crops and ornamental plants worldwide. Here we present the draft sequences of 17 Dickeya isolates spanning four Dickeya species, including five isolates that are currently unassigned to a species.

  1. Draft genome sequences of 17 isolates of the plant pathogenic bacterium dickeya.

    Science.gov (United States)

    Pritchard, Leighton; Humphris, Sonia; Saddler, Gerry S; Elphinstone, John G; Pirhonen, Minna; Toth, Ian K

    2013-11-21

    Dickeya (formerly Erwinia chrysanthemi) species cause diseases on a wide range of crops and ornamental plants worldwide. Here we present the draft sequences of 17 Dickeya isolates spanning four Dickeya species, including five isolates that are currently unassigned to a species.

  2. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination

    Directory of Open Access Journals (Sweden)

    Rhea eLumactud

    2016-05-01

    Full Text Available The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except Solidago canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  3. Technical development to remove radionuclides from agricultural soils by plants (Joint research)

    International Nuclear Information System (INIS)

    Yamada, Satoshi; Sakoda, Akihiro; Ishimori, Yu

    2012-07-01

    Tottori University and Japan Atomic Energy Agency started a joint study to develop an environmental remediation technique for agricultural soil. Nine plants were water-cultured and examined for screening. A few were selected as candidates for demonstrations in fields. Preselected plants were mainly halophytes that can specifically absorb more Na than K, and others like sunflower demonstrated for domestic large-scale tests. Easily cultivated and harvested plants without harmful effect on new agriculture were also considered. Seedings prepared were first grown for a certain term. Additive-free, 133 Cs and 88 Sr groups, which are both stable isotopes, were then made. Cs (CsCl) and Sr (SrCl 2 ·6H 2 O) contents in cultures were 1.6836 mg/L (0.01 mM) and 266.62 mg/L (1 mM), respectively. Stems, leaves and roots were harvested, in principle, two weeks after the addition, to measure K, Ca, Mg, Sr and Cs concentrations in them. Considering the examination period, a content rate (i.e. element amount per dry sample weight) was regarded as an index. It was concluded that New Zealand spinach and ice plant were most adequate for removing contaminants from surface soil. The two accumulate Cs and Sr mostly in the shoots, are prostrate, and spread the roots shallowly. For valid application, growth-phase dependences of absorption and distribution, growth property and root distribution should be elucidated. Plants that meet the present purpose are ones that specifically absorb object substances, or that show normal absorption but high removal rate per area due to the large bulk size. The latter view also needs to be evaluated when the field test is conducted, since developing stages of the plants used in the present work were not correspondent. Finally, the application study plan was developed based on the screening test results. (author)

  4. Waste Isolation Pilot Plant Technical Assessment Team Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-17

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  5. Characterization of Escherichia coli Isolates from an Urban Lake Receiving Water from a Wastewater Treatment Plant in Mexico City: Fecal Pollution and Antibiotic Resistance.

    Science.gov (United States)

    Rosas, Irma; Salinas, Eva; Martínez, Leticia; Cruz-Córdova, Ariadnna; González-Pedrajo, Bertha; Espinosa, Norma; Amábile-Cuevas, Carlos F

    2015-10-01

    The presence of enteric bacteria in water bodies is a cause of public health concerns, either by directly causing water- and food-borne diseases, or acting as reservoirs for antibiotic resistance determinants. Water is used for crop irrigation; and sediments and aquatic plants are used as fertilizing supplements and soil conditioners. In this work, the bacterial load of several micro-environments of the urban lake of Xochimilco, in Mexico City, was characterized. We found a differential distribution of enteric bacteria between the water column, sediment, and the rhizoplane of aquatic plants, with human fecal bacteria concentrating in the sediment, pointing to the need to assess such bacterial load for each micro-environment, for regulatory agricultural purposes, instead of only the one of the water, as is currently done. Resistance to tetracycline, ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole was common among Escherichia coli isolates, but was also differentially distributed, being again higher in sediment isolates. A distinct distribution of chloramphenicol minimum inhibitory concentrations (MIC) among these isolates suggests the presence of a local selective pressure favoring lower MICs than those of isolates from treated water. Fecal bacteria of human origin, living in water bodies along with their antibiotic resistance genes, could be much more common than typically considered, and pose a higher health risk, if assessments are only made on the water column of such bodies.

  6. Performance Based Failure Criteria of the Base Isolation System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil

    2013-01-01

    The realistic approach to evaluate the failure state of the base isolation system is necessary. From this point of view, several concerns are reviewed and discussed in this study. This is the preliminary study for the performance based risk assessment of a base isolated nuclear power plant. The items to evaluate the capacity and response of an individual base isolator and a base isolation system were briefly outlined. However, the methodology to evaluate the realistic fragility of a base isolation system still needs to be specified. For the quantification of the seismic risk for a nuclear power plant structure, the failure probabilities of the structural component for the various seismic intensity levels need to be calculated. The failure probability is evaluated as the probability when the seismic response of a structure exceeds the failure criteria. Accordingly, the failure mode of the structural system caused by an earthquake vibration should be defined first. The type of a base isolator appropriate for a nuclear power plant structure is regarded as an elastometric rubber bearing with a lead core. The failure limit of the lead-rubber bearing (LRB) is not easy to be predicted because of its high nonlinearity and a complex loading condition by an earthquake excitation. Furthermore, the failure mode of the LRB system installed below the nuclear island cannot be simply determined because the basemat can be sufficiently supported if the number of damaged isolator is not much

  7. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape.

    Science.gov (United States)

    Egan, J Franklin; Graham, Ian M; Mortensen, David A

    2014-03-01

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming systems, including the clearing of seminatural habitat fragments, confound the influence of herbicides. The present study introduces a new approach to evaluate the impacts of herbicide pollution on plant communities at landscape or regional scales. If herbicides are in fact a key factor shaping agricultural plant diversity, one would expect to see the signal of past herbicide impacts in the current plant community composition of an intensively farmed region, with common, successful species more tolerant to widely used herbicides than rare or declining species. Data from an extensive field survey of plant diversity in Lancaster County, Pennsylvania, USA, were compared with herbicide bioassay experiments in a greenhouse to test the hypothesis that common species possess higher herbicide tolerances than rare species. Five congeneric pairs of rare and common species were treated with 3 commonly used herbicide modes of action in bioassay experiments, and few significant differences were found in the tolerances of rare species relative to common species. These preliminary results suggest that other factors beyond herbicide exposure may be more important in shaping the distribution and abundance of plant species diversity across an agricultural landscape. © 2014 SETAC.

  8. WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants

    National Research Council Canada - National Science Library

    Simon, James E; Fong, Harry H.S; Regalado, Jacinto

    2003-01-01

    ... Consultation on Good Agricultural and Field Collection Practices for Medicinal Plants, held in Geneva, Switzerland in July 2003 to review the draft guidelines (see Annex 6), and to the experts who participated in the WHO Working Group Meeting held in Geneva, Switzerland in October 2003, to review and revise the draft guidelines. Acknowledg...

  9. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    Science.gov (United States)

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  10. [Fungi isolated from diseased medicinal plants].

    Science.gov (United States)

    Sato, T; Matsuhashi, M; Iida, O

    1992-01-01

    One hundred and forty-four fungal isolates were obtained from diseased Paeonia albiflora Pall. var. trichocarpa Bung., Astragalus membranaceus Bung., Lithospermum erythrorhizon Sieb. et Zucc., Ledebouriella seseloides Wolff and Bupleurum falcatum L. which were collected in the test field of Tsukuba Medicinal Plant Research Station, National Institute of Hygienic Sciences. Most of them were identified into 15 genera containing 8 species. Fungal species presumed to be pathogens of the host plants were as follows: Cladosporium paeoniae, Pestalotia paeoniicola, Glomerella cingulata, Hainesia lythri, Guignardia sp. and Alternaria sp. from P. albiflora, Fusarium spp., Rhizoctonia spp. and Neocosmospora vasinfecta from A. membranaceus, Colletotrichum gloeosporioides from L. erythrorhizon, Rhizoctonia sp., Fusarium spp., Phoma sp. and Pyrenochaeta sp. from L. seseloides, and Fusarium sp., Alternaria alternata, Phyllosticta sp., Phoma sp., Phomopsis sp. and C. gloeosporioides from B. falcatum. Roots of B. falcatum were found to be parasitized by Meloidogyne sp.

  11. Applicability of base-isolation R ampersand D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.; Chang, Y.W.

    1990-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. The question, therefore, is to what extent can research and development (R ampersand D) for non-nuclear use be used to provide technological data needed for seismic isolation of a nuclear power plant. This question, of course is not unique to seismic isolation. Virtually every structural component, system, or piece of equipment used in nuclear power plants is also used in non- nuclear facilities. Experience shows that considerable effort is needed to adapt conventional technology into a nuclear power plant. Usually, more thorough analysis is required, material and fabrication quality-control requirements are more stringent as are controls on field installation. In addition, increased emphasis on maintainability and inservice inspection throughout the life of the plant is generally required to gain acceptance in nuclear power plant application. This paper reviews the R ampersand D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R ampersand D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R ampersand D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. 2 refs

  12. Model-based fault detection and isolation of a PWR nuclear power plant using neural networks

    International Nuclear Information System (INIS)

    Far, R.R.; Davilu, H.; Lucas, C.

    2008-01-01

    The proper and timely fault detection and isolation of industrial plant is of premier importance to guarantee the safe and reliable operation of industrial plants. The paper presents application of a neural networks-based scheme for fault detection and isolation, for the pressurizer of a PWR nuclear power plant. The scheme is constituted by 2 components: residual generation and fault isolation. The first component generates residuals via the discrepancy between measurements coming from the plant and a nominal model. The neutral network estimator is trained with healthy data collected from a full-scale simulator. For the second component detection thresholds are used to encode the residuals as bipolar vectors which represent fault patterns. These patterns are stored in an associative memory based on a recurrent neutral network. The proposed fault diagnosis tool is evaluated on-line via a full-scale simulator detected and isolate the main faults appearing in the pressurizer of a PWR. (orig.)

  13. Plant protection under conditions of radioactive contamination of agricultural lands

    International Nuclear Information System (INIS)

    Filipas, A.S.; Oulianenko, L.N.; Pimenov, E.P.

    1995-01-01

    Increasing influence of anthropogenic contaminants as well as substantiated risk of the action of ionizing radiation on agroecosystems suggest the necessity of studying both the state of separate components of cenosis and search for methods on retention of ecosystem stability as a whole. In this case it should be taken into account that by retention of resistance of living organisms to the action of stress agents not only genetically conditioned potential but induction of protective reactions at the expense of ecogene action is of deciding significance as well. Protection of agricultural plants on the territories subjected to radioactive contamination resulting from the ChNPP accident brings attention of research works to a series of problems, the main one being the minimization of pesticide use by the total ecologization of technological processes, in plant growing. But an ordinary discontinuance of conducting protective chemical measures leads to growth in the number of harmful organisms in crop sowings and as a consequence an increase of crop loss and decrease of its quality. It is possible to solve this problem by introduction of measures increasing the resistance of agricultural plants to the action of unfavorable factors of environment. Application of biologically active substances (BAS) of natural and synthetic nature for incrustation of seeds fits into these methods. For the territories with increased content of radionuclides and especially by their rehabilitation the methods of preventive treatments directed to retarding the development of harmful organisms in crop sowings and excluding subsequent technological operations on chemical protection of sowings takes on special significance as it is directly connected with the problem of radiation burden on workers of agroindustrial complex

  14. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants

    Directory of Open Access Journals (Sweden)

    Chirlei Glienke-Blanco

    2002-01-01

    Full Text Available During some phases of of their life-cycle endophytic fungi colonize plants asymptomatically being found most frequently inside the aerial part of plant tissues. After surface disinfection of apparently healthy leaves from three varieties of mandarin orange and one tangor, and after incubation on appropriate culture medium, 407 fungal isolates were obtained, giving a total infection frequency of 81%. No fungal growth was observed from disinfected seeds, indicating that fungi are probably not transmitted via seeds. Of the fungal isolates, 27% belonged to the genus Guignardia, with 12 isolates being identified as Guignardia citricarpa Kiely, which is described as a citrus pathogen. The isolates were variable in respect to the presence of sexual structures and growth rates. Most of the isolates produces mature asci, supporting the hypothesis that they are nonpathogenic endophytes, which recently were identified as G. mangiferae. High intraspecific genetic variability (an average similarity coefficient of 0.6 was detected using random amplified polymorphic DNA (RAPD markers generated by seven different primers. The highest similarity coefficient (0.9 was between isolates P15 and M86 and the smallest (0.22 between isolates P15 and C145. These results did not allow us to establish an association between genetic similarity of the fungal isolates and the citrus varieties from which they were obtained.

  15. Conserving a geographically isolated Charaxes butterfly in response to habitat fragmentation and invasive alien plants

    Directory of Open Access Journals (Sweden)

    Casparus J. Crous

    2015-08-01

    Full Text Available In South Africa, much of the forest biome is vulnerable to human-induced disturbance. The forest-dwelling butterfly Charaxes xiphares occidentalis is naturally confined to a small forest region in the south-western Cape, South Africa. Most of the remaining habitat of this species is within a fragmented agricultural matrix. Furthermore, this geographical area is also heavily invaded by alien plants, especially Acacia mearnsii. We investigated how C. x. occidentalis behaviourally responds to different habitat conditions in the landscape. We were particularly interested in touring, patrolling and settling behaviour as a conservation proxy for preference of a certain habitat configuration in this agricultural matrix. Remnant forest patches in the agricultural matrix showed fewer behavioural incidents than in a reference protected area. Moreover, dense stands of A. mearnsii negatively influenced the incidence and settling pattern of this butterfly across the landscape, with fewer tree settlings associated with more heavily invaded forest patches. This settling pattern was predominantly seen in female butterflies. We also identified specific trees that were settled upon for longer periods by C. x. occidentalis. Distance to a neighbouring patch and patch size influenced behavioural incidences, suggesting that further patch degradation and isolation could be detrimental to this butterfly. Conservation implications: We highlight the importance of clearing invasive tree species from vulnerable forest ecosystems and identify key tree species to consider in habitat conservation and rehabilitation programmes for this butterfly. We also suggest retaining as much intact natural forest as possible. This information should be integrated in local biodiversity management plans.

  16. Extreme earthquake response of nuclear power plants isolated using sliding bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manish, E-mail: mkumar@iitgn.ac.in [Department of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355 (India); Whittaker, Andrew S.; Constantinou, Michael C. [Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260 (United States)

    2017-05-15

    Highlights: • Response-history analysis of a nuclear power plant (NPP) isolated using sliding bearings. • Two models of the NPP, five friction models and four seismic hazard levels considered. • Isolation system displacement can be obtained using a macro NPP model subjected to only horizontal ground motions. • Temperature dependence of friction should be considered in isolation-system displacement calculations. • The effect of friction model on floor spectral ordinates is rather small, especially near the basemat. - Abstract: Horizontal seismic isolation is a viable approach to mitigate risk to structures, systems and components (SSCs) in nuclear power plants (NPPs) under extreme ground shaking. This paper presents a study on an NPP seismically isolated using single concave Friction Pendulum™ (FP) bearings subjected to ground motions representing seismic hazard at two US sites: Diablo Canyon and Vogtle. Two models of the NPP, five models to describe friction at the sliding surface of the FP bearings, and four levels of ground shaking are considered for response-history analysis, which provide insight into the influence of 1) the required level of detail of an NPP model, 2) the vertical component of ground motion on response of isolated NPPs, and 3) the pressure-, temperature- and/or velocity-dependencies of the coefficient of friction, on the response of an isolated NPP. The isolation-system displacement of an NPP can be estimated using a macro model subjected to only the two orthogonal horizontal components of ground motion. The variation of the coefficient of friction with temperature at the sliding surface during earthquake shaking should be accounted for in the calculation of isolation-system displacements, particularly when the shaking intensity is high; pressure and velocity dependencies are not important. In-structure floor spectra should be computed using a detailed three-dimensional model of an isolated NPP subjected to all three components of

  17. Determinants and impacts of public agricultural research in Japan: Product level evidence on agricultural Kosetsushi

    Science.gov (United States)

    Fukugawa, Nobuya

    2017-12-01

    The public sector is an important source of agricultural research as the agricultural sector in many countries consists of a number of individual farmers who have difficulty in bearing the cost of research and development. Public institutes for testing and research called Kosetsushi help agriculture and manufacturing improve labor productivity through technology transfer activities, whereby constituting an important component of regional innovation systems in Japan. This study establishes panel data of agricultural Kosetsushi and examines whether their research activities are responsive to local needs and which type of research effort is conducive to the promotion of agricultural product innovations. Estimation results reveal variations across plants in the impacts of agricultural clusters on research on the plant conducted by Kosetsushi located in the cluster. A positive impact is observed only for vegetable while negative or statistically insignificant relationships are found for rice, fruit, and flower. The impact of research on plant breeding on agricultural product innovations also varies across plants. Policy implications of the major findings are discussed.

  18. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  19. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy

    Directory of Open Access Journals (Sweden)

    Fang eCheng

    2015-11-01

    Full Text Available Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment or negative effects (e.g., autotoxicity, soil sickness, or biological invasion. To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory / inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1 Description of management practices related to allelopathy and allelochemicals in agriculture. (2 Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3 Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4 Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on

  20. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    International Nuclear Information System (INIS)

    Dahal, B.M.; Fuerhacker, M.; Mentler, A.; Karki, K.B.; Shrestha, R.R.; Blum, W.E.H.

    2008-01-01

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from -1 where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg -1 . The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg -1 ) > onion bulb (0.45 mg As kg -1 ) > cauliflower (0.33 mg As kg -1 ) > rice (0.18 mg As kg -1 ) > brinjal (0.09 mg As kg -1 ) > potato ( -1 ). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water

  1. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India.

    Science.gov (United States)

    Dutta, Jintu; Thakur, Debajit

    2017-01-01

    Plant growth promoting rhizobacteria (PGPR) are studied in different agricultural crops but the interaction of PGPR of tea crop is not yet studied well. In the present study, the indigenous tea rhizobacteria were isolated from seven tea estates of Darjeeling located in West Bengal, India. A total of 150 rhizobacterial isolates were screened for antagonistic activity against six different fungal pathogens i.e. Nigrospora sphaerica (KJ767520), Pestalotiopsis theae (ITCC 6599), Curvularia eragostidis (ITCC 6429), Glomerella cingulata (MTCC 2033), Rhizoctonia Solani (MTCC 4633) and Fusarium oxysporum (MTCC 284), out of which 48 isolates were antagonist to at least one fungal pathogen used. These 48 isolates exhibited multifarious antifungal properties like the production of siderophore, chitinase, protease and cellulase and also plant growth promoting (PGP) traits like IAA production, phosphate solubilization, ammonia and ACC deaminase production. Amplified ribosomal DNA restriction analysis (ARDRA) and BOX-PCR analysis based genotyping clustered the isolates into different groups. Finally, four isolates were selected for plant growth promotion study in two tea commercial cultivars TV-1 and Teenali-17 in nursery conditions. The plant growth promotion study showed that the inoculation of consortia of these four PGPR isolates significantly increased the growth of tea plant in nursery conditions. Thus this study underlines the commercial potential of these selected PGPR isolates for sustainable tea cultivation.

  2. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India.

    Directory of Open Access Journals (Sweden)

    Jintu Dutta

    Full Text Available Plant growth promoting rhizobacteria (PGPR are studied in different agricultural crops but the interaction of PGPR of tea crop is not yet studied well. In the present study, the indigenous tea rhizobacteria were isolated from seven tea estates of Darjeeling located in West Bengal, India. A total of 150 rhizobacterial isolates were screened for antagonistic activity against six different fungal pathogens i.e. Nigrospora sphaerica (KJ767520, Pestalotiopsis theae (ITCC 6599, Curvularia eragostidis (ITCC 6429, Glomerella cingulata (MTCC 2033, Rhizoctonia Solani (MTCC 4633 and Fusarium oxysporum (MTCC 284, out of which 48 isolates were antagonist to at least one fungal pathogen used. These 48 isolates exhibited multifarious antifungal properties like the production of siderophore, chitinase, protease and cellulase and also plant growth promoting (PGP traits like IAA production, phosphate solubilization, ammonia and ACC deaminase production. Amplified ribosomal DNA restriction analysis (ARDRA and BOX-PCR analysis based genotyping clustered the isolates into different groups. Finally, four isolates were selected for plant growth promotion study in two tea commercial cultivars TV-1 and Teenali-17 in nursery conditions. The plant growth promotion study showed that the inoculation of consortia of these four PGPR isolates significantly increased the growth of tea plant in nursery conditions. Thus this study underlines the commercial potential of these selected PGPR isolates for sustainable tea cultivation.

  3. Pulsed-Field Gel Electrophoresis characterization of Listeria monocytogenes isolates from cheese manufacturing plants in São Paulo, Brazil.

    Science.gov (United States)

    Barancelli, Giovana V; Camargo, Tarsila M; Gagliardi, Natália G; Porto, Ernani; Souza, Roberto A; Campioni, Fabio; Falcão, Juliana P; Hofer, Ernesto; Cruz, Adriano G; Oliveira, Carlos A F

    2014-03-03

    This study aimed to evaluate the occurrence of Listeria monocytogenes in cheese and in the environment of three small-scale dairy plants (A, B, C) located in the Northern region state of São Paulo, Brazil, and to characterize the isolates using conventional serotyping and PFGE. A total of 393 samples were collected and analyzed from October 2008 to September 2009. From these, 136 came from dairy plant A, where only L. seeligeri was isolated. In dairy plant B, 136 samples were analyzed, and L. innocua, L. seeligeri and L. welshimeri were isolated together with L. monocytogenes. In dairy plant C, 121 samples were analyzed, and L. monocytogenes and L. innocua were isolated. Cheese from dairy plants B and C were contaminated with Listeria spp, with L. innocua being found in Minas frescal cheese from both dairy plants, and L. innocua and L. monocytogenes in Prato cheese from dairy plant C. A total of 85 L. monocytogenes isolates were classified in 3 serotypes: 1/2b, 1/2c, and 4b, with predominance of serotype 4b in both dairy plants. The 85 isolates found in the dairy plants were characterized by genomic macrorestriction using ApaI and AscI with Pulsed Field Gel Electrophoresis (PFGE). Macrorestriction yielded 30 different pulsotypes. The presence of indistinguishable profiles repeatedly isolated during a 12-month period indicated the persistence of L. monocytogenes in dairy plants B and C, which were more than 100 km away from each other. Brine used in dairy plant C contained more than one L. monocytogenes lineage. The routes of contamination were identified in plants B and C, and highlighted the importance of using molecular techniques and serotyping to track L. monocytogenes sources of contamination, distribution, and routes of contamination in dairy plants, and to develop improved control strategies for L. monocytogenes in dairy plants and dairy products. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Does extensive agriculture influence the concentration of trace elements in the aquatic plant Veronica anagallis-aquatica?

    Science.gov (United States)

    Kroflič, Ana; Germ, Mateja; Golob, Aleksandra; Stibilj, Vekoslava

    2018-04-15

    The present study describes the influence of extensive agriculture on the concentrations of As, Cr, Cu, Cd, Se, Pb and Zn in sediments and in the aquatic plant Veronica anagallis-aquatica. The investigation, spanning 4 years, was conducted on three watercourses in Slovenia (Pšata, Lipsenjščica and Žerovniščica) flowing through agricultural areas. The different sampling sites were chosen on the basis of the presence of different activities in these regions: dairy farming, stock raising and extensive agriculture. The concentrations of the selected elements in sediments and V. anagallis-aquatica were below the literature background values. The distribution of the selected elements among different plant parts (roots, stems and leaves) were also investigated. The majority of the studied elements, with the exception of Zn and Cu, were accumulated mainly in root tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    Science.gov (United States)

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. © The Author(s) 2016.

  6. Assessing health in agriculture--towards a common research framework for soils, plants, animals, humans and ecosystems.

    Science.gov (United States)

    Vieweger, Anja; Döring, Thomas F

    2015-02-01

    In agriculture and food systems, health-related research includes a vast diversity of topics. Nutritional, toxicological, pharmacological, epidemiological, behavioural, sociological, economic and political methods are used to study health in the five domains of soils, plants, livestock, humans and ecosystems. An idea developed in the early founding days of organic agriculture stated that the health of all domains is one and indivisible. Here we show that recent research reveals the existence and complex nature of such health links among domains. However, studies of health aspects in agriculture are often separated by disciplinary boundaries. This restrains the understanding of health in agricultural systems. Therefore we explore the opportunities and limitations of bringing perspectives together from the different domains. We review current approaches to define and assess health in agricultural contexts, comparing the state of the art of commonly used approaches and bringing together the presently disconnected debates in soil science, plant science, veterinary science and human medicine. Based on a qualitative literature analysis, we suggest that many health criteria fall into two paradigms: (1) the Growth Paradigm, where terms are primarily oriented towards continued growth; (2) the Boundary Paradigm, where terms focus on maintaining or coming back to a status quo, recognising system boundaries. Scientific health assessments in agricultural and food systems need to be explicit in terms of their position on the continuum between Growth Paradigm and Boundary Paradigm. Finally, we identify areas and concepts for a future direction of health assessment and research in agricultural and food systems. © 2014 Society of Chemical Industry.

  7. Isolation and quantification of pinitol in Argyrolobium roseum plant, by 1H-NMR

    Directory of Open Access Journals (Sweden)

    Neha Sharma

    2016-01-01

    Full Text Available Chemical investigations on ethanolic extract of Argyrolobium roseum led to the isolation of Pinitol as the major constituent of the plant. Pinitol is chemically known as 3-O-methyl-D-Chiro-inositol and has been found to possess anti-diabetic activity. It helps in the regeneration of beta cells, present in the areas of the pancreas called as islets – of Langerhans. These cells make and release insulin, a hormone which controls the level of glucose in the blood. Pinitol was isolated from the ethanolic extract of the plant and a sensitive & reliable method, based on Proton Nuclear Magnetic Resonance (PNMR, was developed and used as an analytical tool for quantification and identification of this relatively UV insensitive compound in the alcoholic extract of the plant. The method involves the use of pyrazinamide (an anti-tuberculosis drug, as a reference. Validation of the method was carried out by preparing a known concentration of an artificial mixture of pinitol and pyrazinamide. The recovery of pinitol in the mixture was in the range of 98.5–101.3%. Pinitol in pure form was isolated from the ethanolic extract of A. roseum by repeated column chromatography over silica gel followed by crystallization in methanol. Pinitol isolated from the plant was identified on the basis of 1H-NMR, 13C-NMR, DEPT (45°, 90° and 135° experiments and mass spectral data. The method was successfully applied for the quantitation of pinitol in various extracts of the said plant.

  8. Topical radiation protection questions of use of agricultural land in the environs of nuclear power plants

    International Nuclear Information System (INIS)

    Carach, J.; Csupka, S.; Petrasova, M.

    1982-01-01

    A survey is presented of the problems of the use of agricultural land in the environs of nuclear power plants. The analysis of emission activity in nuclear power plants presently under construction shows that for normal operation no precautions are necessary. For accidents, specific health protection measures are planned. (author)

  9. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  10. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  11. Design And Control Of Agricultural Robot For Tomato Plants Treatment And Harvesting

    Science.gov (United States)

    Sembiring, Arnes; Budiman, Arif; Lestari, Yuyun D.

    2017-12-01

    Although Indonesia is one of the biggest agricultural country in the world, implementation of robotic technology, otomation and efficiency enhancement in agriculture process hasn’t extensive yet. This research proposed a low cost agricultural robot architecture. The robot could help farmer to survey their farm area, treat the tomato plants and harvest the ripe tomatoes. Communication between farmer and robot was facilitated by wireless line using radio wave to reach wide area (120m radius). The radio wave was combinated with Bluetooth to simplify the communication between robot and farmer’s Android smartphone. The robot was equipped with a camera, so the farmers could survey the farm situation through 7 inch monitor display real time. The farmers controlled the robot and arm movement through an user interface in Android smartphone. The user interface contains control icons that allow farmers to control the robot movement (formard, reverse, turn right and turn left) and cut the spotty leaves or harvest the ripe tomatoes.

  12. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    OpenAIRE

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species....

  13. Method for the detection and isolation of traces of organic fluorine compounds in plants

    Energy Technology Data Exchange (ETDEWEB)

    Wade, R H; Ross, J M; Benedict, H M

    1964-01-01

    A method for the detection and isolation of sub-microgram quantities of organic fluorine compounds from plant materials in the presence of much larger amounts of inorganic fluoride is presented. The procedure consists first of a rapid screening step for use with large numbers of vegetable samples and extracts and, second, of a chromatographic step to isolate and characterize any fluoro-organics found. These methods are developed in light of specific chemical characteristics of organic fluorine compounds as a general class. A modification of SOEP's quantitative sub-micro fluoride analytical method is presented as applicable to these isolation methods. Microgram quantities of organic fluorine compounds were found in the plant materials investigated but at a level too low for isolation and identification.

  14. Agriculture: Climate

    Science.gov (United States)

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  15. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  16. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab.

    Science.gov (United States)

    Fu, Shih-Feng; Sun, Pei-Feng; Lu, Hsueh-Yu; Wei, Jyuan-Yu; Xiao, Hong-Su; Fang, Wei-Ta; Cheng, Bai-You; Chou, Jui-Yu

    2016-03-01

    Microorganisms can promote plant growth through direct and indirect mechanisms. Compared with the use of bacteria and mycorrhizal fungi, the use of yeasts as plant growth-promoting (PGP) agents has not been extensively investigated. In this study, yeast isolates from the phyllosphere and rhizosphere of the medicinally important plant Drosera spatulata Lab. were assessed for their PGP traits. All isolates were tested for indole-3-acetic acid-, ammonia-, and polyamine-producing abilities, calcium phosphate and zinc oxide solubilizing ability, and catalase activity. Furthermore, the activities of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and fungal cell wall-degrading enzymes were assessed. The antagonistic action of yeasts against pathogenic Glomerella cingulata was evaluated. The cocultivation of Nicotiana benthamiana with yeast isolates enhanced plant growth, indicating a potential yeast-plant interaction. Our study results highlight the potential use of yeasts as plant biofertilizers under controlled and field conditions. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Experimental assemblage of novel plant-herbivore interactions: ecological host shifts after 40 million years of isolation.

    Science.gov (United States)

    Garcia-Robledo, Carlos; Horvitz, Carol C; Kress, W John; Carvajal-Acosta, A Nalleli; Erwin, Terry L; Staines, Charles L

    2017-11-01

    Geographic isolation is the first step in insect herbivore diet specialization. Such specialization is postulated to increase insect fitness, but may simultaneously reduce insect ability to colonize novel hosts. During the Paleocene-Eocene, plants from the order Zingiberales became isolated either in the Paleotropics or in the Neotropics. During the Cretaceous, rolled-leaf beetles diversified in the Neotropics concurrently with Neotropical Zingiberales. Using a community of Costa Rican rolled-leaf beetles and their Zingiberales host plants as study system, we explored if previous geographic isolation precludes insects to expand their diets to exotic hosts. We recorded interactions between rolled-leaf beetles and native Zingiberales by combining DNA barcodes and field records for 7450 beetles feeding on 3202 host plants. To determine phylogenetic patterns of diet expansions, we set 20 field plots including five exotic Zingiberales, recording beetles feeding on these exotic hosts. In the laboratory, using both native and exotic host plants, we reared a subset of insect species that had expanded their diets to the exotic plants. The original plant-herbivore community comprised 24 beetle species feeding on 35 native hosts, representing 103 plant-herbivore interactions. After exotic host plant introduction, 20% of the beetle species expanded their diets to exotic Zingiberales. Insects only established on exotic hosts that belong to the same plant family as their native hosts. Laboratory experiments show that beetles are able to complete development on these novel hosts. In conclusion, rolled-leaf beetles are pre-adapted to expand their diets to novel host plants even after millions of years of geographic isolation.

