WorldWideScience

Sample records for agonist inhibits transient

  1. (R)-(3-amino-2-fluoropropyl) phosphinic acid (AZD3355), a novel GABAB receptor agonist, inhibits transient lower esophageal sphincter relaxation through a peripheral mode of action

    DEFF Research Database (Denmark)

    Lehmann, Anders; Antonsson, Madeleine; Holmberg, Ann Aurell;

    2009-01-01

    of transient lower esophageal sphincter relaxation (TLESR) with a proposed peripherally acting GABA(B) receptor agonist, (R)-(3-amino-2-fluoropropyl)phosphinic acid (AZD3355). AZD3355 potently stimulated recombinant human GABA(B) receptors and inhibited TLESR in dogs, with a biphasic dose-response curve...

  2. Transient receptor potential vanilloid 1 agonists as candidates for anti-inflammatory and immunomodulatory agents

    NARCIS (Netherlands)

    Tsuji, F.; Murai, M.; Oki, K.; Seki, I.; Ueda, K.; Inoue, H.; Nagelkerken, L.; Sasano, M.; Aono, H.

    2010-01-01

    We recently demonstrated that SA13353 [1-[2-(1-adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea], a novel transient receptor potential vanilloid 1 (TRPV1) agonist, inhibits TNF-α production through the activation of capsaicin-sensitive afferent neurons. In the present study, we investigated the

  3. Toll-like receptor 2 agonists inhibit human fibrocyte differentiation

    Directory of Open Access Journals (Sweden)

    Maharjan Anu S

    2010-11-01

    Full Text Available Abstract Background In healing wounds, some monocytes enter the wound and differentiate into fibroblast-like cells called fibrocytes. Since Toll-like receptors (TLRs are present on monocytes, and pathogens that can infect a wound have and/or release TLR agonists, we examined whether TLR agonists affect fibrocyte differentiation. Results When human peripheral blood mononuclear cells (PBMCs were cultured with TLR3, TLR4, TLR5, TLR7, TLR8 or TLR9 agonists, there was no significant effect on fibrocyte differentiation, even though enhanced extracellular tumor necrosis factor (TNF-α accumulation and/or increased cell surface CD86 or major histocompatibility complex (MHC class II levels were observed. However, all TLR2 agonists tested inhibited fibrocyte differentiation without any significant effect on cell survival. Adding TLR2 agonists to purified monocytes had no effect on fibrocyte differentiation. However, some TLR2 agonists caused PBMCs to secrete a factor that inhibits the differentiation of purified monocytes into fibrocytes. This factor is not interferon (IFN-α, IFN-γ, interleukin (IL-12, aggregated immunoglobulin G (IgG or serum amyloid P (SAP, factors known to inhibit fibrocyte differentiation. TLR2 agonist-treated PBMCs secrete low levels of IL-6, TNF-α, IFN-γ, granulocyte colony-stimulating factor and tumor growth factor β1, but combinations of these factors had no effect on fibrocyte differentiation from purified monocytes. Conclusions Our results indicate that TLR2 agonists indirectly inhibit fibrocyte differentiation and that, for some TLR2 agonists, this inhibition involves other cell types in the PBMC population secreting an unknown factor that inhibits fibrocyte differentiation. Together, these data suggest that the presence of some bacterial signals can inhibit fibrocyte differentiation and may thus slow wound closure.

  4. The Effects of Inhaled β-Adrenergic Agonists in Transient Tachypnea of the Newborn

    Directory of Open Access Journals (Sweden)

    Esengul Keleş MD

    2016-05-01

    Full Text Available Aim. To investigate the efficacy of an inhaled β-adrenergic agonists in transient tachypnea of the newborn (TTN. Method. We retrospectively analyzed a cohort of 51 term infants (Group 1 and 37 term infants (Group 2 monitored in the newborn intensive care unit diagnosed with TTN. Infants in Group 1 received humidified oxygen alone, and infants in Group 2 were administered the inhaled β-2 agonist plus humidified oxygen. Results. TTN clinical respiratory assessment, respiratory rate, oxygen saturation values, need for supplemental oxygen therapy, blood gas PH, PO2, and duration of hospitalization were significantly improved in infants in Group 2 as compared with infants in Group 1 (P .05. Conclusion. Inhaled β-adrenergic agonist added to humidified oxygen was found to improve clinical and laboratory parameters. We believe that further studies should be conducted with larger groups to demonstrate the efficacy of β-2 agonists in TTN patients.

  5. Toll-like receptor 2 agonists inhibit human fibrocyte differentiation

    OpenAIRE

    Maharjan Anu S; Pilling Darrell; Gomer Richard H

    2010-01-01

    Abstract Background In healing wounds, some monocytes enter the wound and differentiate into fibroblast-like cells called fibrocytes. Since Toll-like receptors (TLRs) are present on monocytes, and pathogens that can infect a wound have and/or release TLR agonists, we examined whether TLR agonists affect fibrocyte differentiation. Results When human peripheral blood mononuclear cells (PBMCs) were cultured with TLR3, TLR4, TLR5, TLR7, TLR8 or TLR9 agonists, there was no significant effect on fi...

  6. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi, E-mail: kumamote@cc.saga-u.ac.jp

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  7. Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist

    DEFF Research Database (Denmark)

    Fosgerau, Keld; Weber, Uno J; Gotfredsen, Jacob W

    2010-01-01

    the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia. Methods First, we screened a heterogeneous group of TRPV1 agonists and secondly we tested the hypothermic properties of a selected candidate by dose-response studies....... Finally we tested the hypothermic properties in a large animal. The screening was in conscious rats, the dose-response experiments in conscious rats and in cynomologus monkeys, and the finally we tested the hypothermic properties in conscious young cattle (calves with a body weight as an adult human......). The investigated TRPV1 agonists were administered by continuous intravenous infusion. Results  Screening: Dihydrocapsaicin (DHC), a component of chili pepper, displayed a desirable hypothermic profile with regards to the duration, depth and control in conscious rats. Dose-response experiments: In both rats...

  8. Gender differences in the effects of presynaptic and postsynaptic dopamine agonists on latent inhibition in rats.

    Science.gov (United States)

    Wang, Ying-Chou; He, Bo-Han; Chen, Chih-Chung; Huang, Andrew Chih Wei; Yeh, Yu-Chi

    2012-04-04

    The present study investigated gender differences in the effects of presynaptic and postsynaptic DA agonists on latent inhibition in the passive avoidance paradigm. During the preexposure phase, 32 male and 32 female Wistar rats were exposed to a passive avoidance box (or a different context) and received drug injections in three trials: the control group received an injection of 10% ascorbic acid in a different context. The experimental groups received injections of 10% ascorbic acid (latent inhibition [LI] group), 1mg/kg of the postsynaptic DA D(1)/D(2) agonist apomorphine (APO group), and 1.5mg/kg of the presynaptic DA agonist methamphetamine (METH group) in a passive avoidance box. All experimental groups were placed in the light compartment of the passive avoidance box and were allowed to enter into the dark compartment to receive a footshock (1mA, 2s) in five trials over 5 days. The latency to enter into the dark compartment was recorded in these five trials. The latent inhibition occurred in the female LI group but not in the male LI group. Regardless of gender, the APO group exhibited an increase in latent inhibition. Male rats in the METH group exhibited a decrease in latent inhibition, but female rats in the METH group exhibited an increase in latent inhibition, indicating that the METH group exhibited sexual dimorphism. The gender factor interacted only with the METH group and not the LI or APO group. The present paper discusses whether gender, the postsynaptic DA D(1)/D(2) agonist APO, and presynaptic DA agonist METH may be related to schizophrenia.

  9. Cocaine synergism with alpha agonists in rat aorta: computational analysis reveals an action beyond reuptake inhibition*

    Science.gov (United States)

    Lamarre, Neil S.; Raffa, Robert B.; Tallarida, Ronald J.

    2012-01-01

    BACKGROUND Cocaine has long been known to increase blood pressure, but the degree and mechanism of vasoconstricting action remain poorly understood. Here we examine the interaction between cocaine and alpha-adrenoceptor agonists, with the action of reuptake inhibition minimized. METHODS Cocaine was administered to isolated rings of rat thoracic aorta, alone and in combination with three different adrenoceptor agonists: phenylephrine, methoxamine, and norepinephrine. Synergy analysis begins with the predicted additive effect of the combination of two agonists, based upon dose equivalence theory. This case where one agonist (cocaine) has no effect when administered alone requires only a t-test to demonstrate that a departure from additivity has occurred. RESULTS At doses where cocaine alone produced no vasoconstriction, it potentiated the vasoconstriction produced by all three alpha agonists, a clear indication of synergism between cocaine and these agents. Higher doses of cocaine in combination with alpha adrenoceptor agents gave an inverted-U shaped (hormetic) dose-effect curve, i.e., dose-related relaxation at higher doses. The hormetic dose-effect relation was analyzed using computational methodology based on dose equivalence to derive the unknown second component of action that causes relaxation. CONCLUSIONS Cocaine exhibits both vasoconstricting and vasorelaxant effects. This relaxing component, possibly related to activation of myosin light chain phosphatase, was quantified as a dose-effect curve. Most important is the synergism between cocaine and alpha-adrenoceptor stimulation which cannot be explained as an action due to reuptake inhibition, and has not been previously described. PMID:23270987

  10. The selective PAC1 receptor agonist maxadilan inhibits neurogenic vasodilation and edema formation in the mouse skin.

    Science.gov (United States)

    Banki, E; Hajna, Zs; Kemeny, A; Botz, B; Nagy, P; Bolcskei, K; Toth, G; Reglodi, D; Helyes, Zs

    2014-10-01

    We have earlier shown that PACAP-38 decreases neurogenic inflammation. However, there were no data on its receptorial mechanism and the involvement of its PAC1 and VPAC1/2 receptors (PAC1R, VPAC1/2R) in this inhibitory effect. Neurogenic inflammation in the mouse ear was induced by topical application of the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor activator mustard oil (MO). Consequent neurogenic edema, vasodilation and plasma leakage were assessed by measuring ear thickness with engineer's micrometer, detecting tissue perfusion by laser Doppler scanning and Evans blue or indocyanine green extravasation by intravital videomicroscopy or fluorescence imaging, respectively. Myeloperoxidase activity, an indicator of neutrophil infiltration, was measured from the ear homogenates with spectrophotometry. The selective PAC1R agonist maxadilan, the VPAC1/2R agonist vasoactive intestinal polypeptide (VIP) or the vehicle were administered i.p. 15 min before MO. Substance P (SP) concentration of the ear was assessed by radioimmunoassay. Maxadilan significantly diminished MO-induced neurogenic edema, increase of vascular permeability and vasodilation. These inhibitory effects of maxadilan may be partially due to the decreased substance P (SP) levels. In contrast, inhibitory effect of VIP on ear swelling was moderate, without any effect on MO-induced plasma leakage or SP release, however, activation of VPAC1/2R inhibited the increased microcirculation caused by the early arteriolar vasodilation. Neither the PAC1R, nor the VPAC1/2R agonist influenced the MO-evoked increase in tissue myeloperoxidase activity. These results clearly show that PAC1R activation inhibits acute neurogenic arterial vasodilation and plasma protein leakage from the venules, while VPAC1/2R stimulation is only involved in the attenuation of vasodilation.

  11. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice.

    Science.gov (United States)

    Jie, Pinghui; Tian, Yujing; Hong, Zhiwen; Li, Lin; Zhou, Libin; Chen, Lei; Chen, Ling

    2015-01-01

    Brain edema is an important pathological process during stroke. Activation of transient receptor potential vanilloid 4 (TRPV4) causes an up-regulation of matrix metalloproteinases (MMPs) in lung tissue. MMP can digest the endothelial basal lamina to destroy blood brain barrier, leading to vasogenic brain edema. Herein, we tested whether TRPV4-blockage could inhibit brain edema through inhibiting MMPs in middle cerebral artery occlusion (MCAO) mice. We found that the brain water content and Evans blue extravasation at 48 h post-MCAO were reduced by a TRPV4 antagonist HC-067047. The increased MMP-2/9 protein expression in hippocampi of MCAO mice was attenuated by HC-067046, but only the increased MMP-9 activity was blocked by HC-067047. The loss of zonula occludens-1 (ZO-1) and occludin protein in MCAO mice was also attenuated by HC-067047. Moreover, MMP-2/9 protein expression increased in mice treated with a TRPV4 agonist GSK1016790A, but only MMP-9 activity was increased by GSK1016790A. Finally, ZO-1 and occludin protein expression was decreased by GSK1016790A, which was reversed by an MMP-9 inhibitor. We conclude that blockage of TRPV4 may inhibit brain edema in cerebral ischemia through inhibiting MMP-9 activation and the loss of tight junction protein.

  12. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  13. Treating enhanced GABAergic inhibition in Down syndrome: use of GABA α5-selective inverse agonists.

    Science.gov (United States)

    Martínez-Cué, Carmen; Delatour, Benoît; Potier, Marie-Claude

    2014-10-01

    Excess inhibition in the brain of individuals carrying an extra copy of chromosome 21 could be responsible for cognitive deficits observed throughout their lives. A change in the excitatory/inhibitory balance in adulthood would alter synaptic plasticity, potentially triggering learning and memory deficits. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mature central nervous system and binds to GABAA receptors, opens a chloride channel, and reduces neuronal excitability. In this review we discuss methods to alleviate neuronal inhibition in a mouse model of Down syndrome, the Ts65Dn mouse, using either an antagonist (pentylenetetrazol) or two different inverse agonists selective for the α5-subunit containing receptor. Both inverse agonists, which reduce inhibitory GABAergic transmission, could rescue learning and memory deficits in Ts65Dn mice. We also discuss safety issues since modulation of the excitatory-inhibitory balance to improve cognition without inducing seizures remains particularly difficult when using GABA antagonists.

  14. Transient occult cardiotoxicity in children receiving continuous beta-agonist therapy

    Institute of Scientific and Technical Information of China (English)

    Christopher L Carroll; Melinda Coro; Allison Cowl; Kathleen A Sala; Craig M Schramm

    2014-01-01

    Background: Continuous beta-agonist therapy, typically in the form of inhaled albuterol, is the first line therapy for the treatment of acute and severe bronchospasm in children. Although this treatment is commonly used, concerns about cardiotoxicity have been raised. We aimed to investigate the cardiotoxic effects of continuous beta-agonist therapy in children. Methods: We conducted a retrospective review of children admitted to the intensive care unit (ICU) between May 2008 and April 2009, who were treated with continuous beta-agonist therapy (intravenous and nebulized). Results: Twenty of the 36 children treated with continuous albuterol had repeated serum troponin-T and lactate levels measured. Eleven patients (55%) were also treated with continuous intravenous terbutaline. Elevated levels of troponin-T levels were found in 25% of children, and elevated lactate levels were found in 60%. However, all returned to normal levels within 48 hours of ICU admission, despite continued beta-agonist therapy. No children experienced arrhythmias during therapy. There was no association between intravenous terbutaline use and elevated troponin-T [odds ratio (OR), 1.3; 95% CI, 0.2-10.3] or with elevated serum lactate (OR, 0.6; 95% CI, 0.1-3.7). There was also no association between elevated troponin-T or lactate and ICU or hospital length of stay. Conclusions: In this small study, a significant proportion of children had elevated serum troponin-T and lactate levels while receiving inhaled continuous beta-agonist therapy, irrespective of intravenous therapy. However, these abnormal values all returned to normal within 48 hours of ICU admission and were not associated with increased duration of hospitalization.

  15. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  16. The RARgamma selective agonist CD437 inhibits gastric cell growth through the mechanism of apoptosis.

    Science.gov (United States)

    Jiang, S Y; Lin, D Y; Shyu, R Y; Reichert, U; Yeh, M Y

    1999-04-01

    Retinoids are differentiation-inducing agents that exhibit multiple functions. Their activities are mediated through interaction with nuclear retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the activities of synthetic retinoids on the growth of five gastric cancer cell lines. The effects of agonists selective for RARalpha, RARbeta and RARgamma (AM580, CD2019 and CD437, respectively) on cell growth were determined, in comparison to all-trans retinoic acid, by measuring total cellular DNA. AM580 and CD2019 had little or no effect on the growth of all five cell lines. In contrast, the RARgamma agonist CD437 inhibited cell growth up to 90-99% in both retinoic acid sensitive and resistant gastric cancer cells at a concentration of 1 microM. The growth suppression caused by CD437 was accompanied by the induction of apoptosis as judged by morphological criteria and DNA ladder formation. However, the extent of CD437-induced growth suppression was not correlated with RARgamma mRNA levels, which indicates that CD437 induces apoptosis in gastric cancer cells via an RARgamma independent pathway.

  17. Inhibition of GSK3 attenuates dopamine D1 receptor agonist-induced hyperactivity in mice.

    Science.gov (United States)

    Miller, Jonathan S; Tallarida, Ronald J; Unterwald, Ellen M

    2010-05-31

    Recent evidence suggests a critical role for the intracellular signaling protein glycogen synthase kinase-3 (GSK3) in hyperactivity associated with dopaminergic transmission. Here, we investigated whether activation of GSK3 is necessary for the expression of behaviors specifically produced by dopamine D1 receptor activation. To assess the role of GSK3 in dopamine D1 receptor-induced hyperactivity, mice were pretreated with the selective GSK3 inhibitor SB 216763 (0.25-7.5mg/kg, i.p.) or its vehicle prior to administration of the dopamine D1 receptor full-agonist SKF-82958 (1.0mg/kg, i.p.) or saline control. Inhibition of GSK3 via SB 216763 dose-dependently reduced ambulatory and stereotypic activity produced by SKF-82958. These data implicate a role for GSK3 in the behavioral manifestations associated with dopamine D1 receptor activation.

  18. Application of transient analysis using Hilbert spectra of electrochemical noise to the identification of corrosion inhibition

    NARCIS (Netherlands)

    Homborg, A.M.; Westing, E.P.M. van; Tinga, T.; Ferrari, G.M.; Zhang, X.; Wit, J.H.W. de; Mol, J.M.C.

    2014-01-01

    This study validates the ability of Hilbert spectra to investigate transients in an electrochemical noise signal for an aqueous corrosion inhibition process. The proposed analysis procedure involves the identification and analysis of transients in the electrochemical current noise signal. Their deco

  19. Application of transient analysis using Hilbert spectra of electrochemical noise to the identification of corrosion inhibition

    NARCIS (Netherlands)

    Homborg, A.M.; Westing, van E.P.M.; Tinga, T.; Ferrari, G.M.; Zhang, X.; Wit, de J.H.W.; Mol, J.M.C.

    2013-01-01

    This study validates the ability of Hilbert spectra to investigate transients in an electrochemical noise signal for an aqueous corrosion inhibition process. The proposed analysis procedure involves the identification and analysis of transients in the electrochemical current noise signal. Their deco

  20. Appeasing pheromone inhibits cortisol augmentation and agonistic behaviors during social stress in adult miniature pigs.

    Science.gov (United States)

    Yonezawa, Tomohiro; Koori, Miyuki; Kikusui, Takefumi; Mori, Yuji

    2009-11-01

    Pairing and physical confrontation In adult sows causes social stress reactions and aggressive behaviors. Recently, maternal pig skin secretions were Isolated and a mixture containing several fatty acids, now called pig appeasing pheromone (PAP), was synthesized. In this study, we Investigated the effects of PAP on social and Immune stress response In adult female miniature pigs. PAP or vehicle solvents were sprayed Into the pens of Individually housed adult sows. A two-week exposure to the pheromone did not alter basal salivary Cortisol levels or clrcadlan rhythms. Following this treatment, the animals were paired and placed In a new pen that was divided with a wire-mesh fence. Although salivary cortisol Increased markedly In the vehicle-treated group, the PAP-treated group exhibited a drastic Inhibition of cortisol secretion. This effect was sustained even after they were allowed to physically Interact following fence removal. Moreover, the latency time of agonistic behaviors, such as escaping or biting, was significantly extended after PAP exposure. When lipopolysaccharide was Injected Intramuscularly, Cortisol levels, rectal temperatures, and lying time lengths Increased substantially. No differences were observed between the pheromone-treated and untreated groups. These results suggest that this synthetic pheromone alleviates social stress In adult pigs, although It does not affect Immune stress responses. Our findings demonstrate the potential benefit of this pheromone In field applications and clinical disciplines relating to adult female pigs.

  1. Physiological increases in lactate inhibit intracellular calcium transients, acidify myocytes and decrease force in term pregnant rat myometrium.

    Science.gov (United States)

    Hanley, Jacqui-Ann; Weeks, Andrew; Wray, Susan

    2015-10-15

    Lactate is increased in myometrial capillary blood from women in slow or non-progressive labour (dystocia), suggesting that it is detrimental to uterine contractions. There are, however, no studies of the effect of lactate on the myometrium. We therefore investigated its effects and mechanism of action on myometrial strips from term pregnant rats. The effects on spontaneous and oxytocin-induced contractility in response to sodium lactate and other weak acids (1-20 mM) were studied. In some experiments, simultaneous force and intracellular Ca(2+) or pH (pH(i)) were measured with Indo-1 or Carboxy-SNARF, respectively. Statistical differences were tested using non-parametric tests. Lactate significantly decreased spontaneous contractility with an EC50 of 3.9 mM. Propionate, butyrate and pyruvate also reduced contractions with similar potency. The effects of lactate were reduced in the presence of oxytocin but remained significant. Lactate decreased pH(i) and nulling the decrease in pH(i) abolished its effects. We also show that lactate inhibited Ca(2+) transients, with these changes mirroring those produced on force. If Ca(2+) entry was enhanced by depolarization (high KCl) or applying the Ca(2+) channel agonist, Bay K 4644, the effects of lactate were abolished. Taken together, these data show that lactate in the physiological range potently decreases myometrial contractility as a result of its inhibition of Ca(2+) transients, which can be attributed to the induced acidification. The present study suggests that the accumulation of extracellular lactate will reduce myometrial contractions and could therefore contribute to labour dystocia.

  2. Inhibition of AMPA Receptors by Polyamine Toxins is Regulated by Agonist Efficacy and Stargazin

    DEFF Research Database (Denmark)

    Poulsen, Mette H; Lucas, Simon; Strømgaard, Kristian;

    2014-01-01

    The α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are glutamate-gated cation channels mediating the majority of fast excitatory synaptic transmission in the central nervous system (CNS). Polyamine toxins derived from spiders and wasps are use- and voltage-dependent...... explored the effect of the TARP γ-2 (also known as stargazin) on the inhibitory potency of three structurally different polyamine toxins at Ca(2+)-permeable homomeric GluA1 AMPARs expressed in oocytes. We find that polyamine toxin IC50 is differentially affected by presence of stargazin depending...... on the efficacy of the agonists used to activate GluA1. Co-assembly of GluA1 receptors with stargazin increases the potency of the polyamine toxins when activated by the weak partial agonist kainate, but has no effect in presence of full-agonist L-glutamate (Glu) and partial agonist (RS)-willardiine....

  3. μ-Opioid Agonist Inhibition of κ-Opioid Receptor-Stimulated Extracellular Signal-Regulated Kinase Phosphorylation Is Dynamin-Dependent in C6 Glioma Cells

    OpenAIRE

    Bohn, Laura M.; Belcheva, Mariana M.; Coscia, Carmine J.

    2000-01-01

    In previous studies we found that μ-opioids, acting via μ-opioid receptors, inhibit endothelin-stimulated C6 glioma cell growth. In the preceding article we show that the κ-selective opioid agonist U69,593 acts as a mitogen with a potency similar to that of endothelin in the same astrocytic model system. Here we report that C6 cell treatment with μ-opioid agonists for 1 h results in the inhibition of κ-opioid mitogenic signaling. The μ-selective agonist endomorphin-1 attenuates κ-opioid-stimu...

  4. Marked increases in mucociliary clearance produced by synergistic secretory agonists or inhibition of the epithelial sodium channel

    Science.gov (United States)

    Joo, Nam Soo; Jeong, Jin Hyeok; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    Mucociliary clearance (MCC) is a critical host innate defense mechanism in airways, and it is impaired in cystic fibrosis (CF) and other obstructive lung diseases. Epithelial fluid secretion and absorption modify MCC velocity (MCCV). We tested the hypotheses that inhibiting fluid absorption accelerates MCCV, whereas inhibiting fluid secretion decelerates it. In airways, ENaC is mainly responsible for fluid absorption, while anion channels, including CFTR and Ca2+-activated chloride channels mediate anion/fluid secretion. MCCV was increased by the cAMP-elevating agonists, forskolin or isoproterenol (10 μM) and by the Ca2+-elevating agonist, carbachol (0.3 μM). The CFTR-selective inhibitor, CFTRinh-172, modestly reduced MCCV-increases induced by forskolin or isoproterenol but not increases induced by carbachol. The ENaC inhibitor benzamil increased basal MCCV as well as MCCV increases produced by forskolin or carbachol. MCC velocity was most dramatically accelerated by the synergistic combination of forskolin and carbachol, which produced near-maximal clearance rates regardless of prior treatment with CFTR or ENaC inhibitors. In CF airways, where CFTR-mediated secretion (and possibly synergistic MCC) is lost, ENaC inhibition via exogenous agents may provide therapeutic benefit, as has long been proposed. PMID:27830759

  5. Liver X Receptor Agonists Inhibit the Phospholipid Regulatory Gene CTP: Phosphoethanolamine Cytidylyltransferase-Pcyt2

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    2008-01-01

    Full Text Available Metabolic pulse-chase experiments demonstrated that 25-hydroxycholesterol (25-OH, the endogenous activator of the liver X receptor (LXR, significantly reduced the biosynthesis of phosphatidylethanolamine via CDP-ethanolamine (Kennedy pathway at the step catalyzed by CTP: phosphoethanolamine cytidylyltransferase (Pcyt2. In the mouse embryonic fibroblasts C3H10T1/2, the LXR synthetic agonist TO901317 lowered Pcyt2 promoter-luciferase activity in a concentration-dependent manner. Furthermore, 25-OH and TO901317 reduced mouse Pcyt2 mRNA and protein levels by 35–60%. The inhibitory effects of oxysterols and TO901317 on the Pcyt2 promoter function, mRNA and protein expression were conserved in the human breast cancer cells MCF-7. These studies identify the Pcyt2 gene as a novel target whereby LXR agonists may indirectly modulate inflammatory responses and atherosclerosis.

  6. RAR agonists stimulate SOX9 gene expression in breast cancer cell lines: evidence for a role in retinoid-mediated growth inhibition.

    Science.gov (United States)

    Afonja, Olubunmi; Raaka, Bruce M; Huang, Ambrose; Das, Sharmistha; Zhao, Xinyu; Helmer, Elizabeth; Juste, Dominique; Samuels, Herbert H

    2002-11-01

    Retinoic acid receptors (RARs) are ligand-dependent transcription factors which are members of the steroid/thyroid hormone receptor gene family. RAR-agonists inhibit the proliferation of many human breast cancer cell lines, particularly those whose growth is stimulated by estradiol (E2) or growth factors. PCR-amplified subtractive hybridization was used to identify candidate retinoid-regulated genes that may be involved in growth inhibition. One candidate gene identified was SOX9, a member of the high mobility group (HMG) box gene family of transcription factors. SOX9 gene expression is rapidly stimulated by RAR-agonists in T-47D cells and other retinoid-inhibited breast cancer cell lines. In support of this finding, a database search indicates that SOX9 is expressed as an EST in breast tumor cells. SOX9 is known to be expressed in chondrocytes where it regulates the transcription of type II collagen and in testes where it plays a role in male sexual differentiation. RAR pan-agonists and the RARalpha-selective agonist Am580, but not RXR agonists, stimulate the expression of SOX9 in a wide variety of retinoid-inhibited breast cancer cell lines. RAR-agonists did not stimulate SOX9 in breast cancer cell lines which were not growth inhibited by retinoids. Expression of SOX9 in T-47D cells leads to cycle changes similar to those found with RAR-agonists while expression of a dominant negative form of SOX9 blocks RA-mediated cell cycle changes, suggesting a role for SOX9 in retinoid-mediated growth inhibition.

  7. Astragaloside IV, a Natural PPARγ Agonist, Reduces Aβ Production in Alzheimer's Disease Through Inhibition of BACE1.

    Science.gov (United States)

    Wang, Xu; Wang, Yue; Hu, Jiang-Ping; Yu, Song; Li, Bao-Kun; Cui, Yong; Ren, Lu; Zhang, Li-De

    2016-03-29

    A number of epidemiological studies have established a link between Alzheimer's disease (AD) and diabetes mellitus (DM). So, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in the treatment of AD. However, current PPARγ-targeting drugs such as thiazolidinediones (TZDs) are associated with undesirable side effects. We identified herbal extract with a small molecular, astragaloside IV (AS-IV), as a selective PPARγ natural agonist in nervous cells by developing a PPAR-PPRE pathway regulatory system. Cultured SH-SY5Y cells transfected with pEGFP-N1-BACE1 were treated with AS-IV for 24 h or AS-IV plus the PPAR-γ antagonist GW9662 in vitro. APP/PS1 mice were intragastrically treated with AS-IV or AS-IV plus the GW9662 every 48 h for 3 months. Immunofluorescence, western blotting, and real-time PCR were used to examine the expression of PPARγ and BACE1. Immunohistochemical staining was performed to analyze the distribution of Aβ plaques in the APP/PS1 mouse brain. The levels of Aβ were determined using ELISA kits. AS-IV was shown to be a PPARγ agonist by establishing a high-throughput screening model for PPARγ agonists. The results showed that AS-IV treatment increased activity of PPARγ and inhibited BACE1 in vitro. As a result, Aβ levels decreased significantly. GW9662, which is a PPARγ antagonist, significantly blocked the beneficial role of AS-IV. In vivo, AS-IV treatment increased PPARγ and BACE1 expression and reduced neuritic plaque formation and Aβ levels in the brains of APP/PS1 mice. These effects of AS-IV could be effectively inhibited by GW9662. These results indicate that AS-IV may be a natural PPARγ agonist that suppressed activity of BACE1 and ultimately attenuates generation of Aβ. Therefore, AS-IV may be a promising agent for modulating Aβ-related pathology in AD.

  8. UV-filter benzophenone-3 inhibits agonistic behavior in male Siamese fighting fish (Betta splendens).

    Science.gov (United States)

    Chen, Te-Hao; Wu, Yea-Ting; Ding, Wang-Hsien

    2016-03-01

    Benzophenone-3 (BP-3) is a widely used organic UV-filter compound. Despite the frequent occurrence of BP-3 in aquatic environments, little is known about its effect on fish behavior. The aim of this study was to investigate the endocrine disrupting effects of BP-3 in male fighting fish (Betta splendens) with a focus on agonistic behavior. Male fighting fish were exposed to 10, 100, and 1000 μg/L BP-3, as well as a solvent control (0.1% ethanol) and a positive control (100 ng/L 17α-ethynylestradiol, EE2), for 28 days. At the beginning and the end of exposure, standard length and body mass of the fish were measured for calculating the condition factor (CF). In addition, spontaneous swimming activity (total distance moved) and agonistic behavior (maximum velocity and duration of opercular display in front of a mirror) were also quantified. At the end of exposure, the fish gonads were sampled for gonadosomatic index (GSI) measurement and histology. After the exposure, CF was significantly decreased in the 1000 μg/L BP-3 groups. Spontaneous swimming activity was not affected. However, maximum velocity was significantly reduced in the EE2 and 1000 μg/L BP-3 treatments; duration of opercular display was significantly decreased in the EE2 and 10 and 1000 μg/L BP-3 treatments. GSI was not significantly different between groups. There was a slight but statistically significant decrease of relative proportion of mature spermatozoa in testicular tissue in the 100 μg/L BP-3 treatment. Collectively, our results demonstrate that BP-3 can disrupt agonistic behavior of male fighting fish, indicating the endocrine disrupting activity of this compound.

  9. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao; Zhou, Qin; Guan, Hao; Su, Lin-Lin; Han, Jun-Tao; Zhu, Xiong-Xiang; Wang, Shu-yue; Li, Jun, E-mail: lijunfmmu@163.com; Hu, Da-Hai, E-mail: hudahaifmmu@aliyun.com

    2015-03-27

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at the gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.

  10. 5-HT1A/7 receptor agonist excites cardiac vagal neurons via inhibition of both GABAergic and glycinergic inputs

    Institute of Scientific and Technical Information of China (English)

    Yong-hua CHEN; Li-li HOU; Ji-jiang WANG

    2008-01-01

    Aim: To study the synaptic mechanisms involved in the 5-hydroxytryptaminel AF/7 (5-HT1A/7) receptor-mediated reflex control of cardiac vagal preganglionic neurons (CVPN). Methods: CVPN were retrogradely labeled and identified in brain stem slices of newborn rats, and their synaptic activity was examined using whole-cell patch-clamp. Results: 8-Hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT), an agonist of 5-HT1A/7 receptors, had no effect on the glutamatergic inputs of CVPN. In contrast, it significantly decreased the frequency and the amplitude of both the GABAergic and the glycinergic spontaneous inhibitory postsynaptic currents (slPSC). 8-OH-DPAT also caused significant amplitude decrease of the GABAergic currents evoked by stimulation of the nucleus tractus solitarius. Both the fre-quency inhibition and the amplitude inhibition of the GABAergic and the glycinergic sIPSC by 8-OH-DPAT had dose-dependent tendencies and could be reversed by WAY-100635, an antagonist of 5-HT1A/7 receptors. In the pre-exist-ence of tetrodotoxin, 8-OH-DPAT had no effect on the GABAergic or the glycinergic miniature inhibitory postsynaptic currents, and had no effect on the GABAergic or the glycinergic currents evoked by exogenous GABA or glycine. Conclusion:The 5-HT1A/7 receptor agonist excites CVPN indirectly via the inhibition of both the GABAergic and glycinergic inputs. These findings have at least in part re-vealed the synaptic mechanisms involved in the 5-HT1A/7 receptor-mediated reflex control of cardiac vagal nerves in intact animals.

  11. Mechanism of inhibition of MMTV-neu and MMTV-wnt1 induced mammary oncogenesis by RARalpha agonist AM580.

    Science.gov (United States)

    Lu, Y; Bertran, S; Samuels, T-A; Mira-y-Lopez, R; Farias, E F

    2010-06-24

    We hypothesized that specific activation of a single retinoic acid receptor-alpha (RARalpha), without direct and concurrent activation of RARbeta and gamma, will inhibit mammary tumor oncogenesis in murine models relevant to human cancer. A total of 50 uniparous mouse mammary tumor virus (MMTV)-neu and 50 nuliparous MMTV-wnt1 transgenic mice were treated with RARalpha agonist (retinobenzoic acid, Am580) that was added to the diet for 40 (neu) and 35 weeks (wnt1), respectively. Among the shared antitumor effects was the inhibition of epithelial hyperplasia, a significant increase (PAm580 also induced differentiation, in both in vivo and three-dimensional (3D) cultures. In these tumors Am580 inhibited the wnt pathway, measured by loss of nuclear beta-catenin, suggesting partial oncogene dependence of therapy. Am580 treatment increased RARbeta and lowered the level of RARgamma, an isotype whose expression we linked with tumor proliferation. The anticancer effect of RARalpha, together with the newly discovered pro-proliferative role of RARgamma, suggests that specific activation of RARalpha and inhibition of RARgamma might be effective in breast cancer therapy.

  12. Systems analysis of a RIG-I agonist inducing broad spectrum inhibition of virus infectivity.

    Directory of Open Access Journals (Sweden)

    Marie-Line Goulet

    Full Text Available The RIG-I like receptor pathway is stimulated during RNA virus infection by interaction between cytosolic RIG-I and viral RNA structures that contain short hairpin dsRNA and 5' triphosphate (5'ppp terminal structure. In the present study, an RNA agonist of RIG-I was synthesized in vitro and shown to stimulate RIG-I-dependent antiviral responses at concentrations in the picomolar range. In human lung epithelial A549 cells, 5'pppRNA specifically stimulated multiple parameters of the innate antiviral response, including IRF3, IRF7 and STAT1 activation, and induction of inflammatory and interferon stimulated genes - hallmarks of a fully functional antiviral response. Evaluation of the magnitude and duration of gene expression by transcriptional profiling identified a robust, sustained and diversified antiviral and inflammatory response characterized by enhanced pathogen recognition and interferon (IFN signaling. Bioinformatics analysis further identified a transcriptional signature uniquely induced by 5'pppRNA, and not by IFNα-2b, that included a constellation of IRF7 and NF-kB target genes capable of mobilizing multiple arms of the innate and adaptive immune response. Treatment of primary PBMCs or lung epithelial A549 cells with 5'pppRNA provided significant protection against a spectrum of RNA and DNA viruses. In C57Bl/6 mice, intravenous administration of 5'pppRNA protected animals from a lethal challenge with H1N1 Influenza, reduced virus titers in mouse lungs and protected animals from virus-induced pneumonia. Strikingly, the RIG-I-specific transcriptional response afforded partial protection from influenza challenge, even in the absence of type I interferon signaling. This systems approach provides transcriptional, biochemical, and in vivo analysis of the antiviral efficacy of 5'pppRNA and highlights the therapeutic potential associated with the use of RIG-I agonists as broad spectrum antiviral agents.

  13. Comparative receptor surface analysis of agonists for tyramine receptor which inhibit sex-pheromone production in Plodia interpunctella.

    Science.gov (United States)

    Hirashima, A; Eiraku, T; Kuwano, E; Eto, M

    2004-03-01

    The quantitative structure-activity relationship (QSAR) of a set of 29 agonists for tyramine (TA) receptor responsible for the inhibition of sex-pheromone production in Plodia interpunctella, was analyzed using comparative receptor surface analysis (CoRSA). Using the common steric and electrostatic features of the most active members of a series of compounds, CoRSA generated a virtual receptor model, represented as points on a surface complementary to the van der Waals or Wyvill steric surface of the aligned compounds. Three-dimensional energetics descriptors were calculated from receptor surface model (RSM)/ligand interaction and these three-dimensional descriptors were used in genetic partial least squares data analysis to generate a QSAR model, giving a 3D QSAR with r(2)=0.969 for calibration and CV- r(2)=0.635 for the leave-one-out cross validation.

  14. Denatonium and 6-n-Propyl-2-thiouracil, Agonists of Bitter Taste Receptor, Inhibit Contraction of Various Types of Smooth Muscles in the Rat and Mouse.

    Science.gov (United States)

    Sakai, Hiroyasu; Sato, Ken; Kai, Yuki; Chiba, Yoshihiko; Narita, Minoru

    2016-01-01

    Recently the global expression of taste 2 receptors (TAS2Rs) on smooth muscle cells in human airways was demonstrated. Here, the effects of agonists of taste receptor, type 2, denatonium and 6-n-propyl-2-thiouracil, on smooth-muscle contraction were examined in the rat and mouse. Contractions induced by carbachol (CCh), high K(+), and sodium fluoride, but not calyculin-A, were inhibited significantly in the presence of a TAS2R agonist in the bronchial smooth muscle of mice. The contraction induced by CCh was inhibited by TAS2R agonists in ileal smooth muscle. Phenylephrine-induced contraction was also inhibited by TAS2R agonists in aortic smooth muscle. Gastrointestinal motility and blood pressure were attenuated by administration of TAS2R agonists in vivo. These findings suggest that TAS2R may be receptor for endogenous biologically active substances as well as for bitter tastes on the tongue. TAS2R signaling could be employed in the development of anti-asthmatic, anti-spasmodic, and anti-hypertensive drugs.

  15. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist.

    Directory of Open Access Journals (Sweden)

    Gérald J Prud'homme

    Full Text Available BACKGROUND: Cancer stem cells (CSCs have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH. CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs. METHODOLOGY/FINDINGS: We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231 mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation. It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast

  16. Combination of roflumilast with a beta-2 adrenergic receptor agonist inhibits proinflammatory and profibrotic mediator release from human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Tannheimer Stacey L

    2012-03-01

    Full Text Available Abstract Background Small airway narrowing is an important pathology which impacts lung function in chronic obstructive pulmonary disease (COPD. The accumulation of fibroblasts and myofibroblasts contribute to inflammation, remodeling and fibrosis by production and release of mediators such as cytokines, profibrotic factors and extracellular matrix proteins. This study investigated the effects of the phosphodiesterase 4 inhibitor roflumilast, combined with the long acting β2 adrenergic agonist indacaterol, both approved therapeutics for COPD, on fibroblast functions that contribute to inflammation and airway fibrosis. Methods The effects of roflumilast and indacaterol treatment were characterized on transforming growth factor β1 (TGFβ1-treated normal human lung fibroblasts (NHLF. NHLF were evaluated for expression of the profibrotic mediators endothelin-1 (ET-1 and connective tissue growth factor (CTGF, expression of the myofibroblast marker alpha smooth muscle actin, and fibronectin (FN secretion. Tumor necrosis factor-α (TNF-α was used to induce secretion of chemokine C-X-C motif ligand 10 (CXCL10, chemokine C-C motif ligand 5 (CCL5 and granulocyte macrophage colony-stimulating factor (GM-CSF from NHLF and drug inhibition was assessed. Results Evaluation of roflumilast (1-10 μM showed no significant inhibition alone on TGFβ1-induced ET-1 and CTGF mRNA transcripts, ET-1 and FN protein production, alpha smooth muscle expression, or TNF-α-induced secretion of CXCL10, CCL5 and GM-CSF. A concentration-dependent inhibition of ET-1 and CTGF was shown with indacaterol treatment, and a submaximal concentration was chosen for combination studies. When indacaterol (0.1 nM was added to roflumilast, significant inhibition was seen on all inflammatory and fibrotic mediators evaluated, which was superior to the inhibition seen with either drug alone. Roflumilast plus indacaterol combination treatment resulted in significantly elevated phosphorylation

  17. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia.

