WorldWideScience

Sample records for agricultural engineering education

  1. Agricultural Engineering Education in Nigeria

    Science.gov (United States)

    Aboaba, F. O.

    1974-01-01

    Agricultural engineering, an important new branch of engineering in Nigeria, is discussed in relation to available training programs, diploma and certificate courses, and evaluation of training programs. (Author/PG)

  2. Engineering Education for Agricultural and Rural Development in Africa

    Science.gov (United States)

    Adewumi, B. A.

    2008-01-01

    Agricultural Engineering has transformed agricultural practices from subsistence level to medium and large-scale production via mechanisation in the developed nations. This has reduced the labour force requirements in agriculture; increased production levels and efficiency, product shelf life and product quality; and resulted into…

  3. Study for Agricultural Engineering Development in Brazil. Summary Report of Joint Study Group on Agricultural Engineering in Brazil (July 24-August 12, 1972).

    Science.gov (United States)

    National Academy of Sciences, Washington, DC.

    The joint study group was established to identify the most urgent research and training needs in agricultural engineering in Brazil and to recommend how best to meet those needs. Specific recommendations are given for a long-term program to establish quality programs in education and research in agricultural engineering in Brazil and means to gain…

  4. Future trends in agricultural engineering.

    NARCIS (Netherlands)

    Jongebreur, A.A.; Speelman, L.

    1997-01-01

    Beside traditional mechanical engineering, other engineering branches such as electronics, control engineering and physics play their specific role within the agricultural engineering field. Agricultural engineering has affected and stimulated major changes in agriculture. In the last decades

  5. Education for Agricultural Improvement: Teacher Certification at the Agricultural and Mechanical College of Texas

    Science.gov (United States)

    Burlbaw, Lynn M.; Williams, Lauren; Kelly, Larry J.

    2017-01-01

    Texas A&M University has long been known for its engineering and agricultural programs. Only in the last 50 years has its reputation included the preparation of teachers for general education in the public schools of Texas. However, agricultural education has been an integral part of the institution's mandate since early in the 20th century.…

  6. DETERMINATION OF THE EDUCATIONAL NEEDS OF AGRICULTURAL ENGINEERING TECHNICIANS IN OHIO, A DIGEST OF A PH.D. DISSERTATION. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    Science.gov (United States)

    BENDER, RALPH E.; HALTERMAN, JERRY J.

    THIS STUDY WAS DESIGNED TO DEVELOP CURRICULUMS NEEDED IN TRAINING PROGRAMS FOR AGRICULTURAL ENGINEERING TECHNICIANS IN OHIO. A QUESTIONNAIRE TO INVENTORY THE LABOR FORCE WAS ADMINISTERED TO INDIVIDUALS, FIRMS, BUSINESSES, AND AGENCIES EMPLOYING PERSONS IN AREAS REQUIRING AGRICULTURAL ENGINEERING AND FARM MECHANICS. ANOTHER TO COLLECT INFORMATION…

  7. Senior Design in Agricultural Engineering--Progress and Pitfalls.

    Science.gov (United States)

    Holmes, R. G.; Rohrbach, R. P.

    1979-01-01

    Describes a specific senior design course and its objectives. Explains the basic deficiencies and problems for design education in agricultural engineering. Also stresses the effect the project advisor has on students' attitudes toward design and the applications of the course. (SMB)

  8. Nastran's Application in Agricultural Engineering

    Science.gov (United States)

    Vanwicklen, G. L.

    1985-01-01

    Finite element analysis has been recognized as a valuable solution method by agricultural engineers. NASTRAN has been obtained by the Agricultural Engineering Department at the University of Georgia. The NASTRAN Thermal Analyzer has been used in the teaching program for an undergraduate course in heat transfer and will be used for a new graduate course in finite element analysis. The NASTRAN Thermal Analyzer has also been applied to several research problems in the Agricultural Engineering Department.

  9. Be a Professional - Be Licensed! - Take the agricultural engineering professional engineering exam

    Science.gov (United States)

    Between October 2005 and October 2007, only 78 Agricultural Engineers took the professional engineering (PE) exam in the field of Agricultural Engineering, while the other 406 registered Agricultural Engineering Examinees took tests offer by other engineering disciplines. With the decline in partic...

  10. Education and Research Related to Organic Waste Management at Agricultural Engineering Schools

    Science.gov (United States)

    Soliva, Montserrat; Bernat, Carles; Gil, Emilio; Martinez, Xavier; Pujol, Miquel; Sabate, Josep; Valero, Jordi

    2007-01-01

    Purpose: The purpose of this paper is to describe the experience of the Agriculture Engineering School of Barcelona (ESAB), where undergraduate students were involved in field research experiments on organic waste use in agricultural systems. Design/methodology/approach: The paper outlines how the formation of professionals oriented to work for…

  11. Summer Institute in Agricultural Mechanics Education, Southern Region, Proceedings (Blacksburg, Virginia, August 3-7, 1970).

    Science.gov (United States)

    Virginia Polytechnic Inst. and State Univ., Blacksburg.

    This summer institute emphasizes the establishment of minimum measurable standards of attainment in agricultural engineering phases of teacher education in agriculture. Speeches presented are: (1) "Where We Are in Agricultural Mechanics Education," by Alfred H. Krebs, (2) "Research Offerings for More Effective Teaching in Agricultural Mechanics,"…

  12. Engineering education in Bangladesh - an indicator of economic development

    Science.gov (United States)

    Chowdhury, Harun; Alam, Firoz

    2012-05-01

    Developing nations including Bangladesh are significantly lagging behind the millennium development target due to the lack of science, technology and engineering education. Bangladesh as a least developing country has only 44 engineers per million people. Its technological education and gross domestic product growth are not collinear. Although limited progress was made in humanities, basic sciences, agriculture and medical sciences, a vast gap is left in technical and engineering education. This paper describes the present condition of engineering education in the country and explores ways to improve engineering education in order to meet the national as well as global skills demand.

  13. Selective Guide to Literature on Agricultural Engineering. Engineering Literature Guides, Number 4.

    Science.gov (United States)

    Cloud, Gayla Staples, Comp.

    Agricultural engineering overlaps many other disciplines. This document is a survey of information sources in agricultural engineering and is intended to identify those core resources which can help engineers and librarians to find information about the discipline. Sections include: (1) "Guides to the Literature"; (2) "Bibliographies"; (3)…

  14. Competences in Demand within the Spanish Agricultural Engineering Sector

    Science.gov (United States)

    Perdigones, Alicia; Valera, Diego Luis; Moreda, Guillermo Pedro; García, Jose Luis

    2014-01-01

    The Rural Engineering Department (Technical University of Madrid) ran three competence surveys during the 2006-2007 and 2007-2008 academic years and evaluated: (1) the competences gained by agricultural engineer's degree and agricultural technical engineer's degree students (360 respondents); (2) the competences demanded by agricultural employers…

  15. Condition and prospects of development of agricultural mechanical engineering

    OpenAIRE

    Vsevolod Babushkin; Margarita Ignatyeva

    2011-01-01

    In this paper, an estimation of condition and level of development of agricultural mechanical engineering is given; also an expert estimation of scales of the Russian market of agricultural machinery is given. The factors negatively influencing formation of the named market are designated. Features and prospects of development of agricultural mechanical engineering of Sverdlovsk region are defined. State regulation mechanisms of domestic agricultural mechanical engineering development are des...

  16. Biology: An Important Agricultural Engineering Mechanism

    Science.gov (United States)

    Henderson, S. M.

    1974-01-01

    Describes the field of bioengineering with particular emphasis on agricultural engineering, and presents the results of a survey of schools that combine biology and engineering in their curricula. (JR)

  17. Using the Discipline of Agricultural Engineering to Integrate Math and Science

    Science.gov (United States)

    Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah

    2011-01-01

    An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…

  18. Gender Equality in Agricultural Education

    Directory of Open Access Journals (Sweden)

    N. Jayakumar

    2016-05-01

    “Increased women’s enrollment in agricultural courses” as one among the strategies when addressing gender issues in the education and training components of agricultural development projects. In this context the study was carried out to ascertain the representation of women and their academic achievement in agricultural education. The study revealed that almost equal representation was found for women in agricultural course and they were also provided better quality education in their schooling, in the form of English medium education and education in private schools. Recent trends for the past four years showed a higher percentage of enrollments of women in agricultural course than men. The growth rate was also higher for the female students. Women also showed a significantly higher percentage of academic achievement than men. These positive indicators provide sufficient signals for equality of women in agricultural course and have positive implications for development of the agricultural sector in future.

  19. Does Agricultural Mechanics Laboratory Size Affect Agricultural Education Teachers' Job Satisfaction?

    Science.gov (United States)

    Byrd, Alex Preston; Anderson, Ryan G.; Paulsen, Thomas H.

    2015-01-01

    Secondary agricultural education teachers were surveyed to examine if a relationship existed between the physical attributes of agricultural mechanics laboratories and agricultural education teachers' enjoyment of teaching agricultural mechanics. Teachers also indicated their competence to teach courses other than agricultural mechanics within the…

  20. International Conference on Information Technology and Agricultural Engineering (ICITAE 2011)

    CERN Document Server

    Sambath, Sabo; Information Technology and Agricultural Engineering

    2012-01-01

    This volume comprises the papers from 2011 International Conference on Information Technology and Agricultural Engineering (ICITAE 2011).  2011 International Conference on Information Technology and Agricultural Engineering (ICITAE 2011) has been held in Sanya, China, December 1-2, 2011. All the papers have been peer reviewed by the selected experts. These papers represent the latest development in the field of materials manufacturing technology, spanning from the fundamentals to new technologies and applications. Specially, these papers cover the topics of Information Technology and Agricultural Engineering. This book provides a greatly valuable reference for researchers in the field of Information Technology and Agricultural Engineering who wish to further understand the underlying mechanisms and create innovative and practical techniques, systems and processes. It should also be particularly useful for engineers in information technology and agriculture who are responsible for the efficient and effective ...

  1. A Profile of Agricultural Education Teachers with Exemplary Rural Agricultural Entrepreneurship Education Programs

    Science.gov (United States)

    Heinert, Seth B.; Roberts, T. Grady

    2017-01-01

    Rural entrepreneurship education programs may be a great tool for enhancing rural livelihoods and reducing rural outmigration. Entrepreneurship has received attention in school based agricultural education, primarily through implementation of Supervised Agricultural Experience (SAE) programs. Very little research has looked at the teaching of…

  2. Engineering Programs of Tomorrow: The Role of Agricultural Engineering.

    Science.gov (United States)

    Edwards, Donald M.

    Due to rapid growth of societal and technological endeavors, engineers of the future will require greater technical competence. At the same time, engineering will become more people oriented with greater emphasis placed on people input into decision making. As a result, engineering education must not only provide improved technical education but…

  3. STEM Career Cluster Engineering and Technology Education pathway in Georgia: Perceptions of Georgia engineering and technology education high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education survey

    Science.gov (United States)

    Crenshaw, Mark VanBuren

    This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.

  4. Encouraging the Learning of Hydraulic Engineering Subjects in Agricultural Engineering Schools

    Science.gov (United States)

    Sinobas, Leonor Rodríguez; Sánchez Calvo, Raúl

    2014-01-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of…

  5. Chemistry teaching in the new degrees of Agricultural Engineering

    Science.gov (United States)

    Arce, Augusto; Tarquis, Ana Maria; Castellanos, Maria Teresa; Requejo, Maria Isabel; Cartagena, Maria Carmen

    2013-04-01

    The academic year 2011-12 is the second one implementing Bologna process in ETSI at the subjects of Agricultural Chemistry I and Chemistry II in the new four Degrees: Graduate in Engineering and Agricultural Science, Food Engineering Graduate, Graduate Environmental and engineering Graduate in Biotechnology, for it has been necessary to design and implement new interactive methodologies in the teaching-learning process based on the use of the virtual platform of the UPM, implement new evaluation systems that promote continued participation active student and the development of educational materials to support the subjects of chemistry designed new degrees within the EEES. In addition to the above actions, an assessment test prior chemistry knowledge has been made to all students who enter into Agricultural Grades, improving laboratory practices and the comparative study of academic obtained by the students of the new grades in the subjects of chemistry during the year 2011-12 compared to the 2010-11 academic year. More than 15,000 data have showed a good correlation between the student's prior knowledge, the level test performed, test scores, the overall success rate of the course and the abandonment of the different degrees. Academic results show a higher percentage of students enrolled and presented on a greater number of passes on students enrolled in the 2011-12 academic year for students enrolled in the previous academic year. The improved results have influenced the actions taken and the level of knowledge with students entering. Finally, we propose possible solutions to fix these results in future courses, aiming to improve the degree of efficiency, success and significant absenteeism in the first year as it will condition the dropout rate of these new degrees. Acknowledgements: Proyecto de Innovación Educativa N° IE02054-11/12 UPM. 2012.

  6. Preservice Agricultural Education Teachers' Mathematics Ability

    Science.gov (United States)

    Stripling, Christopher T.; Roberts, T. Grady

    2012-01-01

    The purpose of this study was to examine the mathematics ability of the nation's preservice agricultural education teachers. Based on the results of this study, preservice teachers were not proficient in solving agricultural mathematics problems, and agricultural teacher education programs require basic and intermediate mathematics as their…

  7. Interdisciplinary Approach in Engineering Education

    Directory of Open Access Journals (Sweden)

    Anda Zeidmane

    2011-04-01

    Full Text Available The analysis of the scientific literature available on the types of general competences and their classification caused the authors to conclude that it is necessary to implement interdisciplinary approach in engineering education to develop competences necessary for engineers to make them competitive in the labour market. The attention should be paid to a professional foreign language, computer literacy and educational psychology recommendations. To improve professional foreign language skills, CLIL (Content and Language Integrated Learning method should be integrated in the study process of engineering education. In order to develop information literacy competence, it is important to create a single e-study environment. The academic staff, developing study subjects for engineering programmes, should focus on the study content and study methods. As regards the content, the compromise should be sought between fundamental acquisition of the knowledge of the subject matter, the know-how of the application of this knowledge as well as the use of brand new software in the calculations. The paper presents the examples of the application of the interdisciplinary approach in the universities, where the authors of the paper are affiliated: the LUA (Latvia University of Agriculture and the RTU (Riga Technical University, respectively.

  8. The use of moral dilemmas for teaching agricultural engineers.

    Science.gov (United States)

    Lozano, J Félix; Palau-Salvador, Guillermo; Gozálvez, Vincent; Boni, Alejandra

    2006-04-01

    Agricultural engineers' jobs are especially related to sustainability and earth life issues. They usually work with plants or animals, and the aim of their work is often linked to producing food to allow people to improve their quality of life. Taking into account this dual function, the moral requirements of their day-to-day professional practice are arguably greater than those of other professions. Agricultural engineers can develop their ability to live up to this professional responsibility by receiving ethical training during their university studies, not only by taking courses specifically devoted to ethics, but also by having to deal with moral questions that are integrated into their technical courses through a program of Ethics Across the Curriculum (EAC). The authors feel that a suitable pedagogical technique for achieving this goal is the use of moral dilemmas, following Kohlberg's theory of levels of morality (1981), with the final objective of attaining a post-conventional level. This paper examines the possibilities and limitations of using moral dilemmas as a pedagogical technique for training agricultural engineers. The cases, discussions, and evaluation used in the Agricultural Engineering Department of the Technical University of Valencia (Spain) are also presented.

  9. Prevention of agricultural injuries: an evaluation of an education-based intervention.

    Science.gov (United States)

    Hagel, L M; Pickett, W; Pahwa, P; Day, L; Brison, R J; Marlenga, B; Crowe, T; Snodgrass, P; Ulmer, K; Dosman, J A

    2008-10-01

    To evaluate the effectiveness of an agricultural health and safety program in reducing risks of injury. Cross-sectional survey. 50 rural municipalities in the Province of Saskatchewan, Canada. The Agricultural Health and Safety Network (AHSN), a mainly educational program that administered 112 farm safety interventions over 19 years. 5292 farm people associated with 2392 Saskatchewan farms. Farms and associated farm people were categorized into three groups according to years of participation in the AHSN. self-reported prevalence of: (1) farm safety practices; (2) physical farm hazards. (1) self-reported agricultural injuries. After adjustment for group imbalances and clustering at the rural municipality level, the prevalence of all impact and outcome measures was not significantly different on farms grouped according to years of AHSN participation. To illustrate, the adjusted relative risk of reporting no rollover protection on tractors among farms with none (0 years) versus high (>8 years) levels of AHSN participation was 0.95 (95% CI 0.69 to 1.30). The adjusted relative risk for agricultural injuries (all types) reported for the year before the survey was 0.99 (95% CI 0.74 to 1.32). Educational interventions delivered via the AHSN program were not associated with observable differences in farm safety practices, physical farm hazards, or farm-related injury outcomes. There is a need for the agricultural sector to extend the scope of its injury prevention initiatives to include the full public health model of education, engineering, and regulation.

  10. Abstracts of the 17. world congress of the International Commission of Agriculture and Biosystems Engineering (CIGR) : sustainable biosystems through engineering

    Energy Technology Data Exchange (ETDEWEB)

    Savoie, P.; Villeneuve, J.; Morisette, R. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada). Soils and Crops Research and Development Centre] (eds.)

    2010-07-01

    This international conference provided a forum to discuss methods to produce agricultural products more efficiently through improvements in engineering and technology. It was attended by engineers and scientists working from different perspectives on biosystems. Beyond food, farms and forests can provide fibre, bio-products and renewable energy. Seven sections of CIGR were organized in the following technical sessions: (1) land and water engineering, (2) farm buildings, equipment, structures and environment, (3) equipment engineering for plants, (4) energy in agriculture, (5) management, ergonomics and systems engineering, (6) post harvest technology and process engineering, and (7) information systems. The Canadian Society of Bioengineering (CSBE) merged its technical program within the 7 sections of CIGR. Four other groups also held their activities during the conference. The American Society of Agricultural and Biological Engineers (ASABE) organized its 9th international drainage symposium and the American Ecological Engineering Society (AEES) held its 10th annual meeting. The International Network for Information Technology in Agriculture (INFITA), and the 8th world congress on computers in agriculture also joined CIGR 2010.

  11. A DESCRIPTION AND SOURCE LISTING OF PROFESSIONAL INFORMATION IN AGRICULTURAL EDUCATION, 1963-64.

    Science.gov (United States)

    SLEDGE, GEORGE W.; AND OTHERS

    BRIEF ANNOTATIONS ARE GIVEN FOR MANY OF THE 107 REFERENCES LISTED UNDER THE FOLLOWING CATEGORIES -- (1) ADULT EDUCATION, (2) AGRICULTURAL ENGINEERING, (3) ANIMAL SCIENCE, (4) CURRICULUM DEVELOPMENT AND CURRICULUM IN CROPS, ENTOMOLOGY, FARM MANAGEMENT, FARM MECHANICS, AND LIVESTOCK, (5) FARM BUSINESS MANAGEMENT AND MARKETING, (6) FORESTRY, (7)…

  12. The International Congress of Mechanical Engineering and Agricultural Sciences – CIIMCA 2013

    International Nuclear Information System (INIS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-01-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences – CIIMCA 2013 – are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress – CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress – CIIMCA Conferencephotograph Conferencephotograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first

  13. Comparative Study of the academic performance between different curricula in Agricultural Engineering

    Science.gov (United States)

    Vazquez, J. L.; Serrano, A.; Caniego, J.

    2012-04-01

    Due to the introduction of new degrees on the College of Agricultural Engineering of the Technical University of Madrid adapted to the European Space for Higher Education (Bologna), we have made a comparative study of academic achievement obtained by the students during their first year at the Centre according to different curricula. We used data from 2 curricula leading to the degree in Agricultural Engineering, Curriculumn 74 (6 years and annual structure) and Curriculum 96 modified in 2006 (5 years with quarterly structure) and the new curriculum in grades (4 years semi-structured). It has been used as a data source, the qualifications of new students during the last three years prior to the extinction of the curriculum.The study shows that current rates of academic success or failure and dropout during the first year of college are very similar to those happening 12 years ago, when it was assumed that the preparation of students from high school was much higher than today. Keywords: Academic performance, curricula, Bologna.

  14. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    Science.gov (United States)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  15. How is nutrition linked to agriculture and education?

    Directory of Open Access Journals (Sweden)

    Sayed Mohammad Naim Khalid

    2016-02-01

    Full Text Available Agricultural development is now expected to proceed in a way that maximizes opportunities to improve health and nutrition. Accordingly, the term “nutrition-education-agriculture linkages” describes the set of relationships that shows the mutual dependence of nutrition, education and agriculture. Changes in nutrition or education status are expected to affect agricultural production; conversely changes in the agricultural sector can have significant effects on individual health and nutritional status. Professionals in are trained in nutrition or agriculture, but very few will be trained in both. It is therefore difficult to begin discussions on nutrition-focused agricultural programs and policies. How do we begin to identify these linked outcomes? And how do we begin to think about ways to impact factors that are outside of our sector of expertise? This paper provides a simple framework for thinking critically about nutrition, education and agriculture linkages. The purpose is to help readers identify the linkages of greatest importance to their goals and to begin thinking about how to take steps toward integrating programs more effectively.

  16. Enhancing women’s participation in agricultural education in Afghanistan through distance education by the National Agricultural Education College (NAEC) Afghanistan

    NARCIS (Netherlands)

    Sabri, Ayesha; Abdulrahimzai, S.; Witteveen, L.M.; Lie, R.; Meulen, Suzanne

    2017-01-01

    Agriculture dominates the Afghan economy, providing an income to 61% of the households. 44% of the labour force is engaged in agriculture and women make up to 65% of this labour force. One of the priorities of the Afghan government is to develop agricultural high-school education, vocational

  17. Factors Influencing Postsecondary Education Enrollment Behaviors of Urban Agricultural Education Students

    Science.gov (United States)

    Esters, Levon T.

    2007-01-01

    The purpose of this study was to identify the factors that influenced the postsecondary education enrollment behaviors of students who graduated from an urban agricultural education program. Students indicated that parents and/or guardians had the most influence on their decisions to enroll in a postsecondary education program of agriculture.…

  18. An Early Historical Examination of the Educational Intent of Supervised Agricultural Experiences (SAEs) and Project-Based Learning in Agricultural Education

    Science.gov (United States)

    Smith, Kasee L.; Rayfield, John

    2016-01-01

    Project-based learning has been a component of agricultural education since its inception. In light of the current call for additional emphasis of the Supervised Agricultural Experience (SAE) component of agricultural education, there is a need to revisit the roots of project-based learning. This early historical research study was conducted to…

  19. Does Prior Experience in Secondary Agricultural Mechanics Affect Pre-Service Agricultural Education Teachers' Intentions to Enroll in Post-Secondary Agricultural Mechanics Coursework?

    Science.gov (United States)

    Wells, Trent; Perry, Dustin K.; Anderson, Ryan G.; Shultz, Matthew J.; Paulsen, Thomas H.

    2013-01-01

    Agricultural mechanics coursework has historically been considered an important and necessary construct of the secondary agricultural education curriculum (Burris, Robinson, & Terry, 2005). With expectations of offering secondary agricultural mechanics coursework apparent, it is vital that agricultural education teachers be prepared to address…

  20. Embedded engineering education

    CERN Document Server

    Kaštelan, Ivan; Temerinac, Miodrag; Barak, Moshe; Sruk, Vlado

    2016-01-01

    This book focuses on the outcome of the European research project “FP7-ICT-2011-8 / 317882: Embedded Engineering Learning Platform” E2LP. Additionally, some experiences and researches outside this project have been included. This book provides information about the achieved results of the E2LP project as well as some broader views about the embedded engineering education. It captures project results and applications, methodologies, and evaluations. It leads to the history of computer architectures, brings a touch of the future in education tools and provides a valuable resource for anyone interested in embedded engineering education concepts, experiences and material. The book contents 12 original contributions and will open a broader discussion about the necessary knowledge and appropriate learning methods for the new profile of embedded engineers. As a result, the proposed Embedded Computer Engineering Learning Platform will help to educate a sufficient number of future engineers in Europe, capable of d...

  1. Education and training in nuclear science/engineering in Taiwan

    International Nuclear Information System (INIS)

    Chung, C.

    1994-01-01

    The present status of nuclear education and training in Taiwan is reviewed. The nuclear science/engineering program has been established in Taiwan under the College of Nuclear Science at the National Tsing Hua University since 1956; it remains the only program among 123 universities and colleges in Taiwan where education and training in nuclear fields are offered. The program, with 52 faculty members, offers advanced studies leading to BSc, MSc, and PhD degrees. Lectures and lab classes are given to 600 students currently registered in the program. Career placement program geared for the 200 graduate and 400 undergraduate students is to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic and governmental sectors where nuclear scientists and engineers at all levels are needed. 8 refs., 1 fig

  2. Report on the 41st International Symposium Actual Tasks on Agricultural Engineering, 19-22 February 2013, Opatija, Croatia

    OpenAIRE

    Silvio Kosutic; Daniele De Wrachien

    2013-01-01

    The 41st International Symposium Actual Tasks on Agricultural Engineering was held on 19th-22nd February 2013 in Grand Hotel Adriatic Opatija, Republic of Croatia. The principal Organiser, Agricultural Engineering Department, Faculty of Agriculture, University of Zagreb was supported by the following frameworks: Department of Agricultural Engineering, Faculty of Agriculture, University J.J. Strossmayer, Osijek; Department of Bio-systems Engineering, Faculty of Agriculture, University of Marib...

  3. Culture in Engineering Education

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Jørgensen, Ulrik; Christensen, Hans Peter

    2011-01-01

    As engineers today often work in intercultural projects and contexts, intercultural competences must be part of the learning objectives in engineering educations. Cultural aspects of engineering education should not just be treated as a question of appropriate communication and teaching: cultural...... aspects are basically part of engineering discipli¬nes, work challenges as well as the contextual elements in engineering curriculum [1,2]. This is reflected in the aims of the CDIO programme [3,4]; however, the programme, as well as the teaching practises, undoubtedly needs to further develop approaches...... to cultural aspects in engineering education. Hence the key-question of this paper is how CDIO support the development of intercultural competences in engineering education. The paper explores the implementation of CDIO in an intercultural arctic engineering programme in Greenland that since 2001 has been...

  4. Encouraging the learning of hydraulic engineering subjects in agricultural engineering schools

    Science.gov (United States)

    Rodríguez Sinobas, Leonor; Sánchez Calvo, Raúl

    2014-09-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of 'online' and web tools in two undergraduate courses. Results from their application to encourage learning and communication skills in Hydraulic Engineering subjects are analysed and compared to the initial situation. Student's academic performance has improved since their application, but surveys made among students showed that not all the methodological proposals were perceived as beneficial. Their participation in the 'online', classroom and reading activities was low although they were well assessed.

  5. Third cycle university studies in Europe in the field of agricultural engineering and in the emerging discipline of biosystems engineering.

    Science.gov (United States)

    Ayuga, F; Briassoulis, D; Aguado, P; Farkas, I; Griepentrog, H; Lorencowicz, E

    2010-01-01

    The main objectives of European Thematic Network entitled 'Education and Research in Agricultural for Biosystems Engineering in Europe (ERABEE-TN)' is to initiate and contribute to the structural development and the assurance of the quality assessment of the emerging discipline of Biosystems Engineering in Europe. ERABEE is co-financed by the European Community in the framework of the LLP Programme. The partnership consists of 35 participants from 27 Erasmus countries, out of which 33 are Higher Education Area Institutions (EDU) and 2 are Student Associations (ASS). 13 Erasmus participants (e.g. Thematic Networks, Professional Associations, and Institutions from Brazil, Croatia, Russia and Serbia) are also involved in the Thematic Network through synergies. To date, very few Biosystems Engineering programs exist in Europe and those that are initiated are at a very primitive stage of development. The innovative and novel goal of the Thematic Network is to promote this critical transition, which requires major restructuring in Europe, exploiting along this direction the outcomes accomplished by its predecessor; the USAEE-TN (University Studies in Agricultural Engineering in Europe). It also aims at enhancing the compatibility among the new programmes of Biosystems Engineering, aiding their recognition and accreditation at European and International level and facilitating greater mobility of skilled personnel, researchers and students. One of the technical objectives of ERABEE is dealing with mapping and promoting the third cycle studies (including European PhDs) and supporting the integration of research at the 1st and 2nd cycle regarding European Biosystems Engineering university studies. During the winter 2008 - spring 2009 period, members of ERABEE conducted a survey on the contemporary status of doctoral studies in Europe, and on a possible scheme for promotion of cooperation and synergies in the framework of the third cycle of studies and the European Doctorate

  6. Definition of the Peculiarities of the Agricultural Education in General Education Institutions

    Science.gov (United States)

    Fedorov, Gavriil Mikhailovich

    2016-01-01

    The purpose of this study is to construct a model of the development of the agricultural school in accordance with modern educational requirements ensuring the improvement of conditions, processes, and the content of agricultural education. Modern approaches to constructing the model of the organization of educational activities at agricultural…

  7. Extracurricular Activities Targeted towards Increasing the Number of Engineers Working in the Field of Precision Agriculture

    DEFF Research Database (Denmark)

    Larsen, Leon Bonde; Stark Olsen, Kent; Ahrenkiel, Linda

    SERVICE ROBOTS in precision agriculture have the potential to ensure a more competitive and sustainable production, but the lack of skilled engineers within this area is limiting the industry’s ability to develop new and innovative agricultural technology products. Part of the reason...... is that engineers and scientists have little knowledge about agricultural technology, and they therefore choose to work in other domains. It is hypothesised that introducing engineering students to precision agriculture through practical work with small-scale service robots will increase their interest...... in agriculture and agricultural technology. This article presents the results of an interdisciplinary extracurricular activity for first year engineering students carried out in the Fall 2012 at the University of Southern Denmark. The case was based on practical group-work centered around an agricultural mobile...

  8. Current status of educational services in higher agricultural education in Ukraine

    Directory of Open Access Journals (Sweden)

    A. S. Cobets’

    2016-07-01

    Full Text Available Perspective directions of integration state policy of Ukraine Higher Education  into the European educational space and steps of implementation are determined. It is analysed the current state of higher agricultural education and integration current state policy of Ukraine Higher Education into the European educational space which allowed to identify problems and highlighted areas for further development. It is considered that it is necessary to establish cooperation in the triangle «production ­ education – science», extend the impact of scientists and experts on the content of  educational sector, come educational standards to needs and challenges of the real economy, as upgrades of industry standards for higher education, forming curricula, new teaching methods. Professionals training is possible only in a simulation of modern production principles, including the European Union. It is necessary to strengthen the position of agricultural universities as international educational and scientific centers in the framework of the European educational space. This refers to the practice and teaching students abroad, teachers training, participation in international programs, joint research. Ukrainian agricultural education system has competitive advantages despite the general neglect and can be considered unique in the educational market, it has conditions for the creation and testing of innovative products for different agro­climatic zones within a region. This provides the results of knowledge­based real conditions of agricultural production. Among the weaknesses of the education system it is possible to note a lack of cooperation with employers, lack of logistical and information and communication resources, mismatch of modern innovative designs and high technologies. It is therefore necessary to overcome the gap between the content of education and the real needs of innovation economy. In general, you need to ensure long­term practice

  9. Progressively implementation of the new degrees at E.T.S. of Agriculture Engineering and extinction of the earlier degrees

    Science.gov (United States)

    Arce, A.; Caniego, J.; Vazquez, J.; Serrano, A.; Tarquis, A. M.; Cartagena, M. C.

    2012-04-01

    The Bologna process is to improve the quality of education, mobility, diversity and the competitiveness and involves three fundamental changes: transform of the structure of titles, changing in methods of teaching and implementation of the systems of quality assurance. Once that the new degrees have been implemented with this structure, and began at E.T.S. of Agriculture Engineering (ETSIA) at Madrid from 2010-2011 course, the main aim of this work is to deeply study the changes in teaching methodology as well as progressively implementation of the educational planning of the three new degrees: Engineering and Agronomic Graduate, Food Industry Engineering Graduate and Agro-environmental Graduate. Each one of them presents 240 ECTS with a common first course and will have access to an official Master in Agronomic Engineering. As part as an educational innovation project awarded by the Technical University of Madrid (UPM) to improve educational quality, the second course has been designed with the main objective to continue the educative model implemented last course. This model identifies several teaching activities and represents a proper teaching style at ETSIA-UPM. At the same time, a monitoring and development coordination plans have been established. On the other hand, a procedure to extinguish the earlier plans of Agriculture Engineering was also defined. Other activities related to this Project were the information improvement of the grades, in particular at High Schools centers, improving the processes of reception, counseling and tutoring and mentoring. Likewise, cooperative working workshops and programs to support the teaching of English language were implemented. Satisfaction surveys and opinion polls were done to professors and students involved in first course in order to test several aspects of this project. The students surveys were analyzed taking in account the academic results and their participation in mentoring activities giving a highly

  10. Agricultural Education in Secondary Schools in Tanzania: Were the ...

    African Journals Online (AJOL)

    This study aims to assess whether the objectives of introducing agricultural education in secondary schools were realised. The whereabouts of graduates from agriculture biased schools was traced to establish their activities and determine their attitude towards the significance of secondary agricultural education in ...

  11. Educating the humanitarian engineer.

    Science.gov (United States)

    Passino, Kevin M

    2009-12-01

    The creation of new technologies that serve humanity holds the potential to help end global poverty. Unfortunately, relatively little is done in engineering education to support engineers' humanitarian efforts. Here, various strategies are introduced to augment the teaching of engineering ethics with the goal of encouraging engineers to serve as effective volunteers for community service. First, codes of ethics, moral frameworks, and comparative analysis of professional service standards lay the foundation for expectations for voluntary service in the engineering profession. Second, standard coverage of global issues in engineering ethics educates humanitarian engineers about aspects of the community that influence technical design constraints encountered in practice. Sample assignments on volunteerism are provided, including a prototypical design problem that integrates community constraints into a technical design problem in a novel way. Third, it is shown how extracurricular engineering organizations can provide a theory-practice approach to education in volunteerism. Sample completed projects are described for both undergraduates and graduate students. The student organization approach is contrasted with the service-learning approach. Finally, long-term goals for establishing better infrastructure are identified for educating the humanitarian engineer in the university, and supporting life-long activities of humanitarian engineers.

  12. THE PROFESSIONAL MOTIVATION TOWARD THE CAREER AGRICULTURAL ENGINEERING / LA MOTIVACIÓN PROFESIONAL HACIA LA CARRERA INGENIERÍA AGRÓNOMA

    Directory of Open Access Journals (Sweden)

    Nuria Batista Rodríguez

    2013-09-01

    Full Text Available In the article it is carried out an analysis of the professional motivation toward the career Agricultural Engineering, the investigative interest is centered in the process of initial formation, taking as indicative situation the manifestations of inadequacies detected in this career in the University of Las Tunas. They will be kept in mind for this study the curricular dimensions settled down in the educational project. As approach it will be assisting to the study plans put into practice in the agricultural engineer's formation, revising the inclusion or not in them, of activities, indications or managed orientations to impact in the professional motivation of the students, setting the stages from the establishment of the plan A until the effective one (D. This article offers a panoramic of the phenomenon inquiry object, since the same one corresponds to an investigation in course where the general objective is a proposal of activities that allow to promote the professional motivation of the university students in the career Agricultural Engineering, as a psicopedagogical tool that contributes to the decrease of the deficiencies detected in this house of high studies.

  13. Engineering Education Research in "European Journal of Engineering Education" and "Journal of Engineering Education": Citation and Reference Discipline Analysis

    Science.gov (United States)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of "European Journal of Engineering Education" ("EJEE") and "Journal of Engineering Education" ("JEE") in 1973 ("JEE," 1975 "EJEE"), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become…

  14. Speeding up innovation in agricultural IT

    Directory of Open Access Journals (Sweden)

    Hannu E.S. Haapala

    2013-09-01

    Full Text Available An OECD funded research was conducted where methods and processes for speeding up innovation in agriculture were assessed. A global web-based questionnaire was sent to experts in agricultural engineering, research, marketing, education and users of new technologies. Interviews of selected experts were done to deepen the analysis. The results show that considerable part of the relatively slow innovation comes from the fact that users do not trust in new technologies or that the usability of them is unacceptable. The experts suggest that education of the engineers and designers should include more elements from User-Centered Design (UCD and also User-Driven Innovation methods should be more used. As a conclusion a new ‘Dream Team’ of agricultural innovation was developed where user interaction and marketing professionals were given more roles.