  18. Draft Genome Sequence of the Plant Growth-Promoting Cupriavidus gilardii Strain JZ4 Isolated from the Desert Plant Tribulus terrestris

    KAUST Repository

    Lafi, Feras Fawzi; Bokhari, Ameerah; Alam, Intikhab; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2016-01-01

    We isolated the plant endophytic bacterium Cupriavidus gilardii strain JZ4 from the roots of the desert plant Tribulus terrestris, collected from the Jizan region, Saudi Arabia. We report here the draft genome sequence of JZ4, together with several enzymes related to plant growth-promoting activity, environmental adaption, and antifungal activity.

  19. Draft Genome Sequence of the Plant Growth-Promoting Cupriavidus gilardii Strain JZ4 Isolated from the Desert Plant Tribulus terrestris

    KAUST Repository

    Lafi, Feras Fawzi

    2016-07-28

    We isolated the plant endophytic bacterium Cupriavidus gilardii strain JZ4 from the roots of the desert plant Tribulus terrestris, collected from the Jizan region, Saudi Arabia. We report here the draft genome sequence of JZ4, together with several enzymes related to plant growth-promoting activity, environmental adaption, and antifungal activity.

  20. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil.

    Science.gov (United States)

    El-Sayed, Wael S; Akhkha, Abdellah; El-Naggar, Moustafa Y; Elbadry, Medhat

    2014-01-01

    The role of plant growth-promoting rhizobacteria (PGPR) in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with 11 wild plant species from the arid soil of Almadinah Almunawarah, Kingdom of Saudi Arabia (KSA) were investigated. From a total of 531 isolates, only 66 bacterial isolates were selected based on their ability to inhibit Fusarium oxysporum, and Sclerotinia sclerotiorum. The selected isolates were screened in vitro for activities related to plant nutrition and plant growth regulation as well as for antifungal and nematicidal traits. Isolated bacteria were found to exhibit capabilities in fix atmospheric nitrogen, produce ammonia, indoleacetic acid (IAA), siderophores, solubilize phosphate and zinc, and showed an antagonistic potential against some phytopathogenic fungi and one nematode species (Meloidogyne incognita) to various extent. Isolates were ranked by their potential ability to function as PGPR. The 66 isolates were genotyped using amplified rDNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis. The taxonomic composition of the representative genotypes from both rhizosphere and rhizoplane comprised Bacillus, Enterobacter and Pseudomonas. Out of the 10 genotypes, three strains designated as PHP03, CCP05, and TAP02 might be regarded as novel strains based on their low similarity percentages and high bootstrap values. The present study clearly identified specific traits in the isolated rhizobacteria, which make them good candidates as PGPR and might contribute to plant adaption to arid environments. Application of such results in agricultural fields may improve and enhance plant growth in arid soils.

  1. In vitro Antagonistic Activity, Plant Growth Promoting Traits and Phylogenetic Affiliation of Rhizobacteria Associated with Wild Plants Grown in Arid Soil

    Directory of Open Access Journals (Sweden)

    Wael Samir El-Sayed

    2014-12-01

    Full Text Available The role of plant growth-promoting rhizobacteria (PGPR in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with eleven wild plant species from the arid soil of Almadinah Almunawarah, Kingdom of Saudi Arabia (KSA were investigated. From a total of 531 isolates, only 66 bacterial isolates were selected based on their ability to inhibit Fusarium oxysporum, and Sclerotinia sclerotiorum. The selected isolates were screened in vitro for activities related to plant nutrition and plant growth regulation as well as for antifungal and nematicidal traits. Isolated bacteria were found to exhibit capabilities in fix atmospheric nitrogen, produce ammonia, indoleacetic acid (IAA, siderophores, solubilize phosphate and zinc, and showed an antagonistic potential against some phytopathogenic fungi and one nematode species (Meloidogyne incognita to various extent. Isolates were ranked by their potential ability to function as PGPR. The 66 isolates were genotyped using amplified rDNA restriction analysis (ARDRA and 16S rRNA gene sequence analysis. The taxonomic composition of the representative genotypes from both rhizosphere and rhizoplane comprised Bacillus, Enterobacter and Pseudomonas. Out of the ten genotypes, three strains designated as PHP03, CCP05, and TAP02 might be regarded as novel strains based on their low similarity percentages and high bootstrap values. The present study clearly identified specific traits in the isolated rhizobacteria, which make them good candidates as PGPR and might contribute to plant adaption to arid environments. Application of such results in agricultural fields may improve and enhance plant

  2. Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw.

    Science.gov (United States)

    Sampietro, Diego Alejandro; Vattuone, Marta Amelia; Isla, María Ines

    2006-07-01

    Several compounds related with plant defense and pharmacological activities have been isolated from sugarcane. Straw phytotoxins and their possible mechanisms of growth inhibition are largely unknown. A bioassay-guided fractionation of the phytotoxic constituents leachated from a sugarcane straw led to the isolation of trans-ferulic (trans-FA), cis-ferulic (cis-FA), vanillic (VA) and syringic (SA) acids. The straw leachates and their identified constituents significantly inhibited root growth of lettuce and four weeds. VA was more phytotoxic to root elongation than FA and SA. The identified phenolic compounds significantly increased leakage of root cell constituents, inhibited dehydrogenase activity and reduced chlorophyll content in lettuce. VA and FA inhibited mitotic index while SA increased cell division. Additive (VA-FA and FA-SA) and synergistic (VA-SA) interactions on root growth were observed at the response level of EC(25). Although the isolated compounds differed in their relative phytotoxic activities, the observed physiological responses suggest that they have a common mode of action. HPLC analysis indicated that sugarcane straw can potentially release 1.43 (ratio 2:1, trans:cis), 1.14 and 0.14mmolkg(-1) (straw dry weight) of FA, VA and SA, respectively. As phenolic acids are often found spatially concentrated in the top soil layers under plant straws, further studies are needed to establish the impact of these compounds in natural settings.

  3. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    Science.gov (United States)

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  4. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    Science.gov (United States)

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  5. PATHOGENICITY OF FUSARIUM SPP. ISOLATED FROM WEEDS AND PLANT DEBRIS IN EASTERN CROATIA TO WHEAT AND MAIZE

    Directory of Open Access Journals (Sweden)

    Jelena Ilić

    2012-12-01

    Full Text Available Pathogenicity of thirty isolates representing 14 Fusarium species isolated from weeds and plant debris in eastern Croatia was investigated in the laboratory. Pathogenicity tests were performed on wheat and maize seedlings. The most pathogenic Fusarium spp. was F. graminearum isolated from Amaranthus retroflexus, Abutilon theophrasti and Chenopodium album. There was a noticeable inter- and intraspecies variability in pathogenicity towards wheat and maize. Isolates of F. solani from Sonchus arvensis and F. verticillioides from C. album were highly pathogenic to wheat seedlings and apathogenic to maize seedlings. Isolates of F. venenatum were very pathogenic to wheat and maize being the first report about pathogenicity of this species. This experiment proves that weeds and plant debris can serve as alternate hosts and source of inoculum of plant pathogens.

  6. Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.

    Science.gov (United States)

    Allen, W. A.; And Others

    This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…

  7. Prevalence of Sulfonamide Resistance Genes in Bacterial Isolates from Manured Agricultural Soils and Pig Slurry in the United Kingdom▿

    OpenAIRE

    Byrne-Bailey, K. G.; Gaze, W. H.; Kay, P.; Boxall, A. B. A.; Hawkey, P. M.; Wellington, E. M. H.

    2008-01-01

    The prevalences of three sulfonamide resistance genes, sul1, sul2, and sul3 and sulfachloropyridazine (SCP) resistance were determined in bacteria isolated from manured agricultural clay soils and slurry samples in the United Kingdom over a 2-year period. Slurry from tylosin-fed pigs amended with SCP and oxytetracycline was used for manuring. Isolates positive for sul genes were further screened for the presence of class 1 and 2 integrons. Phenotypic resistance to SCP was significantly higher...

  8. Utilization of waste heat from nuclear power plants in agriculture

    International Nuclear Information System (INIS)

    Horacek, P.

    1981-01-01

    The development of nuclear power will result in the relative and absolute increase in the amount of waste heat which can be used in agriculture for heating greenhouses, open spaces, for fish breeding in heated water, for growing edible mushrooms, growing algae, for frost protection of orchards, air conditioning of buildings for breeding livestock and poultry, and for other purposes. In addition of the positive effect of waste heat, the danger increases of disease, weeds and pests. Pilot plant installations should be build in Czechoslovakia for testing the development of waste heat utilization. (Ha)

  9. Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku

    Directory of Open Access Journals (Sweden)

    Reginawanti Hindersah

    2018-01-01

    Full Text Available Agricultural productivity in Buru Island, Maluku is threatened by tailings which are generated from formerly gold mine in Botak Mountain in Wamsait Village. Gold that extracted by using mercury was carried out in mining area as well agricultural field.  High content of mercury in tailings and agricultural field pose a serious problem of food production and quality; and further endangers human health. The purpose of this research was to determine the contaminant level of mercury in tailing, soil and its accumulation in edible part of some food crops. Soil, tailing and plant samples for Hg testing were taken by purposive method based on mining activities in Waelata, Waeapo and Namlea sub district. Six soil samples had been analyzed for their chemical properties. Total mercury levels in tailings and plants were measured by Atomic Adsorption Spectrophotometer. This study showed that agricultural field where tailings were deposited contained Hg above the threshold but agricultural area which is far from hot spot did not. Most edible parts of food crops accumulated mercury more than Indonesian threshold for mercury content in food. This evidence explained that tailings deposited on the surface of agricultural field had an impact on soil quality and crop quality. Tailing accumulated on soil will decreased soil quality since naturally soil fertility in agricultural field in Buru is low.

  10. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-01-01

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse

  11. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no

  12. Hedgerows Have a Barrier Effect and Channel Pollinator Movement in the Agricultural Landscape

    Directory of Open Access Journals (Sweden)

    Klaus Felix

    2015-01-01

    Full Text Available Agricultural intensification and the subsequent fragmentation of semi-natural habitats severely restrict pollinator and pollen movement threatening both pollinator and plant species. Linear landscape elements such as hedgerows are planted for agricultural and conservation purposes to increase the resource availability and habitat connectivity supporting populations of beneficial organisms such as pollinators. However, hedgerows may have unexpected effects on plant and pollinator persistence by not just channeling pollinators and pollen along, but also restricting movement across the strip of habitat. Here, we tested how hedgerows influence pollinator movement and pollen flow. We used fluorescent dye particles as pollen analogues to track pollinator movement between potted cornflowers Centaurea cyanus along and across a hedgerow separating two meadows. The deposition of fluorescent dye was significantly higher along the hedgerow than across the hedgerow and into the meadow, despite comparable pollinator abundances. The differences in pollen transfer suggest that hedgerows can affect pollinator and pollen dispersal by channeling their movement and acting as a permeable barrier. We conclude that hedgerows in agricultural landscapes can increase the connectivity between otherwise isolated plant and pollinator populations (corridor function, but can have additional, and so far unknown barrier effects on pollination services. Functioning as a barrier, linear landscape elements can impede pollinator movement and dispersal, even for highly mobile species such as bees. These results should be considered in future management plans aiming to enhance the persistence of threatened pollinator and plant populations by restoring functional connectivity and to ensure sufficient crop pollination in the agricultural landscape.

  13. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, B.M. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Environment and Public Health Organization (ENPHO), P.O. Box 4102, Kathmandu (Nepal); Fuerhacker, M. [Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Mentler, A. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Karki, K.B. [Soil Science Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur (Nepal); Shrestha, R.R. [UN Habitat-Nepal, UN House, Pulchwok, P.O. Box 107, Kathmandu (Nepal); Blum, W.E.H. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria)], E-mail: winfried.blum@boku.ac.at

    2008-09-15

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L{sup -1} where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg{sup -1}. The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg{sup -1}) > onion bulb (0.45 mg As kg{sup -1}) > cauliflower (0.33 mg As kg{sup -1}) > rice (0.18 mg As kg{sup -1}) > brinjal (0.09 mg As kg{sup -1}) > potato (<0.01 mg As kg{sup -1}). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water.

  14. A Novel Fungal Metabolite with Beneficial Properties for Agricultural Applications

    Directory of Open Access Journals (Sweden)

    Francesco Vinale

    2014-07-01

    Full Text Available Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA, a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction.

  15. A novel fungal metabolite with beneficial properties for agricultural applications.

    Science.gov (United States)

    Vinale, Francesco; Manganiello, Gelsomina; Nigro, Marco; Mazzei, Pierluigi; Piccolo, Alessandro; Pascale, Alberto; Ruocco, Michelina; Marra, Roberta; Lombardi, Nadia; Lanzuise, Stefania; Varlese, Rosaria; Cavallo, Pierpaolo; Lorito, Matteo; Woo, Sheridan L

    2014-07-08

    Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA) is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA), a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction.

  16. Genetic and functional characterization of culturable plant-beneficial actinobacteria associated with yam rhizosphere.

    Science.gov (United States)

    Arunachalam Palaniyandi, Sasikumar; Yang, Seung Hwan; Damodharan, Karthiyaini; Suh, Joo-Won

    2013-12-01

    Actinobacteria were isolated from the rhizosphere of yam plants from agricultural fields from Yeoju, South Korea and analyzed for their genetic and plant-beneficial functional diversity. A total of 29 highly occurring actinobacterial isolates from the yam rhizosphere were screened for various plant-beneficial traits such as antimicrobial activity on fungi and bacteria; biocontrol traits such as production of siderophore, protease, chitinase, endo-cellulase, and β-glucanase. The isolates were also screened for plant growth-promoting (PGP) traits such as auxin production, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and in vitro Arabidopsis growth promotion. 16S rDNA sequence-based phylogenetic analysis was carried out on the actinobacterial isolates to determine their genetic relatedness to known actinobacteria. BOX-PCR analysis revealed high genetic diversity among the isolates. Several isolates were identified to belong to the genus Streptomyces and a few to Kitasatospora. The actinobacterial strains exhibited high diversity in their functionality and were identified as novel and promising candidates for future development into biocontrol and PGP agents. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria.

    Science.gov (United States)

    Baoune, Hafida; Ould El Hadj-Khelil, Aminata; Pucci, Graciela; Sineli, Pedro; Loucif, Lotfi; Polti, Marta Alejandra

    2018-01-01

    Petroleum hydrocarbons are well known by their high toxicity and recalcitrant properties. Their increasing utilization around worldwide led to environmental contamination. Phytoremediation using plant-associated microbe is an interesting approach for petroleum degradation and actinobacteria have a great potential for that. For this purpose, our study aimed to isolate, characterize, and assess the ability of endophytic actinobacteria to degrade crude petroleum, as well as to produce plant growth promoting traits. Seventeen endophytic actinobacteria were isolated from roots of plants grown naturally in sandy contaminated soil. Among them, six isolates were selected on the basis of their tolerance to petroleum on solid minimal medium and characterized by 16S rDNA gene sequencing. All petroleum-tolerant isolates belonged to the Streptomyces genus. Determination by crude oil degradation by gas chromatorgraph-flame ionization detector revealed that five strains could use petroleum as sole carbon and energy source and the petroleum removal achieved up to 98% after 7 days of incubation. These isolates displayed an important role in the degradation of the n-alkanes (C 6 -C 30 ), aromatic and polycyclic aromatic hydrocarbons. All strains showed a wide range of plant growth promoting features such as siderophores, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase, nitrogen fixation and indole-3-acetic acid production as well as biosurfactant production. This is the first study highlighting the petroleum degradation ability and plant growth promoting attributes of endophytic Streptomyces. The finding suggests that the endophytic actinobacteria isolated are promising candidates for improving phytoremediation efficiency of petroleum contaminated soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. New Research in Organic Agriculture

    DEFF Research Database (Denmark)

    1996-01-01

    The book is the proceedings from the bi-annual international scientific conference on organic agriculture. The chapters are: - plant and soil interactions, - animal production systems, - traditional knowledge in sustainable agriculture, - research, education and extension in sustainable agricultu......, - environmental impact and nature, - potentials of organic farming, - community, consumer and market, and - policy and financial strategies.......The book is the proceedings from the bi-annual international scientific conference on organic agriculture. The chapters are: - plant and soil interactions, - animal production systems, - traditional knowledge in sustainable agriculture, - research, education and extension in sustainable agriculture...

  19. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    Science.gov (United States)

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  20. Draft Genome Sequence of the Plant Growth–Promoting Rhizobacterium Acinetobacter radioresistens Strain SA188 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi; Alam, Intikhab; Bisseling, Ton; Geurts, Rene; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2017-01-01

    Acinetobacter radioresistens strain SA188 is a plant endophytic bacterium, isolated from root nodules of the desert plants Indigofera spp., collected in Jizan, Saudi Arabia. Here, we report the 3.2-Mb draft genome sequence of strain SA188, highlighting characteristic pathways for plant growth–promoting activity and environmental adaptation.

  1. Draft Genome Sequence of the Plant Growth–Promoting Rhizobacterium Acinetobacter radioresistens Strain SA188 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-03-03

    Acinetobacter radioresistens strain SA188 is a plant endophytic bacterium, isolated from root nodules of the desert plants Indigofera spp., collected in Jizan, Saudi Arabia. Here, we report the 3.2-Mb draft genome sequence of strain SA188, highlighting characteristic pathways for plant growth–promoting activity and environmental adaptation.

  2. Applicability of base-isolation R and D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1989-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. This paper reviews the research and development (R and D) programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R and D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R and D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant

  3. Isolation, Characterization and Application of Bacterial Population From Agricultural Soil at Sohag Province, Egypt

    Directory of Open Access Journals (Sweden)

    Bahig, A. E.

    2008-01-01

    Full Text Available Forty soil samples of agriculture soil were collected from two different sites in Sohag province, Egypt, during hot and cold seasons. Twenty samples were from soil irrigated with canal water (site A and twenty samples were from soil irrigated with wastewater (site B. This study aimed to compare the incidence of plasmids in bacteria isolated from soil and to investigate the occurrence of metal and antibiotic resistance bacteria, and consequently to select the potential application of these bacteria in bioremediation. The total bacterial count (CFU/gm in site (B was higher than that in site (A. Moreover, the CFU values in summer were higher than those values in winter at both sites. A total of 771 bacterial isolates were characterized as Bacillus, Micrococcus, Staphylococcus, Pseudomonas, Eschershia, Shigella, Xanthomonas, Acetobacter, Citrobacter, Enterobacter, Moraxella and Methylococcus. Minimum inhibitory concentrations (MICs of Pb+2, Cu+2, Zn+2, Hg+2, Co+2, Cd+2, Cr+3, Te+2, As+2 and Ni+2 for plasmid-possessed bacteria were determined and the highest MICs were 1200 µg/mL for lead, 800 µg/mL for both Cobalt and Arsenate, 1200 µg/mL for Nickel, 1000 µg/ml for Copper and less than 600 µg/mL for other metals. Bacterial isolates from both sites A and B showed multiple heavy metal resistance. A total of 337 bacterial isolates contained plasmids and the incidence of plasmids was approximately 25-50% higher in bacteria isolated from site (B than that from site (A. These isolates were resistance to different antibiotics. Approximately, 61% of the bacterial isolates were able to assimilate insecticide, carbaryl, as a sole source of carbon and energy. However, the Citrobacter AA101 showed the best growth on carbaryl.

  4. Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste

    Directory of Open Access Journals (Sweden)

    Chartone-Souza Edmar

    2008-10-01

    Full Text Available Abstract Background Molecular studies of Bacillus diversity in various environments have been reported. However, there have been few investigations concerning Bacillus in steel plant environments. In this study, genotypic and phenotypic diversity and phylogenetic relationships among 40 bacterial isolates recovered from steel plant waste were investigated using classical and molecular methods. Results 16S rDNA partial sequencing assigned all the isolates to the Bacillus genus, with close genetic relatedness to the Bacillus subtilis and Bacillus cereus groups, and to the species Bacillus sphaericus. tDNA-intergenic spacer length polymorphisms and the 16S–23S intergenic transcribed spacer region failed to identify the isolates at the species level. Genomic diversity was investigated by molecular typing with rep (repetitive sequence based PCR using the primer sets ERIC2 (enterobacterial repetitive intergenic consensus, (GTG5, and BOXAIR. Genotypic fingerprinting of the isolates reflected high intraspecies and interspecies diversity. Clustering of the isolates using ERIC-PCR fingerprinting was similar to that obtained from the 16S rRNA gene phylogenetic tree, indicating the potential of the former technique as a simple and useful tool for examining relationships among unknown Bacillus spp. Physiological, biochemical and heavy metal susceptibility profiles also indicated considerable phenotypic diversity. Among the heavy metal compounds tested Zn, Pb and Cu were least toxic to the bacterial isolates, whereas Ag inhibited all isolates at 0.001 mM. Conclusion Isolates with identical 16S rRNA gene sequences had different genomic fingerprints and differed considerably in their physiological capabilities, so the high levels of phenotypic diversity found in this study are likely to have ecological relevance.

  5. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.

    OpenAIRE

    Jimenez-Salgado, T; Fuentes-Ramirez, L E; Tapia-Hernandez, A; Mascarua-Esparza, M A; Martinez-Romero, E; Caballero-Mellado, J

    1997-01-01

    Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N...

  6. Influences suffered by agriculture production in the proximity of Krupp-Renn plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozel, J; Maly, V

    1965-01-01

    The article presents the results obtained after the years of investigations of the effect produced by the exhalations of industrial plants upon the fertility of soil and the yields of agricultural crops in the vicinity of Krupp-Renn plants. The investigations were performed in situ. The amount of fall-out from these plants several times exceeded the tolerable quantity. Also the amount of SO/sub 2/ was higher than the permissible daily concentration. The average yearly volume of contaminants adhering on agricultural plants cultivated near these industrial enterprises has been found on root crops and maize, while it was considerably smaller on cereals. This depends on the size and on the possible coarseness of the leaf areas. The average content of sulfuric compounds in the ashes on the sticking impurities fluctuated between 4.93 and 9.60 p.c. and the content of SO/sub 3/ in the ashes of organic substances surpassed in the majority of cases the values fixed for normal conditions. The influence upon soil properties is, first of all, unfavorably manifested by a higher level of some compounds (especially sulfuric and ferrous) and by a reduced soil reaction, but on the other hand the level of some mineral nutrients increased as a result of their content in the fly-ashes. The strongest reduction of per hectare yields was shown by maize, beans and root crops. The damage to cereals was considerably lower. Besides a decrease in yields, the deterioration of their quality has to be taken into consideration, especially so far as fodder crops are concerned, which in its turn influence the decrease in performance of farm animals and deterioration of the conditions of their health. 16 references, 2 figures, 3 tables.

  7. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  8. Caesium-137 soil-to-plant transfer for representative agricultural crops of monocotyledonous and dicotyledonous plants in post-Chernobyl steppe landscape

    Science.gov (United States)

    Paramonova, Tatiana; Komissarova, Olga; Turykin, Leonid; Kuzmenkova, Natalia; Belyaev, Vladimir

    2016-04-01

    The accident at the Chernobyl nuclear power plant in 1986 had a large-scale action on more than 2.3 million hectares agricultural lands in Russia. The area of radioactively contaminated chernozems of semi-arid steppe zone with initial levels of Cs-137 185-555 kBq/m2 in Tula region received the name "Plavsky radioactive hotspot". Nowadays, after the first half-life period of Cs-137 arable chernozems of the region are still polluted with 3-6-fold excess above the radioactive safety standard (126-228 kBq/m2). Therefore, qualitative and quantitative characteristics of Cs-137 soil-to-plant transfer are currently a central problem for land use on the territory. The purpose of the present study was revealing the biological features of Cs-137 root uptake from contaminated arable chernozems by different agricultural crops. The components of a grass mixture growing at the central part of Plavsky radioactive hotspot with typical dicotyledonous and monocotyledonous plants - galega (Galega orientalis, Fabaceae family) and bromegrass (Bromus inermis, Gramineae family) respectively - were selected for the investigation, that was conducted during the period of harvesting in 2015. An important point was that the other factors influenced on Cs-137 soil-to-plant transfer - the level of soil pollution, soil properties, climatic conditions, vegetative phase, etc. - were equal. So, biological features of Cs-137 root uptake could be estimated the most credible manner. As a whole, general discrimination of Cs-137 root uptake was clearly shown for both agricultural crops. Whereas Cs-137 activity in rhizosphere 30-cm layer of arable chernozem was 371±74 Bq/kg (140±32 kBq/m2), Cs-137 activities in plant biomass were one-two orders of magnitude less, and transfer factor (TF) values (the ratio of the Cs-137 activities in vegetation and in soil) not exceeded 0.11. At the same time bioavailability of Cs-137 for bromegrass was significantly higher than for galega: TFs in total biomass of the

  9. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture.

    Science.gov (United States)

    Trębicki, Piotr; Dáder, Beatriz; Vassiliadis, Simone; Fereres, Alberto

    2017-12-01

    Carbon dioxide (CO 2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO 2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO 2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO 2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO 2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  10. Replacement of outboard main steam isolation valves in a boiling water reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Schlereth, J.R.; Pennington, D.

    1996-12-01

    Most Boiling Water Reactor plants utilize wye pattern globe valves for main steam isolation valves for both inboard and outboard isolation. These valves have required a high degree of maintenance attention in order to pass the plant local leakage rate testing (LLRT) requirements at each outage. Northern States Power made a decision in 1993 to replace the outboard valves at it`s Monticello plant with double disc gate valves. The replacement of the outboard valves was completed during the fall outage in 1994. During the spring outage in April of 1996 the first LLRT testing was performed with excellent results. This presentation will address the decision process, time requirements and planning necessary to accomplish the task as well as the performance results and cost effectiveness of replacing these components.

  11. Replacement of outboard main steam isolation valves in a boiling water reactor plant

    International Nuclear Information System (INIS)

    Schlereth, J.R.; Pennington, D.

    1996-01-01

    Most Boiling Water Reactor plants utilize wye pattern globe valves for main steam isolation valves for both inboard and outboard isolation. These valves have required a high degree of maintenance attention in order to pass the plant local leakage rate testing (LLRT) requirements at each outage. Northern States Power made a decision in 1993 to replace the outboard valves at it's Monticello plant with double disc gate valves. The replacement of the outboard valves was completed during the fall outage in 1994. During the spring outage in April of 1996 the first LLRT testing was performed with excellent results. This presentation will address the decision process, time requirements and planning necessary to accomplish the task as well as the performance results and cost effectiveness of replacing these components

  12. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    Science.gov (United States)

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa.

    Science.gov (United States)

    Muranaka, Lígia S; Giorgiano, Thais E; Takita, Marco A; Forim, Moacir R; Silva, Luis F C; Coletta-Filho, Helvécio D; Machado, Marcos A; de Souza, Alessandra A

    2013-01-01

    Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.

  14. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa.

    Directory of Open Access Journals (Sweden)

    Lígia S Muranaka

    Full Text Available Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC. The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC, a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS. The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer. HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.

  15. Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants-A reivew.

    Science.gov (United States)

    Liu, Jun; Bai, Ruyu; Liu, Yunpeng; Zhang, Xin; Kan, Juan; Jin, Changhai

    2018-02-01

    In recent years, several medicinal plants have been demonstrated as valuable resources of naturally occurring polysaccharide-polyphenolic conjugates. For the first time, this article introduces recent advances of polysaccharide-polyphenolic conjugates isolated from different medicinal plants. The isolation, purification, structural characterization and biological activities of polysaccharide-polyphenolic conjugates are introduced in details. In general, polysaccharide-polyphenolic conjugates can be isolated by hot water or alkaline extraction followed by purification through anion exchange chromatography or gel filtration chromatography. The structures of conjugates are usually characterized by chemical composition analysis, UV-vis, Fourier-transform infrared and nuclear magnetic resonance spectroscopy. Moreover, polysaccharide-polyphenolic conjugates exhibit several biological activities including anticoagulant, antioxidant, radioprotective, anti-platelet, antitussive and bronchodilatory effects. Therefore, polysaccharide-polyphenolic conjugates isolated from medicinal plants are certain to have a bright prospect in the field of food and pharmaceutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil.

    Science.gov (United States)

    Rønhede, Stig; Jensen, Bo; Rosendahl, Søren; Kragelund, Birthe B; Juhler, René K; Aamand, Jens

    2005-12-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N'-methylurea. In soils, however, hydroxylated metabolites have also been detected. In this study we identified fungi as organisms that potentially play a major role in the formation of these hydroxylated metabolites in soils treated with isoproturon. Isolates of Mortierella sp. strain Gr4, Phoma cf. eupyrena Gr61, and Alternaria sp. strain Gr174 hydroxylated isoproturon at the first position of the isopropyl side chain, yielding N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea, while Mucor sp. strain Gr22 hydroxylated the molecule at the second position, yielding N-(4-(1-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea. Hydroxylation was the dominant mode of isoproturon transformation in these fungi, although some cultures also produced traces of the N-demethylated metabolite N-(4-isopropylphenyl)-N'-methylurea. A basidiomycete isolate produced a mixture of the two hydroxylated and N-demethylated metabolites at low concentrations. Clonostachys sp. strain Gr141 and putative Tetracladium sp. strain Gr57 did not hydroxylate isoproturon but N demethylated the compound to a minor extent. Mortierella sp. strain Gr4 also produced N-(4-(2-hydroxy-1-methylethyl)phenyl)-N'-methylurea, which is the product resulting from combined N demethylation and hydroxylation.

  17. Pantoea allii sp. nov., isolated from onion plants and seed.

    Science.gov (United States)

    Brady, Carrie L; Goszczynska, Teresa; Venter, Stephanus N; Cleenwerck, Ilse; De Vos, Paul; Gitaitis, Ronald D; Coutinho, Teresa A

    2011-04-01

    Eight yellow-pigmented, Gram-negative, rod-shaped, oxidase-negative, motile, facultatively anaerobic bacteria were isolated from onion seed in South Africa and from an onion plant exhibiting centre rot symptoms in the USA. The isolates were assigned to the genus Pantoea on the basis of phenotypic and biochemical tests. 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA), based on gyrB, rpoB, infB and atpD sequences, confirmed the allocation of the isolates to the genus Pantoea. MLSA further indicated that the isolates represented a novel species, which was phylogenetically most closely related to Pantoea ananatis and Pantoea stewartii. Amplified fragment length polymorphism analysis also placed the isolates into a cluster separate from P. ananatis and P. stewartii. Compared with type strains of species of the genus Pantoea that showed >97 % 16S rRNA gene sequence similarity with strain BD 390(T), the isolates exhibited 11-55 % whole-genome DNA-DNA relatedness, which confirmed the classification of the isolates in a novel species. The most useful phenotypic characteristics for the differentiation of the isolates from their closest phylogenetic neighbours are production of acid from amygdalin and utilization of adonitol and sorbitol. A novel species, Pantoea allii sp. nov., is proposed, with type strain BD 390(T) ( = LMG 24248(T)).