    Science.gov (United States)

    Teramoto, Shinichiro; Miyamoto, Nobukazu; Yatomi, Kenji; Tanaka, Yasutaka; Oishi, Hidenori; Arai, Hajime; Hattori, Nobutaka; Urabe, Takao

    2011-08-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate glucose-dependent insulin secretion. The GLP-1 receptor agonist, exendin-4, has similar properties to GLP-1 and is currently in clinical use for type 2 diabetes mellitus. As GLP-1 and exendin-4 confer cardioprotection after myocardial infarction, this study was designed to assess the neuroprotective effects of exendin-4 against cerebral ischemia-reperfusion injury. Mice received a transvenous injection of exendin-4, after a 60-minute focal cerebral ischemia. Exendin-4-treated vehicle and sham groups were evaluated for infarct volume, neurologic deficit score, various physiologic parameters, and immunohistochemical analyses at several time points after ischemia. Exendin-4 treatment significantly reduced infarct volume and improved functional deficit. It also significantly suppressed oxidative stress, inflammatory response, and cell death after reperfusion. Furthermore, intracellular cyclic AMP (cAMP) levels were slightly higher in the exendin-4 group than in the vehicle group. No serial changes were noted in insulin and glucose levels in both groups. This study suggested that exendin-4 provides neuroprotection against ischemic injury and that this action is probably mediated through increased intracellular cAMP levels. Exendin-4 is potentially useful in the treatment of acute ischemic stroke.

  18. Contribution of hypothermia and CB1 receptor activation to protective effects of TAK-937, a cannabinoid receptor agonist, in rat transient MCAO model.

    Directory of Open Access Journals (Sweden)

    Noriko Suzuki

    Full Text Available BACKGROUND: Cannabinoid (CB receptor agonists are expected to alleviate ischemic brain damage by modulating neurotransmission and neuroinflammatory responses via CB(1 and CB(2 receptors, respectively. In a previous study, TAK-937, a novel potent and selective CB(1 and CB(2 receptor agonist, was shown to exert significant cerebroprotective effects accompanied by hypothermia after transient middle cerebral artery occlusion (MCAO in rats. Sustained hypothermia itself induces significant neuroprotective effects. In the present studies, we examined the relative contribution of hypothermia and CB(1 receptor activation to the cerebroprotective effects of TAK-937. METHODOLOGY/PRINCIPAL FINDINGS: Using a multichannel brain temperature controlling system we developed, the brain temperature of freely moving rats was telemetrically monitored and maintained between 37 and 38°C during intravenous infusion of TAK-937 (100 µg/kg/h or vehicle for 24 h after 2 h MCAO. AM251, a selective CB(1 receptor antagonist, was administered intraperitoneally at 30 mg/kg 30 min before starting intravenous infusion of TAK-937 (100 µg/kg/h for 24 h. Rats were sacrificed and their brains were isolated 26 h after MCAO in both experiments. When the hypothermic effect of TAK-937 was completely reversed by a brain temperature controlling system, the infarct-reducing effect of TAK-937 was attenuated in part, but remained significant. On the other hand, concomitant AM251 treatment with TAK-937 completely abolished the hypothermic and infarct-reducing effects of TAK-937. CONCLUSIONS/SIGNIFICANCE: We conclude that the cerebroprotective effects of TAK-937 were at least in part mediated by induction of hypothermia, and mainly mediated by CB(1 receptor activation.

  19. Inhibition of neointima formation by local delivery of estrogen receptor alpha and beta specific agonists

    NARCIS (Netherlands)

    Krom, Y.D.; Pires, N.M.M.; Jukema, J.W.; Vries, M.R. de; Frants, R.R.; Havekes, L.M.; Dijk, K.W. van; Quax, P.H.A.

    2007-01-01

    Objective: Neointima formation is the underlying mechanism of (in-stent) restenosis. 17β-Estradiol (E2) is known to inhibit injury-induced neointima formation and post-angioplasty restenosis. Estrogen receptor alpha (ERα) has been demonstrated to mediate E2 anti-restenotic properties. However, the r

  20. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation.

    Directory of Open Access Journals (Sweden)

    Karen A O Martins

    Full Text Available Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1β levels in the periphery and with the activation of dendritic cells (DCs, NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.

  1. The effect of hydrogen ion on the steady-state multiplicity of substrate-inhibited enzymatic reactions. II. Transient behavior.

    Science.gov (United States)

    Elnashaie, S S; Elrifaie, M A; Ibrahim, G; Badra, G

    1983-12-01

    In this paper we concentrate our attention on the stability and transient behavior of the isothermal system (CSTR) with a substrate-inhibited enzyme reaction producing hydrogen ions. Our investigation covers the region of multiple steady states uncovered previously (1) (ordinary hysteresis and isola). We investigate the local stability characteristics of the different steady states, the effect of the initial condition on the transient behavior and the response of the system to feed disturbances of various magnitudes and durations.

  2. Glibenclamide decreases ATP-induced intracellular calcium transient elevation via inhibiting reactive oxygen species and mitochondrial activity in macrophages.

    Directory of Open Access Journals (Sweden)

    Duo-ling Li

    Full Text Available Increasing evidence has revealed that glibenclamide has a wide range of anti-inflammatory effects. However, it is unclear whether glibenclamide can affect the resting and adenosine triphosphate (ATP-induced intracellular calcium ([Ca(2+]i handling in Raw 264.7 macrophages. In the present study, [Ca(2+]i transient, reactive oxygen species (ROS and mitochondrial activity were measured by the high-speed TILLvisION digital imaging system using the indicators of Fura 2-am, DCFDA and rhodamine-123, respectively. We found that glibenclamide, pinacidil and other unselective K(+ channel blockers had no effect on the resting [Ca(2+]i of Raw 264.7 cells. Extracellular ATP (100 µM induced [Ca(2+]i transient elevation independent of extracellular Ca(2+. The transient elevation was inhibited by an ROS scavenger (tiron and mitochondria inhibitor (rotenone. Glibenclamide and 5-hydroxydecanoate (5-HD also decreased ATP-induced [Ca(2+]i transient elevation, but pinacidil and other unselective K(+ channel blockers had no effect. Glibenclamide also decreased the peak of [Ca(2+]i transient induced by extracellular thapsigargin (Tg, 1 µM. Furthermore, glibenclamide decreased intracellular ROS and mitochondrial activity. When pretreated with tiron and rotenone, glibenclamide could not decrease ATP, and Tg induced maximal [Ca(2+]i transient further. We conclude that glibenclamide may inhibit ATP-induced [Ca(2+]i transient elevation by blocking mitochondria KATP channels, resulting in decreased ROS generation and mitochondrial activity in Raw 264.7 macrophages.

  3. Sustained Inhibition of Proliferative Response After Transient FGF Stimulation Is Mediated by Interleukin 1 Signaling.

    Science.gov (United States)

    Poole, Ashleigh; Kacer, Doreen; Cooper, Emily; Tarantini, Francesca; Prudovsky, Igor

    2016-03-01

    Transient FGF stimulation of various cell types results in FGF memory--a sustained blockage of efficient proliferative response to FGF and other growth factors. FGF memory establishment requires HDAC activity, indicating its epigenetic character. FGF treatment stimulates proinflammatory NFκB signaling, which is also critical for FGF memory formation. The search for FGF-induced mediators of FGF memory revealed that FGF stimulates HDAC-dependent expression of the inflammatory cytokine IL1α. Similarly to FGF, transient cell treatment with recombinant IL1α inhibits the proliferative response to further FGF and EGF stimulation, but does not prevent FGF receptor-mediated signaling. Interestingly, like cells pretreated with FGF1, cells pretreated with IL1α exhibit enhanced restructuring of actin cytoskeleton and increased migration in response to FGF stimulation. IRAP, a specific inhibitor of IL 1 receptor, and a neutralizing anti-IL1α antibody prevent the formation of FGF memory and rescue an efficient proliferative response to FGF restimulation. A similar effect results following treatment with the anti-inflammatory agents aspirin and dexamethasone. Thus, FGF memory is mediated by proinflammatory IL1 signaling. It may play a role in the limitation of proliferative response to tissue damage and prevention of wound-induced hyperplasia.

  4. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption.

    Science.gov (United States)

    Agné, Alisa M; Baldin, Jan-Peter; Benjamin, Audra R; Orogo-Wenn, Maria C; Wichmann, Lukas; Olson, Kenneth R; Walters, Dafydd V; Althaus, Mike

    2015-04-01

    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance.

  5. Phosphocholine-Modified Macromolecules and Canonical Nicotinic Agonists Inhibit ATP-Induced IL-1β Release.

    Science.gov (United States)

    Hecker, Andreas; Küllmar, Mira; Wilker, Sigrid; Richter, Katrin; Zakrzewicz, Anna; Atanasova, Srebrena; Mathes, Verena; Timm, Thomas; Lerner, Sabrina; Klein, Jochen; Kaufmann, Andreas; Bauer, Stefan; Padberg, Winfried; Kummer, Wolfgang; Janciauskiene, Sabina; Fronius, Martin; Schweda, Elke K H; Lochnit, Günter; Grau, Veronika

    2015-09-01

    IL-1β is a potent proinflammatory cytokine of the innate immune system that is involved in host defense against infection. However, increased production of IL-1β plays a pathogenic role in various inflammatory diseases, such as rheumatoid arthritis, gout, sepsis, stroke, and transplant rejection. To prevent detrimental collateral damage, IL-1β release is tightly controlled and typically requires two consecutive danger signals. LPS from Gram-negative bacteria is a prototypical first signal inducing pro-IL-1β synthesis, whereas extracellular ATP is a typical second signal sensed by the ATP receptor P2X7 that triggers activation of the NLRP3-containing inflammasome, proteolytic cleavage of pro-IL-1β by caspase-1, and release of mature IL-1β. Mechanisms controlling IL-1β release, even in the presence of both danger signals, are needed to protect from collateral damage and are of therapeutic interest. In this article, we show that acetylcholine, choline, phosphocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficiently inhibit ATP-mediated IL-1β release in human and rat monocytes via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Of note, we identify receptors for phosphocholine-modified macromolecules that are synthesized by microbes and eukaryotic parasites and are well-known modulators of the immune system. Our data suggest that an endogenous anti-inflammatory cholinergic control mechanism effectively controls ATP-mediated release of IL-1β and that the same mechanism is used by symbionts and misused by parasites to evade innate immune responses of the host.

  6. A novel synthetic smoothened antagonist transiently inhibits pancreatic adenocarcinoma xenografts in a mouse model.

    Directory of Open Access Journals (Sweden)

    Martin F Strand

    Full Text Available BACKGROUND: Hedgehog (Hh signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials. PRINCIPAL FINDINGS: Using Shh-Light II (Shh-L2 and alkaline phosphatase (AP based screening formats on a "focused diversity" library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-ylphenylbenzamide. MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo. SIGNIFICANCE: We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists.

  7. Dopamine D2 receptor radiotracers [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Patrick N. [Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada)], E-mail: patrick.mccormick@camhpet.ca; Kapur, Shitij [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Seeman, Philip [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2008-01-15

    Introduction: In vitro, the dopamine D2 receptor exists in two states, with high and low affinity for agonists. The high-affinity state is the physiologically active state thought to be involved in dopaminergic illnesses such as schizophrenia. The positron emission tomography radiotracer [{sup 11}C](+)-PHNO ([{sup 11}C](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4] oxazin-9-o l), being a D2 agonist, should selectively label the high-affinity state at tracer dose and therefore be more susceptible to competition by agonist as compared to the antagonist [{sup 3}H]raclopride, which binds to both affinity states. Methods: We tested this prediction using ex vivo dual-radiotracer experiments in conscious rats. D2 antagonists (haloperidol or clozapine), a partial agonist (aripiprazole), a full agonist [(-)-NPA] or the dopamine-releasing drug amphetamine (AMPH) were administered to rats prior to an intravenous coinjection of [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride. Rats were sacrificed 60 min after radiotracer injection. Striatum, cerebellum and plasma samples were counted for {sup 11}C and {sup 3}H. The specific binding ratio {l_brace}SBR, i.e., [%ID/g (striatum)-%ID/g (cerebellum)]/(%ID/g (cerebellum){r_brace} was used as the outcome measure. Results: In response to D2 antagonists, partial agonist or full agonist, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs responded indistinguishably in terms of both ED{sub 50} and Hill slope (e.g., (-)-NPA ED{sub 50} values are 0.027 and 0.023 mg/kg for [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride, respectively). In response to AMPH challenge, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs were inhibited to the same degree. Conclusions: We have shown that the SBRs of [{sup 11}C](+)-PHNO- and [{sup 3}H]raclopride do not differ in their response to agonist challenge. These results do not support predictions of the in vivo binding behavior of a D2 agonist radiotracer and cast some doubt on the in vivo

  8. Ciproxifan, a histamine H3 receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus.

    Science.gov (United States)

    Lu, Cheng-Wei; Lin, Tzu-Yu; Chang, Chia-Ying; Huang, Shu-Kuei; Wang, Su-Jane

    2017-03-15

    Ciproxifan is an H3 receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca(2+)-dependent glutamate release and cytosolic Ca(2+) concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca(2+)-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A2 (PLA2) inhibitor OBAA, prostaglandin E2 (PGE2), PGE2 subtype 2 (EP2) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H3 receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca(2+) entry by diminishing PLA2/PGE2/EP2 receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release.

  9. Three-dimensional pharmacophore hypotheses of octopamine/tyramine agonists which inhibit [1-14C]acetate incorporation in Plodia interpunctella.

    Science.gov (United States)

    Hirashima, Akinori; Eiraku, Tomohiko; Shigeta, Yoko; Kuwano, Eiichi

    2003-01-01

    Three-dimensional pharmacophore hypotheses were built from a set of 36 octopamine (OA)/tyramine (TA) agonists responsible for the inhibition of sex-pheromone production in Plodia interpunctella. Among the ten chemical-featured models generated by a program Catalyst/Hypo, hypotheses including hydrogen-bond acceptor (HBA), hydrogen-bond acceptor aliphatic (HBAl), hydrophobic (Hp), hydrophobic aromatic (HpAr) and hydrophobic aliphatic (HpAl) features were considered to be important and predictive in evaluating OA/TA agonists. Active agonists mapped well onto all the features of the hypothesis such as HBA, HBAl, Hp, HpAr and HpAl features. On the other hand, inactive compounds were shown to be poorly capable of achieving an energetically favorable conformation shared by the active molecules in order to fit the 3-D chemical-feature pharmacophore models. Those hypotheses are considered to be used in designing new leads for hopefully more active compounds. Further research on the comparison of models from the agonists may help elucidate the mechanisms of OA/TA receptor-ligand interactions.

  10. Kindling induces transient fast inhibition in the dentate gyrus--CA3 projection.

    Science.gov (United States)

    Gutiérrez, R; Heinemann, U

    2001-04-01

    The granule cells of the dentate gyrus (DG) send a strong glutamatergic projection, the mossy fibre tract, toward the hippocampal CA3 field, where it excites pyramidal cells and neighbouring inhibitory interneurons. Despite their excitatory nature, granule cells contain small amounts of GAD (glutamate decarboxylase), the main synthetic enzyme for the inhibitory transmitter GABA. Chronic temporal lobe epilepsy results in transient upregulation of GAD and GABA in granule cells, giving rise to the speculation that following overexcitation, mossy fibres exert an inhibitory effect by release of GABA. We therefore stimulated the DG and recorded synaptic potentials from CA3 pyramidal cells in brain slices from kindled and control rats. In both preparations, DG stimulation caused excitatory postsynaptic potential (EPSP)/inhibitory postsynaptic potential (IPSP) sequences. These potentials could be completely blocked by glutamate receptor antagonists in control rats, while in the kindled rats, a bicuculline-sensitive fast IPSP remained, with an onset latency similar to that of the control EPSP. Interestingly, this IPSP disappeared 1 month after the last seizure. When synaptic responses were evoked by high-frequency stimulation, EPSPs in normal rats readily summate to evoke action potentials. In slices from kindled rats, a summation of IPSPs overrides that of the EPSPs and reduces the probability of evoking action potentials. Our data show for the first time that kindling induces functionally relevant activity-dependent expression of fast inhibition onto pyramidal cells, coming from the DG, that can limit CA3 excitation in a frequency-dependent manner.

  11. FXR agonists enhance the sensitivity of biliary tract cancer cells to cisplatin via SHP dependent inhibition of Bcl-xL expression

    Science.gov (United States)

    Wang, Wei; Zhan, Ming; Li, Qi; Chen, Wei; Chu, Huiling; Huang, Qihong; Hou, Zhaoyuan; Man, Mohan; Wang, Jian

    2016-01-01

    Chemoresistance is common in patients with biliary tract cancer (BTC) including gallbladder cancer (GBC) and cholangiocarcinoma (CC). Therefore, it is necessary to identify effective chemotherapeutic agents for BTC. In the present study, we for the first time tested the effect of farnesoid X receptor (FXR) agonists GW4064 and CDCA (chenodeoxycholic acid) in combination with cisplatin (CDDP) on increasing the chemosensitivity in BTC. Our results show that co-treatment of CDDP with FXR agonists remarkably enhance chemosensitivity of BTC cells. Mechanistically, we found that activation of FXR induced expression of small heterodimer partner (SHP), which in turn inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation and resulted in down-regulation of Bcl-xL expression in BTC cells, leading to increased susceptibility to CDDP. Moreover, the experiments on tumor-bearing mice showed that GW4064/CDDP co-treatment inhibited the tumor growth in vivo by up-regulating SHP expression and down-regulating STAT3 phosphorylation. These results suggest CDDP in combination with FXR agonists could be a potential new therapeutic strategy for BTC. PMID:27127878

  12. A retinoic acid receptor beta agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord.

    Science.gov (United States)

    Agudo, Marta; Yip, Ping; Davies, Meirion; Bradbury, Elizabeth; Doherty, Patrick; McMahon, Stephen; Maden, Malcolm; Corcoran, Jonathan P T

    2010-01-01

    After spinal cord injury in the adult mammal, axons do not normally regrow and this commonly leads to paralysis. Retinoic acid (RA) can stimulate neurite outgrowth in vitro of both the embryonic central and peripheral nervous system, via activation of the retinoic acid receptor (RAR) beta2. We show here that regions of the adult CNS, including the cerebellum and cerebral cortex, express RARbeta2. We show that when cerebellar neurons are grown in the presence of myelin-associated glycoprotein (MAG) which inhibits neurite outgrowth, RARbeta can be activated in a dose dependent manner by a RARbeta agonist (CD2019) and neurite outgrowth can occur via phosphoinositide 3-kinase (PI3K) signalling. In a model of spinal cord injury CD2019 also acts through PI3K signalling to induce axonal outgrowth of descending corticospinal fibres and promote functional recovery. Our data suggest that RARbeta agonists may be of therapeutic potential for human spinal cord injuries.

  13. Transmitter modulation of spike-evoked calcium transients in arousal related neurons

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Leonard, Christopher S

    2006-01-01

    imaging in mouse (P14-P30) brain slices. Carbachol, noradrenaline and adenosine inhibited spike-evoked Ca(2+)-transients, while histamine, t-ACPD, a metabotropic glutamate receptor agonist, and orexin-A did not. Carbachol inhibition was blocked by atropine, was insensitive to blockade of G...

  14. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving ILC3

    Science.gov (United States)

    Withers, David R.; Hepworth, Matthew R.; Wang, Xinxin; Mackley, Emma C.; Halford, Emily E.; Dutton, Emma E.; Marriott, Clare L.; Brucklacher-Waldert, Verena; Veldhoen, Marc; Kelsen, Judith; Baldassano, Robert N.; Sonnenberg, Gregory F.

    2016-01-01

    RAR-related orphan receptor γt (ROR-γt) directs differentiation of pro-inflammatory T helper 17 (TH17) cells and is a potential therapeutic target in chronic autoimmune and inflammatory diseases1–3. However, ROR-γt-dependent group 3 innate lymphoid cells (ILC3s) provide essential immunity and tissue protection in the intestine4–11, suggesting that targeting ROR-γt could also result in impaired host defense to infection or enhanced tissue damage. Here, we demonstrate that transient chemical inhibition of ROR-γt in mice selectively reduces cytokine production from TH17 cells but not ILC3s in the context of intestinal infection with Citrobacter rodentium, resulting in preserved innate immunity. Transient genetic deletion of ROR-γt in mature ILC3s also did not impair cytokine responses in the steady state or during infection. Finally, pharmacologic inhibition of ROR-γt provided therapeutic benefit in mouse models of intestinal inflammation, and reduced the frequencies of TH17 cells but not ILC3s isolated from primary intestinal samples of individuals with inflammatory bowel disease (IBD). Collectively, these results reveal differential requirements for ROR-γt in the maintenance of TH17 cell versus ILC3 responses, and suggest that transient inhibition of ROR-γt is a safe and effective therapeutic approach during intestinal inflammation. PMID:26878233

  15. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957

    DEFF Research Database (Denmark)

    Palner, Mikael; McCormick, Patrick; Parkes, Jun;

    2010-01-01

    R-[(11)C]-SKF 82957 is a high-affinity and potent dopamine D(1) receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway...

  16. Selective inhibition of transient K+ current by La3+ in crab peptide-secretory neurons.

    Science.gov (United States)

    Duan, S; Cooke, I M

    1999-04-01

    Although divalent cations and lanthides are well-known inhibitors of voltage-dependent Ca2+ currents (ICa), their ability to selectively inhibit a voltage-gated K+ current is less widely documented. We report that La3+ inhibits the transient K+ current (IA) of crab (Cardisoma carnifex) neurosecretory cells at ED50 approximately 5 microM, similar to that blocking ICa, without effecting the delayed rectifier K+ current (IK). Neurons were dissociated from the major crustacean neuroendocrine system, the X-organ-sinus gland, plated in defined medium, and recorded by whole cell patch clamp after 1-2 days in culture. The bath saline included 0.5 microM TTX and 0.5 mM CdCl2 to eliminate inward currents. Responses to depolarizing steps from a holding potential of -40 mV represented primarily IK. They were unchanged by La3+ up to 500 microM. Currents from -80 mV in the presence of 20 mM TEA were shown to represent primarily IA. La3+ (with TEA) reduced IA and maximum conductance (GA) by approximately 10% for 1 microM and another 10% each in 10 and 100 microM La3+. Normalized GA-V curves were well fit with a single Boltzmann function, with V1/2 +4 mV and slope 15 mV in control; V1/2 was successively approximately 15 mV depolarized and slope increased approximately 2 mV for each of these La3+ concentrations. Cd2+ (1 mM), Zn2+ (200 microM), and Pb2+ (100 microM) or removal of saline Mg2+ (26 mM) had little or no effect on IA. Steady-state inactivation showed similar right shifts (from V1/2 -39 mV) and slope increases (from 2.5 mV) in 10 and 100 microM La3+. Time to peak IA was slowed in 10 and 100 microM La3+, whereas curves of normalized time constants of initial decay from peak IA versus Vc were right-shifted successively approximately 15 mV for the three La3+ concentrations. The observations were fitted by a Woodhull-type model postulating a La3+-selective site that lies 0.26-0.34 of the distance across the membrane electric field, and both block of K+ movement and

  17. Expression profiling in APP23 mouse brain: inhibition of Aβ amyloidosis and inflammation in response to LXR agonist treatment

    Directory of Open Access Journals (Sweden)

    Mangelsdorf David

    2007-10-01

    Full Text Available Abstract Background Recent studies demonstrate that in addition to its modulatory effect on APP processing, in vivo application of Liver X Receptor agonist T0901317 (T0 to APP transgenic and non-transgenic mice decreases the level of Aβ42. Moreover, in young Tg2576 mice T0 completely reversed contextual memory deficits. Compared to other tissues, the regulatory functions of LXRs in brain remain largely unexplored and our knowledge so far is limited to the cholesterol transporters and apoE. In this study we applied T0 to APP23 mice for various times and examined gene and protein expression. We also performed a series of experiments with primary brain cells derived from wild type and LXR knockout mice subjected to various LXR agonist treatments and inflammatory stimuli. Results We demonstrate an upregulation of genes related to lipid metabolism/transport, metabolism of xenobiotics and detoxification. Downregulated genes are involved in immune response and inflammation, cell death and apoptosis. Additional treatment experiments demonstrated an increase of soluble apolipoproteins E and A-I and a decrease of insoluble Aβ. In primary LXRwt but not in LXRα-/-β-/- microglia and astrocytes LXR agonists suppressed the inflammatory response induced by LPS or fibrillar Aβ. Conclusion The results show that LXR agonists could alleviate AD pathology by acting on amyloid deposition and brain inflammation. An increased understanding of the LXR controlled regulation of Aβ aggregation and clearance systems will lead to the development of more specific and powerful agonists targeting LXR for the treatment of AD.

  18. GW501516, a PPARδ agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1-NFκB pathway in mice.

    Directory of Open Access Journals (Sweden)

    Xu Yang

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are a nuclear receptor family of ligand-inducible transcription factors, which have three different isoforms: PPARα, δ and γ. It has been demonstrated that PPARα and γ agonists have renoprotective effects in proteinuric kidney diseases; however, the role of PPARδ agonists in kidney diseases remains unclear. Thus, we examined the renoprotective effect of GW501516, a PPARδ agonist, in a protein-overload mouse nephropathy model and identified its molecular mechanism. Mice fed with a control diet or GW501516-containing diet were intraperitoneally injected with free fatty acid (FFA-bound albumin or PBS(-. In the control group, protein overload caused tubular damages, macrophage infiltration and increased mRNA expression of MCP-1 and TNFα. These effects were prevented by GW501516 treatment. In proteinuric kidney diseases, excess exposure of proximal tubular cells to albumin, FFA bound to albumin or cytokines such as TNFα is detrimental. In vitro studies using cultured proximal tubular cells showed that GW501516 attenuated both TNFα- and FFA (palmitate-induced, but not albumin-induced, MCP-1 expression via direct inhibition of the TGF-β activated kinase 1 (TAK1-NFκB pathway, a common downstream signaling pathway to TNFα receptor and toll-like receptor-4. In conclusion, we demonstrate that GW501516 has an anti-inflammatory effect in renal tubular cells and may serve as a therapeutic candidate to attenuate tubulointerstitial lesions in proteinuric kidney diseases.

  19. The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets.

    Science.gov (United States)

    Masiello, P; Novelli, M; Bombara, M; Fierabracci, V; Vittorini, S; Prentki, M; Bergamini, E

    2002-01-01

    This study intended to test the hypothesis that intracellular lipolysis in the pancreatic beta cells is implicated in the regulation of insulin secretion stimulated by nutrient secretagogues or cyclic adenosine monophosphate (cAMP) agonists. Indeed, although lipid signaling molecules were repeatedly reported to influence beta-cell function, the contribution of intracellular triglycerides to the generation of these molecules has remained elusive. Thus, we have studied insulin secretion of isolated rat pancreatic islets in response to various secretagogues in the presence or absence of 3,5-dimethylpyrazole (DMP), a water-soluble and highly effective antilipolytic agent, as previously shown in vivo. In vitro exposure of islets to DMP resulted in an inhibition (by approximately 50%) of the insulin release stimulated not only by high glucose, but also by another nutrient secretagogue, 2-ketoisocaproate, as well as the cAMP agonists 3-isobutyl-1-methylxanthine and glucagon. The inhibitory effect of DMP, which was not due to alteration of islet glucose oxidation, could be reversed upon addition of sn-1,2-dioctanoylglycerol, a synthetic diglyceride, which activates protein kinase C. The results provide direct pharmacologic evidence supporting the concept that endogenous beta-cell lipolysis plays an important role in the generation of lipid signaling molecules involved in the control of insulin secretion in response to both fuel stimuli and cAMP agonists.

  20. AdipoRon, an adiponectin receptor agonist, attenuates PDGF-induced VSMC proliferation through inhibition of mTOR signaling independent of AMPK: Implications toward suppression of neointimal hyperplasia.

    Science.gov (United States)

    Fairaq, Arwa; Shawky, Noha M; Osman, Islam; Pichavaram, Prahalathan; Segar, Lakshman

    2017-02-22

    Hypoadiponectinemia is associated with an increased risk of coronary artery disease. Although adiponectin replenishment mitigates neointimal hyperplasia and atherosclerosis in mouse models, adiponectin therapy has been hampered in a clinical setting due to its large molecular size. Recent studies demonstrate that AdipoRon (a small-molecule adiponectin receptor agonist) improves glycemic control in type 2 diabetic mice and attenuates postischemic cardiac injury in adiponectin-deficient mice, in part, through activation of AMP-activated protein kinase (AMPK). To date, it remains unknown as to whether AdipoRon regulates vascular smooth muscle cell (VSMC) proliferation, which plays a major role in neointima formation. In the present study, oral administration of AdipoRon (50mg/kg) in C57BL/6J mice significantly diminished arterial injury-induced neointima formation by ∼57%. Under in vitro conditions, AdipoRon treatment led to significant inhibition of platelet-derived growth factor (PDGF)-induced VSMC proliferation, DNA synthesis, and cyclin D1 expression. While AdipoRon induced a rapid and sustained activation of AMPK, it also diminished basal and PDGF-induced phosphorylation of mTOR and its downstream targets, including p70S6K/S6 and 4E-BP1. However, siRNA-mediated AMPK downregulation showed persistent inhibition of p70S6K/S6 and 4E-BP1 phosphorylation, indicating AMPK-independent effects for AdipoRon inhibition of mTOR signaling. In addition, AdipoRon treatment resulted in a sustained and transient decrease in PDGF-induced phosphorylation of Akt and ERK, respectively. Furthermore, PDGF receptor-β tyrosine phosphorylation, which controls the phosphorylation state of Akt and ERK, was diminished upon AdipoRon treatment. Together, the present findings suggest that orally-administered AdipoRon has the potential to limit restenosis after angioplasty by targeting mTOR signaling independent of AMPK activation.

  1. Vitamin D receptor agonists inhibit pro-inflammatory cytokine production from the respiratory epithelium in cystic fibrosis.

    LENUS (Irish Health Repository)

    McNally, P

    2011-07-22

    BACKGROUND: 1,25-Dihydroxycholecalciferol (1,25(OH)(2)D(3)) has been shown to mitigate epithelial inflammatory responses after antigen exposure. Patients with cystic fibrosis (CF) are at particular risk for vitamin D deficiency. This may contribute to the exaggerated inflammatory response to pulmonary infection in CF. METHODS: CF respiratory epithelial cell lines were exposed to Pseudomonas aeruginosa lipopolysaccharide (LPS) and Pseudomonas conditioned medium (PCM) in the presence or absence of 1,25(OH)(2)D(3) or a range of vitamin D receptor (VDR) agonists. Levels of IL-6 and IL-8 were measured in cell supernatants, and cellular total and phosphorylated IκBα were determined. Levels of human cathelicidin antimicrobial peptide (hCAP18) mRNA and protein were measured in cells after treatment with 1,25(OH)(2)D(3). RESULTS: Pretreatment with 1,25(OH)(2)D(3) was associated with significant reductions in IL-6 and IL-8 protein secretion after antigen exposure, a finding reproduced with a range of low calcaemic VDR agonists. 1,25(OH)(2)D(3) treatment led to a decrease in IκBα phosphorylation and increased total cellular IκBα. Treatment with 1,25(OH)(2)D(3) was associated with an increase in hCAP18\\/LL-37 mRNA and protein levels. CONCLUSIONS: Both 1,25(OH)(2)D(3) and other VDR agonists significantly reduce the pro-inflammatory response to antigen challenge in CF airway epithelial cells. VDR agonists have significant therapeutic potential in CF.

  2. A novel PPAR alpha/gamma dual agonist inhibits cell growth and induces apoptosis in human glioblastoma T98G cells

    Institute of Scientific and Technical Information of China (English)

    Da-chuan LIU; Chuan-bing ZANG; Hong-yu LIU; Kurt POSSINGER; Shao-guang FAN; Elena ELSTNER

    2004-01-01

    AIM: To examine the effect of a novel peroxisome proliferator-activated receptor (PPAR) α/γ dual agonist TZD 18 on cell proliferation and apoptosis in human glioblastoma T98G cells and its possible mechanism. METHODS: RTPCR, MTT, TUNEL, Flow cytometry, and Western blot analysis were employed. RESULTS: TZD18 inhibited the growth of T98G cells in a concentration-dependent manner, which was associated with a G1 to S cell cycle arrest.Besides, significant apoptosis was induced after treatment with a non-toxic dose of TZD 18. During the process,the expression of Bcl-2 protein was down-regulated, while that of Bax and p27kip proteins was up-regulated, and the activity of caspase-3 was elevated. However, this effect appeared to be PPARα and PPARγ independent since their antagonists could not reverse this effect. CONCLUSIONS: TZD18, a novel PPARα/γ dual agonist, inhibited cell growth and induce apoptosis in human glioblastoma T98G cells in vitro, indicating a therapeutic potential for TZD 18 in the treatment of glioblastoma.

  3. Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release

    DEFF Research Database (Denmark)

    Bortz, D M; Mikkelsen, J D; Bruno, J P

    2013-01-01

    The ability of local infusions of the alpha 7 nicotinic acetycholine receptor (α7 nAChR) partial agonist SSR180711 to evoke glutamate release in prefrontal cortex was determined in awake rats using a microelectrode array. Infusions of SSR180711 produced dose-dependent increases in glutamate level...

  4. Synthetic liver X receptor agonist T0901317 inhibits semicarbazide-sensitive amine oxidase gene expression and activity in apolipoprotein E knockout mice

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Dai; Xiang Ou; Xinrui Hao; Dongli Cao; Yaling Tang; Yanwei Hu; Xiaoxu Li; Chaoke Tang

    2008-01-01

    Semicarbazide-sensitive amine oxidase(SSAO)catalyzes oxidative deamination of primary aromatic and aliphatic amines.Increased SSAO activity has been found in atherosclerosis and diabetes mellitus.We hypothesize that the anti-atherogenic effect of liver X receptors(LXRs)might be related to the inhibition of SSAD gene expression and its activity.In this study,we investigated the effect of LXR agonist T0901317 on SSAO gene expression and its activity in apolipoprotein E knockout(apoE-/-)mice.Male apoE-/-mice(8 weeks old) were randomly divided into four groups:basal control group;vehicle group;prevention group;and treatment group.SSAO gene expression was analyzed by real-time quantitative polymerase chain reaction and its activity was determined.The activity of superoxide dismutase and content of malondialdehy de in the aorta and liver were also determined.In T0901317-treated mice,SSAO gene expression was significantly decreased in the aorta,liver,small intestine,and brain.SSAO activities in serum and in these tissues were also inhibited.The amount of superoxide dismutase in the aorta and liver of the prevention group and treatment group was significantly higher compared with the vehicle group(P<0.05).Malondialdehyde in the tissues of these two groups was significantly lower compared with the vehicle group(P<0.05).Our results showed that T0901317 inhibits SSAO gene expression and its activity in atherogenic apoE-/-mice.The atheroprotective effect of LXR agonist T0901317 is related to the inhibition of SSAO gene expression and its activity.

  5. The GABAА receptors agonists and antagonists influence on formation of a latent inhibition at rats with different levels of anxiety

    OpenAIRE

    A. V. Redkina; L. V. Loskutova; Т. A. Zamoshchina

    2012-01-01

    Latent inhibition phenomenon indexes the ability to ignore irrelevant stimuli. Disturbance of latent inhibition is registered in different psychiatric populations with pathology in the emotional and cognitive spheres. In our experiments latent inhibition was measured in a conditioned passive avoidance reaction in rats that previously received 0 or 20 conditioned stimuli exposures followed by foot shock. Latent inhibition was disrupted in high-anxiety rats and pathologically enhanced in low-an...

  6. Transient receptor potential vanilloid 1 activation by dietary capsaicin promotes urinary sodium excretion by inhibiting epithelial sodium channel α subunit-mediated sodium reabsorption.

    Science.gov (United States)

    Li, Li; Wang, Fei; Wei, Xing; Liang, Yi; Cui, Yuanting; Gao, Feng; Zhong, Jian; Pu, Yunfei; Zhao, Yu; Yan, Zhencheng; Arendshorst, William J; Nilius, Bernd; Chen, Jing; Liu, Daoyan; Zhu, Zhiming

    2014-08-01

    High salt (HS) intake contributes to the development of hypertension. Epithelial sodium channels play crucial roles in regulating renal sodium reabsorption and blood pressure. The renal transient receptor potential vanilloid 1 (TRPV1) cation channel can be activated by its agonist capsaicin. However, it is unknown whether dietary factors can act on urinary sodium excretion and renal epithelial sodium channel (ENaC) function. Here, we report that TRPV1 activation by dietary capsaicin increased urinary sodium excretion through reducing sodium reabsorption in wild-type (WT) mice on a HS diet but not in TRPV1(-/-) mice. The effect of capsaicin on urinary sodium excretion was involved in inhibiting αENaC and its related with-no-lysine kinase 1/serum- and glucocorticoid-inducible protein kinase 1 pathway in renal cortical collecting ducts of WT mice. Dietary capsaicin further reduced the increased αENaC activity in WT mice attributed to the HS diet. In contrast, this capsaicin effect was absent in TRPV1(-/-) mice. Immunoprecipitation study indicated αENaC specifically coexpressed and functionally interact with TRPV1 in renal cortical collecting ducts of WT mice. Additionally, ENaC activity and expression were suppressed by capsaicin-mediated TRPV1 activation in cultured M1-cortical collecting duct cells. Long-term dietary capsaicin prevented the development of high blood pressure in WT mice on a HS diet. It concludes that TRPV1 activation in the cortical collecting ducts by capsaicin increases urinary sodium excretion and avoids HS diet-induced hypertension through antagonizing αENaC-mediated urinary sodium reabsorption. Dietary capsaicin may represent a promising lifestyle intervention in populations exposed to a high dietary salt intake.

  7. A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat.

    Science.gov (United States)

    Han, Ling; Hölscher, Christian; Xue, Guo-Fang; Li, Guanglai; Li, Dongfang

    2016-01-06

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have been shown to be neuroprotective in previous studies in animal models of Alzheimer's or Parkinson's disease. Recently, novel dual-GLP-1/GIP receptor agonists that activate both receptors (DA) were developed to treat diabetes. We tested the protective effects of a novel potent DA against middle cerebral artery occlusion injury in rats and compared it with a potent GLP-1 analog, Val(8)-GLP-1(glu-PAL). Animals were evaluated for neurologic deficit score, infarct volume, and immunohistochemical analyses of the brain at several time points after ischemia. The Val(8)-GLP-1(glu-PAL)-treated and DA-treated groups showed significantly reduced scores of neurological dysfunction, cerebral infarction size, and percentage of TUNEL-positive apoptotic neurons. Furthermore, the expression of the apoptosis marker Bax, the inflammation marker iNOS, and the survival marker Bcl-2 was significantly increased. The DA-treated group was better protected against neurodegeneration than the Val(8)-GLP-1(glu-PAL) group, and the scores of neurological dysfunction, cerebral infarction size, and expression of Bcl-2 were higher, whereas the percentage of TUNEL-positive neurons and the levels of Bax and iNOS were lower in the DA group. DA treatment reduced the infarct volume and improved the functional deficit. It also suppressed the inflammatory response and cell apoptosis after reperfusion. In conclusion, the novel GIP and GLP-1 dual-receptor agonist is more neuroprotective than a GLP-1 receptor agonist in key biomarkers of neuronal degeneration.

  8. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mandi M. Hopkins

    2016-01-01

    Full Text Available Many key actions of ω-3 (n-3 fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs in the free fatty acid receptor (FFAR family, FFA1 (GPR40 and FFA4 (GPR120. n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA, and the tyrosine kinase receptor activated by epidermal growth factor (EGF, was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  9. The novel PPAR α/γ dual agonist MHY 966 modulates UVB-induced skin inflammation by inhibiting NF-κB activity.