  15. Parameters for assay in engines of agricultural tractor for biofuel use

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Reny Adilmar Prestes; Meyer, Wagner [Universidade Estadual de Maringa (DEA/CCA/UEM), Cidade Gaucha, PR (Brazil). Centro de Ciencias Agrarias. Dept. de Engenharia Agricola], E-mail: raplopes@uem.br; Pinheiro Neto, Raimundo; Pinheiro, Andreia Cristina [Universidade Estadual de Maringa (DAG/CCA/UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia; Laurindo, Jose Carlos [Instituto de Tecnologia do Parana (CERBIO/TECPAR), Curitiba, PR (Brazil). Centro Brasileiro de Referencia em Biocombustiveis; Biazzono, Sergio Luis [Instituto de Tecnologia do Parana (TECPAR), Maringa, PR (Brazil). Inspecao Veicular

    2008-07-01

    The use of biofuel in tractors of diesel engines and agricultural harvester, in the operations of preparation of soil and harvest, is a good option of economy for the agriculturist. For a good performance of the machine, regulation and maintenance is necessary. This paper has the objective to prepare the agricultural tractors engine for the use of biofuel. The experiment was carried through State University of Maringa. One used for the assays three Massey Ferguson tractors engines. The smoke assays and opacity had shown that both the tractors had presented problems of regulations. The assays demonstrate the necessity of periodically to carry through the correct maintenance of the machines, as well as the training of the operators. The regulations allow adjusting the engines of the tractors to operate in situations recommended for the manufacturers. The regulations allow the correct functioning and better accompaniment of the useful life of the engine using biofuel in operations of soil preparation, sowing and harvest. (author)

  16. Engineering justice transforming engineering education and practice

    CERN Document Server

    Leydens, Jon A

    2018-01-01

    Using social justice as a catalyst for curricular transformation, Engineering Justice presents an examination of how politics, culture, and other social issues are inherent in the practice of engineering. It aims to align engineering curricula with socially just outcomes, increase enrollment among underrepresented groups, and lessen lingering gender, class, and ethnicity gaps by showing how the power of engineering knowledge can be explicitly harnessed to serve the underserved and address social inequalities. This book is meant to transform the way educators think about engineering curricula through creating or transforming existing courses to attract, retain, and motivate engineering students to become professionals who enact engineering for social justice. Engineering Justice offers thought-provoking chapters on: why social justice is inherent yet often invisible in engineering education and practice; engineering design for social justice; social justice in the engineering sciences; social justice in human...

  17. Food for Thought: What Education Could Learn from Agriculture

    Science.gov (United States)

    Westera, Wim

    2010-01-01

    Knowledge is like food and drink, a necessity of life, the motor of the economy, and a precondition for any social activities. While considering these facts, one cannot fail to notice that education and agriculture have a lot in common. This article reflects on the parallels between agriculture and education. While agriculture started modernizing…

  18. Viewing Agricultural Education Research through a Qualitative Lens

    Science.gov (United States)

    Dooley, Kim E.

    2007-01-01

    The Journal of Agricultural Education has primarily published research that uses quantitative research methods. Perhaps this is due partly to the lack of a qualitative research conceptual framework to guide our profession. Most researchers in agricultural education were academically prepared to conduct empirical research. Those who are in the…

  19. The role of agricultural engineering in the management of landscape changes

    Directory of Open Access Journals (Sweden)

    Natalia Fumagalli

    2011-02-01

    Full Text Available Landscape represents the “sensory aspect” of the land and as such it can be appreciated by all the five senses: sight, smelling, hearing, touch and taste. At the same time, landscape evolves over time and its value – ecological, economical and affective – changes as its constitutive elements change. Engineering can help “to drive” this evolution addressing it towards a condition of balance between individual and community requirements, especially referred to the effect of technological development on landscape. This effect can be referred to three dimensions: perceptive, functional and symbolic dimensions. The possible contribution to the management of landscape changes concerns all the three historic souls of Agricultural Engineering; in particular, Agricultural Hydraulics deals with the topic of landscape referring to both irrigation and the possible recreational use of canal systems; Agricultural Engineering determines plot form and size and woodland view; Rural Building deals with both the recovery of existing buildings and the design and making of new ones and their fitting in the landscape; moreover, the sector has developed new methods for the evaluation and the planning of rural land resources, especially about agriculture and forestry productivity, ecological stability and visual quality of rural land itself.

  20. Preparing students for higher education and careers in agriculture and related fields: An ethnography of an urban charter school

    Science.gov (United States)

    Henry, Kesha Atasha

    This study explored the preparation of students for higher education and careers in agriculturally-related fields at an urban charter high school. The data were collected through interviews, observations, and field notes. The data were analyzed by qualitative methodology with phenomenology as the theoretical framework. Findings indicated that administrators thought it was important to incorporate agricultural science courses into urban school curricula. They stated that agricultural science courses gave urban students a different way of looking at science and helped to enhance the science and technology focus of the school. Further, agricultural science courses helped to break urban students' stereotypes about agriculture and helped to bring in more state funding for educational programs. However they thought that it was more challenging to teach agricultural science in urban versus rural schools and they focused more on Science, Technology, Engineering, and Mathematics (STEM) related careers. The students had mixed views about higher education and careers in agriculture. This was based on their limited knowledge and stereotypes about agricultural majors and career options. The students highlighted several key reasons why they chose to enroll in agricultural science courses. This included the benefits of dual science credits and the ability to earn an associate degree upon successful completion of their program. Students also loved science and appreciated the science intensive nature of the agricultural courses. Additionally, they thought that the agricultural science courses were better than the other optional courses. The results also showed that electronic media such as radio and TV had a negative impact on students' perceptions about higher education and careers in agriculturally-related fields. Conclusions and recommendations are presented.

  1. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  2. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    Science.gov (United States)

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  3. A Report on the 40th International Symposium Actual Tasks on Agricultural Engineering, 21-24 February 2012, Opatija, Croatia

    OpenAIRE

    Silvio Kosutic; Daniele De Wrachien

    2012-01-01

    The 40th International Symposium, Actual Tasks on Agricultural Engineering, was held on 21-24 February 2012 in the “Grand Hotel Adriatic”, Opatija, in the Republic of Croatia. It was organized by the Agricultural Engineering Department of the Faculty of Agriculture of the University of Zagreb, and was supported by the Department of Agricultural Engineering of the Faculty of Agriculture of the J.J. Strossmayer University, Osijek, the Department of Bio-Systems Engineering of the Faculty of Agri...

  4. Barriers to Conducting Supervised Agricultural Experiences as Perceived by Preservice Agricultural Education Teachers

    Directory of Open Access Journals (Sweden)

    J. Joey Blackburn

    2014-10-01

    Full Text Available The purpose of this descriptive study was to assess preservice agriculture teachers’ perceptions of the importance of Supervised Agricultural Experience (SAE and their views on barriers to conducting SAE. A census of the sophomore-level agricultural education course at Oklahoma State University was conducted to measure perceptions at the beginning and end of the course. This study was framed upon Ajzen’s Theory of Planned Behavior. Results indicated that preservice teachers perceived SAE was an important component of agricultural education and important at the secondary school they attended. The greatest barrier to conducting SAE was their lack of familiarity with newer SAE categories. This was true at both the beginning and end of the course. It is recommended that preservice teachers receive instruction on and experiences in all types of SAE. This would increase the likelihood of preservice teachers perceiving they have control over this barrier regarding SAE implementation. This cohort of preservice teachers should be surveyed over time to determine change in their perceptions of barriers to SAE implementation as they progress in the agricultural education program and through their careers. Further, the views of in-service teachers should also be assessed to determine if perceived barriers differ with professional experience.

  5. Engineering Education for a New Era

    Science.gov (United States)

    Ohgaki, Shinichiro

    Engineering education is composed of five components, the idea what engineering education ought to be, the knowledge in engineering fields, those who learn engineering, those who teach engineering and the stakeholders in engineering issues. The characteristics of all these five components are changing with the times. When we consider the engineering education for the next era, we should analyze the changes of all five components. Especially the knowledge and tools in engineering fields has been expanding, and advanced science and technology is casting partly a dark shadow on the modern convenient life. Moral rules or ethics for developing new products and engineering systems are now regarded as most important in engineering fields. All those who take the responsibility for engineering education should understand the change of all components in engineering education and have a clear grasp of the essence of engineering for sustainable society.

  6. Identifying Best Practices for Engaging Faculty in International Agricultural Education

    Directory of Open Access Journals (Sweden)

    Alexa J. Lamm

    2013-10-01

    Full Text Available Universities are being called upon to internationalize curriculum as the need for a globally competent workforce increases. Without globally-competent faculty, international integration within higher education cannot occur. Literature indicates that participation in short-term international agricultural education experiences is important to increasing agricultural faculty members’ cultural awareness. However, the best way to design and implement such experiences for faculty is uncharted. The purpose of the study was to identify best practices for facilitating a short-term international education experience for faculty in the agricultural and life sciences that encouraged learning, discussion, and reflection leading faculty to further integrate international perspectives in their agricultural courses in the U.S. Through a qualitative research design, reflective observations and statements from a planning team conducting short-term international agricultural education experience in Ecuador were used to provide a thick, rich description of the successes/challenges faced while designing and implementing the experience. The results provided a list of best practices future planning team members can use to emphasize learning before, during, and after a short-term international agricultural education experience for faculty.

  7. Vertical Integration and Reverse Engineering of Agricultural Enterprises

    Institute of Scientific and Technical Information of China (English)

    Gang; WU; Yong; DU

    2014-01-01

    This paper studies the potential effects of agricultural enterprise’s vertical integration and reverse engineering on downstream firms.Suppliers who invest reverse engineering technology can exploit customer’s information. An integrated supplier can obtain at no cost the information from its subsidiary. Based on repeated game and considered corporate " good" or " bad" type,this paper analysis supplier’s selection and downstream investment in innovation. The results showed that: when the cost is higher than the threshold value no company invest in reverse engineering,when the cost is lower than the threshold value the integration company invest in reverse engineering; in the second period,vertical integration reduce the downstream independent enterprise’s innovation investment and profits,integrated enterprise increase innovation investment and profits; during the first period of the game,the independent downstream firms being " completely foreclosure".

  8. Computer graphics in engineering education

    CERN Document Server

    Rogers, David F

    2013-01-01

    Computer Graphics in Engineering Education discusses the use of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) as an instructional material in engineering education. Each of the nine chapters of this book covers topics and cites examples that are relevant to the relationship of CAD-CAM with engineering education. The first chapter discusses the use of computer graphics in the U.S. Naval Academy, while Chapter 2 covers key issues in instructional computer graphics. This book then discusses low-cost computer graphics in engineering education. Chapter 4 discusses the uniform b

  9. Agricultural Education in an Urban Charter School: Perspectives and Challenges

    Science.gov (United States)

    Henry, Kesha A.; Talbert, Brian Allen; Morris, Pamala V.

    2014-01-01

    Urban school districts are viable recruitment sources for higher education in agriculture and have the ability to play a significant role in efforts to increase agricultural education program numbers at the secondary level. Secondary school increases should lead to growth in agricultural college enrollments across the country. Increasing…

  10. The Black Swans of Agricultural Education: A Glimpse into the Lived Experiences That Shape Urban Agricultural Educators' Meaning in Work

    Science.gov (United States)

    Roberts, Richie; Ramsey, Jon W.

    2017-01-01

    Urban agricultural educators face a number of unique challenges in performing their job duties. Therefore, the purpose of this study was to understand the essence of urban agricultural educators' meaning in their work by exploring their lived experiences. In this study, the essence emerged in the form of a metaphor: A Black Swan. The black swan…

  11. International Conference on Transformations in Engineering Education

    CERN Document Server

    2015-01-01

    This book comprises the proceedings of the International Conference on Transformations in Engineering Education conducted jointly by BVB College of Engineering & Technology, Hubli, India and Indo US Collaboration for Engineering Education (IUCEE). This event is done in collaboration with International Federation of Engineering Education Societies (IFEES), American Society for Engineering Education (ASEE) and Global Engineering Deans' Council (GEDC). The conference is about showcasing the transformational practices in Engineering Education space.

  12. The future in Agricultural Engineering: news degrees in the Universidad Politécnica de Madrid (UPM)

    Science.gov (United States)

    Cartagena, M. Carmen; Tarquis, A. M.; Vázquez, J.; Serrano, A.; Arce, A.

    2010-05-01

    The Bologna process is to improve the quality of education, mobility, diversity and the competitiveness and involves three fundamental changes: transform of the structure of titles, changing in methods of teaching and implementation of the systems of quality assurance. Engineer Agronomist at the Universidad Politécnica de Madrid (UPM) has been offered as a degree of five years with a total of 400 credits and seven optional orientations: Crop Production, Plant and Breeding Protection, Environment, Agricultural Economics, Animal Production, Rural Engineering and Food Technology. Actually, the Bologna plan creates three new degrees: Engineering and Science Agronomic, Food Engineering and Agro-Environmental Engineering, with 240 ECTS each one of them and with specific professional characteristics. The changes that involve the introduction of these new degrees is perhaps the largest occurred never at the Spanish university system, not only by the drastic transformation in the structure of titles, but also by the new changes that lie ahead in teaching methods. Among others we will comment the following ones: -A year decreased duration of studies and therefore incorporation into the market. - Elimination of the seven current guidelines to create three specific qualifications of degree. -Decrease of optional subjects and increase in credits for the basic subjects. - Inclusion of business practices. - Increase in the number of credits of final project. - Changes in methodologies and a higher involvement of teachers and students in the education.

  13. Rethinking engineering education the CDIO approach

    CERN Document Server

    Crawley, Edward F; Östlund, Sören; Brodeur, Doris R; Edström, Kristina

    2014-01-01

    This book describes an approach to engineering education that integrates a comprehensive set of personal, interpersonal, and professional engineering skills with engineering disciplinary knowledge in order to prepare innovative and entrepreneurial engineers.  The education of engineers is set in the context of engineering practice, that is, Conceiving, Designing, Implementing, and Operating (CDIO) through the entire lifecycle of engineering processes, products, and systems. The book is both a description of the development and implementation of the CDIO model and a guide to engineering programs worldwide that seek to improve the education of young engineers.   Provides an overview of the CDIO approach, then chapters organized according to the CDIO Standards; Includes in each chapter objectives, discussion questions, case studies and clear diagrams to support key concepts and processes; Avoids the jargon of education specialists and clearly explains education terms in the context of their initial presentatio...

  14. Agricultural Education and the Challenges of Poverty Reduction and ...

    African Journals Online (AJOL)

    ... the paper argues for a far-reaching revision of higher agricultural education core curriculum and concludes that a more virile and realistic agricultural education system (incorporating formal and non-formal sub-systems) is imperative for the attainment of significant poverty reduction and sustainable development in Nigeria ...

  15. Secondary Agricultural Education Teachers as Agents of Change in Oklahoma and the Adoption of Precision Agriculture

    Science.gov (United States)

    Nickeson, Beth

    2013-01-01

    Research indicates that precision agricultural education (PAE) in Oklahoma affects environmental quality, water conservation, and crop yields. The purpose of this mixed methods study was to explore the nature and perceived effectiveness of PAE in Oklahoma secondary agricultural education classes. The study was framed by the diffusion of…

  16. Pedagogical Training and Research in Engineering Education

    Science.gov (United States)

    Wankat, Phillip C.

    2008-01-01

    Ferment in engineering has focused increased attention on undergraduate engineering education, and has clarified the need for rigorous research in engineering education. This need has spawned the new research field of Engineering Education and greatly increased interest in earning Ph.D. degrees based on rigorous engineering education research.…

  17. Knowledge Expansion in Engineering Education: Engineering Technology as an Alternative

    Directory of Open Access Journals (Sweden)

    Kamsiah Mohd Ismail

    2015-07-01

    Full Text Available Abstract. The current and rising challenges in engineering education demand graduate engineers who are well-prepared to provide innovative solutions as technical specialists, system integrators and change agents. Realizing the importance of producing a highly competent manpower, the Malaysian Government has put considerable pressure to the universities to produce engineers who are competitive in the global market. Hence, this assignment of developing a highly competence engineering technologist workforce in support of the government policy highlights issues pertaining to the development and offering of practical-oriented programs as a knowledge expansion in engineering education at universities as envisioned by the Malaysian Government.  This paper evaluates the current scenario and examines the application-oriented programs of engineering technology education as practice in local institutions in Malaysia in comparisons to some universities abroad. It also investigates the challenges faced by university management in dealing with issues concerning national quality assurance and accreditation pertaining to the engineering technology education programs. Specifically, it analyzes the faculty planning of pedagogies in term of hands-on skills in teaching and learning. A key conclusion of this research is that Malaysian universities need to evaluate its engineering technology education strategies if they aim for quality assurance and accreditation to be established and aspire for successful attempts towards the creation of the requisite knowledge workers that Malaysia needs.Keywords: application-oriented, engineering education, engineering technology, hands-on skills, knowledge expansion 

  18. Industrial Education. "Small Engines".

    Science.gov (United States)

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  19. The online age and the agricultural user education

    Energy Technology Data Exchange (ETDEWEB)

    Yousif-Aballi, A F [Scientific Research Council, Baghdad (Iraq). Scientific Affairs Office

    1990-05-01

    Accelerated developments in the computer and telecommunication technologies have been well exploited in production and provision of information to meet needs of different groups of agricultural user population; however, in developing countries topmost computerized agricultural scientific and technical services available serve groups who by profession are scientists and academics. User education became of crucial importance for optimum utilization of information. General user educational requirement, particular user response and problems, information resources, services, and available facilities were taken into consideration in designing an information service training course for agricultural researchers, a detailed outline of the course is given in this paper as well as trainees and trainers evaluation. (author). 6 refs.

  20. The online age and the agricultural user education

    International Nuclear Information System (INIS)

    Yousif-Aballi, A.F.

    1990-05-01

    Accelerated developments in the computer and telecommunication technologies have been well exploited in production and provision of information to meet needs of different groups of agricultural user population; however, in developing countries topmost computerized agricultural scientific and technical services available serve groups who by profession are scientists and academics. User education became of crucial importance for optimum utilization of information. General user educational requirement, particular user response and problems, information resources, services, and available facilities were taken into consideration in designing an information service training course for agricultural researchers, a detailed outline of the course is given in this paper as well as trainees and trainers evaluation. (author). 6 refs

  1. Feminist Methodologies and Engineering Education Research

    Science.gov (United States)

    Beddoes, Kacey

    2013-01-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…

  2. Integrating Ethics into Engineering Education

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Otrel-Cass, Kathrin; Børsen, Tom

    2015-01-01

    In this chapter, the authors aim to explore the necessity of teaching ethics as part of engineering education based on the gaps between learning “hard” knowledge and “soft” skills in the current educational system. They discuss why the nature of engineering practices makes it difficult to look...... products are not value neutral. With a focus on Problem-Based Learning (PBL), the authors examine why engineers need to incorporate ethical codes in their decision-making process and professional tasks. Finally, they discuss how to build creative learning environments that can support attaining...... the objectives of engineering education....

  3. Mechanical engineering education

    CERN Document Server

    Davim, J Paulo

    2012-01-01

    Mechanical Engineering is defined nowadays as a discipline "which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems". Recently, mechanical engineering has also focused on some cutting-edge subjects such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, as well as aspects related to sustainable mechanical engineering.This book covers mechanical engineering higher education with a particular emphasis on quality assurance and the improvement of academic

  4. Precision genome engineering and agriculture: opportunities and regulatory challenges.

    Science.gov (United States)

    Voytas, Daniel F; Gao, Caixia

    2014-06-01

    Plant agriculture is poised at a technological inflection point. Recent advances in genome engineering make it possible to precisely alter DNA sequences in living cells, providing unprecedented control over a plant's genetic material. Potential future crops derived through genome engineering include those that better withstand pests, that have enhanced nutritional value, and that are able to grow on marginal lands. In many instances, crops with such traits will be created by altering only a few nucleotides among the billions that comprise plant genomes. As such, and with the appropriate regulatory structures in place, crops created through genome engineering might prove to be more acceptable to the public than plants that carry foreign DNA in their genomes. Public perception and the performance of the engineered crop varieties will determine the extent to which this powerful technology contributes towards securing the world's food supply.

  5. Aligning Kolb's Experiential Learning Theory with a Comprehensive Agricultural Education Model

    Science.gov (United States)

    Baker, Marshall A.; Robinson, J. Shane; Kolb, David A.

    2012-01-01

    Experiential learning has been a foundational tenant of agricultural education since its inception. However, the theory of experiential education has received limited attention in the permanent agricultural education literature base. As such, this philosophical manuscript examined Kolb's experiential learning process further, and considered the…

  6. Importance of Engineering History Education

    Science.gov (United States)

    Arakawa, Fumio

    It is needless to cite the importance of education for succeed of engineering. IEEJ called for the establishment of ICEE in 1994, where the education is thought highly of, though its discussion has not been well working. Generally speaking, education has been one of the most important national strategies particularly at a time of its political and economical development. The science and technology education is, of course, not the exemption. But in these days around 2000 it seems that the public pays little attention on the science and technology, as they are quite day to day matters. As the results, for instance, such engineering as power systems and electric heavy machines are referred to as “endangered”. So fur, many engineers have tried not to be involved in social issues. But currently they can not help facing with risks of social issues like patent rights, troubles and accidents due to application of high technology, information security in the use of computers and engineering ethics. One of the most appropriate ways for the risk management is to learn lessons in the past, that is, history, so that the idea suggested in it could be made full use for the risk management. The author cited the global importance of education, particularly of engineering history education for engineering ethics, in the ICEE 2010 held in Bussan, Korea, as the 16th anniversary.

  7. Urban Agriculture Programs on the Rise: Agriculture Education Model Can Reach Students Other Classes Leave Behind

    Science.gov (United States)

    Fritsch, Julie M.

    2013-01-01

    Agricultural education begins with hands-on classroom and laboratory instruction. Because agriculture is such a broad topic, schools typically tailor agriculture class offerings to match the interests of the student population, needs of nearby businesses and industry, or topics relevant to their state's standard assessments. Within most…

  8. Role of State Agricultural Universities and Directorates of Extension Education in Agricultural Extension in India

    OpenAIRE

    Singh, K.M.; Meena, M.S.; Swanson, B.E.

    2013-01-01

    In India, the first SAU was established in 1960 at Pantnagar in Uttar Pradesh. The SAUs were given autonomous status and direct funding from the state governments. They were autonomous organizations with state-wide responsibility for agricultural research, education and training or extension education. The establishment of the SAUs, based on a pattern similar to that of the land-grant universities in the United States, was a landmark in reorganizing and strengthening the agricultural educatio...

  9. Quantitative Theoretical and Conceptual Framework Use in Agricultural Education Research

    Science.gov (United States)

    Kitchel, Tracy; Ball, Anna L.

    2014-01-01

    The purpose of this philosophical paper was to articulate the disciplinary tenets for consideration when using theory in agricultural education quantitative research. The paper clarified terminology around the concept of theory in social sciences and introduced inaccuracies of theory use in agricultural education quantitative research. Finally,…

  10. First-year Engineering Education with the Creative Electrical Engineering Laboratory

    Science.gov (United States)

    Tsukamoto, Takehiko; Sugito, Tetsumasa; Ozeki, Osamu; Ushiroda, Sumio

    The Department of Electrical and Electronic Engineering in Toyota National College of Technology has put great emphasis on fundamental subjects. We introduced the creative electrical engineering laboratory into the first-year engineering education since 1998. The laboratory concentrates on the practice exercise. The final questionnaire of students showed that our first-year education is very effective to promote students motivation and their scholastic ability in engineering.

  11. Current Status of Engineering Education in America

    Science.gov (United States)

    Barr, Ronald E.

    Many faculty believe that engineering education in America is at a crossroads and much change is needed. International competition in engineering and the global economy have major potential impact on the engineering workforce of the future. We must find ways to educate U.S. engineers to be competitive and creative contributors in the worldwide arena. Recent national reports are sounding the alarm that the U.S. is losing it leadership in technology and innovation, with consequences for economic prosperity and national security. The report Rising Above the Gathering Storm discusses this dilemma in detail and offers four recommendations to U.S. policymakers. The report Educating the Engineer of 2020 discusses new ways to prepare American engineers for the 21st Century. Furthermore, changes in ABET accreditation, along with new paradigms of teaching and new technology in the classroom, are changing the scholarship of engineering education. We must find ways to promote change in engineering faculty for this new opportunity in engineering educational scholarship. Future engineering students are now in K-12, which is becoming an increasingly diverse population that in the past has not been fully represented in engineering education. Current trends show disaffection for pursuing studies in science and engineering in the youth of our U.S. society. We must find new ways to portray engineering as an exciting and rewarding career, and certainly as an educational platform for professional careers beyond the baccalaureate degree.

  12. Annual Review of Selected Developments; Agricultural Education and Training.

    Science.gov (United States)

    United Nations Food and Agriculture Organization, Rome (Italy).

    This document is the second in a series designed to describe agricultural education projects and practices which have been successful in promoting agricultural change and improvement in areas of the world where subsistance agriculture predominates. The projects are included here because of their emphasis on development of human resources and…

  13. Examining Another Source of Recruitment for Agriculture Education Teachers

    OpenAIRE

    Smith, Colten

    2018-01-01

    The school-based agricultural education (SBAE) profession has been suffering with a shortage of qualified agriculture teachers for more than 40 years (Smith, Lawver, & Foster, 2016; Kantrovich, 2010). Each year, agriculture programs across the country are unable to find enough qualified agriculture teachers to meet the demand, and some agriculture programs have shut down as a result. This shortage has led to the inability for programs to grow and expand, which means less opportunities for stu...

  14. Globalization and Organizational Change: Engineers' Experiences and Their Implications for Engineering Education

    Science.gov (United States)

    Lucena, Juan C.

    2006-01-01

    The demand for flexible engineers presents significant challenges to engineering education. Among these is the need for engineers to be prepared to understand and deal with organizational change. Yet engineering education and research on engineers have overlooked the impact of organizational change on engineering work. After outlining the impact…

  15. Agricultural Education and Extension Services in Subsaharan Africa ...

    African Journals Online (AJOL)

    Impressive progress in the science of agriculture and food production has helped significantly in feeding the world's growing population over the past 50 years. Surprisingly, major challenges still remain. Though formal education or schooling and the cognitive skills it helps to develop, contributes to agricultural production ...

  16. Engineering Education in K-12 Schools

    Science.gov (United States)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  17. Engineering Education and Management - vol.2

    CERN Document Server

    Zhang, Chunliang; International Conference on Engineering Education and Management (ICEEM2011)

    2012-01-01

    This is the proceedings of the selected papers presented at 2011 International Conference on Engineering Education and Management (ICEEM2011) held in Guangzhou, China, during November 18-20, 2011. ICEEM2011 is one of the most important conferences in the field of Engineering Education and Management and is co-organized by Guangzhou University, The University of New South Wales, Zhejiang University and Xi’an Jiaotong University. The conference aims to provide a high-level international forum for scientists, engineers, and students to present their new advances and research results in the field of Engineering Education and Management. This volume comprises 122 papers selected from over 400 papers originally submitted by universities and industrial concerns all over the world. The papers specifically cover the topics of Management Science and Engineering, Engineering Education and Training, Project/Engineering Management, and Other related topics. All of the papers were peer-reviewed by selected experts. The p...

  18. Capacity Building for Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Deboer, Jennifer

    2015-01-01

    faculty leadership training workshops/courses/seminars, helping to broker the offering of these around the world. Since 2011 IIDEA has been offering diverse workshops facilitated by top engineering education leaders as stand alone or as pre- post conference activities. Engineering educators...

  19. Developments in the Curriculum for the Swedish MSc Programme in Agriculture.

    Science.gov (United States)

    Malmfors, Birgitta; Nilsson, Kjell-Arne

    In Sweden, higher education in agriculture is provided exclusively by the Swedish University of Agricultural Sciences. The 130 students admitted to the Master of Science program in agriculture annually may choose to specialize in one of six specialty areas (plant science, animal science, food science, biotechnology, economics, and engineering),…

  20. PBL in Engineering Education

    DEFF Research Database (Denmark)

    PBL in Engineering Education: International Perspectives on Curriculum Change presents diverse views on the implementation of PBL from across the globe. The purpose is to exemplify curriculum changes in engineering education. Drivers for change, implementation descriptions, challenges and future...... perspectives are addressed. Cases of PBL models are presented from Singapore, Malaysia, Tunisia, Portugal, Spain and the USA. These cases are stories of thriving success that can be an inspiration for those who aim to implement PBL and change their engineering education practices. In the examples presented......, the change processes imply a transformation of vision and values of what learning should be, triggering a transition from traditional learning to PBL. In this sense, PBL is also a learning philosophy and different drivers, facing diverse challenges and involving different actors, trigger its implementation...

  1. From the USDA: Educating the Next Generation: Funding Opportunities in Food, Agricultural, Natural Resources, and Social Sciences Education.

    Science.gov (United States)

    Parker, Joyce E; Wagner, David J

    The National Institute of Food and Agriculture within the U.S. Department of Agriculture provides leadership, capacity, and funds to support the continuing development of a safe and competitive agricultural system. Many of the agency's educational programs are led by the Division of Community and Education (DOCE). These programs span agricultural education, enhancing agricultural literacy through both formal and nonformal education. Here, we have highlighted funding opportunities within DOCE that enhance agricultural education and literacy by supporting the improvement of students' critical communication, leadership skills, and experiential learning opportunities. Some of these programs include opportunities for which students can apply, while others focus on faculty applications. Opportunities faculty can apply for may support student-recruitment and student-retention techniques, curriculum development, innovative teaching methods, and institutional capacity-building programs. Overall, these programs foster a diverse workforce in agricultural science that matches the increasing diversity of the country. © 2016 J. E. Parker and D. J. Wagner. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Paired peer learning through engineering education outreach

    Science.gov (United States)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.

  3. Engineering Education: Challenges for Innovation

    OpenAIRE

    Restivo, Teresa; Alves, Gustavo R.

    2014-01-01

    Engineering Education: Challenges for Innovation” is the scope of the 1st International Conference of the Portuguese Society for Engineering Education (in Portuguese: Sociedade Portuguesa para a Educação em Engenharia, SPEE) [1]. SPEE is a young society now completing four years since its public presentation and launching by the Faculty of Engineering of University of Porto, in February 19, 2010. info:eu-repo/semantics/publishedVersion

  4. Mathematics Efficacy and Professional Development Needs of Wyoming Agricultural Education Teachers

    Science.gov (United States)

    Haynes, J. Chris; Stripling, Christopher T.

    2014-01-01

    School-based agricultural education programs provide contextualized learning environments for the teaching of core academic subject matter. This study sought to examine the mathematics efficacy and professional development needs of Wyoming agricultural education teachers related to teaching contextualized mathematics. Wyoming agricultural…

  5. Exploring Agricultural and Biotechnical Engineering through Hands-On Integrated STEM

    Science.gov (United States)

    Preble, Brian C.

    2015-01-01

    The manipulation of the natural world in the form of plant materials to design, control, and grow desirable agricultural commodities was central to the establishment and advancement of civilization. Modern developments in genetically modified organisms (GMOs or biologically engineered foods) can trace their origins to macro practices developed and…

  6. The importance of comprehensive agricultural education in land-grant institutions: a historical perspective.

    Science.gov (United States)

    Grant, P M; Field, T G; Green, R D; Rollin, B E

    2000-06-01

    Any thorough examination of the present and future of agricultural education must certainly begin with a look into its past. Since the creation of the United States, many leading American philosophers have viewed a strong agrarian culture as the bedrock of American vigor. These same philosophers repeatedly noted the significance of comprehensive agricultural education to a nation rich in agricultural wealth. The signing of the Agricultural Colleges Act legitimized the concept of formal education in the agricultural sciences and provided funding for such education. The Act, which came to be known as the Morrill Act, after one of its primary authors, stressed the importance of comprehensive education. In fact, the inclusion of liberal studies was specifically mentioned in the Morrill Act and was defended repeatedly by Morrill himself. Comprehensive education prevented graduating technically trained students who were lacking in the basic outcomes of education--critical, comprehensive problem solving, cohesive thought, and effective communication. However, throughout history, the demands of a growing population coupled with rapid advancements in scientific knowledge led to a gradual move away from comprehensive education in agricultural sciences toward increasing specialization, resulting in more narrowly trained students. Today's agricultural students are technically well versed but often lack the skill and knowledge required for cohesive thought and critical problem solving. Addressing the multitude of challenges facing leaders in the future of agriculture requires much more than technical skill. These challenges require quick, yet careful thinkers and communicators who can respond to changing market structure and consumer demand in a dynamic way. Students who are a product of a conscious move toward amalgamation of burgeoning scientific knowledge and technical prowess with an integrative education emphasizing relationships between disciplines would better serve

  7. Educating Civil Engineers for Developing Countries

    Science.gov (United States)

    Stanley, D.

    1974-01-01

    Based on engineering teaching experience in Africa and Asia, ideas are presented on educating civil engineers for developing countries, especially those in Africa. Some of the problems facing educational planners, teachers, and students are addressed, including responsibilities of a newly graduated civil engineer, curriculum development, and…

  8. Progress in reforming chemical engineering education.

    Science.gov (United States)

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  9. Changing the Teaching/Learning Procedures in Physics for Agricultural Engineering. A Case Study

    Science.gov (United States)

    Mulero, Angel; Parra, M. Isabel; Cachadina, Isidro

    2012-01-01

    The subject "Physical Fundamentals of Engineering" for agricultural engineers in the University of Extremadura has long had high rates of students not attending classes, not presenting for examinations and, finally, failing the subject. During the 2007 and 2008 courses, the teaching/learning procedures were strongly modified. Analysis of the…

  10. Technology Education Benefits from the Inclusion of Pre-Engineering Education

    Science.gov (United States)

    Rogers, Steve; Rogers, George E.

    2005-01-01

    Technology education is being taught today in almost every high school and middle school in America. Over 1000 technology education departments are now including pre-engineering education in their programs. According to these authors, the time has come for the profession to agree that including pre-engineering education in technology education…

  11. Environmental engineering education enhancement

    Science.gov (United States)

    Caporali, E.

    2012-04-01

    Since higher education plays a central role in the development of both human beings and modern societies, enhancing social, cultural and economic development, active citizenship, ethical values and expertises for a sustainable growth, environment respectful, the European Commission promotes a wide range of programmes. Among the EC programmes, the TEMPUS - Trans European Mobility Programme for University Studies, with the support of the DG EAC of the European Commission, has contributed to many aspects of general interest for higher education. Curricula harmonization, LifeLong Learning Programme development, ICT use, quality assessment, accreditation, innovation learning methods, growth of networks of institutions trusting each other, are the focused aspects. Such a solid cooperation framework is surely among the main outcomes of the TEMPUS Projects leaded by the University of Firenze UNIFI (Italy), DEREC - Development of Environment and Resources Engineering Curriculum (2005-2008), and its spin-off DEREL - Development of Environment and Resources Engineering Learning (2010-2013), and VICES - Videoconferencing Educational Services (2009-2012). DEREC and DEREL TEMPUS projects, through the co-operation of Universities in Italy, Austria, Germany, Greece, Macedonia, Albania and Serbia, are aimed at the development of first and second level curricula in "Environment and Resources Engineering" at the Ss. Cyril and Methodius University - UKIM Skopje (MK). In the DEREC Project the conditions for offering a joint degree title in the field of Environmental Engineering between UNIFI and UKIM Skopje were fulfilled and a shared educational programme leading to the mutual recognition of degree titles was defined. The DEREL project, as logical continuation of DEREC, is aimed to introduce a new, up-to-date, postgraduate second level curriculum in Environment and Resources Engineering at UKIM Skopje, University of Novi Sad (RS) and Polytechnic University of Tirana (AL). following

  12. DIESEL ENGINE SYSTEMS. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 15.

    Science.gov (United States)

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT UNDERSTANDING OF THE CONSTRUCTION AND OPERATING PRINCIPLES OF DIESEL ENGINES. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON…

  13. Genetic engineering applied to agriculture has a long row to hoe.

    Science.gov (United States)

    Miller, Henry I

    2018-01-02

    In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.

  14. Assessment for English Language Education on the Programs at the Agricultural Engineering School of Madrid

    Science.gov (United States)

    Rodriguez Sinobas, Leonor; San José Martínez, Fernando; Hontoria, Kira; Adán, Angeles; Blanco, María; Calderón, Fernando; Carbonell, Victoria; Chaya, Carolina; Fondevila, Guillermo; González, Trinidad; Marín, Carmen; Mira, Sara; Molina, Antonio; Pereira, David; Quemada, Miguel; Ricote, Luis; Sánchez Monje, Rosa; Sanz, Alberto; Albir, Maria

    2014-05-01

    The convergence process among European academic degrees pursues the exchange of graduate students and the adaptation of university programs to social demand. Within the framework of the European Higher Education, European universities will need to be more competitive not only by increasing or maintaining the student enrolment, but also in their academic performance. Thus, the reinforcing of English language education within the University Programs might play an important role to reach these objectives. In this sense, a complete survey was accomplished at the Agricultural Egineering School of Madrid (ETSIA ) addressing issues such as: identification the needs for bilingual instruction at ETSIA, identification resources needed and interest and background in English language of students and professors (San José et al., 2013). The conclusions and recommendations to promote the bilingual instruction in the ETSIA, taking into account the approaches followed by other Spanish universities, are presented in this work.

  15. Motivational factors, gender and engineering education

    DEFF Research Database (Denmark)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne Schioldann

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find...... that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering......; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education....