  18. RNA Isolation from Plant Tissues: A Hands-On Laboratory Experimental Experience for Undergraduates

    Science.gov (United States)

    Zhang, Nianhui; Yu, Dong; Zhu, Xiaofeng

    2018-01-01

    The practice of RNA isolation in undergraduate experimental courses is rare because of the existence of robust, ubiquitous and stable ribonucleases. We reported here modifications to our original protocol for RNA isolation from plant tissues, including the recovery of nucleic acids by ethanol precipitation at 0 degrees C for 10 min and the…

  19. The Value of Native Plants and Local Production in an Era of Global Agriculture.

    Science.gov (United States)

    Shelef, Oren; Weisberg, Peter J; Provenza, Frederick D

    2017-01-01

    For addressing potential food shortages, a fundamental tradeoff exists between investing more resources to increasing productivity of existing crops, as opposed to increasing crop diversity by incorporating more species. We explore ways to use local plants as food resources and the potential to promote food diversity and agricultural resilience. We discuss how use of local plants and the practice of local agriculture can contribute to ongoing adaptability in times of global change. Most food crops are now produced, transported, and consumed long distances from their homelands of origin. At the same time, research and practices are directed primarily at improving the productivity of a small number of existing crops that form the cornerstone of a global food economy, rather than to increasing crop diversity. The result is a loss of agro-biodiversity, leading to a food industry that is more susceptible to abiotic and biotic stressors, and more at risk of catastrophic losses. Humans cultivate only about 150 of an estimated 30,000 edible plant species worldwide, with only 30 plant species comprising the vast majority of our diets. To some extent, these practices explain the food disparity among human populations, where nearly 1 billion people suffer insufficient nutrition and 2 billion people are obese or overweight. Commercial uses of new crops and wild plants of local origin have the potential to diversify global food production and better enable local adaptation to the diverse environments humans inhabit. We discuss the advantages, obstacles, and risks of using local plants. We also describe a case study-the missed opportunity to produce pine nuts commercially in the Western United States. We discuss the potential consequences of using local pine nuts rather than importing them overseas. Finally, we provide a list of edible native plants, and synthesize the state of research concerning the potential and challenges in using them for food production. The goal of our

  20. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown.

    Science.gov (United States)

    Sharma, Bhavisha; Sarkar, Abhijit; Singh, Pooja; Singh, Rajeev Pratap

    2017-06-01

    Environmental and economic implications linked with the proper ecofriendly disposal of modern day wastes, has made it essential to come up with alternative waste management practices that reduce the environmental pressures resulting from unwise disposal of such wastes. Urban wastes like biosolids are loaded with essential plant nutrients. In this view, agricultural use of biosolids would enable recycling of these nutrients and could be a sustainable approach towards management of this hugely generated waste. Therefore biosolids i.e. sewage sludge can serve as an important resource for agricultural utilization. Biosolids are characterized by the occurrence of beneficial plant nutrients (essential elements and micro and macronutrients) which can make help them to work as an effective soil amendment, thereby minimizing the reliance on chemical fertilizers. However, biosolids might contain toxic heavy metals that may limit its usage in the cropland. Heavy metals at higher concentration than the permissible limits may lead to food chain contamination and have fatal consequences. Biosolids amendment in soil can improve physical and nutrient property of soil depending on the quantity and portion of the mixture. Hence, biosolids can be a promising soil ameliorating supplement to increase plant productivity, reduce bioavailability of heavy metals and also lead to effective waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Agriculture: Land Use

    Science.gov (United States)

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  2. Plant oligoadenylates: enzymatic synthesis, isolation, and biological activities

    International Nuclear Information System (INIS)

    Devash, Y.; Reichman, M.; Sela, I.; Reichenbach, N.L.; Suhadolnik, R.J.

    1985-01-01

    An enzyme that converts [ 3 H, 32 P]ATP, with a 3 H: 32 P ratio of 1:1, to oligoadenylates with the same 3 H: 32 P ratio was increased in plants following treatment with human leukocyte interferon or plant antiviral factor or inoculation with tobacco mosaic virus. The enzyme was extracted from tobacco leaves, callus tissue cultures, or cell suspension cultures. The enzyme, a putative plant oligoadenylate synthetase, was immobilized on poly(rI) . poly(rC)-agarose columns and converted ATP into plant oligoadenylates. These oligoadenylates were displaced from DEAE-cellulose columns with 350 mM KCl buffer, dialyzed, and further purified by high-performance liquid chromatography (HPLC) and DEAE-cellulose gradient chromatography. In all steps of purification, the ratio of 3 H: 32 P in the oligoadenylates remained 1:1. The plant oligoadenylates isolated by displacement with 350 mM KCl had a molecular weight greater than 1000. The plant oligoadenylates had charges of 5- and 6-. HPLC resolved five peaks, three of which inhibited protein synthesis in reticulocyte and wheat germ systems. Partial structural elucidation of the plant oligoadenylates has been determined by enzymatic and chemical treatments. An adenylate with a 3',5'-phosphodiester and/or a pyrophosphoryl linkage with either 3'- or 5'-terminal phosphates is postulated on the basis of treatment of the oligoadenylates with T2 RNase, snake venom phosphodiesterase, and bacterial alkaline phosphatase and acid and alkaline hydrolyses. The plant oligoadenylates at 8 X 10(-7) M inhibit protein synthesis by 75% in lysates from rabbit reticulocytes and 45% in wheat germ cell-free systems

  3. TRENDS OF DEVELOPMENT OF PRODUCTION AND REALIZATION OF PLANT PRODUCTION AGRICULTURAL ENTERPRISES OF MYKOLAIV REGION

    Directory of Open Access Journals (Sweden)

    Kushniruk Viktor

    2018-03-01

    Full Text Available Introduction. Agriculture is one of the largest and most important sectors of the Ukrainian economy. The food security and independence of the state, the state of the internal and external markets, and, consequently, the standard of living of the population are directly dependent on its functional state. Mykolaiv region has significant opportunities for the development of the agricultural sector. There are favorable natural and climatic conditions, fertile land, labor resources and long-standing cultivating traditions. The region is considered one of the regions of intensive agriculture in Ukraine and has significant land resources. Purpose. The article presents the analysis of the development of production and sale of crop production by the agrarian enterprises of the Mykolaiv region, as well as revealing ways to increase the volume of their production and sales. Results. The crop area of main agricultural crops in all categories of farms was analyzed, and structural changes for 2010-2016 were revealed. The priority branch of the agro-industrial complex, which has an important strategic significance, first of all, is determined by the level of production of which the food security of the state depends, its economy and welfare of the population. The dynamics of agricultural crop yields in agrarian enterprises as the determining factor of influence on the efficiency of activity in the field of plant growing is researched. The dynamics of gross collections of crop production in agricultural enterprises is analyzed and the contribution of the Mykolaiv region to the national production of grain is determined. The volumes and average prices of sales of agricultural products by agrarian enterprises are investigated and it is determined that the modern development of the agrarian sector of the economy requires special attention to the formation and activation of the activities of market infrastructure entities. The production of which crops are an

  4. Antibiotic Susceptibility Profile of Aeromonas Species Isolated from Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Isoken H. Igbinosa

    2012-01-01

    Full Text Available This study assessed the prevalence of antibiotic-resistant Aeromonas species isolated from Alice and Fort Beaufort wastewater treatment plant in the Eastern Cape Province of South Africa. Antibiotic susceptibility was determined using the disc diffusion method, and polymerase chain reaction (PCR assay was employed for the detection of antibiotics resistance genes. Variable susceptibilities were observed against ciprofloxacin, chloramphenicol, nalidixic acid, gentamicin, minocycline, among others. Aeromonas isolates from both locations were 100% resistant to penicillin, oxacillin, ampicillin, and vancomycin. Higher phenotypic resistance was observed in isolates from Fort Beaufort compared to isolates from Alice. Class A pse1 β-lactamase was detected in 20.8% of the isolates with a lower detection rate of 8.3% for blaTEM gene. Class 1 integron was present in 20.8% of Aeromonas isolates while class 2 integron and TetC gene were not detected in any isolate. The antibiotic resistance phenotypes observed in the isolates and the presence of β-lactamases genes detected in some isolates are of clinical and public health concern as this has consequences for antimicrobial chemotherapy of infections associated with Aeromonas species. This study further supports wastewater as potential reservoirs of antibiotic resistance determinants in the environment.

  5. Optimal design of base isolation and energy dissipation system for nuclear power plant structures

    International Nuclear Information System (INIS)

    Zhou Fulin

    1991-01-01

    This paper suggests the method of optimal design of base isolation and energy dissipation system for earthquake resistant nuclear power plant structures. This method is based on dynamic analysis, shaking table tests for a 1/4 scale model, and a great number of low cycle fatigue failure tests for energy dissipating elements. A set of calculation formulas for optimal design of structures with base isolation and energy dissipation system were introduced, which are able to be used in engineering design for earthquake resistant nuclear power plant structures or other kinds of structures. (author)

  6. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    Science.gov (United States)

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  7. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  8. Alien Plant Species in the Agricultural Habitats of Ukraine: Diversity and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Burda Raisa

    2018-03-01

    Full Text Available This paper is the first critical review of the diversity of the Ukrainian adventive flora, which has spread in agricultural habitats in the 21st century. The author’s annotated checklist contains the data on 740 species, subspecies and hybrids from 362 genera and 79 families of non-native weeds. The floristic comparative method was used, and the information was generalised into some categories of five characteristic features: climamorphotype (life form, time and method of introduction, level of naturalisation, and distribution into 22 classes of three habitat types according to European Nature Information System (EUNIS. Two assessments of the ecological risk of alien plants were first conducted in Ukraine according to the European methods: the risk of overcoming natural migration barriers and the risk of their impact on the environment. The exposed impact of invasive alien plants on ecosystems has a convertible character; the obtained information confirms a high level of phytobiotic contamination of agricultural habitats in Ukraine. It is necessary to implement European and national documents regarding the legislative and regulative policy on invasive alien species as one of the threats to biotic diversity.

  9. Headwater fish population responses to planting grass filter strips adjacent to channelized agricultural headwater streams

    Science.gov (United States)

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Only a limited amount of information is available on the ecological effects of planting grass filter strips adjacent to channe...

  10. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants.

    Science.gov (United States)

    Zalabák, David; Pospíšilová, Hana; Šmehilová, Mária; Mrízová, Katarína; Frébort, Ivo; Galuszka, Petr

    2013-01-01

    Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. ISOLATION AND CHARACTERIZATION OF CHITINASE GENE FROM THE UNTRADITIONAL PLANT SPECIES

    Directory of Open Access Journals (Sweden)

    Dominika Ďurechová

    2013-02-01

    Full Text Available Round-leaf sundew (Drosera rotundifolia L. from Droseraceae family belongs among a few plant species with strong antifungal potential. It was previously shown that chitinases of carnivorous plant species may play role during the insect prey digestion, when hard chitin skeleton is being decomposed. As many phytopathogenic fungi contain chitin in their cell wall our attention in this work was focused on isolation and in silico characterization of genomic DNA sequence of sundew chitinase gene. Subsequently this gene was fused to strong constitutive CaMV35S promoter and cloned into the plant binary vector pBinPlus and tested in A. tumefaciens LBA 4404 for its stability. Next, when transgenic tobacco plants are obtained, increasing of their antifungal potential will be tested.

  12. Agriculture and food processing

    International Nuclear Information System (INIS)

    Muhammad Lebai Juri

    2003-01-01

    This chapter discuss the application of nuclear technology in agriculture sector. Nuclear Technology has help agriculture and food processing to develop tremendously. Two techniques widely use in both clusters are ionization radiation and radioisotopes. Among techniques for ionizing radiation are plant mutation breeding, SIT and food preservation. Meanwhile radioisotopes use as a tracer for animal research, plant soil relations water sedimentology

  13. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  14. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    International Nuclear Information System (INIS)

    Washington Regulatory and Environmental Services

    2003-01-01

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED)

  15. Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System

    Directory of Open Access Journals (Sweden)

    Ivaylo Sirakov

    2016-11-01

    Full Text Available One of the main challenges in aquaponics is disease control. One possible solution for this is biological control with organisms exerting inhibitory effects on fish and plant pathogens. The aim of this study was to examine the potential of isolating microorganisms that exert an inhibitory effect on both plant and fish pathogens from an established aquaponic system. We obtained 924 isolates on selective King’s B agar and 101 isolates on MRS agar from different compartments of a model aquaponic system and tested them for antagonism against the plant pathogen Pythium ultimum and fish pathogen Saprolegnia parasitica. Overall, 42 isolates were able to inhibit both fungi. Although not yet tested in vivo, these findings open new options for the implementation of biological control of diseases in aquaponics, where plants and fish are cultivated in the same water recirculating system.

  16. Endophytes: exploitation as a tool in plant protection

    Directory of Open Access Journals (Sweden)

    Devanushi Dutta

    2014-10-01

    Full Text Available Endophytes are symptomless fungal or bacterial microorganisms found in almost all living plant species reported so far. They are the plant-associated microbes that form symbiotic association with their host plants by colonizing the internal tissues, which has made them valuable for agriculture as a tool in improving crop performance. Many fungal endophytes produce secondary metabolites such as auxin, gibberellin etc that helps in growth and development of the host plant. Some of these compounds are antibiotics having antifungal, antibacterial and insecticidal properties, which strongly inhibit the growth of other microorganisms, including plant pathogens. This article reviews the endophyte isolated from different plants, mode of endophytic infection and benefits derived by the host plant as a result of endophytism.

  17. Calculation of coal power plant cost on agricultural and material building impact of emission

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Wiku Lulus Widodo

    2016-01-01

    Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)

  18. The numerical computation of seismic fragility of base-isolated Nuclear Power Plants buildings

    International Nuclear Information System (INIS)

    Perotti, Federico; Domaneschi, Marco; De Grandis, Silvia

    2013-01-01

    Highlights: • Seismic fragility of structural components in base isolated NPP is computed. • Dynamic integration, Response Surface, FORM and Monte Carlo Simulation are adopted. • Refined approach for modeling the non-linearities behavior of isolators is proposed. • Beyond-design conditions are addressed. • The preliminary design of the isolated IRIS is the application of the procedure. -- Abstract: The research work here described is devoted to the development of a numerical procedure for the computation of seismic fragilities for equipment and structural components in Nuclear Power Plants; in particular, reference is made, in the present paper, to the case of isolated buildings. The proposed procedure for fragility computation makes use of the Response Surface Methodology to model the influence of the random variables on the dynamic response. To account for stochastic loading, the latter is computed by means of a simulation procedure. Given the Response Surface, the Monte Carlo method is used to compute the failure probability. The procedure is here applied to the preliminary design of the Nuclear Power Plant reactor building within the International Reactor Innovative and Secure international project; the building is equipped with a base isolation system based on the introduction of High Damping Rubber Bearing elements showing a markedly non linear mechanical behavior. The fragility analysis is performed assuming that the isolation devices become the critical elements in terms of seismic risk and that, once base-isolation is introduced, the dynamic behavior of the building can be captured by low-dimensional numerical models

  19. The Role of Different Agricultural Plant Species in Air Pollution

    Science.gov (United States)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  20. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis.

    Science.gov (United States)

    Pinheiro, Eduardo Antonio A; Carvalho, Josiwander Miranda; dos Santos, Diellem Cristina P; Feitosa, André de Oliveira; Marinho, Patrícia Santana B; Guilhon, Giselle Maria Skelding Pinheiro; de Souza, Afonso Duarte L; da Silva, Felipe Moura A; Marinho, Andrey Moacir do R

    2013-01-01

    Bauhinia guianensis is a typical plant in the Amazon region belonging to the family Leguminosea, used by local populations for the treatment of infectious and renal diseases. Previous work on the plant B. guianensis led to the isolation of substances with anti-inflammatory and analgesic activities. Thus, compounds isolated from B. guianensis with antimicrobial activities had not been identified. Given that there is a possibility of biological activity reported for a given plant being found in the endophytic fungi, we decided to isolate endophytic fungi from B. guianensis and test their antimicrobial activities. The alkaloids known as fumigaclavine C and pseurotin A were isolated by column chromatography and identified by 1D and 2D NMR techniques and mass spectrometry. The alkaloids are first reported as broad-spectrum antibacterial agents with good activity.

  1. Seismic isolation floor and vibration control equipment for nuclear power plant

    International Nuclear Information System (INIS)

    Niwa, H.; Fujimoto, S.; Aida, Y.; Miyano, H.

    1996-01-01

    We have developed a seismic isolation floor to improve protection against earthquakes for process computer systems, and a magnetic dynamic damper to reduce the mechanical vibrations of piping systems and pumps in nuclear power plants. Seismic excitation tests of the seismic isolation floor, on which process computer systems were installed, were performed using large earthquake simulators. The test results proved that the seismic isolation floor significantly reduced seismic forces. To control mechanical vibrations, a magnetic dynamic damper was designed using permanent magnets. This magnetic dynamic damper does not require mechanical springs, dampers and supports in the floors and walls of the building. Vibration tests using a rotating machine model confirmed that the magnetic dynamic damper effectively controlled vibrations in such a rotating machine model. (author)

  2. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production

    OpenAIRE

    Weselowski, Brian; Nathoo, Naeem; Eastman, Alexander William; MacDonald, Jacqueline; Yuan, Ze-Chun

    2016-01-01

    Background Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. ...

  3. Plant distribution patterns related to species characteristics and spatial and temporal habitat heterogeneity in a network of ditch banks

    NARCIS (Netherlands)

    Geertsema, W.; Sprangers, J.T.C.M.

    2002-01-01

    In this study we investigated the relationship between the distribution patterns of a number of herbaceous plant species and the isolation and age of habitat patches. The study was conducted for a network of ditch banks in an agricultural landscape in The Netherlands. Thirteen plant species were

  4. A safe inexpensive method to isolate high quality plant and fungal ...

    African Journals Online (AJOL)

    The most commonly used plant DNA isolation methods use toxic and hazardous chemicals (phenol, chloroform), which require special equipment to minimize exposure and may limit their use in certain environments. Commercial DNA extraction kits are convenient and usually safe, but their availability to certain developing ...

  5. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments.

    Science.gov (United States)

    Pearson, Bruce M; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H M

    2015-09-02

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Evaluating the interacting influences of pollination, seed predation, invasive species and isolation on reproductive success in a threatened alpine plant.

    Science.gov (United States)

    Krushelnycky, Paul D

    2014-01-01

    Reproduction in rare plants may be influenced and limited by a complex combination of factors. External threats such as invasive species and landscape characteristics such as isolation may impinge on both pollination and seed predation dynamics, which in turn can strongly affect reproduction. I assessed how patterns in floral visitation, seed predation, invasive ant presence, and plant isolation influenced one another and ultimately affected viable seed production in Haleakalā silverswords (Argyroxiphium sandwicense subsp. macrocephalum) of Hawai'i. Floral visitation was dominated by endemic Hylaeus bees, and patterns of visitation were influenced by floral display size and number of plants clustered together, but not by floral herbivory or nearest flowering neighbor distance. There was also some indication that Argentine ant presence impacted floral visitation, but contradictory evidence and limitations of the study design make this result uncertain. Degree of seed predation was associated only with plant isolation, with the two main herbivores partitioning resources such that one preferentially attacked isolated plants while the other attacked clumped plants; total seed predation was greater in more isolated plants. Net viable seed production was highly variable among individuals (0-55% seed set), and was affected mainly by nearest neighbor distance, apparently owing to low cross-pollination among plants separated by even short distances (>10-20 m). This isolation effect dominated net seed set, with no apparent influence from floral visitation rates, percent seed predation, or invasive ant presence. The measured steep decline in seed set with isolation distance may not be typical of the entire silversword range, and may indicate that pollinators in addition to Hylaeus bees could be important for greater gene flow. Management aimed at maintaining or maximizing silversword reproduction should focus on the spatial context of field populations and outplanting

  7. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs

  8. Radionuclide transfer from soil to agricultural plants: measurements and modelling

    International Nuclear Information System (INIS)

    Sabbarese, C; Terrasi, F.; D'Onofrio, A.D.; Stellato, L.; Lubritto, C.; Ermice, A.; Cotrufo, M.F.

    2002-01-01

    To assess the internal doses to humans from ingestion of radionuclides present in agricultural products it is necessary to know the main processes which determine the transport of radionuclides in the environment (Russel, 1966; Peterson, 1983; IAEA, 1995). The available data, generally, do not reflect natural conditions, and the mechanisms of translocation and mobility of radionuclides within the soil-plant system are still not fully understood (Coughtrey and Thorne, 1983; Fresquez et a., 1998; Krouglov et al., 1997; Frissel, 1992; Roca and Vallejo, 1995; Desmet et al., 1990). The knowledge of the contributions of direct contamination of plant fruits and of the process of root to fruit transfer can improve the understanding of exposure through ingestion and of the mechanisms determining sorption and translocation. Several studies on the relations among specific activities of various radionuclides in different environmental compartments have been performed in the last decades (Coughtrey and Thorne, 1983; Fresquez et al., 1998; Krouglov et al., 1997; Howard et al., 1995; Strand et al., 1994; Konshin, 1992; Frissel, 1992; Alexakhin and Korneev, 1992; Desmet et al., 1990)

  9. DEVELOPMENT OF PIGEON PEA INOCULATED WITH RHIZOBIUM ISOLATED FROM COWPEA TRAP HOST PLANTS

    Directory of Open Access Journals (Sweden)

    SALOMÃO LIMA GUIMARÃES

    2016-01-01

    Full Text Available Pigeon pea is an important protein source grown in several tropical and sub - tropical countries, and is considered a multi - purpose plant that is resistant to the conditions of the Brazilian Cerrado. Among the possible uses for cowpea, its use as a green manure, increasing soil nitrogen content through the association with diazotrophic bacteria, generically known as rhizobia, is noteworthy. The present work aimed to evaluate the efficiency of Rhizobium strains isolated from cowpea plants in the development of pigeon peas cultured in Red Latosol. The experiment was conducted in a greenhouse, using a completely randomized design with seven treatments and four replications. Treatments consisted of inoculation with four Rhizobium strains (MT8, MT15, MT16, and MT23 and one commercial inoculant comprising Bradyrhizobium spp. strains BR 2801 and BR 2003. There were two controls, one absolute (without inoculation or nitrogen fertilization and the other with nitrogen fertilization. Each experimental plot consisted of an 8 - dm 3 vase containing three plants. Analyzed variables included plant height, SPAD index, number and dry weight of nodules, and shoot and root dry masses. Pigeon peas responded significantly to inoculation treatment, since all the plants inoculated with Rhizobium strains isolated from cowpea strains showed results similar to plants in the nitrogen control and commercial inoculant treatments. This demonstrates a favorable plant – bacteria interaction, which can be utilized as an alternative nitrogen source for pigeon peas.

  10. Shaping Pedagogical Content Knowledge for Experienced Agriculture Teachers in the Plant Sciences: A Grounded Theory

    Science.gov (United States)

    Rice, Amber H.; Kitchel, Tracy

    2017-01-01

    This grounded theory study explored the pedagogical content knowledge (PCK) of experienced agriculture teachers in the plant sciences. The most emergent phenomenon to surface from the data was the influence of beliefs on participants' PCK. This central phenomenon became the cornerstone for the model of what was shaping experienced agriculture…

  11. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban farming

    Science.gov (United States)

    Greenhouse cultivation has evolved from simple covered rows of open-fields crops to highly sophisticated controlled environment agriculture (CEA) facilities that projected the image of plant factories for urban farming. The advances and improvements in CEA have promoted the scientific solutions for ...

  12. The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants.

    Science.gov (United States)

    Schlegelová, J; Babák, V; Holasová, M; Dendis, M

    2008-01-01

    Isolates from the "farm to fork" samples (182 isolates from 2779 samples) were examined genotypically (icaAB genes) and phenotypically (in vitro biofilm formation, typical growth on Congo red agar; CRA) with the aim to assess the risk of penetration of virulent strains of Staphylococcus epidermidis into the food chain. The contamination of meat and milk products was significantly higher in comparison with raw materials. Contamination of contact surfaces in the meat-processing plants was significantly lower than that of contact surfaces in the dairy plants. The ica genes (which precondition the biofilm formation) were concurrently detected in 20 isolates that also showed a typical growth on CRA. Two ica operon-negative isolates produced biofilm in vitro but perhaps by an ica-independent mechanism. The surfaces in the dairy plants and the milk products were more frequently contaminated with ica operon-positive strains (2.3 and 1.2 % samples) than the other sample types (0-0.6 % samples).

  13. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services (WRES)

    2004-10-25

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  14. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    International Nuclear Information System (INIS)

    2004-01-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  15. Florally rich habitats reduce insect pollination and the reproductive success of isolated plants.

    Science.gov (United States)

    Evans, Tracie M; Cavers, Stephen; Ennos, Richard; Vanbergen, Adam J; Heard, Matthew S

    2017-08-01

    Landscape heterogeneity in floral communities has the potential to modify pollinator behavior. Pollinator foraging varies with the diversity, abundance, and spatial configuration of floral resources. However, the implications of this variation for pollen transfer and ultimately the reproductive success of insect pollinated plants remains unclear, especially for species which are rare or isolated in the landscape. We used a landscape-scale experiment, coupled with microsatellite genotyping, to explore how the floral richness of habitats affected pollinator behavior and pollination effectiveness. Small arrays of the partially self-compatible plant Californian poppy ( Eschscholzia californica) were introduced across a landscape gradient to simulate rare, spatially isolated populations. The effects on pollinator activity, outcrossing, and plant reproduction were measured. In florally rich habitats, we found reduced pollen movement between plants, leading to fewer long-distance pollination events, lower plant outcrossing, and a higher incidence of pollen limitation. This pattern indicates a potential reduction in per capita pollinator visitation, as suggested by the lower activity densities and richness of pollinators observed within florally rich habitats. In addition, seed production reduced by a factor of 1.8 in plants within florally rich habitats and progeny germination reduced by a factor of 1.2. We show this to be a consequence of self-fertilization within the partially self-compatible plant, E. californica . These findings indicate that locally rare plants are at a competitive disadvantage within florally rich habitats because neighboring plant species disrupt conspecific mating by co-opting pollinators. Ultimately, this Allee effect may play an important role in determining the long-term persistence of rarer plants in the landscape, both in terms of seed production and viability. Community context therefore requires consideration when designing and

  16. Selection, isolation, and identification of fungi for bioherbicide production

    Directory of Open Access Journals (Sweden)

    Angélica Rossana Castro de Souza

    Full Text Available Abstract Production of a bioherbicide for biological control of weeds requires a series of steps, from selection of a suitable microbial strain to final formulation. Thus, this study aimed to select fungi for production of secondary metabolites with herbicidal activity using biological resources of the Brazilian Pampa biome. Phytopathogenic fungi were isolated from infected tissues of weeds in the Pampa biome. A liquid synthetic culture medium was used for production of metabolites. The phytotoxicity of fungal metabolites was assessed via biological tests using the plant Cucumis sativus L., and the most promising strain was identified by molecular analysis. Thirty-nine fungi were isolated, and 28 presented some phytotoxic symptoms against the target plant. Fungus VP51 belonging to the genus Diaporthe showed the most pronounced herbicidal activity. The Brazilian Pampa biome is a potential resource for the development of new and sustainable chemical compounds for modern agriculture.

  17. Radiation technology in agriculture

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2013-01-01

    The Department of Atomic Energy through its research, development and deployment activities in nuclear science and technology, has been contributing towards enhancing the production of agricultural commodities and their preservation. Radiations and radioisotopes are used in agricultural research to induce genetic variability in crop plants to develop improved varieties, to manage insect pests, monitor fate and persistence of pesticides, to study fertilizer use efficiency and plant micronutrient uptake and also to preserve agricultural produce. Use of radiation and radioisotopes in agriculture which is often referred to as nuclear agriculture is one of the important fields of peaceful applications of atomic energy for societal benefit and BARC has contributed significantly in this area. 41 new crop varieties developed at BARC have been released and Gazette notified by the MoA, GOI for commercial cultivation and are popular among the farming community and grown through out the country

  18. Endophytic colonization of tomato plants by the biological control agent Clonostachys rosea

    DEFF Research Database (Denmark)

    Høyer, Anna Kaja; Jørgensen, Hans Jørgen Lyngs; Amby, Daniel Buchvaldt

    Fungal endophytes live naturally inside plants without causing symptoms. On the contrary, they can promote plant growth and increase tolerance to abiotic and biotic stress. These beneficial effects have increased the agricultural interest for exploitation of fungal isolates with an endophytic life...... controls seed- and soil-borne diseases and can furthermore promote plant growth. However, it is not known whether IK726 can colonize plants internally and therefore, the objective of the present study was to examine the possibility of an endophytic life-style of IK726 in tomato. Tomato seeds were sown...

  19. A safe inexpensive method to isolate high quality plant and fungal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... quality DNA from plant and fungal species. This method uses potassium acetate to remove proteins and polysaccharides in an SDS extraction buffer. Further DNA purification is achieved using a low salt. CTAB treatment. This SDS/CTAB protocol was used to isolate high quality genomic DNA subject to.

  20. A dynamic compartment mode for evaluating the contamination level of tritium in agricultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Lee, Han Soo; Kang, Hee Seok; Jun, In; Choi, Yong Ho; Lee, Chang Woo

    2006-03-15

    This report describes a dynamic compartment model for evaluating the tritium level in agricultural plants after a short-term exposure to HTO vapor and its comparison with experimental results to test the predictive accuracy of the model. The model uses a time-dependent growth equation of a plant so that it can predict the contamination level of tritium depending on the stage of the growth of the plant, which is a major difference from some other compartment models using a constant crop yield. The model is able to calculate the time variable concentrations of the compartments representing the atmosphere, soil, and plants of four categories including leafy vegetables, root vegetables, grains, and tuber plants. Experimental results include the tissue free water tritium (TFWT) and the organically bound tritium (OBT) concentration of rice, soybean, cabbage, and radish exposed to HTO vapor for 1 h in the daytime at different growth stages. The model predictions showed that the model could simulate well not only the time-dependent tritium concentration of the plants but also the effect of the growth stage of the plant at the exposure time. Comparison of the model predictions with the experimental results suggested that the model could predict reasonably well the observed TFWT and OBT concentrations of the plants considered.

  1. Isolation of viruses from drinking water at the Point-Viau water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Payment, P.

    1981-04-01

    Viruses were isolated from every sample of raw (100 L) and treated (1000 L) water collected at a water treatment plant drawing sewage-contaminated river water. Few plaque-forming isolates were formed but cytopathogenic viruses were isolated as frequently in drinking water as in raw water. In drinking water some samples contained more than 1 cytopathogenic unit per litre, but most contained 1-10/100 L. These viruses had not been inactivated or removed by prechlorination, flocculation, filtration, ozonation, and postchlorination. There were no coliforms present and a residual chlorine level had been maintained. Poliovirus type 1 was a frequent isolate but many isolates were nonpoliovirus. The presence of these viruses in drinking water raises questions about the efficacy of some water treatment processes to remove viruses from polluted water.