    Directory of Open Access Journals (Sweden)

    Min Hi Park

    Full Text Available Ultraviolet B (UVB; 290~320nm irradiation-induced lipid peroxidation induces inflammatory responses that lead to skin wrinkle formation and epidermal thickening. Peroxisome proliferator-activated receptor (PPAR α/γ dual agonists have the potential to be used as anti-wrinkle agents because they inhibit inflammatory response and lipid peroxidation. In this study, we evaluated the function of 2-bromo-4-(5-chloro-benzo[d]thiazol-2-yl phenol (MHY 966, a novel synthetic PPAR α/γ dual agonist, and investigated its anti-inflammatory and anti-lipid peroxidation effects. The action of MHY 966 as a PPAR α/γ dual agonist was also determined in vitro by reporter gene assay. Additionally, 8-week-old melanin-possessing hairless mice 2 (HRM2 were exposed to 150 mJ/cm(2 UVB every other day for 17 days and MHY 966 was simultaneously pre-treated every day for 17 days to investigate the molecular mechanisms involved. MHY 966 was found to stimulate the transcriptional activities of both PPAR α and γ. In HRM2 mice, we found that the skins of mice exposed to UVB showed significantly increased pro-inflammatory mediator levels (NF-κB, iNOS, and COX-2 and increased lipid peroxidation, whereas MHY 966 co-treatment down-regulated these effects of UVB by activating PPAR α and γ. Thus, the present study shows that MHY 966 exhibits beneficial effects on inflammatory responses and lipid peroxidation by simultaneously activating PPAR α and γ. The major finding of this study is that MHY 966 demonstrates potential as an agent against wrinkle formation associated with chronic UVB exposure.

  10. Pro-cognitive and antipsychotic efficacy of the alpha7 nicotinic partial agonist SSR180711 in pharmacological and neurodevelopmental latent inhibition models of schizophrenia.

    Science.gov (United States)

    Barak, Segev; Arad, Michal; De Levie, Amaya; Black, Mark D; Griebel, Guy; Weiner, Ina

    2009-06-01

    Schizophrenia symptoms can be segregated into positive, negative and cognitive, which exhibit differential sensitivity to drug treatments. Accumulating evidence points to efficacy of alpha7 nicotinic receptor (nAChR) agonists for cognitive deficits in schizophrenia but their activity against positive symptoms is thought to be minimal. The present study examined potential pro-cognitive and antipsychotic activity of the novel selective alpha7 nAChR partial agonist SSR180711 using the latent inhibition (LI) model. LI is the reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, compared with a novel stimulus. Here, no-drug controls displayed LI if non-reinforced pre-exposure to a tone was followed by weak but not strong conditioning (2 vs 5 tone-shock pairings). MK801 (0.05 mg/kg, i.p.) -treated rats as well as rats neonatally treated with nitric oxide synthase inhibitor L-NoArg (10 mg/kg, s.c.) on postnatal days 4-5, persisted in displaying LI with strong conditioning, whereas amphetamine (1 mg/kg) -treated rats failed to show LI with weak conditioning. SSR180711 (0.3, 1, 3 mg/kg, i.p.) was able to alleviate abnormally persistent LI produced by acute MK801 and neonatal L-NoArg; these models are believed to model cognitive aspects of schizophrenia and activity here was consistent with previous findings with alpha7-nAChR agonists. In addition, unexpectedly, SSR180711 (1, 3 mg/kg, i.p.) potentiated LI with strong conditioning in no-drug controls and reversed amphetamine-induced LI disruption, two effects considered predictive of activity against positive symptoms of schizophrenia. These findings suggest that SSR180711 may be beneficial not only for the treatment of cognitive symptoms in schizophrenia, as reported multiple times previously, but also positive symptoms.

  11. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    Science.gov (United States)

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; pcaffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release.

  12. Stimulus-evoked calcium transients in somatosensory cortex are temporarily inhibited by a nearby microhemorrhage.

    Directory of Open Access Journals (Sweden)

    Flor A Cianchetti

    Full Text Available Although microhemorrhages are common in the brain of the elderly, the direct impact of these lesions on neural function remains unclear. In this work, we used femtosecond laser irradiation to rupture the wall of single arterioles in the brain of anesthetized rodents, producing a hematoma of ∼100-µm diameter. Our objective was to study the impact of these microhemorrhages on cortical activity using cell-resolved two-photon imaging of bulk-loaded calcium-sensitive dye. We monitored peripheral sensory stimulus-induced calcium transients from individual neuronal cell bodies, regions of neuropil, and astrocytes at different distances from the microhemorrhage before and 0.5, 2, and 4 hours after the creation of the lesion. We found that immediately after the hemorrhage the average amplitude of the stimulus-induced calcium response was reduced to about half within 150 µm from the hematoma. Beyond 300 µm, there was little effect on cell response, with a smooth increase in response amplitude from 150 µm to 300 µm from the lesion. Cortical function gradually improved with time and by four hours after the lesion the response from neurons and astrocytes had recovered to baseline everywhere but within 150 µm from the hematoma. To assess whether the cells closest to the microhemorrhage recovered over a longer timeframe, we developed a re-openable chronic cranial window preparation that allowed reinjection of calcium-sensitive fluorescent dye. We found that the response largely recovered by one day after the microhemorrhage even within 150 µm from the hematoma. This work suggests that neuronal and astrocyte function is transiently lost near a microhemorrhage, but recovers within one day after the lesion.

  13. Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist.

    Science.gov (United States)

    Toledo, Míriam; Busquets, Sílvia; Penna, Fabio; Zhou, Xiaolan; Marmonti, Enrica; Betancourt, Angelica; Massa, David; López-Soriano, Francisco J; Han, H Q; Argilés, Josep M

    2016-04-15

    Formoterol is a highly potent β2-adrenoceptor-selective agonist, which is a muscle growth promoter in many animal species. Myostatin/activin inhibition reverses skeletal muscle loss and prolongs survival of tumor-bearing animals. The aim of this investigation was to evaluate the effects of a combination of the soluble myostatin receptor ActRIIB (sActRIIB) and the β2-agonist formoterol in the cachectic Lewis lung carcinoma model. The combination of formoterol and sActRIIB was extremely effective in reversing muscle wasting associated with experimental cancer cachexia in mice. Muscle weights from tumor-bearing animals were completely recovered following treatment and this was also reflected in the measured grip strength. This combination increased food intake in both control and tumor-bearing animals. The double treatment also prolonged survival significantly without affecting the weight and growth of the primary tumor. In addition, it significantly reduced the number of metastasis. Concerning the mechanisms for the preservation of muscle mass during cachexia, the effects of formoterol and sActRIIB seemed to be additive, since formoterol reduced the rate of protein degradation (as measured in vitro as tyrosine release, using incubated isolated individual muscles) while sActRIIB only affected protein synthesis (as measured in vivo using tritiated phenylalanine). Formoterol also increased the rate of protein synthesis and this seemed to be favored by the presence of sActRIIB. Combining formoterol and sActRIIB seemed to be a very promising treatment for experimental cancer cachexia. Further studies in human patients are necessary and may lead to a highly effective treatment option for muscle wasting associated with cancer.

  14. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval.

    Science.gov (United States)

    Vollenweider, Franz X; Csomor, Philipp A; Knappe, Bernhard; Geyer, Mark A; Quednow, Boris B

    2007-09-01

    Schizophrenia patients exhibit impairments in prepulse inhibition (PPI) of the startle response. Hallucinogenic 5-HT(2A) receptor agonists are used for animal models of schizophrenia because they mimic some symptoms of schizophrenia in humans and induce PPI deficits in animals. Nevertheless, one report indicates that the 5-HT(2A) receptor agonist psilocybin increases PPI in healthy humans. Hence, we investigated these inconsistent results by assessing the dose-dependent effects of psilocybin on PPI in healthy humans. Sixteen subjects each received placebo or 115, 215, and 315 microg/kg of psilocybin at 4-week intervals in a randomized and counterbalanced order. PPI at 30-, 60-, 120-, 240-, and 2000-ms interstimulus intervals (ISIs) was measured 90 and 165 min after drug intake, coinciding with the peak and post-peak effects of psilocybin. The effects of psilocybin on psychopathological core dimensions and sustained attention were assessed by the Altered States of Consciousness Rating Scale (5D-ASC) and the Frankfurt Attention Inventory (FAIR). Psilocybin dose-dependently reduced PPI at short (30 ms), had no effect at medium (60 ms), and increased PPI at long (120-2000 ms) ISIs, without affecting startle reactivity or habituation. Psilocybin dose-dependently impaired sustained attention and increased all 5D-ASC scores with exception of Auditory Alterations. Moreover, psilocybin-induced impairments in sustained attention performance were positively correlated with reduced PPI at the 30 ms ISI and not with the concomitant increases in PPI observed at long ISIs. These results confirm the psilocybin-induced increase in PPI at long ISIs and reveal that psilocybin also produces a decrease in PPI at short ISIs that is correlated with impaired attention and consistent with deficient PPI in schizophrenia.

  15. Multivalent drug design and inhibition of cholera toxin by specific and transient protein-ligand interactions.

    Science.gov (United States)

    Liu, Jiyun; Begley, Darren; Mitchell, Daniel D; Verlinde, Christophe L M J; Varani, Gabriele; Fan, Erkang

    2008-05-01

    Multivalent inhibitors of the cholera toxin B pentamer are potential therapeutic drugs for treating cholera and serve as models for demonstrating multivalent ligand effects through a structure-based approach. A crucial yet often overlooked aspect of multivalent drug design is the length, rigidity and chemical composition of the linker used to connect multiple binding moieties. To specifically study the role of chemical linkers in multivalent ligand design, we have synthesized a series of compounds with one and two binding motifs connected by several different linkers. These compounds have affinity for and potency against the cholera toxin B pentamer despite the fact that none can simultaneously bind two toxin receptor sites. Results from saturation transfer difference NMR reveal transient, non-specific interactions between the cholera toxin and linker groups contribute significantly to overall binding affinity of monovalent compounds. However, the same random protein-ligand interactions do not appear to affect binding of bivalent molecules. Moreover, the binding affinities and potencies of these 'non-spanning' bivalent ligands appear to be wholly independent of linker length. Our detailed analysis identifies multiple effects that account for the improved inhibitory potencies of bivalent ligands and suggest approaches to further improve the activity of this class of compounds.

  16. Inhibition of NAD(P)H oxidase potentiates AT2 receptor agonist-induced natriuresis in Sprague-Dawley rats.

    Science.gov (United States)

    Sabuhi, Rifat; Asghar, Mohammad; Hussain, Tahir

    2010-10-01

    A positive association between renin-angiotensin system, especially AT1 receptor, and oxidative stress in the pathogenesis of hypertension and cardiovascular/renal diseases has been suggested. However, the role of oxidative stress, especially superoxide radicals in renal sodium handling in response to AT1 and AT2 receptors, is not known. Therefore, the present study was designed to investigate the role of NAD(P)H oxidase (NOX), a major superoxide radical producing enzyme, in AT1 and AT2 receptor function on natriuresis/diuresis in Sprague-Dawley rats. The rats under anesthesia were intravenously infused with NOX inhibitor apocynin (3.5 μg·kg(-1)·min(-1)), the AT1 receptor antagonist candesartan (100 μg/kg; bolus), and the AT2 receptor agonist CGP-42112A (1 μg·kg(-1)·min(-1)) alone and in combinations. Candesartan alone significantly increased urinary flow (UF; μl/30 min) by 53 and urinary Na excretion (U(Na)V; μmol/min) by 0.4 over basal. Preinfusion of apocynin had no effect on the net increase in UF or U(Na)V in response to candesartan. On the other hand, apocynin preinfusion caused profound increases in CGP-42112A-induced UF by 72, U(Na)V by 1.14, and fractional excretion of Na by 7.8. Apocynin and CGP-42112A alone did not cause significant increase in UF or U(Na)V over the basal. CGP-42112A infusion in the presence of apocynin increased urinary nitrite/nitrates and cGMP over basal. The infusion of candesartan, apocynin, and CGP-42112A alone or in combinations had no effect on the blood pressure or the glomerular filtration rate, suggesting tubular effects on natriuresis/diuresis. The data suggest that NOX may have an antagonistic role in AT2 receptor-mediated natriuresis/diuresis possibly via neutralizing nitric oxide and thereby influence fluid-Na homeostasis.

  17. Systemic catechol-O-methyl transferase inhibition enables the D{sub 1} agonist radiotracer R-[{sup 11}C]SKF 82957

    Energy Technology Data Exchange (ETDEWEB)

    Palner, Mikael, E-mail: mikael.palner@nru.d [Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen (Denmark); Center for Integrated Molecular Brain Imaging, Rigshospitalet (Denmark); McCormick, Patrick; Parkes, Jun [PET Center, Center for Addiction and Mental Health, Toronto, Ontario (Canada); Knudsen, Gitte M. [Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen (Denmark); Center for Integrated Molecular Brain Imaging, Rigshospitalet (Denmark); Wilson, Alan A. [PET Center, Center for Addiction and Mental Health, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario (Canada)

    2010-10-15

    Introduction: R-[{sup 11}C]-SKF 82957 is a high-affinity and potent dopamine D{sub 1} receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, facilitating the use of R-[{sup 11}C]-SKF 82957 to image the high-affinity state of the dopamine D{sub 1} receptor with PET. Methods: R-[{sup 11}C]SKF 82957 was administered to untreated and COMT inhibitor-treated conscious rats, and the radioactive metabolites present in the brain and plasma were quantified by HPLC. Under optimal conditions, cerebral uptake and dopamine D{sub 1} binding of R-[{sup 11}C]SKF 82957 were measured ex vivo. In addition, pharmacological challenges with the receptor antagonist SCH 23390, amphetamine, the dopamine reuptake inhibitor RTI-32 and the dopamine hydroxylase inhibitor {alpha}-methyl-p-tyrosine were performed to study the specificity and sensitivity of R-[{sup 11}C]-SKF 82957 dopamine D{sub 1} binding in COMT-inhibited animals. Results: Treatment with the COMT inhibitor tolcapone was associated with a dose-dependent (EC{sub 90} 5.3{+-}4.3 mg/kg) reduction in the lipophilic metabolite. Tolcapone treatment (20 mg/kg) also resulted in a significant increase in the striatum/cerebellum ratio of R-[{sup 11}C]SKF 82957, from 15 (controls) to 24. Treatment with the dopamine D{sub 1} antagonist SCH 23390 reduced the striatal binding to the levels of the cerebellum, demonstrating a high specificity and selectivity of R-[{sup 11}C]SKF 82957 binding. Conclusions: Pre-treatment with the COMT inhibitor tolcapone inhibits formation of an interfering metabolite of R-[{sup 11}C]SKF 82957. Under such conditions, R-[{sup 11}C]SKF 82957 demonstrates high potential as the first agonist radiotracer for imaging the dopamine D{sub 1} receptor by PET.

  18. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel

    Science.gov (United States)

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren

    2016-01-01

    Background Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund’s Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. Results We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund’s Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Conclusions Our work identified Hsc70 and its ATPase activity as a central

  19. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoxing [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States); Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States)

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  20. Ginsenoside Rb1 Attenuates Agonist-Induced Contractile Response via Inhibition of Store-Operated Calcium Entry in Pulmonary Arteries of Normal and Pulmonary Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Rui-Xing Wang

    2015-03-01

    Full Text Available Background: Pulmonary hypertension (PH is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. Methods: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1 induced contraction of pulmonary arteries (PAs and store-operated Ca2+ entry (SOCE in pulmonary arterial smooth muscle cells (PASMCs from chronic hypoxia (CH and MCT-induced PH. Results: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd3+. Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA-induced PA contraction, and CPA-activated cation entry and Ca2+ transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca2+ transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. Conclusion: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.

  1. Inhibition of nitric oxide synthesis accelerates the recovery of polysynaptic reflex potentials after transient spinal cord ischemia in cats.

    Science.gov (United States)

    Nemoto, T; Sekikawa, T; Suzuki, T; Moriya, H; Nakaya, H

    1997-04-01

    Nitric Oxide (NO) has been implicated as a mediator of neuronal injury in vascular stroke. On the other hand, NO is suggested to play a neuroprotective role by increasing blood flow during cerebral ischemia. In order to evaluate the role of NO in the spinal cord ischemia, effects of nitric oxide synthase (NOS) inhibition on the recovery of reflex potentials after a transient spinal cord ischemia were examined in urethane-chloralose anesthetized spinal cats. Spinal cord ischemia was produced by occlusion of the thoracic aorta and the both internal mammary arteries for 10 min. Regional blood flow (RBF) in the spinal cord was continuously measured with a laser-Doppler flow meter. The monosynaptic (MSR) and polysynaptic reflex (PSR) potentials elicited by electrical stimulation of the tibial nerve, were recorded from the L7 or S1 ventral root. The recovery process of spinal reflex potentials was reproducible when the oclusion was repeated twice at an interval of 120 min. Pretreatment with N(G)-monomethyl-L-arginine (L-NMMA, 10 mg/kg), a NOS inhibitor significantly accelerated the recovery of PSR potentials after spinal cord ischemia. The accelerating effect of L-NMMA on the recovery of PSR potentials was abolished by co-administration of L-arginine (1 mg/kg/min) but not by that of D-arginine (1 mg/kg/min). L-NMMA failed to improve RBF in the spinal cord during ischemia and reperfusion. Nitroprusside (10 microg/kg/min), a NO donor, retarded the recovery of PSR potentials after spinal cord ischemia. These results suggest that NO production has a significant influence on the functional recovery after transient spinal cord ischemia.

  2. NEU-P11, a novel melatonin agonist, inhibits weight gain and improves insulin sensitivity in high-fat/high-sucrose-fed rats.

    Science.gov (United States)

    She, Meihua; Deng, Xiaojian; Guo, Zhenyu; Laudon, Moshe; Hu, Zhuowei; Liao, Duanfang; Hu, Xiaobo; Luo, Yi; Shen, Qingyun; Su, Zehong; Yin, Weidong

    2009-04-01

    Evidences indicate that a complex relationship exists among sleep disorders, obesity and insulin resistance. NEU-P11 is a novel melatonin agonist used in treatment of psychophysiological insomnia, and in animal studies NEU-P11 showed sleep-promoting effect. In this study, we applied NEU-P11 on obese rats to assess its potential melatoninergic effects in vivo. Obese models were established using high-fat/high-sucrose-fed for 5 months. NEU-P11 (10mg/kg)/melatonin (4mg/kg)/vehicle were administered by a daily intraperitoneal injection respectively for 8 weeks. Our results showed that NEU-P11 or melatonin inhibited both body weight gain and deposit of abdominal fat with no influence on food intake. The impaired insulin sensitivity and antioxidative potency were improved and the levels of plasma glucose, total cholesterol (TC), triglycerides (TG) decreased with an increased in HDL-cholesterol (HDL-c) after NEU-P11 or melatonin administration. These data suggest that NEU-P11, like melatonin, decreased body weight gain and improved insulin sensitivity and metabolic profiles in obese rats. We conclude that NEU-P11 has a melatoninergic effect on regulating body weight in obese rats and also improving metabolic profiles and efficiently enhancing insulin sensitivity.

  3. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  4. Influence of central inhibition of sympathetic nervous activity on myocardial metabolism in chronic heart failure: acute effects of the imidazoline I1-receptor agonist moxonidine.

    Science.gov (United States)

    Mobini, Reza; Fu, Michael; Jansson, Per-Anders; Bergh, Claes-Håkan; Scharin Täng, Margareta; Waagstein, Finn; Andersson, Bert

    2006-03-01

    Although beta-adrenergic blockade is beneficial in heart failure, inhibition of central sympathetic outflow using moxonidine has been associated with increased mortality. In the present study, we studied the acute effects of the imidazoline-receptor agonist moxonidine on haemodynamics, NA (noradrenaline) kinetics and myocardial metabolism. Fifteen patients with CHF (chronic heart failure) were randomized to a single dose of 0.6 mg of sustained-release moxonidine or matching placebo. Haemodynamics, NA kinetics and myocardial metabolism were studied over a 2.5 h time period. There was a significant reduction in pulmonary and systemic arterial pressures, together with a decrease in cardiac index in the moxonidine group. Furthermore, there was a simultaneous reduction in systemic and cardiac net spillover of NA in the moxonidine group. Analysis of myocardial consumption of substrates in the moxonidine group showed a significant increase in non-esterified fatty acid consumption and a possible trend towards an increase in myocardial oxygen consumption compared with the placebo group (P=0.16). We conclude that a single dose of moxonidine (0.6 mg) in patients already treated with a beta-blocker reduced cardiac and overall sympathetic activity. The finding of increased lipid consumption without decreased myocardial oxygen consumption indicates a lack of positive effects on myocardial metabolism under these conditions. We suggest this might be a reason for the failure of moxonidine to prevent deaths in long-term studies in CHF.

  5. Novel mixed NOP/MOP agonist BU08070 alleviates pain and inhibits gastrointestinal motility in mouse models mimicking diarrhea-predominant irritable bowel syndrome symptoms.

    Science.gov (United States)

    Sobczak, Marta; Cami-Kobeci, Gerta; Sałaga, Maciej; Husbands, Stephen M; Fichna, Jakub

    2014-08-05

    The opioid and nociceptin systems play a crucial role in the maintenance of homeostasis in the gastrointestinal (GI) tract. The aim of this study was to characterize the effect of BU08070, a novel mixed MOP/NOP agonist, on mouse intestinal contractility in vitro and GI motility in vivo in physiological conditions and in animal models mimicking symptoms of irritable bowel syndrome (IBS), including diarrhea and abdominal pain. The effect of BU08070 on muscle contractility in vitro was characterized in the ileum and colon. To assess the effect of BU08070 in vivo, the following parameters were assessed: whole GI transit, gastric emptying, geometric center, colonic bead expulsion, fecal pellet output and time to castor oil-induced diarrhea. The antinociceptive activity of BU08070 was characterized in the mustard oil (MO)-induced abdominal pain model and the writhing test, alone and in the presence of MOP and NOP antagonists. in vitro, BU08070 (10(-10)-10(-6) M) inhibited colonic and ileal smooth muscle contractions in a concentration-dependent manner. in vivo, BU08070 prolonged the whole GI transit and inhibited colonic bead expulsion. The antitransit and antidiarrheal effects of BU08070 were observed already at the dose of 0.1 mg/kg (i.p.). BU08070 reversed hypermotility and reduced pain in mouse models mimicking IBS-D symptoms. Our results suggest that BU08070 has a potential of becoming an efficient drug in IBS-D therapy. Here we also validate mixed NOP/MOP receptor targeting as possible future treatment of functional GI diseases.

  6. Antipruritic effect of cold-induced and transient receptor potential-agonist-induced counter-irritation on histaminergic itch in humans

    DEFF Research Database (Denmark)

    Andersen, Hjalte H.; Melholt, Camilla; Hilborg, Sigurd D.;

    2017-01-01

    (trans-cinnamaldehyde/L-menthol, respectively), on histamine-induced itch, wheal and neurogenic inflammation in 13 healthy volunteers. Histamine 1% was applied to the volar forearms using skin prick-testing lancets. Recorded outcome-parameters were itch intensity, wheal reactions and neurogenic...... inflammation (measured by laser-speckle perfusion-imaging). Homotopic thermal counter-irritation was performed with 6 temperatures, ranging from 4°C to 37°C, using a 3 × 3-cm thermal stimulator. Chemical "cold-like" counter-irritation was conducted with 40% L-menthol and 10% trans-cinnamaldehyde, while 5......% doxepin was used as a positive antipruritic control/comparator. Cold counter-irritation stimuli from 4°C to 22°C inhibited itch in a stimulus-intensity-dependent manner (p menthol...

  7. Severe instead of mild hyperglycemia inhibits neurogenesis in the subventricular zone of adult rats after transient focal cerebral ischemia.

    Science.gov (United States)

    Tan, S; Zhi, P K; Luo, Z K; Shi, J

    2015-09-10

    Accumulated evidence suggests that enhanced neurogenesis stimulated by ischemic injury contributes to stroke outcome. However, it is unclear whether hyperglycemia, which is frequently tested positive in patients with acute ischemic stroke, influences stroke-induced neurogenesis. The aim of the present study is to examine the effect of hyperglycemia on stroke-induced neurogenesis in a rat model of transient focal cerebral ischemia. For this purpose, adult male Sprague-Dawley rats (220-250 g) were subjected to 90 min of middle cerebral artery occlusion (MCAO). Glucose was administered during ischemia to produce target blood levels ranging from 4.83 ± 0.94 mM (normoglycemia) to 20.76 ± 1.56 mM. To label proliferating cells in ischemic ipsilateral subventricular zone (SVZ) of lateral ventricles, 5'-bromo-2'-deoxyuridine (BrdU) was injected 24h after MCAO. Brains were harvested 2h post-BrdU to evaluate the effects of hyperglycemia on infarct volume and SVZ cell proliferation. Rats that were severely hyperglycemic (19.26 ± 1.48 mM to 20.76 ± 1.56 mM) during ischemia had 24.26% increase in infarct volume (Phyperglycemia (9.43 ± 1.39-10.13 ± 1.24 mM). Our findings indicate that severe instead of mild hyperglycemia exacerbates ischemic injury and inhibits stroke-induced SVZ neurogenesis by a mechanism involving suppression of CREB and BDNF signaling.

  8. Anti-inflammatory effect of cannabinoid agonist WIN55, 212 on mouse experimental colitis is related to inhibition of p38MAPK

    Science.gov (United States)

    Feng, Ya-Jing; Li, Yong-Yu; Lin, Xu-Hong; Li, Kun; Cao, Ming-Hua

    2016-01-01

    AIM To investigate the anti-inflammatory effect and the possible mechanisms of an agonist of cannabinoid (CB) receptors, WIN55-212-2 (WIN55), in mice with experimental colitis, so as to supply experimental evidence for its clinical use in future. METHODS We established the colitis model in C57BL/6 mice by replacing the animals’ water supply with 4% dextran sulfate sodium (DSS) for 7 consecutive days. A colitis scoring system was used to evaluate the severity of colon local lesion. The plasma levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the myeloperoxidase (MPO) activity in colon tissue were measured. The expressions of cannabinoid receptors, claudin-1 protein, p38 mitogen-activated protein kinase (p38MAPK) and its phosphorylated form (p-p38) in colon tissue were determined by immunohistochemistry and Western blot. In addition, the effect of SB203580 (SB), an inhibitor of p38, was investigated in parallel experiments, and the data were compared with those from intervention groups of WIN55 and SB alone or used together. RESULTS The results demonstrated that WIN55 or SB treatment alone or together improved the pathological changes in mice with DSS colitis, decreased the plasma levels of TNF-α, and IL-6, and MPO activity in colon. The enhanced expression of claudin-1 and the inhibited expression of p-p38 in colon tissues were found in the WIN55-treated group. Besides, the expression of CB1 and CB2 receptors was enhanced in the colon after the induction of DSS colitis, but reduced when p38MAPK was inhibited. CONCLUSION These results confirmed the anti-inflammatory effect and protective role of WIN55 on the mice with experimental colitis, and revealed that this agent exercises its action at least partially by inhibiting p38MAPK. Furthermore, the results showed that SB203580, affected the expression of CB1 and CB2 receptors in the mouse colon, suggesting a close linkage and cross-talk between the p38

  9. Spatial distributions of GABA receptors and local inhibition of Ca2+ transients studied with GABA uncaging in the dendrites of CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Yuya Kanemoto

    Full Text Available GABA (γ-amino-butylic acid-mediated inhibition in the dendrites of CA1 pyramidal neurons was characterized by two-photon uncaging of a caged-GABA compound, BCMACM-GABA, and one-photon uncaging of RuBi-GABA in rat hippocampal slice preparations. Although we found that GABA(A-mediated currents were diffusely distributed along the dendrites, currents elicited at the branch points of the apical dendritic trunk were approximately two times larger than those elsewhere in the dendrite. We examined the inhibitory action of the GABA-induced currents on Ca(2+ transients evoked with a single back-propagating action potential (bAP in oblique dendrites. We found that GABA uncaging selectively inhibited the Ca(2+ transients in the region adjacent (20 µm. Our data indicate that GABA inhibition results in spatially confined inhibition of Ca(2+ transients shortly after bAP, and suggest that this effect is particularly potent at the dendritic branch points where GABA receptors cluster.

  10. The polyphenol-rich extract from grape seeds inhibits platelet signaling pathways triggered by both proteolytic and non-proteolytic agonists.

    Science.gov (United States)

    Olas, Beata; Wachowicz, Barbara; Stochmal, Anna; Oleszek, Wiesław

    2012-01-01

    Mechanisms involved in the reduction of blood platelet functions by various plant extract, including the grape seeds extract (rich in phenolic compounds, a mixture of about 95% oligomeric phenols; GSE) are still unclear. In the literature there are few papers describing studies on the effects of GSE on selected element of hemostasis. The aim of our study was to establish and compare the influence of GSE (at final dose of 0.625-50 µg/ml) and resveratrol (3,4',5 - trihydroxystilben), a phenolic compound synthesized in grapes and vegetables and presents in wine, which has been supposed to be beneficial for the prevention of cardiovascular events, on different steps of platelet activation. We measured the effects of GSE and resveratrol on platelet aggregation, the surface expression of P-selectin, platelet microparticle formation (PMP), and superoxide anion radicals ([Formula: see text]) production in blood platelets stimulated by TRAP and thrombin. P-selectin expression and PMP formation were measured by a flow cytometer. In gel-filtered platelets activated by thrombin or TRAP and treated with different concentrations of GSE (1.25-50 µg/ml) a significant decrease of P-selectin expression, PMP formation and platelet aggregation was observed. GSE caused also a dose-dependent reduction of [Formula: see text] produced in platelets activated by TRAP or thrombin. Our present results indicate that GSE inhibits platelet signaling pathways trigged by both proteolytic (thrombin) and non-proteolytic agonist (TRAP). In the comparative studies, GSE was found to be more effective antiplatelet factor, than the solution of pure resveratrol. Thus, the polyphenol-rich extract from grape seeds can be useful as the protecting factor against cardiovascular diseases.

  11. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors.

    Science.gov (United States)

    Steiner, Alexandre A; Turek, Victoria F; Almeida, Maria C; Burmeister, Jeffrey J; Oliveira, Daniela L; Roberts, Jennifer L; Bannon, Anthony W; Norman, Mark H; Louis, Jean-Claude; Treanor, James J S; Gavva, Narender R; Romanovsky, Andrej A

    2007-07-11

    An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T(b)) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T(b) of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T(b) nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T(b) response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T(b).

  12. Inhibition of spontaneous neurotransmission in the nucleus of solitary tract of the rat by the cannabinoid agonist WIN 55212-2 is not via CB1 or CB2 receptors.

    Science.gov (United States)

    Accorsi-Mendonça, Daniela; Almado, Carlos E L; Dagostin, André L A; Machado, Benedito H; Leão, Ricardo M

    2008-03-20

    Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. In the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 microM WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the vanniloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2.

  13. Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Chu Ketan

    2012-04-01

    Full Text Available Abstract Background Neuroinflammation plays an important role in cerebral ischemia/reperfusion (I/R injury. The P2X7 receptor (P2X7R has been reported to be involved in the inflammatory response of many central nervous system diseases. However, the role of P2X7Rs in transient global cerebral I/R injury remains unclear. The purpose of this study is to determine the effects of inhibiting the P2X7R in a rat model of transient global cerebral I/R injury, and then to explore the association between the P2X7R and neuroinflammation after transient global cerebral I/R injury. Methods Immediately after infusion with the P2X7R antagonists Brilliant blue G (BBG, adenosine 5′-triphosphate-2′,3′-dialdehyde (OxATP or A-438079, 20 minutes of transient global cerebral I/R was induced using the four-vessel occlusion (4-VO method in rats. Survival rate was calculated, neuronal death in the hippocampal CA1 region was observed using H & E staining, and DNA cleavage was observed by deoxynucleotidyl transferase-mediated UTP nick end labeling TUNEL. In addition, behavioral deficits were measured using the Morris water maze, and RT-PCR and immunohistochemical staining were performed to measure the expression of IL-1β, TNF-α and IL-6, and to identify activated microglia and astrocytes. Results The P2X7R antagonists protected against transient global cerebral I/R injury in a dosage-dependent manner. A high dosage of BBG (10 μg and A-0438079 (3 μg, and a low dosage of OxATP (1 μg significantly increased survival rates, reduced I/R-induced learning memory deficit, and reduced I/R-induced neuronal death, DNA cleavage, and glial activation and inflammatory cytokine overexpression in the hippocampus. Conclusions Our study indicates that inhibiting P2X7Rs protects against transient global cerebral I/R injury by reducing the I/R-induced inflammatory response, which suggests inhibition of P2X7Rs may be a promising therapeutic strategy for clinical treatment of

  14. Dissolved saxitoxin causes transient inhibition of sensorimotor function in larval Pacific herring (Clupea harengus pallasi) Kathi A. Lefebvre , N

    Science.gov (United States)

    Lefebvre, Kathi A.; Elder, Nancy E.; Hershberger, Paul K.; Trainer, Vera L.; Stehr, Carla M.; Scholz, Nathaniel L.

    2005-01-01

    Herring (Clupea harengus pallasi) spawning sites in Puget Sound, Washington overlap spatially and temporally with blooms of Alexandrium catenella, a toxic dinoflagellate species responsible for paralytic shellfish poisoning. Consequently, newly hatched herring larvae may be regularly exposed to the suite of dissolved paralytic shellfish toxins that are released into the water column from toxic cells during blooms. To date, virtually nothing is known about the impacts of these neurotoxins on early developmental stages of marine fish. In the present study, herring larvae at three ages, 0 days post hatch (dph), 4 dph, and 11 dph, were exposed to dissolved saxitoxin (STX) in 24-h and multi-day exposures. All larvae were examined for sensorimotor function (i.e. spontaneous swimming behavior and touch response). Significant reductions in spontaneous and touch-activated swimming behavior occurred within 1 h of exposure. EC50s at 1 h of exposure were 1,500, 840, and 700 μg STX equiv. l−1 for larvae introduced to STX at 0, 4, and 11 dph, respectively. This progressive age-specific increase in STX-induced paralysis suggests that older larvae were more sensitive to the toxin than younger larvae. Interestingly, herring larvae at all ages exhibited a significant degree of neurobehavioral recovery within 4–24 h of continuous exposure relative to the 1-h time point. This recovery of normal motor behaviors was not observed in previous studies with freshwater zebrafish (Danio rerio) larvae under the same continuous exposure conditions, suggesting that an adaptive detoxification or toxin sequestration mechanism may have evolved in some species of marine fish larvae. Our data reveal that (1) dissolved STX is bioavailable to marine finfish larvae, (2) the toxin is a paralytic agent with potencies that differ between developmental stages, and (3) STX-induced sensorimotor inhibition occurs rapidly but is transient in marine larvae. Collectively, these results suggest that

  15. NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models

    DEFF Research Database (Denmark)

    Bhatt, Deepak K; Gupta, Saurabh; Jansen-Olesen, Inger;

    2013-01-01

    BackgroundNXN-188 is a combined neuronal nitric oxide synthase (nNOS) inhibitor and 5-hydroxytryptamine 1B/1D (5-HT(1B/1D)) receptor agonist. Using preclinical models, we evaluated whether these two unique therapeutic principles have a synergistic effect in attenuating stimulated calcitonin gene-...

  16. CNTO736, a novel glucagon-like peptide-1 receptor agonist, ameliorates insulin resistance and inhibits very low-density lipoprotein production in high-fat-fed mice

    NARCIS (Netherlands)

    Parlevliet, E.T.; Schröder-van der Elst, J.P.; Corssmit, E.P.M.; Picha, K.; O'Neil, K.; Stojanovic-Susulic, V.; Ort, T.; Havekes, L.M.; Romijn, J.A.; Pijl, H.

    2009-01-01

    CNTO736 is a glucagon-like peptide (GLP) 1 receptor agonist that incorporates a GLP-1 peptide analog linked to the Mimeti-body platform. We evaluate the potential of acute and chronic CNTO736 treatment on insulin sensitivity and very low-density lipoprotein (VLDL) metabolism. For acute studies, diet

  17. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells.

    Science.gov (United States)

    Withers, David R; Hepworth, Matthew R; Wang, Xinxin; Mackley, Emma C; Halford, Emily E; Dutton, Emma E; Marriott, Clare L; Brucklacher-Waldert, Verena; Veldhoen, Marc; Kelsen, Judith; Baldassano, Robert N; Sonnenberg, Gregory F

    2016-03-01

    RAR-related orphan receptor-γt (ROR-γt) directs differentiation of proinflammatory T helper 17 (TH17) cells and is a potential therapeutic target in chronic autoimmune and inflammatory diseases. However, ROR-γt-dependent group 3 innate lymphoid cells ILC3s provide essential immunity and tissue protection in the intestine, suggesting that targeting ROR-γt could also result in impaired host defense after infection or enhanced tissue damage. Here, we demonstrate that transient chemical inhibition of ROR-γt in mice selectively reduces cytokine production from TH17 but not ILCs in the context of intestinal infection with Citrobacter rodentium, resulting in preserved innate immunity. Temporal deletion of Rorc (encoding ROR-γt) in mature ILCs also did not impair cytokine response in the steady state or during infection. Finally, pharmacologic inhibition of ROR-γt provided therapeutic benefit in mouse models of intestinal inflammation and reduced the frequency of TH17 cells but not ILCs isolated from primary intestinal samples of individuals with inflammatory bowel disease (IBD). Collectively, these results reveal differential requirements for ROR-γt in the maintenance of TH17 cell and ILC3 responses and suggest that transient inhibition of ROR-γt is a safe and effective therapeutic approach during intestinal inflammation.

  18. Both transient and continuous corticosterone excess inhibit atherosclerotic plaque formation in APOE*3-leiden.CETP mice.

    Directory of Open Access Journals (Sweden)

    Hanna E Auvinen

    Full Text Available INTRODUCTION: The role of glucocorticoids in atherosclerosis development is not clearly established. Human studies show a clear association between glucocorticoid excess and cardiovascular disease, whereas most animal models indicate an inhibitory effect of glucocorticoids on atherosclerosis development. These animal models, however, neither reflect long-term glucocorticoid overexposure nor display human-like lipoprotein metabolism. AIM: To investigate the effects of transient and continuous glucocorticoid excess on atherosclerosis development in a mouse model with human-like lipoprotein metabolism upon feeding a Western-type diet. METHODS: Pair-housed female APOE*3-Leiden.CETP (E3L.CETP mice fed a Western-type containing 0.1% cholesterol for 20 weeks were given corticosterone (50 µg/ml for either 5 (transient group or 17 weeks (continuous group, or vehicle (control group in the drinking water. At the end of the study, atherosclerosis severity, lesion area in the aortic root, the number of monocytes adhering to the endothelial wall and macrophage content of the plaque were measured. RESULTS: Corticosterone treatment increased body weight and food intake for the duration of the treatment and increased gonadal and subcutaneous white adipose tissue weight in transient group by +35% and +31%, and in the continuous group by +140% and 110%. Strikingly, both transient and continuous corticosterone treatment decreased total atherosclerotic lesion area by -39% without lowering plasma cholesterol levels. In addition, there was a decrease of -56% in macrophage content of the plaque with continuous corticosterone treatment, and a similar trend was present with the transient treatment. CONCLUSION: Increased corticosterone exposure in mice with human-like lipoprotein metabolism has beneficial, long-lasting effects on atherosclerosis, but negatively affects body fat distribution by promoting fat accumulation in the long-term. This indicates that the increased

  19. GLP-1 Receptor Agonists

    Science.gov (United States)

    ... in Balance › GLP-1 Receptor Agonists Fact Sheet GLP-1 Receptor Agonists May, 2012 Download PDFs English Espanol Editors Silvio ... are too high or too low. What are GLP-1 receptor agonist medicines? GLP-1 receptor agonist medicines, also called ...

  20. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2.

    Science.gov (United States)

    Olayanju, Adedamola; Copple, Ian M; Bryan, Holly K; Edge, George T; Sison, Rowena L; Wong, Min Wei; Lai, Zheng-Quan; Lin, Zhi-Xiu; Dunn, Karen; Sanderson, Christopher M; Alghanem, Ahmad F; Cross, Michael J; Ellis, Ewa C; Ingelman-Sundberg, Magnus; Malik, Hassan Z; Kitteringham, Neil R; Goldring, Christopher E; Park, B Kevin

    2015-01-01

    The transcription factor Nrf2 regulates the basal and inducible expression of a battery of cytoprotective genes. Whereas numerous Nrf2-inducing small molecules have been reported, very few chemical inhibitors of Nrf2 have been identified to date. The quassinoid brusatol has recently been shown to inhibit Nrf2 and ameliorate chemoresistance in vitro and in vivo. Here, we show that brusatol provokes a rapid and transient depletion of Nrf2 protein, through a posttranscriptional mechanism, in mouse Hepa-1c1c7 hepatoma cells. Importantly, brusatol also inhibits Nrf2 in freshly isolated primary human hepatocytes. In keeping with its ability to inhibit Nrf2 signaling, brusatol sensitizes Hepa-1c1c7 cells to chemical stress provoked by 2,4-dinitrochlorobenzene, iodoacetamide, and N-acetyl-p-benzoquinone imine, the hepatotoxic metabolite of acetaminophen. The inhibitory effect of brusatol toward Nrf2 is shown to be independent of its repressor Keap1, the proteasomal and autophagic protein degradation systems, and protein kinase signaling pathways that are known to modulate Nrf2 activity, implying the involvement of a novel means of Nrf2 regulation. These findings substantiate brusatol as a useful experimental tool for the inhibition of Nrf2 signaling and highlight the potential for therapeutic inhibition of Nrf2 to alter the risk of adverse events by reducing the capacity of nontarget cells to buffer against chemical and oxidative insults. These data will inform a rational assessment of the risk:benefit ratio of inhibiting Nrf2 in relevant therapeutic contexts, which is essential if compounds such as brusatol are to be developed into efficacious and safe drugs.