  16. A Description and Source Listing of Curriculum Materials in Agricultural Education. 1972-73.

    Science.gov (United States)

    American Vocational Association, Washington, DC. Agricultural Education Div.

    Listed are 246 curriculum material items in ten categories: field crops, horticulture, forestry, animal science, soils, diseases and pests, agricultural engineering, agricultural economics, agricultural occupations, and professional. Most materials are annotated and all are classified according to the AGPEX filing system. Bibliographic and…

  17. Biomedical engineering education through global engineering teams.

    Science.gov (United States)

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  18. LEARNING MANAGEMENT SYSTEMS: ENGINEERING THE EDUCATION INDUSTRY TO EDUCATE THE INDUSTRIAL ENGINEER

    Directory of Open Access Journals (Sweden)

    L. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: A learning management system (LMS is any infrastructure on which e-learning can be built and delivered. In this article two sides of the LMS coin are investigated: On the one side, it is argued that industrial and systems engineering skills are equally relevant for learning systems as for as for any other system. To support this argument, an analogy is drawn between the management of learning systems and the management of manufacturing systems. On the other side of the coin, the educational issues and concerns related to implementing an LMS at the University of Pretoria are investigated by means of a case study in the Industrial Engineering department. It is concluded that the industrial engineering educator is in the unique position of understanding and contributing towards the engineering of the education industry whilst educating the industrial engineer.

    AFRIKAANSE OPSOMMING: ‘n Leerbestuurstelsel (LMS is enige infrastruktuur waarop e-leer gebou en afgelewer kan word. In hierdie artikel word beide kante van die LMS muntstuk ondersoek: Aan die een kant word getoon dat bedryfsingenieursvaardighede en -beginsels ewe toepaslik is op leerstelsels as op vervaardigingstelsels. Om hierdie argument te steun word 'n analogie getrek tussen the bestuur van leerstelsels en die bestuur van vervaardigingstelsels. Aan die ander kant van die muntstuk word die opvoedkundige aspekte verbonde aan die implementering van ‘n leerbestuurstelsel (LMS aan die Universiteit van Pretoria ondersoek aan die hand van ‘n gevallestudie in die Bedryfsingenieursdepartment. Die gevolgtrekking word gemaak dat die bedryfsingenieurs-opleier in 'n unieke posisie is om die opleidingsindustrie te begryp en by dra tot the ontwikkeling daarvan terwyl die bedryfsingenieur opgelei word.

  19. Implementing Sustainable Engineering Education through POPBL

    International Nuclear Information System (INIS)

    Lioe, D X; Subhashini, G K

    2013-01-01

    This paper presents the implementation of sustainable engineering education to undergraduate student in Asia Pacific University of Technology and Innovation, Malaysia (APU) through Project-Oriented Problem Based Learning (POPBL). Sustainable engineering has already been the paramount term where it is no longer limited to environment, but also to the entire lifetime of the individual engineer. To inculcate every engineering individual with sustainability, education is the way to start off.

  20. An Exploration of the Formal Agricultural Education System in Trinidad and Tobago

    Science.gov (United States)

    Hurst, Sara D.; Conner, Nathan W.; Stripling, Christopher T.; Blythe, Jessica; Giorgi, Aaron; Rubenstein, Eric D.; Futrell, Angel; Jenkins, Jenny; Roberts, T. Grady

    2015-01-01

    A team of nine researchers from the United States spent 10 days exploring the formal agricultural education system in Trinidad and Tobago from primary education through postgraduate education. Data were collected from interviews and observations from students, teachers/instructors, and agricultural producers. The team concluded that (a) the people…

  1. Virtual Reality and Engineering Education.

    Science.gov (United States)

    Pantelidis, Veronica S.

    1997-01-01

    Virtual Reality (VR) offers benefits to engineering education. This article defines VR and describes types; outlines reasons for using VR in engineering education; provides guidelines for using VR; presents a model for determining when to use VR; discusses VR applications; and describes hardware and software needed for a low-budget VR and…

  2. The Role of Vocational Education in Agriculture--Economic Efficiency.

    Science.gov (United States)

    McMillion, Martin B.

    1982-01-01

    Vocational agriculture is education for work. By meeting the needs of the economy and the job market, it can meet the needs of the individual. Although human resource development is important, vocational agriculture should focus on job-relevant competencies and cost effectiveness. (SK)

  3. Finding a Plausible Option for Revitalising Agricultural Higher Education in India: A Systematic Review

    Science.gov (United States)

    Kumar, Niraj

    2016-01-01

    The objectives of this paper were to explore the existing status of agricultural higher education in India, application of marketing concepts in similar institutions and to find the most appropriate marketing concept to make agricultural higher education more competitive. Extensive searches of relevant agricultural education, business management…

  4. From the USDA: Educating the Next Generation--Funding Opportunities in Food, Agricultural, Natural Resources, and Social Sciences Education

    Science.gov (United States)

    Parker, Joyce E.; Wagner, David J.

    2016-01-01

    The National Institute of Food and Agriculture within the U.S. Department of Agriculture provides leadership, capacity, and funds to support the continuing development of a safe and competitive agricultural system. Many of the agency's educational programs are led by the Division of Community and Education (DOCE). These programs span agricultural…

  5. Integrating different knowledge sources and disciplines for practical applications in Forest and Agricultural Engineering

    Science.gov (United States)

    Guzmán, Gema; Castillo, Carlos; Taguas, Encarnación

    2013-04-01

    One of the aims of 'The Bologna Process' is to promote among the students the acquisition of practical, social and creative skills to face real-life situations and to solve the difficulties they might find during their professional life. It involves an important change in the educational system, from a traditional approach focused on teaching, towards a new one that encourages learning. Under this context, University teaching implies the design of activities addressed to the dissemination of "know-how" to solve different problems associated with two technical disciplines: Forest and Agricultural Engineering. This study presents a preliminary experience where a group of information and communication technologies (ICT) such as, audiovisual resources (videos, reports and photo gallery), virtual visits to blogs and interactive activities have been used to provide a comprehensive knowledge of the environmental and sociocultural components of the landscape in order to facilitate the decision-making process in the engineering project context . With these tools, the students must study and characterize all these aspects in order to justify the chosen solutions and the project design. This approach was followed in the analysis of the limiting factors of practical cases in projects about forestation, landscape restoration and hydrological planning. This communication shows how this methodology has been applied in Forest and Agricultural Engineering and the students' experience with these innovative tools. The use of ICTs involved a friendly framework that stimulated students' interest and made subjects more attractive, since it allowed to assess the complex relationships between landscape, history and economy. Furthermore, this type of activities promotes the interdisciplinary training and the acquisition of creative and autonomous skills which are not included in many cases into the main objectives of the subjects.

  6. Innovation and Research on Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Kolmos, Anette

    2014-01-01

    Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University is obsol......Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University...... is obsolete by the time the enter practice. Recognition of these issues has recently resulted in worldwide increase of attention for innovation of engineering education. This chapter presents a brief outline of the traditions in higher engineering education culminating in the stage of research and development...... in the last century. Next, the recent revival of engineering education research is described, contrasting the developments in the USA with Europe and the rest of the world. The efforts in the USA appear to follow Boyer’s concept scholarship of teaching, and aim for the establishment of engineering education...

  7. 78 FR 52496 - Meeting Notice of the National Agricultural Research, Extension, Education, and Economics...

    Science.gov (United States)

    2013-08-23

    ..., Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, Office of the Secretary... Agricultural Research, Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and [[Page 52497

  8. Educating engineering designers for a multidisciplinary future

    DEFF Research Database (Denmark)

    engineering design education. Educating engineering designers today significantly differs from traditional engineering education (McAloone, et.al., 2007). However, a broader view of design activities gains little attention. The project course Product/Service-Systems, which is coupled to the lecture based...... course Product life and Environmental issues at the Technical University of Denmark (DTU) and the master programme Product Development Processes at the Luleå University of Technology (LTU), Sweden, are both curriculums with a broader view than traditional (mechanical) engineering design. Based...... on these two representatives of a Scandinavian approach, the purpose in this presentation is to describe two ways of educating engineering designers to enable them to develop these broader competencies of socio-technical aspects of engineering design. Product Development Processes at LTU A process, called...

  9. Engineering Knowledge and Student Development: An Institutional and Pedagogical Critique of Engineering Education

    Science.gov (United States)

    Tang, Xiaofeng

    Educators have recommended the integration of engineering and the liberal arts as a promising educational model to prepare young engineers for global economic, environmental, sociotechnical, and ethical challenges. Drawing upon philosophy of technology, engineering studies, and educational psychology, this dissertation examines diverse visions and strategies for integrating engineering and liberal education and explores their impacts on students' intellectual and moral development. Based on archival research, interviews, and participant observation, the dissertation presents in-depth case studies of three educational initiatives that seek to blend engineering with the humanities, social sciences, and arts: Harvey Mudd College, the Picker Engineering Program at Smith College, and the Programs in Design and Innovation at Rensselaer Polytechnic Institute. The research finds that learning engineering in a liberal arts context increases students' sense of "owning" their education and contributes to their communication, teamwork, and other non-technical professional skills. In addition, opportunities for extensive liberal arts learning in the three cases encourage some students to pursue alternative, less technocentric approaches to engineering. Nevertheless, the case studies suggest that the epistemological differences between the engineering and liberal arts instructors help maintain a technical/social dualism among most students. Furthermore, the dissertation argues a "hidden curriculum," which reinforces the dominant ideology in the engineering profession, persists in the integrated programs and prevents the students from reflecting on the broad social context of engineering and critically examining the assumptions upheld in the engineering profession.

  10. Education of indoor enviromental engineering technology

    Czech Academy of Sciences Publication Activity Database

    Kic, P.; Zajíček, Milan

    2011-01-01

    Roč. 9, Spec. 1 (2011), s. 83-90 ISSN 1406-894X. [Biosystems Engineering 2011. Tartu, 12.05.2011-13.05.2011] Institutional research plan: CEZ:AV0Z10750506 Keywords : Biosystems engineering * indoor environment * study * programs Subject RIV: AM - Education http://library.utia.cas.cz/separaty/2011/VS/zajicek-education of indoor enviromental engineering technology.pdf

  11. A Delphi Approach to the Preparation of Early-Career Agricultural Educators in the Curriculum Area of Agricultural Mechanics: Fully Qualified and Highly Motivated or Status Quo?

    Science.gov (United States)

    Saucier, P. Ryan; McKim, Billy R.; Tummons, John D.

    2012-01-01

    According to the National Research Agenda for Agricultural Education and Communication, preservice agriculture teacher education programs should "prepare and provide an abundance of fully qualified and highly motivated agricultural educators at all levels" (Osborne, 2007, 8). The lack of preparation of entry career agricultural educators…

  12. Integration of Sustainability in Engineering Education

    DEFF Research Database (Denmark)

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies...... used to integrate sustainability in engineering education. However, there is a lack of understanding of the relation between ESD and PBL principles and the ways in which they can be integrated and practised in the engineering curricula. This paper aims to investigate the relation between PBL and ESD...... knowledge and the tacit presence of sustainability. Originality/value: The existence of a PBL curriculum at institutional level, such as at Aalborg University, enables investigation of how the PBL and ESD principles are practised, highlighting the limitations and potentials of integrating sustainability...

  13. Advancing the science of forest hydrology A challenge to agricultural and biological engineers

    Science.gov (United States)

    Devendra Amatya; Wayne Skaggs; Carl Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has originated largely from forested lands, which have experienced dramatic declines over the...

  14. Motivational factors, gender and engineering education

    Science.gov (United States)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Egelund Holgaard, Jette

    2013-06-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering programmes, we further show that these overall gender differences are subtle and that motivational factors are unequally important across the different educational programmes. The findings from this study clearly indicate that intrinsic and social motivations are the most important motivational factors; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education.

  15. A systematic approach to engineering ethics education.

    Science.gov (United States)

    Li, Jessica; Fu, Shengli

    2012-06-01

    Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.

  16. An Evaluation of Taiwan Vocational and Technical Education Programs in Agriculture.

    Science.gov (United States)

    Meaders, O. Donald; Chi-ho, Hu

    Presented in both English and Chinese, this study of the system of agricultural education in Taiwan secondary and postsecondary schools resulted from the author's five-month stay in Taiwan and subsequent visits. Focus of the study is on evaluation of Taiwan's vocational agriculture education programs with information about students, faculties,…

  17. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  18. Software engineering techniques applied to agricultural systems an object-oriented and UML approach

    CERN Document Server

    Papajorgji, Petraq J

    2014-01-01

    Software Engineering Techniques Applied to Agricultural Systems presents cutting-edge software engineering techniques for designing and implementing better agricultural software systems based on the object-oriented paradigm and the Unified Modeling Language (UML). The focus is on the presentation of  rigorous step-by-step approaches for modeling flexible agricultural and environmental systems, starting with a conceptual diagram representing elements of the system and their relationships. Furthermore, diagrams such as sequential and collaboration diagrams are used to explain the dynamic and static aspects of the software system.    This second edition includes: a new chapter on Object Constraint Language (OCL), a new section dedicated to the Model-VIEW-Controller (MVC) design pattern, new chapters presenting details of two MDA-based tools – the Virtual Enterprise and Olivia Nova, and a new chapter with exercises on conceptual modeling.  It may be highly useful to undergraduate and graduate students as t...

  19. Philosophy of adult education and the implication for agricultural ...

    African Journals Online (AJOL)

    Philosophy of adult education and the implication for agricultural extension service. ... The paper highlights the relationhip between adult education and extension using the philosophy as a fulcrum between both. The paper further reiterated ...

  20. Technology Enhanced Agricultural Education Learning Environments: An Assessment of Student Perceptions

    Science.gov (United States)

    Alston, Antoine J.; English, Chastity Warren

    2007-01-01

    The purpose of this descriptive research study was to evaluate the effectiveness of Web-enhanced agricultural education pedagogy as perceived by students in a collegiate agricultural education program. Overall, respondents agreed there were many benefits to Web-enhanced courses and perceived all Web site components under study to be very useful.…

  1. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  2. Engineering Education and the Identities of Engineers in Colombia, 1887–1972

    DEFF Research Database (Denmark)

    Pineda, Andres Felipe Valderrama

    2009-01-01

    of codes of meaning. The authors pay especial attention to the role of foreign models of educating engineers and the regional tensions that emerge between competing schools in the country. These two tensions are related to the different ideals or metrics of progress advocated by government officials......In this article the authors analyze the history of engineering education in Colombia from 1887 to 1972. The main theme of the analysis is how engineering educators actively contribute to the shaping of the identity of their profession in response to different societal influences in the forms......, politicians, industrialists, and engineering educators themselves in various cities of the country. As the twentieth century passes its midpoint the code of meaning of the discourse on development becomes the main influence shaping the identities of engineers in Colombia....

  3. Developing Metrics for Effective Teaching in Agricultural Education

    Science.gov (United States)

    Lawver, Rebecca G.; McKim, Billy R.; Smith, Amy R.; Aschenbrener, Mollie S.; Enns, Kellie

    2016-01-01

    Research on effective teaching has been conducted in a variety of settings for more than 40 years. This study offers direction for future effective teaching research in secondary agricultural education and has implications for career and technical education. Specifically, 142 items consisting of characteristics, behaviors, and/or techniques…

  4. Lean engineering education driving content and competency mastery

    CERN Document Server

    Flumerfelt, Shannon

    2015-01-01

    Recent studies by professional organizations devoted to engineering education, such as Vision 2030 (ASME) and Vision 2025 (ASCE), highlight the need for the restructuring of engineering education. Deficiencies of many engineering graduates include poor systems thinking and systems analysis skills, lack of sensitivity for sustainability issues, poorly developed problem solving skills and lack of training to work in (multi- disciplinary) teams, as well as a lack of leadership, entrepreneurship, innovation, and project management skills. The book's contents include an analysis of current shortfalls in engineering education and education related to professional practice in engineering. Further, the authors describe desirable improvements as well as advocacy for the use of lean tenets and tools to create a new future for engineering education. This book presents, for the first time, an outside-in lean engineering perspective of how this commonly accepted and widely practiced and adapted engineering perspecti...

  5. Engineering education and a lifetime of learning

    Science.gov (United States)

    Eisley, J. (Editor)

    1974-01-01

    The result of an eleven-week study by the National Aeronautics and Space Administration (NASA) and the American Society of Engineering Education is presented. The study was the ninth of a series of programs. The purposes of the programs were: (1) to introduce engineering school faculty members to system design and to a particular approach to teaching system design, (2) to introduce engineering faculty to NASA and to a specific NASA center, and (3) to produce a study of use to NASA and to the participants. The story was concerned with engineering education in the U.S., and concentrated upon undergraduate education and teaching, although this bias was not meant to imply that research and graduate study are less important to engineering education.

  6. Challenges, opportunities and trends in engineering education

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2005-01-01

    Many challenges and opportunities face the engineering profession and engineering education. The engineering profession advances best if challenges are properly addressed, opportunities beneficially exploited and reasoned speculation made on future trends. In this article, the author presents his views on some of the challenges and opportunities facing the engineering education, and possible future trends, with the objective of fostering continued discussion of and action on these issues. This topic is of great importance because the development of engineering education is strongly influenced by the challenges and opportunities it faces and how it responds, and by anticipated future trends. (author)

  7. Mathematical Strengths and Weaknesses of Preservice Agricultural Education Teachers

    Science.gov (United States)

    Stripling, Christopher T.; Roberts, T. Grady; Stephens, Carrie A.

    2014-01-01

    The purpose of this study was to describe the mathematics ability of preservice agricultural education teachers related to each of the National Council of Teachers of Mathematics (NCTM) content/process areas and their corresponding sub-standards that are cross-referenced with the National Agriculture, Food and Natural Resources Career Cluster…

  8. Examining the Common Core State Standards in Agricultural Education

    Science.gov (United States)

    McKim, Aaron J.; Lambert, Misty D.; Sorensen, Tyson J.; Velez, Jonathan J.

    2015-01-01

    The Common Core State Standards (CCSS) represent a shift in the American education system. Included in the CCSS are opportunities for agriculture teachers to integrate math and English language arts content into their curriculum. Using the theory of planned behavior, we sought to identify Oregon agriculture teachers' attitudes, familiarity with,…

  9. Paired Peer Learning through Engineering Education Outreach

    Science.gov (United States)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and…

  10. Transforming Engineering Education - For Innovation and Development

    DEFF Research Database (Denmark)

    Marjoram, Tony

    2013-01-01

    Engineering and technology are of vital importance in innovation, social and economic development in higher and lower income countries. Development is driven by engineering applications and infrastructure, and most innovations derive from engineering. The last 50 years has seen significant change...... of young people in engineering, and the need to develop policy perspectives on the transformation of engineering education....... in knowledge production, dissemination and application, and associated needs for engineering, and yet engineering education has changed little over this period. This paper discusses the important role of problem-based learning and humanitarian engineering in promoting the interest, enrolment and retention...

  11. Engineering education as a complex system

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  12. The Atlantic rift in Engineering Education Research Methodology

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2015-01-01

    engineering. A revival of engineering education research started in the USA around the turn of the century. Building on the concept of ‘scholarship of teaching’, engineers were challenged to investigate their own role as educators. Since these researchers have their academic background mostly in engineering......In Europe educational research branched off from social sciences during the sixties of the last century. Combining theories and methods from pedagogy, sociology and psychology researchers explored the different fields of education, ranging from kindergarten till higher education including...... and science, they tend to aim for ‘rigorous research’ according to the natural sciences. Worldwide the engineering education community has recognized the need to blend both the social sciences research approach and rigorous research. This paper explores the variation in research methods used by researchers...

  13. The Problem of Agricultural and Industrial Education for African Americans: A Historical Inquiry

    Science.gov (United States)

    Croom, Dan B.; Alston, Antoine

    2009-01-01

    The model of agricultural and industrial education for African Americans in the United States was created by Samuel Chapman Armstrong, founder of Hampton Normal and Agricultural Institute. Armstrong developed a paternal approach to educating African Americans and developed the Hampton Institute curriculum with moral education as its base. Booker…

  14. Integrating sustainability in Engineering Education in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Valderrama Pineda, Andres Felipe; Remmen, Arne

    2013-01-01

    How to include sustainability in engineering education is currently the main concern among engineering educators. In one way or another, engineering educators are increasingly addressing sustainability issues in the courses they teach, the programs they design and run, the institutional activities...... to be a broader social concern to be taken across programs or eventually in specialised new professional endeavours? To further this discussion, in the second part of this paper we examine how environmental, energy and sustainability we will present some details of the design of the Master Engineering programs...... on Sustainable Cities and Sustainable Design at Aalborg University in Denmark. These programs claim to have developed effective strategies for educating robust engineers capable of dealing with the complexities of the needed calculations and the modelling of physical processes and at the same time able to cope...

  15. Ethical Risk Management Education in Engineering: A Systematic Review.

    Science.gov (United States)

    Guntzburger, Yoann; Pauchant, Thierry C; Tanguy, Philippe A

    2017-04-01

    Risk management is certainly one of the most important professional responsibilities of an engineer. As such, this activity needs to be combined with complex ethical reflections, and this requirement should therefore be explicitly integrated in engineering education. In this article, we analyse how this nexus between ethics and risk management is expressed in the engineering education research literature. It was done by reviewing 135 articles published between 1980 and March 1, 2016. These articles have been selected from 21 major journals that specialize in engineering education, engineering ethics and ethics education. Our review suggests that risk management is mostly used as an anecdote or an example when addressing ethics issues in engineering education. Further, it is perceived as an ethical duty or requirement, achieved through rational and technical methods. However, a small number of publications do offer some critical analyses of ethics education in engineering and their implications for ethical risk and safety management. Therefore, we argue in this article that the link between risk management and ethics should be further developed in engineering education in order to promote the progressive change toward more socially and environmentally responsible engineering practices. Several research trends and issues are also identified and discussed in order to support the engineering education community in this project.

  16. African American Adolescent Female Identification with Engineering and Participation in Engineering Education

    Science.gov (United States)

    Cornick, Shayla L.

    2012-01-01

    Experiences that females have during middle and high school have been found to influence the perceptions that they have of their ability to be successful as an engineer and the value that they place on participating in engineering education. Engineering education continues to suffer from a lack of female participation. Several efforts have been…

  17. Development of engineering drawing ability for emerging engineering education

    Science.gov (United States)

    Guo, Jian-Wen; Cao, Xiao-Chang; Xie, Li; Jin, Jian-Jun; Wang, Chu-Diao

    2017-09-01

    Students majoring in engineering is required by the emerging engineering education (3E) in the aspect of their ability of engineering drawing. This paper puts forward training mode of engineering drawing ability for 3E. This mode consists of three kinds of training including training in courses, training in competitions and training in actual demand. We also design the feasible implementation plan and supplies viable references to carry out the mode.

  18. Software Engineering Education: Some Important Dimensions

    Science.gov (United States)

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  19. Infiltration of quality concepts in nuclear engineering education

    International Nuclear Information System (INIS)

    Woodall, D.M.

    1993-01-01

    The principles of total quality management (TQM) have been applied increasingly in the nuclear power industry over the last decade. The involvement of industrial professionals on the advisory boards of engineering colleges and departments has increasingly led in recent years to the recommendation that TQM be applied as appropriate to engineering education. This paper describes the concepts of TQM in their application to engineering education, specifically in the nuclear engineering area. A summary of the concerns expressed by nuclear engineering academics, as well as the record of successful implementation of TQM in the nuclear engineering education environment is provided in this paper

  20. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  1. 77 FR 64794 - Cancellation of the National Agricultural Research, Extension, Education, and Economics Advisory...

    Science.gov (United States)

    2012-10-23

    ... Cancellation of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of intent to cancel meeting. SUMMARY: The meeting of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

  2. 78 FR 25691 - Meeting Notice of the National Agricultural Research, Extension, Education, and Economics...

    Science.gov (United States)

    2013-05-02

    ... Meeting Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting. SUMMARY: In accordance with...) announces a meeting of the National Agricultural Research, Extension, Education, and Economics Advisory...

  3. Mechatronics Engineering Education

    OpenAIRE

    Grimheden, Martin

    2006-01-01

    Since its emergence in the late 1960s, mechatronics has become well-established as an academic subject, and is now researched and taught at a large number of universities worldwide. The most widely-used definition of the subject today is centered on the synergistic integration of mechanical engineering, electronics, and intelligent computer control. The aim of this thesis is to work between the disciplines of engineering education and mechatronics to address both the question of the identity ...

  4. Restructuring Graduate Engineering Education: The M.Eng. Program at Cornell.

    Science.gov (United States)

    Cady, K. Bingham; And Others

    1988-01-01

    Discusses the restructuring of the graduate program to accommodate emerging fields in engineering. Notes half of the graduate degrees Cornell grants each year are M.Eng. degrees. Offers 12 specialties: aerospace, agriculture, chemical, civil, electrical, mechanical and nuclear engineering; computer science, engineering physics; geological…

  5. Motivational Factors, Gender and Engineering Education

    Science.gov (United States)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Holgaard, Jette Egelund

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students reasons for choosing a career in engineering. We find that women are significantly more influenced by…

  6. embracing the future of engineering education in nigeria

    African Journals Online (AJOL)

    HOD

    Nigerian engineering teaching style and outputs, some of the challenges being faced by engineering education in. Nigeria .... feelings and reactions of the students in this situation ...... new century," Chemical Engineering Education, vol. 34, pp ...

  7. The Changing Face of Agricultural Education in Nigeria: Challenges and Prospects

    Science.gov (United States)

    Egun, A. C.

    2010-01-01

    Self sufficiency in food and raw material production for agro-based industries has been the thrust of Nigerian agricultural policy. Realizing the goals of the policy has been bedevilled with series of plethora problems. This paper took a look at agricultural reforms, examined the problems of agricultural practices and suggests education of the…

  8. US Nuclear Engineering Education: Status and prospects

    International Nuclear Information System (INIS)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study, as described in this report resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the ageing of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 24 figs., 49 tabs

  9. US nuclear engineering education: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the aging of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 12 figs., 20 tabs.

  10. Epistemic Practices of Engineering for Education

    Science.gov (United States)

    Cunningham, Christine M.; Kelly, Gregory J.

    2017-01-01

    Engineering offers new educational opportunities for students, yet also poses challenges about how to conceptualize the disciplinary core ideas, crosscutting concepts, and science and engineering practices of the disciplinary fields of engineering. In this paper, we draw from empirical studies of engineering in professional and school settings to…

  11. 78 FR 44922 - Notice of an Education Listening Session Meeting

    Science.gov (United States)

    2013-07-25

    ... for all interested agricultural education stakeholders. DATES: The Education Listening Session will be..., Technology, Engineering, and Mathematics (STEM) education rearrangement. In the late morning, the audience... their perception of needs and potential improvements in the field of agricultural education. Following...

  12. A Case Study Exploring the Perceived and Actual Person-Environment Fit of Teacher Aspirants in Agricultural Education

    Directory of Open Access Journals (Sweden)

    J. Shane Robinson

    2013-06-01

    Full Text Available This study assessed the factors that led students who did not participate in secondary agricultural education programs to the agricultural education teaching major. Findings indicated that these participants were motivated to pursue an agricultural education degree because of their passion for agriculture and youth, and affinity for people and the job. Parents and friends were their biggest influences in pursuing a degree in agricultural education. Their greatest perceived strengths were content knowledge in agriculture, leadership skills, and ability to persevere; their greatest perceived limitation was lack of experience in a secondary agricultural education program. Unfortunately, none of the student secured employment as agriculture teachers. Because these findings are more subjective and personal (P in nature, future research should investigate more objective measures of the demands from teachers in the workforce (i.e., environment-E.

  13. Quality assurance and accreditation of engineering education in Jordan

    Science.gov (United States)

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-06-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the efforts undertaken by the faculty of engineering at JUST concerning quality assurance and accreditation. Three engineering departments were accorded substantial equivalency status by the Accreditation Board of Engineering and Technology in 2009. Various measures of quality improvement, including curricula development, laboratories improvement, computer facilities, e-learning, and other supporting services are also discussed. Further assessment of the current situation is made through two surveys, targeting engineering instructors and students. Finally, the paper draws conclusions and proposes recommendations to enhance the quality of engineering education at JUST and other Jordanian educational institutions.

  14. Influence of High School Vocational Agriculture on the Matriculation, Graduation, and Employment of Agricultural Engineering Graduates from the Iowa State University of Science and Technology.

    Science.gov (United States)

    Ahrens, Donald Louis

    To determine the influence of high school vocational agriculture on college achievement and subsequent employment of agricultural engineering majors, data were collected from 419 graduates of Iowa State University representing the period from 1942 to 1964. The 112 graduates who had taken at least 3 or more semesters of high school vocational…

  15. Nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1982-01-01

    In discussing nuclear engineering education in the United States it is shown that the most critical issue facing the nuclear engineering education community today is enrolment in a time of increasing demand for graduate engineers. Related to the issue of enrolment is support for graduate students, whether it be fellowships, traineeships, or research assistantships. Other issues are those of maintaining a vital faculty in the face of a competitive job market, of maintaining research facilities and developing new ones, and of determining the directions of educational efforts in the future. (U.K.)

  16. Education in nuclear engineering in Slovakia

    International Nuclear Information System (INIS)

    Slugen, V.

    2005-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. Surely more than 50% of high-educated technicians who work nowadays in nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as a one of seven faculties of this University feels responsibility for proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (Bc.), graduate (MSc.) and postgraduate (PhD..) study as well as via specialised training courses in a frame of continuous education system. (author)

  17. Multidisciplinary Graduate Education in Bioprocess Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Eiteman

    2006-04-18

    This report describes the accomplishments of the University of Georgia in establishing an academic program geared toward the emerging biobased products industry. By virtue of its strengths and structure, the University of Georgia is particularly well-suited for developing a program focused on plant- and microbial-based bioproducts, and it was in this general area that this program was developed. The program had several unique characteristics. First, we implemented a distinguished lecture series that brought outstanding scientists and engineers to our University to interact with students and share their vision of the biobased economy. Second, we offered industrially-oriented and multidisciplinary courses that provided students with a broad background on various facets of biobased business and technology. Third, we provided the students with opportunities to expand beyond the classroom by engaging in research lab rotations and industrial internships. Fourth, each student was engaged in a creative research project as led by a multidisciplinary faculty team. Throughout the implementation of these activities, we maintained a student-centered, mentoring approach to education. The most tangible outcome of this project was the graduation of two students who participated in a variety of scholarly activities, culminating in research toward the completion of a thesis and dissertation. Both research projects involved the use of microorganisms to produce industrial products from agricultural substrates via fermentation processes. The research advanced our understanding of microorganisms as used for industrial processes and products, as described in several articles published in scholarly journals and presentations made at scientific conferences (see information on pp. 14-15). Another outcome is one graduate course, Fermentation Engineering Laboratory, which is a unique experiential and multidisciplinary course. This course will be offered in the future as an elective to

  18. Technology of interdisciplinary open-ended designing in engineering education

    Science.gov (United States)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  19. Thermal hydraulics in undergraduate nuclear engineering education

    International Nuclear Information System (INIS)

    Theofanous, T.G.

    1986-01-01

    The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future

  20. Authority in Engineering Education

    Science.gov (United States)

    Stephan, Karl D.

    2012-01-01

    Authority as a philosophical concept is defined both in general and as it applies to engineering education. Authority is shown to be a good and necessary part of social structures, in contrast to some cultural trends that regard it as an unnecessary and outmoded evil. Technical, educational, and organizational authority in their normal functions…

  1. Educating Engineers for Sustainable Development

    DEFF Research Database (Denmark)

    Myrdal, Christina Grann; Holgaard, Jette Egelund

    In this paper, we explore the potentials of designing engineering education activities for sustainability development based on how environmental concerns are integrated into product development processes in a company context. First we draw on a case study from the Danish company Grundfos Management...... A/S and based on their experience with product development practise and competence development of product developers, we propose a set of competences to be addressed in engineering education for sustainable development (EESD). Furthermore, we use the problem based learning philosophy as a base...

  2. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.

    Science.gov (United States)

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A

    2016-06-01

    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Comparison of Engineering Education in Norway and China

    Science.gov (United States)

    Sun, Xiaodong; Jia, Yanrui; Li, Zhenchun; Song, Yu

    2018-01-01

    The Washington Accord is an internationally recognized agreement in engineering education of undergraduates. China joined the agreement as the 18th member country in 2016. The exploration technology and engineering major of China University of Petroleum has obtained the professional certification from international engineering education system and…

  4. Active Learning in Engineering Education: A (Re)Introduction

    Science.gov (United States)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network "Active Learning in Engineering Education" (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners…

  5. Analysis of Engineering Content within Technology Education Programs

    Science.gov (United States)

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  6. Industry Demands and Future of Engineering Education in Kenya

    Directory of Open Access Journals (Sweden)

    Daniel Rutto

    2015-05-01

    Full Text Available Engineering Education in Kenya remains the major determinant of country’s economic agenda. However, at the moment the education system offers the industry and society unsatisfactory knowledge and services due to mismatch between the supplied educational talents and the ever changing world of engineering. It is imperative that the Kenyan engineering education be designed to tackle challenges emerging in our societies and industries by providing real tangible practical skills. The government on its part should take its share by supporting and giving direction to institution offering such courses. In order to produce graduates with employable skills, institutions of engineering must aim at quality while ensuring massification of students into programs never happens. This paper is thus designed to show challenges facing quality of engineering education offered in Kenya in relation to the society and industrial needs. The paper also highlights the future demands needed on Kenyan engineering education. The write-up is expected to inspire education designers and curriculum developers in preparing programs that provide for the society and industry.

  7. Sustainable Development in Engineering Education

    Science.gov (United States)

    Taoussanidis, Nikolaos N.; Antoniadou, Myrofora A.

    2006-01-01

    The principles and practice of environmentally and socially sustainable engineering are in line with growing community expectations and the strengthening voice of civil society in engineering interventions. Pressures towards internationalization and globalization are reflected in new course accreditation criteria and higher education structures.…

  8. 76 FR 13124 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Science.gov (United States)

    2011-03-10

    ... Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting. SUMMARY: In accordance with...) announces a meeting of the National Agricultural Research, Extension, Education, and Economics Advisory...

  9. 75 FR 12171 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Science.gov (United States)

    2010-03-15

    ... Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting. SUMMARY: In accordance with... announces a meeting of the National Agricultural Research, Extension, Education, and Economics Advisory...

  10. 75 FR 61692 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Science.gov (United States)

    2010-10-06

    ... Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting. SUMMARY: In accordance with...) announces a meeting of the National Agricultural Research, Extension, Education, and Economics Advisory...

  11. Comparison of cross culture engineering ethics training using the simulator for engineering ethics education.

    Science.gov (United States)

    Chung, Christopher

    2015-04-01

    This paper describes the use and analysis of the Simulator for Engineering Ethics Education (SEEE) to perform cross culture engineering ethics training and analysis. Details describing the first generation and second generation development of the SEEE are published in Chung and Alfred, Science and Engineering Ethics, vol. 15, 2009 and Alfred and Chung, Science and Engineering Ethics, vol. 18, 2012. In this effort, a group of far eastern educated students operated the simulator in the instructional, training, scenario, and evaluation modes. The pre and post treatment performance of these students were compared to U.S. Educated students. Analysis of the performance indicated that the far eastern educated student increased their level of knowledge 23.7 percent while U.S. educated students increased their level of knowledge by 39.3 percent.

  12. Why Agricultural Educators Remain in the Classroom

    Science.gov (United States)

    Crutchfield, Nina; Ritz, Rudy; Burris, Scott

    2013-01-01

    The purpose of this study was to identify and describe factors that are related to agricultural educator career retention and to explore the relationships between work engagement, work-life balance, occupational commitment, and personal and career factors as related to the decision to remain in the teaching profession. The target population for…

  13. Education of nuclear engineering in Japan

    International Nuclear Information System (INIS)

    Ozawa, Yasutomo; Yamamuro, Nobuhiro

    1979-01-01

    The research Committee of Nuclear Engineering Education has two working groups. One group has carried out surveyes on the curriculums of nuclear engineering course of universities in Japan and the activities of graduates in the industrial worlds. The other group conducted an investigation on the present status of energy education in senior high schools. This is an interim report on the activity of the research committee. (author)

  14. A Gender Analysis of Job Satisfaction Levels of Agricultural Education Teachers in Georgia

    Science.gov (United States)

    Gilman, Donald; Peake, Jason B.; Parr, Brian

    2012-01-01

    The over-arching premise of many concerning issues in secondary agricultural education may be directly related to levels of job satisfaction among teachers (Delnero & Weeks, 2000). The purpose of this study was to examine the factors that influenced the perceptions of job satisfaction/dissatisfaction among agricultural educators in Georgia.…

  15. Positioning Technology and Engineering Education as a Key Force in STEM Education

    Science.gov (United States)

    Strimel, Greg; Grubbs, Michael E.