  2. ISOLATION AND CHARACTERIZATION OF CELLULOSE AND LIGNIN FROM STEAM-EXPLODED LIGNOCELLULOSIC BIOMASS

    OpenAIRE

    Maha M. Ibrahim; Foster A. Agblevor; Waleed K. El-Zawawy

    2010-01-01

    The isolation of cellulose from different lignocellulosic biomass sources such as corn cob, banana plant, cotton stalk, and cotton gin waste, was studied using a steam explosion technology as a pre-treatment process for different times followed by alkaline peroxide bleaching. The agricultural residues were steam-exploded at 220 ºC for 1-4 min for the corn cob, 2 and 4 min for the banana plant, 3-5 min for the cotton gin waste, and for 5 min for the cotton stalk. The steamed fibers were water ...

  3. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    Science.gov (United States)

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  4. Cancer Inhibitors Isolated from an African Plant | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Molecular Targets Development Program is seeking parties interested in collaborative research to further develop, evaluate, or commercialize cancer inhibitors isolated from the African plant Phyllanthus englerii. The technology is also available for exclusive or non-exclusive licensing.

  5. Specificity of DNA import into isolated mitochondria from plants and mammals

    Directory of Open Access Journals (Sweden)

    Koulintchenko M. V.

    2014-01-01

    Full Text Available Aim. Investigation of different features of DNA import into plant and human mitochondria, for a better understanding of mitochondrial genetics and generation of biotechnological tools. Methods. DNA up-take experiments with isolated plant mitochondria, using as substrates various sequences associated or not with the specific terminal inverted repeats (TIRs present at each end of the plant mitochondrial linear plasmids. Results. It was established that the DNA import efficiency has a non-linear dependence on DNA size. It was shown that import into plant mitochondria of DNA molecules of «medium» sizes, i. e. between 4 and 7 kb, barely has any sequence specificity: neither TIRs from the 11.6 kb Brassica plasmid, nor TIRs from the Zea mays S-plasmids influenced DNA import into Solanum tuberosum mitochondria. Conclusions. The data obtained support the hypothesis about species-specific import mechanism operating under the mitochondrial linear plasmids transfer into plant mitochondria.

  6. [Effects of agricultural practices on community structure of arbuscular mycorrhizal fungi in agricultural ecosystem: a review].

    Science.gov (United States)

    Sheng, Ping-Ping; Li, Min; Liu, Run-Jin

    2011-06-01

    Arbuscular mycorrhizal (AM) fungi are rich in diversity in agricultural ecosystem, playing a vital role based on their unique community structure. Host plants and environmental factors have important effects on AM fungal community structure, so do the agricultural practices which deserve to pay attention to. This paper summarized the research advances in the effects of agricultural practices such as irrigation, fertilization, crop rotation, intercropping, tillage, and pesticide application on AM fungal community structure, analyzed the related possible mechanisms, discussed the possible ways in improving AM fungal community structure in agricultural ecosystem, and put forward a set of countermeasures, i.e., improving fertilization system and related integrated techniques, increasing plant diversity in agricultural ecosystem, and inoculating AM fungi, to enhance the AM fungal diversity in agricultural ecosystem. The existing problems in current agricultural practices and further research directions were also proposed.

  7. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.

    Science.gov (United States)

    Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B

    2017-11-01

    Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production.

    Science.gov (United States)

    Weselowski, Brian; Nathoo, Naeem; Eastman, Alexander William; MacDonald, Jacqueline; Yuan, Ze-Chun

    2016-10-18

    Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. P. polymyxa CR1 was isolated from degrading corn roots from southern Ontario, Canada. It was shown to possess in vitro antagonistic activities against the common plant pathogens Phytophthora sojae P6497 (oomycete), Rhizoctonia solani 1809 (basidiomycete fungus), Cylindrocarpon destructans 2062 (ascomycete fungus), Pseudomonas syringae DC3000 (bacterium), and Xanthomonas campestris 93-1 (bacterium), as well as Bacillus cereus (bacterium), an agent of food-borne illness. P. polymyxa CR1 enhanced growth of maize, potato, cucumber, Arabidopsis, and tomato plants; utilized atmospheric nitrogen and insoluble phosphorus; produced the phytohormone indole-3-acetic acid (IAA); and degraded and utilized the major components of lignocellulose (lignin, cellulose, and hemicellulose). P. polymyxa CR1 has multiple beneficial traits that are relevant to sustainable agriculture and the bio-economy. This strain could be developed for field application in order to control pathogens, promote plant growth, and degrade crop residues after harvest.

  9. Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina.

    Science.gov (United States)

    Russo, María L; Pelizza, Sebastián A; Cabello, Marta N; Stenglein, Sebastián A; Vianna, María F; Scorsetti, Ana C

    2016-01-01

    Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires and Entre Ríos (Argentina) two areas were selected for sampling corn and four for soybean. Leaf, stem and root samples were surface-sterilized, cut into 1cm(2) pieces using a sterile scalpel and aseptically transferred to plates containing potato dextrose agar plus antibiotics. The species were identified using both morphological and molecular data. Fungal endophyte colonization in soybean plants was influenced by tissue type and varieties whereas in corn plants only by tissue type. A greater number of endophytes were isolated from stem tissues than from leaves and root tissues in both species of plants. The most frequently isolated species in all soybean cultivars was Fusarium graminearum and the least isolated one was Scopulariopsis brevicaulis. Furthermore, the most frequently isolated species in corn plants was Aspergillus terreus whereas the least isolated one was Aspergillus flavus. These results could be relevant in the search for endophytic fungi isolates that could be of interest in the control of agricultural pests. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Biotechnological potential of endophytic actinomycetes associated with Asteraceae plants: isolation, biodiversity and bioactivities.

    Science.gov (United States)

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida

    2014-04-01

    Endophytic actinomycetes from five Asteraceae plants were isolated and evaluated for their bioactivities. From Parthenium hysterophorus, Ageratum conyzoides, Sonchus oleraceus, Sonchus asper and Hieracium canadense, 42, 45, 90, 3, and 2 isolates, respectively, were obtained. Of the isolates, 86 (47.2 %) showed antimicrobial activity. Majority of the isolates were recovered from the roots (n = 127, 69.7 %). The dominant genus was Streptomyces (n = 96, 52.7 %), while Amycolatopsis, Pseudonocardia, Nocardia and Micromonospora were also recovered. Overall, 36 of the 86 isolates were significantly bioactivity while 18 (20.9 %) showed strong bioactivity. In total, 52.1 and 66.6 % showed potent cytotoxicity and antioxidant activities. The LC50 for 15 strains was <20 μg/ml. Compared to the ascorbate standard (EC50 0.34 μg/ml), all isolates gave impressive results with notable EC50 values of 0.65, 0.67, 0.74 and 0.79 μg/ml.

  11. WIPP conceptual design report. Addendum G. Accident analysis for Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Shefelbine, H.C.; Metcalf, J.H.

    1977-06-01

    The types of accidents or risks pertinent to the Waste Isolation Pilot Plant (WIPP) are presented. Design features addressing these risks are discussed. Also discussed are design features that protect the public

  12. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China.

    Science.gov (United States)

    Qin, Sheng; Li, Jie; Chen, Hua-Hong; Zhao, Guo-Zhen; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2009-10-01

    Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds.

  13. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science.

    Science.gov (United States)

    Tan, Dun-Xian; Hardeland, Rudiger; Manchester, Lucien C; Korkmaz, Ahmet; Ma, Shuran; Rosales-Corral, Sergio; Reiter, Russel J

    2012-01-01

    The presence of melatonin in plants is universal. Evidence has confirmed that a major portion of the melatonin is synthesized by plants themselves even though a homologue of the classic arylalkylamine N-acetyltransferase (AANAT) has not been identified as yet in plants. Thus, the serotonin N-acetylating enzyme in plants may differ greatly from the animal AANAT with regard to sequence and structure. This would imply multiple evolutionary origins of enzymes with these catalytic properties. A primary function of melatonin in plants is to serve as the first line of defence against internal and environmental oxidative stressors. The much higher melatonin levels in plants compared with those found in animals are thought to be a compensatory response by plants which lack means of mobility, unlike animals, as a means of coping with harsh environments. Importantly, remarkably high melatonin concentrations have been measured in popular beverages (coffee, tea, wine, and beer) and crops (corn, rice, wheat, barley, and oats). Billions of people worldwide consume these products daily. The beneficial effects of melatonin on human health derived from the consumption of these products must be considered. Evidence also indicates that melatonin has an ability to increase the production of crops. The mechanisms may involve the roles of melatonin in preservation of chlorophyll, promotion of photosynthesis, and stimulation of root development. Transgenic plants with enhanced melatonin content could probably lead to breakthroughs to increase crop production in agriculture and to improve the general health of humans.

  14. The volumes of accumulation of Cs-137 and Sr-90 per species and variety of agricultural plants

    International Nuclear Information System (INIS)

    Bogdevich, I.M.; Shmigelskaya, I.D.; Efimova, I.A.; Putyatin, Yu.V.

    2001-01-01

    The accumulation of radionuclides in various species and varieties of agricultural plants on the same conditions of soil contaminated by radionuclides and agrochemical exponents can differ hundred times. The differences in accumulation of Cs-137 and Sr-90 are less -up to 3-4 times. The article grades the basic plants cultivated on contaminated soils per volume of Cs-137 and Sr-90 as well as per crop yield. It is possible to recommend selecting the species and varieties of agricultural plants having minimal capabilities of accumulation as a simple economically justified way of reducing the contamination of agricultural produce in general. The solving of problems connected with agriculture on the contaminated territory occupies one of the leading places in the complex of actions on the consequences of Chernobyl disaster liquidation. The researches revealed that 70% of collective dose is formed by the radionuclides receipt into a human organism with food. Eventually radionuclides contents in agricultural production reduce. This process is more expressed for Cs-137 caused by protective actions realization as well as gradually fixing of Cs-137 in soils due to natural factors of decay and fixation. Sr-90 mobility and its availability to plants is not reduced, even tends to increase. Biological features of plants reveal in their different ability to absorb nutritional elements from soil. Because of that radionuclides availability and amount of their including in food chains essentially depend on the level of contra actions applied, natural conditions (soil types, granulometric structure, humidifying mode, agrochemical conditions) and features of crops. The action of Cs-137 and Sr-90 in the system soil-plant has a range of distinctive features. At same density of soil contamination Sr-90 penetration into plants much higher than Cs-137 one. The cause is in difference of radionuclides contents forms in soils. Cs-137 is strongly fixed in soil, but Sr-90 is in exchange form

  15. PLANT PROTECTION PRODUCT RESIDUES IN AGRICULTURAL PRODUCTS OF SLOVENE ORIGIN FOUND IN 2008

    Directory of Open Access Journals (Sweden)

    Helena BAŠA ČESNIK

    2012-01-01

    Full Text Available In the year 2008, 166 apple, bean, carrot, cucumber, lettuce, pear, potato and spinach samples from Slovene producers were analysed for plant protection product residues. The samples were analysed for the presence of 158 different active compounds using three analytical methods. In two samples (1.2% exceeded maximum residue levels (MRLs were determined which is better than the results of the monitoring of pesticide residues in the products of plant origin in the 27 European Union, Member States (EU MS and 2 European Free Trade Association (EFTA States: Norway and Iceland in 2008 (2.2%. The most frequently found active substance in agricultural products was dithiocarbamates. Products which contained 4 or more active substances per sample were apples and pears.

  16. In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases.

    Science.gov (United States)

    Panghal, Manju; Kaushal, Vivek; Yadav, Jaya P

    2011-05-20

    Suppression of immune system in treated cancer patients may lead to secondary infections that obviate the need of antibiotics. In the present study, an attempt was made to understand the occurrence of secondary infections in immuno-suppressed patients along with herbal control of these infections with the following objectives to: (a) isolate the microbial species from the treated oral cancer patients along with the estimation of absolute neutrophile counts of patients (b) assess the in vitro antimicrobial activity medicinal plants against the above clinical isolates. Blood and oral swab cultures were taken from 40 oral cancer patients undergoing treatment in the radiotherapy unit of Regional Cancer Institute, Pt. B.D.S. Health University,Rohtak, Haryana. Clinical isolates were identified by following general microbiological, staining and biochemical methods. The absolute neutrophile counts were done by following the standard methods. The medicinal plants selected for antimicrobial activity analysis were Asphodelus tenuifolius Cav., Asparagus racemosus Willd., Balanites aegyptiaca L., Cestrum diurnum L., Cordia dichotoma G. Forst, Eclipta alba L., Murraya koenigii (L.) Spreng. , Pedalium murex L., Ricinus communis L. and Trigonella foenum graecum L. The antimicrobial efficacy of medicinal plants was evaluated by modified Kirby-Bauer disc diffusion method. MIC and MFC were investigated by serial two fold microbroth dilution method. Prevalent bacterial pathogens isolated were Staphylococcus aureus (23.2%), Escherichia coli (15.62%), Staphylococcus epidermidis (12.5%), Pseudomonas aeruginosa (9.37%), Klebsiella pneumonia (7.81%), Proteus mirabilis (3.6%), Proteus vulgaris (4.2%) and the fungal pathogens were Candida albicans (14.6%), Aspergillus fumigatus (9.37%). Out of 40 cases, 35 (87.5%) were observed as neutropenic. Eight medicinal plants (A. tenuifolius, A. racemosus, B. aegyptiaca, E. alba, M. koenigii, P. murex R. communis and T. foenum graecum) showed

  17. 7 CFR 302.2 - Movement of plants and plant products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of plants and plant products. 302.2 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DISTRICT OF COLUMBIA; MOVEMENT OF PLANTS AND PLANT PRODUCTS § 302.2 Movement of plants and plant products. Inspection or documentation of the plant health status of...

  18. Effects of Phytophthora cinnamomi isolate, inoculum delivery method, flood, and drought on vigor, disease severity and mortality of blueberry plants

    Science.gov (United States)

    Four studies evaluated the effect of Phytophthora cinnamomi isolates, inoculum delivery methods, and flood and drought conditions on vigor, disease severity scores, and survival of blueberry plants grown in pots in the greenhouse. Phytophthora cinnamomi isolates were obtained from blueberry plants ...

  19. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  20. Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture

    Science.gov (United States)

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-01-01

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation. PMID:23712218

  1. Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture.

    Science.gov (United States)

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-05-10

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.

  2. The waste isolation pilot plant regulatory compliance program

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Kehrman, R.F.

    1996-01-01

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation's transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  3. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil

    NARCIS (Netherlands)

    Weid, von der I.; Paiva, E.; Nobrega, A.; Elsas, van J.D.; Seldin, L.

    2000-01-01

    Paenibacillus polymyxa populations present in the rhizosphere of maize (cultivar BR-201) planted in Cerrado soil were investigated in order to assess their diversity at four stages of plant growth. A total of 67 strains were isolated and all strains were identified as P. polymyxa by classical

  4. Survey of past base isolation applications in nuclear power plants and challenges to industry/regulatory acceptance

    International Nuclear Information System (INIS)

    Malushte, S.R.; Whittaker, A.S.

    2005-01-01

    Seismic base isolation provides many benefits that can facilitate the standardization of future nuclear power plant structures and equipment while reducing the initial/life-cycle cost and construction schedule. This paper presents a survey of past seismic base isolation applications and studies related to nuclear applications and provides a discussion of the challenges that need to be overcome to gain industry and regulatory acceptance for deployment in future US nuclear power plants. Issues related to design, codes/standards/regulations, procurement, and construction, have been identified. (authors)

  5. Method for assessment of the technical potential of the plant agricultural waste suitable for energy purposes in Bulgaria

    International Nuclear Information System (INIS)

    Georgiev, V.

    2004-01-01

    A method for assessment of technical potential of quantitatively important plant agriculture waste; straw from wheat and barley; corn stalks; sunflower stalks and heads; tobacco stalks; orchard prunings and vineyard prunings suitable for energy purposes for Bulgarian conditions is developed. Data for assessment of the technical potential for 2002 using this method are presented. A comparison between technical potential of mentioned wastes, final energy consumption in agriculture and all branches of Bulgarian economy for 2002 is made. (author)

  6. Selected fault testing of electronic isolation devices used in nuclear power plant operation

    International Nuclear Information System (INIS)

    Villaran, M.; Hillman, K.; Taylor, J.; Lara, J.; Wilhelm, W.

    1994-05-01

    Electronic isolation devices are used in nuclear power plants to provide electrical separation between safety and non-safety circuits and systems. Major fault testing in an earlier program indicated that some energy may pass through an isolation device when a fault at the maximum credible potential is applied in the transverse mode to its output terminals. During subsequent field qualification testing of isolators, concerns were raised that the worst case fault, that is, the maximum credible fault (MCF), may not occur with a fault at the maximum credible potential, but rather at some lower potential. The present test program investigates whether problems can arise when fault levels up to the MCF potential are applied to the output terminals of an isolator. The fault energy passed through an isolated device during a fault was measured to determine whether the levels are great enough to potentially damage or degrade performance of equipment on the input (Class 1E) side of the isolator

  7. Determination of Effective Criteria for location Selection of WPC Plants from agricultural residues in Iran by AHP Technique

    Directory of Open Access Journals (Sweden)

    hasan alizadeh

    2017-02-01

    Full Text Available This study was aimed at determining the effective criteria for location selection of WPC Plants from agricultural residues in Iran. For this purpose, after review and studies papers and books, Six criteria" products and materials, regulations, technical and human, economic, infrastructure and environmental and also 30 sub-criteria were identified. The priority rates of these criteria and sub-criteria were evaluated by AHP technique. The results indicated that among 30 effective sub-criteria in location selection of the WPC plants from agricultural residues, amount of wastes supply (0.087, continuity of wastes supply, cost of wastes supply, amount of sales and export, granted facilities and less Hazards for the environment and forest had the highest priorities, which were rated as 0.071, 0.067, 0.065, 0.064 and 0.062 respectively.

  8. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts.

    Directory of Open Access Journals (Sweden)

    Julio Miguel Grandez-Rios

    Full Text Available Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin.

  9. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Phenotypic and genotypic characteristics of Shiga toxin-producing Escherichia coli isolated from surface waters and sediments in a Canadian urban-agricultural landscape

    Directory of Open Access Journals (Sweden)

    Stephanie eNadya

    2016-04-01

    Full Text Available A hydrophobic grid membrane filtration – Shiga toxin immunoblot method was used to examine the prevalence of Shiga toxin-producing Escherichia coli (STEC in four watersheds located in the Lower Mainland of British Columbia, Canada, a region characterized by rapid urbanization and intensive agricultural activity. STEC were recovered from 21.6, 23.2, 19.5 and 9.2 % of surface water samples collected monthly from five sites in each watershed over a period of one year. Overall prevalence was subject to seasonal variation however, ranging between 13.3 % during fall months and 34.3 % during winter months. STEC were also recovered from 23.8 % of sediment samples collected in one randomly selected site. One hundred distinct STEC isolates distributed among 29 definitive and 4 ambiguous or indeterminate serotypes were recovered from water and sediments, including isolates from Canadian priority serogroups O157 (3, O26 (4, O103 (5 and O111 (7. Forty seven isolates were further characterized by analysis of whole genome sequences to detect Shiga toxin gene (stx 1 and stx 2, intimin gene (eaeA allelic variants and acquired virulence factors. These analyses collectively showed that surface waters from the region support highly diverse STEC populations that include strains with virulence factors commonly associated with human pathotypes. The present work served to characterize the microbiological hazard implied by STEC to support future assessments of risks to public health arising from non-agricultural and agricultural uses of surface water resources in the region.

  11. Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase.

    Directory of Open Access Journals (Sweden)

    Chrysoula Spanou

    Full Text Available Legumes and the polyphenolic compounds present in them have gained a lot of interest due to their beneficial health implications. Dietary polyphenolic compounds, especially flavonoids, exert antioxidant properties and are potent inhibitors of xanthine oxidase (XO activity. XO is the main contributor of free radicals during exercise but it is also involved in pathogenesis of several diseases such as vascular disorders, cancer and gout. In order to discover new natural, dietary XO inhibitors, some polyphenolic fractions and pure compounds isolated from two legume plant extracts were tested for their effects on XO activity. The fractions isolated from both Vicia faba and Lotus edulis plant extracts were potent inhibitors of XO with IC(50 values range from 40-135 µg/mL and 55-260 µg/mL, respectively. All the pure polyphenolic compounds inhibited XO and their K(i values ranged from 13-767 µM. Ten of the compounds followed the non competitive inhibitory model whereas one of them was a competitive inhibitor. These findings indicate that flavonoid isolates from legume plant extracts are novel, natural XO inhibitors. Their mode of action is under investigation in order to examine their potential in drug design for diseases related to overwhelming XO action.

  12. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    Science.gov (United States)

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  13. The plant breeding industry after pure line theory: Lessons from the National Institute of Agricultural Botany.

    Science.gov (United States)

    Berry, Dominic

    2014-06-01

    In the early twentieth century, Wilhelm Johannsen proposed his pure line theory and the genotype/phenotype distinction, work that is prized as one of the most important founding contributions to genetics and Mendelian plant breeding. Most historians have already concluded that pure line theory did not change breeding practices directly. Instead, breeding became more orderly as a consequence of pure line theory, which structured breeding programmes and eliminated external heritable influences. This incremental change then explains how and why the large multi-national seed companies that we know today were created; pure lines invited standardisation and economies of scale that the latter were designed to exploit. Rather than focus on breeding practice, this paper examines the plant varietal market itself. It focusses upon work conducted by the National Institute of Agricultural Botany (NIAB) during the interwar years, and in doing so demonstrates that, on the contrary, the pure line was actually only partially accepted by the industry. Moreover, claims that contradicted the logic of the pure line were not merely tolerated by the agricultural geneticists affiliated with NIAB, but were acknowledged and legitimised by them. The history of how and why the plant breeding industry was transformed remains to be written. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Agricultural research conducted after Fukushima Nuclear Power Plant accident. An approach integrating all of the departments and facilities in Graduate School of Agricultural and Life Sciences, the University of Tokyo

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2012-01-01

    After Fukushima nuclear power plant accident, more than 40 academic staffs at Graduate School of Agricultural and Life Sciences, The Univ. of Tokyo, have been conducted agricultural research integrating all of the departments and facilities. They were divided into several groups, such as grain, animal stock, fishery, trees, wild lives, etc. The agricultural research is highly related to nature itself; therefore, cooperative research gathering several kinds of researchers is needed. For example, to analyze the radioactive accumulation in rice, not only rice breeding researcher but also soil researcher, water management researcher, etc. are needed to discuss the movement or pathway of radioactive nuclides in the field. We found that the fallout was adsorbed at the surface of anything expanded and exposed to the air at the time of the accident, such as soil surface, plant leaves, tree trunks, etc. The adsorption comes stronger with time so that the radioactivity in soil does not move downward any more after several months, in spite of much rain. In the case of plants, the radioactivity still remains as dots on the surface of the tissue and it is very difficult to remove the nuclides even by washing with acids. Mushrooms were found to accumulate high radioactivity, not only the fallout from Fukushima's accident but also the fallout in 1960's after nuclear test bomb. (author)

  15. The Waste Isolation Pilot Plant Performance Assessment Program

    International Nuclear Information System (INIS)

    Myers, J.; Coons, W.E.; Eastmond, R.; Morse, J.; Chakrabarti, S.; Zurkoff, J.; Colton, I.D.; Banz, I.

    1986-01-01

    The Waste Isolation Pilot Plant (WIPP) Performance Assessment Program involves a comprehensive analysis of the WIPP project with respect to the recently finalized Environmental Protection Agency regulations regarding the long-term geologic isolation of radioactive wastes. The performance assessment brings together the results of site characterization, underground experimental, and environmental studies into a rigorous determination of the performance of WIPP as a disposal system for transuranic radioactive waste. The Program consists of scenario development, geochemical, hydrologic, and thermomechanical support analyses and will address the specific containment and individual protection requirements specified in 40 CFR 191 sub-part B. Calculated releases from these interrelated analyses will be reported as an overall probability distribution of cumulative release resulting from all processes and events occurring over the 10,000 year post-closure period. In addition, results will include any doses to the public resulting from natural processes occurring over the 1,000 year post-closure period. The overall plan for the WIPP Performance Assessment Program is presented along with approaches to issues specific to the WIPP project

  16. Draft Genome Sequence of the Plant Growth–Promoting Pseudomonas punonensis Strain D1-6 Isolated from the Desert Plant Erodium hirtum in Jordan

    KAUST Repository

    Lafi, Feras Fawzi

    2017-01-13

    Pseudomonas punonensis strain D1-6 was isolated from roots of the desert plant Erodium hirtum, near the Dead Sea in Jordan. The genome of strain D1-6 reveals several key plant growth-promoting and herbicide-resistance genes, indicating a possible specialized role for this endophyte.

  17. Draft Genome Sequence of the Plant Growth–Promoting Pseudomonas punonensis Strain D1-6 Isolated from the Desert Plant Erodium hirtum in Jordan

    KAUST Repository

    Lafi, Feras Fawzi; AL Bladi, Maha Lafi Saleh; Salem, Nida M.; Al-Banna, Luma; Alam, Intikhab; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2017-01-01

    Pseudomonas punonensis strain D1-6 was isolated from roots of the desert plant Erodium hirtum, near the Dead Sea in Jordan. The genome of strain D1-6 reveals several key plant growth-promoting and herbicide-resistance genes, indicating a possible specialized role for this endophyte.

  18. Listeria monocytogenes Isolates Carrying Virulence-Attenuating Mutations in Internalin A Are Commonly Isolated from Ready-to-Eat Food Processing Plant and Retail Environments.

    Science.gov (United States)

    VAN Stelten, A; Roberts, A R; Manuel, C S; Nightingale, K K

    2016-10-01

    Listeria monocytogenes is a human foodborne pathogen that may cause an invasive disease known as listeriosis in susceptible individuals. Internalin A (InlA; encoded by inlA) is a virulence factor that facilitates crossing of host cell barriers by L. monocytogenes . At least 19 single nucleotide polymorphisms (SNPs) in inlA that result in a premature stop codon (PMSC) have been described worldwide. SNPs leading to a PMSC in inlA have been shown to be causally associated with attenuated virulence. L. monocytogenes pathogens carrying virulence-attenuating (VA) mutations in inlA have been commonly isolated from ready-to-eat (RTE) foods but rarely have been associated with human disease. This study was conducted to determine the prevalence of VA SNPs in inlA among L. monocytogenes from environments associated with RTE food production and handling. More than 700 L. monocytogenes isolates from RTE food processing plant (n = 409) and retail (n = 319) environments were screened for the presence of VA SNPs in inlA. Overall, 26.4% of isolates from RTE food processing plant and 32.6% of isolates from retail environments carried a VA mutation in inlA. Food contact surfaces sampled at retail establishments were significantly (P < 0.0001) more likely to be contaminated by a L. monocytogenes isolate carrying a VA mutation in inlA (56% of 55 isolates) compared with nonfood contact surfaces (28% of 264 isolates). Overall, a significant proportion of L. monocytogenes isolated from RTE food production and handling environments have reduced virulence. These data will be useful in the revision of current and the development of future risk assessments that incorporate strain-specific virulence parameters.

  19. Characterization of Antimicrobial Resistance of Listeria monocytogenes Strains Isolated from a Pork Processing Plant and Its Respective Meat Markets in Southern China

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei

    2016-01-01

    A total of 78 Listeria monocytogenes isolates from a pork processing plant and the respective meat markets in southern China were examined. This number includes 60 isolates from pork at markets, 5 from cooked pork products at markets, 10 from pork at a processing plant, and 3 from food......, ampicillin/sulbactam, imipenem, ciprofloxacin, levofloxacin, trimethoprim/sulfamethoxazole, and vancomycin. Two isolates were resistant to five antimicrobials. Twelve strains carried tet(M) and located on Tn916. PFGE analysis revealed genetic heterogeneity among individual serotypes. Two predominant PFGE...... types were found persistent from the processing plant to markets indicating that these two types of isolates were able to survive under environmental adverse conditions from the processing plant to markets, which need to be monitored. Compared to samples from the pork processing plant, the prevalence of...

  20. A model Apparatus for Isolation of Volatile Oils from Various Plant Materials

    Directory of Open Access Journals (Sweden)

    Mahdi T. AI-Kaisey

    2018-02-01

    The present paper givas a detailed description of apparatus which were sutable for isola.tion the lighter and tile heavier u.('-m water volatile oils fronl differenet plant materials. Meanwhile tbe purity of tile concentrates were ex lrined by g-aS liquid chromato graphy( GLe.

  1. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability

    Science.gov (United States)

    Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management. PMID:28141849

  2. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability.

    Directory of Open Access Journals (Sweden)

    Ernesto Oliveira Canedo-Júnior

    Full Text Available Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management.

  3. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  4. TAXONOMY OF FUSARIUM SPECIES ISOLATED FROM CULTIVATED PLANTS, WEEDS AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2002-06-01

    Full Text Available Fusarium species are wide-spread and known to be pathogenic agents to cultivated plants in various agroclimatic areas. During a four year investigation 10 Fusarium species and Microdochium nivale were isolated from wheat, barley, maize and soybean as well as from 10 weeds collected from 10 locations in Slavonia and Baranya. Fusarium graminearum was dominant on wheat and barley, F. moniliforme on maize and F. oxysporum on soybean. Regarding weeds, the presence of the following Fusarium species was established: F. graminearum on Amaranthus hybridus, Capsella bursa-pastoris, Lamium purpureum, Sorghum halepense and Urtica dioica, F. moniliforme on Abutilon theophrasti, F. subglutinans on Polygonum aviculare, F. avenaceum on Capsella bursa-pastoris, Rumex crispus and Matricaria sp., F. culmorum on Abutilon theophrasti, F. sporotrichioides on Polygonum aviculare, F. proliferatum and F. poae on Artemisia vulgaris. Pathogenicity test to wheat seedlings was done in our laboratory on winter wheat cultivars Slavonija and Demetra (totally 146 isolates. The most pathogenic species to wheat seedilings were F. graminearum, F. culmorum and F. sporotrichioides and the least pathogenic F. moniliforme, F. solani, F. oxysporum and F. poae. Pathogenicity test for wheat ears was done on genotypes Osk.8c9/3-94 and Osk.6.11/2 (totally 25 isolates. The results obtained by our investigation showed that there were no significant differences in pathogenicity of Fusarium species isolated from both cultivated plants and weeds. Weeds represent a constant source of inoculum of F. species for cultivated plants and they serve as epidemiologic bridges among vegetations.

  5. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    Science.gov (United States)

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.

  6. Innovations in teaching plant pathology.

    Science.gov (United States)

    Schumann, G L

    2003-01-01

    The teaching environment for plant pathology is changing in both positive and negative ways. Teaching expectations are increasing and resources are decreasing, but recent educational research and instructional technology offer new approaches to meet these challenges. Plant pathologists are teaching courses that may attract new students to the discipline or at least improve agricultural awareness. The Internet offers rapid access to information and images for both students and instructors. Instructional technology provides new tools for classroom presentations, communication with students, reaching new audiences, and distance learning, but using these new tools to enhance learning requires skilled and creative instructors. In the past, many plant pathology instructors worked in relative isolation, but new communication technologies and publishing opportunities for teaching scholarship should improve the sharing of instructional resources and methods.

  7. Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom.