  1. Intragastric administration of TRPV1, TRPV3, TRPM8, and TRPA1 agonists modulates autonomic thermoregulation in different manners in mice.

    Science.gov (United States)

    Masamoto, Yukiko; Kawabata, Fuminori; Fushiki, Tohru

    2009-05-01

    The main aim of this study was to elucidate whether thermosensitive transient receptor potential channels (thermoTRPs) play a role in controlling autonomic thermoregulation. We investigated whether the activation of certain thermoTRPs, TRPV1, TRPV3, TRPM8, and TRPA1, would induce autonomic thermoregulation by administering chemical agonists derived from spices and aroma chemicals of these channels to anesthetized mice. We discovered the following: Capsaicin, a TRPV1 agonist, enhanced thermogenesis and heat diffusion; thymol and ethyl vanillin, TRPV3 agonists, did not have any effect on thermogenesis or heat diffusion; menthol and 1,8-cineole, TRPM8 agonists, enhanced thermogenesis; and allyl isothiocyanate and cinnamaldehyde, TRPA1 agonists, enhanced thermogenesis and inhibited heat diffusion. These results suggest that these thermoTRP agonists derived from spices and aroma chemicals modulate autonomic thermoregulation, except for TRPV3 agonists. Our findings suggest the possibility that each thermoTRP is a key sensor inducing reasonable autonomic thermoregulation according to its own activated temperature range.

  2. Metallothionein-II Inhibits Lipid Peroxidation and Improves Functional Recovery after Transient Brain Ischemia and Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Araceli Diaz-Ruiz

    2014-01-01

    Full Text Available After transient cerebral ischemia and reperfusion (I/R, damaging mechanisms, such as excitotoxicity and oxidative stress, lead to irreversible neurological deficits. The induction of metallothionein-II (MT-II protein is an endogenous mechanism after I/R. Our aim was to evaluate the neuroprotective effect of MT-II after I/R in rats. Male Wistar rats were transiently occluded at the middle cerebral artery for 2 h, followed by reperfusion. Rats received either MT (10 μg per rat i.p. or vehicle after ischemia. Lipid peroxidation (LP was measured 22 h after reperfusion in frontal cortex and hippocampus; also, neurological deficit was evaluated after ischemia, using the Longa scoring scale. Infarction area was analyzed 72 hours after ischemia. Results showed increased LP in frontal cortex (30.7% and hippocampus (26.4%, as compared to control group; this effect was fully reversed by MT treatment. Likewise, we also observed a diminished neurological deficit assessed by the Longa scale in those animals treated with MT compared to control group values. The MT-treated group showed a significant (P<0.05 reduction of 39.9% in the infarction area, only at the level of hippocampus, as compared to control group. Results suggest that MT-II may be a novel neuroprotective treatment to prevent ischemia injury.

  3. Michaelis-Menten Kinetics in Transient State: Proposal for Reversible Inhibition Model and its Application on Enzymatic Hydrolysis of Disaccharides

    Directory of Open Access Journals (Sweden)

    André Rosa Martins

    2014-11-01

    Full Text Available The enzymatic processes according Michaelis-Menten kinetics have been studied from various approaches to describe the inhibition state. Proposals for inhibition were compared from a generic process, where kinetic constants have received unitary values, and the numeric value of the concentration of substrate was ten (10 times higher than the numerical value of the concentration of enzyme. For each inhibition model proposed, numerical solutions were obtained from nonlinear system of ordinary differential equations, generating results presents by graphs showing the variation of the enzyme and enzyme complexes, also the variation of substrate and product of the reaction. Also, was designed a model with performance, indicating similar behavior to that seen in the Michaelis-Menten kinetics, where complex of reaction is rapidly formed and throughout the process, tends to decay to zero. Thus, in this new proposed model, the effect of inhibition starts at zero and, throughout the process, tends to the nominal value of the initial enzyme concentration. Such responses have proved to be valid for different values of enzyme concentration and process time, showing robustness. The proposed model was applied to the hydrolysis of disaccharides, providing a setting with conservation of mass of the model at the end of the process regarding the responses of the carbohydrate concentration.

  4. Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum.

    Science.gov (United States)

    Meyer, Francisca F; Louilot, Alain

    2011-06-01

    Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.

  5. The NO/cGMP pathway inhibits transient cAMP signals through the activation of PDE2 in striatal neurons

    Directory of Open Access Journals (Sweden)

    Marina ePolito

    2013-11-01

    Full Text Available The NO-cGMP signaling plays an important role in the regulation of striatal function although the mechanisms of action of cGMP specifically in medium spiny neurons (MSNs remain unclear. Using genetically encoded fluorescent biosensors, including a novel Epac-based sensor (EPAC-SH150 with increased sensitivity for cAMP, we analyze the cGMP response to NO and whether it affected cAMP/PKA signaling in MSNs. The Cygnet2 sensor for cGMP reported large responses to NO donors in both striatonigral and striatopallidal MSNs, and this cGMP signal was controlled partially by PDE2. At the level of cAMP brief forskolin stimulations produced transient cAMP signals which differed between D1 and D2 medium spiny neurons. NO inhibited these cAMP transients through cGMP-dependent PDE2 activation, an effect that was translated and magnified downstream of cAMP, at the level of PKA. PDE2 thus appears as a critical effector of NO which modulates the post-synaptic response of MSNs to dopaminergic transmission.

  6. Transient inhibition of connective tissue infiltration and collagen deposition into porous poly(lactic-co-glycolic acid) discs.

    Science.gov (United States)

    Love, Ryan J; Jones, Kim S

    2013-12-01

    Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4-DPCA suppressed Scavenger Receptor A expression on a macrophage-like cell culture, which may account for the drug's ability to limit connective tissue ingrowth in vivo.

  7. An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-κB signaling pathway.

    Science.gov (United States)

    Ren, Tianhua; Tian, Ting; Feng, Xiao; Ye, Shicai; Wang, Hao; Wu, Weiyun; Qiu, Yumei; Yu, Caiyuan; He, Yanting; Zeng, Juncheng; Cen, Junwei; Zhou, Yu

    2015-03-12

    The role of the adenosine A3 receptor (A3AR) in experimental colitis is controversial. The A3AR agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been shown to have a clinical benefit, although studies in A3AR-deficient mice suggest a pro-inflammatory role. However, there are no studies on the effect of 2-Cl-IB-MECA and the molecular mechanism of action of A3AR in murine colitis models in vivo. Is it the same as that observed in vitro? The interaction between 2-CL-IB-MECA and A3AR in a murine colitis model and the signaling pathways associated with this interaction remain unclear. Here we demonstrate a role for the NF-κB signaling pathway and its effect on modifying the activity of proinflammatory factors in A3AR-mediated biological processes. Our results demonstrated that A3AR activation possessed marked effects on experimental colitis through the NF-κB signaling pathway.

  8. Intrathecal baclofen, a GABAB receptor agonist, inhibits the expression of p-CREB and NR2B in the spinal dorsal horn in rats with diabetic neuropathic pain.

    Science.gov (United States)

    Liu, Peng; Guo, Wen-Ya; Zhao, Xiao-Nan; Bai, Hui-Ping; Wang, Qian; Wang, Xiu-Li; Zhang, Ying-Ze

    2014-08-01

    This study aimed to investigate the effect of baclofen, a γ-aminobutyric acid B (GABAB) receptor agonist, on the expression of p-CREB and NR2B in the spinal dorsal horn of rats with diabetic neuropathic pain (DNP). The DNP rats, which were successfully induced with streptozocin, were distributed among 3 groups that were treated with saline (D1 group), baclofen (D2 group), or CGP55845 + baclofen (D3 group) continuously for 4 days. The rats induced with saline and subsequently treated with saline were used as controls (C group). The times for the paw withdrawal threshold and thermal withdrawal latency of the D1 group were lower than those for the C group, and were significantly increased after baclofen treatment, but not when GABA receptor was pre-blocked with CGP55845 (D3 group). Increased protein expression levels of NR2B and p-CREB and mRNA levels of NR2B were found in the D1 group when compared with the controls. Baclofen treatment significantly suppressed their expression, bringing it close to the levels of controls. However, in the D3 group, the expression of p-CREB and NR2B were still significantly higher than that of the controls. Activation of GABAB receptor by baclofen attenuates diabetic neuropathic pain, which may partly be accomplished via down-regulating the expression of p-CREB and NR2B.

  9. Lutein inhibits the function of the transient receptor potential A1 ion channel in different in vitro and in vivo models.

    Science.gov (United States)

    Horváth, Györgyi; Szoke, Éva; Kemény, Ágnes; Bagoly, Teréz; Deli, József; Szente, Lajos; Pál, Szilárd; Sándor, Katalin; Szolcsányi, János; Helyes, Zsuzsanna

    2012-01-01

    Transient receptor potential (TRP) ion channels, such as TRP vanilloid 1 and ankyrin repeat domain 1 (TRPV1 and TRPA1), are expressed on primary sensory neurons. Lutein, a natural tetraterpene carotenoid, can be incorporated into membranes and might modulate TRP channels. Therefore, the effects of the water-soluble randomly methylated-β-cyclodextrin (RAMEB) complex of lutein were investigated on TRPV1 and TRPA1 activation. RAMEB-lutein (100 μM) significantly diminished Ca(2+) influx to cultured rat trigeminal neurons induced by TRPA1 activation with mustard oil, but not by TRPV1 stimulation with capsaicin, as determined with microfluorimetry. Calcitonin gene-related peptide release from afferents of isolated tracheae evoked by mustard oil, but not by capsaicin, was inhibited by RAMEB-lutein. Mustard oil-induced neurogenic mouse ear swelling was also significantly decreased by 100 μg/ml s.c. RAMEB-lutein pretreatment, while capsaicin-evoked edema was not altered. Myeloperoxidase activity indicating non-neurogenic granulocyte accumulation in the ear was not influenced by RAMEB-lutein in either case. It is concluded that lutein inhibits TRPA1, but not TRPV1 stimulation-induced responses on cell bodies and peripheral terminals of sensory neurons in vitro and in vivo. Based on these distinct actions and the carotenoid structure, the ability of lutein to modulate lipid rafts in the membrane around TRP channels can be suggested.

  10. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression.

    Science.gov (United States)

    Ojima, Ayako; Ishibashi, Yuji; Matsui, Takanori; Maeda, Sayaka; Nishino, Yuri; Takeuchi, Masayoshi; Fukami, Kei; Yamagishi, Sho-ichi

    2013-01-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, contributes to diabetic nephropathy. We have found that glucagon-like peptide-1 (GLP-1) inhibits the AGE-induced inflammatory reactions in endothelial cells. However, effects of GLP-1 on the AGE-RAGE-ADMA axis are unknown. This study examined the effects of GLP-1 on reactive oxygen species (ROS) generation, gene expression of protein arginine methyltransfetase-1 (PRMT-1), an enzyme that mainly generates ADMA, and ADMA levels in human proximal tubular cells. Streptozotocin-induced diabetic rats received continuous i.p. infusion of 0.3 μg of vehicle or 1.5 μg of the GLP-1 analog exendin-4 per kilogram of body weight for 2 weeks. We further investigated whether and how exendin-4 treatment reduced ADMA levels and renal damage in streptozotocin-induced diabetic rats. GLP-1 inhibited the AGE-induced RAGE and PRMT-1 gene expression, ROS, and ADMA generation in tubular cells, which were blocked by small-interfering RNAs raised against GLP-1 receptor. Exendin-4 treatment decreased gene expression of Rage, Prmt-1, Icam-1, and Mcp-1 and ADMA level; reduced urinary excretions of 8-hydroxy-2'-deoxyguanosine and albumin; and improved histopathologic changes of the kidney in diabetic rats. Our present study suggests that GLP-1 receptor agonist may inhibit the AGE-RAGE-mediated ADMA generation by suppressing PRMT-1 expression via inhibition of ROS generation, thereby protecting against the development and progression of diabetic nephropathy.

  11. 4991W93 inhibits release of calcitonin gene-related peptide in the cat but only at doses with 5HT(1B/1D) receptor agonist activity?

    DEFF Research Database (Denmark)

    Knight, Y E; Edvinsson, L; Goadsby, P J

    2001-01-01

    )-mediated effects, that was developed as an anti-migraine drug, and thus was suitable to test whether higher doses of such conformationally restricted triptan analogues could inhibit trigeminal-evoked CGRP release. The superior sagittal sinus (SSS) was stimulated in 14 anaesthetised cats and external jugular vein...

  12. Role of Transient Receptor Potential Vanilloid 1 in Inflammation and Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Fumio Tsuji

    2012-08-01

    Full Text Available Transient receptor potential vanilloid 1 (TRPV1, a non-selective cation channel, is a receptor activated by high temperatures and chemical agonists such as the vanilloids and protons. Because of these properties, TRPV1 has emerged as a polymodal nocisensor of nociceptive afferent neurons. TRPV1 is thought to be a central transducer of hyperalgesia and a prime target for controlling pain pharmacologically because it is a point where many proalgesic pathways converge and it is upregulated and sensitized by inflammation and injury. However, whether TRPV1 agonists promote or inhibit inflammation remains unclear. We recently demonstrated that SA13353 (1-[2-(1-adamantylethyl]-1-pentyl-3-[3-(4-pyridylpropyl]urea, a novel TRPV1 agonist, inhibits tumor necrosis factor-a production by the activation of capsaicin-sensitive afferent neurons and reduces the severity of symptoms in kidney injury, lung inflammation, arthritis, and encephalomyelitis. These results suggest that TRPV1 agonists may act as anti-inflammatories in certain inflammatory and autoimmune conditions in vivo. Given the potential deleterious effects of inhibiting the population of channels with a protective function, caution should be taken in the use of potent TRPV1 antagonists as a general strategy to treat inflammation. Further studies are required to clarify the role of TRPV1 and neuropeptides, which are released because of TRPV1 activation in inflammation and autoimmune diseases.

  13. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  14. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway.

    Directory of Open Access Journals (Sweden)

    Bhushan Vijay Nagpure

    Full Text Available Alzheimer's disease (AD is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM attenuated HENECA (a selective A2A receptor agonist, 10-200 nM induced β-amyloid (1-42 (Aβ42 production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1 showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB. NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor, but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.

  15. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress.

    Science.gov (United States)

    Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P

    2016-01-25

    Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats.

  16. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis.

    Science.gov (United States)

    Zhang, Yun-Fang; Zou, Xun-Liang; Wu, Jun; Yu, Xue-Qing; Yang, Xiao

    2015-12-01

    We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.

  17. Structural basis of LaDR5, a novel agonistic anti-death receptor 5 (DR5 monoclonal antibody, to inhibit DR5/TRAIL complex formation

    Directory of Open Access Journals (Sweden)

    Qiao Chunxia

    2012-07-01

    Full Text Available Abstract Background As a member of the TNF superfamily, TRAIL could induce human tumor cell apoptosis through its cognate death receptors DR4 or DR5, which can induce formation of the death inducing signaling complex (DISC and activation of the membrane proximal caspases (caspase-8 or caspase-10 and mitochondrial pathway. Some monoclonal antibodies against DR4 or DR5 have been reported to have anti-tumor activity. Results In this study, we reported a novel mouse anti-human DR5 monoclonal antibody, named as LaDR5, which could compete with TRAIL to bind DR5 and induce the apoptosis of Jurkat cells in the absence of second cross-linking in vitro. Using computer-guided molecular modeling method, the 3-D structure of LaDR5 Fv fragment was constructed. According to the crystal structure of DR5, the 3-D complex structure of DR5 and LaDR5 was modeled using molecular docking method. Based on distance geometry method and intermolecular hydrogen bonding analysis, the key functional domain in DR5 was predicted and the DR5 mutants were designed. And then, three mutants of DR5 was expressed in prokaryotic system and purified by affinity chromatograph to determine the epitope of DR5 identified by LaDR5, which was consistent with the theoretical results of computer-aided analysis. Conclusions Our results demonstrated the specific epitope located in DR5 that plays a crucial role in antibody binding and even antineoplastic bioactivity. Meanwhile, revealed structural features of DR5 may be important to design or screen novel drugs agonist DR5.

  18. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart;

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  19. Mechanisms of early visual processing in the medulla of the locust optic lobe: how self-inhibition, spatial-pooling, and signal rectification contribute to the properties of transient cells.

    Science.gov (United States)

    Osorio, D

    1991-10-01

    In the arthropod medulla, which is the second ganglion on the afferent visual pathway, a column of about 40 cells represents each point in space (i.e. compound eye facet). Some stages of visual processing underlying the responses of one class of cells in the locust medulla have been identified. These transient cells give very similar responses to intensity increments and decrements, and also to pulses and steps; there is no spontaneous activity and a stimulus causes one or two spikes to fire at fixed latencies. Movement, however, produces a prolonged spike discharge by successive excitation of subunits within the receptive field. One of the main features of the transient cells' responses is a self-inhibition which attenuates responses to successive stimuli at one point. This inhibition is restricted to the outputs of single receptor (rhabdom), it decays after about 100 ms, and is polarity sensitive so that stimuli of one polarity (e.g. dimming) do not inhibit responses to stimuli of the opposite polarity (e.g. brightening). The inhibition effectively alters the contrast threshold of the cells, because after adaptation with stimuli of one contrast, a modest (less than 20%) increase in contrast is sufficient to elicit an unadapted response. Transient cells are not directionally selective and there are no local spatio-temporal interactions of the kind necessary for directional selectivity. But, by analogy with the directional veto in directionally selective cells in the rabbit retina (Barlow & Levick, 1965), self-inhibition is suggested as a mechanism of non-directional motion detection. After the inhibition, there is some spatial pooling of signals which is followed by rectification. The transient cells' spiking outputs could abstract a refined subset of visual information which may encode the presence, but not the direction, amplitude, or polarity of moving object borders.

  20. PPAR{alpha} agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xiaoyang [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, 250012 Jinan, Shandong (China); Division of Cardiothoracic Surgery, The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, BCM 390, One Baylor Plaza, Houston, TX 77030 (United States); Shen, Ying H. [Division of Cardiothoracic Surgery, The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, BCM 390, One Baylor Plaza, Houston, TX 77030 (United States); Li, Chuanbao; Wang, Fei; Zhang, Cheng [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, 250012 Jinan, Shandong (China); Bu, Peili, E-mail: peilibu6320@hotmail.com [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, 250012 Jinan, Shandong (China); Zhang, Yun [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, 250012 Jinan, Shandong (China)

    2010-04-09

    Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors {alpha} (PPAR{alpha}) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs. Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.

  1. Transient Receptor Potential Channel and Interleukin-17A Involvement in LTTL Gel Inhibition of Bone Cancer Pain in a Rat Model.

    Science.gov (United States)

    Wang, Juyong; Zhang, Ruixin; Dong, Changsheng; Jiao, Lijing; Xu, Ling; Liu, Jiyong; Wang, Zhengtao; Lao, Lixing

    2015-07-01

    Cancer pain management is a challenge for which Chinese herbal medicine might be useful. To study the spinal mechanisms of the Chinese medicated gel Long-Teng-Tong-Luo (LTTL), a 7-herb compound, on bone cancer pain, a bone cancer pain model was made by inoculating the tibias of female rats with Walker 256 cells. LTTL gel or inert gel, 0.5 g/cm(2)/d, was applied to the skin of tumor-bearing tibias for 21 days beginning a day after the inoculation. Mechanical threshold and paw withdrawal latency to thermal stimulation was measured. Transient receptor potential (TRP) cation channels in lumbar dorsal root ganglia (DRG) were immunostained and counted, and lumbar spinal cord interleukin-17A (IL-17A) was measured with real-time polymerase chain reaction and enzyme-linked immunosorbent assay. TRP antagonists and interleukin (IL)-17A antibodies were intrathecally administered to determine their effects on bone cancer pain. The gel significantly (P gel inhibits cancer pain, and this might be accounted for by the decrease in expression of DRG TRP channels and spinal astrocyte IL-17A.

  2. Poly (I:C, an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells

    Directory of Open Access Journals (Sweden)

    Li Yong-Gang

    2012-06-01

    Full Text Available Abstract Background Double-stranded RNA (dsRNA and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C], are recognized by toll-like receptor 3 (TLR3 and induce interferon (IFN-β in many cell types. Poly (I:C is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C elicited IFN-α/β production and natural killer (NK cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV infection, the viruses are cleared within 7–10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. Results The effects of Poly (I:C on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C suppressed cytopathic effects (CPE induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C treatment of BEAS-2B cells induced the production of IFN-β and increased the expression of anti-viral genes, including IFN-α, IFN-β, MxA, and OAS. Both Poly (I:C and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. Conclusions CHIKV is sensitive to innate immune response induced by Poly (I:C. The inhibition of CHIKV replication by Poly (I:C may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.

  3. Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis.

    Science.gov (United States)

    Afonja, Olubunmi; Juste, Dominique; Das, Sharmistha; Matsuhashi, Sachiko; Samuels, Herbert H

    2004-10-21

    The growth of human breast tumor cells is regulated through signaling involving cell surface growth factor receptors and nuclear receptors of the steroid/thyroid/retinoid receptor gene family. Retinoic acid receptors (RARs), members of the steroid/thyroid hormone receptor gene family, are ligand-dependent transcription factors, which have in vitro and in vivo growth inhibitory activity against breast cancer cells. RAR-agonists inhibit the proliferation of many human breast cancer cell lines, particularly those whose growth is stimulated by estradiol (E2) or growth factors. Additionally, RAR-agonists and synthetic retinoids such as Ferentinide have been shown to induce apoptosis in malignant breast cells but not normal breast cells. To better define the genes involved in RAR-mediated growth inhibition of breast cancer cells, we used oligonucleotide microarray analysis to create a database of genes that are potentially regulated by RAR-agonists in breast cancer cells. We found that PDCD4 (programmed cell death 4), a tumor suppressor gene presently being evaluated as a target for chemoprevention, was induced about three-fold by the RARalpha-selective agonist Am580, in T-47D breast cancer cells. RAR pan-agonists and Am580, but not retinoid X receptors (RXR)-agonists, stimulate the expression of PDCD4 in a wide variety of retinoid-inhibited breast cancer cell lines. RAR-agonists did not induce PDCD4 expression in breast cancer cell lines, which were not growth inhibited by retinoids. We also observed that antiestrogen and the HER-2/neu antagonist, Herceptin (Trastuzumab), also induced PDCD4 expression in T-47D cells, suggesting that PDCD4 may play a central role in growth inhibition in breast cancer cells. Transient overexpression of PDCD4 in T-47D (ER+, RAR+) and MDA-MB-231 (ER-, RAR-) cells resulted in apoptotic death, suggesting a role for PDCD4 in mediating apoptosis in breast cancer cells. PDCD4 protein expression has previously been reported in small ductal

  4. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein.

    Science.gov (United States)

    Bartholomeeusen, Koen; Xiang, Yanhui; Fujinaga, Koh; Peterlin, B Matija

    2012-10-19

    By phosphorylating elongation factors and the C-terminal domain of RNA polymerase II, the positive transcription elongation factor b (P-TEFb) is the critical kinase for transcription elongation and co-transcriptional processing of eukaryotic genes. It exists in inactive small nuclear ribonucleoprotein (7SK snRNP) and active (free P-TEFb) complexes in cells. The P-TEFb equilibrium determines the state of cellular activation, proliferation, and differentiation. Free P-TEFb, which is required for growth, can be recruited to RNA polymerase II via transcription factors, BRD4, or the super elongation complex (SEC). UV light, various signaling cascades, transcriptional blockade, or compounds such as hexamethylene bisacetamide (HMBA), suberoylanilide hydroxamic acid (SAHA), and other histone deacetylase inhibitors lead to a rapid release of free P-TEFb, followed by its reassembly into the 7SK snRNP. As a consequence, transcription of HEXIM1, a critical 7SK snRNP subunit, and HIV is induced. In this study, we found that a bromodomain and extra-terminal (BET) bromodomain inhibitor, JQ1, which inhibits BRD4 by blocking its association with chromatin, also leads to the rapid release of free P-TEFb from the 7SK snRNP. Indeed, JQ1 transiently increased levels of free P-TEFb and BRD4·P-TEFb and SEC·P-TEFb complexes in cells. As a consequence, the levels of HEXIM1 and HIV proteins rose. Importantly, the knockdown of ELL2, a subunit of the SEC, blocked the ability of JQ1 to increase HIV transcription. Finally, the effects of JQ1 and HMBA or SAHA on the P-TEFb equilibrium were cooperative. We conclude that HMBA, SAHA, and JQ1 affect transcription elongation by a similar and convergent mechanism.

  5. Biphasic effect of melanocortin agonists on metabolic rate and body temperature.

    Science.gov (United States)

    Lute, Beth; Jou, William; Lateef, Dalya M; Goldgof, Margalit; Xiao, Cuiying; Piñol, Ramón A; Kravitz, Alexxai V; Miller, Nicole R; Huang, Yuning George; Girardet, Clemence; Butler, Andrew A; Gavrilova, Oksana; Reitman, Marc L

    2014-08-01

    The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r)-mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia that is preserved in mice lacking any one of Mc1r, Mc3r, Mc4r, or Mc5r. Three other melanocortin agonists also caused hypothermia, which is actively achieved via seeking a cool environment, vasodilation, and inhibition of brown adipose tissue thermogenesis. These results suggest that the hypometabolic/hypothermic effect of MTII is not due to a failure of thermoregulation. The hypometabolism/hypothermia was prevented by dopamine antagonists, and MTII selectively activated arcuate nucleus dopaminergic neurons, suggesting that these neurons may contribute to the hypometabolism/hypothermia. We propose that the hypometabolism/hypothermia is a regulated response, potentially beneficial during extreme physiologic stress.

  6. Ingestion of TRP channel agonists attenuates exercise-induced muscle cramps.

    Science.gov (United States)

    Craighead, Daniel H; Shank, Sean W; Gottschall, Jinger S; Passe, Dennis H; Murray, Bob; Alexander, Lacy M; Kenney, W Larry

    2017-02-13

    Exercise associated muscle cramping (EAMC) is a poorly understood problem that is neuromuscular in origin. Ingestion of transient receptor potential (TRP) channel agonists has been efficacious in attenuating electrically-induced muscle cramps.

  7. [Melatonin receptor agonist].

    Science.gov (United States)

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  8. Inhaled Beta-2 Agonist Salbutamol for the Treatment of Transient Tachypnea of the Newborn%β2-受体激动剂治疗新生儿暂时性呼吸急促

    Institute of Scientific and Technical Information of China (English)

    张怡; 朱进秋; 李佳; 高敬; 李瑜; 张霞; 张静

    2015-01-01

    目的 探讨吸入β2-受体激动剂(舒喘灵)治疗新生儿暂时性呼吸急促(transient Tachypnea of the Newborn TTN)的疗效,并确定新生儿吸入舒喘灵的安全性.方法 将2011年10月至2014年6月入住昆明市妇幼保健院的100例TTN患儿随机分为吸入舒喘灵组(治疗组)52人,未吸入组(对照组)48人,胎龄37周至40+3周.治疗组通过舒喘灵喷雾瓶、储雾罩在入院60 min、6h分别给予0.4 mg舒喘灵气雾剂吸入;对照组按常规治疗.结果 (1)2组患儿在入院后7、12、24 h呼吸急促、呻吟、吸凹征严重程度比较,治疗组较对照组明显减轻和持续时间明显缩短,差异有统计学意义(P<0.05);(2)治疗组用药前后心率无明显增加,2组心率统计学处理,差异无统计学意义(P>0.05);(3)舒喘灵组需要常压给氧、nCPAP治疗时间较对照组缩短,差异有统计学意义(P<0.05);(4)机械通气治疗:舒喘灵组1例(1.9%)、对照组6例(12.5%),差异有统计学意义(P<0.05);(5)2组入院后12h监测平均pH值、氧分压、二氧化碳分压转归情况比较,差异有统计学意义(P<0.05);(6)在研究过程中,心电监护无1例心律失常发生;52例治疗组患儿均未出现肌肉震颤症状.结论 吸入舒喘灵对新生儿暂时性呼吸急促治疗有明显疗效.且临床和实验室检查均未发现不良反应.

  9. PARTIAL AGONISTS, FULL AGONISTS, ANTAGONISTS - DILEMMAS OF DEFINITION

    NARCIS (Netherlands)

    HOYER, D; BODDEKE, HWGM

    1993-01-01

    The absence of selective antagonists makes receptor characterization difficult, and largely dependent on the use of agonists. However, there has been considerable debate as to whether certain drugs acting at G protein-coupled receptors are better described as agonists, partial agonists or antagonist

  10. Chemo-nociceptive signalling from the colon is enhanced by mild colitis and blocked by inhibition of transient receptor potential ankyrin 1 channels

    DEFF Research Database (Denmark)

    Mitrovic, Martina; Shahbazian, Anaid; Bock, Elisabeth;

    2010-01-01

    Transient receptor potential ankyrin 1 (TRPA1) channels are expressed by primary afferent neurones and activated by irritant chemicals including allyl isothiocyanate (AITC). Here we investigated whether intracolonic AITC causes afferent input to the spinal cord and whether this response is modified...

  11. Transient Receptor Potential Vanilloid 4-Induced Modulation of Voltage-Gated Sodium Channels in Hippocampal Neurons.

    Science.gov (United States)

    Hong, Zhiwen; Jie, Pinghui; Tian, Yujing; Chen, Tingting; Chen, Lei; Chen, Ling

    2016-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is reported to control the resting membrane potential and increase excitability in many types of cells. Voltage-gated sodium channels (VGSCs) play an important role in initiating action potentials in neurons. However, whether VGSCs can be modulated by the activation of TRPV4 in hippocampal pyramidal neurons remains unknown. In this study, we tested the effect of TRPV4 agonists (GSK1016790A and 4α-PDD) on voltage-gated sodium current (I Na) in hippocampal CA1 pyramidal neurons and the protein levels of α/β-subunit of VGSCs in the hippocampus of mice subjected to intracerebroventricular (icv.) injection of GSK1016790A (GSK-injected mice). Herein, we report that I Na was inhibited by acute application of GSK1016790A or 4α-PDD. In the presence of TRPV4 agonists, the voltage-dependent inactivation curve shifted to the hyperpolarization, whereas the voltage-dependent activation curve remained unchanged. The TRPV4 agonist-induced inhibition of I Na was blocked by the TRPV4 antagonist or tetrodotoxin. Moreover, blocking protein kinase A (PKA) markedly attenuated the GSK1016790A-induced inhibition of I Na, whereas antagonism of protein kinase C or p38 mitogen-activated protein kinase did not change GSK1016790A action. Finally, the protein levels of Nav1.1, Nav1.2, and Nav1.6 in the hippocampus increased in GSK-injected mice, whereas those of Nav1.3 and Navβ1 remained nearly unchanged. We conclude that I Na is inhibited by the acute activation of TRPV4 through PKA signaling pathway in hippocampal pyramidal neurons, but protein expression of α-subunit of VGSCs is increased by sustained TRPV4 activation, which may compensate for the acute inhibition of I Na and provide a possibility for hyper-excitability upon sustained TRPV4 activation.

  12. Melatonin agonists and insomnia.

    Science.gov (United States)

    Ferguson, Sally A; Rajaratnam, Shantha M W; Dawson, Drew

    2010-02-01

    The ability of melatonin to shift biological rhythms is well known. As a result, melatonin has been used in the treatment of various circadian rhythm sleep disorders, such as advanced and delayed sleep phase disorders, jet lag and shiftwork disorder. The current evidence for melatonin being efficacious in the treatment of primary insomnia is less compelling. The development of agents that are selective for melatonin receptors provides opportunity to further elucidate the actions of melatonin and its receptors and to develop novel treatments for specific types of sleep disorders. The agonists reviewed here - ramelteon, tasimelteon and agomelatine - all appear to be efficacious in the treatment of circadian rhythm sleep disorders and some types of insomnia. However, further studies are required to understand the mechanisms of action, particularly for insomnia. Clinical application of the agonists requires a good understanding of their phase-dependent properties. Long-term effects of melatonin should be evaluated in large-scale, independent randomized controlled trials.

  13. Pim-1 kinase inhibits the activation of reporter gene expression in Elk-1 and c-Fos reporting systems but not the endogenous gene expression: an artifact of the reporter gene assay by transient co-transfection

    Directory of Open Access Journals (Sweden)

    Yan B.

    2006-01-01

    Full Text Available We have studied the molecular mechanism and signal transduction of pim-1, an oncogene encoding a serine-threonine kinase. This is a true oncogene which prolongs survival and inhibits apoptosis of hematopoietic cells. In order to determine whether the effects of Pim-1 occur by regulation of the mitogen-activated protein kinase pathway, we used a transcriptional reporter assay by transient co-transfection as a screening method. In this study, we found that Pim-1 inhibited the Elk-1 and NFkappaB transcriptional activities induced by activation of the mitogen-activated protein kinase cascade in reporter gene assays. However, Western blots showed that the induction of Elk-1-regulated expression of endogenous c-Fos was not affected by Pim-1. The phosphorylation and activation of neither Erk1/2 nor Elk-1 was influenced by Pim-1. Also, in the gel shift assay, the pattern of endogenous NFkappaB binding to its probe was not changed in any manner by Pim-1. These data indicate that Pim-1 does not regulate the activation of Erk1/2, Elk-1 or NFkappaB. These contrasting results suggest a pitfall of the transient co-transfection reporter assay in analyzing the regulation of transcription factors outside of the chromosome context. It ensures that results from reporter gene expression assay should be verified by study of endogenous gene expression.

  14. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases.

    Science.gov (United States)

    Jean, Mélissa; Gera, Lajos; Charest-Morin, Xavier; Marceau, François; Bachelard, Hélène

    2015-01-01

    We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer's inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be

  15. An Orally Active Allosteric GLP-1 Receptor Agonist Is Neuroprotective in Cellular and Rodent Models of Stroke.

    Directory of Open Access Journals (Sweden)

    Huinan Zhang

    Full Text Available Diabetes is a major risk factor for the development of stroke. Glucagon-like peptide-1 receptor (GLP-1R agonists have been in clinical use for the treatment of diabetes and also been reported to be neuroprotective in ischemic stroke. The quinoxaline 6,7-dichloro-2-methylsulfonyl-3-N-tert- butylaminoquinoxaline (DMB is an agonist and allosteric modulator of the GLP-1R with the potential to increase the affinity of GLP-1 for its receptor. The aim of this study was to evaluate the neuroprotective effects of DMB on transient focal cerebral ischemia. In cultured cortical neurons, DMB activated the GLP-1R, leading to increased intracellular cAMP levels with an EC50 value about 100 fold that of exendin-4. Pretreatment of neurons with DMB protected against necrotic and apoptotic cell death was induced by oxygen-glucose deprivation (OGD. The neuroprotective effects of DMB were blocked by GLP-1R knockdown with shRNA but not by GLP-1R antagonism. In C57BL/6 mice, DMB was orally administered 30 min prior to middle cerebral artery occlusion (MCAO surgery. DMB markedly reduced the cerebral infarct size and neurological deficits caused by MCAO and reperfusion. The neuroprotective effects were mediated by activation of the GLP-1R through the cAMP-PKA-CREB signaling pathway. DMB exhibited anti-apoptotic effects by modulating Bcl-2 family members. These results provide evidence that DMB, a small molecular GLP-1R agonist, attenuates transient focal cerebral ischemia injury and inhibits neuronal apoptosis induced by MCAO. Taken together, these data suggest that DMB is a potential neuroprotective agent against cerebral ischemia.

  16. Pharmacogenetics of β2-Agonists

    OpenAIRE

    Nobuyuki Hizawa

    2011-01-01

    Short-acting β2-agonists (SABAs) and long-acting β2-agonists (LABAs) are both important for treatment of asthma and chronic obstructive pulmonary disease (COPD) because of their bronchodilator and bronchoprotective effects. However, the use of these agonists, at least for asthma, has generated some controversy because of their association with increased mortality. Pharmacogenetics is the study of genetically determined variation in response to medications, which might prove useful for target ...

  17. A natural history of "agonist".

    Science.gov (United States)

    Russo, Ruth

    2002-01-01

    This paper constructs a brief history of the biochemical term agonist by exploring the multiple meanings of the root agôn in ancient Greek literature and describing how agonist first appeared in the scientific literature of the 20th century in the context of neurophysiologists' debates about the existence and properties of cellular receptors. While the narrow scientific definition of agonist may appear colorless and dead when compared with the web of allusions spun by the ancient Greek agôn, the scientific power and creativity of agonist actually resides precisely in its exact, restricted meaning for biomedical researchers.

  18. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2011-01-01

    Introduction: Recently, glucagon-like peptide-1 receptor (GLP-1R) agonists have become available for the treatment of type 2 diabetes. These agents exploit the physiological effects of GLP-1, which is able to address several of the pathophysiological features of type 2 diabetes. GLP-1R agonists...... presently available are administered once or twice daily, but several once-weekly GLP-1R agonists are in late clinical development. Areas covered: The present review aims to give an overview of the clinical data on the currently available GLP-1R agonists used for treatment of type 2 diabetes, exenatide...

  19. Five hTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa.

    Directory of Open Access Journals (Sweden)

    Hana Moon

    Full Text Available Transient receptor potential ankyrin1 (TRPA1 and transient receptor potential vanilloid 1 (TRPV1 are members of the TRP superfamily of structurally related, nonselective cation channels and mediators of several signaling pathways. Previously, we identified methyl syringate as an hTRPA1 agonist with efficacy against gastric emptying. The aim of this study was to find hTRPA1 and/or hTRPV1 activators in Agastache rugosa (Fisch. et Meyer O. Kuntze (A.rugosa, commonly known as Korean mint to improve hTRPA1-related phenomena. An extract of the stem and leaves of A.rugosa (Labiatae selectively activated hTRPA1 and hTRPV1. We next investigated the effects of commercially available compounds found in A.rugosa (acacetin, 4-allylanisole, p-anisaldehyde, apigenin 7-glucoside, L-carveol, β-caryophyllene, trans-p-methoxycinnamaldehyde, methyl eugenol, pachypodol, and rosmarinic acid on cultured hTRPA1- and hTRPV1-expressing cells. Of the ten compounds, L-carveol, trans-p-methoxycinnamaldehyde, methyl eugenol, 4-allylanisole, and p-anisaldehyde selectively activated hTRPA1, with EC50 values of 189.1±26.8, 29.8±14.9, 160.2±21.9, 1535±315.7, and 546.5±73.0 μM, respectively. The activities of these compounds were effectively inhibited by the hTRPA1 antagonists, ruthenium red and HC-030031. Although the five active compounds showed weaker calcium responses than allyl isothiocyanate (EC50=7.2±1.4 μM, our results suggest that these compounds from the stem and leaves of A.rugosa are specific and selective agonists of hTRPA1.

  20. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2011-01-01

    Introduction: Recently, glucagon-like peptide-1 receptor (GLP-1R) agonists have become available for the treatment of type 2 diabetes. These agents exploit the physiological effects of GLP-1, which is able to address several of the pathophysiological features of type 2 diabetes. GLP-1R agonists...

  1. Inhibition of conditioned stimulus pathway phosphoprotein 24 expression blocks the reduction in A-type transient K+ current produced by one-trial in vitro conditioning of Hermissenda.

    Science.gov (United States)

    Yamoah, Ebenezer N; Levic, Snezana; Redell, John B; Crow, Terry

    2005-05-11

    Long-term intrinsic enhanced excitability is a characteristic of cellular plasticity and learning-dependent modifications in the activity of neural networks. The regulation of voltage-dependent K+ channels by phosphorylation/dephosphorylation and their localization is proposed to be important in the control of cellular plasticity. One-trial conditioning in Hermissenda results in enhanced excitability in sensory neurons, type B photoreceptors, of the conditioned stimulus pathway. Conditioning also regulates the phosphorylation of conditioned stimulus pathway phosphoprotein 24 (Csp24), a cytoskeletal-related protein containing multiple beta-thymosin-like domains. Recently, it was shown that the downregulation of Csp24 expression mediated by an antisense oligonucleotide blocked the development of enhanced excitability in identified type B photoreceptors after one-trial conditioning without affecting short-term excitability. Here, we show using whole-cell patch recordings that one-trial in vitro conditioning applied to isolated photoreceptors produces a significant reduction in the amplitude of the A-type transient K+ current (I(A)) detected 1.5-16 h after conditioning. One-trial conditioning produced a depolarized shift in the steady-state activation curve of I(A) without altering the inactivation curve. The conditioning-dependent reduction in I(A) was blocked by preincubation of the photoreceptors with Csp antisense oligonucleotide. These results provide an important link between Csp24, a cytoskeletal protein, and regulation of voltage-gated ion channels associated with intrinsic enhanced excitability underlying pavlovian conditioning.