    2016-01-01

    As the presence of engineering content and practices increases in science education, the distinction between the two fields of science and technology education becomes even more vague than previously theorized. Furthermore, the addition of engineering to the title of the profession raises the question of the true aim of technology education. As a…

  16. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  17. A new educational program on biomedical engineering

    NARCIS (Netherlands)

    van Alste, Jan A.

    2000-01-01

    At the University of Twente together with the Free University of Amsterdam a new educational program on Biomedical Engineering will be developed. The academic program with a five-year duration will start in September 2001. After a general, broad education in Biomedical Engineering in the first three

  18. Industrial and agricultural process heat information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  19. Multiple Case Study of STEM in School-Based Agricultural Education

    Science.gov (United States)

    Stubbs, Eric A.; Myers, Brian E.

    2015-01-01

    This multiple case study investigated the integration of science, technology, engineering, and mathematics (STEM) in three Florida high school agriculture programs. Observations, interviews, documents, and artifacts provided qualitative data that indicated the types of STEM knowledge taught. Variables of interest included student and teacher…

  20. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  1. Assay in engine of agricultural tractor with biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Reny Adilmar Prestes; Meyer, Wagner [Universidade Estadual de Maringa (DEA/CCA/UEM), Cidade Gaucha, PR (Brazil). Centro de Ciencias Agrarias. Dept. de Engenharia Agricola], E-mail: raplopes@uem.br; Pinheiro Neto, Raimundo; Pinheiro, Andreia Cristina [Universidade Estadual de Maringa (DAG/CCA/UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia; Laurindo, Jose Carlos [Instituto de Tecnologia do Parana (CERBIO/TECPAR), Curitiba, PR (Brazil). Centro Brasileiro de Referencia em Biocombustiveis; Biazzono, Sergio Luis [Instituto de Tecnologia do Parana (TECPAR), Maringa, PR (Brazil). Inspecao Veicular

    2008-07-01

    The use of biofuel in tractors of diesel engines and agricultural harvester, in the operations of soil preparation and harvest, is a good option of fuel economy for the agriculturist. For a good performance of the machine a good regulation is necessary. The experiment was carried through in the Experimental Farm Iguatemi of the State University of Maringa, Maringa - PR. A tractor Massey Ferguson MF275 was used for the assay connected to be even grating. It carried through if the assays of consumption of diesel (100%) and biofuel (diesel 80% + vegetable oil 20%). To carry through the assay tractor + grating with three openings and without load was used to be even set. The rotation without load and of work was of 1900 rpm and mean speed of 6 km h{sup -1}. The hourly consumption was verified by a test tube and a fluxgate OVAL Flow mate M III - LSF 45L0-M2 connected to data logger CR23X. The hourly consumption was express in L h{sup -1}. The engine of the tractor presented similar behavior of fuel consumption for diesel and biofuel. The mean values of consumption had been inside of the specified one for the manufacturer. Mixture 80% diesel + 20% vegetable oil can be used as biofuel in the engine in study. (author)

  2. Research on Channel Strategies of Modern Agricultural Engineering Demonstration Sites in Guangzhou

    OpenAIRE

    Wen-guang Liang; Chun Xie; Qian-qian Pang

    2015-01-01

    The research discusses the channel structure of modern agricultural engineering demonstration sites in Guangzhou. It analyzes the strategies of channel competition, personnel combination, transportation combination and terminal network construction. Enterprises adapt different marketing channel strategies on the basis of the type of the market. The research has made certain achievement and has certain guiding significance.

  3. Innovative Technology in Engineering Education.

    Science.gov (United States)

    Fishwick, Wilfred

    1991-01-01

    Discusses the impact that computer-assisted technologies, including applications to software, video recordings, and satellite broadcasts, have had upon the conventions and procedures within engineering education. Calls for the complete utilization of such devices through their appropriate integration into updated education activities effectively…

  4. [Engineering issues of microbial ecology in space agriculture].

    Science.gov (United States)

    Yamashita, Masamichi; Ishikawa, Yoji; Oshima, Tairo

    2005-03-01

    how to conduct preventive maintenance for keeping cultivating soil healthy and productive. 3) Does microbial ecology contribute to building sustainable and expandable human habitation by utilizing the on site extraterrestrial resources? We are assessing technical feasibility of converting regolith to farming soil and structural materials for space agriculture. In the case of Mars habitation, carbon dioxide and a trace amount of nitrogen in atmosphere, and potassium and phosphor in minerals are the sources we consider. Excess oxygen can be accumulated by woods cultivation and their use for lumber. 4) Is the operation of space agriculture robust and safe, if it adopts hyper-thermophilic aerobic microbial ecology? Any ecological system is complex and non-linear, and shows latency and memory effects in its response. It is highly important to understand those features to design and operate space agriculture without falling into the fatal failure. Assessment should be made on the microbial safety and preparation of the preventive measures to eliminate negative elements that would either retard agricultural production or harm the healthy environment. It is worth to mention that such space agriculture would be an effective engineering testbed to solve the global problem on energy and environment. Mars and Moon exploration itself is a good advocate of healthy curiosity expressed by the sustainable civilization of our humankind. We propose to work together towards Mars and Moon with microbial ecology to assure pleasant habitation there.

  5. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  6. Robert Henry Thurston: Professionalism and Engineering Education

    Science.gov (United States)

    Nienkamp, Paul

    2016-01-01

    Robert Henry Thurston is presented in this article. He provides one the most significant examples of professionalizing engineering through innovative education and promoting scientific education practices in the late nineteenth century. The son of a draftsmen and steam engine mechanic, Thurston spent his early years in Providence, Rhode Island.…

  7. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  8. Problems of engineering education and their decision involving industry

    Directory of Open Access Journals (Sweden)

    R. P. Simonyants

    2014-01-01

    Full Text Available In Russia, the problems of engineering education are connected with political and economic upheavals of the late last century. At the same time, some leading engineering universities in Russia, such as the Bauman Moscow State Technical University (BMSTU were resistant to the damaging effects of the crisis. But the methodology and experience of their effective work are insufficiently known.The problems of international engineering school development are also known. The first UNESCO World Report on Engineering (2010 assesses the state of engineering education as follows: worldwide shortage of engineers is a threat to the development of society.Based on the analysis of the current state of engineering education in the world and tendencies of development an urgency of its modernization with the focus on the enhancement of practical component has been shown.Topical problems associated with innovations and modernization in engineering education in the field of aerospace technology were discussed at the first international forum, which was held in Beijing Beyhanskom University (BUAA on 8 - 9 September 2012. The author attended this forum and presented his impressions of its work. It was noted that the role of Russia in the global process to form and develop engineering education is ignored. This opinion sounded, generally, in all speakers' reports, apart from ours.The President BUAA, a Professor Jinpeng Huai, and a Professor Qiushi Li. talked about the problems of building the engineering education system in China. It was emphasized that in China a study of engineering education techniques was motivated by the fact that quality assurance of engineering education at U.S. universities does not meet requirements.Attention is drawn to Dr. David Wisler's report who is a representative of the U.S. aerospace industry (General Electric Aviation corporation, actively promoting networking technology "initiative CDIO».The assessment of the engineering education

  9. Comparing Two Approaches for Engineering Education Development

    DEFF Research Database (Denmark)

    Edström, Kristina; Kolmos, Anette

    2012-01-01

    During the last decade there have been two dominating models for reforming engineering education: Problem/Project Based Learning (PBL) and the CDIO Initiative. The aim of this paper is to compare the PBL and CDIO approaches to engineering education reform, to identify and explain similarities...... and differences. CDIO and PBL will each be defined and compared in terms of the original need analysis, underlying educational philosophy and the essentials of the respective approaches to engineering education. In these respects we see many similarities. Circumstances that explain differences in history...... approaches have much in common and can be combined, and especially that the practitioners have much to learn from each other’s experiences through a dialogue between the communities. This structured comparison will potentially indicate specifically what an institution experienced in one of the communities...

  10. Development and Strengthening of Agricultural Education in St. Lucia. A Report.

    Science.gov (United States)

    Meaders, O. Donald

    A study examined present agricultural education programs in Saint Lucia and made recommendations for needed improvements. Data for the evauation were obtained from numerous documents and publications, field trips, and discussions with key officials in various ministries and institutions, including the Ministry of Agriculture, Ministry of…

  11. Broadening engineering education: bringing the community in : commentary on "social responsibility in French engineering education: a historical and sociological analysis".

    Science.gov (United States)

    Conlon, Eddie

    2013-12-01

    Two issues of particular interest in the Irish context are (1) the motivation for broadening engineering education to include the humanities, and an emphasis on social responsibility and (2) the process by which broadening can take place. Greater community engagement, arising from a socially-driven model of engineering education, is necessary if engineering practice is to move beyond its present captivity by corporate interests.

  12. The philosophical and pedagogical underpinnings of Active Learning in Engineering Education

    Science.gov (United States)

    Christie, Michael; de Graaff, Erik

    2017-01-01

    In this paper the authors draw on three sequential keynote addresses that they gave at Active Learning in Engineering Education (ALE) workshops in Copenhagen (2012), Caxias do Sol (2014) and San Sebastian (2015). Active Learning in Engineering Education is an informal international network of engineering educators dedicated to improving engineering education through active learning (http://www.ale-net.org/). The paper reiterates themes from those keynotes, namely, the philosophical and pedagogical underpinnings of Active Learning in Engineering Education, the scholarly questions that inspire engineering educators to go on improving their practice and exemplary models designed to activate the learning of engineering students. This paper aims to uncover the bedrock of established educational philosophies and theories that define and support active learning. The paper does not claim to present any new or innovative educational theory. There is already a surfeit of them. Rather, the aim is to assist Engineering Educators who wish to research how they can best activate the learning of their students by providing a readable, reasonable and solid underpinning for best practice in this field.

  13. ABSTRACTS OF RESEARCH STUDIES IN AGRICULTURAL EDUCATION COMPILED IN 1965-66 IN THE NORTH ATLANTIC REGION.

    Science.gov (United States)

    LOVE, GENE M.

    FORTY-TWO DOCTORAL DISSERTATIONS, STAFF STUDIES, AND MASTERS' THESES IN AGRICULTURAL EDUCATION ARE REPORTED IN THE FOLLOWING AREAS -- ADMINISTRATION, AGRICULTURAL PRODUCTION, CAREER CHOICE, CURRICULUM, COMMUNITY COLLEGES, EDUCATIONAL NEEDS, EMPLOYMENT OPPORTUNITIES, EXTENSION EDUCATION, FARMERS, GRADUATE STUDENTS, INNOVATIONS, INTERNATIONAL…

  14. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  15. The historical-normative trajectory of agricultural education: from Brazil-Empire to Brazil-Republic (1960

    Directory of Open Access Journals (Sweden)

    Marta Leandro da Silva

    2016-04-01

    Full Text Available This study, developed from research carried out during a master’s program, focuses on the historical, normative and political trajectory of agricultural education (at high school level, now in the context of federal legislation reforms. This segment of vocational education developed in the light of stereotypes and isolation, with scarce scientific analysis as rare object of research. This paper aims to present a descriptive and analytical approach to the main normative acts that guided the historical and curricular trajectory of Agricultural Education at high school level. Highlighting the educational policies embodied in the federal educational legislation, within these major historical milestones: from Imperial Brazil to the Republican period (1960. Based on qualitative research on education, with emphasis on documentary / normative and institutional research, it is necessary to identify the multiple historical determinations that outlined and preceded current secondary vocational education policies (agricultural area aiming to offer contributions for the analysis of contemporary policies.

  16. A Description and Source Listing of Curriculum Materials in Agricultural Education, 1970-1971.

    Science.gov (United States)

    American Vocational Association, Washington, DC. Agricultural Education Div.

    To provide teachers of vocational agriculture, agricultural supervisors, and agricultural teacher educators with information on current curriculum materials available to them, this annotated bibliography presents 207 references classified according to the AGDEX filing system. Topics are: (1) Field Crops, (2) Horticulture, (3) Forestry, (4) Animal…

  17. Australian Engineering Educators' Attitudes towards Aboriginal Cultures and Perspectives

    Science.gov (United States)

    Goldfinch, Thomas; Prpic, Juliana Kaya; Jolly, Lesley; Leigh, Elyssebeth; Kennedy, Jade

    2017-01-01

    In Australia, representation of Aboriginal populations within the engineering profession is very low despite participation targets set by Government departments, professional bodies and Universities. Progressing the Aboriginal inclusion agenda within Australian Engineering Education requires a clearer understanding of engineering educators'…

  18. Engineering Education for Sustainable Development. The Contribution of University Curricula to Engineering Education for Sustainable Development.

    NARCIS (Netherlands)

    Kastenhofer, Karen; Lansu, Angelique; Van Dam-Mieras, Rietje; Sotoudeh, Mahshid

    2010-01-01

    Global failures to reach a sustainable development within present-day societies as well as recent breakthroughs within technoscience pose new challenges to engineering education. The list of competencies which engineers should have to rise to these challenges is long and diverse, and often

  19. Supervision of Agricultural Educators in Secondary Schools: What Do Teachers Want from Their Principals?

    Science.gov (United States)

    Paulsen, Thomas H.; Martin, Robert A.

    2014-01-01

    The purpose of this multi-state study was to identify agricultural education teachers' perceived level of importance regarding selected instructional supervisory practices used in the nonformal components of agricultural education. The theoretical frame supporting this study was the theory of andragogy. Data were reported on the perceived…

  20. Digital dissemination platform of transportation engineering education materials.

    Science.gov (United States)

    2014-09-01

    National agencies have called for more widespread adoption of best practices in engineering education. To facilitate this sharing of practices we will develop a web-based system that will be used by transportation engineering educators to share curri...

  1. Some developing concepts of engineering education

    Science.gov (United States)

    Perkins, C. D.

    1975-01-01

    An analysis of the circumstances which have created a shortage of aeronautical engineering undergraduate students in the universities is presented. Suggestions for motivating students to enter aeronautical engineering are examined. The support of the aeronautical industry for graduate education funding is recommended. Examples of actions taken by governmental agencies to promote increased interest in aeronautical engineering are included.

  2. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    Science.gov (United States)

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  3. Project based learning for reactor engineering education

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Tsuji, Masashi; Shimazu, Yoichiro

    2009-01-01

    Trial in education of nuclear engineering in Hokkaido University has proved to be quite attractive for students. It is an education system called Project Based Learning (PBL), which is not based on education by lecture only but based mostly on practice of students in the classroom. The system was adopted four years ago. In the actual class, we separated the student into several groups of the size about 6 students. In the beginning of each class room time, a brief explanations of the related theory or technical bases. Then the students discuss in their own group how to precede their design calculations and do the required calculation and evaluation. The target reactor type of each group was selected by the group members for themselves at the beginning of the semester as the first step of the project. The reactor types range from a small in house type to that for a nuclear ship. At the end of the semester, each group presents the final design. The presentation experience gives students a kind of fresh sensation. Nowadays the evaluation results of the subject by the students rank in the highest in the faculty of engineering. Based on the considerations above, we designed the framework of our PBL for reactor engineering. In this paper, we will present some lessons learned in this PBL education system from the educational points of view. The PBL education program is supported by IAE/METI in Japan for Nuclear Engineering Education. (author)

  4. Agriculture: About EPA's National Agriculture Center

    Science.gov (United States)

    EPA's National Agriculture Center (Ag Center), with the support of the United States Department of Agriculture, serves growers, livestock producers, other agribusinesses, and agricultural information/education providers.

  5. Development of Engineering Design Education in the Department of Mechanical Engineering at Kanazawa Technical College

    Science.gov (United States)

    Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi

    This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.

  6. Educating Future Engineers and the Image of Technology : Applying the Philosophy of Technology to Engineering Education

    NARCIS (Netherlands)

    Ghaemi Nia, M.M.

    2017-01-01

    This thesis deals with the matter of making reforms in engineering education, and it highlights the significance of delivering a more comprehensive image of technology and its different aspects in the course of training students about technology and engineering. The innovative contribution of the

  7. Millennial and Non-Millennial Agriculture Teachers' Current and Ideal Emphasis on the Three Components of the Agricultural Education Program

    Science.gov (United States)

    Shoulders, Catherine W.; Toland, Hannah

    2017-01-01

    Classroom and laboratory instruction, FFA, and SAE have long represented the complete agricultural education program via the three-component model. While the model depicts three circles of equal size to represent these components, the focus and level of emphasis of each component within the agriculture program is the decision of the agriculture…

  8. Researching primary engineering education: UK perspectives, an exploratory study

    Science.gov (United States)

    Clark, Robin; Andrews, Jane

    2010-10-01

    This paper draws attention to the findings of an exploratory study that critically identified and analysed relevant perceptions of elementary level engineering education within the UK. Utilising an approach based upon grounded theory methodology, 30 participants including teachers, representatives of government bodies and non-profit providers of primary level engineering initiatives were interviewed. Three main concepts were identified during the analysis of findings, each relevant to primary engineering education. These were pedagogic issues, exposure to engineering within the curriculum and children's interest. The paper concludes that the opportunity to make a real difference to children's education by stimulating their engineering imagination suggests this subject area is of particular value.

  9. How Cognitive Style and Problem Complexity Affect Preservice Agricultural Education Teachers' Abilities to Solve Problems in Agricultural Mechanics

    Science.gov (United States)

    Blackburn, J. Joey; Robinson, J. Shane; Lamm, Alexa J.

    2014-01-01

    The purpose of this experimental study was to determine the effects of cognitive style and problem complexity on Oklahoma State University preservice agriculture teachers' (N = 56) ability to solve problems in small gasoline engines. Time to solution was operationalized as problem solving ability. Kirton's Adaption-Innovation Inventory was…

  10. A Description and Source Listing of Curriculum Materials in Agricultural Education, 1969-1970.

    Science.gov (United States)

    American Vocational Association, Washington, DC. Agricultural Education Div.

    The purpose of this annotated bibliography is to provide teachers of vocational agriculture, agricultural supervisors, and agricultural teacher educators with information on current curriculum materials available to them. Classified according to the AGDEX filing system, the 163 references are grouped under the headings: (1) Field Crops, (2)…

  11. Transformation of the structure professions in higher agricultural schools of Siberia at the end of 1950-s – beginning of 1990-s

    Directory of Open Access Journals (Sweden)

    Petrik Valeriy V.

    2016-01-01

    Full Text Available The article reveals the transformations happened to the specialties structure in Higher agricultural education of Siberia at the end of the 1950s-the beginning of the 1990s. On the basis of archive documents there were analyzed the measures taken by central administrative structures, local authorities and the academic staff of the region for further development and perfection of major organization departments in eight agricultural institutes and their branches. It is stated that to the end of the period reviewed the number of faculties and specialties in Siberian agricultural higher educational institutions rose two times in comparison with the beginning of the period. Some of the agricultural institutes and their branches showed the rise in three or four times. In consequence of the measures they raised the number of specialists trained in Agronomics, Livestock engineering, Mechanics, Power engineering, Veterinary, Economics, for rapidly developing branches of regional agriculture. The article is intended to people interested in history of Higher education in Russia.

  12. Active Learning in Engineering Education: a (re)introduction

    DEFF Research Database (Denmark)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network ‘Active Learning in Engineering Education’ (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE...... were reviewed by the European Journal of Engineering Education community and this theme issue ended up with eight contributions, which are different both in their research and Active Learning approaches. These different Active Learning approaches are aligned with the different approaches that can...

  13. Two Models of Engineering Education for the Professional Practice

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir Peter Boots; Ir. Peter van Kollenburg

    2002-01-01

    Two models for engineering education that may answer the needs for "Renaissance Engineers" are described in this paper. They were the outcome of an educational renewal project, funded by the Dutch Ministry of Education and industrial companies. The first model (Corporate Curriculum) aims to bring

  14. Towards the European Nuclear Engineering Education Network

    International Nuclear Information System (INIS)

    Mavko, B.; Giot, M.; Sehgal, B.R.; Goethem, G. Van

    2003-01-01

    Current priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. The situation today is significantly different than it was three to four decades ago when much of the present competence base in nuclear sciences was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement. To preserve nuclear knowledge and expertise through the higher nuclear engineering education in the 5 th framework program of the European Commission the project ENEN (European Nuclear Engineering Education Network) was launched, since the need to keep the university curricula in nuclear sciences and technology alive has been clearly recognized at European level. As the follow up of this project an international nuclear engineering education consortium of universities with partners from the nuclear sector is presently in process of being established This association called ENEN has as founding members: 14 universities and 8 research institutes from 17 European countries. (author)

  15. Empowering Women in Agricultural Education for Sustainable Rural Development.

    Science.gov (United States)

    Ugbomeh, George M. M.

    2001-01-01

    Discusses the concepts of agricultural education, women empowerment, and sustainable rural development. Suggests that, because women make up more than half of Nigeria's population, their empowerment would assist the efforts for sustainable rural development. (Contains 48 references.) (JOW)

  16. Engineering education in the period with rapid change; Henkakuki no kogaku kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Y. [Osaka University, Osaka (Japan)

    2000-01-05

    The Accreditation Examination Committee of engineering education was established in 1997 in the Japan Engineering Education Society, and the International Universal Engineer Review Board was established in the Japan Engineering Education Society and the Japan Engineering Society in 1998. A series of the activities was connected to the establishment of 'Japan Accreditation Board for Engineering Education' (JABEE). To adapt to the movements, the Educational Program Review Board in the Engineering was installed in 1997 mainly composed of directors of engineering departments of 8 national universities. This Board arranges the contents of engineering education in the orders as follows, and studies on this base are being promoted. (1) Static (engineering basic knowledge, engineering special knowledge, expert skill), (2) Dynamic (search, design, analysis and application, synthesis and comprehension), (3) Mental 1 (External: Negotiation ability, persuasion linguistic ability, language ability, positiveness cooperativeness, etc.), (4) Mental 2 (world view, engineering ethics, sense of responsibility, self-development, economy sense, international sense, etc.). (NEDO)

  17. Industrial Partners in the Education of an Engineer

    Science.gov (United States)

    Smith, Barnard E.

    1973-01-01

    Discusses the theory, operation, and practical problems encountered in conducting a professional program which emphasizes close contact with industrial engineers in engineering education. Indicates that the partnership program provides one means for firms to participate in educational activities while serving their own interests. (CC)

  18. The Fourth Revolution: Educating Engineers for Leadership.

    Science.gov (United States)

    Mark, Hans; Carver, Larry

    1988-01-01

    Urges a change in engineering education for developing leaders. Describes three previous revolutions in American higher education which responded to the needs of the community. Suggests lifelong education as the fourth revolution. (YP)

  19. [Theories and methodologies of engineering designs on sustainable agricultural land consolidation project--a case study of Xuemeiyang land consolidation project in Changtai County, Fujian Province].

    Science.gov (United States)

    Ye, Yanmei; Wu, Cifang; Cheng, Chengbiao; Qiu, Lingzhang; Huang, Shengyu; Zheng, Ruihui

    2002-09-01

    The concept and characteristics of engineering designs on sustainable agricultural land consolidation project were discussed in this paper. Principles, basic methods and procedures of engineering designs on agricultural land consolidation project were put forward, which were successfully adopted for designing agricultural land consolidation in Xuemeiyang region of Changtai County, including diversity designs of sustainable land use, engineering designs of soil improvement, roads, ditches, and drains for protecting existent animal environments, and design of ecological shelter-forests in farmland. Moreover, from sustainable economic, ecological and social points, the results of these engineering designs were evaluated based on fouteen important indexes. After carrying out these engineeringdesigns, the eco-environments and agricultural production conditions were significantly improved, and the farm income was increased in planned regions.

  20. About, for, in or through Entrepreneurship in Engineering Education

    Science.gov (United States)

    Mäkimurto-Koivumaa, Soili; Belt, Pekka

    2016-01-01

    Engineering competences form a potential basis for entrepreneurship. There are pressures to find new approaches to entrepreneurship education (EE) in engineering education, as the traditional analytical logic of engineering does not match the modern view of entrepreneurship. Since the previous models do not give tangible enough tools on how to…

  1. Engineering education research: Impacts of an international network of female engineers on the persistence of Liberian undergraduate women studying engineering

    Science.gov (United States)

    Rimer, Sara; Reddivari, Sahithya; Cotel, Aline

    2015-11-01

    As international efforts to educate and empower women continue to rise, engineering educators are in a unique position to be a part of these efforts by encouraging and supporting women across the world at the university level through STEM education and outreach. For the past two years, the University of Michigan has been a part of a grassroots effort to encourage and support the persistence of engineering female students at University of Liberia. This effort has led to the implementation of a leadership camp this past August for Liberian engineering undergraduate women, meant to: (i) to empower engineering students with the skills, support, and inspiration necessary to become successful and well-rounded engineering professionals in a global engineering market; and (ii) to strengthen the community of Liberian female engineers by building cross-cultural partnerships among students resulting in a international network of women engineers. This session will present qualitative research findings on the impact of this grassroots effort on Liberian female students? persistence in engineering, and the future directions of this work.

  2. An Overview of the Literature: Research in P-12 Engineering Education

    Science.gov (United States)

    Mendoza Díaz, Noemi V.; Cox, Monica F.

    2012-01-01

    This paper presents an extensive overview of preschool to 12th grade (P-12) engineering education literature published between 2001 and 2011. Searches were conducted through education and engineering library engines and databases as well as queries in established publications in engineering education. More than 50 publications were found,…

  3. Examination of engineering design teacher self-efficacy and knowledge base in secondary technology education and engineering-related courses

    Science.gov (United States)

    Vessel, Kanika Nicole

    2011-12-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.

  4. Notes on Advanced Engineering Education

    Science.gov (United States)

    Klimenko, A. Y.

    2017-01-01

    This article reviews history, analyses principles and presents a modern interpretation of advanced engineering education (AEE). AEE originated in France, was adapted in Germany and reached its zenith in the second half of the twentieth century as part of technological efforts induced by the space race. AEE is an enhanced form of education aimed at…

  5. Trade in Educational Services: An Overview of GATS and Policy Implications for Higher Agricultural Education in India

    Science.gov (United States)

    Soam, S. K.; Sastry, R. Kalpana; Rashmi, H. B.

    2007-01-01

    Higher education is a service that contributes to national development, integration and regional cohesion. Agricultural education in particular has been viewed in many developing countries as a significant contributor to sustainable development and poverty alleviation. In view of its public mandate, higher education in most countries is regulated…

  6. Nuclear engineering education initiative at Ibaraki University

    International Nuclear Information System (INIS)

    Matsumura, Kunihito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kurumada, Akira; Kikuchi, Kenji

    2015-01-01

    With the help of a grant from the Ministry of Education, Culture, Sports, Science and Technology, Ibaraki University has been engaging for six years in the development and preparation of educational environment on nuclear engineering for each of graduate and undergraduate. Core faculty conducts general services including the design and implementation of curriculum, operational improvement, and implementation of lectures. 'Beginner-friendly introduction for nuclear power education' is provided at the Faculty of Engineering, and 'nuclear engineering education program' at the Graduate School of Science and Engineering. All the students who have interest or concern in the accidents at nuclear power plants or the future of nuclear power engineering have opportunities to learn actively. This university participates in the alliance or association with other universities, builds industry - government - academia cooperation with neighboring institutions such as the Japan Atomic Energy Agency, and makes efforts to promote the learning and development of applied skills related to nuclear engineering through training and study tours at each facility. For example, it established the Frontier Applied Atomic Science Center to analyze the structure and function of materials using the strong neutron source of J-PARC. As the efforts after the earthquake accident, it carried out a radiation survey work in Fukushima Prefecture. In addition, it proposed and practiced the projects such as 'development of methods for the evaluation of transfer/fixation properties and decontamination of radioactive substances,' and 'structure analysis of radioactive substances remaining in soil, litter, and polluted water and its application to the decontamination.' (A.O.)

  7. Engineering education in the wake of hurricane Katrina

    Directory of Open Access Journals (Sweden)

    Lima Marybeth

    2007-10-01

    Full Text Available Abstract Living through hurricane Katrina and its aftermath and reflecting on these experiences from technical and non-technical standpoints has led me to reconsider my thoughts and philosophy on engineering education. I present three ideas regarding engineering education pedagogy that I believe will prepare future engineers for problem-solving in an increasingly complex world. They are (1 we must practice radical (to the root engineering, (2 we must illustrate connections between engineering and public policy, and (3 we will join the charge to find sustainable solutions to problems. Ideas for bringing each of these concepts into engineering curricula through methods such as case study, practicing broad information gathering and data interpretation, and other methods inside and outside the classroom, are discussed. I believe that the consequences of not considering the root issues of problems to be solved, and of not including policy and sustainability considerations when problems to be solved are framed will lead our profession toward well meaning but insufficient utility. Hurricane Katrina convinced me that we must do better as educators to prepare our students for engineering for a sustainable world.

  8. Unique Education and Workforce Development for NASA Engineers

    Science.gov (United States)

    Forsgren, Roger C.; Miller, Lauren L.

    2010-01-01

    NASA engineers are some of the world's best-educated graduates, responsible for technically complex, highly significant scientific programs. Even though these professionals are highly proficient in traditional analytical competencies, there is a unique opportunity to offer continuing education that further enhances their overall scientific minds. With a goal of maintaining the Agency's passionate, "best in class" engineering workforce, the NASA Academy of Program/Project & Engineering Leadership (APPEL) provides educational resources encouraging foundational learning, professional development, and knowledge sharing. NASA APPEL is currently partnering with the scientific community's most respected subject matter experts to expand its engineering curriculum beyond the analytics and specialized subsystems in the areas of: understanding NASA's overall vision and its fundamental basis, and the Agency initiatives supporting them; sharing NASA's vast reservoir of engineering experience, wisdom, and lessons learned; and innovatively designing hardware for manufacturability, assembly, and servicing. It takes collaboration and innovation to educate an organization that possesses such a rich and important historyand a future that is of great global interest. NASA APPEL strives to intellectually nurture the Agency's technical professionals, build its capacity for future performance, and exemplify its core valuesalJ to better enable NASA to meet its strategic visionand beyond.

  9. Construction of Engineering Education Program based on the Alumni's Evaluation of the Educational Outcome

    Science.gov (United States)

    Tsukamoto, Takehiko; Nishizawa, Hitoshi

    The Department of Electrical and Electronic Engineering in Toyota National College of Technology has put great emphasis on fundamental subjects, such as “electrical and electronic circuit" and “electromagnetism" more than 40 years. On the other hand, several issues of our college were clarified by the alumni's evaluation of the educational outcome in 2002. The most serious issue was low achievement of English and Social education. The alumni of all generation are dissatisfied with their low skill in English communication. As a part of the educational reforms, our department has constructed a new engineering education program focusing on fundamental ability. We introduced many problem-based-learning experiments and the compulsory subjects such as “English communication for electrical engineers" and “Engineering Ethics" into this program. Great educative results are obtained by these improvements. As a typical example, the scores of all 2nd grade students of advanced engineering course in TOEIC tests became 450 points or more. Our program has been authorized by JABEE since 2004.

  10. Agriculture Education. Elements of Farm and Building Layout.

    Science.gov (United States)

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in elements of farm and building layout. The guide presents units of study in the following areas: (1) sketching and drawing equipment, (2) gothic lettering, (3) layout of a standard sheet, (4) job…

  11. The Infusion of Inquiry-Based Learning into School-Based Agricultural Education: A Review of Literature

    Science.gov (United States)

    Wells, Trent; Matthews, Jennifer; Caudle, Lawrence; Lunceford, Casey; Clement, Brian; Anderson, Ryan

    2015-01-01

    Demands for increases in student achievement have led education professionals to incorporate various and rigorous teaching strategies into classrooms across the United States. Within school-based agricultural education (SBAE), agriculture teachers have responded to these challenges quite well. SBAE incorporates a wide variety of teaching and…

  12. Comparison of China-US Engineering Ethics Educations in Sino-Western Philosophies of Technology.

    Science.gov (United States)

    Cao, Gui Hong

    2015-12-01

    Ethics education has become essential in modern engineering. Ethics education in engineering has been increasingly implemented worldwide. It can improve ethical behaviors in technology and engineering design under the guidance of the philosophy of technology. Hence, this study aims to compare China-US engineering ethics education in Sino-Western philosophies of technology by using literature studies, online surveys, observational researches, textual analyses, and comparative methods. In my original theoretical framework and model of input and output for education, six primary variables emerge in the pedagogy: disciplinary statuses, educational goals, instructional contents, didactic models, teaching methods, and edificatory effects. I focus on the similarities and differences of engineering ethics educations between China and the U.S. in Chinese and Western philosophies of technology. In the field of engineering, the U.S. tends toward applied ethics training, whereas China inclines toward practical moral education. The U.S. is the leader, particularly in the amount of money invested and engineering results. China has quickened its pace, focusing specifically on engineering labor input and output. Engineering ethics is a multiplayer game effected at various levels among (a) lower level technicians and engineers, engineering associations, and stockholders; (b) middle ranking engineering ethics education, the ministry of education, the academy of engineering, and the philosophy of technology; and (c) top national and international technological policies. I propose that professional engineering ethics education can play many important roles in reforming engineering social responsibility by international cooperation in societies that are becoming increasingly reliant on engineered devices and systems. Significantly, my proposals contribute to improving engineering ethics education and better-solving engineering ethics issues, thereby maximizing engineering

  13. How Soft are “Soft Skills” in Engineering Educations?

    DEFF Research Database (Denmark)

    Bruun-Pedersen, Jon Ram; Kofoed, Lise

    2015-01-01

    Engineering education communities have long recognized that graduates not only need to poses technical knowledge in their chosen disciplines, but also need to be better educated in areas of communication skills, teamwork and leadership. Several studies mention these so-called “soft” skills...... as increasingly important for future engineers. Such skills include communication, cooperation, creativity, leadership and organization. For many years, the engineering educations at Aalborg University have been working with the Problem Based and Project Organized Learning pedagogical approach. An important part...

  14. Russian Engineering Education in the Era of Change

    Science.gov (United States)

    Vladimirovich Pukharenko, Yurii; Vladimirovna Norina, Natalia; Aleksandrovich Norin, Veniamin

    2017-01-01

    The article investigates modern issues of engineering education in Russia related to introduction of the Bologna system. The author shows that the situation in the education in general gives reasons for concern; the issue of qualitative enrolment of students for engineering specialties escalates; graduates with masters and bachelors' degrees are…

  15. Current Trends in Aerospace Engineering Education on Taiwan.

    Science.gov (United States)

    Hsieh, Sheng-Jii

    A proposal for current trends in Aerospace Engineering Education on Taiwan has been drawn from the suggestions made after a national conference of "Workshop on Aerospace Engineering Education Reform." This workshop was held in January 18-20, 1998, at the Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan,…

  16. Agricultural In-Service Needs of Introductory Level Career and Technical Education Teachers

    Science.gov (United States)

    Christensen, Jolene; Warnick, Brian K.; Spielmaker, Debra; Tarpley, Rudy S.; Straquadine, Gary S.

    2009-01-01

    This study identified and prioritized the agricultural in-service needs of introductory level career and technical education teachers in Utah. The Utah State Board of Education requires that all seventh grade students complete an introductory career and technical education course as their first formal career exploration experience. One component…

  17. The Impact of Agricultural Science Education on Performance in a Biology Course

    Science.gov (United States)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  18. Greenhouse Facility Management Experts Identification of Competencies and Teaching Methods to Support Secondary Agricultural Education Instructors: A Modified Delphi Study

    Science.gov (United States)

    Franklin, Edward A.

    2011-01-01

    In this study the Delphi technique has been used to develop a list of educational competencies for preparing secondary agricultural education instructors to effectively manage their school greenhouse facilities. The use of specialized facilities in agricultural education requires appropriate preparation of agricultural education teachers. The…

  19. The Influence of Engineers' Training Models on Ethics and Civic Education Component in Engineering Courses in Portugal

    Science.gov (United States)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-01-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its…

  20. Technology transfer: The key to successful space engineering education

    Science.gov (United States)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  1. Engineering Ethics Education on the Basis of Continuous Education to Improve Communication Ability

    Science.gov (United States)

    Takahara, Kenji; Kajiwara, Toshinori

    The paper proposes the engineering ethics education method for students on the basis of continuous education to improve communication ability. First, through a debate, the students acquire the fundamental skills required to marshal their arguments, to construct the rebuttals and to summarize the debates. Secondly, the students study the fundamental techniques to make a presentation on technical subjects related to electrical engineering. Following these classes, in the lecture of engineering ethics, the students probe the cause of each accident and consider the better means for avoiding such an accident, each other. In most cases, the students can express right and commonsensical opinions from an ethical standpoint. However, they can hardly make judgments when the situations such as the human relations in the above accidents are set concretely. During the engineering ethics class, the students come to know that human relations behind the case make the ethical matters more complicated. Furthermore, they come to understand that facilitating daily communications with co-workers and/or bosses is very important in order to avoid the accidents. The recognition of the students is just the results of the continuous education through three years. It can be said that the engineering ethics education thus constructed makes the students raise such spontaneous awareness and their ethical qualities as engineers.