    Science.gov (United States)

    Byrne-Bailey, K G; Gaze, W H; Kay, P; Boxall, A B A; Hawkey, P M; Wellington, E M H

    2009-02-01

    The prevalences of three sulfonamide resistance genes, sul1, sul2, and sul3 and sulfachloropyridazine (SCP) resistance were determined in bacteria isolated from manured agricultural clay soils and slurry samples in the United Kingdom over a 2-year period. Slurry from tylosin-fed pigs amended with SCP and oxytetracycline was used for manuring. Isolates positive for sul genes were further screened for the presence of class 1 and 2 integrons. Phenotypic resistance to SCP was significantly higher in isolates from pig slurry and postapplication soil than in those from preapplication soil. Of 531 isolates, 23% carried sul1, 18% sul2, and 9% sul3 only. Two percent of isolates contained all three sul genes. Class 1 and class 2 integrons were identified in 5% and 11.7%, respectively, of sul-positive isolates. In previous reports, sul1 was linked to class 1 integrons, but in this study only 8% of sul1-positive isolates carried the intI1 gene. Sulfonamide-resistant pathogens, including Shigella flexneri, Aerococcus spp., and Acinetobacter baumannii, were identified in slurry-amended soil and soil leachate, suggesting a potential environmental reservoir. Sulfonamide resistance in Psychrobacter, Enterococcus, and Bacillus spp. is reported for the first time, and this study also provides the first description of the genotypes sul1, sul2, and sul3 outside the Enterobacteriaceae and in the soil environment.

  8. Prevalence of Sulfonamide Resistance Genes in Bacterial Isolates from Manured Agricultural Soils and Pig Slurry in the United Kingdom▿

    Science.gov (United States)

    Byrne-Bailey, K. G.; Gaze, W. H.; Kay, P.; Boxall, A. B. A.; Hawkey, P. M.; Wellington, E. M. H.

    2009-01-01

    The prevalences of three sulfonamide resistance genes, sul1, sul2, and sul3 and sulfachloropyridazine (SCP) resistance were determined in bacteria isolated from manured agricultural clay soils and slurry samples in the United Kingdom over a 2-year period. Slurry from tylosin-fed pigs amended with SCP and oxytetracycline was used for manuring. Isolates positive for sul genes were further screened for the presence of class 1 and 2 integrons. Phenotypic resistance to SCP was significantly higher in isolates from pig slurry and postapplication soil than in those from preapplication soil. Of 531 isolates, 23% carried sul1, 18% sul2, and 9% sul3 only. Two percent of isolates contained all three sul genes. Class 1 and class 2 integrons were identified in 5% and 11.7%, respectively, of sul-positive isolates. In previous reports, sul1 was linked to class 1 integrons, but in this study only 8% of sul1-positive isolates carried the intI1 gene. Sulfonamide-resistant pathogens, including Shigella flexneri, Aerococcus spp., and Acinetobacter baumannii, were identified in slurry-amended soil and soil leachate, suggesting a potential environmental reservoir. Sulfonamide resistance in Psychrobacter, Enterococcus, and Bacillus spp. is reported for the first time, and this study also provides the first description of the genotypes sul1, sul2, and sul3 outside the Enterobacteriaceae and in the soil environment. PMID:19064898

  9. European Society of Nuclear Methods in Agriculture. Proceedings

    International Nuclear Information System (INIS)

    The conference proceedings reported include papers on the Czechoslovak nuclear programme in the field of agriculture and food industry, the application of stable isotopes in agriculture, the applications of radioanalytical methods in agriculture, the use of waste heat from nuclear power plants, food irradiation, waste processing by irradiation, radiation-induced stimulation effects in plants, tracer techniques in animal science, radiation analysis, the use of nuclear techniques in the study of soil-plant relationships, applied mutagenesis, environmental pollution, genetic methods of pest control, the applications of radioisotopes in insect ecology, and the application of nuclear methods in plant physiology. (J.B.)

  10. Use of nuclear technique in agriculture

    International Nuclear Information System (INIS)

    Wah, C.K.

    1981-01-01

    A brief description is given of the main activities of the Department of Agriculture, Kuala Lumpur, in using isotopes in radiation in agricultural research, i.e. soil-water-plant relationships, plant breeding, crop protection, biological and ecological studies of insects, use of radiation in pest control programmes and use of radioisotopes in pesticide study. (author)

  11. Isolation of Indigenous Bacteria of Phosphate Solubilizing from Green Bean Rhizospheres

    Directory of Open Access Journals (Sweden)

    N Arfarita

    2017-04-01

    Full Text Available The use of phosphate-solubilizing bacteria (PSB as a biological fertilizer of Agricultural land is one solution to overcome problem of phosphate availability for plants. However, often application of a biological fertilizer is ineffective for certain places. The purpose of this study was to obtain indigenous phosphate solubilizing bacterial isolates that can be effective in the area of Malang. Samples were collected from rhizosphereof green bean plants at three locations in Malang, East Java. The study was conducted to determine the total bacterial population of soil samples, to select the best three bacterial isolates in phosphate solubilizing ability, which is not antagonistic and nonpathogenic for plants,along with observing its potential as a bacterial consortium. The highest total population was found in FHR samples of 1.5x1011 CFU / mL. We have selected three bacterial isolates namely SPP1, SPP2 and SPP3. They were not antagonistic to each other and nonpathogenic on mungbean sprouts. They had possibility of producing growth hormone which characterized by an increasing in length of plant and total root length, be compared to controls. Strain SPP2 has shown the highest activity of phosphate solubilization then was selected for 16S rRNA identification. Similarity test of genome sequence of strain SPP2 had 99% similarity with Pseudomonas plecoglossicida strain PR19

  12. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity.

    Science.gov (United States)

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M; El-Arabi, Tarek F; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2016-02-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. © FEMS 2015.

  13. Key Geomechanics Issues at the Waste Isolation Pilot Plant Geomechanics

    International Nuclear Information System (INIS)

    HANSEN, FRANCIS D.

    1999-01-01

    Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design

  14. The agricultural use of water treatment plant sludge: pathogens and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Ignacio Nadal Rocamora

    2015-12-01

    Full Text Available The use of water treatment plant sludge to restore degraded soils is customary agricultural practice, but it could be dangerous from the point of view of both health and the environment. A transient increase of either pathogenic or indicator microbial populations, whose persistence in time is variable and attributed to the characteristics of the soil (types of materials in the soil, any amendments (origin and treatments it has undergone or the weather (humidity and temperature mainly, has often been detected in soils treated with this kind of waste. Given their origin, water treatment plant sludges could lead to the transmission of a pathogens and b antibiotic-resistant microorganisms to human beings through the food chain and cause the spreading of antibiotic resistances as a result of their increase and persistence in the soil for variable periods of time. However, Spanish legislation regulating the use of sludges in the farming industry is based on a very restricted microbiological criterion. Thus, we believe better parameters should be established to appropriately inform of the state of health of soils treated with water treatment plant sludge, including aspects which are not presently assessed such as antibiotic resistance.

  15. Application of Multi-Criteria Analysis in the Evaluation of Biogas Plants with Respect to the Stability of the Agricultural System

    Directory of Open Access Journals (Sweden)

    Jitka Šišková

    2015-01-01

    Full Text Available As a result of the interconnection and globalization of access to information, scientific expertise and new technologies across the world, development of society is now progressing at a skyrocketing pace. Production in businesses is reaching maximum possible levels. This paper focuses on systemic evaluation of the interrelations among production processes of agricultural businesses running biogas plants. It represents a comprehensive proposal of a model instrument for comparison of production options in relation to available input materials in agricultural businesses. Interconnection of the economic, environmental and social factors is of growing significance for strategic progress along the lines of sustainable development of society. The objective of this paper is to propose and to describe the practical application of a multi-criterion model as an instrument of decision-making processes with a view to establishing a procedure for comparison of available input materials for biogas plants from the viewpoint of maintaining the stability of systemic interrelations in the agricultural sector in the context of sustainable development.

  16. WIPP conceptual design report. Addendum C. Cost worksheets for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-04-01

    The cost worksheets for the Waste Isolation Pilot Plant (WIPP) are presented. A summary cost estimate, cost estimate for surface facilities, and cost estimate for shafts and underground facilities are included

  17. Retrieval of canistered experimental waste at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Stinebaugh, R.E.

    1979-07-01

    To assess the suitability of bedded salt for nuclear waste disposal, an extensive experimental program will be implemented at the Waste Isolation Pilot Plant. In order to evaluate experimental results, it will be necessary to recover certain of these experiments for postmortem examination and analysis. This document describes the equipment and procedures used to effect recovery of one category of WIPP experiments

  18. Hydrologic studies for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Davies, P.B.

    1994-01-01

    The objective of this paper is to provide a general overview of hydrologic conditions at the Waste Isolation Pilot Plant (WIPP) by describing several key hydrologic studies that have been carried out as part of the site characterization program over the last 20 years. The paper is composed of three parts: background information about general objectives of the WIPP project; information about the geologic and hydrologic setting of the facility; and information about three aspects of the hydrologic system that are important to understanding the long-term performance of the WIPP facility. For additional detailed information, the reader is referred to the references cited in the text

  19. Seismic reflection data report: Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Hern, J.L.; Powers, D.W.; Barrows, L.J.

    1978-12-01

    Volume II contains uninterpreted processed lines and shotpoint maps from three seismic reflection surveys conducted from 1976 through 1978 by Sandia Laboratories to support investigations for the Waste Isolation Pilot Plant. Data interpretations will be the subject of subsequent reports

  20. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    Science.gov (United States)

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  1. Operations Program Plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1990-09-01

    This document, Revision 4 of the Operations Program Plan, has been developed as the seven-year master plan for operating of the Waste Isolation Pilot Plant (WIPP). Subjects covered include public and technical communications; regulatory and environmental programs; startup engineering; radiation handling, surface operations, and underground operations; waste certification and waste handling; transportation development; geotechnical engineering; experimental operations; engineering program; general maintenance; security program; safety, radiation, and regulatory assurance; quality assurance program; training program; administration activities; management systems program; and decommissioning. 243 refs., 19 figs., 25 tabs. (SM)

  2. New method of plant mitochondria isolation and sub-fractionation for proteomic analyses

    Czech Academy of Sciences Publication Activity Database

    Hájek, Tomáš; Honys, David; Čapková, Věra

    2004-01-01

    Roč. 167, č. 3 (2004), s. 389-395 ISSN 0168-9452 R&D Projects: GA MŠk LZ1K03018 Institutional research plan: CEZ:AV0Z5038910 Keywords : plant mitochondria isolation * sub-fractionation * protein analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.389, year: 2004

  3. Antibacterial activity in spices and local medicinal plants against clinical isolates of Karachi, Pakistan.

    Science.gov (United States)

    Ali, Nafisa Hassan; Faizi, Shaheen; Kazmi, Shahana Urooj

    2011-08-01

    Development of resistance in human pathogens against conventional antibiotic necessitates searching indigenous medicinal plants having antibacterial property. Twenty-seven medicinal plants used actively in folklore, ayurvedic and traditional system of medicine were selected for the evaluation of their antimicrobial activity for this study. Eleven plants chosen from these 27 are used as spices in local cuisine. Evaluation of the effectiveness of some medicinal plant extracts against clinical isolates. Nonedible plant parts were extracted with methanol and evaporated in vacuo to obtain residue. Powdered edible parts were boiled three times and cooled in sterile distilled water for 2 min each and filtrate collected. The minimum inhibitory concentration (MIC) of plant extracts and filtrates/antibiotics was evaluated against clinical isolates by microbroth dilution method. Water extract of Syzygium aromaticum L. (Myrtaceae) buds, methanol extracts of Ficus carica L. (Moraceae) and Olea europaea L. (Oleaceae) leaves and Peganum harmala L. (Nitrariaceae) seeds had MIC ranges of 31.25-250 µg/ml. S. aromaticum inhibited growth of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Salmonella enterica serovar Typhi and Pseudomonas aeruginosa. F. carica and O. europaea inhibited growth of S. aureus, S. epidermidis, and S. pyogenes whereas P. harmala was effective against S. aureus, Acinetobacter calcoaceticus and Candida albicans. Ampicillin, velosef, sulfamethoxazole, tetracycline and ceftazidime, cefotaxime, cefepime, which are used as control, had MIC ≥ 50 and 1.5 µg/ml, respectively, for organisms sensitive to extracts. Mono/multiextract from identified plants will provide an array of safe antimicrobial agents to control infections by drug-resistant bacteria.

  4. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.

    Science.gov (United States)

    Jimenez-Salgado, T; Fuentes-Ramirez, L E; Tapia-Hernandez, A; Mascarua-Esparza, M A; Martinez-Romero, E; Caballero-Mellado, J

    1997-09-01

    Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N2-fixing isolates had some features in common with the genus Acetobacter but should not be assigned to the species Acetobacter diazotrophicus because they differed from A. diazotrophicus in morphological and biochemical traits and were largely divergent in electrophoretic mobility patterns of metabolic enzymes at coefficients of genetic distance as high as 0.950. In addition, these N2-fixing acetobacteria differed in the small-subunit rRNA restriction fragment length polymorphism patterns obtained with EcoRI, and they exhibited very low DNA-DNA homology levels, ranging from 11 to 15% with the A. diazotrophicus reference strain PAI 5T. Thus, some of the diazotrophic acetobacteria recovered from the rhizosphere of coffee plants may be regarded as N2-fixing species of the genus Acetobacter other than A. diazotrophicus. Endophytic diazotrophic bacteria may be more prevalent than previously thought, and perhaps there are many more potentially beneficial N2-fixing bacteria which can be isolated from other agronomically important crops.

  5. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.

    Science.gov (United States)

    Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia

    2018-01-01

    For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kW e , converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH 4 , CO 2 , H 2 S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kW e (70.4% of nominal power), and the last period the power resulted in 788kW e (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Experience gained in France on heat recovery from nuclear plants for agriculture and pisciculture

    International Nuclear Information System (INIS)

    Balligand, P.; Le Gouellec, P.; Dumont, M.; Grauby, A.

    1978-01-01

    Since 1972, the Commissariat a l'Energie Atomique, Electricite de France, and the French Ministry of Agriculture have jointly examined the possibility of using thermal wastes from nuclear power plants for the benefit of agricultural production. A new process to heat greenhouses with water at 303 K using a double-wall plastic mulching laid directly on the soil has been successfully used for a few years on several hectares. When necessary, heat pumps are utilized. Very good results have been obtained for tomatoes, cucumbers, flowers, and strawberries, etc. Outdoor soil heating with buried pipes has been tested in Cadarache near an experimental pressurized water reactor for market garden crops and forestry. Gains in precocity and yield have been excellent, especially for asparagus, strawberries, and potatoes. Growing of eels has been four times faster in warm water over one year

  7. Breeding for plant adaptations and agricultural measures in response to climatic changes in Serbia

    Directory of Open Access Journals (Sweden)

    Popović Aleksandar

    2014-01-01

    Full Text Available Improving the production of different cultivated plant species is of great importance for both human and animals, as well as for industrial processing. In the light of global climate changing and searching for renewable sources of energy, this task becomes even more important. Scientists from different areas of research, are actively involved in solving this complex task. Climate changes represent a big challenge not only for agricultural practices, but also for the process of shaping agricultural strategies. Recent studies indicate that climate changes can not be stopped. Constantly growing problems brought by global climate changes could be, to a larger extent, overcome by breeding programs, along with application of adequate agrotechnical measures. Thus, development of new varieties and hybrids with improved performances in response to more frequent and unfavorable environmental conditions, is of prime importance in breeding centers.

  8. Experience gained in France on heat recovery from nuclear plant for agriculture and pisciculture

    International Nuclear Information System (INIS)

    Balligand, P.; Dumont, M.; Grauby, A.; Le Gouellec, P.

    1977-01-01

    For just five years the Commissariat a l'Energie Atomique has been interested in the use of thermal wastes from industrial installations particularly from nuclear power plants. Different types of pilot hothouses and their heating with water are presented in detail. The conclusions are that the thermal power plants owing to the Carnot principle release up to 60% of the thermal energy produced in the boiler into the environment but this thermal energy is at a very low temperature. In this paper it has been shown that agriculture and pisciculture can be satisfied with those low temperature waters. But transportation of this low temperature water is quite expensive and the total economy of a project has to be very carefully examined. (M.S.)

  9. Susceptibility of peach GF 305 seedlings and selected herbaceous plants to plum pox virus isolates from western Slovakia.

    Science.gov (United States)

    Glasa, M; Matisová, J; Hricovský, I; Kúdela, O

    1997-12-01

    The susceptibility of peach GF 305 seedlings and herbaceous plants to five plum pox virus (PPV) isolates from orchards of western Slovakia was investigated. PPV was isolated from diseased plum, apricot and peach trees, and transmitted by chip-budding to peach GF 305. The herbaceous plants were infected by mechanical inoculation. The transmission was analysed by symptomatology and double sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Infected peaches developed leaf distortion, tissue clearing along the veins and small chlorotic spots (isolate BOR-3). With exception of BOR-3, the PPV isolates transmitted from peach caused local chlorotic spots on Chenopodium foetidum. The character of symptoms changed when a sap from PPV-infected Nicotiana benthamiana was used as virus inoculum. From N. benthamiana, the PPV isolates could be transmitted to Pisum sativum, cv. Colmo (light green mosaic), N. clevelandii and N. clevelandii x N. glutinosa hybrid (latent infection or chlorotic spots).

  10. Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Martinát, Stanislav; Navrátil, J.; Dvořák, Petr; Van der Horst, D.; Klusáček, Petr; Kunc, Josef; Frantál, Bohumil

    2016-01-01

    Roč. 95, September 2016 (2016), s. 85-97 ISSN 0960-1481 Institutional support: RVO:68145535 Keywords : agricultural anaerobic digestion plants * Czech Republic * spatial determinants * Spatial analysis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.357, year: 2016 http://www.sciencedirect.com/science/article/pii/S0960148116302610

  11. In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases

    Science.gov (United States)

    2011-01-01

    Background Suppression of immune system in treated cancer patients may lead to secondary infections that obviate the need of antibiotics. In the present study, an attempt was made to understand the occurrence of secondary infections in immuno-suppressed patients along with herbal control of these infections with the following objectives to: (a) isolate the microbial species from the treated oral cancer patients along with the estimation of absolute neutrophile counts of patients (b) assess the in vitro antimicrobial activity medicinal plants against the above clinical isolates. Methods Blood and oral swab cultures were taken from 40 oral cancer patients undergoing treatment in the radiotherapy unit of Regional Cancer Institute, Pt. B.D.S. Health University, Rohtak, Haryana. Clinical isolates were identified by following general microbiological, staining and biochemical methods. The absolute neutrophile counts were done by following the standard methods. The medicinal plants selected for antimicrobial activity analysis were Asphodelus tenuifolius Cav., Asparagus racemosus Willd., Balanites aegyptiaca L., Cestrum diurnum L., Cordia dichotoma G. Forst, Eclipta alba L., Murraya koenigii (L.) Spreng. , Pedalium murex L., Ricinus communis L. and Trigonella foenum graecum L. The antimicrobial efficacy of medicinal plants was evaluated by modified Kirby-Bauer disc diffusion method. MIC and MFC were investigated by serial two fold microbroth dilution method. Results Prevalent bacterial pathogens isolated were Staphylococcus aureus (23.2%), Escherichia coli (15.62%), Staphylococcus epidermidis (12.5%), Pseudomonas aeruginosa (9.37%), Klebsiella pneumonia (7.81%), Proteus mirabilis (3.6%), Proteus vulgaris (4.2%) and the fungal pathogens were Candida albicans (14.6%), Aspergillus fumigatus (9.37%). Out of 40 cases, 35 (87.5%) were observed as neutropenic. Eight medicinal plants (A. tenuifolius, A. racemosus, B. aegyptiaca, E. alba, M. koenigii, P. murex R. communis and T

  12. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5.

    Science.gov (United States)

    Koo, So-Yeon; Cho, Kyung-Suk

    2009-11-01

    The role of plant growth-promoting rhizobacteria (PGPR) in the phytoremediation of heavy-metal-contaminated soils is important in overcoming its limitations for field application. A plant growth-promoting rhizobacterium, Serratia sp. SY5, was isolated from the rhizoplane of barnyard grass (Echinochloa crus-galli) grown in petroleum and heavy-metal-contaminated soil. This isolate has shown capacities for indole acetic acid production and siderophores synthesis. Compared with a non-inoculated control, the radicular root growth of Zea mays seedlings inoculated with SY5 can be increased by 27- or 15.4-fold in the presence of 15 mg-Cd/l or 15 mg-Cu/l, respectively. The results from hydroponic cultures showed that inoculation of Serratia sp. SY5 had a favorable influence on the initial shoot growth and biomass of Zea mays under noncontaminated conditions. However, under Cd-contaminated conditions, the inoculation of SY5 significantly increased the root biomass of Zea mays. These results indicate that Serratia sp. SY5 can serve as a promising microbial inoculant for increased plant growth in heavy-metal-contaminated soils to improve the phytoremediation efficiency.

  13. Environmental radioactivity and its impact on agriculture. I. The behaviour of radionuclides in soils and plants

    International Nuclear Information System (INIS)

    Haunold, E.; Horak, O.; Gerzabek, M.

    1986-08-01

    As a consequence of the reactor-accident of Tschernobyl the environmental radioactivity in Austria increased far above the level recorded before. Depending on the amount of precipitation the deposition of radioactive fallout showed great differences. By the contamination of agricultural products, the radionuclides, above all Cs-137 and Cs-134, can enter the foodchains. This paper reviews prevailing results concerning the behaviour of radionuclides in soil and their uptake by plants. Soil-plant transfer factors are presented for the most important types of crops. With reference to fresh weight and vegetative plant matter, the range for Cs is between 0.01 and 0.03, for Sr between 0.1 and 1.2. The application of transfer calculations in practice is discussed. (Author)

  14. 7 CFR 1000.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1000.6 Section 1000.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Definitions § 1000.6 Supply plant. Supply plant means a plant approved by a duly constituted regulatory agency...

  15. A shaft seal system for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.; Dennis, A.W.; Hurtado, L.D.; Knowles, M.K.; Tillerson, J.R.; Thompson, T.W.; Galbraith, D.

    1996-01-01

    As part of the demonstration of compliance with federal regulations, a shaft seal system has been designed for the Waste Isolation Pilot Plant. The system completely fills the 650 m shafts with components consisting of the common engineering materials, each of which possesses low permeability, longevity, and can be constructed using available technology. Design investigations couple rock mechanics and fluid flow analysis and tests of these materials within the natural geological setting, and demonstrate the effectiveness of the design

  16. Induction and isolation of somatic mutations in vegetatively propagated plants

    International Nuclear Information System (INIS)

    Donini, B.

    1975-01-01

    Research carried out since 1963 concentrated on techniques of mutagenic treatment: problems of exposure, type of radiation (acute irradiation by x- and γ-rays, and chronic exposure in the gamma field), conditions during and after irradiation, mechanisms of mutation induction, and methodology of isolation of somatic mutations. Analyses of somatic mutations included studies on apple, pear, olive, peach, grape and cherry plants. Young trees, dormant and rooted scions, summer and floral buds or seeds were used

  17. A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates.

    Directory of Open Access Journals (Sweden)

    Pedro Beschoren da Costa

    Full Text Available Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling.

  18. Food and agriculture

    International Nuclear Information System (INIS)

    Muhammad Lebai Juri

    2005-01-01

    This chapter discussed the basic principles and techniques of nuclear science and technology applied in food and agricultural study. The following subjects covered: 1) Utilization of radiation in plant breeding, pest control, food irradiation, moisture content, food contamination study; 2) Utilization of radioisotopes in soil and plant studies, animal research

  19. Seismic isolation of nuclear power plants using elastomeric bearings

    Science.gov (United States)

    Kumar, Manish

    Seismic isolation using low damping rubber (LDR) and lead-rubber (LR) bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. Although seismic isolation has been deployed in nuclear structures in France and South Africa, it has not seen widespread use because of limited new build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, design and construction of isolation systems specific to nuclear structures. The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to consider seismic isolation for new large light water and small modular reactors to withstand the effects of extreme earthquakes. The mechanical properties of LDR and LR bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead-rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the horizontal displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) were investigated using an advanced numerical model of a lead-rubber bearing that has been verified and validated, and implemented in OpenSees and ABAQUS. A series of experiments were conducted at University at Buffalo to characterize the behavior of elastomeric bearings in tension. The test data was used to validate a phenomenological model of an elastomeric bearing in tension. The value of three times the shear modulus of rubber in elastomeric bearing was found to be a reasonable estimate of the cavitation stress of a bearing. The sequence of loading did not change the behavior of an elastomeric bearing under cyclic tension, and there was no

  20. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  1. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions

    2000-01-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period

  2. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    International Nuclear Information System (INIS)

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J.; Morel, J.

    1999-01-01

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m -2 contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Draft genome sequence of Enterobacter sp. Sa187, an endophytic bacterium isolated from the desert plant Indigofera argentea

    NARCIS (Netherlands)

    Lafi, Feras F.; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged M.

    2017-01-01

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth-promoting activity and

  4. Medicinal Plants Used by a Mbyá-Guarani Tribe Against Infections: Activity on KPC-Producing Isolates and Biofilm-Forming Bacteria.

    Science.gov (United States)

    Brandelli, Clara Lia Costa; Ribeiro, Vanessa Bley; Zimmer, Karine Rigon; Barth, Afonso Luís; Tasca, Tiana; Macedo, Alexandre José

    2015-11-01

    The traditional use of medicinal plants for treatment of infectious diseases by an indigenous Mbyá-Guarani tribe from South Brazil was assessed by evaluating the antibiotic and antibiofilm activities against relevant bacterial pathogens. Aqueous extracts from 10 medicinal plants were prepared according to indigenous Mbyá-Guarani traditional uses. To evaluate antibiotic (OD600) and antibiofilm (crystal violet method) activities, Pseudomonas aeruginosa ATCC 27853, Staphylococcus epidermidis ATCC 35984 and seven multi-drug resistant Klebsiella pneumoniae carbapenemase (KPC)-producing bacterial clinical isolates were challenged with the extracts. Furthermore, the susceptibility profile of KPC-producing bacteria and the ability of these isolates to form biofilm were evaluated. The plants Campomanesia xanthocarpa, Maytenus ilicifolia, Bidens pilosa and Verbena sp. showed the best activity against bacterial growth and biofilm formation. The majority of KPC-producing isolates, which showed strong ability to form biofilm and a multidrug resistance profile, was inhibited by more than 50% by some extracts. The Enterobacter cloacae (KPC 05) clinical isolate was the only one resistant to all extracts. This study confirms the importance of indigenous traditional medicinal knowledge and describes for the first time the ability of these plants to inhibit biofilm formation and/or bacterial growth of multi-drug resistant KPC-producing isolates.

  5. The role of plants and animals in isolation barriers at Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Link, S.O.; Cadwell, L.L.; Petersen, K.L.; Sackschewsky, M.R.; Landeen, D.S.

    1995-09-01

    The Hanford Site Surface Barrier Development Program was organized in 1985 to test the effectiveness of various barrier designs in minimizing the effects of water infiltration; plant, animal, and human intrusion; and wind and water erosion on buried wastes, and in minimizing the emanation of noxious gases. Plants will serve to minimize drainage and erosion, but present,the potential for growing roots into wastes. Animals burrow holes into the soil, and the burrow holes could allow water to preferentially drain into the waste. They also bring soil to the surface which, if wastes are incorporated, could present a risk for the dispersion of wastes into the environment. This report reviews work done to assess the role of plants and animals in isolation barriers at Hanford. It also reviews work done to understand the potential effects from climate change on the plants and animals that may inhabit barriers in the future.

  6. The role of plants and animals in isolation barriers at Hanford, Washington

    International Nuclear Information System (INIS)

    Link, S.O.; Cadwell, L.L.; Petersen, K.L.; Sackschewsky, M.R.; Landeen, D.S.

    1995-09-01

    The Hanford Site Surface Barrier Development Program was organized in 1985 to test the effectiveness of various barrier designs in minimizing the effects of water infiltration; plant, animal, and human intrusion; and wind and water erosion on buried wastes, and in minimizing the emanation of noxious gases. Plants will serve to minimize drainage and erosion, but present,the potential for growing roots into wastes. Animals burrow holes into the soil, and the burrow holes could allow water to preferentially drain into the waste. They also bring soil to the surface which, if wastes are incorporated, could present a risk for the dispersion of wastes into the environment. This report reviews work done to assess the role of plants and animals in isolation barriers at Hanford. It also reviews work done to understand the potential effects from climate change on the plants and animals that may inhabit barriers in the future

  7. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  8. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    Science.gov (United States)

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  9. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  10. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2017-01-01

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  11. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-02-17

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  12. Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils.

    Science.gov (United States)

    Gupta, Pratishtha; Rani, Rupa; Chandra, Avantika; Kumar, Vipin

    2018-03-20

    Contamination of agricultural soil with heavy metals has become a serious concern worldwide. In the present study, Cr 6+ resistant plant growth promoting Pseudomonas sp. (strain CPSB21) was isolated from the tannery effluent contaminated agricultural soils and evaluated for the plant growth promoting activities, oxidative stress tolerance, and Cr 6+ bioremediation. Assessment of different plant growth promotion traits, such as phosphate solubilization, indole-3-acetic acid production, siderophores, ammonia and hydrogen cyanide production, revealed that the strain CPSB21 served as an efficient plant growth promoter under laboratory conditions. A pot experiment was performed using sunflower (Helianthus annuus L.) and tomato (Solanum lycopersicum L.) as a test crop. Cr 6+ toxicity reduced plant growth, pigment content, N and P uptake, and Fe accumulation. However, inoculation of strain CPSB21 alleviated the Cr 6+ toxicity and enhanced the plant growth parameters and nutrient uptake. Moreover, Cr toxicity had varied response on oxidative stress tolerance at graded Cr 6+ concentration on both plants. An increase in superoxide dismutase (SOD) and catalase (CAT) activity and reduction in malonialdehyde (MDA) was observed on inoculation of strain CPSB21. Additionally, inoculation of CPSB21 enhanced the uptake of Cr 6+ in sunflower plant, while no substantial enhancement was observed on inoculation in tomato plant.

  13. Researches on Agricultural Cooperative Economic Organization Promoting Agricultural Insurance Development

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The advantages of cooperative economic organization being the effective carrier of agricultural insurance development are analyzed. Firstly, cooperative economic organization promotes scale management and solves the problem of decentralized operation of small households. Secondly, cooperative economic organization can settle the problem of peasants’ low systematization. Thirdly, cooperative economic organization can largely reduce the costs of agricultural insurance operation. Fourthly, cooperative organization decreases moral risks as well as adverse selection to some extent. Lastly, cooperative organization, to a certain degree, reduces the risks of agricultural production and increases the insurability of agricultural risks. Meanwhile, limitations of agricultural cooperative economic organization being the carrier of agricultural insurance operation are pointed out. Firstly, cooperative economic organization has limited coverage and small size of organization, which is harmful to the diversification of agricultural risks. Secondly, cooperative economic organization lacks capital funds and its development is not standard, which is not perfect for the function exertion as a carrier. Lastly, members of professional cooperative organization have low cultural qualities, which restrict the implementation of agricultural insurance. The modes of farmers’ cooperative economic organization promoting agricultural insurance development are proposed, including mode of agricultural insurance cooperative ( mutual corporation), mode of "leading enterprises (companies) + professional cooperative organization (planting majors) + insurance" and mode of professional cooperatives serving as agricultural insurance agent. Last of all, the promoting role of agricultural insurance in agricultural cooperative economic organization is briefly illustrated.