  2. Histamine H3-receptor inverse agonists as novel antipsychotics.

    Science.gov (United States)

    Ito, Chihiro

    2009-06-01

    Schizophrenia (SZ) that is resistant to treatment with dopamine (DA) D2 antagonists may involve changes other than those in the dopaminergic system. Recently, histamine (HA), which regulates arousal and cognitive functions, has been suggested to act as a neurotransmitter in the central nervous system. Four HA receptors-H1, H2, H3, and H4-have been identified. Our recent basic and clinical studies revealed that brain HA improved the symptoms of SZ. The H3 receptor is primarily localized in the central nervous system, and it acts not only as a presynaptic autoreceptor that modulates the HA release but also as a presynaptic heteroreceptor that regulates the release of other neurotransmitters such as monoamines and amino acids. H3-receptor inverse agonists have been considered to improve cognitive functions. Many atypical antipsychotics are H3-receptor antagonists. Imidazole-containing H3-receptor inverse agonists inhibit not only cytochrome P450 but also hERG potassium channels (encoded by the human ether-a-go-go-related gene). Several imidazole H3-receptor inverse agonists also have high affinity for H4 receptors, which are expressed at high levels in mast cells and leukocytes. Clozapine is an H4-receptor agonist; this agonist activity may be related to the serious side effect of agranulocytosis caused by clozapine. Therefore, selective non-imidazole H3-receptor inverse agonists can be considered as novel antipsychotics that may improve refractory SZ.

  3. Activation of transient receptor potential ankyrin 1 by eugenol.

    Science.gov (United States)

    Chung, G; Im, S T; Kim, Y H; Jung, S J; Rhyu, M-R; Oh, S B

    2014-03-07

    Eugenol is a bioactive plant extract used as an analgesic agent in dentistry. The structural similarity of eugenol to cinnamaldehyde, an active ligand for transient receptor potential ankyrin 1 (TRPA1), suggests that eugenol might produce its effect via TRPA1, in addition to TRPV1 as we reported previously. In this study, we investigated the effect of eugenol on TRPA1, by fura-2-based calcium imaging and patch clamp recording in trigeminal ganglion neurons and in a heterologous expression system. As the result, eugenol induced robust calcium responses in rat trigeminal ganglion neurons that responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC), and not to capsaicin. Capsazepine, a TRPV1 antagonist failed to inhibit eugenol-induced calcium responses in AITC-responding neurons. In addition, eugenol response was observed in trigeminal ganglion neurons from TRPV1 knockout mice and human embryonic kidney 293 cell lines that express human TRPA1, which was inhibited by TRPA1-specific antagonist HC-030031. Eugenol-evoked TRPA1 single channel activity and eugenol-induced TRPA1 currents were dose-dependent with EC50 of 261.5μM. In summary, these results demonstrate that the activation of TRPA1 might account for another molecular mechanism underlying the pharmacological action of eugenol.

  4. Inhibition of ileal and colonic ornithine decarboxylase activity by alpha-difluoromethylornithine in rats: transient atrophic changes and loss of postresectional adaptive growth.

    Science.gov (United States)

    Kingsnorth, A N; Abu-Khalaf, M; LaMuraglia, G M; McCann, P P; Diekema, K A; Ross, J S; Malt, R A

    1986-06-01

    To determine the role of putrescine synthesis in adaptive hyperplasia of the ileum and colon, DL-alpha-difluoromethylornithine (DFMO), an enzyme-activated, irreversible inhibitor of ornithine decarboxylase (ODC), the enzyme controlling putrescine biosynthesis, was fed to rats after excision of the proximal half of the small bowel. A rise in ODC activity (280% in the proximal ileum, 62% in the proximal colon) and a rise in putrescine content (220% in the proximal ileum, 250% in the proximal colon) normally accompanied characteristic cytochemical adaptive increases in the ileum and colon at day 6. Inclusion of 1% DFMO (2.1 gm/kg/day) in drinking water for 12 hours before operation and for 14 days thereafter decreased ODC activity by 85% to 96%, reduced levels of putrescine and spermidine and measurements of the adaptive response by 50% in the ileum, and abolished the adaptive response in the colon. During the first 10 days of DFMO feeding, villous atrophy and other hypoplastic changes occurred in control rats, but by 14 days of DFMO feeding atrophy and hypoplasia were no longer present. Although DFMO inhibits adaptive hyperplasia occurring in the ileum and colon of rats after resection of the proximal half of the small bowel, spontaneous recovery of villous atrophy occurs during further DFMO feeding and may protect the host during chemotherapy.

  5. Schisandrin B inhibits the proliferation of airway smooth muscle cells via microRNA-135a suppressing the expression of transient receptor potential channel 1.

    Science.gov (United States)

    Zhang, Xiao-Yu; Zhang, Luo-Xian; Guo, Ya-Li; Zhao, Li-Min; Tang, Xue-Yi; Tian, Cui-Jie; Cheng, Dong-Jun; Chen, Xian-Liang; Ma, Li-Jun; Chen, Zhuo-Chang

    2016-07-01

    Airway smooth muscle cell (ASMC) was known to involve in the pathophysiology of asthma. Schisandrin B was reported to have anti-asthmatic effects in a murine asthma model. However, the molecular mechanism involving in the effect of Schisandrin B on ASMCs remains poorly understood. Sprague-Dawley rats were divided into three groups: rats as the control (Group 1), sensitized rats (Group 2), sensitized rats and intragastric-administrated Schisandrin B (Group 3). The expression of miR-135a and TRPC1 was detected in the rats from three groups. Platelet-derived growth factor (PDGF)-BB was used to induce the proliferation of isolated ASMCs, and the expression of miR-135a and TRPC1 was detected in PDGF-BB-treated ASMCs. Cell viability was examined in ASMCs transfected with miR-135a inhibitor or si-TRPC1. The expression of TRPC1 was examined in A10 cells pretreated with miR-135a inhibitor or miR-135a mimic. In this study, we found that Schisandrin B attenuated the inspiratory and expiratory resistances in sensitized rats. Schisandrin B upregulated the mRNA level of miR-135a and decreased the expression of TRPC1 in sensitized rats. In addition, Schisandrin B reversed the expression of miR-135a and TRPC1 in PDGF-BB-induced ASMCs. Si-TRPC1 abrogated the increasing proliferation of ASMCs induced by miR-135a inhibitor. We also found that miR-135a regulated the expression of TRPC1 in the A10 cells. These results demonstrate that Schisandrin B inhibits the proliferation of ASMCs via miR-135a suppressing the expression of TRPC1.

  6. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells.

    Science.gov (United States)

    Rickard, David J; Wang, Fei-Lan; Rodriguez-Rojas, Ana-Maria; Wu, Zining; Trice, Wen J; Hoffman, Sandra J; Votta, Bartholomew; Stroup, George B; Kumar, Sanjay; Nuttall, Mark E

    2006-12-01

    Whereas continuous PTH infusion increases bone resorption and bone loss, intermittent PTH treatment stimulates bone formation, in part, via reactivation of quiescent bone surfaces and reducing osteoblast apoptosis. We investigated the possibility that intermittent and continuous PTH treatment also differentially regulates osteogenic and adipocytic lineage commitment of bone marrow stromal progenitor/mesenchymal stem cells (MSC). The MSC were cultured under mildly adipogenic conditions in medium supplemented with dexamethasone, insulin, isobutyl-methylxanthine and troglitazone (DIIT), and treated with 50 nM human PTH(1-34) for either 1 h/day or continuously (PTH replenished every 48 h). After 6 days, cells treated with PTH for 1 h/day retained their normal fibroblastic appearance whereas those treated continuously adopted a polygonal, irregular morphology. After 12-18 days numerous lipid vacuole and oil red O-positive adipocytes had developed in cultures treated with DIIT alone, or with DIIT and continuous PTH. In contrast, adipocyte number was reduced and alkaline phosphatase staining increased in the cultures treated with DIIT and 1 h/day PTH, indicating suppression of adipogenesis and possible promotion of early osteoblastic differentiation. Furthermore, intermittent but not continuous PTH treatment suppressed markers of differentiated adipocytes such as mRNA expression of lipoprotein lipase and PPARgamma as well as glycerol 3-phosphate dehydrogenase activity. All of these effects of intermittent PTH were also produced by a 1 h/day treatment with AH3960 (30 microM), a small molecule, non-peptide agonist of the PTH1 receptor. AH3960, like PTH, activates both the cAMP and calcium signaling pathways. Treatment with the adenylyl cyclase activator forskolin for 1 h/day, mimicked the anti-adipogenic effect of intermittent PTH, whereas pretreatment with the protein kinase-A inhibitor H89 prior to intermittent PTH resulted in almost complete conversion to adipocytes. In

  7. Pharmacological, neurochemical, and behavioral profile of JB-788, a new 5-HT1A agonist.

    Science.gov (United States)

    Picard, M; Morisset, S; Cloix, J F; Bizot, J C; Guerin, M; Beneteau, V; Guillaumet, G; Hevor, T K

    2010-09-01

    A novel pyridine derivative, 8-{4-[(6-methoxy-2,3-dihydro-[1,4]dioxino[2,3-b]pyridine-3-ylmethyl)-amino]-butyl}-8-aza-spiro[4.5]decane-7,9-dione hydrochloride, termed JB-788, was designed to selectively target 5-HT(1A) receptors. In the present study, the pharmacological profile of JB-788 was characterized in vitro using radioligands binding tests and in vivo using neurochemical and behavioural experiments. JB-788 bound tightly to human 5-HT(1A) receptor expressed in human embryonic kidney 293 (HEK-293) cells with a K(i) value of 0.8 nM. Its binding affinity is in the same range as that observed for the (+/-)8-OH-DPAT, a reference 5HT(1A) agonist compound. Notably, JB-788 only bound weakly to 5-HT(1B) or 5-HT(2A) receptors and moreover the drug displayed only weak or indetectable binding to muscarinic, alpha(2), beta(1) and beta(2) adrenergic receptors, or dopaminergic D(1) receptors. JB-788 was found to display substantial binding affinity for dopaminergic D(2) receptors and, to a lesser extend to alpha(1) adrenoreceptors. JB-788 dose-dependently decreased forskolin-induced cAMP accumulation in HEK cells expressing human 5-HT(1A), thus acting as a potent 5-HT(1A) receptor agonist (E(max.) 75%, EC(50) 3.5 nM). JB-788 did not exhibit any D(2) receptor agonism but progressively inhibited the effects of quinpirole, a D(2) receptor agonist, in the cAMP accumulation test with a K(i) value of 250 nM. JB-788 induced a weak change in cAMP levels in mouse brain but, like some antipsychotics, transiently increased glycogen contents in various brain regions. Behavioral effects were investigated in mice using the elevated plus-maze. JB-788 was found to increase the time duration spent by animals in anxiogenic situations. Locomotor hyperactivity induced by methamphetamine in mouse, a model of antipsychotic activity, was dose-dependently inhibited by JB-788. Altogether, these results suggest that JB-788 displays pharmacological properties, which could be of interest in the area

  8. Are Dopamine Agonists Neuroprotective in Parkinson‘s disease?

    Institute of Scientific and Technical Information of China (English)

    乐卫东; Jank.J

    2002-01-01

    Dopamine(DA) agonists are playing increasingly important role in the treatment of not only advanced Parkinson's disease(PD) and in PD patient with levodopa(L-DO-PA)-induced motor fluctuations,but also in early treatment of the disease.This shift has been largely due to the demonstrated L-DOPA-sparing effect of DA agonists and their putative neuroprotective effect,based largely on experimental in vitro and in vivo studies.In this article we review the evidence of neuroprotection by DA agonists pramipexole,ropinirole,pergolide,bromocriptine and apomorphine in cell cultures and animal models of nigral injury.Most of the studies suggest that DA agonists exert their neuroprotection via directly scavenging free radicals or increasing the activities of radical-scavenging enzymes,and enhancing neurotrophic activity.The finding that pramipexole can normalize mitochondrial membrane potential and inhibit activity of caspase-3 in cytoylasmic hybrid cells made from mitochondrial DNA of nonfamilial Alzheimer's disease patients,however,suggests even a broader implication for the neuroprotective role of DA agonists.Although the clinical evidence for neuroprotection by DA agonists is still limited,the preliminary results from several on-going clinal trials are promising.Several longitudinal studies are currently in progress designed to demonstrate a delay or slowing of progresion of PD using various surrogate markers of neuronal degeneration such as18F-L-DOPA PET and123I β-CIT SPECT.The results of these experimental and clinical studies will improve our understanding of the action of DA agonists and provide critical information needed for planning future therapeutic strategies in PD and related neurodegenerative disorders.

  9. Are Dopamine Agonists Neuroprotective in Parkinson′s Disease?

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Dopamine (DA) agonists are playing increasingly important role in the treatment of not only advanced Parkinson′s disease (PD) and in PD patient with levodopa (L-DOPA)-induced motor fluctuations,but also in early treatment of the disease.This shift has been largely due to the demonstrated L-DOPA-sparing effect of DA agonists and their putative neuroprotective effect,based largely on experimental in vitro and in vivo studies.In this article we review the evidence of neuroprotection by DA agonists pramipexole,ropinirole,pergolide,bromocriptine and apomorphine in cell cultures and animal models of nigral injury.Most of the studies suggest that DA agonists exert their neuroprotection via directly scavenging free radicals or increasing the activities of radical-scavenging enzymes,and enhancing neurotrophic activity.The finding that pramipexole can normalize mitochondrial membrane potential and inhibit activity of caspase-3 in cytoplasmic hybrid cells made from mitochondrial DNA of nonfamilial Alzheimer′s disease patients,however,suggests even a broader implication for the neuroprotective role of DA agonists.Although the clinical evidence for neuroprotection by DA agonists is still limited,the preliminary results from several on-going clinical trials are promising.Several longitudinal studies are currently in progress designed to demonstrate a delay or slowing of progresion of PD using various surrogate markers of neuronal degeneration such as 18 F-L-DOPA PET and 123 I β-CIT SPECT.The results of these experimental and clinical studies will improve our understanding of the action of DA agonists and provide critical information needed for planning future therapeutic strategies in PD and related neurodegenerative disorders.``

  10. Sources of calcium in agonist-induced contraction of rat distal colon smooth muscle in vitro

    Institute of Scientific and Technical Information of China (English)

    Hua Zhou; De-Hu Kong; QunWan Pan; HaiHua Wang

    2008-01-01

    AIM:To study the origin of calcium necessary foragonist-induced contraction of the distal colon in rats.METHODS:The change in intracellular calcium concentration ([Ca2+]i)evoked by elevating external Ca2+was detected by fura 2/AM fluorescence.Contractile activity was measured with a force displacement transducer.Tension was continuously monitored and recorded using a Powerlab 4/25T data acquisition system with an ML110 bridge bioelectric physiographic amplifier.RESULTS:Store depletion induced Ca2+ influx had an effect on [Ca2+]i.In nominally Ca2+-free medium,the sarco-endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (1 μmol/L) increased [Ca2+]i from 68 to 241 nmol/L,and to 458 (P<0.01) and 1006 nmol/L (P<0.01),respectively,when 1.5 mmol/L and 3.0 mmol/L extracellular Ca2+ was reintroduced.Furthermore,the change in [Ca2+]1.was observed with verapamil (5 μmol/L),La3+(1 mmol/L) or KCI (40 mmol/L) in the bathing solution.These channels were sensitive to La3+(P<0.01),insensitive to verapamil,and voltage independent.In isolated distal colons we found that in normal Krebs solution,contraction induced by acetylcholine (ACh) was partially inhibited by verapamil,and the inhibitory rate was 41% (P<0.05).On the other hand,in Ca2+-free Krebs solution,ACh induced transient contraction due to Ca2+ release from the inLracellular stores.The transient contraction lasted until the Ca2+ store was depleted.Restoration of extracellular Ca2+ in the presence of atropine produced contraction,mainly due to Ca2+ influx.Such contraction was not inhibited by verapamil,but was decreased by La3+ (50 μmol/L) from 0.96 to 0.72 g (P<0.01).CONCLUSION:The predominant source of activator Ca2+ for the contractile response to agonist is extracellular Ca2+,and intracellular Caz+ has little role to play in mediating excitation-contraction coupling by agonists in rat distal colon smooth muscle in vitro.The influx of extracellular Ca2+ is mainly mediated through voltage-,receptor- and

  11. Neuroprotection of GluK1 kainate receptor agonist ATPA against ischemic neuronal injury through inhibiting GluK2 kainate receptor-JNK3 pathway via GABA(A) receptors.

    Science.gov (United States)

    Lv, Qian; Liu, Yong; Han, Dong; Xu, Jing; Zong, Yan-Yan; Wang, Yao; Zhang, Guang-Yi

    2012-05-25

    It is well known that GluK2-containing kainate receptors play essential roles in seizure and cerebral ischemia-induced neuronal death, while GluK1-containing kainate receptors could increase tonic inhibition of post-synaptic pyramidal neurons. This research investigated whether GluK1 could inhibit activation of c-Jun N-terminal kinase 3 (JNK3) signaling pathway mediated by the GluK2 in cerebral ischemia-reperfusion. The results show that GluK1 activation by (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) at 1nmol per rat could inhibit the assembly of GluK2·Postsynaptic density 95·mixed lineage kinase 3 signaling module, activation of JNK3 and its downstream signal molecules. However, the inhibition of ATPA could be prevented by GluK1 antagonist NS3763, GluK1 antisense, and GABA(A) receptor antagonist bicuculline. In addition, ATPA played a neuroprotective role against cerebral ischemia. In sum, the findings indicate that activation of GluK1 by ATPA at specific dosages may promote GABA release, which then suppresses post-synaptic GluK2-JNK3 signaling-mediated cerebral ischemic injury via GABA(A)R.

  12. Enhanced ex vivo inhibition of platelet function following addition of dipyridamole to aspirin after transient ischaemic attack or ischaemic stroke: first results from the TRinity AntiPlatelet responsiveness (TrAP) study.

    LENUS (Irish Health Repository)

    Tobin, William Oliver

    2012-02-01

    Ex vivo dipyridamole \\'non-responsiveness\\' has not been extensively studied in ischaemic cerebrovascular disease. Platelet surface marker expression, leucocyte-platelet complex formation and inhibition of platelet function at high shear stress as detected by the PFA-100(R) Collagen-Adenosine-diphosphate (C-ADP) and Collagen-Epinephrine cartridges was assessed in 52 patients within 4 weeks of transient ischaemic attack (TIA) or ischaemic stroke on aspirin, and then 14 d (14 d) and >90 d (90 d) after adding dipyridamole. A novel definition of \\'Dipyridamole non-responsiveness\\' was used. The median C-ADP closure time increased following addition of dipyridamole, remained elevated at 90 d (P <\\/= 0.03), and was unaffected by aspirin dose. 59% at 14 d and 56% at 90 d were \\'dipyridamole non-responders\\' on the PFA-100. The proportion of non-responders at 14 and 90 d was similar (P= 0.9). Compared with baseline (4.6%), median monocyte-platelet complexes increased at 14 d (5.0%, P= 0.03) and 90 d (4.9%, P= 0.04). Low C-ADP closure times were associated with increased monocyte-platelet complexes at 14 d (r= -0.32, P= 0.02) and 90 d (r= -0.33, P = 0.02). Monocyte-platelet complexes increased in the subgroup of dipyridamole non-responders on the PFA-100 (P<\\/= 0.045), but not in responders (P >\\/= 0.5), at 14 and 90 d versus baseline. Additional inhibition of platelet function has been detected with the PFA-100 when dipyridamole is added to aspirin. Elevated monocyte-platelet complexes may contribute to ex vivo dipyridamole non-responsiveness.

  13. Role of dopamine agonists in Parkinson's disease: an update.

    Science.gov (United States)

    Bonuccelli, Ubaldo; Pavese, Nicola

    2007-10-01

    At present, dopamine agonists play an important role in antiparkinsonian therapy since they were proved effective in the management of both advanced- and early-stage Parkinson's disease. In the latter, they are often regarded as first-choice medication to delay the introduction of levodopa therapy. Despite sharing the capacity to directly stimulate dopamine receptors, dopamine agonists show different pharmacological properties as they act on different subsets of dopamine receptors. This, in theory, provides the advantage of obtaining a different antiparkinsonian activity or safety profile with each agent. However, there is very little evidence that any of the marketed dopamine agonists should be consistently preferred in the management of patients with Parkinson's disease. Pergolide and cabergoline are now considered a second-line choice after the proven association with valvular fibrosis. Transdermal administration (rotigotine) and subcutaneous infusion (apomorphine) of dopamine receptor agonists are now available alternatives to oral administration and provide continuous dopaminergic stimulation. Continuous subcutaneous apomorphine infusion during waking hours leads to a large reduction in daily 'off' time, dyskinesias and levodopa daily dose. Almost all currently used dopamine agonists are able to provide neuroprotective effects towards dopaminergic neurons during in vitro and in vivo experiments. This neuroprotection may be the result of different mechanisms including antioxidation, scavenging of free radicals, suppression of lipid peroxidation and inhibition of apoptosis. However, the disease-modifying effect of these agents in Parkinson's disease remains to be ascertained.

  14. Pharmacogenetics of β2-Agonists

    Directory of Open Access Journals (Sweden)

    Nobuyuki Hizawa

    2011-01-01

    Full Text Available Short-acting β2-agonists (SABAs and long-acting β2-agonists (LABAs are both important for treatment of asthma and chronic obstructive pulmonary disease (COPD because of their bronchodilator and bronchoprotective effects. However, the use of these agonists, at least for asthma, has generated some controversy because of their association with increased mortality. Pharmacogenetics is the study of genetically determined variation in response to medications, which might prove useful for target therapies in highly responsive patients, especially for more expensive therapies or those with increased risk of side effects. Variation in response to both SABAs and LABAs has been observed in patients with polymorphisms in the β2 adrenoceptor gene (ADRB2. This review summarizes results from various studies on the possible relationship between ADRB2 polymorphisms and the bronchodilator or bronchoprotective effects of inhaled β2-agonists. By assessing the ADRB2 genotype, the hope is that it will be possible to predict the responsiveness to chronic administration of β2-agonists. Genetic testing, however, is of limited usefulness at this stage for ADRB2 because the common variants identified thus far account for only a small proportion of the variation observed for given responses. Carefully performed and adequately powered clinical trials continue to be important for achieving the goal of pharmacogenetic approaches to therapy.

  15. The impact of improved glycaemic control with GLP-1 receptor agonist therapy on diabetic retinopathy.

    Science.gov (United States)

    Varadhan, Lakshminarayanan; Humphreys, Tracy; Walker, Adrian B; Varughese, George I

    2014-03-01

    Rapid improvement in glycaemic control with GLP-1 receptor agonist (RA) therapy has been reported to be associated with significant progression of diabetic retinopathy. This deterioration is transient, and continuing GLP-1 RA treatment is associated with reversal of this phenomenon. Pre-existent maculopathy, higher grade of retinopathy and longer duration of diabetes may be risk factors for persistent deterioration.

  16. [Alpha 2-adrenoceptor agonists for the treatment of chronic pain].

    Science.gov (United States)

    Kulka, P J

    1996-04-25

    The antinociceptive effect of alpha(2)-adrenoceptor agonists is mediated by activation of descending inhibiting noradrenergic systems, which modulates 'wide-dynamic-range' neurones. Furthermore, they inhibit the liberation of substance P and endorphines and activate serotoninergic neurones. Despite this variety of antinociceptive actions, there is still little experience with alpha(2)-adrenoceptor agonists as therapeutic agents for use in chronic pain syndromes. Studies in animals and patients have shown that the transdermal, epidural and intravenous administration of the alpha(2)-adrenoceptor agonist clonidine reduces pain intensity in neuropathic pain syndromes for periods varying from some hours up to 1 month. Patients suffering from lancinating or sharp pain respond best to this therapy. Topically applied clonidine (200-300 microg) relieves hyperalgesia in sympathetically maintained pain. Epidural administration of 300 microg clonidine dissolved in 5 ml NaCl 0.9 % has also been shown to be effective. In patients suffering from cancer pain tolerant to opioids, pain control has proved possible again with combinations of opioids and clonidine. In isolated cases clonidine has been administered epidurally at a dose of 1500 microg/day for almost 5 months without evidence for any histotoxic property of clonidine. Side effects often observed during administration of alpha(2)-adrenoceptor agonists are dry mouth, sedation, hypotension and bradycardia. Therapeutic interventions are usually not required.

  17. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Watanabe, Tatsuo [Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Imai, Yasuyuki, E-mail: imai@u-shizuoka-ken.ac.jp [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan)

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  18. Estrogen receptor beta agonists in neurobehavioral investigations.

    Science.gov (United States)

    Choleris, Elena; Clipperton, Amy E; Phan, Anna; Kavaliers, Martin

    2008-07-01

    Neurobehavioral investigations into the functions of estrogen receptor (ER)alpha and ERbeta have utilized 'knockout' mice, phytoestrogens and, more recently, ER-specific agonists. Feeding, sexual, aggressive and social behavior, anxiety, depression, drug abuse, pain perception, and learning (and associated synaptic plasticity) are affected by ERalpha and ERbeta in a manner that is dependent upon the specific behavior studied, gender and developmental stage. Overall, ERalpha and ERbeta appear to function together to foster sociosexual behavior while inhibiting behaviors that, if occurring at the time of behavioral estrous, may compete with reproduction (eg, feeding). Recently developed pharmacological tools have limited selectivity and availability to the research community at large, as they are not commercially available. The development of highly selective, commercially available ERbeta-specific antagonists would greatly benefit preclinical and applied research.

  19. Melatonin receptor agonists: new options for insomnia and depression treatment.

    Science.gov (United States)

    Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco

    2011-12-01

    The circadian nature of melatonin (MLT) secretion, coupled with the localization of MLT receptors to the suprachiasmatic nucleus, has led to numerous studies of the role of MLT in modulation of the sleep-wake cycle and circadian rhythms in humans. Although much more needs to be understood about the various functions exerted by MLT and its mechanisms of action, three therapeutic agents (ramelteon, prolonged-release MLT, and agomelatine) are already in use, and MLT receptor agonists are now appearing as new promising treatment options for sleep and circadian-rhythm related disorders. In this review, emphasis has been placed on medicinal chemistry strategies leading to MLT receptor agonists, and on the evidence supporting therapeutic efficacy of compounds undergoing clinical evaluation. A wide range of clinical trials demonstrated that ramelteon, prolonged-release MLT and tasimelteon have sleep-promoting effects, providing an important treatment option for insomnia and transient insomnia, even if the improvements of sleep maintenance appear moderate. Well-documented effects of agomelatine suggest that this MLT agonist offers an attractive alternative for the treatment of depression, combining efficacy with a favorable side effect profile. Despite a large number of high affinity nonselective MLT receptor agonists, only limited data on MT₁ or MT₂ subtype-selective compounds are available up to now. Administration of the MT₂-selective agonist IIK7 to rats has proved to decrease NREM sleep onset latency, suggesting that MT₂ receptor subtype is involved in the acute sleep-promoting action of MLT; rigorous clinical studies are needed to demonstrate this hypothesis. Further clinical candidates based on selective activation of MT₁ or MT₂ receptors are expected in coming years.

  20. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  1. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  2. The TRPA1 agonist, methyl syringate suppresses food intake and gastric emptying.

    Directory of Open Access Journals (Sweden)

    Min Jung Kim

    Full Text Available Transient receptor potential channel ankryn 1 (TRPA1 expressed in the gastrointestinal tract is associated with gastric motility, gastric emptying, and food intake. In this study, we investigated the effects of methyl syringate, a specific and selective TRPA1 agonist, on food intake, gastric emptying, and gut hormone levels in imprinting control region (ICR mice. The administration of methyl syringate suppressed cumulative food intake and gastric emptying. In addition, treatment with ruthenium red (RR, a general cation channel blocker, and HC-030031, a selective TRPA1 antagonist, inhibited methyl syringate-induced reduction of food intake and delayed gastric emptying in ICR mice. Methyl syringate also increased plasma peptide YY (PYY levels, but not glucagon-like peptide-1 (GLP-1 levels. The elevation in PYY was blocked by treatment with RR and HC-030031. The present findings indicate that methyl syringate regulates food intake and gastric emptying through a TRPA1-mediated pathway and, by extension, can contribute to weight suppression.

  3. Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour.

    Science.gov (United States)

    Newson, Penny N; van den Buuse, Maarten; Martin, Sally; Lynch-Frame, Ann; Chahl, Loris A

    2014-10-01

    Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate proposed to be mediated by prostaglandin D2 (PGD2). Flare responses are accompanied by cutaneous plasma extravasation. It was found that the cutaneous plasma extravasation responses to methylnicotinate and PGD2 were reduced in capsaicin-treated rats. In conclusion, several neuroanatomical changes observed in capsaicin-treated rats, as well as the reduced cutaneous plasma extravasation responses, indicate that the role of TRPV1 channels in schizophrenia is worthy of investigation.

  4. Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice

    Science.gov (United States)

    Sharma, Pawan; Yi, Roslyn; Nayak, Ajay P.; Wang, Nadan; Tang, Francesca; Knight, Morgan J.; Pan, Shi; Oliver, Brian; Deshpande, Deepak A.

    2017-01-01

    Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.

  5. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells.

    Science.gov (United States)

    Kimura, Hideki; Mikami, Daisuke; Kamiyama, Kazuko; Sugimoto, Hidehiro; Kasuno, Kenji; Takahashi, Naoki; Yoshida, Haruyoshi; Iwano, Masayuki

    2014-11-14

    Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  6. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.

    Science.gov (United States)

    Nguyen, Michael D; Lee, Scott T; Ross, Ashley E; Ryals, Matthew; Choudhry, Vishesh I; Venton, B Jill

    2014-01-01

    Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV). Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p.) increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N(6)-cyclopentyladenosine, 1 mg/kg i.p.) decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation.

  7. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Mikami, Daisuke; Kamiyama, Kazuko [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Sugimoto, Hidehiro [Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Kasuno, Kenji; Takahashi, Naoki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yoshida, Haruyoshi [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Division of Nephrology, Obama Municipal Hospital, Obama, Fukui (Japan); Iwano, Masayuki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  8. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang

    2009-01-01

    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  9. GnRH agonist triggering

    DEFF Research Database (Denmark)

    Kol, Shahar; Humaidan, Peter; Al Humaidan, Peter Samir Heskjær

    2013-01-01

    The concept that a bolus of gonadotrophin-releasing hormone agonist (GnRHa) can replace human chorionic gonadotrophin (HCG) as a trigger of final oocyte maturation was introduced several years ago. Recent developments in the area strengthen this premise. GnRHa trigger offers important advantages...... triggering concept should be challenged and that the GnRHa trigger is the way to move forward with thoughtful consideration of the needs, safety and comfort of our patients. Routinely, human chorionic gonadotrophin (HCG) is used to induce ovulation in fertility treatments. This approach deviates...... significantly from physiology and often results in insufficient hormonal support in early pregnancy and in ovarian hyperstimulation syndrome (OHSS). An alternative approach is to use a gonadotrophin-releasing hormone (GnRH) agonist which allows a more physiological trigger of ovulation and, most importantly...

  10. Transient receptor potential vanilloid-1 signaling as a regulator of human sebocyte biology.

    Science.gov (United States)

    Tóth, Balázs I; Géczy, Tamás; Griger, Zoltán; Dózsa, Anikó; Seltmann, Holger; Kovács, László; Nagy, László; Zouboulis, Christos C; Paus, Ralf; Bíró, Tamás

    2009-02-01

    Transient receptor potential vanilloid-1 (TRPV1), originally described as a central integrator of nociception, is expressed on human epidermal and hair follicle keratinocytes and is involved in regulation of cell growth and death. In human pilosebaceous units, we had shown that TRPV1 stimulation inhibits hair shaft elongation and matrix keratinocyte proliferation, and induces premature hair follicle regression and keratinocyte apoptosis. In the current study, we have explored the role of TRPV1-mediated signaling in sebaceous gland (SG) biology, using a human sebocyte cell culture model (SZ95 sebocytes). Demonstrating that human skin SG in situ and SZ95 sebocytes in vitro express TRPV1, we show that the prototypic TRPV1 agonist, capsaicin, selectively inhibits basal and arachidonic acid-induced lipid synthesis in a dose-, time-, and extracellular calcium-dependent and a TRPV1-specific manner. Low-dose capsaicin stimulates cellular proliferation via TRPV1, whereas higher concentrations inhibit sebocyte growth and induce cell death independent of TRPV1. Moreover, capsaicin suppresses the expression of genes involved in lipid homeostasis and of selected proinflammatory cytokines. Collectively, these findings support the concept that TRPV1 signaling is a significant, previously unreported player in human sebocyte biology and identify TRPV1 as a promising target in the clinical management of inflammatory SG disorders (for example, acne vulgaris).

  11. Effects of novel TRPA1 receptor agonist ASP7663 in models of drug-induced constipation and visceral pain.

    Science.gov (United States)

    Kojima, Ryosuke; Nozawa, Katsura; Doihara, Hitoshi; Keto, Yoshihiro; Kaku, Hidetaka; Yokoyama, Toshihide; Itou, Hiroyuki

    2014-01-15

    Constipation is a major gastrointestinal motility disorder with clinical need for effective drugs. We previously reported that transient receptor potential ankyrin 1 (TRPA1) is highly expressed in enterochromaffin (EC) cells, which are 5-hydroxytryptamine (5-HT)-releasing cells, and might therefore be a novel target for constipation. Here, we examined the effects of ASP7663, a novel and selective TRPA1 agonist, in constipation models as well as an abdominal pain model. ASP7663 activated human, rat, and mouse TRPA1 and released 5-HT from QGP-1 cells, and oral but not intravenous administration of ASP7663 significantly improved the loperamide-induced delay in colonic transit in mice. While pretreatment with the TRPA1 antagonist HC-030031 and vagotomy both inhibited the ameliorating effect of oral ASP7663 on the colonic transit, both orally and intravenously administered ASP7663 significantly inhibited colorectal distension (CRD)-induced abdominal pain response in rats. Taken together, these results demonstrate that ASP7663 exerts both anti-constipation and anti-abdominal pain actions, the former is likely triggered from the mucosal side of the gut wall via activation of vagus nerves while the latter is assumed to be provoked through systemic blood flow. We conclude that ASP7663 can be an effective anti-constipation drug with abdominal analgesic effect.

  12. Transient tachypnea - newborn

    Science.gov (United States)

    ... lungs - newborns; Retained fetal lung fluid; Transient RDS; Prolonged transition; Neonatal - transient tachypnea ... The mother's pregnancy and labor history are important to make the diagnosis. Tests performed on the baby may include: Blood count ...

  13. Transient drainage summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  14. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists.

    Science.gov (United States)

    Magnan, Rémi; Masri, Bernard; Escrieut, Chantal; Foucaud, Magali; Cordelier, Pierre; Fourmy, Daniel

    2011-02-25

    Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.

  15. PPAR GAMMA AGONISTS: AN EFFECTIVE STRATEGY FOR CANCER TREATMENT

    Directory of Open Access Journals (Sweden)

    Divya G.S

    2013-10-01

    Full Text Available PPAR-γ regulates cellular differentiation, development and metabolism. They play these essential roles by functioning as transcription factors regulating the expression of genes. The PPARs mainly are of three types α, β and γ. The PPAR-γ expressed in three forms γ1, γ2 and γ3 present in different tissues. When PPAR binds its ligand, transcription of target gene is increased or decreased. Tzds were able to induce cell differentiation and apoptosis or inhibit cell proliferation both in vitro and in vivo. However, widespread use of thiazolidinediones (TZDs, the clinically used synthetic PPAR gamma agonists, has been limited by adverse effects. So in this review we are suggesting some new molecules other than thiazolidine diones which can act as potential anticancer agents, after explaining the mechanism of action of PPAR-γ agonists as anticancer agents especially thiazolidinediones.

  16. Perivagal antagonist treatment in rats selectively blocks the reflex and afferent responses of vagal lung C fibers to intravenous agonists.

    Science.gov (United States)

    Lin, Yu-Jung; Lin, You Shuei; Lai, Ching Jung; Yuan, Zung Fan; Ruan, Ting; Kou, Yu Ru

    2013-02-01

    The terminals of vagal lung C fibers (VLCFs) express various types of pharmacological receptors that are important to the elicitation of airway reflexes and the development of airway hypersensitivity. We investigated the blockade of the reflex and afferent responses of VLCFs to intravenous injections of agonists using perivagal treatment with antagonists (PAT) targeting the transient receptor potential vanilloid 1, P2X, and 5-HT(3) receptors in anesthetized rats. Blockading these responses via perivagal capsaicin treatment (PCT), which blocks the neural conduction of C fibers, was also studied. We used capsaicin, α,β-methylene-ATP, and phenylbiguanide as the agonists, and capsazepine, iso-pyridoxalphosphate-6-azophenyl-2',5'-disulfonate, and tropisetron as the antagonists of transient receptor potential vanilloid 1, P2X, and 5-HT(3) receptors, respectively. We found that each of the PATs abolished the VLCF-mediated reflex apnea evoked by the corresponding agonist, while having no effect on the response to other agonists. Perivagal vehicle treatment failed to produce any such blockade. These blockades had partially recovered at 3 h after removal of the PATs. In contrast, PCT abolished the reflex apneic response to all three agonists. Both PATs and PCT did not affect the myelinated afferent-mediated apneic response to lung inflation. Consistently, our electrophysiological studies revealed that each of the PATs prevented the VLCF responses to the corresponding agonist, but not to any other agonist. PCT inevitably prevented the VLCF responses to all three agonists. Thus these PATs selectively blocked the stimulatory action of corresponding agonists on the VLCF terminals via mechanisms that are distinct from those of PCT. PAT may become a novel intervention for studying the pharmacological modulation of VLCFs.

  17. PPARα-Independent Arterial Smooth Muscle Relaxant Effects of PPARα Agonists.

    Science.gov (United States)

    Silswal, Neerupma; Parelkar, Nikhil K; Wacker, Michael J; Badr, Mostafa; Andresen, Jon

    2012-01-01

    We sought to determine direct vascular effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists using isolated mouse aortas and middle cerebral arteries (MCAs). The PPARα agonists GW7647, WY14643, and gemfibrozil acutely relaxed aortas held under isometric tension and dilated pressurized MCAs with the following order of potency: GW7647≫WY14643>gemfibrozil. Responses were endothelium-independent, and the use of PPARα deficient mice demonstrated that responses were also PPARα-independent. Pretreating arteries with high extracellular K(+) attenuated PPARα agonist-mediated relaxations in the aorta, but not in the MCA. In the aorta, the ATP sensitive potassium (K(ATP)) channel blocker glibenclamide also impaired relaxations whereas the other K(+) channel inhibitors, 4-aminopyridine and Iberiotoxin, had no effect. In aortas, GW7647 and WY14643 elevated cGMP levels by stimulating soluble guanylyl cyclase (sGC), and inhibition of sGC with ODQ blunted relaxations to PPARα agonists. In the MCA, dilations were inhibited by the protein kinase C (PKC) activator, phorbol 12,13-dibutyrate, and also by ODQ. Our results demonstrated acute, nonreceptor-mediated relaxant effects of PPARα agonists on smooth muscle of mouse arteries. Responses to PPARα agonists in the aorta involved K(ATP) channels and sGC, whereas in the MCA the PKC and sGC pathways also appeared to contribute to the response.

  18. Usefulness of HeLa cells to evaluate inverse agonistic activity of antihistamines.

    Science.gov (United States)

    Mizuguchi, Hiroyuki; Ono, Shohei; Hattori, Masashi; Sasaki, Yohei; Fukui, Hiroyuki

    2013-03-01

    Antihistamines are thought to antagonize histamine and prevent it from binding to the histamine H1 receptor (H1R). However, recent studies indicate that antihistamines are classified into two groups, i.e., inverse agonists and neutral antagonists on the basis of their ability to down-regulate the constitutive activity of H1R. As H1R is an allergy-sensitive gene whose expression influences the severity of allergic symptoms, inverse agonists should more potently alleviate allergic symptoms than neutral antagonists by inhibiting H1R constitutive activity. Therefore, it is important to assess inverse agonistic activity of antihistamines. Here we report a novel assay method using HeLa cells expressing H1R endogenously for evaluation of inverse agonistic activity of antihistamines. Pretreatment with inverse agonists down-regulated H1R gene expression below to its basal level. On the other hand, basal H1R mRNA expression was unchanged by neutral antagonist pretreatment. Both inverse agonists and neutral antagonists suppressed histamine-induced H1R mRNA elevation. Classification of antihistamines on the basis of their suppressive activity of basal H1R gene expression was consistent with that of inositol phosphate accumulation in H1R-overexpressed cells. Our data suggest that the assay method using HeLa cells is more convenient and useful than the existing methods and may contribute to develop new antihistamines with inverse agonistic activity.

  19. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Bräuner-Osborne, Hans

    1999-01-01

    A number of CXC chemokines competed with similar, nanomolar affinity against 125I-interleukin-8 (IL-8) binding to ORF-74, a constitutively active seven-transmembrane receptor encoded by human herpesvirus 8. However, in competition against 125I-labeled growth-related oncogene (GRO)-alpha, the ORF-74...... receptor was highly selective for GRO peptides, with IL-8 being 10,000-fold less potent. The constitutive stimulating activity of ORF-74 on phosphatidylinositol turnover was not influenced by, for example, IL-8 binding. In contrast, GRO peptides acted as potent agonists in stimulating ORF-74 signaling......, whereas IP-10 and stromal cell-derived factor-1alpha surprisingly acted as inverse agonists. These peptides had similar pharmacological properties with regard to enhancing or inhibiting, respectively, the stimulatory effect of ORF-74 on NIH-3T3 cell proliferation. Construction of a high affinity zinc...