  2. Engineering Education: A Clear Content Base for Standards

    Science.gov (United States)

    Grubbs, Michael E.; Strimel, Greg J.; Huffman, Tanner

    2018-01-01

    Interest in engineering at the P-12 level has increased in recent years, largely in response to STEM educational reform. Despite greater attention to the value, importance, and use of engineering for teaching and learning, the educational community has engaged minimally in its deliberate and coherent study. Specifically, few efforts have been…

  3. teaching and learning methodologies in engineering education

    African Journals Online (AJOL)

    Global Journal

    and learning of engineering in Nigerian Universities and suggests ways of improving engineering education in ... and inadequate collaboration between industries and schools. .... can book at their convenient time without conflicting with their ...

  4. Valuing Indigenous Knowledge in the Highlands of Papua New Guinea: A Model for Agricultural and Environmental Education

    Science.gov (United States)

    Radcliffe, Chris; Parissi, Cesidio; Raman, Anantanarayanan

    2016-01-01

    Current methods of agricultural and environmental education for indigenous farmers in Papua New Guinea (PNG) fail to provide high level engagement. Indigenous knowledge (IK) forms the basis of natural resource management, agriculture and health of farmers in PNG, yet its value to agricultural and environmental education in PNG is rarely…

  5. Educational Reform in Management Courses of Agricultural & Forestry Higher Vocational Schools from the Perspective of Microblog

    Institute of Scientific and Technical Information of China (English)

    Liuhe; JIN

    2014-01-01

    At present there are many socialized microblog platforms.With powerful mobility,real-time information,fragment of information dissemination,and innovation of interaction,the microblog has become a socialized interaction mode in recent years.Since microblog is very popular with students of agricultural and forestry higher vocational schools,with the rising and development of network education,the microblog as a new information platform will be used by more and more teachers in education.From the perspective of microblog,this paper studied educational reform in management courses of agricultural and forestry higher vocational schools,in the hope of providing certain reference and help for current education practice of agricultural and forestry management courses.

  6. Conference Modern Engineering : Science and Education

    CERN Document Server

    2017-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2016 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  7. Industrial relations in engineering education

    DEFF Research Database (Denmark)

    Kjærsdam, Finn

    2005-01-01

    gained from Aalborg University, Aalborg, Denmark, shows the strength of this type of combination. It produces creative engineers who are prepared to tackle unknown problems of the future using theories from very different disciplines and has proven to be a very effective educational method. More students...... pass their education. in due time, while project work supports the social environment on campus....

  8. Emergy analysis of a farm biogas project in China: A biophysical perspective of agricultural ecological engineering

    Science.gov (United States)

    Zhou, S. Y.; Zhang, B.; Cai, Z. F.

    2010-05-01

    This paper aims to present a biophysical understanding of the agricultural ecological engineering by emergy analysis for a farm biogas project in China as a representative case. Accounting for the resource inputs into and accumulation within the project, as well as the outputs to the social system, emergy analysis provides an empirical study in the biophysical dimension of the agricultural ecological engineering. Economic benefits and ecological economic benefits of the farm biogas project indicated by market value and emergy monetary value are discussed, respectively. Relative emergy-based indices such as renewability (R%), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are calculated to evaluate the environmental load and local sustainability of the concerned biogas project. The results show that the farm biogas project has more reliance on the local renewable resources input, less environmental pressure and higher sustainability compared with other typical agricultural systems. In addition, holistic evaluation and its policy implications for better operation and management of the biogas project are presented.

  9. Chemical Engineering Education in a Bologna Three Cycle Degree System

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    For the purpose of harmonization of European higher education, Europe’s education system has been going through major changes under what is commonly known as the ”Bologna Process”. The Bologna declaration in 1999 was the start of the introduction of a three cycle degree system in higher education...... in Europe. To date, many European universities have adopted this degree structure. The Working Party on Education (WPE) of the European Federation of Chemical Engineering (EFCE) carried out research to determine the contents of higher education in chemical engineering (ChE) and related disciplines...... such as applied chemistry and process engineering throughout Europe. The result has been a set of recommendations for the first (BS), second (MS) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...

  10. Reconstruction of nuclear engineering education in universities

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Tomota, Yo; Tanaka, Shunichi

    2005-01-01

    Nuclear engineering has become the area gradually loosing appeal to the young for these twenty years taking all the circumstances into consideration. However nuclear power is predicted to be primary energy of greatest importance even in the future and this needs highly motivated and excellent personnel in nuclear industry and society so as to develop and maintain nuclear power to a high degree. Under these circumstances discussions on how should be nuclear engineering research and education in the new era were presented from various viewpoints and they led to the direction of reconstruction of nuclear engineering education in universities and relevant organizations to train and ensure personnel. (T. Tanaka)

  11. Current Developments in the French Engineering Education System

    Science.gov (United States)

    Lemaître, Denis

    2017-01-01

    The French engineering education system has been established in quite a different way from others in Europe, such as the German and British systems, for instance. Due to both the whole state system and the private initiatives during the industrial revolution, the engineering education system today is composed of a large number (nearly 200) of…

  12. Establishing the need for an engineering standard for agricultural hitch pins.

    Science.gov (United States)

    Deboy, G R; Knapp, W M; Field, W E; Krutz, G W; Corum, C L

    2012-04-01

    Documented incidents have occurred in which failure or unintentional disengagement of agricultural hitch pins has contributed to property damage and personal injury. An examination of current hitch pin use on a convenience sample of farm operations in Indiana revealed a variety of non-standard, worn and damaged, and inappropriately sized hitch pins in use. Informal interviews with the farm operators confirmed that hitch pin misuse, failure, or disengagement is a relatively widespread problem that remains largely unaddressed. On-site observations also suggested a low use of hitch pin retaining devices or safety chains. A review of prior research revealed that little attention has been given to this problem, and currently no documentation allows for an estimate of the frequency or severity of losses associated with hitch pin misuse, failure, or disengagement. No specific engineering standards were found that directly applied to the design, appropriate selection, or loading capacity of agricultural hitch pins. Major suppliers of replacement hitch pins currently provide little or no information on matching hitch pin size to intended applications, and most replacement hitch pins examined were of foreign origin, with the overwhelming majority imported from China or India. These replacement hitch pins provided no specifications other than diameter, length, and, in some cases, labeling that indicated that the pins had been "heat treated. " Testing of a sample of 11 commercially available replacement hitch pins found variation along the length of the pin shaft and between individual pins in surface hardness, a potential predictor of pin failure. Examination of 17 commercially available replacement pins also revealed a variety of identifiers used to describe pin composition and fabrication methods, e.g., "heat treated." None of the pins examined provided any specifications on loading capacity. It was therefore concluded that there is a need to develop an agricultural hitch

  13. Environmental engineering education - summary report of the 1st European Seminar

    DEFF Research Database (Denmark)

    Alha, K; Holliger, C.; Larsen, Bo Skjold

    2000-01-01

    This paper summarizes the discussions of the 1st European Seminar on Environmental Engineering Education (E3), which was held at EAWAG, Zurich, Switzerland in August 1999. Although the emerging discipline of environmental engineering, which was once viewed as being a sub-set of civil or chemical...... engineering, has established a status in its own right, a definition of environmental engineering is still not agreed among European engineering educators. This report discusses the variation between European countries and the way in which higher education institutions in these countries address...... the educational needs of environmental engineers. A review of the acceptance of this new discipline by employers and the status of environmental engineering as a profession throughout Europe is presented. The question of how to achieve greater compatibility and comparability of the systems of environmental...

  14. Engineering Ethics Education: A Comparative Study of Japan and Malaysia.

    Science.gov (United States)

    Balakrishnan, Balamuralithara; Tochinai, Fumihiko; Kanemitsu, Hidekazu

    2018-03-22

    This paper reports the findings of a comparative study in which students' perceived attainment of the objectives of an engineering ethics education and their attitude towards engineering ethics were investigated and compared. The investigation was carried out in Japan and Malaysia, involving 163 and 108 engineering undergraduates respectively. The research method used was based on a survey in which respondents were sent a questionnaire to elicit relevant data. Both descriptive and inferential statistical analyses were performed on the data. The results of the analyses showed that the attainment of the objectives of engineering ethics education and students' attitude towards socio-ethical issues in engineering were significantly higher and positive among Japanese engineering students compared to Malaysian engineering students. Such findings suggest that a well-structured, integrated, and innovative pedagogy for teaching ethics will have an impact on the students' attainment of ethics education objectives and their attitude towards engineering ethics. As such, the research findings serve as a cornerstone to which the current practice of teaching and learning of engineering ethics education can be examined more critically, such that further improvements can be made to the existing curriculum that can help produce engineers that have strong moral and ethical characters.

  15. Enterprise 3.0 in Engineering Education

    Science.gov (United States)

    Ahrens, Andreas; Zascerinska, Jelena

    2011-01-01

    Enterprise 3.0 offers potential solutions for the quality, maintenance and sustainable development of services. The synergy between Enterprise 3.0 and engineering education advances the development of innovative products, processes and services in the European economy. Aim of the research is to analyze student engineers' use of Enterprise 3.0…

  16. The Philosophical and Pedagogical Underpinnings of Active Learning in Engineering Education

    Science.gov (United States)

    Christie, Michael; de Graaff, Erik

    2017-01-01

    In this paper the authors draw on three sequential keynote addresses that they gave at Active Learning in Engineering Education (ALE) workshops in Copenhagen (2012), Caxias do Sol (2014) and San Sebastian (2015). Active Learning in Engineering Education is an informal international network of engineering educators dedicated to improving…

  17. Modern mechanical engineering research, development and education

    CERN Document Server

    2014-01-01

    This book covers modern subjects of mechanical engineering such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, sustainability as well as all aspects related with mechanical engineering education. The chapters help enhance the understanding of both the fundamentals of mechanical engineering and its application to the solution of problems in modern industry. This book is suitable for students, both in final undergraduate mechanical engineering courses or at the graduate level. It also serves as a useful reference for academics, mechanical engineering researchers, mechanical, materials and manufacturing engineers, professionals in related with mechanical engineering.

  18. Aansluiting middelbaar agrarisch onderwijs en arbeidsmarkt 1990 [Connection between secondary agricultural education and labour market 1990

    NARCIS (Netherlands)

    Pierik, H.J.

    1994-01-01

    Two cohorts of students finished their secondary agricultural education (MAO) in the years 1978 and 1987 were traced and they were asked to evaluate their education and their career. Agricultural background / preliminary training / residence of MAO / subject / importance of fields of study in

  19. Enhancing environmental engineering education in Europe

    Science.gov (United States)

    Caporali, Enrica; Tuneski, Atanasko

    2013-04-01

    In the frame of knowledge triangle: education-innovation-research, the environmental engineering higher education is here discussed with reference to the TEMPUS-Trans European Mobility Programme for University Studies promoted by the European Commission. Among the focused aspects of TEMPUS are curricula harmonization and lifelong learning programme development in higher education. Two are the curricula, since the first TEMPUS project, coordinated in the period 2005-2008 by University of Firenze in cooperation with colleagues of the Ss Cyril and Methodius University, Skopje. The second three years TEMPUS Joint Project denominated DEREL-Development of Environment and Resources Engineering Learning, is active since October 2010. To the consortium activities participate 4 EU Universities (from Italy, Greece, Germany and Austria), 7 Partner Countries (PC) Universities (from FYR of Macedonia, Serbia and Albania), and 1 PC Ministry, 4 PC National Agencies, 1 PC non governmental organization and 1 PC enterprise. The same 4 EU Universities and the same Macedonian Institutions participated at the first TEMPUS JEP entitled DEREC-Development of Environmental and Resources Engineering Curriculum. Both the first and second cycle curriculum, developed through the co-operation, exchange of know-how and expertise between partners, are based on the European Credit Transfer System and are in accordance with the Bologna Process. Within DEREC a new three-years first cycle curriculum in Environmental and Resources Engineering was opened at the University Ss Cyril and Methodius, Skopje, and the necessary conditions for offering a Joint Degree Title, on the basis of an agreement between the Ss. Cyril and Methodius University and the University of Firenze, were fulfilled. The running DEREL project, as a continuation of DEREC, is aimed to introduce a new, up-to-date, postgraduate second cycle curriculum in Environment and Resources Engineering at the Ss Cyril and Methodius University in

  20. Utilizing Secondary Agricultural Education Programs to Deliver Evidence-Based Grain Safety Training for Young and Beginning Workers.

    Science.gov (United States)

    Cheng, Yuan-Hsin; Field, William E; Tormoehlen, Roger L; French, Brian F

    2017-01-01

    Purdue University's Agricultural Safety and Health Program (PUASHP) has collaborated with secondary agricultural education programs, including FFA Chapters, for over 70 years to deliver and promote agricultural safety and health programming. With support from a U.S. Department of Labor Susan Harwood Program grant, PUASHP utilized a Developing a Curriculum (DACUM) process to develop, implement, and evaluate an evidence-based curriculum for use with young and beginning workers, ages 16-20, exposed to hazards associated with grain storage and handling. The primary audience was students enrolled in secondary agricultural education programs. A review of the literature identified a gap in educational resources that specifically addresses this target population. The curriculum developed was based on fatality and injury incident data mined from Purdue's Agricultural Confined Space Incident Database and input from a panel of experts. The process identified 27 learning outcomes and finalized a pool of test questions, supported by empirical evidence and confirmed by a panel of experts. An alignment process was then completed with the current national standards for secondary agricultural education programs. Seventy-two youth, ages 16-20, enrolled in secondary-school agricultural education programs, and a smaller group of post-secondary students under the age of 21 interested in working in the grain industry pilot tested the curriculum. Based on student and instructor feedback, the curriculum was refined and submitted to OSHA for approval as part of OSHA's online training resources. The curriculum was delivered to 3,665 students, ages 16-20. A total of 346 pre- and post-tests were analyzed, and the results used to confirm content validity and assess knowledge gain. Findings led to additional modifications to curriculum content, affirmed knowledge gain, and confirmed appropriateness for use with secondary agricultural education programs. The curriculum has been promoted

  1. The challenge of reframing engineering education

    CERN Document Server

    Sale, Dennis

    2014-01-01

    The Challenge of Reframing Engineering Education is the first book to document the experience of implementing the CDIO Engineering Educational Framework in a large educational institution in the Asian context. It focuses on how to successfully implement and manage the key stages, activities and inevitable challenges that have to be negotiated in any large scale curriculum innovation. Its main purpose is to provide a practical resource for curriculum innovators and practitioners on what needs to be done, how and on what basis. It is written in a more narrative style than is typical of the genre, engaging the reader more intimately with the actual decision making processes and rationale that underpins curriculum innovation in the real context of institutional life. The book also encompasses many innovative practices for supporting student learning which are relevant in all mainstream educational contexts. These include an evidence-based learning approach for creative teaching, an explicit model for developing g...

  2. Agricultural experts’ attitude towards precision agriculture: Evidence from Guilan Agricultural Organization, Northern Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Allahyari

    2016-09-01

    Full Text Available Identifying factors that influence the attitudes of agricultural experts regarding precision agriculture plays an important role in developing, promoting and establishing precision agriculture. The aim of this study was to identify factors affecting the attitudes of agricultural experts regarding the implementation of precision agriculture. A descriptive research design was employed as the research method. A research-made questionnaire was used to examine the agricultural experts’ attitude toward precision agriculture. Internal consistency was demonstrated with a coefficient alpha of 0.87, and the content and face validity of the instrument was confirmed by a panel of experts. The results show that technical, economic and accessibility factors accounted for 55% of the changes in attitudes towards precision agriculture. The findings revealed that there were no significant differences between participants in terms of gender, field of study, extension education, age, experience, organizational position and attitudes, while education levels had a significant effect on the respondent’s attitudes.

  3. Would Increasing Engineering Literacies Enable Untapped Opportunities for STEM Education?

    Science.gov (United States)

    Redman, Christine

    2017-01-01

    The main focus here is to examine the benefits of defining and developing an engineering curriculum for elementary schools. Like many other international educational systems, Australian educational settings have been seeking to effectively implement science, technology, engineering, and mathematics (STEM) education. However, current assumptions…

  4. Applying an innovative educational program for the education of today's engineers

    Science.gov (United States)

    Kans, M.

    2012-05-01

    Engineers require a broad spectrum of knowledge and skills: basic skills in mathematics and physics, skills and competencies within the major subject area as well as more general knowledge about business and enterprise contexts, society regulations and understanding of the future professions' characteristics. In addition, social, intercultural, analytical and managing competencies are desired. The CDIO educational program was initiated as a means to come closer to practice and to assure the training of engineering skills that are required of today's engineers. CDIO is short for Conceive-Design-Implement-Operate and describes the full life cycle understanding of a system or asset that engineering students should reach during education. The CDIO initiative is formulated in a program consisting of two important documents: the CDIO standards and the CDIO syllabus. The standards describe a holistic approach on education, from knowledge and skills to be trained, how to train and assess them, to how to develop the teaching staff and the work places for enabling the goals. The specific knowledge and skills to be achieved are accounted for in the syllabus. In this paper we share our more than 15 years of experiences in problem and project based learning from the perspective of the CDIO standards. For each standard, examples of how to set up the education and overcome challenges connected to the standard are given. The paper concludes with recommendations to others wishing to work toward problem and real-life based education without compromising the requirements of a scientific approach.

  5. Applying an innovative educational program for the education of today's engineers

    International Nuclear Information System (INIS)

    Kans, M

    2012-01-01

    Engineers require a broad spectrum of knowledge and skills: basic skills in mathematics and physics, skills and competencies within the major subject area as well as more general knowledge about business and enterprise contexts, society regulations and understanding of the future professions' characteristics. In addition, social, intercultural, analytical and managing competencies are desired. The CDIO educational program was initiated as a means to come closer to practice and to assure the training of engineering skills that are required of today's engineers. CDIO is short for Conceive-Design-Implement-Operate and describes the full life cycle understanding of a system or asset that engineering students should reach during education. The CDIO initiative is formulated in a program consisting of two important documents: the CDIO standards and the CDIO syllabus. The standards describe a holistic approach on education, from knowledge and skills to be trained, how to train and assess them, to how to develop the teaching staff and the work places for enabling the goals. The specific knowledge and skills to be achieved are accounted for in the syllabus. In this paper we share our more than 15 years of experiences in problem and project based learning from the perspective of the CDIO standards. For each standard, examples of how to set up the education and overcome challenges connected to the standard are given. The paper concludes with recommendations to others wishing to work toward problem and real-life based education without compromising the requirements of a scientific approach.

  6. Engineering Ethics Education : Its Necessity, Objectives, Methods, Current State, and Challenges

    Science.gov (United States)

    Fudano, Jun

    The importance of engineering ethics education has become widely recognized in the industrialized countries including Japan. This paper examines the background against which engineering ethics education is required, and reviews its objectives, methods, and challenges, as well as its current state. In pointing out important issues associated with the apparent acceptance and quantitative development of ethics education, especially after the establishment of the Japan Accreditation Board for Engineering Education in 1999, the author stresses that the most serious problem is the lack of common understanding on the objectives of engineering ethics education. As a strategy to improve the situation, the so-called “Ethics-across-the-Curriculum” approach is introduced. The author also claims that business/organization ethics which is consistent with engineering ethics should be promoted in Japan.

  7. Leadership Learning Opportunities in Agriculture, Food, and Natural Resources Education: The Role of The Teacher

    Science.gov (United States)

    McKim, Aaron J.; Pauley, C. M.; Velez, Jonathan J.; Sorensen, Tyson J.

    2017-01-01

    Learning environments combining agriculture, food, natural resources, and leadership knowledge and skills are increasingly essential in preparing students for future success. School-based agricultural education offers a premier context in which to teach leadership within agriculture, food, and natural resources curriculum. However, providing…

  8. Simple, Complex, Innovative : Design Education at Civil Engineering

    NARCIS (Netherlands)

    Van Nederveen, G.A.; Soons, F.A.M.; Suddle, S.I.; De Ridder, H.

    2011-01-01

    In faculties such as Civil Engineering, design is a not a core activity. Core activities at Civil Engineering are structural engineering, structural analysis, mechanics, fluid dynamics, etc. Design education has a relatively small share in the curriculum, compared to faculties such as Industrial

  9. Research on the Undergraduate Financial Engineering Education in China

    Science.gov (United States)

    Ma, Haiyong; Zhang, Weiwei

    2011-01-01

    The rapid development of modern economy has put forward higher requirements for financial engineering education. This paper analyzes the status and problems in undergraduate financial engineering education in china, such as indistinct training objective, rigid curriculum structure, and superficial teaching methods, etc. and puts forward…

  10. Guidelines for using empirical studies in software engineering education

    Directory of Open Access Journals (Sweden)

    Fabian Fagerholm

    2017-09-01

    Full Text Available Software engineering education is under constant pressure to provide students with industry-relevant knowledge and skills. Educators must address issues beyond exercises and theories that can be directly rehearsed in small settings. Industry training has similar requirements of relevance as companies seek to keep their workforce up to date with technological advances. Real-life software development often deals with large, software-intensive systems and is influenced by the complex effects of teamwork and distributed software development, which are hard to demonstrate in an educational environment. A way to experience such effects and to increase the relevance of software engineering education is to apply empirical studies in teaching. In this paper, we show how different types of empirical studies can be used for educational purposes in software engineering. We give examples illustrating how to utilize empirical studies, discuss challenges, and derive an initial guideline that supports teachers to include empirical studies in software engineering courses. Furthermore, we give examples that show how empirical studies contribute to high-quality learning outcomes, to student motivation, and to the awareness of the advantages of applying software engineering principles. Having awareness, experience, and understanding of the actions required, students are more likely to apply such principles under real-life constraints in their working life.

  11. FINANCIAL MONITORING FOR EDUCATION AND RESEARCH FARMS OF AGRICULTURAL BUDGETARY INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Larysa Oliynik

    2016-03-01

    Full Text Available The article highlights the core of financial monitoring and the basic indicators of its implementation at education and research farms of agricultural budgetary institution. The case study for its peculiarities defined is Separated Subdivision of NULES of Ukraine “Velykosnytinske Education and Research Farm named after O. Muzychenka”, the financial monitoring of which allowed offering the enterprise certain directions to improve efficiency under modern conditions. While carrying out financial monitoring of  education and research farms,  there should be awareness that such farms are based on self-supporting, being non-profit institutions that function as public institutions. Consequently, they make estimates. The specific features of financial statements and reports are due to the fact that revenues of educational and research farms are derived from the special  fund.  Financial  monitoring  for  education  and  research  farms  of  agricultural  budgetary institution  is  proven  to  be  implemented  by  using  traditional  analysis  given  the  peculiarities  of budgetary institutions. Keywords: financial  monitoring,  education and research farm,  budgetary  institution,  cost accounting, special fund, estimate. JEL: M 20

  12. Engineering education in 21st century

    Science.gov (United States)

    Alam, Firoz; Sarkar, Rashid; La Brooy, Roger; Chowdhury, Harun

    2016-07-01

    The internationalization of engineering curricula and engineering practices has begun in Europe, Anglosphere (English speaking) nations and Asian emerging economies through the Bologna Process and International Engineering Alliance (Washington Accord). Both the Bologna Process and the Washington Accord have introduced standardized outcome based engineering competencies and frameworks for the attainment of these competencies by restructuring existing and undertaking some new measures for an intelligent adaptation of the engineering curriculum and pedagogy. Thus graduates with such standardized outcome based curriculum can move freely as professional engineers with mutual recognition within member nations. Despite having similar or near similar curriculum, Bangladeshi engineering graduates currently cannot get mutual recognition in nations of Washington Accord and the Bologna Process due to the non-compliance of outcome based curriculum and pedagogy. This paper emphasizes the steps that are required to undertake by the engineering educational institutions and the professional body in Bangladesh to make the engineering competencies, curriculum and pedagogy compliant to the global engineering alliance. Achieving such compliance will usher in a new era for the global mobility and global engagement by Bangladesh trained engineering graduates.

  13. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  14. The Technology of Forming of Innovative Content for Engineering Education

    Science.gov (United States)

    Kayumova, Lilija A.; Savva, Lubov I.; Soldatchenko, Aleksandr L.; Sirazetdinov, Rustem M.; Akhmetov, Linar G.

    2016-01-01

    The relevance of the study is conditioned by the modernization of engineering education aimed at specialists' training to solve engineering and economic problems effectively. The goal of the paper is to develop the technology of the innovative content's formation for engineering education. The leading method to the study of this problem is a…

  15. Engineering Education in Bangladesh--An Indicator of Economic Development

    Science.gov (United States)

    Chowdhury, Harun; Alam, Firoz

    2012-01-01

    Developing nations including Bangladesh are significantly lagging behind the millennium development target due to the lack of science, technology and engineering education. Bangladesh as a least developing country has only 44 engineers per million people. Its technological education and gross domestic product growth are not collinear. Although…

  16. Environmental Engineering Talent Demand and Undergraduate Education in China

    Science.gov (United States)

    Zhang, Huan-zhen; Li, Jian-bo; Luo, Xiang-nan; Zhao, Bin-yan; Luo, Ren-ming; Wang, Qiao-ling

    2004-01-01

    In Chinese higher environmental education, undergraduate education of environmental engineering starts earliest and develops fastest. The undergraduate has been playing an important role in controlling pollution for more than twenty years. The setting and distribution of the environmental engineering major was analyzed, the conditions of the…

  17. Research and Practice of Active Learning in Engineering Education

    NARCIS (Netherlands)

    Graaf, de Erik; Saunders-Smits, Gillian; Nieweg, Michael

    2005-01-01

    Since 2001, the international network Active Learning in Engineering education (ALE) organized a series of international workshops on innovation of engineering education. The papers in this book are selected to reflect the state of the art, based on contributions to the 2005 ALE workshop in Holland.

  18. CATIE: Tropical Agricultural Research and Higher Education Center. http://www.catie.ac.cr

    Science.gov (United States)

    Applied Environmental Education and Communication, 2004

    2004-01-01

    This article features CATIE (Centro Agronomico Tropical de Investigacion y Ensenanza), a tropical agricultural research and higher education center. CATIE's mission is to be instrumental in poverty reduction and rural development in the American tropics, by promoting diversified and competitive agriculture and sustainable management of natural…

  19. Good practices for educational software engineering projects

    NARCIS (Netherlands)

    van der Duim, Louwarnoud; Andersson, Jesper; Sinnema, Marco

    2007-01-01

    Recent publications indicate the importance of software engineering in the computer science curriculum. In this paper, we present the final part of software engineering education at University of Groningen in the Netherlands and Vaxjo University in Sweden, where student teams perform an industrial

  20. Assessing the Learning Needs of Student Teachers in Texas regarding Management of the Agricultural Mechanics Laboratory: Implications for the Professional Development of Early Career Teachers in Agricultural Education

    Science.gov (United States)

    Saucier, P. Ryan; McKim, Billy R.

    2011-01-01

    Skills needed to manage a laboratory are essential knowledge for all school-based, agriculture teachers who instruct agricultural mechanics curriculum (Saucier, Terry, & Schumacher, 2009). This research investigated the professional development needs of Texas agricultural education student teachers regarding agricultural mechanics laboratory…

  1. ITs in Engineering Education: Joining Efforts Between SPEE and IGIP

    Directory of Open Access Journals (Sweden)

    Alberto Cardoso

    2012-01-01

    Full Text Available The International Society for Engineering Education (IGIP and The Portuguese Society for Engineering Education (SPEE, the first being the oldest European Society for Engineering Education in Europe and the second the very young Society for Engineering Education in Portugal, have been intensifying the collaboration between the two societies as well as the exchange and dissemination of information about their relevant activities, whilst promoting understanding and cooperation between their respective members. One possible way is to create joint working groups, open to the members of both societies, on common topics of interest. In fact, both societies already kicked off this activity. The first initiative happened during the 1st World Engineering Education Flash Week (WEE, Lisbon, 2011. The SPEE-IGIP Flash Moment was a one day event integrated in the main Conference, which was dedicated to “Information & Communication Technologies in Engineering Education”.
    ITs allow the development of different teaching strategies which contribute to enhance the learning outcomes of students. ITs are also particularly suited to develop Life Long Learning tools, in a broad range of Engineering subjects, either open to the general market or oriented to a very specific public.
    Examples of teaching strategies involving ITs have been addressed during the Flash Moment SPEE-IGIP which took place during WEE, and some are described in detail in the present work.

  2. The Gap between Engineering Education and Postgraduate Preparedness

    Science.gov (United States)

    Warsame, Abdulla Farah

    2017-01-01

    Engineering students entering the workforce often struggle to meet the competency expectations of their employers. Guided by constructivist theory, the purpose of this case study was to understand engineers' experiences of engineering education, deficiencies in practical skills, and the self-learning methods they employed to advance their…

  3. Global network on engineering education research and expertise in PBL

    DEFF Research Database (Denmark)

    Enemark, Stig; Kolmos, Anette; Moesby, Egon

    2006-01-01

    in order to facilitate better access to and co-operation within the PBL area. One of the absolute important tasks for UCPBL is to provide evidence for the effectiveness of PBL worldwide. Thus, there is a special attempt to establish links between engineering education researchers in this field....... This involves considerations concerning what is engineering education research – and how do we promote research based staff and educational development.......The UCPBL Centre for Problem Based Learning is based at Aalborg University, Denmark, known world-wide for its successful educational approach based on problem oriented project work. Due to more than 30 years of experience in utilizing PBL-learning principles in Engineering Education, an increasing...

  4. Engineering Technology Education: Bibliography, 1988.

    Science.gov (United States)

    Dyrud, Marilyn A.

    1989-01-01

    Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…

  5. Academic nuclear engineering education - the Dutch way

    International Nuclear Information System (INIS)

    Wallerbos, E.J.M.; Geemert, R. van

    1997-01-01

    The academic nuclear engineering educational program in the Netherlands aims not only to give students a thorough knowledge of reactor physics but also to train them in practical skills and presentation techniques. These three aspects are important to become a successful nuclear engineer. (author)

  6. Academic Support Program in the Faculty of Agricultural and Forestry Engineering of the University of Cordoba (Spain)

    Science.gov (United States)

    Castro, Sergio; Navarro, Rafael M.; Camacho, Emilio; Gallardo, Rosa; García-Ferrer, Alfonso; Pérez-Marín, M. Dolores; Peña, Adolfo; Taguas, Encarnación V.

    2014-05-01

    The incorporation of new students to undergraduate degrees is performed in different stages through a long, sequential enrollment process. The student integration to the new context of higher education including group work and new teaching methodologies lead to notable adaptation difficulties to this new educational environment. In fact, the highest rate of student failure in the Bachelor degree usually happens during the first courses. The Unit of Quality Evaluation/Monitoring of School of Agricultural and Forest Engineering (ETSIAM) has detected that these failure rates at first and second degree course may be reduced through the involvement of students in a support learning process, by increasing their skills and motivation as well as the contact with the University environment in the context of their future professional horizon. In order to establish a program of this type, it has been launched an Academic Support Program (ASP) at the ETSIAM. This program aims to achieve and reinforce the basic academic and personal skills/competences require by the Bologna's process (BC) and specific competences of the engineers on the area of Agriculture and Forestry in the European context. The ASP includes diferent bloks of seminars, lectures, collaborative work and discussion groups among students, professionals, professors and researchers and it has been designed based on these competences and tranversal contents in both degrees. These activities are planned in a common time for both degrees, out of teaching classes. In addition, a virtual space in Moodle has been created for discussion forums and preparation activities. Additional information about schedules, speakers and companies, presentations and other material are also provided. In the preliminary implementation of the ASP, we will present the results corresponding to the first year of this academic support program. We have conducted a survey among the students in order to have a first feedback about the impact of

  7. Sustainable Development in Engineering Education: A Pedagogical Approach

    Science.gov (United States)

    Ahrens, A.; Zascerinska, J.

    2012-01-01

    Engineering education is facing a challenge of the development of student engineers' social responsibility in the context of sustainable development. The aim of the research is to analyze efficiency of engineering curriculum in the context of sustainable development underpinning elaboration of pedagogical guidelines on the development of students'…

  8. Methodology discourses as boundary work in the construction of engineering education.

    Science.gov (United States)

    Beddoes, Kacey

    2014-04-01

    Engineering education research is a new field that emerged in the social sciences over the past 10 years. This analysis of engineering education research demonstrates that methodology discourses have played a central role in the construction and development of the field of engineering education, and that they have done so primarily through boundary work. This article thus contributes to science and technology studies literature by examining the role of methodology discourses in an emerging social science field. I begin with an overview of engineering education research before situating the case within relevant bodies of literature on methodology discourses and boundary work. I then identify two methodology discourses--rigor and methodological diversity--and discuss how they contribute to the construction and development of engineering education research. The article concludes with a discussion of how the findings relate to prior research on methodology discourses and boundary work and implications for future research.

  9. The effectiveness of agrobusiness technical training and education model for the field agricultural extension officers

    Directory of Open Access Journals (Sweden)

    Kristiyo Sumarwono

    2017-07-01

    Full Text Available The study was to: (1 find the most effective agrobusiness technical training and education model for the Field Agricultural Extension Officers to be implemented; and (2 to identify the knowledge level, the highest agrobusiness skills and the strongest self-confidence that might be achieved by the participants through the implemented training and education patterns. The study was conducted by means of experiment method with the regular pattern of training and education program as the control and the mentoring pattern of training and education program as the treatment. The three patterns of training and education programs served as the independent variables while the knowledge, the skills and the self-confidence served as the dependent variables. The study was conducted in three locations namely: the Institution of Agricultural Human Resources Development in the Province of Yogyakarta Special Region (Balai Pengembangan Sumber Daya Manusia Pertanian Daerah Istimewa Yogyakarta – BPSMP DIY; the Institution of Agricultural Human Resources Empowerment (Balai Pemberdayaan Sumber Daya Manusia Pertanian – BPSDMTAN Soropadan Temanggung Provinsi Jawa Tengah in Soropadan, Temanggung, the Province of Central Java; and the Institution of Training and Education in Semarang, the Province of Central Java (Badan Pendidikan dan Pelatihan Semarang Provinsi Jawa Tengah. The study was conducted to all of the participants who attended the agrobusiness technical training and education program and, therefore, all of the participants became the subjects of the study. The study was conducted from October 2013 until March 2014. The results of the study showed that: (1 there had not been any significant difference on the knowledge and the skills of the participants who attended the regular pattern in training and education programs and those who attended the mentoring pattern in training and education programs; (2 the regular pattern in training and education programs

  10. Theme: Urban Agriculture.

    Science.gov (United States)

    Ellibee, Margaret; And Others

    1990-01-01

    On the theme of secondary agricultural education in urban areas, this issue includes articles on opportunities, future directions, and implications for the profession; creative supervised experiences for horticulture students; floral marketing, multicultural education; and cultural diversity in urban agricultural education. (JOW)

  11. Foreign Experience in Training Future Engineering Educators for Modeling Technological Processes

    Science.gov (United States)

    Bokhonko, Yevhen

    2017-01-01

    The article deals with the study of foreign experience in training engineering educators for modeling technological processes. It has been stated that engineering education is a field that is being dramatically developed taking into account the occurring changes in educational paradigms, global higher education space, national higher education…

  12. Nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1982-01-01

    The critical issue facing the nuclear engineering education community today is first and foremost enrollment in a time of increasing demand for graduate engineers. Related to the issue of enrollment is support for graduate students, whether it be fellowships, traineeships, or research assistantships. Other issues are those of maintaining a vital faculty in the face of competitive job market, of maintaining research facilities and developing new ones, and last and certainly not least that of determining the directions of our educational efforts in the future. These issues are examined in the paper. (author)

  13. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary...... and understand how different expertise can contribute to an interdisciplinary education....

  14. Women in sustainable agriculture and food biotechnology key advances and perspectives on emerging topics

    CERN Document Server

    2017-01-01

    This volume describes the contributions made by women scientists to the field of agricultural biotechnology, the most quickly adopted agricultural practice ever adopted. It features the perspectives of women educators, researchers and key stakeholders towards the development, implementation and acceptance of this modern technology. It describes the multiplying contemporary challenges in the field, how women are overcoming technological barriers, and their thoughts on what the future may hold. As sustainable agricultural practices increasingly represent a key option in the drive towards building a greener global community, the scientific, technological and implementation issues covered in this book are vital information for anyone working in environmental engineering. Provides a broad analysis of the science of agriculture, focusing on the contributions of women to the field, from basic research to applied technology Offers insights into hot topics in the field across the life cycle, from genetic engineering t...