  14. Geotechnical Perspectives on the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Francke, Chris T.; Hansen, Frank D.; Knowles, M. Kathyn; Patchet, Stanley J.; Rempe, Norbert T.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first nuclear waste repository certified by the United States Environmental Protection Agency. Success in regulatory compliance resulted from an excellent natural setting for such a repository, a facility with multiple, redundant safety systems, and from a rigorous, transparent scientific and technical evaluation. The WIPP story, which has evolved over the past 25 years, has generated a library of publications and analyses. Details of the multifaceted program are contained in the cited references. Selected geotechnical highlights prove the eminent suitability of the WIPP to serve its congressionally mandated purpose

  15. Antiplasmodial activity of two medicinal plants against clinical isolates of Plasmodium falciparum and Plasmodium berghei infected mice.

    Science.gov (United States)

    Attemene, Serge David Dago; Beourou, Sylvain; Tuo, Karim; Gnondjui, Albert Alloh; Konate, Abibatou; Toure, Andre Offianan; Kati-Coulibaly, Seraphin; Djaman, Joseph Alico

    2018-03-01

    Malaria is an infectious and deadly parasitic disease, associated with fever, anaemia and other ailments. Unfortunately the upsurge of plasmodium multidrug resistant constrained researchers to look for new effective drugs. Medicinal plants seem to be an unquenchable source of bioactive principles in the treatment of various diseases. The aim of this study was to assess the antiplasmodial activity of two Ivorian medicinal plants. The in vitro activity was evaluated against clinical isolates and Plasmodium falciparum K1 multidrug resistant strain using the fluorescence based SYBR green I assay. The in vivo bioassay was carried out using the classical 4 day suppressive and curative tests on Plasmodium berghei infected mice. Results showed that the in vitro bioassay of both plant extracts were found to exhibit a promising and moderate antiparasitic effects on clinical isolates (5 µg/mL plant extracts need to be investigated.

  16. Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers.

    Science.gov (United States)

    Seguí-Simarro, José M; Nuez, Fernando

    2007-01-01

    In this work, some of the different in vitro developmental pathways into which tomato microspores or microsporocytes can be deviated experimentally were explored. The two principal ones are direct embryogenesis from isolated microspores and callus formation from meiocyte-containing anthers. By means of light and electron microscopy, the process of early embryogenesis from isolated microspores and the disruption of normal meiotic development and change of developmental fate towards callus proliferation, morphogenesis, and plant regeneration have been shown. From microspores isolated at the vacuolate stage, embryos can be directly induced, thus avoiding non-androgenic products. In contrast, several different morphogenic events can be triggered in cultures of microsporocyte-containing anthers under adequate conditions, including indirect embryogenesis, adventitious organogenesis, and plant regeneration. Both callus and regenerated plants may be haploid, diploid, and mostly mixoploid. The results demonstrate that both gametophytic and sporophytic calli occur in cultured tomato anthers, and point to an in vitro-induced disturbance of cytokinesis and subsequent fusion of daughter nuclei as a putative cause for mixoploidy and genome doubling during both tetrad compartmentalization and callus proliferation. The potential implications of the different alternative pathways are discussed in the context of their application to the production of doubled-haploid plants in tomato, which is still very poorly developed.

  17. Plant and Industry Experience. MAS-122. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    Science.gov (United States)

    Westinghouse Electric Corp., Carlsbad, NM.

    This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to use plant and industry experience to improve plant safety and reliability. The following topics are covered in the module's individual…

  18. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity

    DEFF Research Database (Denmark)

    Steinwender, Bernhardt M.; Enkerli, Jürg; Widmer, Franco

    2015-01-01

    elongation factor 1-alpha and characterized by simple sequence repeat (SSR) analysis of 14 different loci. Metarhizium brunneum was the most common species isolated from plant roots (84.1% of all isolates), while M. robertsii (11.1%) and M. majus (4.8%) comprised the remainder. The SSR analysis revealed...

  19. Physiological, Biochemical and Genetic Characteristics of Ralstonia solanacearum Strains Isolated from Pepper Plants in Korea

    Directory of Open Access Journals (Sweden)

    Young Kee Lee

    2013-12-01

    Full Text Available Totally sixty three bacteria were isolated from lower stems showing symptoms of bacterial wilt on pepper plants in 14 counties of 7 provinces, Korea. The isolates showed strong pathogenicity on red pepper (cv. Daewang and tomato (cv. Seogwang seedlings. All virulent bacteria were identified as Ralstonia solanacearum based on colony types, physiological and biochemical tests and polymerase chain reaction (PCR. All R. solanacearum isolates from peppers were race 1. The bacterial isolates consisted of biovar 3 (27% and biovar 4 (73%. Based on polymorphic PCR bands generated by repetitive sequence (rep-PCR, the 63 R. solanacearum isolates were divided into 12 groups at 70% similarity level. These results will be used as basic materials for resistant breeding program and efficient control against bacterial wilt disease of pepper.

  20. Seismic isolation of plants at risk of a severe accident

    International Nuclear Information System (INIS)

    Forni, Massimo

    2015-01-01

    More and more devastating earthquakes struck every year our planet. Many of these, though occurring in areas considered at high risk of earthquakes, far exceed the levels required by law. The industrial plants subjected to risk of severe accident, in particular petrochemical and nuclear power plants, are particularly exposed to this risk because of the number and the complexity of the structures and critical components of which they are composed. For this type of structures, anti-seismic techniques able to provide complete protection, even in case of unforeseen events, are needed. Seismic isolation is certainly the most promising technology of modern antiseismic as it allows not only to significantly reduce the dynamic load acting on the structures in case of seismic attack, but to provide safety margins against violent earthquakes, exceeding the assumed maximum design limit. [it

  1. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia

    DEFF Research Database (Denmark)

    Aynekulu, Ermias; Aerts, Raf; Denich, Manfred

    2016-01-01

    We studied the diversity, community composition and natural regeneration of woody species in an isolated but relatively large (> 1,000 ha) dry Afromontane forest in northern Ethiopia to assess its importance for regional forest biodiversity conservation. The principal human-induced disturbance...... in biodiversity through local extinction of indigenous tree species. Despite the problems associated with conserving plant species diversity in small and isolated populations, this relic forest is of particular importance for regional conservation of forest biodiversity, as species with high conservation value...

  2. The rapid isolation of vacuoles from leaves of crassulacean Acid metabolism plants.

    Science.gov (United States)

    Kringstad, R; Kenyon, W H; Black, C C

    1980-09-01

    A technique is presented for the isolation of vacuoles from Sedum telephium L. leaves. Leaf material is digested enzymically to produce protoplasts rapidly which are partially lysed by gentle osmotic shock and the inclusion of 5 millimolar ethyleneglycol-bis (beta-aminoethyl ether)N,N'-tetraacetic acid in the wash medium. Vacuoles are isolated from the partially lysed protoplasts by brief centrifugation on a three-step Ficoll-400 gradient consisting of 5, 10, and 15% (w/v) Ficoll-400. A majority of the vacuoles accumulate at the 5 to 10% Ficoll interface, whereas a smaller proportion sediments at the 10 to 15% Ficoll-400 interface. The total time required for vacuole isolation is 2 to 2.5 hours, beginning from leaf harvest.The yield of vacuoles is approximately 44%. The major vacuole layer is 15 hours when left in Ficoll; however, dispersion into media of various osmotic concentrations resulted in decreased stability. Addition of mercaptobenzothiazole, CaCl(2), MgCl(2), bovine serum albumin, ethylenediaminetetraacetic acid, polyethylene glycol 600, and KH(2)PO(4) to the vacuole isolation media did not increase the stability of the isolated vacuoles.THIS TECHNIQUE WITH ONLY SLIGHT MODIFICATIONS HAS BEEN USED TO ISOLATE LEAF CELL VACUOLES FROM THE FOLLOWING CRASSULACEAN ACID METABOLISM PLANTS: pineapple, Kalanchoë fedtschenkoi, and Echeveria elegans. Spinach leaves also were used successfully.

  3. Transfer of 137Cs, essential and trace elements from soil to potato plants in an agricultural field

    International Nuclear Information System (INIS)

    Tsukada, H.; Hasegawa, H.

    2000-01-01

    The concentrations of 137 Cs, essential and trace elements were measured in soils and potato tubers collected from 26 agricultural fields in Aomori, Japan, and soil-to-potato transfer factors were determined. The elements were divided into two groups. The first group (Cl, K, Ca, etc.) showed an inverse correlation between the transfer factors and the concentrations of the elements in the soils, while for the second group (Sc, Co, etc.) the transfer factors were independent of the soil concentrations of the elements. The transfer factors of 137 Cs (0.0037-0.16), derived from global fallout, were well correlated with those of naturally stable Cs (0.00052-0.080). These transfer factors showed a negative correlation with the soil concentrations of K and Cs, but they were independent of the organic material contents in the soils. These results suggest that the transfer of stable Cs could serve as a natural analog to predict the behavior of radiocesium in the soil-plant pathway. The distributions of these elements were determined for the entire potato plant. The concentrations of the elements were lower in the tubers than in leaves, petioles and stems. During the harvesting of potatoes the elements in the non-edible portions of the potato plants are returned to the soil, where they may again be utilized in the soil-potato pathways. Therefore, the distributions of elements in plant components can provide useful information for understanding the transfer of radionuclides and elements from the soil to plants in agricultural fields. The concentration ratios for Sr/Ca in potato plant components showed relatively constant values while those for Cs/K varied. These findings suggest that the translocation rates of both Ca and Sr were similar within a potato plant, whereas those of K and Cs were different. Consequently, the transfers of both Ca and Sr may predict the behavior of radiostrontium. The transfer of Cs could be used to predict the behavior of radiocesium, whereas the

  4. The waste isolation pilot plant project: a changing paradigm

    International Nuclear Information System (INIS)

    Sheppard, L.E.; McFadden, M.H.

    1996-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) repository that has been developed to demonstrate the safe and permanent isolation of transuranic radioactive wastes in a deep geologic site. It is located in 650 m below the surface in a bedded salt formation, and is designed to hold approximately 175,500 cubic meters of waste. Compliance with the regulations has become the principal focus for the Project. The scientific baseline is an important and integral part of the CCA, as it provides the foundation for conducting total system performance assessment calculations for comparison with applicable standards. The activities required to support the scientific baseline are being pursued in parallel to minimize the time required to collect, analyze, interpret and fully incorporate the results into the CCA. The DOE has shifted its approach to demonstrating compliance with the applicable regulations from a paradigm of a series of broad investigations to a new paradigm of highly focused activities conducted in parallel. The success of this approach will be assessed by the EPA when the application is critically reviewed

  5. Agriculture Oral Presentations

    International Nuclear Information System (INIS)

    1997-01-01

    This publication contains 23 papers related to the use of nuclear techniques in plant breeding in Turkey, effect of gamma irradiations on growing various plants, mutations and soil chemistry, etc., presented at 4. International Congress of Nuclear Agriculture and Animal Science in Bursa, Turkey, 25-27 Sep 1996. A separate abstract was prepared for each paper

  6. Isolation of high quality RNA from pistachio (Pistacia vera L.) and other woody plants high in secondary metabolites.

    Science.gov (United States)

    Moazzam Jazi, Maryam; Rajaei, Saideh; Seyedi, Seyed Mahdi

    2015-10-01

    The quality and quantity of RNA are critical for successful downstream transcriptome-based studies such as microarrays and RNA sequencing (RNA-Seq). RNA isolation from woody plants, such as Pistacia vera, with very high amounts of polyphenols and polysaccharides is an enormous challenge. Here, we describe a highly efficient protocol that overcomes the limitations posed by poor quality and low yield of isolated RNA from pistachio and various recalcitrant woody plants. The key factors that resulted in a yield of 150 μg of high quality RNA per 200 mg of plant tissue include the elimination of phenol from the extraction buffer, raising the concentration of β-mercaptoethanol, long time incubation at 65 °C, and nucleic acid precipitation with optimized volume of NaCl and isopropyl alcohol. Also, the A260/A280 and A260/A230 of extracted RNA were about 1.9-2.1and 2.2-2.3, respectively, revealing the high purity. Since the isolated RNA passed highly stringent quality control standards for sensitive reactions, including RNA sequencing and real-time PCR, it can be considered as a reliable and cost-effective method for RNA extraction from woody plants.

  7. In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases

    Directory of Open Access Journals (Sweden)

    Kaushal Vivek

    2011-05-01

    Full Text Available Abstract Background Suppression of immune system in treated cancer patients may lead to secondary infections that obviate the need of antibiotics. In the present study, an attempt was made to understand the occurrence of secondary infections in immuno-suppressed patients along with herbal control of these infections with the following objectives to: (a isolate the microbial species from the treated oral cancer patients along with the estimation of absolute neutrophile counts of patients (b assess the in vitro antimicrobial activity medicinal plants against the above clinical isolates. Methods Blood and oral swab cultures were taken from 40 oral cancer patients undergoing treatment in the radiotherapy unit of Regional Cancer Institute, Pt. B.D.S. Health University, Rohtak, Haryana. Clinical isolates were identified by following general microbiological, staining and biochemical methods. The absolute neutrophile counts were done by following the standard methods. The medicinal plants selected for antimicrobial activity analysis were Asphodelus tenuifolius Cav., Asparagus racemosus Willd., Balanites aegyptiaca L., Cestrum diurnum L., Cordia dichotoma G. Forst, Eclipta alba L., Murraya koenigii (L. Spreng. , Pedalium murex L., Ricinus communis L. and Trigonella foenum graecum L. The antimicrobial efficacy of medicinal plants was evaluated by modified Kirby-Bauer disc diffusion method. MIC and MFC were investigated by serial two fold microbroth dilution method. Results Prevalent bacterial pathogens isolated were Staphylococcus aureus (23.2%, Escherichia coli (15.62%, Staphylococcus epidermidis (12.5%, Pseudomonas aeruginosa (9.37%, Klebsiella pneumonia (7.81%, Proteus mirabilis (3.6%, Proteus vulgaris (4.2% and the fungal pathogens were Candida albicans (14.6%, Aspergillus fumigatus (9.37%. Out of 40 cases, 35 (87.5% were observed as neutropenic. Eight medicinal plants (A. tenuifolius, A. racemosus, B. aegyptiaca, E. alba, M. koenigii, P. murex R

  8. Arsenic-resistant and plant growth-promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland.

    Science.gov (United States)

    Qamar, N; Rehman, Y; Hasnain, S

    2017-09-01

    The aim of the study was to explore irrigation water polluted with industrial waste and corresponding cropland to screen bacteria for As detoxification and plant growth promotion. Plant growth-promoting (PGP) As-resistant cropland bacteria were isolated from contaminated irrigation water and corresponding agricultural soil. Phylogenetic analysis revealed that the isolates belonged to two distinct bacterial lineages; Firmicutes and γ-Proteobacteria. Maximum As(V) resistance was exhibited by Klebsiella pneumoniae T22 and Klebsiella oxytoca N53 (550 mmol l -1 ), whereas maximum resistance against As(III) was exhibited by K. oxytoca N53 (200 mmol l -1 ). Maximum As(V) reduction was shown by K. pneumoniae T22 (6·7 mmol l -1 ), whereas maximum As(III) oxidation was exhibited by Bacillus subtilis T23 (4·8 mmol l -1 ). As resistance genes arsB and ACR3 were detected in many of the isolates through polymerase chain reaction. Many of these isolates exhibited PGP traits such as hydrogen cyanide and auxin production as well as phosphate solubilization. The bacterial strains were able to enhance Triticum aestivum growth both in the absence and presence of As, and statistically significant increase in shoot and root lengths was observed especially in case of Acinetobacter lwoffii T24 and Citrobacter freundii N52-treated plants. Cropland bacteria have the ability to support plant growth. Bacteria of croplands irrigated with industrially polluted water develop resistance against toxicants. These bacteria are helpful for the plant growth in such contaminated lands. The bacteria capable of both As detoxification and plant growth promotion, such as A. lwoffii T24 and C. freundii N52, are ideal for remediation and reclamation of polluted lands for agriculture purposes. © 2017 The Society for Applied Microbiology.

  9. Inhibition of aflatoxin B production of Aspergillus flavus, isolated from soybean seeds by certain natural plant products.

    Science.gov (United States)

    Krishnamurthy, Y L; Shashikala, J

    2006-11-01

    The inhibitory effect of cowdung fumes, Captan, leaf powder of Withania somnifera, Hyptis suaveolens, Eucalyptus citriodora, peel powder of Citrus sinensis, Citrus medica and Punica granatum, neem cake and pongamia cake and spore suspension of Trichoderma harzianum and Aspergillus niger on aflatoxin B(1) production by toxigenic strain of Aspergillus flavus isolated from soybean seeds was investigated. Soybean seed was treated with different natural products and fungicide captan and was inoculated with toxigenic strain of A. flavus and incubated for different periods. The results showed that all the treatments were effective in controlling aflatoxin B(1) production. Captan, neem cake, spore suspension of T. harzianum, A. niger and combination of both reduced the level of aflatoxin B(1) to a great extent. Leaf powder of W. somnifera, H. suaveolens, peel powder of C. sinensis, C. medica and pongamia cake also controlled the aflatoxin B(1) production. All the natural product treatments applied were significantly effective in inhibiting aflatoxin B(1) production on soybean seeds by A. flavus. These natural plant products may successfully replace chemical fungicides and provide an alternative method to protect soybean and other agricultural commodities from aflatoxin B(1) production by A. flavus.

  10. Radiation and agriculture

    International Nuclear Information System (INIS)

    Yamashita, Atsushi

    1982-01-01

    Radiation utilization in agriculture, forestry and marine product industry was reviewed. Agricultural examples were breeding with gamma rays and resultant plant breeding, and improvement of productivity and acquisition of resistance to disease were also explained. In relation to disinfestation, male sterilization of the melon fly was described. An example of utilization for the marine product industry was survey of salmon migration by the radioactivate analysis of Europium. (Chiba, N.)

  11. Test phase plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase

  12. Evaluation of small hydropower plants in Latin America and the Caribbean

    International Nuclear Information System (INIS)

    Pardo-Gomez, R.

    1991-01-01

    Latin America and the Caribbean Region has a long-standing tradition of small hydropower plant development. In the 1890s the first plants were installed in the Region, and in the first half of this century pioneering efforts were made to develop the technology. The major reason was the technical modernization of agriculture (coffee, cacao, sugar, etc.) and small-scale mining, which led to increased energy demand in isolated areas when the electrification process was just beginning in the region. However, interest in small hydropower plants (SHP) waned because of technological improvements, enhanced efficiency, lower purchase prices and installation costs of gasoline engines, and the expansion of interconnected power systems

  13. Agriculture products as source of radionuclides and some monitoring principles of agriculture near nuclear facilities

    International Nuclear Information System (INIS)

    Aleksakhin, R.M.; Korneev, N.A.; Panteleev, L.I.; Shukhovtsev, B.I.

    1985-01-01

    Migration of radionuclides into agriculture products in regions adjoining the nuclear facilities depends on a large number of factors. Among them is the complex of ecological conditions: meteorological factors, type of soils etc., as well as biological peculiarities of agriculture plants and animals. It is possible to control the radionuclide content administered to man's organism with agriculture products changing large branches of agriculture and varying within the range of seprate branches of industry, taking into account the most effective ways of radionuclide pathways

  14. Evolution of trimethylarsine by a Penicillium sp. isolated from agricultural evaporation pond water.

    Science.gov (United States)

    Huysmans, K D; Frankenberger, W T

    1991-06-01

    Arsenicals are used in agriculture as pesticides and defoliants. In the Central Valley of California, arsenic is present in soil at naturally high concentrations, being derived from marine sedimentary parent material of the Coastal Range. Due to intense agricultural irrigation, soluble arsenic is leached from the soil and accumulates in evaporation ponds where it may pose an environmental threat to the waterfowl and wildlife. A Penicillium sp. isolated from evaporation pond water was found to be capable of methylating and subsequently volatilizing organic arsenic. The major focus of this study was to characterize the environmental conditions, including culture media, arsenic substrates, pH, temperature, and the presence of phosphates, carbohydrates and amino acids on the methylation of arsenic. Trimethylarsine was monitored by gas chromatography (GC)-flame ionization detection and identified by GC-mass spectrometry. The conditions or additions for optimum trimethylarsine production were: a minimal medium in which 100 mgl-1 methylarsonic acid served as the arsenic source, pH 5-6, temperature of incubation 20 degrees C, and phosphate concentration of 0.1-50 mM (KH2PO4). The addition of carbohydrates and sugar acids to the minimal medium suppressed trimethylarsine production. The amino acids phenylalanine, isoleucine, and glutamine promoted trimethylarsine production with an enhancement ranging from 10.2- to 11.6-fold over the control without amino acid supplementation. The information obtained from this study may be useful in developing a bioremediation approach in trapping the arsenic gas evolved from soil or water as a mitigation alternative in the cleanup of arsenic contamination.

  15. [Overview of organic agriculture development.

    Science.gov (United States)

    Liu, Xiao Mei; Yu, Hong Jun; Li, Qiang; Jiang, Wei Jie

    2016-04-22

    This paper introduced the concepts of organic agriculture as defined by different international organizations, origin and theoretical development of organic agriculture, as well as its developing trajectory in China (i.e. a late start followed by rapid growth compared to developed countries). The differences between domestic and international organic agriculture were illustrated by scale, crop types, production standards, inputs and planting techniques. Constraints limiting improvements to organic agriculture in aspects of standards, technology, marketing, certification, environmental pollution, enterprise reputation, and national policies were discussed. Future directions and strategies for developing healthy organic agriculture in China were provided.

  16. Waste Isolation Pilot Plant: Alcove Gas Barrier trade-off study

    International Nuclear Information System (INIS)

    Lin, M.S.; Van Sambeek, L.L.

    1992-07-01

    A modified Kepner-Tregoe method was used for a trade-off study of Alcove Gas Barrier (AGB) concepts for the Waste Isolation Pilot Plant. The AGB is a gas-constraining seal to be constructed in an alcove entrance drift. In this trade-off study, evaluation criteria were first selected. Then these criteria were classified as to their importance to the task, assigning a weighting value to each aspect. Eleven conceptual design alternatives were developed based on geometrical/geological considerations, construction materials, constructibility, and other relevant factors and evaluated

  17. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  18. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    Science.gov (United States)

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Extraction Methods for the Isolation of Isoflavonoids from Plant Material

    Directory of Open Access Journals (Sweden)

    Blicharski Tomasz

    2017-03-01

    Full Text Available The purpose of this review is to describe and compare selected traditional and modern extraction methods employed in the isolation of isoflavonoids from plants. Conventional methods such as maceration, percolation, or Soxhlet extraction are still frequently used in phytochemical analysis. Despite their flexibility, traditional extraction techniques have significant drawbacks, including the need for a significant investment of time, energy, and starting material, and a requirement for large amounts of potentially toxic solvents. Moreover, these techniques are difficult to automate, produce considerable amount of waste and pose a risk of degradation of thermolabile compounds. Modern extraction methods, such as: ultrasound-assisted extraction, microwave-assisted extraction, accelerated solvent extraction, supercritical fluid extraction, and negative pressure cavitation extraction, can be regarded as remedies for the aforementioned problems. This manuscript discusses the use of the most relevant extraction techniques in the process of isolation of isoflavonoids, secondary metabolites that have been found to have a plethora of biological and pharmacological activities.

  20. Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats

    Science.gov (United States)

    Zhang, Nan; Yang, Dongqing; Kendall, Joshua R. A.; Borriss, Rainer; Druzhinina, Irina S.; Kubicek, Christian P.; Shen, Qirong; Zhang, Ruifu

    2016-01-01

    Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens—B. amyloliquefaciens subsp. plantarum, has recently been recognized, here we used 31 whole genomes [including two newly sequenced PGPR strains: B. amyloliquefaciens NJN-6 isolated from Musa sp. (banana) and B. subtilis HJ5 from Gossypium sp. (cotton)] to perform comparative analysis and investigate the genomic characteristics and evolution traits of both species in different niches. Phylogenomic analysis indicated that strains isolated from plant-associated (PA) habitats could be distinguished from those from non-plant-associated (nPA) niches in both species. The core genomes of PA strains are more abundant in genes relevant to intermediary metabolism and secondary metabolites biosynthesis as compared with those of nPA strains, and they also possess additional specific genes involved in utilization of plant-derived substrates and synthesis of antibiotics. A further gene gain/loss analysis indicated that only a few of these specific genes (18/192 for B. amyloliquefaciens and 53/688 for B. subtilis) were acquired by PA strains at the initial divergence event, but most were obtained successively by different subgroups of PA stains during the evolutional process. This study demonstrated the genomic differences between PA and nPA B. amyloliquefaciens and B. subtilis from different niches and the involved evolutional traits, and has implications for screening of PGPR strains in agricultural production. PMID:28066362

  1. Exploitation of endophytes for sustainable agricultural intensification.

    Science.gov (United States)

    Le Cocq, Kate; Gurr, Sarah J; Hirsch, Penny R; Mauchline, Tim H

    2017-04-01

    Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere - a subdivision of the plant microbiome. We suggest a new definition of microbial endophyte status, the need for synergy between fungal and bacterial endophyte research efforts, as well as potential strategies for endophyte application to agricultural systems. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  2. The prehistory of potyviruses: their initial radiation was during the dawn of agriculture.

    Science.gov (United States)

    Gibbs, Adrian J; Ohshima, Kazusato; Phillips, Matthew J; Gibbs, Mark J

    2008-06-25

    Potyviruses are found world wide, are spread by probing aphids and cause considerable crop damage. Potyvirus is one of the two largest plant virus genera and contains about 15% of all named plant virus species. When and why did the potyviruses become so numerous? Here we answer the first question and discuss the other. We have inferred the phylogenies of the partial coat protein gene sequences of about 50 potyviruses, and studied in detail the phylogenies of some using various methods and evolutionary models. Their phylogenies have been calibrated using historical isolation and outbreak events: the plum pox virus epidemic which swept through Europe in the 20th century, incursions of potyviruses into Australia after agriculture was established by European colonists, the likely transport of cowpea aphid-borne mosaic virus in cowpea seed from Africa to the Americas with the 16th century slave trade and the similar transport of papaya ringspot virus from India to the Americas. Our studies indicate that the partial coat protein genes of potyviruses have an evolutionary rate of about 1.15x10(-4) nucleotide substitutions/site/year, and the initial radiation of the potyviruses occurred only about 6,600 years ago, and hence coincided with the dawn of agriculture. We discuss the ways in which agriculture may have triggered the prehistoric emergence of potyviruses and fostered their speciation.

  3. Australian agricultural quarantine - imports and exports

    International Nuclear Information System (INIS)

    Turpin, J.W.; Read, B.J.; Pinson, R.S.; Higgs, G.M.

    1985-01-01

    Agricultural quarantine is administered by Government to protect all facets of agriculture and the environment from unwanted pests and diseases of animals and plants. Ionising energy would appear to have an excellent future as a quarantine treatment

  4. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees.

    Science.gov (United States)

    Etminani, Faegheh; Harighi, Behrouz

    2018-06-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees ( Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas , Stenotrophomonas , Bacillus , Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea , Bacillus , Pseudomonas , Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

  5. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Paola, E-mail: paola.adamo@unina.it [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Iavazzo, Pietro [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Albanese, Stefano [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy); Agrelli, Diana [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); De Vivo, Benedetto; Lima, Annamaria [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy)

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  6. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    International Nuclear Information System (INIS)

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-01-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  7. A statistical approach to estimating soil-to-plant transfer factor of strontium in agricultural fields

    International Nuclear Information System (INIS)

    Ishikawa, Nao; Tagami, Keiko; Uchida, Shigeo

    2009-01-01

    Soil-to-plant transfer factor (TF) is one of the important parameters in radiation dose assessment models for the environmental transfer of radionuclides. Since TFs are affected by several factors, including radionuclides, plant species and soil properties, development of a method for estimation of TF using some soil and plant properties would be useful. In this study, we took a statistical approach to estimating the TF of stable strontium (TF Sr ) from selected soil properties and element concentrations in plants, which was used as an analogue of 90 Sr. We collected the plant and soil samples used for the study from 142 agricultural fields throughout Japan. We applied a multiple linear regression analysis in order to get an empirical equation to estimate TF Sr . TF Sr could be estimated from the Sr concentration in soil (C Sr soil ) and Ca concentration in crop (C Ca crop ) using the following equation: log TF Sr =-0.88·log C Sr soil +0.93·log C Ca crop -2.53. Then, we replaced our data with Ca concentrations in crops from a food composition database compiled by the Japanese government. Finally, we predicted TF Sr using Sr concentration in soil from our data and Ca concentration in crops from the database of food composition. (author)

  8. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS

    International Nuclear Information System (INIS)

    Stefanski, R; Sivakumar, M V K

    2009-01-01

    This paper will give an overview of the various impacts of sand and dust storms on agriculture and then address the potential applications of a Sand and Dust Storm Warning System (SDSWS) for agricultural users. Sand and dust storms have many negative impacts on the agricultural sector including: reducing crop yields by burial of seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity as a result of sandblasting, delaying plant development, increasing end-of-season drought risk, causing injury and reduced productivity of livestock, increasing soil erosion and accelerating the process of land degradation and desertification, filling up irrigation canals with sediments, covering transportation routes, affecting water quality of rivers and streams, and affecting air quality. One positive impact is the fertilization of soil minerals to terrestrial ecosystems. There are several potential agricultural applications of a SDSWS. The first is to alert agricultural communities farmers to take preventive action in the near-term such as harvesting maturing crops (vegetables, grain), sheltering livestock, and strengthening infrastructure (houses, roads, grain storage) for the storm. Also, the products of a SDSWS could be used in for monitoring potential locust movement and post-storm crop damage assessments. An archive of SDSWS products (movement, amount of sand and dust) could be used in researching plant and animal pathogen movement and the relationship of sand and dust storms to disease outbreaks and in developing improved soil erosion and land degradation models.

  9. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  10. Ashes from straw and wood-chip fired plants for agricultural usage. Pilot project

    International Nuclear Information System (INIS)

    Morsing, M.; Westborg, S.

    1994-08-01

    The content of nutrients and heavy metals in ashes from the combustion of straw and wood chips at district heating plants is studied, on the basis of results of analyses from Danish municipalities, to determine whether such ashes are suitable for use as fertilizers. Results of the analysis of ashes from 9 wood-chip fired and 26 straw-fired plants are presented. They show significant variations in nutrient and heavy metal content which could be caused by combustion and operational conditions and/or testing methods. On condition that the phosphorous content of straw and wood-chip ashes amount to 1% of the dry matter, 50%-75% of the straw ashes and under 50% of wood chip ashes analyses are within the limit for cadmium stipulated in the Danish Ministry of the Environment's Executive Order no. 736 on the use of wastes for agricultural purposes. This is found to be unsatisfactory. It is suggested that a closer investigation should be undertaken in order to determine which amount of straw and wood-chip ashes can be accepted for use as fertilizers in consideration of the stipulated limits for cadmium content of wastes to be used for agricultural purposes. In addition the technological and economic potentials of dosing of these ashes for this use should be investigated. Fly ash and slag were also included in the analysis results studied and it was found that the cadmium content of slag did not prevent its use as fertilizer, but that the distribution of cadmium in slag, in fly ash and in slam from flue gas cleaning systems related to the combustion of wood chips should be further investigated. (AB)

  11. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    Science.gov (United States)

    Clark, Michael; Tilman, David

    2017-06-01

    Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.