  20. Muscarinic Receptor Agonists and Antagonists

    Directory of Open Access Journals (Sweden)

    David R. Kelly

    2001-02-01

    Full Text Available A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes. Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted.

  1. The CB1/CB2 receptor agonist WIN-55,212-2 reduces viability of human Kaposi's sarcoma cells in vitro.

    Science.gov (United States)

    Luca, Tonia; Di Benedetto, Giulia; Scuderi, Mariagrazia Rita; Palumbo, Marco; Clementi, Silvia; Bernardini, Renato; Cantarella, Giuseppina

    2009-08-15

    Kaposi's sarcoma is a highly vascularized mesenchymal neoplasm arising with multiple lesions of the skin. Endogenous cannabinoids have been shown to inhibit proliferation of a wide spectrum of tumor cells. We studied the effects of cannabinoids on human Kaposi's sarcoma cell proliferation in vitro. To do so, we first investigated the presence of the cannabinoid receptors CB(1) and CB(2) mRNAs in the human Kaposi's sarcoma cell line KS-IMM by RT-PCR and, subsequently, the effects of the mixed CB(1)/CB(2) agonist WIN-55,212-2 (WIN) on cell proliferation in vitro. WIN showed antimitogenic effects on Kaposi's sarcoma cells. Western blot analysis of Kaposi's sarcoma lysates suggested that WIN treatment induced activation of both caspase-3 and -6, as well as increased phosphorylation of the stress kinase p38 and JNK, along with transient phosphorylation of ERK(1/2). To better characterize the involvement of each single CB receptor in cannabinoid-induced cell death, we incubated Kaposi's sarcoma cells with different selective cannabinoid receptor agonists, respectively ACEA (CB(1)) and JWH-133 (CB(2)). None of the agonists was able to induce KS-IMM cell apoptosis. Moreover, we co-incubated Kaposi's sarcoma cells with WIN-55,212-2 and either the CB(1) receptor antagonist AM251, the CB(2) receptor antagonist AM630, or a combination of both substances. The CB(2) receptor antagonist AM630 was able to significantly increase survival of Kaposi's sarcoma cells treated with WIN. In view of the antiproliferative effects of cannabinoids on KS-IMM cells, one could envision the cannabinoid system as a potential target for pharmacological treatment of Kaposi's sarcoma.

  2. AGONISTIC BEHAVIOR OF LABORATORY MICE

    Directory of Open Access Journals (Sweden)

    D. Cinghiţă

    2005-01-01

    Full Text Available In this work we study agonistic behavior of laboratory white mice when they are kept in captivity. For all this experimental work we used direct observation of mice, in small lists, because we need a reduced space to emphasize characteristics of agonistic behavior. Relations between members of the same species that live in organized groups are based in most cases on hierarchical structure. Relations between leader and subservient, decided by fighting, involve a thorough observation between individuals. Each member of a group has its own place on the ierarchical scale depending on resultes of fhights – it can be leader or it can be subsurvient, depending on if it wines or looses the fight. Once hierarchical scale made, every animal will adjust its behavior. After analyzing the obtained data we have enough reasons to believe that after fights the winner, usually, is the massive mouse, but it is also very important the sexual ripeness, so the immature male will be beaten. The leader male had a big exploring area and it checks up all territory.The females can be more aggressive, its fights are more brutal, than male fights are, when they fight for supremacy, but in this case fights are not as frequent as in the case of males. Always the superior female, on hierarchical scale, shows males its own statute, so the strongest genes will be perpetuated.

  3. Transient Voltage Recorder

    Science.gov (United States)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    2002-01-01

    A voltage transient recorder can detect lightning induced transient voltages. The recorder detects a lightning induced transient voltage and adjusts input amplifiers to accurately record transient voltage magnitudes. The recorder stores voltage data from numerous monitored channels, or devices. The data is time stamped and can be output in real time, or stored for later retrieval. The transient recorder, in one embodiment, includes an analog-to-digital converter and a voltage threshold detector. When an input voltage exceeds a pre-determined voltage threshold, the recorder stores the incoming voltage magnitude and time of arrival. The recorder also determines if its input amplifier circuits clip the incoming signal or if the incoming signal is too low. If the input data is clipped or too low, the recorder adjusts the gain of the amplifier circuits to accurately acquire subsequent components of the lightning induced transients.

  4. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation.

    Science.gov (United States)

    Chen, Chen-Wen; Chen, Qian-Bo; Ouyang, Qing; Sun, Ji-Hu; Liu, Fang-Ting; Song, Dian-Wen; Yuan, Hong-Bin

    2012-06-25

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1 β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors.

  5. The Zwicky Transient Facility

    CERN Document Server

    Bellm, Eric C

    2014-01-01

    The Zwicky Transient Facility (ZTF) is a next-generation optical synoptic survey that builds on the experience and infrastructure of the Palomar Transient Factory (PTF). Using a new 47 deg$^2$ survey camera, ZTF will survey more than an order of magnitude faster than PTF to discover rare transients and variables. I describe the survey and the camera design. Searches for young supernovae, fast transients, counterparts to gravitational-wave detections, and rare variables will benefit from ZTF's high cadence, wide area survey.

  6. Beta-agonists and animal welfare

    Science.gov (United States)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  7. Treatment potential of the GLP-1 receptor agonists in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Østergaard, L; Frandsen, Christian S; Madsbad, S

    2016-01-01

    Over the last decade, the discovery of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) has increased the treatment options for patients with type 2 diabetes mellitus (T2DM). GLP-1 RAs mimic the effects of native GLP-1, which increases insulin secretion, inhibits glucagon secretion, increases...

  8. 8-Bromo-cyclic inosine diphosphoribose: towards a selective cyclic ADP-ribose agonist

    Science.gov (United States)

    Kirchberger, Tanja; Moreau, Christelle; Wagner, Gerd K.; Fliegert, Ralf; Siebrands, Cornelia C.; Nebel, Merle; Schmid, Frederike; Harneit, Angelika; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.

    2009-01-01

    cADPR (cyclic ADP-ribose) is a universal Ca2+ mobilizing second messenger. In T-cells cADPR is involved in sustained Ca2+ release and also in Ca2+ entry. Potential mechanisms for the latter include either capacitative Ca2+ entry, secondary to store depletion by cADPR, or direct activation of the non-selective cation channel TRPM2 (transient receptor potential cation channel, subfamily melastatin, member 2). Here we characterize the molecular target of the newly-described membrane-permeant cADPR agonist 8-Br-N1-cIDPR (8-bromo-cyclic IDP-ribose). 8-Br-N1-cIDPR evoked Ca2+ signalling in the human T-lymphoma cell line Jurkat and in primary rat T-lymphocytes. Ca2+ signalling induced by 8-Br-N1-cIDPR consisted of Ca2+ release and Ca2+ entry. Whereas Ca2+ release was sensitive to both the RyR (ryanodine receptor) blocker RuRed (Ruthenium Red) and the cADPR antagonist 8-Br-cADPR (8-bromo-cyclic ADP-ribose), Ca2+ entry was inhibited by the Ca2+ entry blockers Gd3+ (gadolinium ion) and SKF-96365, as well as by 8-Br-cADPR. To unravel a potential role for TRPM2 in sustained Ca2+ entry evoked by 8-Br-N1-cIDPR, TRPM2 was overexpressed in HEK (human embryonic kidney)-293 cells. However, though activation by H2O2 was enhanced dramatically in those cells, Ca2+ signalling induced by 8-Br-N1-cIDPR was almost unaffected. Similarly, direct analysis of TRPM2 currents did not reveal activation or co-activation of TRPM2 by 8-Br-N1-cIDPR. In summary, the sensitivity to the Ca2+ entry blockers Gd3+ and SKF-96365 is in favour of the concept of capacitative Ca2+ entry, secondary to store depletion by 8-Br-N1-cIDPR. Taken together, 8-Br-N1-cIDPR appears to be the first cADPR agonist affecting Ca2+ release and secondary Ca2+ entry, but without effect on TRPM2. PMID:19492987

  9. P/Q-type and T-type calcium channels, but not type 3 transient receptor potential cation channels, are involved in inhibition of dendritic growth after chronic metabotropic glutamate receptor type 1 and protein kinase C activation in cerebellar Purkinje cells.

    Science.gov (United States)

    Gugger, Olivia S; Hartmann, Jana; Birnbaumer, Lutz; Kapfhammer, Josef P

    2012-01-01

    The development of a neuronal dendritic tree is modulated both by signals from afferent fibers and by an intrinsic program. We have previously shown that chronic activation of either type 1 metabotropic glutamate receptors (mGluR1s) or protein kinase C (PKC) in organotypic cerebellar slice cultures of mice and rats severely inhibits the growth and development of the Purkinje cell dendritic tree. The signaling events linking receptor activation to the regulation of dendritic growth remain largely unknown. We have studied whether channels allowing the entry of Ca(2+) into Purkinje cells, in particular the type 3 transient receptor potential cation channels (TRPC3s), P/Q-type Ca(2+) channels, and T-type Ca(2+) channels, might be involved in signaling after mGluR1 or PKC stimulation. We show that the inhibition of dendritic growth seen after mGluR1 or PKC stimulation is partially rescued by pharmacological blockade of P/Q-type and T-type Ca(2+) channels, indicating that activation of these channels mediating Ca(2+) influx contributes to the inhibition of dendritic growth. In contrast, the absence of Ca(2+) -permeable TRPC3s in TRPC3-deficient mice or pharmacological blockade had no effect on mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. Similarly, blockade of Ca(2+) influx through glutamate receptor δ2 or R-type Ca(2+) channels or inhibition of release from intracellular stores did not influence mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. These findings suggest that both T-type and P/Q-type Ca(2+) channels, but not TRPC3 or other Ca(2+) -permeable channels, are involved in mGluR1 and PKC signaling leading to the inhibition of dendritic growth in cerebellar Purkinje cells.

  10. AM404 inhibits NFAT and NF-κB signaling pathways and impairs migration and invasiveness of neuroblastoma cells.

    Science.gov (United States)

    Caballero, Francisco J; Soler-Torronteras, Rafael; Lara-Chica, Maribel; García, Victor; Fiebich, Bernd L; Muñoz, Eduardo; Calzado, Marco A

    2015-01-01

    N-Arachidonoylphenolamine (AM404), a paracetamol lipid metabolite, is a modulator of the endocannabinoid system endowed with pleiotropic activities. AM404 is a dual agonist of the Transient Receptor Potential Vanilloid type 1 (TRPV1) and the Cannabinoid Receptor type 1 (CB₁) and inhibits anandamide (AEA) transport and degradation. In addition, it has been shown that AM404 also exerts biological activities through TRPV1- and CB₁ -independent pathways. In the present study we have investigated the effect of AM404 in the NFAT and NF-κB signaling pathways in SK-N-SH neuroblastoma cells. AM404 inhibited NFAT transcriptional activity through a CB₁- and TRPV1-independent mechanism. Moreover, AM404 inhibited both the expression of COX-2 at transcriptional and post-transcriptional levels and the synthesis of PGE₂. AM404 also inhibited NF-κB activation induced by PMA/Ionomycin in SK-N-SH cells by targeting IKKβ phosphorylation and activation. We found that Cot/Tlp-2 induced NFAT and COX-2 transcriptional activities were inhibited by AM404. NFAT inhibition paralleled with the ability of AM404 to inhibit MMP-1, -3 and -7 expression, cell migration and invasion in a cell-type specific dependent manner. Taken together, these data reveal that paracetamol, the precursor of AM404, can be explored not only as an antipyretic and painkiller drug but also as a co-adjuvant therapy in inflammatory and cancer diseases.

  11. GLP-1 receptor agonists or DPP-4 inhibitors: how to guide the clinician?

    Science.gov (United States)

    Scheen, André J

    2013-12-01

    Pharmacological treatment of type 2 diabetes has been enriched during recent years, with the launch of incretin therapies targeting glucagon-like peptide-1 (GLP-1). Such medications comprise either GLP-1 receptor agonists, with short (one or two daily injections: exenatide, liraglutide, lixisenatide) or long duration (one injection once weekly: extended-released exenatide, albiglutide, dulaglutide, taspoglutide); or oral compounds inhibiting dipeptidyl peptidase-4 (DPP-4), the enzyme that inactives GLP-1, also called gliptins (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin). Although both pharmacological approaches target GLP-1, important differences exist concerning the mode of administration (subcutaneous injection versus oral ingestion), the efficacy (better with GLP-1 agonists), the effects on body weight and systolic blood pressure (diminution with agonists versus neutrality with gliptins), the tolerance profile (nausea and possibly vomiting with agonists) and the cost (higher with GLP-1 receptor agonists). Both agents may exert favourable cardiovascular effects. Gliptins may represent a valuable alternative to a sulfonylurea or a glitazone after failure of monotherapy with metformin while GLP-1 receptor agonists may be considered as a good alternative to insulin (especially in obese patients) after failure of a dual oral therapy. However, this scheme is probably too restrictive and modalities of using incretins are numerous, in almost all stages of type 2 diabetes. Physicians may guide the pharmacological choice based on clinical characteristics, therapeutic goals and patient's preference.

  12. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available OBJECTIVE: Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis. METHODS: Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA. RESULTS: TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation. CONCLUSIONS: We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to

  13. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    Science.gov (United States)

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  14. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    Energy Technology Data Exchange (ETDEWEB)

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  15. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.

    Science.gov (United States)

    Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

    2014-09-26

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.

  16. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel.

    Science.gov (United States)

    Materazzi, Serena; Benemei, Silvia; Fusi, Camilla; Gualdani, Roberta; De Siena, Gaetano; Vastani, Nisha; Andersson, David A; Trevisan, Gabriela; Moncelli, Maria Rosa; Wei, Xiaomei; Dussor, Gregory; Pollastro, Federica; Patacchini, Riccardo; Appendino, Giovanni; Geppetti, Pierangelo; Nassini, Romina

    2013-12-01

    Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously that are known to trigger migraine or cluster headache attacks, such as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew's antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel and renders peptidergic TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide.

  17. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting TRPA1 channel

    Science.gov (United States)

    Materazzi, Serena; Benemei, Silvia; Fusi, Camilla; Gualdani, Roberta; De Siena, Gaetano; Vastani, Nisha; Andersson, David A.; Trevisan, Gabriela; Moncelli, Maria Rosa; Wei, Xiaomei; Dussor, Gregory; Pollastro, Federica; Patacchini, Riccardo; Appendino, Giovanni; Geppetti, Pierangelo; Nassini, Romina

    2013-01-01

    While feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons, express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously, which are known to trigger migraine or cluster headache attacks, as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel, and renders peptidergic, TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide. PMID:23933184

  18. Effect of the α2 -receptor agonists medetomidine, detomidine, xylazine and romifidine on the ketamine metabolism in equines assessed with enantioselective capillary electrophoresis.

    Science.gov (United States)

    Sandbaumhüter, Friederike A; Theurillat, Regula; Bettschart-Wolfensberger, Regula; Thormann, Wolfgang

    2017-03-02

    The combination of ketamine and an α2 -receptor agonist is often used in veterinary medicine. Four different α2 -receptor agonists, medetomidine, detomidine, xylazine and romifidine, which differ in their chemical structure and thus in selectivity for the α2 -receptor and in the sedative and analgesic potency, are typically employed during surgery of equines. Recovery following anesthesia with ketamine and an α2 -receptor agonist is dependent on the α2 -receptor agonist. This prompted us to investigate i) the inhibition characteristics for the N-demethylation of ketamine to norketamine and ii) the formation of the ketamine metabolites norketamine, 6-hydroxynorketamine (6HNK) and 5,6-dehydronorketamine (DHNK) in presence of the four α2 -receptor agonists and equine liver microsomes. Samples were analyzed with enantioselective capillary electrophoresis using highly sulfated γ-cyclodextrin as chiral selector. All four α2 -receptor agonists have an impact on the ketamine metabolism. Medetomidine was found to be the strongest inhibitor, followed by detomidine, whereas xylazine and romifidine showed almost no effect on the ketamine N-demethylation in the inhibition studies with a short incubation period of the reaction mixture. After prolonged incubation, inhibition with xylazine and romifidine was also observed. The formation of 6HNK and DHNK is affected by all selected α2 -receptor agonists. With medetomidine, levels of these metabolites are reduced compared to the case without an α2 -receptor agonist. For detomidine, xylazine and romifidine, the opposite was found. This article is protected by copyright. All rights reserved.

  19. Inhibitory effects of peroxisome proliferator-activated receptor γ agonists on collagen IV production in podocytes.

    Science.gov (United States)

    Li, Yanjiao; Shen, Yachen; Li, Min; Su, Dongming; Xu, Weifeng; Liang, Xiubin; Li, Rongshan

    2015-07-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have beneficial effects on the kidney diseases through preventing microalbuminuria and glomerulosclerosis. However, the mechanisms underlying these effects remain to be fully understood. In this study, we investigate the effects of PPAR-γ agonist, rosiglitazone (Rosi) and pioglitazone (Pio), on collagen IV production in mouse podocytes. The endogenous expression of PPAR-γ was found in the primary podocytes and can be upregulated by Rosi and Pio, respectively, detected by RT-PCR and Western blot. PPAR-γ agonist markedly blunted the increasing of collagen IV expression and extraction in podocytes induced by TGF-β. In contrast, adding PPAR-γ antagonist, GW9662, to podocytes largely prevented the inhibition of collagen IV expression from Pio treatment. Our data also showed that phosphorylation of Smad2/3 enhanced by TGF-β in a time-dependent manner was significantly attenuated by adding Pio. The promoter region of collagen IV gene contains one putative consensus sequence of Smad-binding element (SBE) by promoter analysis, Rosi and Pio significantly ameliorated TGF-β-induced SBE4-luciferase activity. In conclusion, PPAR-γ activation by its agonist, Rosi or Pio, in vitro directly inhibits collagen IV expression and synthesis in primary mouse podocytes. The suppression of collagen IV production was related to the inhibition of TGF-β-driven phosphorylation of Smad2/3 and decreased response activity of SBEs of collagen IV in PPAR-γ agonist-treated mouse podocytes. This represents a novel mechanistic support regarding PPAR-γ agonists as podocyte protective agents.

  20. Dopamine Agonists and Pathologic Behaviors

    Directory of Open Access Journals (Sweden)

    Brendan J. Kelley

    2012-01-01

    Full Text Available The dopamine agonists ropinirole and pramipexole exhibit highly specific affinity for the cerebral dopamine D3 receptor. Use of these medications in Parkinson’s disease has been complicated by the emergence of pathologic behavioral patterns such as hypersexuality, pathologic gambling, excessive hobbying, and other circumscribed obsessive-compulsive disorders of impulse control in people having no history of such disorders. These behavioral changes typically remit following discontinuation of the medication, further demonstrating a causal relationship. Expression of the D3 receptor is particularly rich within the limbic system, where it plays an important role in modulating the physiologic and emotional experience of novelty, reward, and risk assessment. Converging neuroanatomical, physiological, and behavioral science data suggest the high D3 affinity of these medications as the basis for these behavioral changes. These observations suggest the D3 receptor as a therapeutic target for obsessive-compulsive disorder and substance abuse, and improved understanding of D3 receptor function may aid drug design of future atypical antipsychotics.

  1. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  2. Discovery of S-444823, a potent CB1/CB2 dual agonist as an antipruritic agent.

    Science.gov (United States)

    Odan, Masahide; Ishizuka, Natsuki; Hiramatsu, Yoshiharu; Inagaki, Masanao; Hashizume, Hiroshi; Fujii, Yasuhiko; Mitsumori, Susumu; Morioka, Yasuhide; Soga, Masahiko; Deguchi, Masashi; Yasui, Kiyoshi; Arimura, Akinori

    2012-04-15

    The optimization of a series of 3-carbamoyl 2-pyridone derivatives as CB agonists is reported. These efforts resulted in the discovery of 3-(2-(1-(cyclohexylmethyl)-2-oxo-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carboxamido)thiazol-4-yl)propanoic acid (21), a potent dual CB1/CB2 agonist without CNS side effects induced by CB1 receptor activation. It exhibited strong inhibition of scratching as a 1.0% acetone solution in the pruritic model.

  3. Transient Growth of Ekman-Couette Flow

    CERN Document Server

    Shi, Liang; Tilgner, Andreas

    2013-01-01

    Coriolis force effects on shear flows are important in geophysical and astrophysical contexts. We here report a study on the linear stability and the transient energy growth of the plane Couette flow with system rotation perpendicular to the shear direction. External rotation causes linear instability. At small rotation rates, the onset of linear instability scales inversely with the rotation rate and the optimal transient growth in the linearly stable region is slightly enhanced, ~Re^2. The corresponding optimal initial perturbations are characterized by roll structures inclined in the streamwise direction and are twisted under external rotation. At large rotation rates, the transient growth is significantly inhibited and hence linear stability analysis is a reliable indicator for instability.

  4. Searches for radio transients

    CERN Document Server

    Bhat, N D R

    2011-01-01

    Exploration of the transient Universe is an exciting and fast-emerging area within radio astronomy. Known transient phenomena range in time scales from sub-nanoseconds to years or longer, thus spanning a huge range in time domain and hinting a rich diversity in their underlying physical processes. Transient phenomena are likely locations of explosive or dynamic events and they offer tremendous potential to uncover new physics and astrophysics. A number of upcoming next-generation radio facilities and recent advances in computing and instrumentation have provided a much needed impetus for this field which has remained a relatively uncharted territory for the past several decades. In this paper we focus mainly on the class of phenomena that occur on very short time scales (i.e. from $\\sim$ milliseconds to $\\sim$ nanoseconds), known as {\\it fast transients}, the detections of which involve considerable signal processing and data management challenges, given the high time and frequency resolutions required in the...

  5. Transient Ischemic Attack

    Medline Plus

    Full Text Available ... TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood clot blocks an ... a short time. The only difference between a stroke and TIA is that with TIA the blockage ...

  6. Peroxisome proliferator-activated receptor-gamma agonists suppress tissue factor overexpression in rat balloon injury model with paclitaxel infusion.

    Directory of Open Access Journals (Sweden)

    Jun-Bean Park

    Full Text Available The role and underlying mechanisms of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ agonist, on myocardial infarction are poorly understood. We investigated the effects of this PPAR-γ agonist on the expression of tissue factor (TF, a primary molecule for thrombosis, and elucidated its underlying mechanisms. The PPAR-γ agonist inhibited TF expression in response to TNF-α in human umbilical vein endothelial cells, human monocytic leukemia cell line, and human umbilical arterial smooth muscle cells. The overexpression of TF was mediated by increased phosphorylation of mitogen-activated protein kinase (MAPK, which was blocked by the PPAR-γ agonist. The effective MAPK differed depending on each cell type. Luciferase and ChIP assays showed that transcription factor, activator protein-1 (AP-1, was a pivotal target of the PPAR-γ agonist to lower TF transcription. Intriguingly, two main drugs for drug-eluting stent, paclitaxel or rapamycin, significantly exaggerated thrombin-induced TF expression, which was also effectively blocked by the PPAR-γ agonist in all cell types. This PPAR-γ agonist did not impair TF pathway inhibitor (TFPI in three cell types. In rat balloon injury model (Sprague-Dawley rats, n = 10/group with continuous paclitaxel infusion, the PPAR-γ agonist attenuated TF expression by 70±5% (n = 4; P<0.0001 in injured vasculature. Taken together, rosiglitazone reduced TF expression in three critical cell types involved in vascular thrombus formation via MAPK and AP-1 inhibitions. Also, this PPAR-γ agonist reversed the paclitaxel-induced aggravation of TF expression, which suggests a possibility that the benefits might outweigh its risks in a group of patients with paclitaxel-eluting stent implanted.

  7. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  8. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I.

    Science.gov (United States)

    Thorneloe, Kevin S; Sulpizio, Anthony C; Lin, Zuojun; Figueroa, David J; Clouse, Angela K; McCafferty, Gerald P; Chendrimada, Tim P; Lashinger, Erin S R; Gordon, Earl; Evans, Louise; Misajet, Blake A; Demarini, Douglas J; Nation, Josephine H; Casillas, Linda N; Marquis, Robert W; Votta, Bartholomew J; Sheardown, Steven A; Xu, Xiaoping; Brooks, David P; Laping, Nicholas J; Westfall, Timothy D

    2008-08-01

    The transient receptor potential (TRP) vanilloid 4 (TRPV4) member of the TRP superfamily has recently been implicated in numerous physiological processes. In this study, we describe a small molecule TRPV4 channel activator, (N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), which we have used as a valuable tool in investigating the role of TRPV4 in the urinary bladder. GSK1016790A elicited Ca2+ influx in mouse and human TRPV4-expressing human embryonic kidney (HEK) cells (EC50 values of 18 and 2.1 nM, respectively), and it evoked a dose-dependent activation of TRPV4 whole-cell currents at concentrations above 1 nM. In contrast, the TRPV4 activator 4alpha-phorbol 12,13-didecanoate (4alpha-PDD) was 300-fold less potent than GSK1016790A in activating TRPV4 currents. TRPV4 mRNA was detected in urinary bladder smooth muscle (UBSM) and urothelium of TRPV4+/+ mouse bladders. Western blotting and immunohistochemistry demonstrated protein expression in both the UBSM and urothelium that was absent in TRPV4-/- bladders. TRPV4 activation with GSK1016790A contracted TRPV4+/+ mouse bladders in vitro, both in the presence and absence of the urothelium, an effect that was undetected in TRPV4-/- bladders. Consistent with the effects on TRPV4 HEK whole-cell currents, 4alpha-PDD demonstrated a weak ability to contract bladder strips compared with GSK1016790A. In vivo, urodynamics in TRPV4+/+ and TRPV4-/- mice revealed an enhanced bladder capacity in the TRPV4-/- mice. Infusion of GSK1016790A into the bladders of TRPV4+/+ mice induced bladder overactivity with no effect in TRPV4-/- mice. Overall TRPV4 plays an important role in urinary bladder function that includes an ability to contract the bladder as a result of the expression of TRPV4 in the UBSM.

  9. PPAR Agonists and Cardiovascular Disease in Diabetes

    Directory of Open Access Journals (Sweden)

    Anna C. Calkin

    2008-01-01

    Full Text Available Peroxisome proliferators activated receptors (PPARs are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPAR agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPAR agonists, and more recently dual PPAR/ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPAR receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease.

  10. PPAR Agonists and Cardiovascular Disease in Diabetes

    Science.gov (United States)

    Calkin, Anna C.; Thomas, Merlin C.

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARα agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARγ agonists, and more recently dual PPARα/γ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARγ receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease. PMID:18288280

  11. PPAR Agonists and Cardiovascular Disease in Diabetes.

    Science.gov (United States)

    Calkin, Anna C; Thomas, Merlin C

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARalpha agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARgamma agonists, and more recently dual PPARalpha/gamma coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARgamma receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease.

  12. Dihydrocodeine / Agonists for Alcohol Dependents

    Directory of Open Access Journals (Sweden)

    Albrecht eUlmer

    2012-03-01

    Full Text Available Objective: Alcohol addiction too often remains insufficiently treated. It shows the same profile as severe chronic diseases, but no comparable, effective basic treatment has been established up to now. Especially patients with repeated relapses, despite all therapeutic approaches, and patients who are not able to attain an essential abstinence to alcohol, need a basic medication. It seems necessary to acknowledge that parts of them need any agonistic substance, for years, possibly lifelong. For >14 years, we have prescribed such substances with own addictive character for these patients.Methods: We present a documented best possible practice, no designed study. Since 1997, we prescribed Dihydrocodeine (DHC to 102 heavily alcohol addict-ed patients, later, also Buprenorphine, Clomethiazole (>6 weeks, Baclofen and in one case Amphetamine, each on individual indication. This paper focuses on the data with DH, especially. The Clomethiazole-data has been submitted to a German journal. The number of treatments with the other substances is still low. Results: The 102 patients with the DHC-treatment had 1367 medically assisted detoxifications and specialized therapies before! The 4 years-retention rate was 26.4%, including 2.8% successfully terminated treatments. In our 12-step scale on clinical impression, we noticed a significant improvement from mean 3.7 to 8.4 after 2 years. The demand for medically assisted detoxifications in the 2 years remaining patients was reduced by 65.5%. Mean GGT improved from 206.6 U/l at baseline to 66.8 U/l after 2 years. Experiences with the other substances are similar but different in details.Conclusions: Similar to the Italian studies with GHB and Baclofen, we present a new approach, not only with new substances, but also with a new setting and much more trusting attitude. We observe a huge improvement, reaching an almost optimal, stable, long term status in around ¼ of the patients already. Many further

  13. Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity.

    Science.gov (United States)

    Ursu, Daniel; Knopp, Kelly; Beattie, Ruth E; Liu, Bin; Sher, Emanuele

    2010-09-01

    TRPV1 (transient receptor potential vanilloid 1) is a ligand-gated ion channel expressed predominantly in nociceptive primary afferents that plays a key role in pain processing. In vivo activation of TRPV1 receptors by natural agonists like capsaicin is associated with a sharp and burning pain, frequently described as pungency. To elucidate the mechanisms underlying pungency we investigated a series of TRPV1 agonists that included both pungent and non-pungent compounds covering a large range of potencies. Pungency of capsaicin, piperine, arvanil, olvanil, RTX (resiniferatoxin) and SDZ-249665 was evaluated in vivo, by determining the increase in the number of eye wipes caused by direct instillation of agonist solutions into the eye. Agonist-induced calcium fluxes were recorded using the FLIPR technique in a recombinant, TRPV1-expressing cell line. Current-clamp recordings were performed in rat DRG (dorsal root ganglia) neurons in order to assess the consequences of TRPV1 activation on neuronal excitability. Using the eye wipe assay the following rank of pungency was obtained: capsaicin>piperine>RTX>arvanil>olvanil>SDZ-249665. We found a strong correlation between kinetics of calcium flux, pungency and lipophilicity of TRPV1 agonists. Current-clamp recordings confirmed that the rate of receptor activation translates in the ability of agonists to generate action potentials in sensory neurons. We have demonstrated that the lipophilicity of the compounds is directly related to the kinetics of TRPV1 activation and that the latter influences their ability to trigger action potentials in sensory neurons and, ultimately, pungency.

  14. Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material.

    Science.gov (United States)

    Shapiro, Darien; Deering-Rice, Cassandra E; Romero, Erin G; Hughen, Ronald W; Light, Alan R; Veranth, John M; Reilly, Christopher A

    2013-05-20

    Cigarette smoke, diesel exhaust, and other combustion-derived particles activate the calcium channel transient receptor potential ankyrin-1 (TRPA1), causing irritation and inflammation in the respiratory tract. It was hypothesized that wood smoke particulate and select chemical constituents thereof would also activate TRPA1 in lung cells, potentially explaining the adverse effects of wood and other forms of biomass smoke on the respiratory system. TRPA1 activation was assessed using calcium imaging assays in TRPA1-overexpressing HEK-293 cells, mouse primary trigeminal neurons, and human adenocarcinoma (A549) lung cells. Particles from pine and mesquite smoke were less potent agonists of TRPA1 than an equivalent mass concentration of an ethanol extract of diesel exhaust particles; pine particles were comparable in potency to cigarette smoke condensate, and mesquite particles were the least potent. The fine particulate (PM particulate, 3,5-ditert-butylphenol, coniferaldehyde, formaldehyde, perinaphthenone, agathic acid, and isocupressic acid, were TRPA1 agonists. Pine particulate activated TRPA1 in mouse trigeminal neurons and A549 cells in a concentration-dependent manner, which was inhibited by the TRPA1 antagonist HC-030031. TRPA1 activation by wood smoke particles occurred through the electrophile/oxidant-sensing domain (i.e., C621/C641/C665/K710), based on the inhibition of cellular responses when the particles were pretreated with glutathione; a role for the menthol-binding site of TRPA1 (S873/T874) was demonstrated for 3,5-ditert-butylphenol. This study demonstrated that TRPA1 is a molecular sensor for wood smoke particulate and several chemical constituents thereof, in sensory neurons and A549 cells, suggesting that TRPA1 may mediate some of the adverse effects of wood smoke in humans.

  15. Reciprocal inhibition in man.

    Science.gov (United States)

    Crone, C

    1993-11-01

    Reciprocal inhibition is the automatic antagonist alpha motor neurone inhibition which is evoked by contraction of the agonist muscle. This so-called natural reciprocal inhibition is a ubiquitous and pronounced phenomenon in man and must be suspected of playing a major role in the control of voluntary movements. The spinal pathways underlying this inhibitory phenomenon were studied. The disynaptic reciprocal Ia inhibitory pathway between the tibial anterior muscle and the soleus alpha motor neurones was identified and described in man. It was shown that the inhibition can be evoked in most healthy subjects at rest, but the degree of inhibition varies considerably from one subject to another. It was concluded that it corresponds to the disynaptic reciprocal Ia inhibitory pathway which has been extensively described in animal experiments. The disynaptic reciprocal inhibition was shown to increase during the dynamic phase of a dorsiflexion movement of the foot, but not during the tonic phase. However, when the peripheral afferent feedback from the contracting muscle was blocked by ischaemia, an increase of the inhibition was revealed also during the tonic phase of the dorsiflexion. The concealment of this increase during unrestrained peripheral feedback from the muscle was thought to be due to the post-activation depression mechanism; a mechanism which was described further and which probably involves reduced transmitter release at Ia afferent terminals as a result of previous activation of these afferent fibers. Hence the hypothesis was supported that alpha motor neurones and the corresponding inhibitory interneurones, which project reciprocal inhibition to the antagonist motor neurones, are activated in parallel during voluntary contraction of agonist muscles. An additional reciprocal inhibitory mechanism, the long latency reciprocal inhibition, was described between the tibial anterior muscle and the soleus alpha motor neurones. It was shown to be evoked by group I

  16. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation

    DEFF Research Database (Denmark)

    Nassini, Romina; Pedretti, Pamela; Moretto, Nadia;

    2012-01-01

    The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic...... and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide...

  17. Neuroprotective effects of KR-62980, a new PPARγ agonist, against chemical ischemia-reperfusion in SK-N-SH cells.

    Science.gov (United States)

    Kim, Ki Young; Cho, Hyun Sill; Lee, Su Hee; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2011-02-01

    PPARγ agonists exert neuroprotective effects against various types of brain injuries. In the present study, we investigated the effects of KR-62980, a new PPARγ agonist, and rosiglitazone on the neuronal cell death induced by chemical ischemia-reperfusion in SK-N-SH cells and their underlying molecular mechanisms. Both agonists inhibited chemical ischemia-reperfusion-induced cell death, and the effects were associated with anti-apoptotic action. KR-62980 and rosiglitazone suppressed NO and ROS formation, and N-acetyl-N-acetoxy-4-chlorobenzenesulfonamide, an NO generator, reversed the protective effects of the agonists on cell viability. In the agonist-induced anti-apoptotic process, PTEN expression was suppressed in parallel with increased Akt and ERK phosphorylation, whereas PD98059 (an ERK inhibitor) or wortmannin (a PI-3K inhibitor) abolished the cell survival by KR-62980 and rosiglitazone. All of the effects of KR-62980 and rosiglitazone appeared to be PPARγ-dependent because the effects were reversed by bisphenol A diglycidyl ether, a PPARγ antagonist, or by PPARγ knockdown. Our results demonstrate that two PPARγ agonists, KR-62980 and rosiglitazone, inhibited chemical ischemia-reperfusion-induced neuronal cell death by PPARγ-mediated anti-apoptotic and anti-oxidant mechanisms related to PTEN suppression and ERK phosphorylation.

  18. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor.

    Science.gov (United States)

    Scott, Caitlin E; Ahn, Kwang H; Graf, Steven T; Goddard, William A; Kendall, Debra A; Abrol, Ravinder

    2016-01-25

    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci. 2013 , 22 , 101 - 113 ; Ahn, K. H. et al. Proteins 2013 , 81 , 1304 - 1317] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists.

  19. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  20. Activation of the Drosophila MLK by ceramide reveals TNF-alpha and ceramide as agonists of mammalian MLK3.

    Science.gov (United States)

    Sathyanarayana, Pradeep; Barthwal, Manoj K; Kundu, Chanakya N; Lane, Mary Ellen; Bergmann, Andreas; Tzivion, Guri; Rana, Ajay

    2002-12-01

    Mixed lineage kinases (MLKs) are MAPKKK members that activate JNK and reportedly lead to cell death. However, the agonist(s) that regulate MLK activity remain unknown. Here, we demonstrate ceramide as the activator of Drosophila MLK (dMLK) and identify ceramide and TNF-alpha as agonists of mammalian MLK3. dMLK and MLK3 are activated by a ceramide analog and bacterial sphingomyelinase in vivo, whereas a low nanomolar concentration of natural ceramide activates them in vitro. Specific inhibition of dMLK and MLK3 significantly attenuates activation of JNK by ceramide in vivo without affecting ceramide-induced p38 or ERK activation. In addition, TNF-alpha also activates MLK3 and evidently leads to JNK activation in vivo. Thus, the ceramide serves as a common agonist of dMLK and MLK3, and MLK3 contributes to JNK activation induced by TNF-alpha.

  1. Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences.

    Science.gov (United States)

    Gupta, Rupali; Saito, Shigeru; Mori, Yoshiharu; Itoh, Satoru G; Okumura, Hisashi; Tominaga, Makoto

    2016-11-22

    Pain is a harmful sensation that arises from noxious stimuli. Transient receptor potential ankyrin 1 (TRPA1) is one target for studying pain mechanisms. TRPA1 is activated by various stimuli such as noxious cold, pungent natural products and environmental irritants. Since TRPA1 is an attractive target for pain therapy, a few TRPA1 antagonists have been developed and some function as analgesic agents. The responses of TRPA1 to agonists and antagonists vary among species and these species differences have been utilized to identify the structural basis of activation and inhibition mechanisms. The TRPA1 antagonist HC-030031 (HC) failed to inhibit frog TRPA1 (fTRPA1) and zebrafish TRPA1 activity induced by cinnamaldehyde (CA), but did inhibit human TRPA1 (hTRPA1) in a heterologous expression system. Chimeric studies between fTRPA1 and hTRPA1, as well as analyses using point mutants, revealed that a single amino acid residue (N855 in hTRPA1) significantly contributes to the inhibitory action of HC. Moreover, the N855 residue and the C-terminus region exhibited synergistic effects on the inhibition by HC. Molecular dynamics simulation suggested that HC stably binds to hTRPA1-N855. These findings provide novel insights into the structure-function relationship of TRPA1 and could lead to the development of more effective analgesics targeted to TRPA1.

  2. Role of the transient receptor potential vanilloid 1 in inflammation and sepsis

    Directory of Open Access Journals (Sweden)

    Devesa I

    2011-05-01

    Full Text Available Isabel Devesa1, Rosa Planells-Cases2, Gregorio Fernández-Ballester1, José Manuel González-Ros1, Antonio Ferrer-Montiel1, Asia Fernández-Carvajal11Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante; 2Centro de Investigación Príncipe Felipe, Valencia, SpainAbstract: The transient receptor potential vanilloid 1 (TRPV1 is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes.Keywords: transient receptor potential, nociceptor, capsaicin, pain, ion channel, analgesia

  3. Transient increase in neuronal chloride concentration by neuroactive amino acids released from glioma cells

    Directory of Open Access Journals (Sweden)

    Cristina eBertollini

    2012-11-01

    Full Text Available Neuronal chloride concentration ([Cl-]i is known to be dynamically modulated and alterations in Cl- homeostasis may occur in the brain at physiological and pathological conditions, being also likely involved in glioma-related seizures. However, the mechanism leading to changes in neuronal [Cl-]i during glioma invasion are still unclear. To characterize the potential effect of glioma released soluble factors on neuronal [Cl-]i, we used genetically encoded CFP/YFP-based ratiometric Cl-Sensor transiently expressed in cultured hippocampal neurons. Exposition of neurons to glioma conditioned medium (GCM caused rapid and transient elevation of [Cl-]i, resulting in the increase of fluorescence ratio, which was strongly reduced by blockers of ionotropic glutamate receptors APV and NBQX. Furthermore, in HEK cells expressing GluR1-AMPA receptors, GCM activated ionic current with efficacy similar to those caused by glutamate, supporting the notion that GCM contains glutamate or glutamatergic agonists, which cause neuronal depolarization, activation of NMDA and AMPA/KA receptors leading to elevation of [Cl-]i. Chromatographic analysis of the GCM showed that it contained several aminoacids, including glutamate, whose release from glioma cells did not occur via the most common glial mechanisms of transport, or in response to hypoosmotic stress. GCM also contained glycine, whose action contrasted the glutamate effect. Indeed, strychnine application significantly increased GCM-induced depolarization and [Cl-]i rise. GCM-evoked [Cl-]i elevation was not inhibited by antagonists of Cl- transporters and significantly reduced in the presence of anion channels blocker NPPB, suggesting that Cl-selective channels are a major route for GCM-induced Cl- influx. Altogether, these data show that glioma released aminoacids may dynamically alter Cl- equilibrium in surrounding neurons, deeply interfering with their inhibitory balance, likely leading to physiological and

  4. Inhibitory effect of a new opioid agonist on reproductive endocrine activity in rats of both sexes.

    Science.gov (United States)

    Markó, M; Römer, D

    1983-07-18

    Morphine and other opioid compounds such as the new benzomorphan derivative, bremazocine, inhibit the secretion of luteinizing hormone in rats of both sexes (1, 2, 3, 4). The aim of our work was to compare in rats the LH-secretion inhibiting properties of bremazocine, a putative opiate kappa agonist (5), with those of the mu agonist morphine. Acute administration of bremazocine (0.005 - 1 mg/kg s.c.) or of morphine (10 - 20 mg/kg s.c.) diminished serum LH levels and spontaneous ovulation in female rats in a dose-dependent manner. Chronic treatment with bremazocine significantly diminished LH and testosterone secretions in male rats which in turn led to a fall in weight of the prostate gland; prolactin and FSH secretions were not influenced significantly. The mu-antagonist naloxone, which increases LH release in rats, in acute experiments significantly antagonized the inhibiting effect of morphine, but not that of bremazocine on LH secretion. Neither the basal nor the LHRH-stimulated secretion of LH in pituitary cell cultures were changed by bremazocine (10(-11) to 10(-5) M), however the release of LHRH-like activity from hypothalamic fragments was significantly impaired by 10(-7) M bremazocine. In conclusion, the data presented here show that bremazocine is a new non-morphine-like opioid agonist which selectively inhibits LH release in rats.