  15. Engineering education for youth: Diverse elementary school students' experiences with engineering design

    Science.gov (United States)

    Hegedus, Theresa

    Lingering concerns over the persistent achievement gap amidst the trend of an increasingly diverse society have been compounded by calls from the Oval Office, the National Science Board, and nationwide media to also address our current creativity crisis. Now, more than ever, we have a responsibility to produce a STEM-capable (science, technology, engineering, and mathematics) workforce to meet the demands of our rapidly changing local and global economic landscape. Barriers exist in our traditional educational system, which has historically limited underrepresented groups' affiliation and membership in the disciplines of science and engineering. The recent incorporation of engineering into the latest science education reform efforts presents an opportunity to expose students as early as elementary school to engineering practices and habits of mind, which have the potential to stimulate creative thinking skills through engineering design. This qualitative study was designed to examine the ways in which engineering education has the potential to promote creativity and academic competence in elementary science classrooms. As a part of my study, a diverse group of students from two fifth-grade classrooms took part in a 10-12 hour, engineering-based curriculum unit (Engineering is Elementary) during their regular science instructional time. Using a sociocultural lens, to include cultural production and identities in practice as part of my framework, I analyzed group and individual performances through classroom observations, student interviews, and teacher reflections to better understand the meaning students made of their experiences with engineering. Findings from the study included the ways in which creativity was culturally produced in the classroom to include: 1) idea generation; 2) design and innovation; 3) gumption/resourcefulness; and 4) social value. Opportunities for collaboration increased through each stage of the unit culminating with the design challenge

  16. Infusing Real World Experiences into Engineering Education

    Science.gov (United States)

    National Academies Press, 2012

    2012-01-01

    The aim of this report is to encourage enhanced richness and relevance of the undergraduate engineering education experience, and thus produce better-prepared and more globally competitive graduates, by providing practical guidance for incorporating real world experience in US engineering programs. The report, a collaborative effort of the…

  17. University Engineering Education and Training in Nigeria ...

    African Journals Online (AJOL)

    The Nigerian University engineering education and training system is be-set by a number of inadequacies - low entry standards, non-uniformity in entry process for all engineering faculties in the country, moderate academic quality of entrants for the profession, low level knowledge of Mathematics and physical Sciences for ...

  18. Do nuclear engineering educators have a special responsibility

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Each 1000 MW(e) reactor in equilibrium contains 15 x 10 9 Ci of radioactivity. To handle this material safety requires an extremely high level of expertise and commitment - in many respects, an expertise that goes beyond what is demanded of any other technology. If one grants that nuclear engineering is more demanding than other engineering because the price of failure is greater, one must ask how can we inculcate into the coming generations of nuclear engineers a full sense of the responsibility they bear in practising their profession. Clearly a first requirement is that all elements of the nuclear community -utility executives, equipment engineers, operating engineers, nuclear engineers, administrators - must recognize and accept the idea that nuclear energy is something special, and that therefore its practitioners must be special. This sense must be instilled into young nuclear engineers during their education. A special responsibility therefore devolves upon nuclear engineering educators: first, to recognize the special character of their profession, and second, to convey this sense to their students. The possibility of institutionalizing this sense of responsibility by establishing a nuclear Hippocratic Oath or special canon of ethics for nuclear engineers ought to be discussed within the nuclear community. (author)

  19. Real cases study through computer applications for futures Agricultural Engineers

    Science.gov (United States)

    Moratiel, R.; Durán, J. M.; Tarquis, A. M.

    2010-05-01

    One of the huge concerns on the higher engineer education is the lag of real cases study that the future professionals need in the work and corporation market. This concern was reflected in Bologna higher education system including recommendations in this respect. The knowhow as why this or other methodology is one of the keys to resolve this problem. In the last courses given in Department of Crop Production, at the Agronomy Engineer School of Madrid (Escuela Técnica Superior de Ingenieros Agrónomos, UPM) we have developed more than one hundred applications in Microsoft Excel®. Our aim was to show different real scenarios which the future Agronomic Engineers can be found in their professional life and with items related to crop production field. In order to achieve our target, each application in Excel presents a file text in which is explained the theoretical concepts and the objectives, as well as some resources used from Excel syntax. In this way, the student can understand and use of such application, even they can modify and customize it for a real case presented in their context and/or master project. This electronic monograph gives an answer to the need to manage data in several real scenarios showed in lectures, calculus resolution, information analysis and manage worksheets in a professional and student level.

  20. From Engineer to Entrepreneur - Entrepreneurship Education for Engineering Students: The Case of the Entrepreneurial Campus Villach

    Directory of Open Access Journals (Sweden)

    Patrick Holzmann

    2018-05-01

    Full Text Available Entrepreneurship education is quite a novel phenomenon that is gaining increasing importance in academia and practice alike. Entrepreneurship education aims to provide the necessary skills and knowledge that enable students to successfully found a new venture. Hitherto entrepreneurship education has not received much attention in engineering pedagogy. This finding is quite surprising because through proper entrepreneurship education engineers can be enabled to exploit entrepreneurial opportunities that result from technological innovation. Thus, we argue that entrepreneurship education should be a cornerstone in engineering education. The paper introduces the ‘Entrepreneurial Campus Villach’ located at the Carinthia University of Applied Sciences (CUAS. The campus is among the first in Austria that provide an extensive and scientifically sound entrepreneurship program. The campus focusses on the four core areas 1 research, 2 teaching, 3 coaching and support, and 4 infrastructure. The paper provides insights for other university and institutions that aim to set up similar concepts.

  1. Engineering Design Education: Effect of Mode of Delivery

    OpenAIRE

    Kinda Khalaf; Shadi Balawi; George W. Hitt; Mohammad A.M. Siddiqi

    2013-01-01

    This work reports on the gradual transformation from traditional teaching to student-centered, pure problem-based-learning (PBL) in engineering design education. Three different PBL-based modes of delivery with various degrees of modulation or freedom were used in conjunction with the prescriptive design cycle. The aim is to study the effect of the mode of delivery (PBL at various degrees of integration) on engineering design education and design thinking skills, specifically on the developme...

  2. Surmounting the Barriers: Ethnic Diversity in Engineering Education: Summary of a Workshop

    Science.gov (United States)

    National Academies Press, 2014

    2014-01-01

    "Surmounting the Barriers: Ethnic Diversity in Engineering Education" is the summary of a workshop held in September 2013 to take a fresh look at the impediments to greater diversification in engineering education. The workshop brought together educators in engineering from two- and four-year colleges and staff members from the three…

  3. Foundations for value education in engineering: the Indian experience.

    Science.gov (United States)

    Gupta, Amitabha

    2015-04-01

    The objective of this paper is to discuss some of the foundational issues centering around the question of integrating education in human values with professional engineering education: its necessity and justification. The paper looks at the efforts in 'tuning' the technical education system in India to the national goals in the various phases of curriculum development. The contribution of the engineering profession in national development and India's self-sufficiency is crucially linked with the institutionalization of expertise and the role of morality and responsibility. This linkage can be created through a proper understanding of the social role of the profession-what motivates the professionals and what makes professional life meaningful. Value education facilitates the process of moral maturity and the development of a 'holistic' mindset. This paper deals with the need to create such a mindset, the human values associated with it and gives examples of efforts to impart such education through 'action-oriented' programmes introduced in some institutes of engineering in India.

  4. Engines without Fuel?--Empirical Findings on Finnish Higher Education Institutions as Education Exporters

    Science.gov (United States)

    Schatz, Monika

    2016-01-01

    In 2010, the Finnish Ministry of Education and Culture formulated Finland's first education export strategy. This policy document attributed Finnish Higher Education Institutions (HEIs) a significant role in the emerging sector by declaring them as "engines" of education export. Situated in a phenomenological approach towards…

  5. 77 FR 58978 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Science.gov (United States)

    2012-09-25

    ..., Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA... Research, Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and Economics Advisory Board will meet October 23-25, 2012. The public may file...

  6. Short educational programs in optical design and engineering

    Science.gov (United States)

    Voznesenskaya, Anna; Romanova, Galina; Bakholdin, Alexey; Tolstoba, Nadezhda; Ezhova, Kseniia

    2016-09-01

    Globalization and diversification of education in optical engineering causes a number of new phenomena in students' learning paths. Many students have an interest to get some courses in other universities, to study in international environment, to broaden not only professional skills but social links and see the sights as well etc. Participation in short educational programs (e.g. summer / winter schools, camps etc.) allows students from different universities to learn specific issues in their or in some neighbor field and also earn some ECTS for the transcript of records. ITMO University provides a variety of short educational programs in optical design and engineering oriented for different background level, such are: Introduction into optical engineering, Introduction into applied and computer optics, Optical system design, Image modeling and processing, Design of optical devices and components. Depending on students' educational background these programs are revised and adopted each time. Usually the short educational programs last 4 weeks and provide 4 ECTS. The short programs utilize a set of out-of date educational technologies like problem-based learning, case-study and distance-learning and evaluation. Practically, these technologies provide flexibility of the educational process and intensive growth of the learning outcomes. Students are satisfied with these programs very much. In their feedbacks they point a high level of practical significance, experienced teaching staff, scholarship program, excellent educational environment, as well as interesting social program and organizational support.

  7. Railroad Engineering Education Symposium (REES) 2012 and 2014.

    Science.gov (United States)

    2016-01-25

    Since its initial offering in 2008, the objective of the Railroad Engineering Education Symposium (REES) has been to develop interest among university faculty in railroad transportation engineering, with the goal of facilitating and supporting their ...

  8. Perceptions and Barriers of Four Female Agricultural Educators across Generations: A Qualitative Study

    Science.gov (United States)

    Baxter, Linda; Stephens, Carrie; Thayer-Bacon, Barbara J.

    2011-01-01

    The purpose of this descriptive study was to discover the perceptions and barriers of four female agriculture educators across generations in a non-traditional field of agriculture. The United States Department of Labor (2006b) defined a non-traditional job as any occupation where one gender comprises 25% or less of the total employment. Four…

  9. Peer Advising in Agricultural Education: A Supplement to Faculty Advising.

    Science.gov (United States)

    Flores, Bob; Weeks, William

    Peer Advising in Agricultural Education has been operating since the Fall Semester, 1987, at Texas A & M University. The program involves several undergraduate students nominated by faculty, who are supervised by two doctoral students. Responsibilities of the peer advisors include informing students of campus procedures, assisting in…

  10. Reporting and Interpreting Effect Size in Quantitative Agricultural Education Research

    Science.gov (United States)

    Kotrlik, Joe W.; Williams, Heather A.; Jabor, M. Khata

    2011-01-01

    The Journal of Agricultural Education (JAE) requires authors to follow the guidelines stated in the Publication Manual of the American Psychological Association [APA] (2009) in preparing research manuscripts, and to utilize accepted research and statistical methods in conducting quantitative research studies. The APA recommends the reporting of…

  11. CDIO-CONCEPT FOR ENGINEERING EDUCATION

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents significant good Danish experiment results of a developed CDIO-Concept and approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis...

  12. Linking agriculture and nutrition education to improve infant and young child feeding: Lessons for future programmes.

    Science.gov (United States)

    Muehlhoff, Ellen; Wijesinha-Bettoni, Ramani; Westaway, Elizabeth; Jeremias, Theresa; Nordin, Stacia; Garz, Julia

    2017-10-01

    Agriculture and food systems play a central role in nutrition by supplying nutritious, healthy and affordable foods. When integrated with nutrition education for behaviour change, agricultural interventions that supply diverse affordable foods from all food groups have great scope for improving young child and family diets. In 2014, process reviews were conducted in Cambodia and Malawi of food security projects that provided agricultural support and community-based nutrition education on improved infant and young child feeding (IYCF). In both countries, household visits were carried out with mothers/caregivers, and interviews and Focus Group Discussions (FGDs) were conducted with purposively selected project stakeholders (53 in Cambodia, 170 in Malawi), including government staff from the agriculture and health sectors. Results highlight that adoption of improved IYCF practices was facilitated by participation in nutrition education and practical cooking sessions, and supportive family and community structures. Barriers faced by families and caregivers were identified, such as women's workload and lack of access to high quality foods, namely fruits, vegetables, legumes, nuts and animal source foods. Implementation challenges regarding coordination of cross-sectoral targeting strategies and capacities of extension services to sustain community-based IYCF nutrition education need to be addressed to improve programme effectiveness and impact. The project lessons from Cambodia and Malawi are useful for integrated agriculture-IYCF nutrition education programmes to help ensure better young child nutrition outcomes. © 2017 John Wiley & Sons Ltd.

  13. Aerospace engineering educational program

    Science.gov (United States)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  14. Business oriented educational experiments enhance active learning by engineering students

    DEFF Research Database (Denmark)

    Christiansen, Nynne Mia; Schjær-Jacobsen, Hans; Simon, Jens

    2012-01-01

    It is generally agreed that one of the keys to recreating industrial growth after the financial crisis is to mobilize universities and engineering schools to be more actively involved in innovation and entrepreneurship activities in cooperation with industrial companies. This active learning...... exploration symposium on bridging the gap between engineering education and business is proposed on the basis of the Copenhagen University College of Engineering (IHK) being involved in a DKK 50m ongoing project “Business Oriented Educational Experiments” financed by the Capital Region of Denmark...... and the European Social Fund. The project is carried out with other major educational institutions in the Copenhagen area and organized in five themes: 1) world class competences, 2) new interactions between education and business, 3) the experimenting organization, 4) education on demand, and 5) new career paths...

  15. 77 FR 11064 - National Agricultural Research, Extension, Education, and Economics Advisory Board Notice of Meeting

    Science.gov (United States)

    2012-02-24

    ..., Education, and Economics Advisory Board Notice of Meeting AGENCY: Research, Education, and Economics, USDA... Research, Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and Economics Advisory Board will meet March 28-29, 2012. The public may file written...

  16. Current trends and challenges in power engineering education

    Directory of Open Access Journals (Sweden)

    Dorin Bică

    2009-12-01

    Full Text Available The ‘Energy’ thematic area has grown into an extremely challenging topic lately, due to its impact on economic, social, technical, environmental and even political levels. This large field involves the pawns of the scientific research - the most important generator of knowledge and education - one of the main beneficiaries of research findings. Consequently the power engineering education becomes a significant pillar with direct outcome in the general as well as specific competences that future graduates acquire. This paperwork aims to discourse on and highlight the methods of implementation and promotion of new topics and modern educational forms-energy software, within study programmes. This is of course a permanent process and reflects our efforts and interest in the improvement of power engineering educational quality.

  17. Digital Innovation and Nuclear Engineering Education in UNED: Challenges, Trends and Opportunities

    International Nuclear Information System (INIS)

    Alonso-Ramos, M.; Sánchez-Elvira Paniagua, Á.; Martín, S.; Castro Gil, M.; Sanz Gozalo, J.

    2016-01-01

    Full text: Innovation in nuclear engineering education should reflect the current challenges, trends and opportunities that digital technologies are promoting in the whole educational field. The European Commission has recently stressed that technology and open educational resources represent clear opportunities to reshape EU education, contributing to the necessary modernization of higher education in order to give response to XXI century challenges. In this paper, the innovations that the Spanish National Distance Education University (UNED) are making in the digital education domain, including open educational resources (OER) and massive open online courses (MOOCs) developments applied to science, technology, engineering and mathematics (STEM) and the nuclear engineering field, are presented. (author

  18. HigherEd 2.0: Using social media in engineering education

    OpenAIRE

    Berger, Edward

    2014-01-01

    Social media (blogs, wikis, video, and a digital authoring culture) has emerged in the last decade as a dominant feature of the technology landscape, especially for our current generation of digital-native students. Leveraging these tools for higher education in general, and engineering education in particular, should be of immediate and pressing concern for engineering educators. This discussion summarizes the HigherEd 2.0 project, the creative convergence of higher education and “web 2.0” t...

  19. Guidelines for Engineering Teachers Concerning Educating the Engineer for Innovative and Entrepreneurial Activity.

    Science.gov (United States)

    Eekels, J.

    1987-01-01

    Emphasizes that the concept of design is fundamental in innovation. Outlines the work of the European Society for Engineering Education-Working group on Innovation. Describes the innovation-management stream in the curriculum of the faculty of Industrial Design Engineering at Delft University of Technology, Netherlands. (CW)

  20. Holistic Education: The Social Reality of Engineering

    Directory of Open Access Journals (Sweden)

    HELENA TRBUŠIĆ

    2013-12-01

    Full Text Available Over the last few decades, scientists exploring the aspects of engineering education and investigating the strong connection between the engineering profession and society have argued for a more rounded, holistic approach to the engineering curriculum. In addition to fundamental technical subjects, they have proposed the inclusion of a broad range of social subjects in order to equip young engineers with social and communication skills relevant for teamwork, and to enhance their awareness about both the way social changes influence the implementation of certain engineering solutions and about the way developments in engineering have a considerable impact on society in general. This paper presents the results of a two-year qualitative study of the importance of social subjects within the engineering academic curriculum at the Faculty of Mechanical Engineering and Naval Architecture in Zagreb, Croatia.

  1. Transition from high schools to engineering education

    DEFF Research Database (Denmark)

    Kolmos, Anette; Holgaard, Jette Egelund; Clausen, Nicolaj Riise

    2017-01-01

    Pre-university engineering education has received increasing attention to attract more students to engineering and make them better prepared to enter engineering studies at university level. Denmark is one of the countries that offer established high school curriculum that makes engineering...... the core identity of the school. In a longitudinal research project, the cohort of all Danish engineering students who were enrolled in 2010 has been followed. This study takes a quantitative approach to highlight the differences in preparedness for engineering students who have a background...... themselves as being better prepared in relation to the conduct of experiments, engineering analysis and tolls, as well as in relation to process competences as design, problem solving and teamwork. The students from the profession-oriented high schools also find themselves better prepared in relation...

  2. Not so global: a bibliometric look at engineering education research

    Science.gov (United States)

    Williams, Bill; Wankat, Phillip C.; Neto, Pedro

    2018-03-01

    It has been suggested that Engineering Education Research (EER) is going global. If this were the case we would assume that the research of EER scholars in different parts of the globe would be informed by literature describing prior work within and beyond their home country/region. The authors set out to test this hypothesis by applying citation analysis to research presented in four publication venues: the annual conferences organised by ASEE (American Society of Engineering Education) and SEFI (European Society of Engineering Education) and two archival journals published by these two societies: Journal of Engineering Education (JEE) and European Journal of Engineering Education (EJEE). Our findings from the analysis of 4321 publications show that citations in ASEE conferences are dominated by sources with US affiliations, whereas the SEFI data show that while US sources are frequently cited, European and other authors are also well represented. With regard to the journals JEE and EJEE, a similar pattern is observed. These results suggest that, in citation terms, European EER is relatively global but US EER is not. The authors conclude by suggesting that if the EER community is to aspire to quality scholarship, there needs to be debate around how such issues can be tackled.

  3. Dialogue on sustainable development as part of engineering education: the relevance of the Finnish case : commentary on "a national collaboration process: Finnish engineering education for the benefit of people and environment".

    Science.gov (United States)

    Geerts, Robert

    2013-12-01

    Society invests in the education of engineers because it is expected that the works of engineers will bring good results for society. Because the work of engineers is not value free or neutral, it is important that engineers are educated in the important principles of the social sciences and humanities. This education is essential for the awareness and understanding of what is good for society. Therefore the concept of sustainable development should be part of an education in engineering but only when the social sciences are also a part of it.

  4. Integration of Sustainability in Engineering Education: Why Is PBL an Answer?

    Science.gov (United States)

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies used to integrate sustainability in engineering…

  5. Reforms in Education: The Need for Re-Engineering Teacher Education for Sustainable Development

    Science.gov (United States)

    Ofoego, O. C.; Ebebe, I. E.

    2016-01-01

    The paper is concerned with reforms in Education and the need for re-engineering Teacher education in Nigeria for better professionalism and National Development. In the process, key concepts like Teacher Education and professionalism were explained. A brief review of the state of Teacher Education and Development in Nigeria revealed the…

  6. Educating engineering practice in six design projects in a row

    NARCIS (Netherlands)

    Kamp, A.

    2013-01-01

    Tomorrow’s engineers are required to have a good balance between deep working knowledge of engineering sciences and engineering skills. In the Bachelor in Aerospace Engineering at TU Delft, students are educated to master these competences so that they are ready to engineer when they graduate. The

  7. Agricultural transportation fuels

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The recommendations on the title subject are focused on the question whether advantages and disadvantages of agricultural fuels compared to fossil fuels justify the Dutch policy promotion of the use of agricultural products as basic materials for agricultural fuels. Attention is paid to energetic, environmental and economical aspects of both fuel types. Four options to apply agricultural transportation fuels are discussed: (1) 10% bio-ethanol in euro-unleaded gasoline for engines of passenger cars, equipped with a three-way catalyst; (2) the substitution of 15% methyl tertiair butyl ether (MTBE) by ethyl tertiair butyl ether (ETBE) as a substituent for lead in unleaded super plus gasoline (Sp 98) for engines of passenger cars, equipped with a three-way catalyst; (3) 50% KME (rapeseed oil ester) in low-sulfur diesel (0.05%S D) for engines of vans without a catalyst; and (4) the substitution of 0.05% S D by bio-ethanol or KME for buses with fuel-adjusted engines, equipped with a catalyst. Also the substitution by liquefied petroleum gas (LPG), compressed natural gas (CNG) or E 95 was investigated in option four. Each of the options investigated can contribute to a reduction of the use of fossil energy and the environmental effects of the use of fossil fuels, although some environmental effects from agricultural fuels must be taken into consideration. It is recommended to seriously pay attention to the promotion of agricultural fuels, not only in the Netherlands, but also in an international context. Policy instruments to be used in the stimulation of the use of such fuels are the existing European Community subsidies on fallow lands, exemption of the European Community energy levy, and the use of tax differentiation. Large-scale demonstration projects must be started to quantify hazardous emissions and to solve still existing technical problems. 8 figs., 3 tabs., refs., 4 appendices

  8. Deconstructing Engineering Education Programmes: The DEEP Project to Reform the Mechanical Engineering Curriculum

    Science.gov (United States)

    Busch-Vishniac, Ilene; Kibler, Tom; Campbell, Patricia B.; Patterson, Eann; Guillaume, Darrell; Jarosz, Jeffrey; Chassapis, Constantin; Emery, Ashley; Ellis, Glenn; Whitworth, Horace; Metz, Susan; Brainard, Suzanne; Ray, Pradosh

    2011-01-01

    The goal of the Deconstructing Engineering Education Programmes project is to revise the mechanical engineering undergraduate curriculum to make the discipline more able to attract and retain a diverse community of students. The project seeks to reduce and reorder the prerequisite structure linking courses to offer greater flexibility for…

  9. Teaching practice and reform of the cultivation of excellent engineer based on the idea of engineering education

    Science.gov (United States)

    Shen, Hanxin; Xiong, Feibing; Huang, Zhangchao; Bai, Zijun

    2017-08-01

    How to realize the joint cultivation of excellent engineer for the school and the enterprise is an important task of the project of excellent engineers. In five years of teaching practice, based on the concept of engineering education certification, through target management of school and enterprise, cultural fusion, stage implementation and feedback, excellent engineer education training plan of opto-electronic specialty is being implemented. It standardizes the specialty construction and practice and explores new teaching management mode, which gets the recognition of graduates and enterprises and achieves a win-win situation for school and enterprise.

  10. Introducing survival ethics into engineering education and practice.

    Science.gov (United States)

    Verharen, C; Tharakan, J; Middendorf, G; Castro-Sitiriche, M; Kadoda, G

    2013-06-01

    Given the possibilities of synthetic biology, weapons of mass destruction and global climate change, humans may achieve the capacity globally to alter life. This crisis calls for an ethics that furnishes effective motives to take global action necessary for survival. We propose a research program for understanding why ethical principles change across time and culture. We also propose provisional motives and methods for reaching global consensus on engineering field ethics. Current interdisciplinary research in ethics, psychology, neuroscience and evolutionary theory grounds these proposals. Experimental ethics, the application of scientific principles to ethical studies, provides a model for developing policies to advance solutions. A growing literature proposes evolutionary explanations for moral development. Connecting these approaches necessitates an experimental or scientific ethics that deliberately examines theories of morality for reliability. To illustrate how such an approach works, we cover three areas. The first section analyzes cross-cultural ethical systems in light of evolutionary theory. While such research is in its early stages, its assumptions entail consequences for engineering education. The second section discusses Howard University and University of Puerto Rico/Mayagüez (UPRM) courses that bring ethicists together with scientists and engineers to unite ethical theory and practice. We include a syllabus for engineering and STEM (Science, Technology, Engineering and Mathematics) ethics courses and a checklist model for translating educational theory and practice into community action. The model is based on aviation, medicine and engineering practice. The third and concluding section illustrates Howard University and UPRM efforts to translate engineering educational theory into community action. Multidisciplinary teams of engineering students and instructors take their expertise from the classroom to global communities to examine further the

  11. Research on Five Stakeholders & Five Relationships of Higher Engineering Education in China

    OpenAIRE

    Guangshe Jia; Chengbin Xiao

    2009-01-01

    With the development of globalization, higher engineering education has been on the rise which includes five Stakeholders and five relationships. This paper will discuss five relations of higher engineering education: teaching, research and social services, professional education and humanity education, ability education and knowledge education, theoretical teaching and practical teaching, development of education and development of national and regional economy. Among them, teaching, researc...

  12. Obstacles to Gender Parity in Engineering Education

    Science.gov (United States)

    Rohatynskyj, Marta; Davidson, Valerie; Stiver, Warren; Hayward, Maren

    2008-01-01

    Low rates of women's enrolment in engineering programs has been identified as a global problem within the general concern to enable women to attain parity in education in all areas. A Western women in engineering meta-narrative is identified which contains a complex of obstacles that typify the situation of Western women. The question is asked…

  13. Serials use in a College of Agriculture Education Library | Adzobu ...

    African Journals Online (AJOL)

    Serials use in a College of Agriculture Education Library. J Adzobu, JA Opare. Abstract. No Abstract. Ghana Library Journal Vol. 20 (1) 2008: pp. 81-88. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics. Metrics Loading ... Metrics powered by PLOS ALM

  14. From STEM to STEAM: Strategies for Enhancing Engineering & Technology Education

    Directory of Open Access Journals (Sweden)

    Andy M. Connor

    2015-05-01

    Full Text Available This paper sets out to challenge the common pedagogies found in STEM (Science, Technology, Engineering and Mathematics education with a particular focus on engineering. The dominant engineering pedagogy remains “chalk and talk”; despite research evidence that demonstrates its ineffectiveness. Such pedagogical approaches do not embrace the possibilities provided by more student-centric approaches and more active learning. The paper argues that there is a potential confusion in engineering education around the role of active learning approaches, and that the adoption of these approaches may be limited as a result of this confusion, combined with a degree of disciplinary egocentrism. The paper presents examples of design, engineering and technology projects that demonstrate the effectiveness of adopting pedagogies and delivery methods more usually attributed to the liberal arts such as studio based learning. The paper concludes with some suggestions about how best to create a fertile environment from which inquiry based learning can emerge as well as a reflection on whether the only real limitation on cultivating such approaches is the disciplinary egocentrism of traditional engineering educators.

  15. Growth of Engineering Education in India: Status, Issues, and Challenges

    Science.gov (United States)

    Choudhury, Pradeep Kumar

    2016-01-01

    This article examines the growth of engineering education in India in the post-economic reform period using the secondary data published by Ministry of Human Resource Development, University Grants Commission and All India Council for Technical Education. Particularly, this article has focused on three important dimensions of engineering and…

  16. Engineers are from Mars and educators are from Venus: Research ...

    African Journals Online (AJOL)

    ... are from Venus: Research supervision in engineering and educational collaboration. ... The projects usually entailed an interdisciplinary thesis that addressed an ... in chemical engineering, the work-readiness of civil engineering students, ...

  17. Investigating the Language of Engineering Education

    Science.gov (United States)

    Variawa, Chirag

    A significant part of professional communication development in engineering is the ability to learn and understand technical vocabulary. Mastering such vocabulary is often a desired learning outcome of engineering education. In promoting this goal, this research investigates the development of a tool that creates wordlists of characteristic discipline-specific vocabulary for a given course. These wordlists explicitly highlight requisite vocabulary learning and, when used as a teaching aid, can promote greater accessibility in the learning environment. Literature, including work in higher education, diversity and language learning, suggest that designing accessible learning environments can increase the quality of instruction and learning for all students. Studying the student/instructor interface using the framework of Universal Instructional Design identified vocabulary learning as an invisible barrier in engineering education. A preliminary investigation of this barrier suggested that students have difficulty assessing their understanding of technical vocabulary. Subsequently, computing word frequency on engineering course material was investigated as an approach for characterizing this barrier. However, it was concluded that a more nuanced method was necessary. This research program was built on previous work in the fields of linguistics and computer science, and lead to the design of an algorithm. The developed algorithm is based on a statistical technique called, Term Frequency-Inverse Document Frequency. Comparator sets of documents are used to hierarchically identify characteristic terms on a target document, such as course materials from a previous term of study. The approach draws on a standardized artifact of the engineering learning environment as its dataset; a repository of 2254 engineering final exams from the University of Toronto, to process the target material. After producing wordlists for ten courses, with the goal of highlighting characteristic

  18. Computing in Hydraulic Engineering Education

    Science.gov (United States)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  19. Educational experiments of radiochemistry in the nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1995-06-01

    Educational experiments of radiochemistry are described. They were an improvement of educational experiment of burn-up measurement as well as experiments on a solvent extraction, a cation exchange behavior of 60 Co, liquid scintillation spectrometry and half-life determination of 87 Rb, and determination of 137 Cs in sea water. Two or one of the experiments were ordinarily studied, depending the occasional situations, by the students of the general course or of the nuclear engineering course in the Nuclear Engineering School, Nuclear Education Center, JAERI from 1976 to 1994. (author)

  20. Effective Integration of Life Cycle Engineering in Education

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; Toxopeus, Marten E.; Lutters, Diederick

    2015-01-01

    In practice, applying life cycle engineering in product design and development requires an integrated approach, because of the many stakeholders and variables (e.g. cost, environmental impact, energy, safety, quality) involved in a complete product life cycle. In educating young engineers, the same

  1. Journal of Technology and Education in Nigeria

    African Journals Online (AJOL)

    The Journal of Technology and Education in Nigeria focuses on the following areas: Agriculture, Food Science, Technology/Engineering, Science and Applied Science, Vocational/Technical Education. Vol 17, No 2 (2012). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access ...

  2. Effect of Leadership Experience on Agricultural Education Student Teacher Self-Efficacy in Classroom Management

    Science.gov (United States)

    Wolf, Kattlyn J.; Foster, Daniel D.; Birkenholz, Robert J.

    2009-01-01

    Beginning agriculture teachers often cite classroom management as the most important problem they face in their careers. The purpose of this study was to assess the effect of leadership experience on self-perceived teacher efficacy among agricultural education student teachers. The three dimensions of teacher efficacy addressed in this study…

  3. Sustainable Development as a Meta-Context for Engineering Education

    Directory of Open Access Journals (Sweden)

    Karel Mulder

    2013-12-01

    Full Text Available At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub- disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.

  4. Targeted initiatives. Support for nuclear engineering education in the USA

    International Nuclear Information System (INIS)

    Gutteridge, John

    2001-01-01

    Recruitment and education of a new generation of nuclear engineers stands to benefit in the USA from a range of programmes involving governmental bodies, universities, and industry groups. They are part of efforts to attract more students to consider and prepare for careers in the nuclear industry, and to provide financial support for nuclear research and education. Career prospects in the nuclear field are brightening. The demand for nuclear engineers and nuclear trained personnel is on the rise as the new century opens. During the past year several studies were completed in an attempt to ascertain the problems in nuclear engineering education and define initiatives to address these problems

  5. ORGANIZATIONAL AND ECONOMIC BASES OF ENERGY CONSERVATION IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    N. Lisjutchenko

    2012-04-01

    Full Text Available Russian agricultural production at current stage is very energy intensive. At the cost of agricultural production overall cost of energy resources is growing: in 2000 was 36.5 billion rubles, 2008 - 92 billion rubles, 2009 - 110.6 billion rubles, and in 2010 rose to 119.8 billion rubles, or increased by 3.3 times. The analysis of consumption of the main energy sources for the period from 1990 to 2010 showed a decrease in general and the specific consumption of diesel fuel, gasoline and electricity by 5-7 times. Reducing energy consumption is explained as a forced saving resources because of lack of funds for the acquisition and implementation of agricultural enterprises of energy and resource saving measures (resource-saving technologies in the production process, motor fuel, biofuels and alternative energy sources. To solve this problem State and business in a matter of priority should be to build an effective system of innovation development for agriculture, promote the participation of agricultural science and education system in this process, modernize the domestic agricultural machinery, engineering and technology infrastructure.

  6. Transformation of engineering education: Taking a perspective for the challenges of change

    Science.gov (United States)

    Siddiqui, Junaid Abdul Wahid

    There are a variety of imperatives which call us to transform engineering education. Those who have made attempts to facilitate a change in engineering education have experienced slow or no progress. The literature on change has suggestions and strategies related to educational change but most of them are not able to guide the conversations and actions effectively. People interested in understanding the challenges often ask 'what makes educational change so difficult?' This research is an effort towards finding an answer to this question. The study adopted a transdisciplinary approach while taking a systems perspective on educational change in order to examine the challenges. Instead of exploring the effectiveness of change strategies and interventions, this study sought to understand the basic nature of change in engineering education organizations. For this purpose, the study adopted an integrated theoretical framework consisting of systems thinking, complexity theory, and transformative learning theory. The methodology was designed on the complexity research paradigm with interpretive qualitative methods used for data analysis. This approach enabled understanding the social and human conditions which reduce or enhance the likelihood of change in the context of an engineering education organization. The context for this study to investigate the challenges of transformation in engineering education is efforts around educating the Engineer of 2020. Four institutional initiatives at various stages in the transformation process provided cases for investigation in the study. The engineering educators at the four institutions participating in the study had experiences of active engagement in educational change. The interpretive qualitative analysis of the participants' accounts induced a systems perspective of the challenges which faculty face in their educational transformation efforts. The inertia which educational organizations experience against change appears to

  7. Development of a Taxonomy of Keywords for Engineering Education Research

    Science.gov (United States)

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-01-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research…

  8. Chemical Engineering Education - Current and Future Trends

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    topics (transport phenomena, separations, reaction engineering, etc.) must remain strong, should the applications that currently emphasize commodity chemicals also include new topics such as sustainability, and product design? In Europe, the European Federation of Chemical Engineering (EFCE) has taken...... has a product focus. With this shift of the chemical industry, what should be the curriculum of the chemical engineering degrees at the BSc- and MSc-levels, and, are the skill set of chemical engineers appropriate for this altered chemical industry? While the basic skill set, defined by the core...... a leading role to define the chemical engineering curriculum. The result has been a set of recommendations for the first (BSc), second (MSc) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...

  9. The assessment of learning in engineering education practice and policy

    CERN Document Server

    Heywood, John

    2016-01-01

    Explores how we judge engineering education in order to effectively redesign courses and programs that will prepare new engineers for various professional and academic careers This book considers the functions of assessment and its measurement in engineering education. Chapters two through three discuss efforts toward alternative curriculum in engineering and advanced level exams for university entry in engineering science. Chapter four reviews investigations of what engineers do at work and their implications assessment. Chapter five records the development of competency based assessment and considers its implications for the engineering curriculum. Chapter six discusses the impact of the accrediting authorities on assessment, outcomes based assessment, taxonomies and assessment in mastery and personalized systems of instruction. Chapters seven through eight consider student variability (e.g. intellectual development, emotional intelligence) and reflective practice. Questio s are raised about the assessment...

  10. Report on survey in fiscal 2000. Survey on introduction of external accreditation system in engineer education (general); 2000 nendo chosa hokokusho. Gijutsusha kyoiku no gaibu ninteiseido donyu ni kansuru chosa (Zentai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to ensure international applicability of engineer education such as in universities and other organizations, and to improve the environment to supply human resources demanded by economic societies, trials and discussions were performed on the external accreditation system for engineer education such as in universities and other organizations. The current fiscal year has performed the trials of examination and accreditation at 19 universities and for 20 programs covering eight fields including chemistry, machinery, civil engineering, electrical, electronic, information communications, information processing, materials, resources and agricultural engineering. In performing the trials, the purpose and the basic policies were identified, the guidebook for actual examinations was prepared, and the program check book and the trial examination report were also compiled. Two assembly training meetings were held to train about 130 examiners, of which 65 examiner chiefs and examiners have participated in the trials for 20 schools to work for the examination. As a result of the trials, the training was found capable of having served for improvement of the engineer education program in high-level education institutions, and improvement of the accreditation criteria and examination methods to establish the external accreditation system. (NEDO)

  11. An Alternative Perspective for Malaysian Engineering Education: A Review from Year 2000-2012

    Science.gov (United States)

    Jayarajah, Kamaleswaran; Saat, Rohaida Mohd; Rauf, Rose Amnah Abdul

    2013-01-01

    The purpose of this study is to explore the research base of engineering education in the "Journal of Engineering Education" ("JEE") through an analysis review of articles for a 12-year period, from 2000 to 2012. The research base review focuses on identifying five characteristics of engineering education: (a) temporal…

  12. The New Maritime Engineering Education at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Andersen, Ingrid Marie Vincent; Nielsen, Ulrik Dam

    2014-01-01

    maritime engineering education has so far been very successful with the number of students increased by a factor of two and with very good job opportunities in the Danish maritime industry. A spin-off of this change is DTU's participation in a dual MSc degree engineering program: Nordic Master in Maritime......Until 2010, the maritime engineering education at the Technical University of Denmark (DTU) followed the rather classical naval architecture approach with the main focus on marine hydrodynamics and strength of ship structures. The number of students was rather modest and constant. However......, at that time the last major ship yard in Denmark was closing down and ship operation, together with ship design, became the main working area for the students after graduation. It was then decided to broaden the naval architecture education to a maritime engineering education taking marine logistics...