  12. Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System

    Directory of Open Access Journals (Sweden)

    Guillermo Martínez-Lucas

    2018-01-01

    Full Text Available Currently, some small islands with high wind potential are trying to reduce the environmental and economic impact of fossil fuels by using renewable resources. Nevertheless, the characteristics of these renewable resources negatively affect the quality of the electrical energy, causing frequency disturbances, especially in isolated systems. In this study, the combined contribution to frequency regulation of variable speed wind turbines (VSWT and a pump storage hydropower plant (PSHP is analyzed. Different control strategies, using the kinetic energy stored in the VSWT, are studied: inertial, proportional, and their combination. In general, the gains of the VSWT controller for interconnected systems proposed in the literature are not adequate for isolated systems. Therefore, a methodology to adjust the controllers, based on exhaustive searches, is proposed for each of the control strategies. The control strategies and methodology have been applied to a hybrid wind–hydro power plant on El Hierro Island in the Canary archipelago. At present, in this isolated power system, frequency regulation is only provided by the PSHP and diesel generators. The improvements in the quality of frequency regulation, including the VSWT contribution, have been proven based on simulating different events related to wind speed, or variations in the power demand.

  13. Snake Venom PLA2s Inhibitors Isolated from Brazilian Plants: Synthetic and Natural Molecules

    Science.gov (United States)

    Carvalho, B. M. A.; Santos, J. D. L.; Xavier, B. M.; Almeida, J. R.; Resende, L. M.; Martins, W.; Marcussi, S.; Marangoni, S.; Stábeli, R. G.; Calderon, L. A.; Soares, A. M.; Da Silva, S. L.; Marchi-Salvador, D. P.

    2013-01-01

    Ophidian envenomation is an important health problem in Brazil and other South American countries. In folk medicine, especially in developing countries, several vegetal species are employed for the treatment of snakebites in communities that lack prompt access to serum therapy. However, the identification and characterization of the effects of several new plants or their isolated compounds, which are able to inhibit the activities of snake venom, are extremely important and such studies are imperative. Snake venom contains several organic and inorganic compounds; phospholipases A2 (PLA2s) are one of the principal toxic components of venom. PLA2s display a wide variety of pharmacological activities, such as neurotoxicity, myotoxicity, cardiotoxicity, anticoagulant, hemorrhagic, and edema-inducing effects. PLA2 inhibition is of pharmacological and therapeutic interests as these enzymes are involved in several inflammatory diseases. This review describes the results of several studies of plant extracts and their isolated active principles, when used against crude snake venoms or their toxic fractions. Isolated inhibitors, such as steroids, terpenoids, and phenolic compounds, are able to inhibit PLA2s from different snake venoms. The design of specific inhibitors of PLA2s might help in the development of new pharmaceutical drugs, more specific antivenom, or even as alternative approaches for treating snakebites. PMID:24171158

  14. Snake Venom PLA2s Inhibitors Isolated from Brazilian Plants: Synthetic and Natural Molecules

    Directory of Open Access Journals (Sweden)

    B. M. A. Carvalho

    2013-01-01

    Full Text Available Ophidian envenomation is an important health problem in Brazil and other South American countries. In folk medicine, especially in developing countries, several vegetal species are employed for the treatment of snakebites in communities that lack prompt access to serum therapy. However, the identification and characterization of the effects of several new plants or their isolated compounds, which are able to inhibit the activities of snake venom, are extremely important and such studies are imperative. Snake venom contains several organic and inorganic compounds; phospholipases A2 (PLA2s are one of the principal toxic components of venom. PLA2s display a wide variety of pharmacological activities, such as neurotoxicity, myotoxicity, cardiotoxicity, anticoagulant, hemorrhagic, and edema-inducing effects. PLA2 inhibition is of pharmacological and therapeutic interests as these enzymes are involved in several inflammatory diseases. This review describes the results of several studies of plant extracts and their isolated active principles, when used against crude snake venoms or their toxic fractions. Isolated inhibitors, such as steroids, terpenoids, and phenolic compounds, are able to inhibit PLA2s from different snake venoms. The design of specific inhibitors of PLA2s might help in the development of new pharmaceutical drugs, more specific antivenom, or even as alternative approaches for treating snakebites.

  15. Annual stability evaluation of Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-06-01

    A stability evaluation of the underground workings of the Waste Isolation Pilot Plant (WIPP) was completed by the US Bureau of Mines' WIPP evaluation committee. This work included a critical evaluation of the processes employed at WIPP to ensure stability, an extensive review of available deformation measurements, a 3-day site visit, and interviews with the Department of Energy (DOE) and Westinghouse staff. General ground control processes are in place at WIPP to minimize the likelihood that major stability problems will go undetected. To increase confidence in both short- and long-term stability throughout the site (underground openings and shafts), ground stability monitoring systems, mine layout design, support systems and data analyses must be continuously improved. Such processes appear to be in place at WIPP and are discussed in this paper

  16. Revised concept for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Dennis, A.W.; Milloy, J.A.; Scully, L.W.; Shefelbine, H.C.; Stinebaugh, R.E.; Wowak, W.E.

    1978-07-01

    The quantities of remotely handled wastes that must be handled at the Waste Isolation Pilot Plant have been reduced from 250 x 10 3 ft 3 /y to 10 x 10 3 ft 3 /y; the capital cost of the facility will be reduced from 534 to 428 million dollars. Changes in the facility design due to the reduction in the amount of remote-handled waste are discussed. If DOE should exercise its option to construct a high-level waste repository concurrently with the construction of the revised design, with both facilities receiving waste in 1985, the combined cost would be about 580 million dollars. However, it is unlikely that significant quantities of high-level waste in a form suitable for geologic disposal would be available until after 1990. (13 figures, 5 tables)

  17. Trade and agriculture policy conditions for the use of plant oils in the energy field

    International Nuclear Information System (INIS)

    Joerdens, R.

    1994-01-01

    Preservation of resources, ecology and agricultural policy supply the most important argument for an increased use of raw materials which grow again. Regenerative raw materials are at present grown on about 2.5% of the arable land area in Germany, where production for the chemical technical field is to the fore. Access to the energy field is, however, difficult due to the considerable economic deficit compared to fossil fuels. Possibilities of use exist mainly in heating plant and in Diesel engines. (BWI) [de

  18. INOCULATION AND ISOLATION OF PLANT GROWTH-PROMOTING BACTERIA IN MAIZE GROWN IN VITÓRIA DA CONQUISTA, BAHIA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Joelma da Silva Santos

    2015-02-01

    Full Text Available Maize is among the most important crops in the world. This plant species can be colonized by diazotrophic bacteria able to convert atmospheric N into ammonium under natural conditions. This study aimed to investigate the effect of inoculation of the diazotrophic bacterium Herbaspirillum seropedicae (ZAE94 and isolate new strains of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. The study was conducted in a greenhouse at the Experimental Area of the Universidade Estadual do Sudoeste da Bahia. Inoculation was performed with peat substrate, with and without inoculation containing strain ZAE94 of H. seropedicae and four rates of N, in the form of ammonium sulfate (0, 60, 100, and 140 kg ha-1 N. After 45 days, plant height, dry matter accumulation in shoots, percentage of N, and total N (NTotal were evaluated. The bacteria were isolated from root and shoot fragments of the absolute control; the technique of the most probable number and identification of bacteria were used. The new isolates were physiologically characterized for production of indole acetic acid (IAA and nitrogenase activity. We obtained 30 isolates from maize plants. Inoculation with strain ZAE94 promoted an increase of 14.3 % in shoot dry mass and of 44.3 % in NTotal when associated with the rate 60 kg ha-1 N. The strains N11 and N13 performed best with regard to IAA production and J06, J08, J10, and N15 stood out in acetylene reduction activity, demonstrating potential for inoculation of maize.

  19. Effects of selenium supplementation on four agricultural crops.

    Science.gov (United States)

    Carvalho, Kathleen M; Gallardo-Williams, Maria T; Benson, Robert F; Martin, Dean F

    2003-01-29

    Agricultural crops can be used either to remediate selenium-contaminated soils or to increase the daily selenium intake of consumers after soil supplementation using inorganic or organic selenium sources. In this study, four agricultural crops were examined for potential selenium enhancement. Soils containing tomato, strawberry, radish, and lettuce plants were supplemented with either an inorganic or an organic form of selenium. Two different soils, i.e., low Se and high Se containing, were also used. Statistically significant differences in appearance, fruit production, and fresh weights of the fruit produced were studied. Next, the amount of selenium retained in the edible fruits, nonedible plant, and soil for each was analyzed by acid digestion followed by hydride generation atomic absorption analysis. Finally, inhibition effects on the seeds of the agricultural plants were studied. The results show that supplementation with an inorganic form of selenium led to higher retention in the plants, with a maximum of 97.5% retained in the edible portion of lettuce plants.

  20. Isolation of Arcobacter butzleri in environmental and food samples collected in industrial and artisanal dairy plants

    Directory of Open Access Journals (Sweden)

    Federica Giacometti

    2013-10-01

    Full Text Available This study investigated the presence of Arcobacter species in two cheese factories; a total of 22 environmental samples and 10 food samples were collected from an artisanal and an industrial cheese factory; Arcobacter species were isolated after enrichment, and isolates were identified at species level by multiplex-polymerase chain reaction (PCR assay. In the artisanal cheese factory, Arcobacter spp. were isolated from several environmental samples, cow and water buffalo raw milk and ricotta cheese. In the industrial plant, Arcobacter spp. were isolated from surfaces not in contact with food and from a cleaned surface in contact with food; no Arcobacter spp. was isolated from food. All isolates were identified as A. butzleri. We report of the presence of A. butzleri in a ready-to-eat cheese produced for retail. In addition, the isolation of A. butzleri in food processing surfaces in the two cheese factories could be assessed as a source of potential contamination for cheeses

  1. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants.

    Science.gov (United States)

    Marchive, Chloé; Mzid, Rim; Deluc, Laurent; Barrieu, François; Pirrello, Julien; Gauthier, Adrien; Corio-Costet, Marie-France; Regad, Farid; Cailleteau, Bernard; Hamdi, Saïd; Lauvergeat, Virginie

    2007-01-01

    Pathogen attack represents a major problem for viticulture and for agriculture in general. At present, the use of phytochemicals is more and more restrictive, and therefore it is becoming essential to control disease by having a thorough knowledge of resistance mechanisms. The present work focused on the trans-regulatory proteins potentially involved in the control of the plant defence response, the WRKY proteins. A full-length cDNA, designated VvWRKY1, was isolated from a grape berry library (Vitis vinifera L. cv. Cabernet Sauvignon). It encodes a polypeptide of 151 amino acids whose structure is characteristic of group IIc WRKY proteins. VvWRKY1 gene expression in grape is regulated in a developmental manner in berries and leaves and by various signal molecules involved in defence such as salicylic acid, ethylene, and hydrogen peroxide. Biochemical analysis indicates that VvWRKY1 specifically interacts with the W-box in various nucleotidic contexts. Functional analysis of VvWRKY1 was performed by overexpression in tobacco, and transgenic plants exhibited reduced susceptibility to various fungi but not to viruses. These results are consistent with a possible role for VvWRKY1 in grapevine defence against fungal pathogens.

  2. Mapping for the management of diffuse pollution risks related to agricultural plant protection practices: case of the Etang de l'Or catchment area in France.

    Science.gov (United States)

    Mghirbi, Oussama; Bord, Jean-Paul; Le Grusse, Philippe; Mandart, Elisabeth; Fabre, Jacques

    2018-03-08

    Faced with health, environmental, and socio-economic issues related to the heavy use of pesticides, diffuse phytosanitary pollution becomes a major concern shared by all the field actors. These actors, namely the farmers and territorial managers, have expressed the need to implement decision support tools for the territorial management of diffuse pollution resulting from the plant protection practices and their impacts. To meet these steadily increasing requests, a cartographic analysis approach was implemented based on GIS which allows the spatialization of the diffuse pollution impacts related to plant protection practices on the Etang de l'Or catchment area in the South of France. Risk mapping represents a support-decision tool that enables the different field actors to identify and locate vulnerable areas, so as to determine action plans and agri-environmental measures depending on the context of the natural environment. This work shows that mapping is helpful for managing risks related to the use of pesticides in agriculture by employing indicators of pressure (TFI) and risk on the applicator's health (IRSA) and on the environment (IRTE). These indicators were designed to assess the impact of plant protection practices at various spatial scales (field, farm, etc.). The cartographic analysis of risks related to plant protection practices shows that diffuse pollution is unequally located in the North (known for its abundant garrigues and vineyards) and in the South of the Etang de l'Or catchment area (the Mauguio-Lunel agricultural plain known for its diversified cropping systems). This spatial inequity is essentially related to land use and agricultural production system. Indeed, the agricultural lands cover about 60% of the total catchment area. Consequently, this cartographic analysis helps the territorial actors with the implementation of strategies for managing risks of diffuse pollution related to pesticides use in agriculture, based on environmental and

  3. Evaluation and comparison of FTA card and CTAB DNA extraction methods for non-agricultural taxa.

    Science.gov (United States)

    Siegel, Chloe S; Stevenson, Florence O; Zimmer, Elizabeth A

    2017-02-01

    An efficient, effective DNA extraction method is necessary for comprehensive analysis of plant genomes. This study analyzed the quality of DNA obtained using paper FTA cards prepared directly in the field when compared to the more traditional cetyltrimethylammonium bromide (CTAB)-based extraction methods from silica-dried samples. DNA was extracted using FTA cards according to the manufacturer's protocol. In parallel, CTAB-based extractions were done using the automated AutoGen DNA isolation system. DNA quality for both methods was determined for 15 non-agricultural species collected in situ, by gel separation, spectrophotometry, fluorometry, and successful amplification and sequencing of nuclear and chloroplast gene markers. The FTA card extraction method yielded less concentrated, but also less fragmented samples than the CTAB-based technique. The card-extracted samples provided DNA that could be successfully amplified and sequenced. The FTA cards are also useful because the collected samples do not require refrigeration, extensive laboratory expertise, or as many hazardous chemicals as extractions using the CTAB-based technique. The relative success of the FTA card method in our study suggested that this method could be a valuable tool for studies in plant population genetics and conservation biology that may involve screening of hundreds of individual plants. The FTA cards, like the silica gel samples, do not contain plant material capable of propagation, and therefore do not require permits from the U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) for transportation.

  4. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    Science.gov (United States)

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  5. The Waste Isolation Pilot Plant: a potential solution for the disposal of transuranic waste

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    ... Isolation Pilot Plant Board on Radioactive Waste Management Commission on Geosciences, Environment, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1996 i Copyrighttrue Please breaks inserted. are Page files. accidentally typesetting been have may original from the errors not typographic original retained, and from the c...

  6. Evaluation of antibacterial effect of some Sinai medicinal plant extracts on bacteria isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Gamil S. G. Zeedan

    2014-11-01

    Full Text Available Aim: Bovine mastitis is the most economically important disease affecting dairy cattle worldwide from an economic, diagnostic and public-health point of view. The present study aimed to isolate and identify of bacteria causes mastitis in dairy cows and to evaluate the antibacterial activities of some selected medicinal plants extracts comparing antibiotics used in the treatment of mastitis in Egypt. Materials and Methods: A total of 203 milk samples of dairy cows were collected during the period from February to June 2013 at different Governorates in Egypt. The use clinical inspection and California mastitis test examination were provided efficient diagnostic tool for detection of clinical, subclinical mastitis and apparently normal health cattle. The collected milk samples were cultured on Nutrient, Blood agar, Mannitol salt, Edward’s and MacConkey agar plates supporting the growth of various types of bacteria for their biochemical studies and isolation. The antimicrobial activity of plants extracts (Jasonia montana and Artemisia herb albawith different solvent (ethanol, petroleum ether, chloroform and acetonewere studied in vitro against isolated bacteria from mastitis by paper desk diffusion and minimum inhibitory concentration method (MIC. Results: The prevalence of clinical, subclinical mastitis and normal healthy animals were 34.50%, 24.7% and 40.8% respectively. The major pathogens isolated from collected milk samples were Escherichia coli (22.16%, Staphylococcus aureus (20.19%, Streptococcus spp. (13.3%, Streptococcus agalactiae (12.8%, Streptococcus dysgalactia (0.5%, Pasteurella spp. (2.45%, Klebsiella spp. (1.47%and Pseudomonas spp. (0.45%. The highest antibacterial activity of J. montana plant extracted with acetone solvent against S. agalactiae, E. coli, S. aureus, Klebsiella spp and coagulase-negative Staphylococci with zone of inhibition values ± standard deviation (SD, ranging from 4.33±0.57 to 25.6±0.60 mm. The MIC values

  7. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10

    Directory of Open Access Journals (Sweden)

    Khan Abdul

    2012-01-01

    Full Text Available Abstract Background Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. Results We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF on gibberellins (GAs deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24 and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20 contents in endophyte-associated cucumber plants evidenced salinity stress modulation. Conclusion The results reveal that mutualistic interactions of phytohormones secreting endophytic

  8. Isolation and Identification of Pyrene Mineralizing Mycobacterium spp. from Contaminated and Uncontaminated Sources

    International Nuclear Information System (INIS)

    Lease, C.W.M; Bentham, R.H; Gaskin, S.E; Juhasz, A.L

    2011-01-01

    Mycobacterium isolates obtained from PAH-contaminated and uncontaminated matrices were evaluated for their ability to degrade three-, four- and five-ring PAHs. PAH enrichment studies were prepared using pyrene and inocula obtained from manufacturing gas plant (MGP) soil, uncontaminated agricultural soil, and faeces from Macropus fuliginosus (Western Grey Kangaroo). Three pyrene-degrading microorganisms isolated from the corresponding enrichment cultures had broad substrate ranges, however, isolates could be differentiated based on surfactant, phenol, hydrocarbon and PAH utilisation. 16S rRNA analysis identified all three isolates as Mycobacterium sp. The Mycobacterium spp. could rapidly degrade phenanthrene and pyrene, however, no strain had the capacity to utilise fluorene or benzo[a]pyrene. When pyrene mineralisation experiments were performed, 70-79% of added 14 C was evolved as 14 CO 2 after 10 days. The present study demonstrates that PAH degrading microorganisms may be isolated from a diverse range of environmental matrices. The present study demonstrates that prior exposure to PAHs was not a prerequisite for PAH catabolic activity for two of these Mycobacterium isolates.

  9. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    International Nuclear Information System (INIS)

    1993-01-01

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated

  10. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  11. The good and the bad of poisonous plants: an introduction to the USDA-ARS Poisonous Plant Research Laboratory.

    Science.gov (United States)

    Welch, Kevin D; Panter, Kip E; Gardner, Dale R; Stegelmeier, Bryan L

    2012-06-01

    This article provides an overview of the Poisonous Plant Research Laboratory (PPRL), about the unique services and activities of the PPRL and the potential assistance that they can provide to plant poisoning incidences. The PPRL is a federal research laboratory. It is part of the Agricultural Research Service, the in-house research arm of the U.S. Department of Agriculture. The mission of the PPRL is to identify toxic plants and their toxic compounds, determine how the plants poison animals, and develop diagnostic and prognostic procedures for poisoned animals. Furthermore, the PPRL's mission is to identify the conditions under which poisoning occurs and develop management strategies and treatments to reduce losses. Information obtained through research efforts at the PPRL is mostly used by the livestock industry, natural resource managers, veterinarians, chemists, plant and animal scientists, extension personnel, and other state and federal agencies. PPRL currently has 9 scientists and 17 support staff, representing various disciplines consisting of toxicology, reproductive toxicology, veterinary medicine, chemistry, animal science, range science, and plant physiology. This team of scientists provides an interdisciplinary approach to applied and basic research to develop solutions to plant intoxications. While the mission of the PPRL primarily impacts the livestock industry, spinoff benefits such as development of animal models, isolation and characterization of novel compounds, elucidation of biological and molecular mechanisms of action, national and international collaborations, and outreach efforts are significant to biomedical researchers. The staff at the PPRL has extensive knowledge regarding a number of poisonous plants. Although the focus of their knowledge is on plants that affect livestock, oftentimes, these plants are also poisonous to humans, and thus, similar principles could apply for cases of human poisonings. Consequently, the information provided

  12. 7 CFR 1006.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1006.6 Section 1006.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.6 Supply plant. See § 1000.6. ...

  13. 7 CFR 1033.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1033.6 Section 1033.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.6 Supply plant. See § 1000.6. ...

  14. 7 CFR 1005.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1005.6 Section 1005.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.6 Supply plant. See § 1000.6. ...

  15. 7 CFR 1030.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1030.6 Section 1030.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1030.6 Supply plant. See § 1000.6. ...

  16. 7 CFR 1007.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1007.6 Section 1007.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1007.6 Supply plant. See § 1000.6. ...

  17. 7 CFR 1032.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1032.6 Section 1032.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1032.6 Supply plant. See § 1000.6. ...

  18. 7 CFR 1126.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1126.6 Section 1126.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.6 Supply plant. See § 1000.6. ...

  19. 7 CFR 1001.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1001.6 Section 1001.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.6 Supply plant. See § 1000.6. ...

  20. 7 CFR 1131.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1131.6 Section 1131.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1131.6 Supply plant. See § 1000.6. ...

  1. Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential.

    Science.gov (United States)

    Katoch, Meenu; Pull, Shipra

    2017-12-01

    The Food and Agriculture Organization has estimated that every year considerable losses of the food crops occur due to plant diseases. Although fungicides are extensively used for management of plant diseases, they are expensive and hazardous to the environment and human health. Alternatively, biological control is the safe way to overcome the effects of plant diseases and to sustain agriculture. Since Monarda citriodora Cerv. ex Lag. (Lamiaceae/Labiatae) is known for its antifungal properties, it was chosen for the study. The isolation of endophytic fungi from M. citriodora and assessing their biocontrol potential. The isolated endophytes were characterized using ITS-5.8 S rDNA sequencing. Their biocontrol potential was assessed using different antagonistic assays against major plant pathogens. Twenty-eight endophytes representing 11 genera were isolated, of which, around 82% endophytes showed biocontrol potential against plant pathogens. MC-2 L (Fusarium oxysporum), MC-14 F (F. oxysporum), MC-22 F (F. oxysporum) and MC-25 F (F. redolens) displayed significant antagonistic activity against all the tested pathogens. Interestingly, MC-10 L (Muscodor yucatanensis) completely inhibited the growth of Sclerotinia sp., Colletotrichum capsici, Aspergillus flavus and A. fumigatus in dual culture assay, whereas MC-8 L (A. oryzae) and MC-9 L (Penicillium commune) completely inhibited the growth of the Sclerotinia sp. in fumigation assay. Endophytes MC-2 L, MC-14 F, MC-22 F and MC-25 F could effectively be used to control broad range of phytopathogens, while MC-10 L, MC-8 L and MC-9 L could be used to control specific pathogens. Secondly, endophytes showing varying degrees of antagonism in different assays represented the chemo-diversity not only as promising biocontrol agents but also as a resource of defensive and bioactive metabolites.

  2. The Waste Isolation Pilot Plant status and related socioeconomic impacts

    International Nuclear Information System (INIS)

    Little, C.C.; Adcock, L.D.; Hohmann, G.L.

    1984-01-01

    The Waste Isolation Pilot Plant (WIPP) has been ''authorized as a defense activity of the Department of Energy...for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States...'' (PL 96-164). As reported in previous conferences, WIPP continues ahead of schedule and below budget with full facility construction well underway. To date, based on recent review, the socioeconomic impacts have been negligible and steps have been taken to ensure that they remain that way throughout operations

  3. Identification, isolation and evaluation of a constitutive sucrose phosphate synthase gene promoter from tomato

    International Nuclear Information System (INIS)

    Naqvi, R.Z.; Mubeen, H.; Maqsood, A.; Khatoon, A.

    2017-01-01

    Sucrose phosphate synthase (SPS) is one of the abundantly expressed genes in plants. The promoters of SPS gene was identified, analyzed and retrieved from high throughput genomic sequence (HTGS) database. The cis-acting regulatory elements and transcription start sites of promoter were identified through different bioinformatics tools. The SPS promoter was isolated from Solanum lycopersicum and was initially cloned in TA vector (pTZ57R/T). Later on this promoter was transferred to a plant expression binary vector, pGR1 (pGRSPS) that was used for the transient GUS expression studies in various tissues of Nicotiana tabacum. SPS promoter was also cloned in plant stable expression vector pGA482 (pGASPS) and was transformed in Nicotiana tabacum through Agrobacterium-mediated transformation method. The histochemical GUS expression analysis of both transient and stable transgenic plants for this promoter indicated its functional importance in regulating gene expression in a constitutive manner. It was concluded that SPS promoter is constitutively expressed with a strength equivalent to CaMV 2X35S promoter. The promoter isolated through these studies may be effectively substituted in plant genetic engineering with other constitutive promoter for transgene expression in economically important agricultural crops. (author)

  4. Agricultural application of radioisotopes

    International Nuclear Information System (INIS)

    Agrawal, H.M.

    2001-01-01

    The radiations and isotopic tracers laboratory (R.I.T.L.) is duly approved B-class laboratory for handling radioactivity and functions as a central research facility of our university which has played a very significant role in ushering green revolution in the country. Radiolabelled fertilizers, insecticides and isotopes mostly supplied by Board of Radiation and Isotope Technology, (BRIT) Department of Atomic Energy (DAE) are being used in our university for the last three decades to study the uptake of fertilizers, micro nutrients, photosynthesis and photorespiration studies in different crop plants, soil-water-plant relations and roots activity, pesticides and herbicides mode of action, plants physiology and microbiology. Main emphasis of research so far has been concentrated on the agricultural productivity. The present talk is an attempt to highlight the enormous potential of radioisotopes to evolve better management of crop system for eco-friendly and sustainable agriculture in the next century. (author)

  5. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture

    Science.gov (United States)

    Reynolds, Olivia L.; Padula, Matthew P.; Zeng, Rensen; Gurr, Geoff M.

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a “beneficial substance”. This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels. PMID:27379104

  6. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture.

    Science.gov (United States)

    Reynolds, Olivia L; Padula, Matthew P; Zeng, Rensen; Gurr, Geoff M

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a "beneficial substance". This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels.

  7. Assessment of Variable Planting Date as an Agricultural Adaptation to Climate Variability in Sri Lanka

    Science.gov (United States)

    Rivera, A.; Gunda, T.; Hornberger, G. M.

    2016-12-01

    Agriculture accounts for approximately 70% of global freshwater withdrawals. Changes in precipitation patterns due to climate change as well as increasing demands for water necessitate an increased understanding of the water-­food intersection, notably at a local scale to inform farmer adaptations to improve water productivity, i.e., to get more food with less water. Local assessments of water-food security are particularly important for nations with self-sufficiency policies, which prioritize in-country production of certain resources. An ideal case study is the small island nation of Sri Lanka, which has a self-sufficiency policy for its staple food of rice. Because rice is a water-intensive crop, assessment of irrigation water requirements (IWRs) and the associated changes over time is especially important. Previous studies on IWRs of rice in Sri Lanka have failed to consider the Yala (dry) season, when water is scarcest.The goal of this study is to characterize the role that a human decision, setting the planting date, can play in buffering declines in rice yield against changes in precipitation patterns. Using four meteorological stations in the main rice-growing zones in Sri Lanka, we explore (1) general changes in IWRs over time during the Yala season and (2) the impact of the rice planting date. We use both historical data from meteorological stations as well as future projections from regional climate models. Our results indicate that gains can be achieved using a variable planting date relative to a fixed date, in accordance with a similar conclusion for the Maha (wet) season. This local scale assessment of Sri Lanka IWRs will contribute to the growing global literature on the impacts of water scarcity on agriculture and the role that one adaptation measure can play in mitigating deleterious impacts.

  8. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

    Science.gov (United States)

    Etminani, Faegheh; Harighi, Behrouz

    2018-01-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity. PMID:29887777

  9. Agricultural, domestic and handicraft folk uses of plants in the Tyrrhenian sector of Basilicata (Italy

    Directory of Open Access Journals (Sweden)

    Guarrera Paolo

    2005-07-01

    Full Text Available Abstract Background Research was carried out into agricultural and domestic-handicraft uses in folk traditions in the Tyrrhenian sector of the Basilicata region (southern Italy, as it is typically representative of ethnobotanical applications in the Mediterranean area. From the point of view of furnishing a botanical support for the study of local "material culture" data was collected through field interviews of 49 informants, most of whom were farmers. Results The taxa cited are 60, belonging to 32 botanical families, of which 18 are employed for agricultural uses and 51 for domestic-handicraft folk uses. Data show a diffuse use of plants for many purposes, both in agricultural (present uses 14%; past uses 1% and for domestic-handicraft use (present uses 40%; past uses 45%; most of the latter are now in decline. Conclusion 60 data look uncommon or typical of the places studied. Some domestic-handicraft folk uses are typical of southern Italy (e.g. the use of Ampelodesmos mauritanicus for making ties, ropes, torches, baskets or that of Acer neapolitanum for several uses. Other uses (e.g. that of Inula viscosa and Calamintha nepeta for peculiar brooms, and of Origanum heracleoticum for dyeing wool red are previously unpublished.

  10. Antibiotic Properties of the endophytic Streptomyces Spp. Isolated from the Leaves of Myanmar Medicinal Plants

    International Nuclear Information System (INIS)

    Aye Pe; Mar Mar Nyein; Win Maung

    2002-02-01

    Three medicinal plants of Myanmar are selected in the study of endophytic microorganisms and are taxonomically classified and identified to be Sa-ba-lin (Cymbopogon citratus Stapf.), Shazaungtinga- neah (Euphorbia splendens Bojer. ex Hooker) and Ma-shaw (Sauropus grandifolius Pax. and Hoffm.). The screening of endophytic microorganisms is performed according to the ISP method (International Streptomyces Projects 1993). The morphological and physicochemical properties of isolated strains are studied and identified to be the Genus Streptomyces. The test of apparent antimicrobial activity of isolated Streptomyces is done on 18 strains of pathogenic bacteria. It is found that the isolated endophytic Sireptomyces showed the significant antibacterial activity on most of the test organisms. (author)

  11. 7 CFR 1124.6 - Supply plant.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1124.6 Section 1124.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 1124.6 Supply plant. See § 1000.6. ...

  12. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  13. Framing the Future with Bacteriophages in Agriculture.

    Science.gov (United States)

    Svircev, Antonet; Roach, Dwayne; Castle, Alan

    2018-04-25

    The ability of agriculture to continually provide food to a growing world population is of crucial importance. Bacterial diseases of plants and animals have continually reduced production since the advent of crop cultivation and animal husbandry practices. Antibiotics have been used extensively to mitigate these losses. The rise of antimicrobial resistant (AMR) bacteria, however, together with consumers’ calls for antibiotic-free products, presents problems that threaten sustainable agriculture. Bacteriophages (phages) are proposed as bacterial population control alternatives to antibiotics. Their unique properties make them highly promising but challenging antimicrobials. The use of phages in agriculture also presents a number of unique challenges. This mini-review summarizes recent development and perspectives of phages used as antimicrobial agents in plant and animal agriculture at the farm level. The main pathogens and their adjoining phage therapies are discussed.