  5. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets.

    Science.gov (United States)

    Schoenwaelder, Simone M; Jarman, Kate E; Gardiner, Elizabeth E; Hua, My; Qiao, Jianlin; White, Michael J; Josefsson, Emma C; Alwis, Imala; Ono, Akiko; Willcox, Abbey; Andrews, Robert K; Mason, Kylie D; Salem, Hatem H; Huang, David C S; Kile, Benjamin T; Roberts, Andrew W; Jackson, Shaun P

    2011-08-11

    BH3 mimetics are a new class of proapo-ptotic anticancer agents that have shown considerable promise in preclinical animal models and early-stage human trials. These agents act by inhibiting the pro-survival function of one or more Bcl-2-related proteins. Agents that inhibit Bcl-x(L) induce rapid platelet death that leads to thrombocytopenia; however, their impact on the function of residual circulating platelets remains unclear. In this study, we demonstrate that the BH3 mimetics, ABT-737 or ABT-263, induce a time- and dose-dependent decrease in platelet adhesive function that correlates with ectodomain shedding of the major platelet adhesion receptors, glycoprotein Ibα and glycoprotein VI, and functional down-regulation of integrin α(IIb)β(3). Analysis of platelets from mice treated with higher doses of BH3 mimetics revealed the presence of a subpopulation of circulating platelets undergoing cell death that have impaired activation responses to soluble agonists. Functional analysis of platelets by intravital microscopy revealed a time-dependent defect in platelet aggregation at sites of vascular injury that correlated with an increase in tail bleeding time. Overall, these studies demonstrate that Bcl-x(L)-inhibitory BH3 mimetics not only induce thrombocytopenia but also a transient thrombocytopathy that can undermine the hemostatic function of platelets.

  6. A new sign of callosal disconnection syndrome: agonistic dyspraxia. A case study.

    Science.gov (United States)

    Lavados, Manuel; Carrasco, Ximena; Peña, Marcela; Zaidel, Eran; Zaidel, Dahlia; Aboitiz, Francisco

    2002-01-01

    We report a patient with callosal haemorrhage and no extracallosal involvement who developed a unique form of intermanual conflict. In the acute phase the patient showed a mild speech disturbance and right hemiparesis, and in her right hand, a grasp reflex and compulsive manipulation of tools, all attributable to transient frontal involvement. In the chronic phase there was intermanual conflict occasionally associated with the sensation of a second left hand. The patient also presented a sign consisting of compulsive, automatic execution of orders by one hand (the left or the right) when the patient was specifically asked to perform the movement with the other hand (the right or the left, respectively). There was no left-right confusion in this patient. We call this condition agonistic dyspraxia. In contrast with diagonistic dyspraxia, this consists of the agonistic behaviour of the other hand under conditions in which the hand that has been instructed to respond cannot execute the request.

  7. Tamoxifen in the rat prevents estrogen-deficiency bone loss elicited with the LHRH agonist buserelin.

    Science.gov (United States)

    Goulding, A; Gold, E; Feng, W

    1992-08-01

    In young women chronic use of luteinizing hormone releasing hormone (LHRH) agonists such as buserelin to treat endometriosis leads to estrogen-deficiency bone loss. Tamoxifen citrate is an estrogen agonist/antagonist which protects the skeleton from osteopenia when ovarian hormones are depleted. The present study was undertaken to determine whether tamoxifen citrate (20 mg/kg body wt/week s.c.) could prevent the osteopenic effect of buserelin (25 micrograms/kg body wt/day s.c.). Four groups of rats with 45Ca-labelled bones were studied for 4 weeks: group A--placebo controls; group B--buserelin; Group C--tamoxifen; group D--buserelin+tamoxifen. Bone resorption was monitored by measuring the urinary excretion of 45Ca and hydroxyproline. Interestingly buserelin lowered both blood 17 beta-estradiol values and uterine weights in the presence and absence of tamoxifen. However, tamoxifen slowed bone breakdown and inhibited the bone-thinning effects of buserelin. Total body calcium values (mg; means +/- S.D.) were: 2227 +/- 137; 1926 +/- 124; 2233 +/- 94 and 2268 +/- 163, in groups A to D respectively. Osteopenia was thus present only in group B (P less than 0.001). Because tamoxifen inhibits estrogen-deficiency bone loss in buserelin-treated rats without depressing the hypoestrogenic actions of this LHRH-agonist, we suggest that use of tamoxifen to protect the skeleton during LHRH-agonist therapy in young women should be explored. Tamoxifen citrate might also help to prevent postmenopausal osteoporosis.

  8. Estrogen agonist/antagonist properties of dibenzyl phthalate (DBzP) based on in vitro and in vivo assays.

    Science.gov (United States)

    Zhang, Zhaobin; Hu, Ying; Zhao, Liang; Li, Jun; Bai, Huicheng; Zhu, Desheng; Hu, Jianying

    2011-11-10

    The most commonly used phthalates have been banned or restricted for use as plasticizers in toys in some countries because of their endocrine-disrupting properties. Dibenzyl phthalate (DBzP) has been proposed as a possible alternative for the banned/restricted phthalates. In this study, the estrogen agonist/antagonist properties of DBzP were predicted by molecular docking and confirmed by yeast estrogen screen (YES) and immature mouse uterotrophic assays. The YES assay results showed a dose-dependent increase in DBzP estrogen agonist activity from 10⁻⁶ to 10⁻⁴ M, and at concentrations from 1.95×10⁻⁶ M to higher, DBzP significantly inhibited the agonist activity of 10⁻⁹ M 17β-estradiol (E₂), inhibiting 10⁻⁹ M E₂ by 74.5% at its maximum effectiveness. The in vivo estrogen agonist/antagonist activities of DBzP were demonstrated in immature mouse uterotrophic assays. The antagonist activity of DBzP inhibited E₂-induced uterine growth promoted at 40 and 400 μg/kg bw (body weight) (Pestrogen agonist/antagonist potentials of benzyl butyl phthalate (BBP) by YES, and found both were weaker than those of DBzP, suggesting DBzP would be more toxic than BBP and should not be used as an alternative plasticizer.

  9. SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea) inhibits TNF-alpha production through the activation of capsaicin-sensitive afferent neurons mediated via transient receptor potential vanilloid 1 in vivo.

    Science.gov (United States)

    Murai, Masaaki; Tsuji, Fumio; Nose, Masafumi; Seki, Iwao; Oki, Kenji; Setoguchi, Chikako; Suhara, Hiroshi; Sasano, Minoru; Aono, Hiroyuki

    2008-07-07

    Tumor necrosis factor-alpha (TNF-alpha) is known to play a crucial role in the pathogenesis of rheumatoid arthritis. In the present study, we demonstrate the effects of SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea), a novel orally active inhibitor of TNF-alpha production, in animal models, and its mechanism of action on TNF-alpha production. SA13353 significantly inhibited lipopolysaccharide (LPS)-induced TNF-alpha production in a dose-dependent manner in rats. Moreover, SA13353 exhibited a binding affinity for the rat vanilloid receptor and increased neuropeptide release from the rat dorsal root ganglion neurons. However, its effects were blocked by pretreatment with the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. The ability of SA13353 and capsaicin to inhibit LPS-induced TNF-alpha production was eliminated by sensory denervation or capsazepine pretreatment in vivo. Although they inhibited LPS-induced TNF-alpha production in mice, these effects were not observed in TRPV1 knockout mice. SA13353 provoked the release of neuropeptides without nerve inactivation, even when chronically administered to rats. These results suggest that SA13353 inhibits TNF-alpha production through activation of capsaicin-sensitive afferent neurons mediated via TRPV1 in vivo. Post-onset treatment of SA13353 strongly reduced the hindpaw swelling and joint destruction associated with collagen-induced arthritis in rats. Thus, SA13353 is expected to be a novel anti-arthritic agent with a unique mechanism of action.

  10. Salvinorin A, an active component of the hallucinogenic sage salvia divinorum is a highly efficacious kappa-opioid receptor agonist: structural and functional considerations.

    Science.gov (United States)

    Chavkin, Charles; Sud, Sumit; Jin, Wenzhen; Stewart, Jeremy; Zjawiony, Jordan K; Siebert, Daniel J; Toth, Beth Ann; Hufeisen, Sandra J; Roth, Bryan L

    2004-03-01

    The diterpene salvinorin A from Salvia divinorum has recently been reported to be a high-affinity and selective kappa-opioid receptor agonist (Roth et al., 2002). Salvinorin A and selected derivatives were found to be potent and efficacious agonists in several measures of agonist activity using cloned human kappa-opioid receptors expressed in human embryonic kidney-293 cells. Thus, salvinorin A, salvinorinyl-2-propionate, and salvinorinyl-2-heptanoate were found to be either full (salvinorin A) or partial (2-propionate, 2-heptanoate) agonists for inhibition of forskolin-stimulated cAMP production. Additional studies of agonist potency and efficacy of salvinorin A, performed by cotransfecting either the chimeric G proteins Gaq-i5 or the universal G protein Ga16 and quantification of agonist-evoked intracellular calcium mobilization, affirmed that salvinorin A was a potent and effective kappa-opioid agonist. Results from structure-function studies suggested that the nature of the substituent at the 2-position of salvinorin A was critical for kappa-opioid receptor binding and activation. Because issues of receptor reserve complicate estimates of agonist efficacy and potency, we also examined the agonist actions of salvinorin A by measuring potassium conductance through G protein-gated K(+) channels coexpressed in Xenopus oocytes, a system in which receptor reserve is minimal. Salvinorin A was found to be a full agonist, being significantly more efficacious than (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U50488) or (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U69593) (two standard kappa-opioid agonists) and similar in efficacy to dynorphin A (the naturally occurring peptide ligand for kappa-opioid receptors). Salvinorin A thus represents the first known naturally occurring non-nitrogenous full agonist at kappa-opioid receptors.

  11. On Detecting Transients

    CERN Document Server

    Belanger, G

    2013-01-01

    Transient phenomena are interesting and potentially highly revealing of details about the processes under observation and study that could otherwise go unnoticed. It is therefore important to maximise the sensitivity of the method used to identify such events. In this article we present a general procedure based on the use of the likelihood function for identifying transients that is particularly suited for real-time applications because it requires no grouping or pre-processing of the data. The method is optimal in the sense that all the information that is available in the data is used in the statistical decision making process, and is suitable for a wide range of applications. We here consider those most common in astrophysics which involve searching for transient sources, events or features in images, time series, energy spectra and power spectra, and demonstrate the use of the method in the cases of a transient in a time series or in a power spectrum. We derive a fit statistic that is ideal for fitting a...

  12. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  13. Transient lingual papillitis.

    Science.gov (United States)

    Kornerup, Ida M; Senye, Mireya; Peters, Edmund

    2016-01-01

    A case of recurrent, clinically innocuous, but painful papules involving the tongue dorsum of a 25-year-old man is presented. The lesions were interpreted to represent a transient lingual papillitis. This a poorly understood, but benign and self-limited condition involving the tongue fungiform papillae, which does not appear to be widely recognized.

  14. The LOFAR Transients Pipeline

    NARCIS (Netherlands)

    Swinbank, J.; Staley, T.; Molenaar, G.; Rol, E.; Rowlinson, A.; Scheers, L.H.A.; Spreeuw, H.; Bell, M.E.; Broderick, J.; Carbone, D.; Garsden, H.; Horst, A. van der; Law, C.J.; Wise, M.W.; Breton, R.P.; Cendes, Y.; Corbel, S.; Eisloeffel, J.; Falcke, H.; Fender, R.P.; Griessmeier, J.-M.; Hessels, J.W.T.; Stappers, B.W.; Stewart, A.; Wijers, R.A.M.J.; Wijnands, R.; Zarka, P.

    2015-01-01

    Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy, combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength regimes. This is particularly true of LOFAR, a recently-commissione

  15. Glucagon-like peptide 1 receptor agonist protects high-glucose inducedβcells apoptosis via inhibition of NOX2-dependent ROS production%GLP-1Ra减少高糖诱导的β细胞凋亡作用机制探讨

    Institute of Scientific and Technical Information of China (English)

    丁敏; 李春君; 邢云芝; 于倩; 王鹏华; 于德民

    2015-01-01

    Objective To investigate the possible mechanisms of glucagon-like peptide 1 receptor agonists (GLP-1Ra) protection against hyperglycemic induced beta cell apoptosis through depression of NOX2-dependent ROS production. Methods The rat model of type 2 diabetes (T2DM) was established by injecting small doses of streptozotocin (STZ) fol⁃lowed by 8-week high fat diet. The experimental animals were divided into three groups:normal control (N) group, diabetes (T2DM) group and GLP-1Ra group [treated with liraglutide 200 μg/(kg · d)for 12 weeks]. The blood glucose levels were compared before and after modeling, before treatment and 12-week after treatment with GLP-1Ra. The level of glycosylated hemoglobin (HbA1c) was detected by high-pressure liquid chromatography. Automatic biochemical analyzer was used to de⁃tect levels of aspertate aminotransferase (AST), creatinine (CR) and urea nitrogen (BUN). The apoptotic rates of islets were determined by TUNEL method and cleaved caspase 3 was detected by immunohistochemistry. DCFH-DA fluorescent probe was used to detect reactive oxygen species (ROS) levels of islets. Levels of NADPH oxidase (NOX) catalytic subunit (NOX 2) in islets were measured by immunohistochemistry. Results At the end of the study, glycemic control (average blood glucose/week and HbA1c) and lipid situation were improved significantly in the GLP-1Ra group than those of N group (P0.05). After application Apocynin for inhibition, there were no significant differences between three groups (P>0.05). The level of NOX2 was significantly lower in GLP-1Ra group compared to that of T2DM group (P<0.05). Conclusion GLP-1Ra can inhibit apoptosis ofβcells in diabetes rat, and the depression of NOX2-dependent ROS may be one of the important underly⁃ing mechanisms.%目的:探讨胰高血糖素样肽-1(GLP-1)受体激动剂(GLP-1Ra)减少高糖诱导的β细胞凋亡作用的可能机制。方法正常对照(N,普通饲料喂养)组、2型糖尿病(T2

  16. Potent, transient inhibition of BCR-ABL with dasatinib 100 mg daily achieves rapid and durable cytogenetic responses and high transformation-free survival rates in chronic phase chronic myeloid leukemia patients with resistance, suboptimal response or intolerance to imatinib

    Science.gov (United States)

    Shah, Neil P.; Kim, Dong-Wook; Kantarjian, Hagop; Rousselot, Philippe; Llacer, Pedro Enrique Dorlhiac; Enrico, Alicia; Vela-Ojeda, Jorge; Silver, Richard T.; Khoury, Hanna Jean; Müller, Martin C.; Lambert, Alexandre; Matloub, Yousif; Hochhaus, Andreas

    2010-01-01

    Background Dasatinib 100 mg once daily achieves intermittent BCR-ABL kinase inhibition and is approved for chronic-phase chronic myeloid leukemia patients resistant or intolerant to imatinib. To better assess durability of response to and tolerability of dasatinib, data from a 2-year minimum follow-up for a dose-optimization study in chronic-phase chronic myeloid leukemia are reported here. Design and Methods In a phase 3 study, 670 chronic-phase chronic myeloid leukemia patients with resistance, intolerance, or suboptimal response to imatinib were randomized to dasatinib 100 mg once-daily, 50 mg twice-daily, 140 mg once-daily, or 70 mg twice-daily. Results Data from a 2-year minimum follow-up demonstrate that dasatinib 100 mg once daily achieves major cytogenetic response and complete cytogenetic response rates comparable to those in the other treatment arms, and reduces the frequency of key side effects. Comparable 2-year progression-free survival and overall survival rates were observed (80% and 91%, respectively, for 100 mg once daily, and 75%–76% and 88%–94%, respectively, in other arms). Complete cytogenetic responses were achieved rapidly, typically by 6 months. In patients treated with dasatinib 100 mg once daily for 6 months without complete cytogenetic response, the likelihood of achieving such a response by 2 years was 50% for patients who had achieved a partial cytogenetic response, and only 8% or less for patients with minor, minimal, or no cytogenetic response. Less than 3% of patients suffered disease transformation to accelerated or blast phase. Conclusions Intermittent kinase inhibition can achieve rapid and durable responses, indistinguishable from those achieved with more continuous inhibition. PMID:20139391

  17. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    Science.gov (United States)

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  18. Activation of muscarinic receptors in porcine airway smooth muscle elicits a transient increase in phospholipase D activity.

    Science.gov (United States)

    Mamoon, A M; Smith, J; Baker, R C; Farley, J M

    1999-01-01

    Phospholipase D (PLD) is a phosphodiesterase that catalyses hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. In the presence of ethanol, PLD also catalyses the formation of phosphatidylethanol, which is a unique characteristic of this enzyme. Muscarinic receptor-induced changes in the activity of PLD were investigated in porcine tracheal smooth muscle by measuring the formation of [3H]phosphatidic acid ([3H]PA) and [3H]phosphatidylethanol ([3H]PEth) after labeling the muscle strips with [3H]palmitic acid. The cholinergic receptor agonist acetylcholine (Ach) significantly but transiently increased formation of both [3H]PA and [3H]PEth in a concentration-dependent manner (>105-400% vs. controls in the presence of 10(-6) to 10(-4) M Ach) when pretreated with 100 mM ethanol. The Ach receptor-mediated increase in PLD activity was inhibited by atropine (10(-6) M), indicating that activation of PLD occurred via muscarinic receptors. Activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) increased PLD activity that was effectively blocked by the PKC inhibitors calphostin C (10(-8) to 10(-6) M) and GFX (10(-8) to 10(-6) M). Ach-induced increases in PLD activity were also significantly, but incompletely, inhibited by both GFX and calphostin C. From the present data, we conclude that in tracheal smooth muscle, muscarinic acetylcholine receptor-induced PLD activation is transient in nature and coupled to these receptors via PKC. However, PKC activation is not solely responsible for Ach-induced activation of PLD in porcine tracheal smooth muscle.

  19. Muscimol as an ionotropic GABA receptor agonist.

    Science.gov (United States)

    Johnston, Graham A R

    2014-10-01

    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  20. Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB(1) receptors and endovanilloids.

    Science.gov (United States)

    De Petrocellis, Luciano; Starowicz, Katarzyna; Moriello, Aniello Schiano; Vivese, Marta; Orlando, Pierangelo; Di Marzo, Vincenzo

    2007-05-15

    The transient receptor potential channel of melastatin type 8 (TRPM8), which is gated by low (<25 degrees C) temperature and chemical compounds, is regulated by protein kinase C-mediated phosphorylation in a way opposite to that observed with the transient receptor potential channel of vanilloid type 1 (TRPV1), i.e. by being desensitized and not sensitized. As TRPV1 is sensitized also by protein kinase A (PKA)-mediated phosphorylation, we investigated the effect of two activators of the PKA pathway, 8-Br-cAMP and forskolin, on the activity of menthol and icilin at TRPM8 in HEK-293 cells stably overexpressing the channel (TRPM8-HEK-293 cells). We also studied the effect on TRPM8 of: (1) a series of compounds previously shown to activate or antagonize TRPV1, and (2) co-stimulation of transiently co-expressed cannabinoid CB(1) receptors. Both 8-Br-cAMP (100 microM) and forskolin (10 microM) right-shifted the dose-response curves for the TRPM8-mediated effect of icilin and menthol on intracellular Ca(2+). The inhibitory effects of 8-Br-cAMP and forskolin were attenuated by the selective PKA inhibitor Rp-cAMP-S. Stimulation of human CB(1) receptors transiently co-expressed in TRPM8-HEK-293 cells also inhibited TRPM8 response to icilin. Finally, some TRPV1 agonists and antagonists, but not iodinated antagonists, antagonized icilin- and much less so menthol-, induced TRPM8 activation. Importantly, the endovanilloids/endocannabinoids, anandamide and NADA, also antagonized TRPM8 at submicromolar concentrations. Although these findings need to be confirmed by experiments directly measuring TRPM8 activity in natively TRPM8-expressing cells, they support the notion that the same regulatory events have opposing actions on TRPM8 and TRPV1 receptors and identify anandamide and NADA as the first potential endogenous functional antagonists of TRPM8 channels.

  1. Muscarinic agonists and potassium currents in guinea-pig myenteric neurones.

    Science.gov (United States)

    Galligan, J J; North, R A; Tokimasa, T

    1989-01-01

    1. Intracellular electrophysiological recordings were obtained from single neurones of the guinea-pig myenteric plexus in vitro. Using single electrode voltage clamp techniques, four distinct potassium currents were described and the effects of muscarinic agonists on these currents were studied. 2. A calcium-dependent potassium current (gKCa) was present in AH neurones at rest, and was much increased following a brief depolarization (50 ms, to 0 mV). Muscarinic agonists reduced both the resting current and the current evoked by depolarization. Pirenzepine competitively antagonized the suppression by muscarine of the calcium-dependent potassium current (or after-hyperpolarization) following an action potential. The dissociation equilibrium constant for pirenzepine was about 10 nM. 3. The conductance of AH neurones increased two to three fold when they were hyperpolarized negative to -90 mV. This inward rectification was blocked by extracellular caesium (2 mM) or rubidium (2 mM), but not by tetraethylammonium (TEA, 40 mM), 4-aminopyridine (100 microM) or cobalt (2 mM). The inward rectification was unaffected by muscarinic agonists. 4. When AH neurones were depolarized from very negative holding potentials (less than -80 mV) a brief outward current was recorded with a duration of about 200 ms. This transient or A current was completely blocked by 4-aminopyridine (100 microM) but was not affected by tetrodotoxin (300 nM), TEA (40 mM) or cobalt (2 mM). Muscarinic agonists did not affect the A current. 5. In S neurones, and in AH neurones in calcium-free solutions, the potassium conductance (in TEA and caesium) behaved according to constant field assumptions. This background conductance was suppressed by muscarinic agonists. 6. It is concluded that the depolarization by muscarinic agonists of myenteric AH neurones is due to a suppression of both a calcium-dependent potassium conductance and a background potassium conductance. Muscarinic depolarization of S neurones

  2. Histamine H3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion.

    Science.gov (United States)

    Iida, Tomomitsu; Yoshikawa, Takeo; Matsuzawa, Takuro; Naganuma, Fumito; Nakamura, Tadaho; Miura, Yamato; Mohsen, Attayeb S; Harada, Ryuichi; Iwata, Ren; Yanai, Kazuhiko

    2015-07-01

    Histamine is a physiological amine which initiates a multitude of physiological responses by binding to four known G-protein coupled histamine receptor subtypes as follows: histamine H1 receptor (H1 R), H2 R, H3 R, and H4 R. Brain histamine elicits neuronal excitation and regulates a variety of physiological processes such as learning and memory, sleep-awake cycle and appetite regulation. Microglia, the resident macrophages in the brain, express histamine receptors; however, the effects of histamine on critical microglial functions such as chemotaxis, phagocytosis, and cytokine secretion have not been examined in primary cells. We demonstrated that mouse primary microglia express H2 R, H3 R, histidine decarboxylase, a histamine synthase, and histamine N-methyltransferase, a histamine metabolizing enzyme. Both forskolin-induced cAMP accumulation and ATP-induced intracellular Ca(2+) transients were reduced by the H3 R agonist imetit but not the H2 R agonist amthamine. H3 R activation on two ubiquitous second messenger signalling pathways suggests that H3 R can regulate various microglial functions. In fact, histamine and imetit dose-dependently inhibited microglial chemotaxis, phagocytosis, and lipopolysaccharide (LPS)-induced cytokine production. Furthermore, we confirmed that microglia produced histamine in the presence of LPS, suggesting that H3 R activation regulate microglial function by autocrine and/or paracrine signalling. In conclusion, we demonstrate the involvement of histamine in primary microglial functions, providing the novel insight into physiological roles of brain histamine.

  3. The role of the 4''-hydroxyl on motilin agonist potency in the 9-dihydroerythromycin series.

    Science.gov (United States)

    Liu, Yaoquan; Carreras, Christopher W; Claypool, Mark; Myles, David C; Shaw, Simon J

    2011-06-15

    The role of the erythromycin 4''-hydroxyl group has been explored on the motilin agonist potential in the 9-dihydroerythromycin series of motilides. The compounds show potencies 2- to 4-fold superior to the corresponding hydroxylated compounds. The relationship is maintained when the 9-hydroxyl is alkylated to generate the corresponding 4''-deoxy-9-O-acetamido-9-dihydroerythromycins. However, concomitant with this increase in potency is an increase in hERG inhibition.

  4. Cannabinoid receptor interacting protein suppresses agonist-driven CB1 receptor internalization and regulates receptor replenishment in an agonist-biased manner.

    Science.gov (United States)

    Blume, Lawrence C; Leone-Kabler, Sandra; Luessen, Deborah J; Marrs, Glen S; Lyons, Erica; Bass, Caroline E; Chen, Rong; Selley, Dana E; Howlett, Allyn C

    2016-11-01

    Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.

  5. Identification of Selective ERRγ Inverse Agonists

    Directory of Open Access Journals (Sweden)

    Jina Kim

    2016-01-01

    Full Text Available GSK5182 (4 is currently one of the lead compounds for the development of estrogen-related receptor gamma (ERRγ inverse agonists. Here, we report the design, synthesis, pharmacological and in vitro absorption, distribution, metabolism, excretion, toxicity (ADMET properties of a series of compounds related to 4. Starting from 4, a series of analogs were structurally modified and their ERRγ inverse agonist activity was measured. A key pharmacophore feature of this novel class of ligands is the introduction of a heterocyclic group for A-ring substitution in the core scaffold. Among the tested compounds, several of them are potent ERRγ inverse agonists as determined by binding and functional assays. The most promising compound, 15g, had excellent binding selectivity over related subtypes (IC50 = 0.44, >10, >10, and 10 μM at the ERRγ, ERRα, ERRβ, and ERα subtypes, respectively. Compound 15g also resulted in 95% transcriptional repression at a concentration of 10 μM, while still maintaining an acceptable in vitro ADMET profile. This novel class of ERRγ inverse agonists shows promise in the development of drugs targeting ERRγ-related diseases.

  6. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes.

    Directory of Open Access Journals (Sweden)

    Saravanan Kanakasabai

    Full Text Available Neural stem cells (NSCs are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS. Peroxisome proliferator-activated receptor gamma (PPARγ is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF and basic fibroblast growth factor (bFGF induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA and PPARγ agonist ciglitazone or 15-Deoxy-Δ(12,14-Prostaglandin J(2 (15d-PGJ2 resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3-7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3-7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases.

  7. Attenuation of HIV-1 replication in macrophages by cannabinoid receptor 2 agonists.

    Science.gov (United States)

    Ramirez, Servio H; Reichenbach, Nancy L; Fan, Shongshan; Rom, Slava; Merkel, Steven F; Wang, Xu; Ho, Wen-Zhe; Persidsky, Yuri

    2013-05-01

    Infiltrating monocytes and macrophages play a crucial role in the progression of HIV-1 infection in the CNS. Previous studies showed that activation of the CB₂ can attenuate inflammatory responses and affect HIV-1 infectivity in T cells and microglia. Here, we report that CB₂ agonists can also act as immunomodulators on HIV-1-infected macrophages. First, our findings indicated the presence of elevated levels of CB₂ expression on monocytes/macrophages in perivascular cuffs of postmortem HIV-1 encephalitic cases. In vitro analysis by FACS of primary human monocytes revealed a step-wise increase in CB₂ surface expression in monocytes, MDMs, and HIV-1-infected MDMs. We next tested the notion that up-regulation of CB₂ may allow for the use of synthetic CB₂ agonist to limit HIV-1 infection. Two commercially available CB₂ agonists, JWH133 and GP1a, and a resorcinol-based CB₂ agonist, O-1966, were evaluated. Results from measurements of HIV-1 RT activity in the culture media of 7 day-infected cells showed a significant decrease in RT activity when the CB₂ agonist was present. Furthermore, CB₂ activation also partially inhibited the expression of HIV-1 pol. CB₂ agonists did not modulate surface expression of CXCR4 or CCR5 detected by FACS. We speculate that these findings indicate that prevention of viral entry is not a central mechanism for CB₂-mediated suppression in viral replication. However, CB₂ may affect the HIV-1 replication machinery. Results from a single-round infection with the pseudotyped virus revealed a marked decrease in HIV-1 LTR activation by the CB₂ ligands. Together, these results indicate that CB₂ may offer a means to limit HIV-1 infection in macrophages.

  8. Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Ramachandran, Rithwik; Mihara, Koichiro; Mathur, Maneesh; Rochdi, Moulay Driss; Bouvier, Michel; Defea, Kathryn; Hollenberg, Morley D

    2009-10-01

    We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR(2)) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR(2) and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR(2)-Leu(37)Ser(38), rPAR(2)-Ala(37-38), and rPAR(2)-Ala(39-42) were compared with the trypsin-revealed wild-type rPAR(2) TL sequence, S(37)LIGRL(42)-. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR(2) and rPAR(2)-Ala(39-42) triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR(2)-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR(2)-Ala(37-38) nor rPAR(2)-Leu(37)Ser(38) constructs recruited beta-arrestins-1 or -2 in response to trypsin stimulation, whereas both beta-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered beta-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Galpha(i) (pertussis toxin), Galpha(q) [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the

  9. The Rapid Transient Surveyor

    Science.gov (United States)

    Baranec, Christoph; Tonry, John; Wright, Shelley; Tully, R. Brent; Lu, Jessica R.; Takamiya, Marianne Y.; Hunter, Lisa

    2016-01-01

    The next decade of astronomy will be dominated by large area surveys (see the detailed discussion in the Astro-2010 Decadal survey and NRC's recent OIR System Report). Ground-based optical transient surveys, e.g., LSST, ZTF and ATLAS and space-based exoplanet, supernova, and lensing surveys such as TESS and WFIRST will join the Gaia all-sky astrometric survey in producing a flood of data that will enable leaps in our understanding of the universe. There is a critical need for further characterization of these discoveries through high angular resolution images, deeper images, spectra, or observations at different cadences or periods than the main surveys. Such follow-up characterization must be well matched to the particular surveys, and requires sufficient additional observing resources and time to cover the extensive number of targets.We describe plans for the Rapid Transient Surveyor (RTS), a permanently mounted, rapid-response, high-cadence facility for follow-up characterization of transient objects on the U. of Hawai'i 2.2-m telescope on Maunakea. RTS will comprise an improved robotic laser adaptive optics system, based on the prototype Robo-AO system (formerly at the Palomar 1.5-m and now at the Kitt Peak 2.2-m telescope), with simultaneous visible and near-infrared imagers as well as a near-infrared integral field spectrograph (R~100, λ = 850 - 1830 nm, 0.15″ spaxels, 8.7″×6.0″ FoV). RTS will achieve an acuity of ~0.07″ in visible wavelengths and automated detection and characterization of astrophysical transients during a sustained observing campaign will yield the necessary statistics to precisely map dark matter in the local universe.

  10. Coherent Transient Systems Evaluation

    Science.gov (United States)

    1993-06-17

    manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints...for governmental purposes. 1.0 Introduction The continuous optical correlator presented here is based on the phenomena of coherent transients, also...Gating the Continuous Processor Programming the continuous processor is accomplished by illuminati , n, the material with ,.’ modulated light pulses: a

  11. Studies on the pharmacology of the novel histamine H3 receptor agonist Sch 50971.

    Science.gov (United States)

    Hey, J A; Aslanian, R; Bolser, D C; Chapman, R W; Egan, R W; Rizzo, C A; Shih, N Y; Fernandez, X; McLeod, R L; West, R; Kreutner, W

    1998-09-01

    Experiments were performed to characterize the pharmacology of Sch 50971 ((+)-trans-4-(4(R)-methyl-3(R)-pyrolidinyl)-1H-imidazole dihydrochloride, CAS 167610-28-8), a novel histamine H3 receptor agonist. The activity of Sch 50971 was compared with that of (R)-alpha-methylhistamine (CAS 75614-87-8), a potent and moderately selective agonist of histamine H3 receptors, in a series of in vitro and in vivo assays. Sch 50971 is a high affinity, selective H3 receptor agonist in vitro and in vivo. Sch 50971 inhibits [3H]-N-alpha-methylhistamine (CAS 673-50-7) binding to the histamine H3 receptor in human brain (Ki = 5.0 nmol/l) and guinea pig brain (Ki = 2.5 nmol/l). Sch 50971 also inhibits electric field stimulated guinea pig ileum contractions (pD2 = 7.47) and decreases [3H]-norepinephrine (CAS 51-41-2) release (pD2 = 7.48) from guinea pig pulmonary artery by activation of presynaptic inhibitory H3 receptors. The in vitro effects of Sch 50971 are antagonized by low concentrations of a selective H3 antagonist, thioperamide (CAS 106243-16-7). Sch 50971 has low affinity (IC50's > 10 mumol/l) for histamine H1, dopamine D1 and D2, serotonin 5-HT2 and muscarinic cholinergic receptors. It also does not exhibit histamine H2-antagonist activity. In guinea pigs and cats, Sch 50971 exhibits in vivo H3 agonist activity. Sch 50971 inhibits sympathetic hypertension evoked by stimulation of the medulla oblongata in anesthetized guinea pigs (ED30 = 0.3 mg/kg i.v., ED30 = 1.0 mg/kg i.d.). Sch 50971 also inhibits the effects of sympathetic nerve stimulation on nasal resistance in cats. In these assays, Sch 50971 exhibits an efficacy and potency comparable to H3-agonist (R)-alpha-methylhistamine. However, under in vivo conditions, Sch 50971 does not exhibit histamine H1-mediated responses that are seen with (R)-alpha-methylhistamine at doses close to those that produce H3 effects. Therefore, Sch 50971 is a novel, potent and selective agonist of histamine H3 receptors with an improved in

  12. Antidiabetic properties of the histamine H3 receptor protean agonist proxyfan.

    Science.gov (United States)

    Henry, Melanie B; Zheng, Shuqin; Duan, Chenxia; Patel, Bhuneshwari; Vassileva, Galya; Sondey, Christopher; Lachowicz, Jean; Hwa, Joyce J

    2011-03-01

    Proxyfan is a histamine H3 receptor protean agonist that can produce a spectrum of pharmacological effects including agonist, inverse agonist, and antagonist. We have discovered that proxyfan (10 mg/kg orally) significantly improved glucose excursion after an ip glucose tolerance test in either lean or high-fat/cholesterol diet-induced obese mice. It also reduced plasma glucose levels comparable to that of metformin (300 mg/kg orally) in a nongenetic type 2 diabetes mouse model. The dose-dependent decrease in glucose excursion correlated with inhibition of ex vivo H3 receptor binding in the cerebral cortex. In addition, glucose levels were significantly reduced compared with vehicle-treated mice after intracerebroventricular administration of proxyfan, suggesting the involvement of central H3 receptors. Proxyfan-induced reduction of glucose excursion was not observed in the H3 receptor knockout mice, suggesting that proxyfan mediates this effect through H3 receptors. Proxyfan reduced glucose excursion by significantly increasing plasma insulin levels in a glucose-independent manner. However, no difference in insulin sensitivity was observed in proxyfan-treated mice. The H1 receptor antagonist chlorpheniramine and the H2 receptor antagonist zolantidine had modest effects on glucose excursion, and neither inhibited the glucose excursion reduced by proxyfan. The H3 receptor antagonist/inverse agonist, thioperamide, had weaker effects on glucose excursion compared with proxyfan, whereas the H3 receptor agonist imetit did not affect glucose excursion. In conclusion, these findings demonstrate, for the first time, that manipulation of central histamine H3 receptor by proxyfan can significantly improve glucose excursion by increasing plasma insulin levels via a glucose-independent mechanism.

  13. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening.

    Directory of Open Access Journals (Sweden)

    Wenjing Law

    2015-04-01

    Full Text Available Monoamines, such as 5-HT and tyramine (TA, paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for

  14. Gonadotropin releasing hormone agonists: Expanding vistas

    Directory of Open Access Journals (Sweden)

    Navneet Magon

    2011-01-01

    Full Text Available Gonadotropin-releasing hormone (GnRH agonists are derived from native GnRH by amino acid substitution which yields the agonist resistant to degradation and increases its half-life. The hypogonadotropic hypogonadal state produced by GnRH agonists has been often dubbed as "pseudomenopause" or "medical oophorectomy," which are both misnomers. GnRH analogues (GnRH-a work by temporarily "switching off" the ovaries. Ovaries can be "switched off" for the therapy and therapeutic trial of many conditions which include but are not limited to subfertility, endometriosis, adenomyosis, uterine leiomyomas, precocious puberty, premenstrual dysphoric disorder, chronic pelvic pain, or the prevention of menstrual bleeding in special clinical situations. Rapidly expanding vistas of usage of GnRH agonists encompass use in sex reassignment of male to female transsexuals, management of final height in cases of congenital adrenal hyperplasia, and preserving ovarian function in women undergoing cytotoxic chemotherapy. Hypogonadic side effects caused by the use of GnRH agonists can be tackled with use of "add-back" therapy. Goserelin, leuprolide, and nafarelin are commonly used in clinical practice. GnRH-a have provided us a powerful therapeutic approach to the treatment of numerous conditions in reproductive medicine. Recent synthesis of GnRH antagonists with a better tolerability profile may open new avenues for both research and clinical applications. All stakeholders who are partners in women′s healthcare need to join hands to spread awareness so that these drugs can be used to realize their full potential.

  15. Exploring prospects of β3-adrenoceptor agonists and inverse agonists for colon mobility control

    Directory of Open Access Journals (Sweden)

    Maria Grazia Perrone

    2013-07-01

    Full Text Available Inverse agonists are useful active ingredient of drugs clinically used to treat diseases mainly involving receptors endowed with non-endogenous agonist induced activity (constitutive or basal activity. SP-1e and SP-1g are the first two potent and highly selective β3-adrenoceptor inverse agonists [EC50=181 nM (IA=- 64% and 136 nM (IA=-73%, respectively], which their peculiar activity seems due to the absolute configurations of the two stereogenic centres present in each molecule. Rat proximal colon motility measurements allowed their further pharmacological characterization and pA2 values determination by Schild analysis (7.89 and 8.16, respectively. The purpose of our work is a further characterization of our novel β3-adrenoceptor agonists (SP-1a-d, SP-1f,1h and inverse agonists (SP-1e and SP-1g on rat proximal colon motility and a confirmation of their inverse agonist nature in a more complex system like the functional test on rat proximal colon. Male Wistar rats segment of the proximal colon were placed in organ baths containing Krebs solution. Muscle tension was recorded isotonically. Cumulative β3-AR agonists doses experiments were performed for each test compound: isoprenaline, BRL37344, SP-1a-d, SP-1f and SP-1h were dissolved in Krebs. The EC50 values of each agonists and pA2 of inverse agonists were determined. SP- 1a-d, SP-1f and SP-1h in rat colon have a muscle relaxing effect thus confirming their partial agonist activity found in CHO-K1 cell line. SP-1e and SP-1g behaved as antagonists with pA2 values of 7.89 and 8.16, respectively. In conclusion, experiments carried out by using isolated rat proximal colon allowed us to determine the pA2 values of the two β3-AR inverse agonists and add knowledge on the behavior of a novel set of compounds and their possible value as agents useful whenever is necessary to also control the colon motility.

  16. Differentiation of δ, μ, and κ opioid receptor agonists based on pharmacophore development and computed physicochemical properties

    Science.gov (United States)

    Filizola, Marta; Villar, Hugo O.; Loew, Gilda H.