  13. A culture of technical knowledge: Professionalizing science and engineering education in late-nineteenth century America

    Science.gov (United States)

    Nienkamp, Paul

    This manuscript examines the intellectual, cultural, and practical approaches to science and engineering education as a part of the land-grant college movement in the Midwest between the 1850s and early 1900s. These land-grant institutions began and grew within unique frontier societies that both cherished self-reliance and diligently worked to make themselves part of the larger national experience. College administrators and professors encountered rapidly changing public expectations, regional needs, and employment requirements. They recognized a dire need for technically skilled men and women who could quickly adapt to changes in equipment and processes, and implement advances in scientific knowledge in American homes, fields, and factories. Charged with educating the "industrial classes in the several pursuits and professions in life," land-grant college supporters and professors sought out the most modern and innovative instructional methods. Combining the humanities, sciences, and practical skills that they believed uniquely suited student needs, these pioneering educators formulated new curricula and training programs that advanced both the knowledge and the social standing of America's agricultural and mechanical working classes.

  14. An Evaluation of the Self-Efficacy Theory in Agricultural Education

    Science.gov (United States)

    McKim, Aaron J.; Velez, Jonathan J.

    2016-01-01

    This research sought to evaluate the use of the self-efficacy theory in agricultural education. A total of 30 studies, published between 1997 and 2013 using self-efficacy as a theoretical foundation were compiled and analyzed. The findings of these studies were compared to expected outcomes identified by the self-efficacy theory, specifically the…

  15. Assessing an Entrepreneurship Education Project in Engineering Studies by Means of Participatory Techniques

    Science.gov (United States)

    Ortiz-Medina, Leovigilda; Fernández-Ahumada, Elvira; Lara-Vélez, Pablo; Garrido-Varo, Ana; Pérez-Marin, Dolores; Guerrero-Ginel, José Emilio

    2014-01-01

    The new imperatives of the knowledge-based society require engineering students to equip themselves with a broad range of skills, among which entrepreneurship plays a critical role. An academic itinerary was designed with the explicit aim of improving the entrepreneurial attitudes of agricultural engineering students in a state university in…

  16. Environmental engineering education: examples of accreditation and quality assurance

    Science.gov (United States)

    Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.

    2013-12-01

    Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In

  17. The relevance of surveying content in mining engineering education ...

    African Journals Online (AJOL)

    The University of the Witwatersrand School of Mining Engineering (Wits Mining) has its origins in the South African School of Mines, which was established in 1896. It is currently recognised as one of the world's top mining engineering schools that educate mining engineering candidates to become qualified to specialise in ...

  18. Principles of education and training of plant engineers for nuclear power stations

    International Nuclear Information System (INIS)

    Ackermann, G.; Meyer, K.; Brune, W.

    1978-01-01

    Experience in education and advanced training of nuclear engineers in the GDR is reviewed. The basic education of engineers is carried out at universities and colleges. Graduate engineers who have been working in non-nuclear industries for a longer time receive their basic education in nuclear engineering through postgraduate studies. Graduate engineers with a basic knowledge of nuclear engineering are trained at the Nuclear Power Plant School of the Rheinsberg nuclear power plant and at the nuclear power plants of the GDR under operational conditions relating to their future job. In addition to basic theoretical knowledge, training at a nuclear power plant simulator plays an important role. This permits training of the staff under normal operating conditions including transient processes and under unusual conditions. Further particular modes of advanced professional training such as courses in radiation protection and further postgraduate studies are described. This system of education has proved successful. It will be developed further to meet the growing demands. (author)

  19. Evaluation of Current Assessment Methods in Engineering Entrepreneurship Education

    Science.gov (United States)

    Purzer, Senay; Fila, Nicholas; Nataraja, Kavin

    2016-01-01

    Quality assessment is an essential component of education that allows educators to support student learning and improve educational programs. The purpose of this study is to evaluate the current state of assessment in engineering entrepreneurship education. We identified 52 assessment instruments covered in 29 journal articles and conference…

  20. The changing face of nuclear engineering education

    International Nuclear Information System (INIS)

    Poston, J.W.

    1991-01-01

    Nuclear engineering education in the US is in a near-crisis situation. Most academic programs are small with limited enrollments and faculty. Some of these programs are being absorbed into larger academic units, while others are being terminated. The number of identifiable academic programs has dropped dramatically over the last several years, and there is genuine concern that this downward trend will continue. The recent report by the National Academy of Sciences highlights the problems, needs, and prospects for nuclear engineering education in this country. At the same time, some programs appear to be relatively healthy and somewhat secure. A closer look at these programs indicates that there has been an evolution in the approach taken by these survivors toward both their academic and research programs. This paper discusses the approaches taken at Texas A and M University over the last 8 to 10 years to strengthen the Department of Nuclear Engineering

  1. Engineering and Technical Education in Russia, in Numbers

    Science.gov (United States)

    Aref'ev, A. L.; Aref'ev, M. A.

    2013-01-01

    An analysis of the main tendencies in the development of engineering and technical education in Russia during the last 100 years shows that earlier strengths have been lost, and that currently technical education in Russia is far behind modern world standards.

  2. Experience in education and training of gas engineers in Russia

    International Nuclear Information System (INIS)

    Basniev, K.; Vladimirov, A.

    1997-01-01

    Experience gained in training and retraining of engineers for gas industry is considered in the report. The report contains the material on modern state of higher technical education in Russia in view of the reforms taking place in this country. The report deals with questions concerning the experience gained in a specialized training of gas engineers at higher educational establishments of Russia including training of specialists for foreign countries. Conditions under which retraining of engineers involved in gas industry takes place are presented in the report. The report is based mainly on the experience gained by the Russian leading higher educational establishment of oil and gas profile, that is the State Gubkin Oil and Gas Academy. (au)

  3. Dual education and industrial cooperation in electrical engineering

    Science.gov (United States)

    Váradiné Szarka, A.

    2016-11-01

    Dual education in higher education is a new system in Hungary introduced by Mercedes Benz with cooperation of Kecskemet College. In the new system companies support certain number of students and provide them strong practical education in their field. Students applying successfully for dual education study together with non-dual students at the university, so they go through the same university courses as their non-dual colleagues, but while non-dual students’ academic year includes 2×14 weeks active semester and 2×6 weeks exam session, all over 40 weeks, dual students have 48 working weeks including study at the university and practicing at the company. The main question of the success which one is the most effective model to be applied. This paper summarises 2 models of dual education with their advantages and disadvantages and also it presents practical realization at the University of Debrecen with special attention to measurement and instrumentation. Dual education in BSc level electrical engineering course cooperates with 6 multinational companies of the region in four specialization. Dual education also has great impact to the modernisation of engineering education. Detailed study of dual education in field of instrumentation and measurement is provided in the paper.

  4. Rail Engineering and Education Symposium Materials.

    Science.gov (United States)

    2016-05-26

    The objective of this project is to develop curricular materials for the Rail Engineering and Education : Symposia held in the summers of 2012 and 2014. : Description of Activities : The main approach to accomplish the activity is to develop and deli...

  5. Industrial Strength Changes in Engineering Education.

    Science.gov (United States)

    Chatziioanou, Alypios; Sullivan, Edward

    2002-01-01

    Addresses the question of how closely the objectives of industry and engineering education should be aligned. Examines trends in college-business relationships using the example of California Polytechnic State University. Reflects on benefits and problems of closer connections with industry. (SK)

  6. African Journals Online: Agriculture & Food Sciences

    African Journals Online (AJOL)

    Uganda Journal of Agricultural Sciences. The Journal publishes peer reviewed papers with the aim of sharing new developments in the agricultural and environmental sciences which include forestry, fisheries, livestock, crops, environment, biotechnology, agricultural economics, agricultural engineering. The readership of ...

  7. Intrapersonal Factors Affecting Technological Pedagogical Content Knowledge of Agricultural Education Teachers

    Science.gov (United States)

    Stewart, Jessica; Antonenko, Pavlo D.; Robinson, J. Shane; Mwavita, Mwarumba

    2013-01-01

    The focus of this exploratory study was to examine levels of technology integration, self-efficacy, and Technological Pedagogical Content Knowledge (TPACK) in preservice and inservice agricultural education teachers in Oklahoma. The findings of this study suggest that intrapersonal factors, such as self-efficacy, outcome expectations, and…

  8. Environmental education in Saudi general environment system - an engineering perspective

    International Nuclear Information System (INIS)

    Abdulrahman Salih Hariri

    2006-01-01

    The Saudi Cabinet of Ministers approved the Saudi General Environment System (SGES) in 2001. This approval is considered a step forward towards preserving the environment in Saudi Arabia. One of the targets of this system is to make environmental planning as an un-replaceable part of every comprehensive development planning in all industrial, agricultural, and architectural sectors. Achieving such a target requires a specialized labor force. Therefore, College of Engineering should act positively and actively in disseminating environmental awareness among engineers since they play a major rule in development projects. A degree in environmental engineering is a must at present, which is not available yet at any university in Saudi Arabia. Details of a B. Sc degree in environmental engineering offered by two universities in USA, are discussed. The syllabus of a degree in environment engineering adapted for the Saudi environment and culture is outlined

  9. Socio-Cultural Challenges in Global Software Engineering Education

    Science.gov (United States)

    Hoda, Rashina; Babar, Muhammad Ali; Shastri, Yogeshwar; Yaqoob, Humaa

    2017-01-01

    Global software engineering education (GSEE) is aimed at providing software engineering (SE) students with knowledge, skills, and understanding of working in globally distributed arrangements so they can be prepared for the global SE (GSE) paradigm. It is important to understand the challenges involved in GSEE for improving the quality and…

  10. The Bologna Process, Globalisation and Engineering Education Developments

    Science.gov (United States)

    Uhomoibhi, James O.

    2009-01-01

    Purpose: The purpose of this paper is to report on the Bologna Process in the light of globalisation and examine how it affects curriculum and engineering education developments. Design/methodology/approach: The growing need for creative competitiveness and the striving for specific profiles of engineering qualifications that are of high quality…

  11. Social responsibility in French engineering education: a historical and sociological analysis.

    Science.gov (United States)

    Didier, Christelle; Derouet, Antoine

    2013-12-01

    In France, some institutions seem to call for the engineer's sense of social responsibility. However, this call is scarcely heard. Still, engineering students have been given the opportunity to gain a general education through courses in literature, law, economics, since the nineteenth century. But, such courses have long been offered only in the top ranked engineering schools. In this paper, we intend to show that the wish to increase engineering students' social responsibility is an old concern. We also aim at highlighting some macro social factors which shaped the answer to the call for social responsibility in the French engineering "Grandes Ecoles". In the first part, we provide an overview of the scarce attention given to the engineering curriculum in the scholarly literature in France. In the second part, we analyse one century of discourses about the definition of the "complete engineer" and the consequent role of non technical education. In the third part, we focus on the characteristics of the corpus which has been institutionalized. Our main finding is that despite the many changes which occurred in engineering education during one century, the "other formation" remains grounded on a non academic "way of knowing", and aims at increasing the reputation of the schools, more than enhancing engineering students' social awareness.

  12. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    Science.gov (United States)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  13. Problem Based Learning in Engineering Education

    DEFF Research Database (Denmark)

    Dahms, Mona-Lisa; Sauerbier, Gabriele; Stubbe, Korinna

    2006-01-01

    This paper describes a recent EU-project from five European Institutions. The aim was the development and implementation of a new international Master’s programme for staff development, directed towards the introduction of Problem Based Learning methods in the field of engineering education...

  14. Curriculum Guidelines for a Distance Education Course in Urban Agriculture Based on an Eclectic Model.

    Science.gov (United States)

    Gaum, Wilma G.; van Rooyen, Hugo G.

    1997-01-01

    Describes research to develop curriculum guidelines for a distance education course in urban agriculture. The course, designed to train the teacher, is based on an eclectic curriculum design model. The course is aimed at the socioeconomic empowerment of urban farmers and is based on sustainable ecological-agricultural principles, an…

  15. Engineering Ethics Education Having Reflected Various Values and a Global Code of Ethics

    Science.gov (United States)

    Kanemitsu, Hidekazu

    At the present day, a movement trying to establish a global code of ethics for science and engineering is in activity. The author overviews the context of this movement, and examines the possibility of engineering ethics education which uses global code of ethics. In this paper, the engineering ethics education which uses code of ethics in general will be considered, and an expected function of global code of ethics will be also. Engineering ethics education in the new century should be aimed to share the values among different countries and cultures. To use global code of ethics as a tool for such education, the code should include various values, especially Asian values which engineering ethics has paid little attention to.

  16. Study on the continuing education innovative talents training mode of civil engineering major

    Science.gov (United States)

    Sun, Shengnan; Su, Zhibin; Cui, Shicai

    2017-12-01

    According to the characteristics of civil engineering professional continuing education, continuing education of innovative talents training mode suitable for the characteristics of our school is put forward in this paper. The characteristics of the model include: the education of professional basic courses and specialized courses should be paid attention to; engineering training should be strengthened and engineering quality should be trained; the concept of large civil engineering should be highlighted, the specialized areas should be broadened, and the curriculum system should be reconstructed; the mechanism of personnel training program should be constructed by the employers, the domestic highlevel institutions and our university. It is hoped that the new training model will promote the development of continuing education of civil engineering specialty in our university.

  17. NASA's engineering research centers and interdisciplinary education

    Science.gov (United States)

    Johnston, Gordon I.

    1990-01-01

    A new program of interactive education between NASA and the academic community aims to improve research and education, provide long-term, stable funding, and support cross-disciplinary and multi-disciplinary research. The mission of NASA's Office of Aeronautics, Exploration and Technology (OAET) is discussed and it is pointed out that the OAET conducts about 10 percent of its total R&D program at U.S. universities. Other NASA university-based programs are listed including the Office of Commercial Programs Centers for the Commercial Development of Space (CCDS) and the National Space Grant program. The importance of university space engineering centers and the selection of the nine current centers are discussed. A detailed composite description is provided of the University Space Engineering Research Centers. Other specialized centers are described such as the Center for Space Construction, the Mars Mission Research Center, and the Center for Intelligent Robotic Systems for Space Exploration. Approaches to educational outreach are discussed.

  18. Biomedical engineering undergraduate education in Latin America

    International Nuclear Information System (INIS)

    Allende, R; Morales, D; Avendano, G; Chabert, S

    2007-01-01

    As in other parts of the World, in recent times there has been an increasing interest on Biomedical Engineering (BME) in Latin America (LA). This interest grows from the need for a larger number of such specialists, originated in a spreading use of health technologies. Indeed, at many universities, biomedical engineering departments have been created, which also brought along discussions on strategies to achieve the best education possible for both undergraduate and graduate programs. In these settings, different positions were taken as regards which subject to emphasize. In such a context, this work aimed to make a survey on the 'state-of-the-art' of undergraduate BME education in LA, and to analyze the observed differences. Broadly speaking, similar education profiles are perceived in the entire continent, with main emphasis on electronics and bioinstrumentation, biology and informatics respectively. Much less relevance is given to biomechanics and biomaterials. This tendency is similar in Departments with many decades of experience or in newly opened ones

  19. Principles of education and training of industrial engineers for nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.; Meyer, K.; Brune, W.

    1977-01-01

    The report gives a short account of the development and experience of the education and advanced professional training system for engineers for the nuclear power stations of the GDR. The basic education for engineers is carried out at universities and colleges. Graduate engineers who have been working in industrial establishments outside nuclear power stations for a longer time get their basic education in nuclear engineering through postgraduate studies. Graduate engineers with a basic knowledge of nuclear engineering are trained at the Nuclear Power Plant School of the nuclear power station Rheinsberg and at the nuclear power stations of the GDR under practical conditions relating to their future job. In addition to basic theoretical knowledge, training at a nuclear power plant simulator plays an important role. This permits the training of the staff under regular operating conditions including transient processes and under unusual conditions. Further particular modes of advanced professional training such as courses in radiation protection and further postgraduate studies are described. This system of education has proved successful. It will be developed further to meet the growing demands. (author)

  20. Engineering Attractiveness in the European Educational Environment: Can Distance Education Approaches Make a Difference?

    Directory of Open Access Journals (Sweden)

    Konstantinos Katzis

    2018-01-01

    Full Text Available The recent phenomenon of worldwide declining enrolments in engineering-related degrees has led to the gradual decrease in the number of engineering graduates. This decrease occurs at a time of increasing demand in the labour market for highly qualified engineers, who are necessary for the implementation of fundamental societal functions. This paper initially presents a survey of practices, which are currently employed by academic institutions in Europe in order to increase the attractiveness of their engineering studies. It then provides a detailed analysis of the benefits and proliferation of distance education to increase attractiveness of engineering studies based on a set of interviews. Results of this study, highlight a lack of a distance-learning dimension in the implementation of engineering studies in the European Area and discusses in detail ways in which distance learning can be utilised in engineering studies for the benefit of increasing their attractiveness. It has also been noted that institutions employing distance learning as part of their engineering studies, see this as highly beneficial for their students but also for the academic institution itself with some reservations in terms of the pedagogical adequacy of materials and instructional approaches used in distance education courses.

  1. Getting Context Back in Engineering Education

    DEFF Research Database (Denmark)

    Buch, Anders; Bucciarelli, Louis

    2015-01-01

    Discussions about reform in engineering education have mainly centered on issues of curriculum and didactics but these discussions rarely address fundamental questions about the nature and character of knowledge and learning. This neglect has led the discussions down the wrong track and failed...... to critique implicit and inadequate conceptions of knowledge and learning. Our discussion will draw upon John Dewey’s philosophy of human experience and inquiry as a resource that can remedy the neglect. This chapter thus focuses on learning and by example proposes ways that engineering knowledge and skills...

  2. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    NARCIS (Netherlands)

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is

  3. Interdisciplinary skills in architectural and engineering education programs

    DEFF Research Database (Denmark)

    Andersson, Niclas; Andersson, Pernille Hammar

    2006-01-01

    and requirements for reinforcement of the interdisciplinary skills within the architectural and engineering education programs as to face the challenges from industry. The study claims that the development of interdisciplinary skills should be regarded a pedagogical issue that can be accomplished by integrative...... project. Besides, new and more integrated forms of co-operation between the various actors make the prevalent professional disciplines more ambiguous and it compels into a need for trans-professional skills among the actors. In contrast to the requirements for interdisciplinary skills, the educational...... training programmes of architects and engineers are traditionally characterised by strict disciplinary boundaries. Thus, the prevailing educational system is challenged to meet the demands for trans-professional skills within industry. The purpose of this paper is to outline some pedagogical prerequisites...

  4. Entrepreneurship Education and Training Needs of Family Businesses Operating in the Agricultural Sector of India

    Science.gov (United States)

    Sandhu, Navjot; Hussain, Javed; Matlay, Harry

    2012-01-01

    Purpose: The purpose of this paper is to investigate the entrepreneurship education and training (EET) needs of small family businesses operating in the agricultural sector of the Indian economy. Design/methodology/approach: Quantitative and qualitative data were collected through a survey of 122 agricultural family firms in the Indian state of…

  5. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia.

    Science.gov (United States)

    Pray, Carl; Ledermann, Samuel

    2016-01-01

    In Africa and South Asia, where nutrition insecurity is severe, two of the most prominent production technologies are genetically modified (GM) crops and certified organic agriculture. We analyze the potential impact pathways from agricultural production to nutrition. Our review of data and the literature reveals increasing farm-level income from cash crop production as the main pathway by which organic agriculture and GM agriculture improve nutrition. Potential secondary pathways include reduced prices of important food crops like maize due to GM maize production and increased food production using organic technology. Potential tertiary pathways are improvements in health due to reduced insecticide use. Challenges to the technologies achieving their impact include the politics of GM agriculture and the certification costs of organic agriculture. Given the importance of agricultural production in addressing nutrition security, accentuated by the post-2015 sustainable development agenda, the chapter concludes by stressing the importance of private and public sector research in improving the productivity and adoption of both GM and organic crops. In addition, the chapter reminds readers that increased farm income and productivity require complementary investments in health, education, food access and women's empowerment to actually improve nutrition security. © 2016 S. Karger AG, Basel.

  6. Application of radioisotopes and radiation in the field of agricultural engineering in Japan

    International Nuclear Information System (INIS)

    Ochiai, T.

    1974-01-01

    Data have been published about the application of radioisotopes and radiation in Japan agricultural engineering. The radioisotopes have been used : 1 for measuring the humidity of the ground in the development of the irrigation and canalization of the cultivated areas; 2 for measuring i. the circulation rate of the ground water, ii. the porosity and the storing capacity of the water-carrier layers. iii. the drift and sand-transporting speed of the open canals; 3, for the control of the dam leaking in the ground water hydrology. (K.A.)

  7. Entrepreneurship Education in Vocational Agriculture.

    Science.gov (United States)

    Williams, Jamie C.; Powell, Ronald

    1988-01-01

    The authors address the need for instruction in entrepreneurship within the vocational agriculture curriculum. They list various competencies and skills needed by agricultural entrepreneurs and discucss available curriculum materials. (CH)

  8. Mechatronics Engineering Education in India

    Science.gov (United States)

    Bajpai, Shrish; Khare, Sushant

    2015-01-01

    Present paper aims to give an insight in the field of Mechatronics, specifically its standard of education in India. We have investigated this field right from its origin. We have analyzed how it expanded as a proper discipline of engineering and in which direction the development in this field is going now and, at the same time, its status of…

  9. Using Computers in Fluids Engineering Education

    Science.gov (United States)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  10. Systems Engineering Initiative: Undergraduate Education Enhancement in a Regional Education Network

    International Nuclear Information System (INIS)

    Kurwitz, R. C.; Peddicord, K.; Poston, J.; Yang, X.; Bostanci, H.

    2016-01-01

    Full text: The Systems Engineering Initiative (SEI) is an experience based education enhancement programme that forms teams of undergraduate students with faculty and industry mentors to solve problems of interest to industry. This model of innovation creates a new learning paradigm that is outside the traditional classroom based model and fits more of the Master-apprentice model as applied to engineering teams. The SEI programme is currently administered by the Nuclear Power Institute (NPI), a regional nuclear education network, and is being carried out at three partner universities. Previous nuclear related projects have benefited industry and are of high technical quality with publications in peer-reviewed journals and awards for presentations in various forums. Students within the programme have benefited through development of soft skills outside the traditional curriculum, understanding of how their knowledge fits into a nuclear organization, and exposure to career opportunities. Industry and other NPI stakeholders benefit from the development of capable engineers and technicians, positive outreach to the community, and most importantly, knowledge transfer to the next generation of nuclear professionals. (author

  11. Sustainability in Design Engineering Education; Experiences in Northern Europe

    NARCIS (Netherlands)

    Dewulf, K.; Wever, R.; Boks, C.; Bakker, C.; D'hulster, F.

    2009-01-01

    In recent years, the implementation of sustainability into the curricula of engineering has become increasingly important. This paper focuses on the experiences of integrating sustainability in Design Engineering education in the academic bachelor programs at Delft University of Technology in The

  12. Beyond Diversity as Usual: Expanding Critical Cultural Approaches to Marginalization in Engineering Education

    Science.gov (United States)

    Secules, Stephen

    In general, what we think of as "diversity work" in undergraduate engineering education focuses in the following ways: more on the overlooked assets of minority groups than on the acts of overlooking, more on the experiences of marginalized groups than on the mechanisms of marginalization by dominant groups, more on supporting and increasing minority student retention than on critiquing and remediating the systems which lead minority students to leave engineering. This dissertation presents a series of arguments which push beyond a status quo understanding of diversity in engineering education. The first approach the dissertation takes up is to problematize educational facts around failure by interrogating their roots in interactions and cultural norms in an engineering classroom. In another argument, the dissertation places the engineering classroom cultural norms of competition, whiteness, and masculinity in a critical historical context of the discipline at large. Finally, I demonstrate how engaging students in a critique of marginalizing educational culture can be an important source of agency. In addition to applying and demonstrating the value of specific novel approaches in engineering education, the dissertation contributes to the research community by discussing the respective affordances between these and other possible scholarly approaches to culture and marginalization in education. I also suggest how a consideration of the taken-for-granted culture of engineering education can be an important tool for instructors seeking to gain insight into persistent educational problems. In addition, this dissertation makes implications for diversity support practice, envisioning new forms of support programming rooted in intersectionality and critical praxis.

  13. Variability of patient spine education by Internet search engine.

    Science.gov (United States)

    Ghobrial, George M; Mehdi, Angud; Maltenfort, Mitchell; Sharan, Ashwini D; Harrop, James S

    2014-03-01

    Patients are increasingly reliant upon the Internet as a primary source of medical information. The educational experience varies by search engine, search term, and changes daily. There are no tools for critical evaluation of spinal surgery websites. To highlight the variability between common search engines for the same search terms. To detect bias, by prevalence of specific kinds of websites for certain spinal disorders. Demonstrate a simple scoring system of spinal disorder website for patient use, to maximize the quality of information exposed to the patient. Ten common search terms were used to query three of the most common search engines. The top fifty results of each query were tabulated. A negative binomial regression was performed to highlight the variation across each search engine. Google was more likely than Bing and Yahoo search engines to return hospital ads (P=0.002) and more likely to return scholarly sites of peer-reviewed lite (P=0.003). Educational web sites, surgical group sites, and online web communities had a significantly higher likelihood of returning on any search, regardless of search engine, or search string (P=0.007). Likewise, professional websites, including hospital run, industry sponsored, legal, and peer-reviewed web pages were less likely to be found on a search overall, regardless of engine and search string (P=0.078). The Internet is a rapidly growing body of medical information which can serve as a useful tool for patient education. High quality information is readily available, provided that the patient uses a consistent, focused metric for evaluating online spine surgery information, as there is a clear variability in the way search engines present information to the patient. Published by Elsevier B.V.

  14. Past/Forward Policy-Making: Transforming Chinese Engineering Education since the Reform and Opening-Up

    Science.gov (United States)

    Zhu, Qin; Jesiek, Brent K.; Gong, Yu

    2015-01-01

    Although engineering education has played important roles in China's growing power and influence on the world stage, engineering education policy since the Reform and Opening-up in the late 1970s has not been well documented in current English-language scholarship. Informed by historical and sociological studies of education, engineering and…

  15. PBL and CDIO: complementary models for engineering education development

    Science.gov (United States)

    Edström, Kristina; Kolmos, Anette

    2014-09-01

    This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines, engineering projects, and change strategy. The structured comparison is intended as an introduction for learning about any of these models. It also invites reflection to support the understanding and evolution of PBL and CDIO, and indicates specifically what the communities can learn from each other. It is noted that while the two approaches share many underlying values, they only partially overlap as strategies for educational reform. The conclusions are that practitioners have much to learn from each other's experiences through a dialogue between the communities, and that PBL and CDIO can play compatible and mutually reinforcing roles, and thus can be fruitfully combined to reform engineering education.

  16. Women Studies in Engineering Education: Content Analysis in Three Referred Journals

    Science.gov (United States)

    Chou, Pao-Nan

    2013-01-01

    Little is known about the research characteristics of past women studies in engineering education. In order to add knowledge base about the advanced development of women studies in current engineering education research, the purpose of the study is to investigate research characteristics of past women studies published in three referred…

  17. Engineering in Elementary STEM Education: Curriculum Design, Instruction, Learning, and Assessment

    Science.gov (United States)

    Cunningham, Christine M.

    2018-01-01

    Bolstered by new standards and new initiatives to promote STEM education, engineering is making its way into the school curriculum. This comprehensive introduction will help elementary educators integrate engineering into their classroom, school, or district in age-appropriate, inclusive, and engaging ways. Building on the work of a Museum of…

  18. Improving Collaborative Learning in Online Software Engineering Education

    Science.gov (United States)

    Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.

    2017-01-01

    Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all…

  19. Modeling student success in engineering education

    Science.gov (United States)

    Jin, Qu

    student's first year of college was about a half of a grade point for both models. The predictors of retention and cumulative GPA while being similar differ in that high school academic metrics play a more important role in predicting cumulative GPA with the affective measures playing a more important role in predicting retention. In the last investigation, multi-outcome neural network models were used to understand and to predict engineering students' retention, GPA, and graduation from entry to departure. The participants were more than 4000 engineering students (cohort years 2004 - 2006) enrolled in a large Midwestern university. Different patterns of important predictors were identified for GPA, retention, and graduation. Overall, this research explores the feasibility of using modeling to enhance a student's educational experience in engineering. Student success modeling was used to identify the most important cognitive and affective predictors for a student's first calculus course retention, GPA, and graduation. The results suggest that the statistical modeling methods have great potential to assist decision making and help ensure student success in engineering education.

  20. Vocational Agriculture Education: Agricultural Livestock Skills.

    Science.gov (United States)

    Pierce, Greg

    Ten units of instruction are provided in this curriculum guide on agricultural livestock skills. Unit topics are as follow: (1) restraining, (2) vaccination, (3) livestock castration, (4) dehorning, (5) docking, (6) growth stimulants, (7) identification, (8) shearing, (9) hoof trimming, and (10) birth assistance. Each instructional unit generally…

  1. Effective Methods and Emerging Trends in Engineering Education ...

    African Journals Online (AJOL)

    Mots clés: ingénierie; éducation; approches; qualité; certification. Engineering education plays a very important role in the social and economic development of a nation as well as its standing in the world. During the 19th and 20th centuries, engineering “disintegrated” into specific disciplines. The 21st century will instead be ...

  2. Experiences on dynamic simulation software in chemical engineering education

    DEFF Research Database (Denmark)

    Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan

    2012-01-01

    Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics...

  3. At Age 100, Chemical Engineering Education Faces Changing World.

    Science.gov (United States)

    Krieger, James

    1988-01-01

    Stresses the need for chemical engineering education to keep abreast of current needs. Explores the need for global economics, marketing strategy, product differentiation, and patent law in the curriculum. Questions the abilities of current chemical engineering graduate students in those areas. (MVL)

  4. Standardization of doctoral study in agricultural and extension education: is the field of study mature enough for achievement of the optimum degree of order?

    Science.gov (United States)

    Briers, G E; Lindner, J R; Shinn, G C; Wingenbach, G W; Baker, M T

    2010-01-01

    Agricultural and extension education--or some derivative name--is a field of study leading to the doctoral degree in universities around the world. Is there are body of knowledge or a taxonomy of the knowledge--e.g., a knowledge domain--that one should possess with a doctorate in agricultural and extension education? The purpose of this paper was to synthesize the work of researchers who attempted to define the field of study, with a taxonomy comprising the knowledge domains (standards) and knowledge objects--structured interrelated sets of data, knowledge, and wisdom--of the field of study. Doctoral study in agricultural and extension education needs a document that provides for rules and guidelines--rules and guidelines that in turn provide for common and repeated use--all leading to achievement of an optimum degree of order in the context of academic, scholarly, and professional practice in agricultural and extension education. Thus, one would know in broad categories the knowledge, skills, and abilities possessed by one who holds a doctoral degree in agricultural and extension education. That is, there would exist a standard for doctoral degrees in agricultural and extension education. A content analysis of three previous attempts to categorize knowledge in agricultural and extension education served as the primary technique to create a new taxonomy--or to confirm an existing taxonomy--for doctoral study in agricultural and extension education. The following coalesced as nine essential knowledge domains for a doctorate in agricultural and extension education: (1) history, philosophy, ethics, and policy; (2) agricultural/rural development; (3) organizational development and change management; (4) planning, needs assessment, and evaluation; (5) learning theory; (6) curriculum development and instructional design; (7) teaching methods and delivery strategies; (8) research methods and tools; and, (9) scholarship and communications.

  5. Development of Nuclear Engineering Educational Program at Ibaraki University with Regional Collaboration

    Science.gov (United States)

    Matsumura, Kunihito; Kaminaga, Fumito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kikuchi, Kenji; Kurumada, Akira

    The College of Engineering, Ibaraki University is located at the Hitachi city, in the north part of Ibaraki prefecture. Hitachi and Tokai areas are well known as concentration of advanced technology center of nuclear power research organizations. By considering these regional advantages, we developed a new nuclear engineering educational program for students in the Collage of Engineering and The Graduate School of Science and Engineering of Ibaraki University. The program is consisted of the fundamental lectures of nuclear engineering and nuclear engineering experiments. In addition, several observation learning programs by visiting cooperative organizations are also included in the curriculum. In this paper, we report about the progress of the new educational program for nuclear engineering in Ibaraki University.

  6. A Novel Approach to Physiology Education for Biomedical Engineering Students

    Science.gov (United States)

    DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y.

    2007-01-01

    It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…

  7. A novel paradigm for engineering education: virtual internships with individualized mentoring and assessment of engineering thinking.

    Science.gov (United States)

    Chesler, Naomi C; Ruis, A R; Collier, Wesley; Swiecki, Zachari; Arastoopour, Golnaz; Williamson Shaffer, David

    2015-02-01

    Engineering virtual internships are a novel paradigm for providing authentic engineering experiences in the first-year curriculum. They are both individualized and accommodate large numbers of students. As we describe in this report, this approach can (a) enable students to solve complex engineering problems in a mentored, collaborative environment; (b) allow educators to assess engineering thinking; and (c) provide an introductory experience that students enjoy and find valuable. Furthermore, engineering virtual internships have been shown to increase students'-and especially women's-interest in and motivation to pursue engineering degrees. When implemented in first-year engineering curricula more broadly, the potential impact of engineering virtual internships on the size and diversity of the engineering workforce could be dramatic.

  8. Validation of an instrument for mathematics enhancement teaching efficacy of Pacific Northwest agricultural educators

    Science.gov (United States)

    Jansen, Daniel J.

    Teacher efficacy continues to be an important area of study in educational research. This study tested an instrument designed to assess the perceived efficacy of agricultural education teachers when engaged in lessons involving mathematics instruction. The study population of Oregon and Washington agricultural educators utilized in the validation of the instrument revealed important demographic findings and specific results related to teacher efficacy for the study population. An instrument was developed from the assimilation of three scales previously used and validated in efficacy research. Participants' mathematics teaching efficacy was assessed using a portion of the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI), and personal mathematics efficacy was evaluated by the mathematics self-belief instrument which was derived from the Betz and Hackett's Mathematics Self-Efficacy Scale. The final scale, the Teachers' Sense of Efficacy Scale (TSES) created by Tschannen-Moran and Woolfolk Hoy, examined perceived personal teaching efficacy. Structural equation modeling was used as the statistical analyses tool to validate the instrument and examine correlations between efficacy constructs used to determine potential professional development needs of the survey population. As part of the data required for validation of the Mathematics Enhancement Teaching Efficacy instrument, demographic information defining the population of Oregon and Washington agricultural educators was obtained and reported. A hypothetical model derived from teacher efficacy literature was found to be an acceptable model to verify construct validity and determine strength of correlations between the scales that defined the instrument. The instrument produced an alpha coefficient of .905 for reliability. Both exploratory and confirmatory factor analyses were used to verify construct and discriminate validity. Specifics results related to the survey population of agricultural educators

  9. THE EDUCATION IN ENGINEERING FIELDS IN FRONT OF MARKET DEMANDS

    OpenAIRE

    Kyvete Shatri

    2016-01-01

    Impacts of globalization on the engineering profession create a challenge in understanding what it means to be an engineer in the global economy of the 21st century and how should be prepared the future engineers. Engineering education today faced with request for preparation of the engineers with the necessary skills to cope with and benefit from the great changes that globalization brings. In this context, to understand how and how well we need to prepare the future engineers should be know...

  10. Preparing students for workplace learning in higher engineering education

    NARCIS (Netherlands)

    Dehing, A.J.M.

    2012-01-01

    Student preparation for professional practice is an important course aim in the education of engineers by the universities of applied sciences (Geurts & Meijers, 2004; Sheppard, et al., 2008; Sullivan & Rosin, 2008). Since the start of the professional engineering schools at the beginning of the

  11. English Curriculum in Global Engineer Education Program

    Science.gov (United States)

    Furuya, Okitsugu; Bright, Olga; Saika, Takashi

    The educational goal of the Faculty of Global Engineering (FGE) of the Kogakuin University is to prepare the graduates to be global engineers. The requirements for the global engineer are multifold; having the basic and advanced engineering knowledge together with the international communication skills and experiences. The curriculum at the Kogakuin University has been designed and developed over the last ten years. Among others, “Communication Skills for Global Engineers (CSGE) ” and “Engineering Clinic Program (ECP) ” play essential roles, the former providing the students with the communication skills and the latter engineering design skills. An impact on the students studying together with foreign students is so strong and immeasurable. The English they learned in Japan does not work as well as they thought it would, and the attitude of the foreign students toward studying they observe is a kind of “shocking” . The student who joined ECP abroad/CSGE abroad come back to Japan as a very inspired and different person, the first step becoming a global engineer. In this paper, various aspects of the program will be discussed with the problem areas to be further improved being identified.