  14. An overview of performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Jow, Hong-Nian; Anderson, D.R.; Marietta, M.

    1997-01-01

    This paper presents an overview of the methodology used in the recent performance assessment (PA) to support the U.S. Department of Energy (DOE) Carlsbad Area Office's (CAO's) Waste Isolation Pilot Plant (WIPP) Compliance Certification Application (CCA). The results of this recently completed WIPP PA will be presented. Major release modes contributing to the total radionuclide release to the accessible environment will be discussed. Comparison of the mean complementary cumulative distribution function (CCDF) curve against the Environmental Protection Agency (EPA) radionuclide release limits will be presented

  15. Residual biogas yield of digestate from agricultural biogas plants; Restgaspotenzial in Gaerresten aus landwirtschaftlichen Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Andreas; Effenberger, Mathias; Kissel, Rainer; Gronauer, Andreas [Bayerische Landesanstalt fuer Landwirtschaft, Freising (Germany). Arbeitsgruppe Biogastechnologie und Reststoffmanagement

    2009-07-01

    To evaluate the residual biogas yield during storage, biogas tests at a temperature of 22 C were performed with samples of liquid digested residue from 15 agricultural biogas plants (BGP). Values of residual biogas yield between 0.3 and 1.3 % with respect to the biogas yield from the raw input materials were measured. For the two one-stage BGP, the value was about 1.2 %. For the two-stage plants, a residual biogas yield (RBY) of 0.9 % was determined as opposed to 0.4 % for the three-stage plants. With a single exception, the RBY was clearly below 1.0 % if the overall hydraulic retention time in the BGP was equal to or larger than 100 days. For the majority of samples, the residual biogas yield showed a positive correlation with the level of volatile fatty acids in the digestate. Since the real conditions in storage tanks cannot be simulated with a simple batch-test, the results are not representative for the actual biogas production and potential methane emissions from the digestate during open storage. (orig.)

  16. Entomopathogenic nematodes in agricultural areas in Brazil.

    Science.gov (United States)

    de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro E; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano

    2017-04-06

    Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.

  17. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described

  18. Economic optimisation of a wind power plant for isolated locations

    International Nuclear Information System (INIS)

    Fortunato, B.; Mummolo, G.; Cavallera, G.

    1997-01-01

    This paper presents a model of a wind power plant for isolated locations composed of a vertical axis wind turbine connected to a self-excited induction generator operating at constant voltage and frequency; a back-up diesel generator and a battery system are moreover included in the system. Constant voltage and frequency are obtained only by controlling the generator appropriately. The control system is supposed to be optimised so that the system operates at the highest efficiency. In order to improve the total efficiency even further, a gear-box to vary the gear transmission ratio between the turbine and the generator has been considered. A ''Monte Carlo'' type simulation has been used to analyse the operation of that system over a one year period. The model is based on a probability density function of the wind speed derived by statistical data concerning a given location and on the probabilistic curve of the load required by an isolated location. The cost per kW h for different dimensions of the main components has been evaluated and the optimum configuration has been identified. (author)

  19. ISOLATION OF MESOPHYLL PROTOPLASTS FROM MEDITERRANEAN WOODY PLANTS FOR THE STUDY OF DNA INTEGRITY UNDER ABIOTIC STRESS

    Directory of Open Access Journals (Sweden)

    Elena Kuzminsky

    2016-08-01

    Full Text Available Abiotic stresses have considerable negative impact on Mediterranean plant ecosystems and better comprehension of the genetic control of response and adaptation of trees to global changes is urgently needed. The Single Cell Gel Electrophoresis assay could be considered a good estimator of DNA damage in an individual eukaryotic cell. This method has been mainly employed in animal tissues, because the plant cell wall represents an obstacle for the extraction of nuclei; moreover, in Mediterranean woody species, especially in the sclerophyll plants, this procedure can be quite difficult because of the presence of sclerenchyma and hardened cells. On the other hand, these plants represent an interesting material to be studied because of the ability of these plants to tolerate abiotic stress. For instance, holm oak (Quercus ilex L. has been selected as the model plant to identify critical levels of O3 for Southern European forests. Consequently, a quantitative method for the evaluation of cell injury of leaf tissues of this species is required. Optimal conditions for high-yield nuclei isolation were obtained by using protoplast technology and a detailed description of the method is provided and discussed. White poplar (Populus alba L. was used as an internal control for protoplast isolation. Such a method has not been previously reported in newly fully developed leaves of holm oak. This method combined with Single Cell Gel Electrophoresis assay represents a new tool for testing the DNA integrity of leaf tissues in higher plants under stress conditions.

  20. 19 CFR 12.10 - Regulations and orders of the Department of Agriculture.

    Science.gov (United States)

    2010-04-01

    ... Agriculture. 12.10 Section 12.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... Regulations and orders of the Department of Agriculture. The importation into the United States of plants and plant products is subject to regulations and orders of the Department of Agriculture restricting or...

  1. Changing techniques in crop plant classification: molecularization at the National Institute of Agricultural Botany during the 1980s.

    Science.gov (United States)

    Holmes, Matthew

    2017-04-01

    Modern methods of analysing biological materials, including protein and DNA sequencing, are increasingly the objects of historical study. Yet twentieth-century taxonomic techniques have been overlooked in one of their most important contexts: agricultural botany. This paper addresses this omission by harnessing unexamined archival material from the National Institute of Agricultural Botany (NIAB), a British plant science organization. During the 1980s the NIAB carried out three overlapping research programmes in crop identification and analysis: electrophoresis, near infrared spectroscopy (NIRS) and machine vision systems. For each of these three programmes, contemporary economic, statutory and scientific factors behind their uptake by the NIAB are discussed. This approach reveals significant links between taxonomic practice at the NIAB and historical questions around agricultural research, intellectual property and scientific values. Such links are of further importance given that the techniques developed by researchers at the NIAB during the 1980s remain part of crop classification guidelines issued by international bodies today.

  2. L'eau et l'agriculture

    OpenAIRE

    DUC, Myriam

    2012-01-01

    Cours sur la gestion des ressources en eau en particuliers les relation entre l'eau et l'agriculture, première activité consommatrice d'eau. Rappel du cycle de l’eau. Rappel des usages de l’eau : l’agriculture une grande consommatrice ! Les défis : trouver un moyen pour concilier alimentation humaine et respect des écosystèmes (l’agriculture source de pollutions, dégradation des terres…) Des notions : relations eau-plante-sol : Cultures et consommations d&#...

  3. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    Science.gov (United States)

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of

  4. Response of AtNPR1-expressing cotton plants to Fusarium oxysporum f. sp. vasinfectum isolates

    Science.gov (United States)

    In our earlier investigation, we had demonstrated that transgenic cotton plants expressing AtNPR1 showed significant tolerance to Fusarium oxysporum f. sp. vasinfectum, isolate 11 (Fov11) and several other pathogens. The current study was designed to further characterize the nature of the protectio...

  5. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume I contains the following attachments for Module II: waste analysis plan; quality assurance program plan for the Waste Isolation Pilot Plant (WIPP) Experiment Waste Characterization Program(QAPP); WIPP Characterization Sampling and Analysis Guidance Manual (Plan)(SAP); and no migration Determination Requirement Summary (NMD)

  6. Does plant-Microbe interaction confer stress tolerance in plants: A review?

    Science.gov (United States)

    Kumar, Akhilesh; Verma, Jay Prakash

    2018-03-01

    The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants

    OpenAIRE

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-01-01

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth ind...

  8. Exo-metabolites of mycelial fungi isolated in production premises of cheese-making and meat-processing plants.

    Science.gov (United States)

    Kozlovsky, A G; Zhelifonova, V P; Antipova, T V; Baskunov, B P; Ivanushkina, N E; Ozerskaya, S M

    2014-01-01

    Data were obtained on the species composition of mycelial fungi isolated from the air of workrooms and production premises in cheese-making and meat-processing plants. The strains studied were shown to be capable of producing various low molecular weight compounds. Many of them are mycotoxins such as α-cyclopiazonic acid (CPA), mycophenolic acid (MPA), citrinin, cladosporin, roquefortine and ergot alkaloids. The profiles of the secondary metabolites were used to elucidate the species' names of the isolated strains.

  9. Isolation, characterization and identification of actinomycetes from ...

    African Journals Online (AJOL)

    A total of 62 isolates of actinomycetes were isolated from 7 soil samples collected from Agriculture Research Center Semongok, Sarawak. All 62 isolates exhibited a range of colony colours (dark grey, grey, dark brown, brownish, whitish and yellowish white). All the isolates were later purified and subjected to a few ...

  10. Attempt for reconstruction of agricultural land in Fukushima using biofertilizer microorganisms and Ce-removing plants

    International Nuclear Information System (INIS)

    Yokoyama, Tadashi

    2016-01-01

    A group of microorganisms inhabiting the crop rhizosphere promote the absorption of nutrients of crops and helps improve their productivity. These are collectively referred to as biofertilizers. In Fukushima Prefecture, potassium is applied to suppress absorption of radioactive Cs into crops. As a technique to remove radioactive Cs from agricultural lands, the authors investigated whether the combinations of biofertilizer microorganisms with radioactive Cs-removing plants can promote the rooting of these plants and accelerate the removal rate of radioactive Cs contained in the soil. In the field test, the absorption promoting effect on radioactive Cs was recognized by the combination of 3 varieties of Komatsuna and Bacillus genus fertilizer. However, the absorption promotion effect on radioactive Cs was less than 1/10 of that of the model experiment, which suggested the soil factor that the soils in Nihonmatsu City contained vermiculite as clay minerals. Then, the authors conducted a pot test, where the biofertilizer microorganisms having potassium-dissolving bacteria capable of mobilizing the radioactive Cs fixed on vermiculite were applied. It was confirmed that the transfer of radioactive Cs to the plant roots was increased. The combination of filamentous fungus and Ce-removing plants will also be studied in the future. (A.O.)

  11. TREHALOSE-BASED ADDITIVE IMPROVED INTER-PRIMER BINDING SITE REACTIONS FOR DNA ISOLATED FROM RECALCITRANT PLANTS

    Directory of Open Access Journals (Sweden)

    Veronika Lancíková

    2014-02-01

    Full Text Available Trehalose-based (TBT-PAR additive was tested in order to optimize PCR amplification for DNA isolated from recalcitrant plants. Retrotransposon-based inter-primer binding site reactions were significantly improved with TBT-PAR solution using genomic DNA isolated from flax (Linum usitatissimum L., genotypes Kyivskyi, Bethune grown in radio-contaminated and non-radioactive remediated Chernobyl experimental fields. Additionally, similar improvements were observed using 19 recalcitrant genotypes of maize (Zea mays L. and three genotypes of yacon (Smallanthus sonchifolius, Poepp. et Endl., genotypes PER05, ECU45, BOL22 grown in standard field conditions.

  12. Rhizosphere pseudomonads as probiotics improving plant health.

    Science.gov (United States)

    Kim, Young Cheol; Anderson, Anne J

    2018-04-20

    Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development, and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This review illustrates how the probiotic pseudomonads, nurtured by the C and N sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  13. Biofilm Formation and Disinfectant Susceptibility of Persistent and Nonpersistent Listeria monocytogenes Isolates from Gorgonzola Cheese Processing Plants.

    Science.gov (United States)

    Costa, Annalisa; Bertolotti, Luigi; Brito, Luisa; Civera, Tiziana

    2016-11-01

    The aim of this study was to investigate whether the biofilm-forming ability and/or the disinfectant susceptibility accounted for the persistence of Listeria monocytogenes in Gorgonzola cheese processing plants. For this purpose, a set of 16 L. monocytogenes isolates collected in the 2004-2007 period was analyzed, including 11 persistent isolates collected in different years, within the collection period, and displaying identical or highly correlated pulsotypes. The evaluation of biofilm-forming ability was assessed using crystal violet (CV) staining and the enumeration of viable cells on stainless steel coupons (SSC). Absorbance values obtained with CV staining for persistent and nonpersistent isolates were not significantly different (rm-ANOVA p > 0.05) and the cell counts from nonpersistent isolates showed to be higher compared with persistent isolates (rm-ANOVA p biofilms on SSC, grown in nutrient-rich (dirty) and limiting (clean) conditions using acid acetic-hydrogen peroxide (P3) and acid citric-hydrogen peroxide (MS) commercial disinfectants. The treatment was considered effective when a 4 Log reduction in viable cell count was observed. The Log reductions of persistent and nonpersistent isolates, obtained with both the assays in clean and dirty conditions, were compared and no significant differences were detected (rm-ANOVA p > 0.05). A greater influence of organic matter on MS could explain why P3 was efficient in reducing to effective levels the majority of the isolates at the lowest concentration suggested by the manufacturer (0.2% [v/v]), while the same purpose required a higher concentration (1% [v/v]) of MS. In conclusion, our results demonstrate that the persistence of these isolates in Gorgonzola cheese processing plants was linked neither to the biofilm-forming ability nor to their susceptibility to hydrogen peroxide-based disinfectants; therefore, other factors should contribute to the persistent colonization of the dairies.

  14. Complete genome sequence of the biofilm-forming Microbacterium sp. strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway.

    Science.gov (United States)

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2017-03-01

    The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce ( Lactuca sativa ) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

  15. Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes [Mart.] Solm-Laubach: Pontedericeae) in the Nile Delta, Egypt

    International Nuclear Information System (INIS)

    Ghabbour, Elham A.; Davies, Geoffrey; Lam, Y.-Y.; Vozzella, Marcy E.

    2004-01-01

    Humic acids (HAs) are animal and plant decay products that confer water retention, metal and organic solute binding functions and texture/workability in soils. HAs assist plant nutrition with minimal run-off pollution. Recent isolation of HAs from several live plants prompted us to investigate the HA content of the water hyacinth (Eichhornia crassipes [Mart.] Solm-Laubach: Pontedericeae), a delicately flowered plant from Amazonian South America that has invaded temperate lakes, rivers and waterways with devastating economic effects. Hyacinth thrives in nutrient-rich and polluted waters. It has a high affinity for metals and is used for phytoremediation. In this work, HAs isolated from the leaves, stems and roots of live water hyacinth plants from the Nile Delta, Egypt were identified by chemical and spectral analysis and by comparison with authentic soil and plant derived HAs. Similar carbohydrate and amino acid distributions and tight metal binding capacities of the HAs and their respective plant components suggest that the presence of HAs in plants is related to their metal binding properties

  16. [Isolation of endophytic fungi from medicinal plant Brucea javanica and their microbial inhibition activity].

    Science.gov (United States)

    Liang, Zi-Ning; Zhu, Hua; Lai, Kai-Ping; Chen, Long

    2014-04-01

    To isolate and identify endophytic fungi from Brucea javanica, and to detect the antimicrobial activity of these strains. Endophytic fungi were isolated by tissue inoculation culture and identified by conventional morphological characteristic method. Seven kinds of pathogenic fungi and three kinds of bacteria were used as targeting microbes to test microbial inhibition activities by agar plate antagonistic action and modified agar gel diffusion methods, respectively. A total of 83 endophytic fungi strains were isolated from the root, stem, leaf and fruit of Brucea javanica. 34 strains were obtained from the stem, 32 strains were obtained from the leaf, 15 strains were isolated from the root and 2 strains came from the fruit. These 73 strains which had been identified attribute to 5 orders, 6 families and 12 genera. For the isolated strains, 14 strains had antifungal activities against at least one pathogenic fungi, 9 strains showed antibacterial activities against one or more bacteria. Especially, the strain YJ-17 which belonged to Phomopsis genus showed the best inhibitory effect on the targeting microbes. The endophytic fungi from Brucea javanica show diversity and microbial inhibition activity, and are worthy for further study on plant disease controlling.

  17. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health.

    Directory of Open Access Journals (Sweden)

    Martina Köberl

    Full Text Available BACKGROUND: To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. METHODOLOGY/PRINCIPAL FINDINGS: We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt. Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90, and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37% than in the desert (11%. Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%; disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. CONCLUSIONS/SIGNIFICANCE: After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural

  18. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    International Nuclear Information System (INIS)

    2015-01-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  19. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  20. Plasmid profilling and similarities in identities of probable microbes isolated from crude oil contaminated agricultural soil

    Directory of Open Access Journals (Sweden)

    Toochukwu Ekwutosi OGBULIE

    2013-05-01

    Full Text Available Plasmid analysis of bacteria isolated from agricultural soil experimentally contaminated with crude oil was carried out and the resultant bands’ depicting the different molecular sizes of the plasmid DNA molecules per isolate was obtained. There was no visible band observed for Klebsiella indicating that the organism lack plasmid DNA that confers degradative ability to it, possibly the gene could be borne on the chromosomal DNA which enabled its persistence in the polluted soil. Molecular characterization was undertaken to confirm the identities of the possible microorganisms that may be present in crude oil-contaminated soil. The result of the DNA extracted and amplified in a PCR using EcoRI and EcoRV restriction enzymes for cutting the DNA of the bacterial cells indicated no visible band for cuts made with EcoRV restriction enzyme showing that the enzyme is not specific for bacterial DNA of isolates in the samples, hence there was no amplification. By contrast though, visible bands of amplicons were observed using EcoRI restriction enzymes. The resultant visible bands of microbial profile obtained using the universal RAPD primer with nucleotide sequence of 5’—CTC AAA GCA TCT AGG TCC A---3’ showed that only Pseudomonas fluorescens and Bacillus mycoides had visible bands at identical position on the gel indicating that both species possibly had identical sequence or genes of negligible differences coding for degradation of hydrocarbons as shown by similar values in molecular weight and positions in the gel electrophoresis field.

  1. The use of GMOs (genetically modified organisms): agricultural biotechnology or agricultural biopolitics?

    Science.gov (United States)

    Nuti, Marco; Felici, Cristiana; Agnolucci, Monica

    2007-01-01

    Agricultural biotechnologies embrace a large array of conventional and modern technologies, spanning from composting organic by-products of agriculture to innovative improvement of quality traits of about twenty out of the mostly cultivated plants. In EU a rather restrictive legislative framework has been installed for GMOs, requiring a risk assessment disproportionate with respect to conventional agriculture and organic farming products. The latter are far from being proved safe for human and animal health, and for the environment. Biotechnology of GMOs has been overtaken by biopolitics. On one side there are biotechnological challenges to be tackled, on another side there is plenty of ground for biopolitical decisions about GMOs. Perhaps the era of harsh confrontation could be fruitfully replaced by sensible cooperation, in order to get a sustainable agricultural development.

  2. Performance Analysis of Isolated Hybrid Power Plant Model with Dynamic Load Conditions - Morning, Noon and Afternoon Transitions

    Science.gov (United States)

    Irawati, Rina

    2018-02-01

    Diesel Generator with Photovoltaic Hybrid Power Plant is one of the solutions for supply electric demand to isolated area. The energy sources that can be used for hybrid system are such as photovoltaic, wind turbine, and biomass or biogas, because these sources are almost available in every isolated area. This research used a model of hybrid system from diesel generator and 1.28 kWp photovoltaic power plant. The reliability and some of power quality of this system tested by 1300VA house hold daily load characteristic effectively 24 hour. Power quality and some electricity parameters during transition mode for each resource will be analyzed. Furthermore the power quality analyze will be conducted and evaluated base on Electrical Engineers' Association (EEA).

  3. The Geologic and Hydrogeologic Setting of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Swift, P.N.; Corbet, T.F.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is a mined repository constructed by the US Department of Energy for the permanent disposal of transuranic wastes generated since 1970 by activities related to national defense. The WIPP is located 42 km east of Carlsbad, New Mexico, in bedded salt (primarily halite) of the Late Permian (approximately 255 million years old) Salado Formation 655 m below the land surface. Characterization of the site began in the mid-1970s. Construction of the underground disposal facilities began in the early 1980s, and the facility received final certification from the US Environmental Protection Agency in May 1998. Disposal operations are planned to begin following receipt of a final permit from the State of New Mexico and resolution of legal issues. Like other proposed geologic repositories for radioactive waste, the WIPP relies on a combination of engineered and natural barriers to isolate the waste from the biosphere. Engineered barriers at the WIPP, including the seals that will be emplaced in the access shafts when the facility is decommissioned, are discussed in the context of facility design elsewhere in this volume. Physical properties of the natural barriers that contribute to the isolation of radionuclides are discussed here in the context of the physiographic, geologic, and hydrogeologic setting of the site

  4. Archaeological reconnaissance of a proposed site for the Waste Isolation Plant (WIPP)

    International Nuclear Information System (INIS)

    Nielsen, J.

    1976-01-01

    An archaeological reconnaissance was carried out on Sections 20, 21, 28, and 29 of T 22 S, R 31 E, Eddy County, NM, the core area of a site proposed for disposal of radioactive waste in bedded salt (the Waste Isolation Pilot Plant). This site is located in the Los Medanos area east of Carlsbad, NM. Results of the survey are presented in sections on survey techniques, geology, terrain, floristics, cultural resources, theoretical considerations, site description, and recommendations

  5. Plant dermatitis-isolation and chemical investigation of the major vesicant principle of Smodingium argutum

    International Nuclear Information System (INIS)

    Gorst-Allman, C.P.; Steyn, P.S.; Wells, M.J.; Fourie, D.M.C.

    1987-01-01

    Dermatitis precipitated by contact with sensitizing or irritating plants can be a persistent and disabling condition. Although presenting a characteristic clinical appearance, its infrequent occurrence oftenresults in difficulty in diagnosis to those unfamiliar with its effects. The most common cause of plant dermatitis in the Southern Transvaal is Smodingium argutum, an indigenous member of the family Anacardiaceae. The major vesicant principle of Smodingium argutum has been isolated for the first time, and its structure determined on the basis of spectroscopic and chemical evidence. 13 C n.m.r. and 1 H n.m.r. data for compounds are given

  6. Plant dermatitis-isolation and chemical investigation of the major vesicant principle of Smodingium argutum

    Energy Technology Data Exchange (ETDEWEB)

    Gorst-Allman, C P; Steyn, P S; Heyl, T; Wells, M J; Fourie, D M.C.

    1987-03-01

    Dermatitis precipitated by contact with sensitizing or irritating plants can be a persistent and disabling condition. Although presenting a characteristic clinical appearance, its infrequent occurrence oftenresults in difficulty in diagnosis to those unfamiliar with its effects. The most common cause of plant dermatitis in the Southern Transvaal is Smodingium argutum, an indigenous member of the family Anacardiaceae. The major vesicant principle of Smodingium argutum has been isolated for the first time, and its structure determined on the basis of spectroscopic and chemical evidence. /sup 13/C n.m.r. and /sup 1/H n.m.r. data for compounds are given.

  7. No-migration variance petition for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Duff, M.; Carnes, R.; Hart, J.; Hansen, R.

    1991-01-01

    The US Department of Energy (DOE) is petitioning the US Environmental Protection Agency (EPA) to allow the emplacement of hazardous wastes subject to the Resource Conservation and Recovery Act (RCRA) land disposal restrictions in the Waste Isolation Pilot Plant (WIPP). The basis of the petition is that there will be no migration of hazardous constituents from the repository for as long as the wastes remain hazardous. The EPA regulations in 40 CFR Section 268.6 identify specific criteria that must be addressed in making a demonstration of no migration. EPA's approval of this petition will allow the WIPP facility to accept wastes otherwise prohibited or restricted from land disposal. 5 refs

  8. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them.

    Science.gov (United States)

    Simelane, Mthokozisi B C; Shonhai, Addmore; Shode, Francis O; Smith, Peter; Singh, Mogie; Opoku, Andy R

    2013-10-08

    Mimusops caffra E. Mey. ex A.DC and Mimusops obtusifolia Lam (both members of the Sapotaceae family), and Hypoxis colchicifolia Bak (family Hypoxidaceae) are used by traditional healers in Zululand to manage malaria. Anti-plasmodial investigation of the crude extracts and some triterpenes isolated from the plants showed activity against a chloroquine sensitive (CQS) strain of Plasmodium falciparum (D10). Among the crude extracts the leaves of M. caffra exhibited the highest activity, with an IC₅₀ of 2.14 μg/mL. The pentacyclic tritepenoid ursolic acid (1), isolated from the leaves of M. caffra was the most active compound (IC₅₀ 6.8 μg/mL) as compared to taraxerol (2) and sawamilletin (3) isolated from the stem bark of M. obtusifolia (IC₅₀ > 100). Chemical modification of the ursolic acid (1) to 3β-acetylursolic acid (4) greatly enhanced its anti-plasmodial activity. Compound 4 reduced parasitaemia against Plasmodium berghei by 94.01% in in vivo studies in mice. The cytotoxicity of 3β-acetylursolic acid (IC₅₀) to two human cell lines (HEK293 and HepG2) was 366.00 μg/mL and 566.09 μg/mL, respectively. The results validate the use of these plants in folk medicine.

  9. Achievements obtained in agricultural research by using nuclear techniques in Turkey

    International Nuclear Information System (INIS)

    Halitligil, M. B.

    2002-01-01

    Ankara Nuclear Research Center in Agriculture and Animal Sciences (ANRCAAS) is one of the four unique research centers belonging to Turkish Atomic Energy Authority. ANRCAAS is unique because it is the only center in Turkey which uses nuclear techniques as a tool to solve problems for agriculture or animal sciences which cannot be solved using conventional techniques. Training and Research in the areas of agriculture, animal science, food preservation and sterilization via nuclear techniques are among the objectives of the Center. In this paper, the research activities carried out and the achievements so far obtained in the agricultural specialties of Plant Breeding, Soil Fertility and Plant Nutrition, Plant Protection and Pesticide Residues -all by using nuclear techniques- are provided

  10. Draft Genome Sequence of the Phosphate-Solubilizing Bacterium Pseudomonas argentinensis Strain SA190 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2016-12-23

    Pseudomonas argentinensis strain SA190 is a plant endophytic-inhabiting bacterium that was isolated from root nodules of the desert plant Indigofera argentea collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of SA190, highlighting several functional genes related to plant growth-promoting activity, environment adaption, and antifungal activity.

  11. Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut.

    Directory of Open Access Journals (Sweden)

    Alka Gupta

    Full Text Available Coconut, cocoa and arecanut are commercial plantation crops that play a vital role in the Indian economy while sustaining the livelihood of more than 10 million Indians. According to 2012 Food and Agricultural organization's report, India is the third largest producer of coconut and it dominates the production of arecanut worldwide. In this study, three Plant Growth Promoting Rhizobacteria (PGPR from coconut (CPCRI-1, cocoa (CPCRI-2 and arecanut (CPCRI-3 characterized for the PGP activities have been sequenced. The draft genome sizes were 4.7 Mb (56% GC, 5.9 Mb (63.6% GC and 5.1 Mb (54.8% GB for CPCRI-1, CPCRI-2, CPCRI-3, respectively. These genomes encoded 4056 (CPCRI-1, 4637 (CPCRI-2 and 4286 (CPCRI-3 protein-coding genes. Phylogenetic analysis revealed that both CPCRI-1 and CPCRI-3 belonged to Enterobacteriaceae family, while, CPCRI-2 was a Pseudomonadaceae family member. Functional annotation of the genes predicted that all three bacteria encoded genes needed for mineral phosphate solubilization, siderophores, acetoin, butanediol, 1-aminocyclopropane-1-carboxylate (ACC deaminase, chitinase, phenazine, 4-hydroxybenzoate, trehalose and quorum sensing molecules supportive of the plant growth promoting traits observed in the course of their isolation and characterization. Additionally, in all the three CPCRI PGPRs, we identified genes involved in synthesis of hydrogen sulfide (H2S, which recently has been proposed to aid plant growth. The PGPRs also carried genes for central carbohydrate metabolism indicating that the bacteria can efficiently utilize the root exudates and other organic materials as energy source. Genes for production of peroxidases, catalases and superoxide dismutases that confer resistance to oxidative stresses in plants were identified. Besides these, genes for heat shock tolerance, cold shock tolerance and glycine-betaine production that enable bacteria to survive abiotic stress were also identified.

  12. Waste isolation pilot plant disposal room model

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  13. Waste isolation pilot plant disposal room model

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the open-quotes Disposal Room Model,close quotes describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized

  14. Use of stable isotopes in agriculture

    International Nuclear Information System (INIS)

    Ali, F. K.

    2011-01-01

    Scientific research is considered to be one of the most important steps to achieve sustainable agriculture development. This paper is focused on the role of stable isotopes and their applications in agriculture for plant and animal production, and to study the relationship between soil, plant, air, water, nutrients and agricultural pests. Symbiotic N 2 fixation and efficient use of chemical and organic N fertilizers using 15 N were reported. Factors affecting 13 C values and application of carbon isotope discrimination to physiological and eco-physiological studies and selection of genotypes with improved water-use efficiency and drought tolerance and the recent progress in this field are reviewed. Moreover, the use of carbon isotope compositions in monitoring environmental changes and its various applications in food technology, animal production and entomology are discussed. (author)

  15. Nuclear Techniques in Agriculture: Status and Applications

    International Nuclear Information System (INIS)

    Kurdali, F.

    2007-01-01

    This paper is focused on the role of nuclear techniques and their applications in agriculture science for plant and animal production, and to study the relationships among soil, plant, air, water, nutrients and agricultural pests. For example, carbon isotope discrimination 12 C/ 13 C can be used to select appropriate plant genotypes which are tolerant to drought and salinity stress. Using 15 N to study, symbiotic N 2 fixation, inorganic N dynamics in the soil, plant system, mineralization of organic N in soils, efficient use of chemical and organic N fertilizers and microbial protein production in ruminants. Neutron gauges are used for soil moisture measurements to assess crop water use efficiencies, crops water requirements, and irrigation scheduling for conventional and new methods of irrigation. The use of environmental isotopes ( 18 O, 2 H, 3 H and 14 C) in hydrology; and 137 Cs to study soil erosion. Using 32 P to study the fate of applied P fertilizers (chemical fractionation and availability), their use efficiency and phosphorus metabolism in animals. Ionizing radiation is used to improve the quality and productivity of major crops, to induce mutations, to improve the metabolisable and digestible energy of unconventional feeds and the nutritive value of agricultural residues, and to protect crops against agricultural pests and in food conservation. Radioimmunoassay is used in studies to improve the production and reproductive performance of indigenous small ruminants. (author)

  16. Draft Genome Sequence of the Phosphate-Solubilizing Bacterium Pseudomonas argentinensis Strain SA190 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2016-01-01

    Pseudomonas argentinensis strain SA190 is a plant endophytic-inhabiting bacterium that was isolated from root nodules of the desert plant Indigofera argentea collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of SA

  17. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    Science.gov (United States)

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Draft forecast of the final report for the comparison to 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bertram-Howery, S.G.; Marietta, M.G.; Anderson, D.R.; Gomez, L.S.; Rechard, R.P. (Sandia National Labs., Albuquerque, NM (USA)); Brinster, K.F.; Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

    1989-12-01

    The United States Department of Energy is planning to dispose of transuranic wastes, which have been generated by defense programs, at the Waste Isolation Pilot Plant. The WIPP Project will assess compliance with the requirements of the United States Environmental Protection Agency. This report forecasts the planned 1992 document, Comparison to 40 CFR, Part 191, Subpart B, for the Waste Isolation Pilot Plant (WIPP). 130 refs., 36 figs., 11 tabs.

  19. Agriculture: Nurseries and Greenhouses

    Science.gov (United States)

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  20. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)