  12. Development of university-industry partnerships in railroad engineering education

    Science.gov (United States)

    Lautala, Pasi T.

    Rail transportation has been an important part of the North American transportation network since the 19th century and it continues to be a major contributor to the economic well-being and the global competitiveness of the U.S. The recent expansion in freight rail volumes and forecasts for continuous growth, together with more favorable attitudes for urban passenger rail present several challenges for the rail industry. One of the challenges is the availability of a well educated engineering workforce. The rail industry has recognized a need to attract new railroad professionals from various disciplines for management and technical positions, but most universities eliminated railroad engineering from their curricula after the recruitment levels faded several decades ago. Today, railroad expertise and related engineering courses exist at only a few universities and most students graduate without any exposure to rail topics. While industry representatives have expressed their concern about a future workforce, little data is available on the extent of the demand, on the characteristics and skills of preferred candidates, and on the role that universities can play. A benchmarking study was undertaken to investigate the demand for university engineering graduates and assess whether current methods are sufficient to attract, educate, recruit, train and retain engineering students in the railroad profession. Data was collected from industry human resources and training managers to define the quantitative and qualitative needs for railroad engineers. In addition, recently hired engineers working in the rail industry were surveyed to determine the extent of their university exposure in rail topics and how it affected their career choice. The surveys indicated an increase of over 300 percent in the annual recruitment for railroad engineers by the participating companies between 2002 and 2005. Recruitment levels are expected to remain high for the next five to ten years due

  13. Examining the Professional, Technical, and General Knowledge Competencies Needed by Beginning School-Based Agricultural Education Teachers

    Science.gov (United States)

    Stripling, Christopher T.; Barrick, R. Kirby

    2013-01-01

    The philosophy behind the kind of teacher education one receives affects the preparedness of beginning agricultural education teachers. The purpose of this philosophical study was to examine and summarize the professional knowledge, technical knowledge, and general knowledge competencies needed in a comprehensive teacher education program to…

  14. Biomedical engineering education--status and perspectives.

    Science.gov (United States)

    Magjarevic, Ratko; Zequera Diaz, Martha L

    2014-01-01

    Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.

  15. The Romanian educational system in nuclear engineering field - experience and new approaches

    International Nuclear Information System (INIS)

    Dragusin, O.; Burghelea, A.

    2001-01-01

    In this paper we would like to present the actual status of the education in the nuclear engineering field at 'Pantholic' University Bucharest, Romania, Power Engineering Faculty, Nuclear Power Plant Department, and also the efforts of integration of the educational system of Romania into the international system and the development of new concepts concerning the education of the new specialists generation. (authors)

  16. Construction Site Environmental Impact in Civil Engineering Education

    Science.gov (United States)

    Teixeira, Jose M. Cardoso

    2005-01-01

    The environmental impact of construction activity has gained increasing importance in the last few years and become a key subject for civil engineering education. A survey of Portuguese higher education institutions shows that concern with this topic is mostly directed at the impact of large construction projects and especially focused on their…

  17. A Literature Review of Indexing and Searching Techniques Implementation in Educational Search Engines

    Science.gov (United States)

    El Guemmat, Kamal; Ouahabi, Sara

    2018-01-01

    The objective of this article is to analyze the searching and indexing techniques of educational search engines' implementation while treating future challenges. Educational search engines could greatly help in the effectiveness of e-learning if used correctly. However, these engines have several gaps which influence the performance of e-learning…

  18. 5th National meeting of the SA Institution of Chemical Engineers: chemical engineering in support of industry and society. V. 1-3

    International Nuclear Information System (INIS)

    1988-01-01

    The 5th national meeting of the SA Institution of Chemical Engineering was held from 15-16 August 1988 at Pretoria. The subject scope covered on the meeting include the broad spectrum of work done by the chemical engineer. The main categories include the processing of agricultural products, biotechnology, coal and hydrocarbons, the chemical engineering practice, fluid dynamics, gas treatment, heat and mass transfer, materials of construction, minerals processing, source materials and products, training and education, vapour-liquid equilibrium, and water and effluents. One seminar specifically covers process engineering in the context of nuclear reactors and two other papers cover supported liquid membrane extraction of uranium

  19. Chemical engineering and chemistry : education in a changing world

    NARCIS (Netherlands)

    Reijenga, J.C.

    2006-01-01

    Current trends in science and engineering research are analyzed, together with an inventory of changes in the field of employment and practice in industry. The resulting demands on university education of chemists and chemical engineers have been translated into a more or less continuous updating of

  20. The Engagement of Engineers in Education and Public Outreach: Beginning the Conversation

    Science.gov (United States)

    Grier, J.; Buxner, S.; Vezino, B.; Shipp, S. S.

    2014-12-01

    The Next Generation Science Standards (NGSS) are a new set of K-12 science standards that have been developed through a collaborative, state-led process. Based on the National Research Council (NRC) 'Framework for K-12 Education,' the NGSS are designed to provide all students with a coherent education possessing both robust content and rigorous practice. Within these standards is an enhanced emphasis on the intersection between science and engineering. The focus is not only on asking questions and finding answers (science) but also in identifying and designing solution to problems (engineering.) The NASA SMD (Science Mission Directorate) Education and Public Outreach (E/PO) Forums have been working with space scientists for many years to assist with their engagement in E/PO efforts, thus supporting the needs of previous science standards. In order to properly address the needs of NGSS, this conversation is being expanded to include engineers. Our initial efforts include a series of semi-structured interviews with a dozen engineers involved in different aspects of space science and mission development. We will present the responses from the survey and compare this information to our knowledge base about space scientists, their needs, attitudes, and understandings of E/PO. In addition to a new emphasis on engineering in the NGSS, we also consider engineering habits of mind such as systems thinking, creativity, optimism, collaboration, communication, and attention to ethical considerations as described by an NRC policy document for engineering education. Using the overall results, we will consider strategies, further ideas for investigation, and possible steps for going forward with this important aspect of including engineering in education and outreach programming.

  1. Spatial Ability through Engineering Graphics Education

    Science.gov (United States)

    Marunic, Gordana; Glazar, Vladimir

    2013-01-01

    Spatial ability has been confirmed to be of particular importance for successful engineering graphics education and to be a component of human intelligence that can be improved through instruction and training. Consequently, the creation and communication by means of graphics demand careful development of spatial skills provided by the balanced…

  2. Engineering Education as a Complex System

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-01-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

  3. Engineering Education in Research-Intensive Universities

    Science.gov (United States)

    Alpay, E.; Jones, M. E.

    2012-01-01

    The strengths and weaknesses of engineering education in research-intensive institutions are reported and key areas for developmental focus identified. The work is based on a questionnaire and session summaries used during a two-day international conference held at Imperial College London. The findings highlight several common concerns, such as…

  4. Undergraduate education in nuclear engineering in the USA

    International Nuclear Information System (INIS)

    Martin, W.R.

    1993-01-01

    The discipline of nuclear engineering is described, giving some historical background to explain the structure of the curricula commonly found in nuclear engineering programs in the U.S. Typical curricula are described, along with a specific example given by the University of Michigan undergraduate program in nuclear engineering. The National Academy of Sciences report on U.S. nuclear engineering education is summarized, and the major findings are presented, including data on the number of programs, number of degrees, and enrollment trends. Some discussion is made of manpower trends and the degree to which nuclear programs can supply nuclear engineers to meet the anticipated demands of the current decade and into the next century. (author) 12 refs.; 2 figs.; 4 tabs

  5. Nuclear engineering education in the United States: a status report

    International Nuclear Information System (INIS)

    Miller, D.W.; Spinrad, B.I.

    1986-01-01

    The executive summary of the White Paper entitled The Revitalization of Nuclear Energy Education in the United States is the major component of this paper. The White Paper was completed under the auspices of the Nuclear Engineering Department Heads Organization (NEDHO). The presentation highlights events and program changes that have occurred in 1985-1986 following publication of the NEDHO White Paper. Many of these events provide optimism for the revitalization of nuclear engineering education

  6. Current Status and Issues of Nuclear Engineering Research and Educational Facilities in Universities

    International Nuclear Information System (INIS)

    2004-01-01

    It is important to discuss about nuclear engineering research and educational facilities in universities after new educational foundation. 12 universities investigated issues and a countermeasure of them. The results of a questionnaire survey, issues and countermeasure are shown in this paper. The questionnaire on the future nuclear researches, development of education, project, maintenance of nuclear and radioactive facilities and accelerator, control of uranium in subcritical test facilities, use of new corporation facilities, the fixed number of student, number of graduate, student experiments, themes of experiments and researches, the state of educational facilities are carried out. The results of questionnaire were summarized as followings: the fixed number of student (B/M/D) on nuclear engineering, exercise of reactor, education, themes, educational and research facilities, significance of nuclear engineering education in university and proposal. (S.Y.)

  7. University of Georgia: Birthplace of public higher education in America

    Science.gov (United States)

    ; Colleges Agricultural and Environmental Sciences Arts and Sciences Business Ecology Education Engineering Sciences Outreach Programs Odum School of Ecology Outreach Programs College of Education Outreach Programs and networking EOO/AA FERPA Compliance, ethics and reporting hotline Board of Regents Giving to UGA

  8. An Educational Program of Engineering Ethics and Its Dissemination Activity

    Science.gov (United States)

    Muramatsu, Ryujiro; Nagashima, Shigeo

    Education on ethics for corporate employees, especially for engineers, seems to become increasingly important for most of companies in Japan, because some affairs or scandals caused by ethical problem in many companies were likely to subject them to operational disadvantages. Even in Hitachi, Ltd., we have worked on education of engineering ethics for two years. In this paper, we describe some activities of committees on engineering ethics, an e-learning training course which is usable on our intranet e-learning system, and a short-term in-house training course operated regularly in our training institute. And we also refer to its dissemination activities to employees in each division and some subsidiaries.

  9. Wind pumps for agriculture: Cost and environmental benefits (comparisons with electric and combustion engine driven pumps)

    International Nuclear Information System (INIS)

    Piccoli, F.

    1991-01-01

    After describing initial and running costs of a group of wind-pumps, the author calculates and compares, as far as agricultural and zootechnical purposes are concerned, the costs for each cubic meter of water extracted through wind-powered, electric and internal-combustion engines. The comparisons clearly show, under adequate wind conditions, that wind-pumps are economically more suitable than electric and motor pumps with similar delivery heads

  10. A brief history of graduate distance education in nuclear engineering at Penn State Univ

    International Nuclear Information System (INIS)

    Hochreiter, L. E.; Zimmerman, D. L.; Brenizer Jr, J. S.; Stark, M. A.

    2006-01-01

    The Pennsylvania State University Nuclear Engineering Distance Education Program has a twenty year history of providing graduate level distance education in Nuclear Engineering. The Distance Education Program was initiated as a specific program which was developed for the Westinghouse Energy Systems Divisions in Pittsburgh. In 1983, Carnegie-Mellon University (CMU) decided to terminate its small Nuclear Engineering Program. Up until that time, Westinghouse employees could enroll at CMU for graduate classes in Nuclear Engineering as well as other engineering disciplines and could obtain a masters degree or if desired, could continue for a Ph.D. degree. (authors)

  11. The Role of Mathematics Learning Centres in Engineering Education.

    Science.gov (United States)

    Fuller, Milton

    2002-01-01

    Points out the diminishing demand for mathematics undergraduate programs and the strong trend in engineering education to make greater use of computer coursework such as Mathcad, Matlab, and other software systems for the mathematical and statistical components of engineering programs. Describes the changing role of mathematics learning centers…

  12. Incorporating Six Sigma Methodology Training into Chemical Engineering Education

    Science.gov (United States)

    Dai, Lenore L.

    2007-01-01

    Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…

  13. A Triangular Approach to Integrate Research, Education and Practice in Higher Engineering Education

    Science.gov (United States)

    Heikkinen, Eetu-Pekka; Jaako, Juha; Hiltunen, Jukka

    2017-01-01

    Separate approaches in engineering education, research and practice are not very useful when preparing students for working life; instead, integration of education, research and industrial practices is needed. A triangular approach (TA) as a method to accomplish this integration and as a method to provide students with integrated expertise is…

  14. Motivating students in engineering & ICT education

    NARCIS (Netherlands)

    Ir. Peter van Kollenburg; Ir. Dick van Schenk Brill

    2009-01-01

    We found out that 25 % of our students came to study at the Electrical & Electronic Engineering department (E&E) because they were active (as a hobby) in music. Because of this the E&E department offers their students to work in video and audio themes in all projects of their education. From our

  15. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    Science.gov (United States)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design

  16. [Civil engineering education at the Imperial College of Engineering in Tokyo: an analysis based on Ayahiko Ishibashi's memoirs].

    Science.gov (United States)

    Wada, Masanori

    2014-01-01

    The Imperial College of Engineering (ICE or Kobu-Daigakko) in Tokyo, founded in 1873 under the auspices of the Ministry of Public Works, was one of the most prominent modern institutions of engineering education in early Meiji Japan. Previous studies have revealed that the ICE offered large scale practical training programs at enterprises of the Ministry, which sometimes lasted several months, and praised their ideal combination of theory and practice. In reality, it has been difficult to evaluate the quality of education at the ICE mainly because of scarcity of sources. ICE students published a collection of memoirs for alumni members, commemorating the fiftieth-year of the history of the Tokyo Imperial University. Drawing on the previously neglected collection of students' memoires, this paper appraises the education of civil engineering offered by the ICE. The paper also compares this collection with other official records of the college, and confirms it as a reliable source, even though it contains some minor errors. The author particularly uses the memoirs by Ayahiko Ishibashi, one of the first graduates from its civil engineering course, who left sufficient reminiscences on education that he received. This paper, as a result, illustrates that the main practical training for the students of civil engineering was limited to designing process, including surveying. Furthermore, practical training that Ishibashi received at those enterprises often lacked a plan, and its effectiveness was questionable.

  17. Relationships, variety & synergy: the vital ingredients for scholarship in engineering education? A case study

    Science.gov (United States)

    Clark, Robin; Andrews, Jane

    2014-11-01

    This paper begins with the argument that within modern-day society, engineering has shifted from being the scientific and technical mainstay of industrial, and more recently digital change to become the most vital driver of future advancement. In order to meet the inevitable challenges resulting from this role, the nature of engineering education is constantly evolving and as such engineering education has to change. The paper argues that what is needed is a fresh approach to engineering education - one that is sufficiently flexible so as to capture the fast-changing needs of engineering education as a discipline, whilst being pedagogically suitable for use with a range of engineering epistemologies. It provides an overview of a case study in which a new approach to engineering education has been developed and evaluated. The approach, which is based on the concept of scholarship, is described in detail. This is followed by a discussion of how the approach has been put into practice and evaluated. The paper concludes by arguing that within today's market-driven university world, the need for effective learning and teaching practice, based in good scholarship, is fundamental to student success.

  18. New Research in Organic Agriculture

    DEFF Research Database (Denmark)

    1996-01-01

    The book is the proceedings from the bi-annual international scientific conference on organic agriculture. The chapters are: - plant and soil interactions, - animal production systems, - traditional knowledge in sustainable agriculture, - research, education and extension in sustainable agricultu......, - environmental impact and nature, - potentials of organic farming, - community, consumer and market, and - policy and financial strategies.......The book is the proceedings from the bi-annual international scientific conference on organic agriculture. The chapters are: - plant and soil interactions, - animal production systems, - traditional knowledge in sustainable agriculture, - research, education and extension in sustainable agriculture...

  19. Problems of engineering education and their decision involving industry

    OpenAIRE

    R. P. Simonyants

    2014-01-01

    In Russia, the problems of engineering education are connected with political and economic upheavals of the late last century. At the same time, some leading engineering universities in Russia, such as the Bauman Moscow State Technical University (BMSTU) were resistant to the damaging effects of the crisis. But the methodology and experience of their effective work are insufficiently known.The problems of international engineering school development are also known. The first UNESCO World Repo...

  20. Entrepreneurship Education for Agriculture. Phase "O" Planning Project Report. Performance Report. Volume II: Bibliography and Storyboard Scripts.

    Science.gov (United States)

    Lee and Associates, Starkville, MS.

    Volume 2 of this report is supplementary and contains three bibliographies: (1) Annotated Bibliography on Minority Entrepreneurship in Agriculture; (2) Annotated Bibliography on Entrepreneurship Education in Agriculture; (3) Bibliography on Entrepreneurship. The next section presents three storyboard scripts for instructional videotapes on…

  1. The Future of Engineering Education--Revisited

    Science.gov (United States)

    Wankat, Phillip C.; Bullard, Lisa G.

    2016-01-01

    This paper revisits the landmark CEE series, "The Future of Engineering Education," published in 2000 (available free in the CEE archives on the internet) to examine the predictions made in the original paper as well as the tools and approaches documented. Most of the advice offered in the original series remains current. Despite new…

  2. Occupational Safety and Health: A View of Current Practices in Agricultural Education

    Science.gov (United States)

    Threeton, Mark D.; Ewing, John C.; Evanoski, Danielle C.

    2015-01-01

    Providing safe and secure teaching and learning environments within schools is an ongoing process which requires a significant amount of attention. Therefore, this study sought to: 1) explore safety and health practices within secondary Agricultural Mechanics Education; and 2) identify the perceived obstacles which appear to hinder implementation…

  3. An overview of game-based learning in building services engineering education

    Science.gov (United States)

    Alanne, Kari

    2016-03-01

    To ensure proper competence development and short graduation times for engineering students, it is essential that the study motivation is encouraged by new learning methods. In game-based learning, the learner's engagement is increased and learning is made meaningful by applying game-like features such as competition and rewarding through virtual promotions or achievement badges. In this paper, the state of the art of game-based learning in building services engineering education at university level is reviewed and discussed. A systematic literature review indicates that educational games have been reported in the field of related disciplines, such as mechanical and civil engineering. The development of system-level educational games that realistically simulate work life in building services engineering is still in its infancy. Novel rewarding practices and more comprehensive approaches entailing the state-of-the-art information tools such as building information modelling, geographic information systems, building management systems and augmented reality are needed in the future.

  4. Research and Exploration for Operational Research Education in Industry and Engineering Subject

    Science.gov (United States)

    Wu, Yu-hua; Wang, Feng-ming; Du, Gang

    2007-01-01

    On the basic of exploring the relationship of industry engineering and operational research technique, the thesis analyzes the location and utility of the operational research education in the whole industry engineering subject education. It brings forward the system design about operational research and relative class among industry engineering…

  5. Promoting peace in engineering education: modifying the ABET criteria.

    Science.gov (United States)

    Catalano, George D

    2006-04-01

    Modifications to the ABET Criterion 3 are suggested in support of the effort to promote the pursuit of peace in engineering education. The proposed modifications are the result of integrating the United Nations' sponsored "Integral Model of Education for Peace, Democracy and Sustainable Development" into the modern engineering curriculum. The key elements of the model are being at peace with oneself, being at peace with others, and being at peace with the planet. In addition to proposing modifications, specific classroom activities are described and implemented, and students' reactions and the effectiveness of the various exercises are discussed.

  6. Identifying barriers to Science, Technology, Society and environment (STSE) educational goals and pedagogy in science education: A case study of UMASS Lowell undergraduate engineering

    Science.gov (United States)

    Phaneuf, Tiffany

    The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.

  7. Formal Abstraction in Engineering Education--Challenges and Technology Support

    Science.gov (United States)

    Neuper, Walther A.

    2017-01-01

    This is a position paper in the field of Engineering Education, which is at the very beginning in Europe. It relates challenges in the new field to the emerging technology of (Computer) Theorem Proving (TP). Experience shows, that "teaching" abstract models, for instance the wave equation in mechanical engineering and in electrical…

  8. Assessment of Knowledge and Competences in Agricultural Engineering Acquired by the Senior Secondary School Students for Farm Mechanisation

    Science.gov (United States)

    Ndem, Joseph; Ogba, Ernest; Egbe, Benjamin

    2015-01-01

    This study was designed to assess the agricultural engineering knowledge and competencies acquired by the senior secondary students for farm mechanization in technical colleges in Ebonyi state of Nigeria. A survey research design was adopted for the study. Three research questions and two null hypotheses guided the study. The population of the…

  9. INNOVATION RESEARCH OF MORAL EDUCATION BASED ON EXCELLENCE ENGINEER TRAINING PROGRAM

    Directory of Open Access Journals (Sweden)

    Hong-Mei Li

    2013-12-01

    Full Text Available Many colleges and universities in China have clearly realized that in the process of operating the “Project for Educating and Nurturing Outstanding Engineers”(PENOE, the old educational contents and methods are not suitable for the new developing moral education anymore. Accordingly, as the engineering education is going into reform, it’s necessary to make a change and improve the contents and methods in order to help accelerate the reform as well as achieve the educational goals. The paper briefly explains and discusses the theories of PENOE and moral education at the beginning of the thesis; further more, with the reform of engineering education as the background, this paper analysis the issues that exist in moral education in colleges and universities  and debates why they exist in the first place and comes up with a conclusion and several solutions to solving the issues in the end.

  10. An Ontology for Software Engineering Education

    Science.gov (United States)

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  11. About, for, in or through entrepreneurship in engineering education

    Science.gov (United States)

    Mäkimurto-Koivumaa, Soili; Belt, Pekka

    2016-09-01

    Engineering competences form a potential basis for entrepreneurship. There are pressures to find new approaches to entrepreneurship education (EE) in engineering education, as the traditional analytical logic of engineering does not match the modern view of entrepreneurship. Since the previous models do not give tangible enough tools on how to organise EE in practice, this article aims to develop a new framework for EE at the university level. We approach this aim by analysing existing scientific literature complemented by long-term practical observations, enabling a fruitful interplay between theory and practice. The developed framework recommends aspects in EE to be emphasised during each year of the study process. Action-based learning methods are highlighted in the beginning of studies to support students' personal growth. Explicit business knowledge is to be gradually increased only when professional, field-specific knowledge has been adequately accumulated.

  12. Post TMI-2 view on the responsibilities of nuclear engineering educators

    International Nuclear Information System (INIS)

    Long, R.L.

    1980-01-01

    The Three Mile Island (TMI) accident of March 28, 1979 was the result of a complex set of interactions involving design deficiencies, equipment failure and human error. Nuclear engineering educators may need to accept responsibility for some of the underlying, industry-wide causes leading to the event. The many detailed investigations and recommendations following the accident are certain to have a significant impact on nuclear engineering education. Areas of impact include changes in curricula, increased demand for graduates, heavier involvement in utility staff training and education, and new approaches to university, industry, and societal interactions

  13. Abstracts of the 10th Conference of the Italian Society of Agricultural Engineering

    Directory of Open Access Journals (Sweden)

    Danilo Monarca

    2013-09-01

    Full Text Available it is my pleasure to welcome you to the 10th AIIA Conference: “AIIA13 – Horizons in agricultural, forestry and biosystems engineering”, and to welcome you to Viterbo. For the first time the AIIA conference will be held in English. The purpose of this choice is to involve academics and researchers coming from other nations. This conference will then be a unique opportunity for scientists, researchers, experts, students and people representing the business world to show, share and discuss the results of their researches. Another goal of this conference is the promotion of the cooperation and networking in the field of Biosystems Engineering, also trying to include the business world in it. By doing that, we will be able to take on the new challenge of Horizon 2020, the new European Framework Programme. This programme attributes a capital and fundamental role to research and innovation, seen as important means to guarantee an intelligent, sustainable and comprehensive growth to Europe. Horizon 2020 is articulated on 3 strategic objectives 1 Excellent science, intended to secure Europe’s leadership in science worldwide. 2 Industrial Leadership , aimed at supporting research and innovation of European industry, with a strong focus on industrial technologies and investments for SMEs, 3 Societal challenges , aimed at tackling major global challenges in the following areas: health, demographic change and wellbeing, food security, sustainable agriculture, secure, clean and efficient energy, smart, green and integrated transport, climate action, resource efficiency and raw materials, inclusive, innovative and secure societies. In all these fields Agricultural, Forestry and Biosystems Engineering in the coming years will have a major role. I conclude by saying that AIIA13 is also an opportunity to know the Tuscia, a still intact territory, in which culture and respect for the land, innovation and tradition come together in a truly original model of

  14. Engineering Ethics Education from the Viewpoint of Development Psychology

    Science.gov (United States)

    Hamazaki, Takashi

    This paper is outline for the development of children's mind in modern family and school, and is reviewed on the development theory of morality and prosociality related to engineering ethics education. In particular we are reviewed on the discipline and education of morality and prosociality from infancy to adulthood.

  15. CDIO-Concept for Engineering Education in Mechatronics

    DEFF Research Database (Denmark)

    Conrad, Finn; Andersen, Torben O.; Hansen, Michael Rygaard

    2006-01-01

    Danish experimental results of a research and developed CDIO-Concept, and an approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis, and design...

  16. Eyes wide shut? Loyalty and practical morality in engineering education

    DEFF Research Database (Denmark)

    Buser, Martine; Koch, Christian

    2012-01-01

    Ever since institutions for educating engineers first began to be ­established in Europe, there have been a number of fundamental tensions as to how that ­educating should best be conducted, what it should consist of, and who should do the educating. These tensions are based on different styles o...

  17. African Journals Online: Agriculture & Food Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 53 ... Global Approaches to Extension Practice (GAEP), A publication of the Department of ... resources, Soil Science, Agricultural Engineering and Food Processing. ... Journal of Applied Chemistry and Agricultural Research.

  18. Internal education quality evaluation as a factor of development of engineering education quality in Russia

    OpenAIRE

    Shvindt Antoniy; Nikanorov Ivan

    2017-01-01

    In the paper, general approaches to evaluation of quality of engineering education in Russia, stated by expert community, are considered. The authors arrived at the conclusion that attention to internal evaluation mechanism of the education quality in Russian normative framework of higher education system is insufficient, as compared to European higher education practices. A pattern of involving the students in the internal evaluation of higher education quality is submitted to be a tool to d...

  19. A national collaboration process: Finnish engineering education for the benefit of people and environment.

    Science.gov (United States)

    Takala, A; Korhonen-Yrjänheikki, K

    2013-12-01

    The key stakeholders of the Finnish engineering education collaborated during 2006-09 to reform the system of education, to face the challenges of the changing business environment and to create a national strategy for the Finnish engineering education. The work process was carried out using participatory work methods. Impacts of sustainable development (SD) on engineering education were analysed in one of the subprojects. In addition to participatory workshops, the core part of the work on SD consisted of a research with more than 60 interviews and an extensive literature survey. This paper discusses the results of the research and the work process of the Collaboration Group in the subproject of SD. It is suggested that enhancing systematic dialogue among key stakeholders using participatory work methods is crucial in increasing motivation and commitment in incorporating SD in engineering education. Development of the context of learning is essential for improving skills of engineering graduates in some of the key abilities related to SD: systemic- and life-cycle thinking, ethical understanding, collaborative learning and critical reflection skills. This requires changing of the educational paradigm from teacher-centred to learner-centred applying problem- and project-oriented active learning methods.

  20. Increasing access of female students to vocational education : a study of the Agricultural School LAMS, Benin

    NARCIS (Netherlands)

    Bio Yara, O.G.J.P.

    2008-01-01

    This research sets out to identify the factors that are enforcing gender inequality and influencing the increase of access of female students to vocational education. The study specifically sought to explore the external and internal factors influencing access of girls to agricultural education in

  1. Nuclear engineering education: A competence based approach to curricula development

    International Nuclear Information System (INIS)

    2014-01-01

    Maintaining nuclear competencies in the nuclear industry is a one of the most critical challenges in the near future. With the development of a number of nuclear engineering educational programmes in several States, this publication provides guidance to decision makers in Member States on a competence based approach to curricula development, presenting the established practices and associated requirements for educational programmes in this field. It is a consolidation of best practices that will ensure sustainable, effective nuclear engineering programmes, contributing to the safe, efficient and economic operation of nuclear power plants. The information presented is drawn from a variety of recognized nuclear engineering programmes around the world and contributes to the main areas that are needed to ensure a viable and robust nuclear industry

  2. Virtualization-support Cases in Engineering Education

    DEFF Research Database (Denmark)

    Soler, José

    2011-01-01

    The paper presents cases of applying hardware virtualization techniques as support for education activities in two different courses and a master thesis within the degree International MSc on Telecommunication Engineering at the Technical University of Denmark (DTU). The triggering problem...... is presented in each of the cases, together with the benefits and drawbacks of using virtualization to cope with it....

  3. Engineering Education in Russia in an Era of Changes

    Science.gov (United States)

    Lukianenko, M. V.; Polezhaev, O. A.; Churliaeva, N. P.

    2013-01-01

    Engineering education in Russia is undergoing reforms, but the history of this form of higher education does not indicate that it will succeed in bringing it into line with current world standards, or even making it more able to contribute at a high level to Russian economic growth. (Contains 5 notes.)

  4. Improving Teacher-Made Assessments in Technology and Engineering Education

    Science.gov (United States)

    White, Jesse W.; Moye, Johnny J.; Gareis, Christopher R.; Hylton, Sarah P.

    2018-01-01

    In the interest of learning how to effectively use the technological literacy standards and of adhering to education regulation, this article focuses on efforts to improve the professional teaching practices of Technology and Engineering Education (TEE) teachers by using the Gareis and Grant (2015) process with respect to "Standards for…

  5. 77 FR 18268 - Proposal Review Panel for Engineering Education and Centers; Notice of Meeting

    Science.gov (United States)

    2012-03-27

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Engineering Education and Centers; Notice of... Science Foundation announces the following meeting: Name: Proposal Review Panel for Engineering Education...--ERC Research Program 3:30 p.m.--7:30 p.m. Closed--ERC Education Program Thursday, March 29, 2012 8 a.m...

  6. Socio-ethical education in nanotechnology engineering programmes: a case study in Malaysia.

    Science.gov (United States)

    Balakrishnan, Balamuralithara; Er, Pek Hoon; Visvanathan, Punita

    2013-09-01

    The unique properties of nanotechnology have made nanotechnology education and its related subjects increasingly important not only for students but for mankind at large. This particular technology brings educators to work together to prepare and produce competent engineers and scientists for this field. One of the key challenges in nanotechnology engineering is to produce graduate students who are not only competent in technical knowledge but possess the necessary attitude and awareness toward the social and ethical issues related to nanotechnology. In this paper, a research model has been developed to assess Malaysian nanotechnology engineering students' attitudes and whether their perspectives have attained the necessary objectives of ethical education throughout their programme of study. The findings from this investigation show that socio ethical education has a strong influence on the students' knowledge, skills and attitudes pertaining to socio ethical issues related to nanotechnology.

  7. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  8. Clinical Immersion and Biomedical Engineering Design Education: "Engineering Grand Rounds".

    Science.gov (United States)

    Walker, Matthew; Churchwell, André L

    2016-03-01

    Grand Rounds is a ritual of medical education and inpatient care comprised of presenting the medical problems and treatment of a patient to an audience of physicians, residents, and medical students. Traditionally, the patient would be in attendance for the presentation and would answer questions. Grand Rounds has evolved considerably over the years with most sessions being didactic-rarely having a patient present (although, in some instances, an actor will portray the patient). Other members of the team, such as nurses, nurse practitioners, and biomedical engineers, are not traditionally involved in the formal teaching process. In this study we examine the rapid ideation in a clinical setting to forge a system of cross talk between engineers and physicians as a steady state at the praxis of ideation and implementation.

  9. Possibility of Engineering Education That Makes Use of Algebraic Calculators by Various Scenes

    Science.gov (United States)

    Umeno, Yoshio

    Algebraic calculators are graphing calculators with a feature of computer algebra system. It can be said that we can solve mathematics only by pushing some keys of these calculators in technical colleges or universities. They also possess another feature, so we can make extensive use in engineering education. For example, we can use them for a basic education, a programming education, English education, and creative thinking tools for excellent students. In this paper, we will introduce the summary of algebraic calculators, then, consider how we utilize them in engineer education.

  10. Entrepreneurial intention among engineering students: The role of entrepreneurship education

    Directory of Open Access Journals (Sweden)

    Virginia Barba-Sánchez

    2018-01-01

    This research work aims to analyze the impact of entrepreneurial motivations on entrepreneurial intentions among future engineers and identify the role than entrepreneurship education plays in the development of the engineers’ entrepreneurship. The results indicate that the need for independence is the key factor in the entrepreneurial intent of future engineers and confirm the positive contribution that entrepreneurship education has on their entrepreneurial intentions. Finally, recommendations are offered which could help the various agents involved increase the effectiveness of actions aimed at promoting firm creation in this area.

  11. Embodied Interaction Design in Engineering Education using Asus Xtion Pro

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2013-01-01

    How does a design of emerging embodied technologies, such as Asus Xtion Pro, enrich the HCI learning processes in Engineering Education? The fifth semester engineering students used the motion sensing input device, Asus Xtion Pro (similar to Microsoft’s Kinect), for the design of an embodied...

  12. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  13. Makerspaces in Engineering Education: A Case Study

    DEFF Research Database (Denmark)

    Jensen, Lasse Skovgaard; Özkil, Ali Gürcan; Mougaard, Krestine

    2016-01-01

    it by opening makerspaces and adopting elements of the Maker Movement in their offerings. This paper investigates how university driven makerspaces can affect engineering design and product development education trough a case study. We provide our findings based on interviews and data collected from educators......, students the administrative and workshop staff of the makerspace. The findings are used to outline the challenges in incorporating the offerings of makerspaces. By discussing these challenges we identify opportunities for turning university makerspaces into innovation hubs and platforms that can support...

  14. RFID-Based Multidisciplinary Educational Platform to Improve the Engineering and Technology Curriculums

    Science.gov (United States)

    Yelamarthi, Kumar

    2012-01-01

    Multidisciplinary projects involving electrical engineering (EE), mechanical engineering (ME), and computer engineering (CE) students are both exciting and difficult to conceptualize. Answering this challenge, this paper presents a multidisciplinary educational platform on radio frequency identification-based assistive devices. The combination of…

  15. A Strategic Approach for Supporting the Future of Civil Engineering Education in Europe

    Science.gov (United States)

    Angelides, Demos C.; Loukogeorgaki, Eva

    2005-01-01

    A new strategic vision of the extensively debated European higher education is proposed with focus on civil engineering. Civil engineering education for the future is considered with relevance to potential world-wide trends and anticipated societal requirements and, therefore, required employee qualifications of the construction-related providers…

  16. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications.

    Science.gov (United States)

    Telugu, Bhanu P; Park, Ki-Eun; Park, Chi-Hun

    2017-08-01

    Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.

  17. Nuclear Power Engineering Education Program, University of Illinois

    International Nuclear Information System (INIS)

    Jones, B.G.

    1993-01-01

    The DOE/CECo Nuclear Power Engineering Education Program at the University of Illinois in its first year has significantly impacted the quality of the power education which our students receive. It has contributed to: the recently completed upgrade of the console of our Advanced TRIGA reactor which increases the reactor's utility for training, the procurement of new equipment to upgrade and refurbish several of the undergraduate laboratory set-ups, and the procurement of computational workstations in support of the instructional computing laboratory. In addition, smaller amounts of funds were used for the recruitment and retention of top quality graduate students, the support of faculty to visit other institutions to attract top students into the discipline, and to provide funds for faculty to participate in short courses to improve their skills and background in the power area. These items and activities have helped elevate in the student's perspective the role of nuclear power in the discipline. We feel this is having a favorable impact on student career selection and on ensuring the continued supply of well educated nuclear engineering graduates

  18. American Farm Bureau Foundation for Agriculture - Homepage

    Science.gov (United States)

    Literacy? What We Do Resources Sustainable Agriculture Food and Farm Facts Free Resources & Lesson Agriculture Food and Farm Facts Free Resources & Lesson Plans Bringing Biotech to Life Learn About Beef and their families about agriculture at the USA Science & Engineering Festival in April. Read More

  19. On a New Approach to Education about Ethics for Engineers at Meijou University

    Science.gov (United States)

    Fukaya, Minoru; Morimoto, Tsukasa; Kimura, Noritsugu

    We propose a new approach to education of so called “engineering ethics”. This approach has two important elements in its teaching system. One is “problem-solving learning”, and the other is “discussion ability”. So far, engineering ethics started at the ethical standpoint. But we put the viewpoint of problem-solving learning at the educational base of engineering ethics. Because many problems have complicated structures, so if we want to solve them, we should discuss each other. Problem-solving ability and discussion ability, they help engineers to solve the complex problems in their social everyday life. Therefore, Meijo University names engineering ethics “ethics for engineers”. At Meijou University about 1300 students take classes in both ethics for engineers and environmental ethics for one year.

  20. Integrating standardization into engineering education: the case of forerunner Korea

    NARCIS (Netherlands)

    D.G. Choi (Dong Geun); H.J. de Vries (Henk)

    2013-01-01

    textabstractThe Republic of Korea is a forerunner in integrating the topic of standardization into engineering education at the academic level. This study investigates developments and evolutions in the planning and operating of the University Education Promotion on Standardization (UEPS) in Korea.