    2001-04-01

    Compounds that bind with significant affinity to the opioid receptor types, δ, μ, and κ, with different combinations of activation and inhibition at these three receptors could be promising behaviorally selective agents. Working on this hypothesis, the chemical moieties common to three different sets of opioid receptor agonists with significant affinity for each of the three receptor types δ, μ, or κ were identified. Using a distance analysis approach, common geometric arrangements of these chemical moieties were found for selected δ, μ, or κ opioid agonists. The chemical and geometric commonalities among agonists at each opioid receptor type were then compared with a non-specific opioid recognition pharmacophore recently developed. The comparison provided identification of the additional requirements for activation of δ, μ, and κ opioid receptors. The distance analysis approach was able to clearly discriminate κ-agonists, while global molecular properties for all compounds were calculated to identify additional requirements for activation of δ and μ receptors. Comparisons of the combined geometric and physicochemical properties calculated for each of the three sets of agonists allowed the determination of unique requirements for activation of each of the three opioid receptors. These results can be used to improve the activation selectivity of known opioid agonists and as a guide for the identification of novel selective opioid ligands with potential therapeutic usefulness.

  17. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway.

    Science.gov (United States)

    Thompson, Aiysha; Kanamarlapudi, Venkateswarlu

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) and an important target in the treatment of type 2 diabetes mellitus (T2DM). Upon stimulation with agonist, the GLP-1R signals through both Gαs and Gαq coupled pathways to stimulate insulin secretion. The agonist-induced GLP-1R internalisation has recently been shown to be important for insulin secretion. However, the molecular mechanisms underlying GLP-1R internalisation remain unknown. The aim of this study was to determine the role of GLP-1R downstream signalling pathways in its internalisation. Agonist-induced human GLP-1R (hGLP-1R) internalisation and activity were examined using a number of techniques including immunoblotting, ELISA, immunofluorescence and luciferase assays to determine cAMP production, intracellular Ca(2+) accumulation and ERK phosphorylation. Agonist-induced hGLP-1R internalisation is dependent on caveolin-1 and dynamin. Inhibition of the Gαq pathway but not the Gαs pathway affected hGLP-1R internalisation. Consistent with this, hGLP-1R mutant T149M and small-molecule agonists (compound 2 and compound B), which activate only the Gαs pathway, failed to induce internalisation of the receptor. Chemical inhibitors of the Gαq pathway, PKC and ERK phosphorylation significantly reduced agonist-induced hGLP-1R internalisation. These inhibitors also suppressed agonist-induced ERK1/2 phosphorylation demonstrating that the phosphorylated ERK acts downstream of the Gαq pathway in the hGLP-1R internalisation. In summary, agonist-induced hGLP-1R internalisation is mediated by the Gαq pathway. The internalised hGLP-1R stimulates insulin secretion from pancreatic β-cells, indicating the importance of GLP-1 internalisation for insulin secretion.

  18. Functional potencies of dopamine agonists and antagonists at human dopamine D₂ and D₃ receptors.

    Science.gov (United States)

    Tadori, Yoshihiro; Forbes, Robert A; McQuade, Robert D; Kikuchi, Tetsuro

    2011-09-01

    We measured the functional agonist potencies of dopamine agonists including antiparkinson drugs, and functional antagonist potencies of antipsychotics at human dopamine D(2) and D(3) receptors. In vitro pharmacological assessment included inhibition of forskolin-stimulated cAMP accumulation and the reversal of dopamine-induced inhibition in clonal Chinese hamster ovary cells expressing low and high densities of human dopamine D(2L) and D(2S) receptors (hD(2L)-Low, hD(2L)-High, hD(2S)-Low and hD(2S)-High, respectively) and human dopamine D(3) Ser-9 and D(3) Gly-9 receptors (hD(3)-Ser-9 and hD(3)-Gly-9, respectively). Cabergoline, bromocriptine, pergolide, (±)-7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT), talipexole, pramipexole, R-(+)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-olhydrochloride (PD128907) and ropinirole behaved as dopamine D(2) and D(3) receptor full agonists and showed higher potencies in hD(2L)-High and hD(2S)-High compared to hD(2L)-Low and hD(2S)-Low. In hD(3)-Ser-9 and hD(3)-Gly-9 compared to hD(2L)-Low and hD(2S)-Low, dopamine, ropinirole, PD128907, and pramipexole potencies were clearly higher; talipexole and 7-OH-DPAT showed slightly higher potencies; pergolide showed slightly lower potency; and, cabergoline and bromocriptine potencies were lower. Aripiprazole acted as an antagonist in hD(2L)-Low; a low intrinsic activity partial agonist in hD(2S)-Low; a moderate partial agonist in hD(3)-Ser-9 and hD(3)-Gly-9; a robust partial agonist in hD(2L)-High; and a full agonist in hD(2S)-High. Amisulpride, sulpiride and perphenazine behaved as preferential antagonists; and chlorpromazine and asenapine behaved as modest preferential antagonists; whereas fluphenazine, haloperidol, and blonanserin behaved as non-preferential antagonists in hD(2S)-Low and hD(2S)-High compared to hD(3)-Ser-9 and hD(3)-Gly-9. These findings may help to elucidate the basis of therapeutic benefit observed with these drugs, with

  19. Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension.

    Science.gov (United States)

    Su, X; Sengupta, J N; Gebhart, G F

    1997-08-01

    The aim of this study was to examine the effects of kappa-opioid receptor selective agonists on responses of mechanosensitive afferent fibers in the pelvic nerve. Single-fiber recordings were made from pelvic nerve afferents in the decentralized S1 dorsal root of the rat. A total of 572 afferent fibers in the S1 dorsal root were identified by electrical stimulation of the pelvic nerve; 252 (44%) responded to noxious colorectal distension (CRD; 80 mmHg). Of these 252 fibers that responded to CRD, 100 were studied further. All 100 fibers gave monotonic increases in firing to increasing pressures of CRD. Eighty-eight fibers had low thresholds for response (mean: 3 mmHg) and 12 fibers had high-thresholds for response (mean: 28 mmHg). Responses of 17 fibers also were tested after instillation of 5% mustard oil (MO) into the colon. The resting activity of 16/17 fibers significantly increased after MO instillation; 13 (77%) also exhibited sensitization of responses to graded CRD when tested 30 min after intracolonic MO instillation. The effects of kappa1-opioid receptor preferring agonists (U50,488H, U69,593 and U62,066), the kappa2-opioid receptor preferring agonist bremazocine, and the kappa3-opioid receptor preferring agonist naloxone benzoylhydrazone (nalBzoH) were tested on responses of 64 mechanosensitive afferent fibers to noxious CRD. All five agonists dose-dependently inhibited afferent fiber responses to noxious CRD. Doses producing inhibition to 50% of the control response to CRD did not differ among the five agonists, ranging from approximately 4 to 15 mg/kg. The effects of kappa1, kappa2, and kappa3 receptor agonists were attenuated by naloxone; two kappa-opioid receptor-selective antagonists were ineffective. There were no differences in the dose-response relationships of these drugs for fibers recorded from untreated and irritant-treated colons. Conduction velocities of the fibers remained unaffected after high doses of all tested agonists. In an in vitro

  20. A robotic BG1Luc reporter assay to detect estrogen receptor agonists.

    Science.gov (United States)

    Stoner, Matthew A; Yang, Chun Z; Bittner, George D

    2014-08-01

    Endocrine disrupting chemicals with estrogenic activity (EA) have been associated with various adverse health effects. US agencies (ICCVAM/NICEATM) tasked to assess in vitro transcription activation assays to detect estrogenic receptor (ER) agonists for EA have recently validated a BG1Luc assay in manual format, but prefer robotic formats. We have developed a robotic BG1Luc EA assay to detect EA that demonstrated 100% concordance with ICCVAM meta-analyses and ICCVAM BG1Luc results in manual format for 27 ICCVAM test substances, i.e. no false negatives or false positives. This robotic assay also consistently assessed other, more problematic ICCVAM test substances such as clomiphene citrate, L-thyroxin, and tamoxifen. Agonist responses using this robotic BG1Luc assay were consistently inhibited by the ER antagonist ICI 182,780, confirming that agonist responses were due to binding to ERs rather than to a non-specific agonist response. This robotic assay also detected EA in complex mixtures of substances such as extracts of personal care products, plastic resins or plastic consumer products. This robotic BG1Luc assay had at least as high accuracy and greater sensitivity and repeatability when compared to its manual version or to the other ICCVAM/OECD validated assays for EA (manual BG1Luc and CERI).

  1. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor.

    Science.gov (United States)

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S; Buchan, Alice; Brodermann, Maximillian H; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J; Greaves, David R

    2015-06-02

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2(-/-) macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.

  2. In vivo and in vitro evaluation of novel μ-opioid receptor agonist compounds.

    Science.gov (United States)

    Nikaido, Yoshiaki; Kurosawa, Aya; Saikawa, Hitomi; Kuroiwa, Satoshi; Suzuki, Chiharu; Kuwabara, Nobuo; Hoshino, Hazime; Obata, Hideaki; Saito, Shigeru; Saito, Tamio; Osada, Hiroyuki; Kobayashi, Isao; Sezutsu, Hideki; Takeda, Shigeki

    2015-11-15

    Opioids are the most effective and widely used drugs for pain treatment. Morphine is an archetypal opioid and is an opioid receptor agonist. Unfortunately, the clinical usefulness of morphine is limited by adverse effects such as analgesic tolerance and addiction. Therefore, it is important to study the development of novel opioid agonists as part of pain control. The analgesic effects of opioids are mediated by three opioid receptors, namely opioid μ-, δ-, and κ-receptors. They belong to the G protein-coupled receptor superfamily and are coupled to Gi proteins. In the present study, we developed a ligand screening system to identify novel opioid μ-receptor agonists that measures [(35)S]GTPγS binding to cell membrane fractions prepared from the fat body of transgenic silkworms expressing μ-receptor-Gi1α fusion protein. We screened the RIKEN Natural Products Depository (NPDepo) chemical library, which contains 5848 compounds, and analogs of hit compounds. We successfully identified a novel, structurally unique compound, that we named GUM1, with agonist activity for the opioid μ-receptor (EC50 of 1.2 µM). The Plantar Test (Hargreaves' Method) demonstrated that subcutaneous injection of 3mg/kg of GUM1 into wild-type rats significantly extended latency time. This extension was also observed in a rat model of morphine tolerance and was inhibited by pre-treatment of naloxone. The unique molecular skeleton of GUM1 makes it an attractive molecule for further ligand-opioid receptor binding studies.

  3. Peroxisome Proliferator-Activated Receptor Agonists Modulate Neuropathic Pain: a Link to Chemokines?

    Directory of Open Access Journals (Sweden)

    Caroline eFreitag

    2014-08-01

    Full Text Available Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between PPAR agonists' pain ameliorating effects and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide, shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.

  4. Pharmacodynamics of TRPV1 Agonists in a Bioassay Using Human PC-3 Cells

    Directory of Open Access Journals (Sweden)

    Daniel Alvarez-Berdugo

    2014-01-01

    Full Text Available Purpose. TRPV1 is a multimodal channel mainly expressed in sensory neurons. We aimed to explore the pharmacodynamics of the TRPV1 agonists, capsaicin, natural capsaicinoids, and piperine in an in vitro bioassay using human PC-3 cells and to examine desensitization and the effect of the specific antagonist SB366791. Methods. PC-3 cells expressing TRPV1 were incubated with Fluo-4. Fluorescence emission changes following exposition to agonists with and without preincubation with antagonists were assessed and referred to maximal fluorescence following the addition of ionomycin. Concentration-response curves were fitted to the Hill equation. Results. Capsaicin and piperine had similar pharmacodynamics (Emax 204.8 ± 184.3% piperine versus 176.6 ± 35.83% capsaicin, P=0.8814, Hill coefficient 0.70 ± 0.50 piperine versus 1.59 ± 0.86 capsaicin, P=0.3752. In contrast, capsaicinoids had lower Emax (40.99 ± 6.14% capsaicinoids versus 176.6 ± 35.83% capsaicin, P<0.001. All the TRPV1 agonists showed significant desensitization after the second exposition and their effects were strongly inhibited by SB366791. Conclusion. TRPV1 receptor is successfully stimulated by capsaicin, piperine, and natural capsaicinoids. These agonists present desensitization and their effect is significantly reduced by a TRPV1-specific antagonist. In addition, PC-3 cell bioassays proved useful in the study of TRPV1 pharmacodynamics.

  5. Thermal transient anemometer

    Science.gov (United States)

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  6. DSN Transient Observatory

    Science.gov (United States)

    Kuiper, T. B. H.; Monroe, R. M.; White, L. A.; Garcia Miro, C.; Levin, S. M.; Majid, W. A.; Soriano, M.

    2016-11-01

    The Deep Space Network (DSN) Transient Observatory (DTO) is a signal processing facility that can monitor up to four DSN downlink bands for astronomically interesting signals. The monitoring is done commensally with reception of deep space mission telemetry. The initial signal processing is done with two CASPERa ROACH1 boards, each handling one or two baseband signals. Each ROACH1 has a 10 GBe interface with a GPU-equipped Debian Linux workstation for additional processing. The initial science programs include monitoring Mars for electrostatic discharges, radio spectral lines, searches for fast radio bursts and pulsars and SETI. The facility will be available to the scientific community through a peer review process.

  7. A Cell-based High-throughput Screening Assay for Farnesoid X Recepter Agonist

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To develop a high-throughput screening assay for Farnesoid X receptor (FXR) agonists based on mammalian one-hybrid system (a chimera receptor gene system) for the purpose of identifying new lead compounds for dyslipidaemia drug from the chemical library. Methods cDNA encoding the human FXR ligand binding domain (LBD) was amplified by RT-PCR from a human liver total mRNA and fused to the DNA binding domain (DBD) of yeast GAL4 of pBIND to construct a GAL4-FXR (LBD) chimera expression plasmid. Five copies of the GAL4 DNA binding site were synthesized and inserted into upstream of the SV40 promoter of pGL3-promoter vector to construct a reporter plasmid pG5-SV40 Luc. The assay was developed by transient co-transfection with pG5-SV40 Luc reporter plasmid and pBIND-FXR-LBD (189-472) chimera expression plasmid. Results After optimization, CDCA, a FXR natural agonist, could induce expression of the luciferase gene in a dose-dependent manner, and had a signal/noise ratio of 10 and Z'factor value of 0.65. Conclusion A stable and sensitive cell-based high-throughput screening model can be used in high-throughput screening for FXR agonists from the synthetic and natural compound library.

  8. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms.

    Science.gov (United States)

    Sarter, Martin; Parikh, Vinay; Howe, William M

    2009-10-01

    The identification and characterization of drugs for the treatment of cognitive disorders has been hampered by the absence of comprehensive hypotheses. Such hypotheses consist of (a) a precisely defined cognitive operation that fundamentally underlies a range of cognitive abilities and capacities and, if impaired, contributes to the manifestation of diverse cognitive symptoms; (b) defined neuronal mechanisms proposed to mediate the cognitive operation of interest; (c) evidence indicating that the putative cognition enhancer facilitates these neuronal mechanisms; (d) and evidence indicating that the cognition enhancer facilitates cognitive performance by modulating these underlying neuronal mechanisms. The evidence on the neuronal and attentional effects of nAChR agonists, specifically agonists selective for alpha4beta2* nAChRs, has begun to support such a hypothesis. nAChR agonists facilitate the detection of signals by augmenting the transient increases in prefrontal cholinergic activity that are necessary for a signal to gain control over behavior in attentional contexts. The prefrontal microcircuitry mediating these effects include alpha4beta2* nAChRs situated on the terminals of thalamic inputs and the glutamatergic stimulation of cholinergic terminals via ionotropic glutamate receptors. Collectively, this evidence forms the basis for hypothesis-guided development and characterization of cognition enhancers.

  9. Recent advances in the discovery of alpha1-adrenoceptor agonists.

    Science.gov (United States)

    Bishop, Michael J

    2007-01-01

    The alpha(1) adrenoceptors are three of nine well-characterized receptors that are activated by epinephrine and norepinephrine. Agonists acting at the alpha(1) adrenoceptors produce numerous physiological effects, and are used therapeutically for several indications. Many known alpha(1) adrenoceptor agonists are alpha(1A) selective, but the discovery of highly selective alpha(1B) and alpha(1D) adrenoceptor agonists has proven to be an extremely difficult goal to achieve. This review will focus on recent advances in the discovery, development and clinical utility of subtype-specific alpha(1) agonists as well as contributions to our understanding of agonist-receptor interactions.

  10. Organifbrosisinhibitedbyblockingtransforming growthfactor-βsignalingviaperoxisome proliferator-activatedreceptor γagonists

    Institute of Scientific and Technical Information of China (English)

    Yi-Lei Deng; Xian-Ze Xiong; Nan-Sheng Cheng

    2012-01-01

    BACKGROUND: Organ ifbrosis has been viewed as one of the major medical problems, which can lead to progressive dysfunction of the liver, lung, kidney, skin, heart, and eventually death of patients. Fibrosis is initiated by a variety of pathological, physiological, biochemical, and physical factors. Regardless of their different etiologies, they all share a common pathogenetic process: excessive activation of the key proifbrotic cytokine, transforming growth factor-β(TGF-β). Peroxisome proliferator-activated receptorγ(PPARγ), a ligand-activated transcription factor of the nuclear receptor superfamily, has received particular attention in recent years, because the activation of PPARγby both natural and synthetic agonists could effectively inhibit TGF-β-induced proifbrotic effects in many organs. DATA  SOURCES: The English-language medical databases, PubMed, Elsevier and SpringerLink were searched for articles on PPARγ, TGF-β, and ifbrosis, and related topics. RESULTS: TGF-β is recognized as a key proifbrotic cytokine. Excessive activation of TGF-βincreases synthesis of extracellular matrix proteins and decreases their degradation, associated with a gradual destruction of normal tissue architecture and function, whereas PPARγagonists inhibit TGF-βsignal transduction and are effective antiifbrogenic agents in many organs including the liver, lung, kidney, skin and heart. CONCLUSIONS: The main antiifbrotic activity of PPARγagonists is to suppress the TGF-βsignaling pathway by so-called PPARγ-dependent effect. In addition, PPARγagonists, especially 15d-PGJ2, also exert potentially antiifbrotic activity independent of PPARγ activation. TGF-β1/Smads signaling not only plays many essential roles in multiple developmental processes, but also forms cross-talk networks with other signal pathways, and their inhibition by PPARγagonists certainly affects the cytokine networks and causes non-suspected side-effects. Anti-TGF-βtherapies with PPARγagonists

  11. Label-Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells.

    Science.gov (United States)

    Lu, Jin; Li, Jinghong

    2015-11-09

    Cell signaling consists of diverse events that occur at various temporal and spatial scales, ranging from milliseconds to hours and from single biomolecules to cell populations. The pathway complexities require the development of new techniques that detect the overall signaling activities and are not limited to quantifying a single event. A plasmonic-based electrochemical impedance microscope (P-EIM) that can provide such data with excellent temporal and spatial resolution and does not require the addition of any labels for detection has now been developed. The highly dynamic and transient calcium signaling activities at the early stage of G-protein-coupled receptor (GPCR) stimulation were thus studied. It could be shown that a subpopulation of cells is more responsive towards agonist stimulation, and the heterogeneity of the local distributions and the transient activities of the ion channels during agonist-activated calcium flux in single HeLa cells were investigated.

  12. Subtype selective kainic acid receptor agonists

    DEFF Research Database (Denmark)

    Bunch, Lennart; Krogsgaard-Larsen, Povl

    2009-01-01

    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (m......GluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5-7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all-to our knowledge-published KA receptor agonists...

  13. Agonistic and reproductive interactions in Betta splendens.

    Science.gov (United States)

    Bronstein, P M

    1984-12-01

    Reproductive and agonistic behaviors in Siamese fighting fish were investigated in eight experiments, and some consequences and determinants of these sequences were isolated. First, fights and the formation of dominance-subordinancy relations were studied. Second, it was determined that large body size as well as males' prior residency in a tank produced an agonistic advantage; the magnitude of this advantage was positively related to the duration of residency. Third, the prior-residency effect in Bettas was determined by males' familiarity with visual and/or tactile cues in their home tanks. Fourth, dominant males had greater access to living space and were more likely to display at a mirror, build nests, and approach females than were subordinates. Finally, it was discovered that chemical cues associated with presumedly inert plastic tank dividers influence Bettas' social behavior.

  14. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, Maibritt B; Fink-Jensen, Anders; Peacock, Linda

    2003-01-01

    Xanomeline is a muscarinic M(1)/M(4) preferring receptor agonist with little or no affinity for dopamine receptors. The compound reduces psychotic-like symptoms in patients with Alzheimer's disease and exhibits an antipsychotic-like profile in rodents without inducing extrapyramidal side effects ...... that xanomeline inhibits D-amphetamine- and (-)-apomorphine-induced behavior in Cebus apella monkeys at doses that do not cause EPS. These data further substantiate that muscarinic receptor agonists may be useful in the pharmacological treatment of psychosis....

  15. Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra).

    Science.gov (United States)

    Simons, Rudy; Vincken, Jean-Paul; Mol, Loes A M; The, Susan A M; Bovee, Toine F H; Luijendijk, Teus J C; Verbruggen, Marian A; Gruppen, Harry

    2011-07-01

    The roots of licorice (Glycyrrhiza glabra) are a rich source of flavonoids, in particular, prenylated flavonoids, such as the isoflavan glabridin and the isoflavene glabrene. Fractionation of an ethyl acetate extract from licorice root by centrifugal partitioning chromatography yielded 51 fractions, which were characterized by liquid chromatography-mass spectrometry and screened for activity in yeast estrogen bioassays. One third of the fractions displayed estrogenic activity towards either one or both estrogen receptors (ERs; ERα and ERβ). Glabrene-rich fractions displayed an estrogenic response, predominantly to the ERα. Surprisingly, glabridin did not exert agonistic activity to both ER subtypes. Several fractions displayed higher responses than the maximum response obtained with the reference compound, the natural hormone 17β-estradiol (E(2)). The estrogenic activities of all fractions, including this so-called superinduction, were clearly ER-mediated, as the estrogenic response was inhibited by 20-60% by known ER antagonists, and no activity was found in yeast cells that did not express the ERα or ERβ subtype. Prolonged exposure of the yeast to the estrogenic fractions that showed superinduction did, contrary to E(2), not result in a decrease of the fluorescent response. Therefore, the superinduction was most likely the result of stabilization of the ER, yeast-enhanced green fluorescent protein, or a combination of both. Most fractions displaying superinduction were rich in flavonoids with single prenylation. Glabridin displayed ERα-selective antagonism, similar to the ERα-selective antagonist RU 58668. Whereas glabridin was able to reduce the estrogenic response of E(2) by approximately 80% at 6 × 10(-6) M, glabrene-rich fractions only exhibited agonistic responses, preferentially on ERα.

  16. Role of calcium mobilization in the regulation of spontaneous transient outward currents in porcine coronary artery myocytes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of the present study was to further study the characteristics and regulation of spontaneous transient outward currents (STOCs) in freshly isolated porcine coronary artery smooth muscle cells (ASMCs). STOCs were recorded using the perforated whole-cell patch-clamp configuration. STOCs were voltage-dependent and superimposed stochastically onto whole-cell Ca2+-activated-K+ (BKCa) currents. Charybdotoxin (ChTX, 200 nmol/L), a selective blocker of BKCa channels, completely inhibited STOCs within 10 min. STOCs activity was greatly suppressed when extracellular Ca2+ concentration decreased from 1.8 mmol/L to 200 nmol/L, further removal of Ca2+ abolished STOCs activity. Ca2+ ionophore A23187 (10 μmol/L) increased STOCs activity significantly. Verapamil (20 μmol/L) and CdCl2 (200 μmol/L), two kinds of organic L-type voltage-dependent Ca2+ channels (L-VDCCs) antagonists, had little effect on STOCs. In addition, the ryanodine receptors (RyRs) agonist caffeine (5 mmol/L) significantly activated STOCs. Application of ryanodine (50 μmol/L) to block RyRs abolished STOCs, subsequent washout of ryanodine or application of caffeine failed to reproduce STOCs activity. Inhibition of inositol 1,4,5-trisphosphate receptors (IP3Rs) by 2APB (40 μmol/L) greatly suppressed the activity of STOCs, application of caffeine (5 mmol/L) in the presence of 2APB caused a burst of outward currents followed by inhibition of STOCs. These results suggest that STOCs in porcine coronary ASMCs are mediated by BKCa channels. Extracellular Ca2+ is essential for STOCs activity, while Ca2+ entry through L-VDCCs has little effect on STOCs. Intracellular Ca2+ release induced by RyRs is responsible for the regulation of STOCs, whereas IP3Rs might also be involved.

  17. Characterizing Nanoscale Transient Communication.

    Science.gov (United States)

    Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad

    2016-04-01

    We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time.

  18. Transient Black Hole Binaries

    CERN Document Server

    Belloni, T M

    2016-01-01

    The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...

  19. Signal Use by Octopuses in Agonistic Interactions.

    Science.gov (United States)

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-08

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits.

  20. N-terminal galanin-(1-16) fragment is an agonist at the hippocampal galanin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Fisone, G.; Berthold, M.; Bedecs, K.; Unden, A.; Bartfai, T.; Bertorelli, R.; Consolo, S.; Crawley, J.; Martin, B.; Nilsson, S.; (Univ. of Stockholm (Sweden))

    1989-12-01

    The galanin N-terminal fragment (galanin-(1-16)) has been prepared by solid-phase synthesis and by enzymic cleavage of galanin by endoproteinase Asp-N. This peptide fragment displaced {sup 125}I-labeled galanin in receptor autoradiography experiments on rat forebrain and spinal cord and in equilibrium binding experiments from high-affinity binding sites in the ventral hippocampus with an IC50 of approximately 3 nM. In tissue slices of the same brain area, galanin-(1-16), similarly to galanin, inhibited the muscarinic agonist-stimulated breakdown of inositol phospholipids. Upon intracerebroventricular administration, galanin-(1-16) (10 micrograms/15 microliters) also inhibited the scopolamine (0.3 mg/kg, s.c.)-evoked release of acetylcholine, as studied in vivo by microdialysis. Substitution of (L-Trp2) for (D-Trp2) resulted in a 500-fold loss in affinity as compared with galanin-(1-16). It is concluded that, in the ventral hippocampus, the N-terminal galanin fragment (galanin-(1-16)) is recognized by the galanin receptors controlling acetylcholine release and muscarinic agonist-stimulated inositol phospholipid breakdown as a high-affinity agonist and that amino acid residue (Trp2) plays an important role in the receptor-ligand interactions.

  1. Calculating transient rates from surveys

    CERN Document Server

    Carbone, Dario; Wijers, Ralph A M J; Rowlinson, Antonia

    2016-01-01

    We have developed a method to determine the transient surface density and transient rate for any given survey, using Monte-Carlo simulations. This method allows us to determine the transient rate as a function of both the flux and the duration of the transients in the whole flux-duration plane rather than one or a few points as currently available methods do. It is applicable to every survey strategy that is monitoring the same part of the sky, regardless the instrument or wavelength of the survey, or the target sources. We have simulated both top-hat and Fast Rise Exponential Decay light curves, highlighting how the shape of the light curve might affect the detectability of transients. Another application for this method is to estimate the number of transients of a given kind that are expected to be detected by a survey, provided that their rate is known.

  2. Calculating transient rates from surveys

    Science.gov (United States)

    Carbone, D.; van der Horst, A. J.; Wijers, R. A. M. J.; Rowlinson, A.

    2017-03-01

    We have developed a method to determine the transient surface density and transient rate for any given survey, using Monte Carlo simulations. This method allows us to determine the transient rate as a function of both the flux and the duration of the transients in the whole flux-duration plane rather than one or a few points as currently available methods do. It is applicable to every survey strategy that is monitoring the same part of the sky, regardless the instrument or wavelength of the survey, or the target sources. We have simulated both top-hat and Fast Rise Exponential Decay light curves, highlighting how the shape of the light curve might affect the detectability of transients. Another application for this method is to estimate the number of transients of a given kind that are expected to be detected by a survey, provided that their rate is known.

  3. A new era of targeting the ancient gatekeepers of the immune system: toll-like agonists in the treatment of allergic rhinitis and asthma.

    Science.gov (United States)

    Aryan, Zahra; Holgate, Stephen T; Radzioch, Danuta; Rezaei, Nima

    2014-01-01

    Toll-like receptors (TLR) belong to a large family of pattern recognition receptors known as the ancient 'gatekeepers' of the immune system. TLRs are located at the first line of defense against invading pathogens as well as aeroallergens, making them interesting targets to modulate the natural history of respiratory allergy. Agonists of TLRs have been widely employed in therapeutic or prophylactic preparations useful for asthma/allergic rhinitis (AR) patients. MPL® (a TLR4 agonist) and the CpG oligodeoxynucleotide of 1018 ISS, a TLR9 agonist, show strong immunogenicity effects that make them appropriate adjuvants for allergy vaccines. Targeting the TLRs can enhance the efficacy of specific allergen immunotherapy, currently the only available 'curative' treatment for respiratory allergies. In addition, intranasal administration of AZD8848 (a TLR7 agonist) and VTX-1463 (a TLR8 agonist) as stand-alone therapeutics have revealed efficacy in the relief of the symptoms of AR patients. No anaphylaxis has been so far reported with such compounds targeting TLRs, with the most common adverse effects being transient and local irritation (e.g. redness, swelling and pruritus). Many other compounds that target TLRs have been found to suppress airway inflammation, eosinophilia and airway hyper-responsiveness in various animal models of allergic inflammation. Indeed, in the future a wide variability of TLR agonists and even antagonists that exhibit anti-asthma/AR effects are likely to emerge.

  4. Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists*

    Science.gov (United States)

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-01-01

    The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of

  5. The joy of transient chaos

    Energy Technology Data Exchange (ETDEWEB)

    Tél, Tamás [Institute for Theoretical Physics, Eötvös University, and MTA-ELTE Theoretical Physics Research Group, Pázmány P. s. 1/A, Budapest H-1117 (Hungary)

    2015-09-15

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  6. The Zwicky Transient Facility

    Science.gov (United States)

    Kulkarni, Shrinivas R.

    2016-01-01

    The Zwicky Transient Facility (ZTF) has been designed with a singular focus: a systematic exploration of the night sky at a magnitude level well suited for spectral classification and follow up with the existing class of 4-m to 10-m class telescopes. ZTF is the successor to the Palomar Transient Factory (PTF). The discovery engine for ZTF is a 47 square degree camera (realized through 16 e2V monolithic CCDs) that fills the entire focal plane of the 48-inch Oschin telescope of the Palomar Observatory. Single 30-s epoch sensitivity is about 20.5 in g and R bands. The Infarared Processing & Analysis Center (IPAC) is the data center for ZTF. ZTF is a public-private partnership with equal contributions from a consortium of world-wide partners and an NSF MSIP grant. Forty percent of ZTF time is set aside for two major community surveys: a 3-day cadence survey of high latitudes (to mimic LSST) and a time domain survey of the entire Northern Galactic plane. We expect first light in February 2017 and begin a 3-year survey starting summer of 2017. The first year will be spent on building up deep reference images of the sky (a must for transient surveys). During the second year IPAC will deliver near archival quality photometric products within 12 hours of observations. By comparison to reference images photometric alerts will be sent out. Year 3 will see the near real-time release of image differencing products. A Community Science Advisory Committee (CSAC), chaired by S. Ridgway (NOAO), has been set up to both advise the PI and to ensure that the US community's interests are well served. Astronomers interested in getting a head start on ZTF may wish to peruse the data releases from PTF. Young people (or young at heart) may wish to attend the annual summer school on PTF/ZTF (August, Caltech campus). The Principal Investigator (PI) for the project is S. Kulkarni and the Project Scientist is Eric Bellm.For further details please consult http://www.ptf.caltech.edu/ztf

  7. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Monica Marzagalli

    Full Text Available Cutaneous melanoma is an aggressive malignancy; its incidence is increasing worldwide and its prognosis remains poor. Clinical observations indicate that estrogen receptor β (ERβ is expressed in melanoma tissues and its expression decreases with tumor progression, suggesting its tumor suppressive function. These experiments were performed to investigate the effects of ERβ activation on melanoma cell growth.Protein expression was analyzed by Western blot and immunofluorescence assays. Cell proliferation was assessed by counting the cells by hemocytometer. ERβ transcriptional activity was evaluated by gene reporter assay. Global DNA methylation was analyzed by restriction enzyme assay and ERβ isoforms were identified by qRT-PCR. We demonstrated that ERβ is expressed in a panel of human melanoma cell lines (BLM, WM115, A375, WM1552. In BLM (NRAS-mutant cells, ERβ agonists significantly and specifically inhibited cell proliferation. ERβ activation triggered its cytoplasmic-to-nuclear translocation and transcriptional activity. Moreover, the antiproliferative activity of ERβ agonists was associated with an altered expression of G1-S transition-related proteins. In these cells, global DNA was found to be hypomethylated when compared to normal melanocytes; this DNA hypomethylation status was reverted by ERβ activation. ERβ agonists also decreased the proliferation of WM115 (BRAF V600D-mutant cells, while they failed to reduce the growth of A375 and WM1552 (BRAF V600E-mutant cells. Finally, we could observe that ERβ isoforms are expressed at different levels in the various cell lines. Specific oncogenic mutations or differential expression of receptor isoforms might be responsible for the different responses of cell lines to ERβ agonists.Our results demonstrate that ERβ is expressed in melanoma cell lines and that ERβ agonists differentially regulate the proliferation of these cells. These data confirm the notion that melanoma is a

  8. Antineoplastic Effects of PPARγ Agonists, with a Special Focus on Thyroid Cancer.

    Science.gov (United States)

    Ferrari, Silvia Martina; Materazzi, Gabriele; Baldini, Enke; Ulisse, Salvatore; Miccoli, Paolo; Antonelli, Alessandro; Fallahi, Poupak

    2016-01-01

    Peroxisome Proliferator-Activated Receptor-γ (PPARγ) is a ligand-activated nuclear hormone receptor that functions as transcription factor and plays an important role in lipid metabolism and insulin sensitization. Recent studies have shown that PPARγ is overexpressed in many tumor types, including cancers of breast, lung, pancreas, colon, glioblastoma, prostate and thyroid differentiated/anaplastic cancers. These data suggest a role of PPARγ in tumor development and/or progression. PPARγ is emerging as a growth-limiting and differentiation-promoting factor, and it exerts a tumor suppressor role. Moreover, naturally-occurring and synthetic PPARγ agonists promote growth inhibition and apoptosis. Thiazolidinediones (TZDs) are synthetic agonists of PPARγ that were developed to treat type II diabetes. These compounds also display anticancer effects which appear mainly to be independent of their PPARγ agonist activity. Various preclinical and clinical studies strongly suggest a role for TZDs both alone and in combination with existing chemotherapeutic agents, for the treatment of cancer. Differentiation therapy involves the use of agents with the ability to induce differentiation in cells that have lost this ability, i.e. cancer cells, targeting pathways capable of re-activating blocked terminal differentiation programs. PPARγ agonists have been shown to induce differentiation in solid tumors such as thyroid differentiated/ anaplastic cancers and sarcomas. However, emerging data suggest that chronic use of TZDs is associated with increased risk of adverse cardiovascular events. The exploration of newer PPARγ agonists can help in unveiling the underlying mechanisms of these drugs, providing new molecules that are able to treat cancer, without increasing the cardiovascular risk of neoplastic patients.

  9. TNF-α Induces Transient Resistance to Fas-induced Apoptosis in Eosinophilic Acute Myeloid Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    Yimin Qin; Sogyong Auh; Lyubov Blokh; Catherine Long; Isabelle Gagnon; Kimm J. Hamann

    2007-01-01

    Tumor necrosis factor α (TNF-α) has been recognized as an activator of nuclear factor κB (NF-κB), a factor implicated in the protection of many cell types from apoptosis. We and others have presented evidence to suggest that Fas-induced apoptosis may be an important aspect of the resolution of inflammation, and that delayed resolution of inflammation may be directly associated with NF-κB-dependent resistance to Fas. Because TNF-α activates NF-κB in many cell types including inflammatory cells such as eosinophils, we examined effects of TNF-α signaling on the Fas-mediated killing of an eosinophilic cell line AML14. While agonist anti-Fas (CH11) treatment induced apoptosis in AML14 cells, no significant cell death occurred in response to TNF-α alone. Electrophoretic mobility shift assay (EMSA) revealed that TNF-α induced NF-κB transactivation in AML14 cells in a time- and dose-dependent fashion, and subsequent supershift assays indicated that the translocated NF-κB was the heterodimer p65 (RelA)/p50. Pre-treatment of cells with TNF-α dramatically decreased the CH11-induced cell death in a transient fashion, accompanied by suppression of activation of caspase-8 and caspase-3 activation. Inhibition of NF-κB transactivation by inhibitors, BAY 11-7085 and parthenolide, reversed the suppression of Fas-mediated apoptosis by TNF-α. Furthermore, TNF-α up-regulated X-linked inhibitor of apoptosis protein (XIAP) transiently and XIAP levels were correlated with the temporal pattern of TNF-α protection against Fas-mediated apoptosis. This finding suggested that TNF-α may contribute to the prolonged survival of inflammatory cells by suppression of Fas-mediated apoptosis, the process involved with NF-κB transactivation, anti-apoptotic XIAP up-regulation and caspase suppression.

  10. Stability of Ignition Transients

    Directory of Open Access Journals (Sweden)

    V.E. Zarko

    1991-07-01

    Full Text Available The problem of ignition stability arises in the case of the action of intense external heat stimuli when, resulting from the cut-off of solid substance heating, momentary ignition is followed by extinction. Physical pattern of solid propellant ignition is considered and ignition criteria available in the literature are discussed. It is shown that the above mentioned problem amounts to transient burning at a given arbitrary temperature distribution in the condensed phase. A brief survey of published data on experimental and theoretical studies on ignition stability is offered. The comparison between theory and experiment is shown to prove qualitatively the efficiency of the phenomenological approach in the theory. However, the methods of mathematical simulation as well as those of experimental studying of ignition phenomenon, especially at high fluxes, need to be improved.

  11. Transient Detection and Classification

    CERN Document Server

    Becker, Andrew C

    2008-01-01

    I provide an incomplete inventory of the astronomical variability that will be found by next-generation time-domain astronomical surveys. These phenomena span the distance range from near-Earth satellites to the farthest Gamma Ray Bursts. The surveys that detect these transients will issue alerts to the greater astronomical community; this decision process must be extremely robust to avoid a slew of ``false'' alerts, and to maintain the community's trust in the surveys. I review the functionality required of both the surveys and the telescope networks that will be following them up, and the role of VOEvents in this process. Finally, I offer some ideas about object and event classification, which will be explored more thoroughly by other articles in these proceedings.

  12. Involvement of transient receptor potential melastatin-8 (TRPM8) in menthol-induced calcium entry, reactive oxygen species production and cell death in rheumatoid arthritis rat synovial fibroblasts.

    Science.gov (United States)

    Zhu, Shuyan; Wang, Yuxiang; Pan, Leiting; Yang, Shuang; Sun, Yonglin; Wang, Xinyu; Hu, Fen

    2014-02-15

    Rheumatoid arthritis is most prominently characterized by synoviocyte hyperplasia which therefore serves as an important target for clinical therapy. In the present study, it was observed that menthol, the specific agonist of transient receptor potential melastatin subtype 8 (TRPM8), could induce sustained increases of cytosolic calcium concentration ([Ca(2+)]c) in synoviocytes isolated from collagen-induced arthritis rats in dose-dependent manner, which was evidently blocked by applying an extracellular Ca(2+)-free buffer. Menthol-induced [Ca(2+)]c increase was also significantly inhibited by potent TRPM8 antagonist capsazepine (CZP), indicating that this [Ca(2+)]c elevation was mostly attributed to TRPM8-mediated Ca(2+) entry. Besides, RT-PCR indeed demonstrated presence of TRPM8 in the synoviocytes. Meanwhile, it was found that menthol evoked production of intracellular reactive oxygen species, which could be abolished by Ca(2+) free solutions or CZP. Further experiments showed that menthol reduced the cell numbers and survival of synoviocytes. This reduction was associated with apoptosis as suggested by mitochondrial membrane depolarization, nuclear condensation and a caspase 3/7 apoptotic assay. Menthol-induced death and apoptosis of synoviocytes both were obviously inhibited by CZP, intracellular calcium chelator BAPTA-AM, and reactive oxygen species inhibitor diphenylene iodonium, respectively. Taken together, our data indicated that menthol resulted in synoviocyte death associated with apoptosis via calcium entry and reactive oxygen species production depending on TRPM8 activation.

  13. Transient heliosheath modulation

    Science.gov (United States)

    Quenby, J. J.; Webber, W. R.

    2015-10-01

    Voyager 1 has explored the solar wind-interstellar medium interaction region between the terminal shock and heliopause, following the intensity distribution of Galactic cosmic ray protons above 200 MeV energy. Before this component reached the expected galactic flux level at 121.7 au from the Sun, four episodes of rapid intensity change occurred with a behaviour similar to that found in Forbush Decreases in the inner Solar system, rather than that expected from a mechanism related to models for the long-term modulation found closer to the Sun. Because the mean solar wind flow is both expected and observed to be perpendicular to the radial direction close to the heliopause, an explanation is suggested in terms of transient radial flows related to possible heliopause boundary flapping. It is necessary that the radial flows are of the order either of the sound speed found for conditions downstream of the terminal shock or of the fluctuations found near the boundary by the Voyager 1 Low Energy Charged Particle detector and that the relevant cosmic ray diffusion perpendicular to the mean field is controlled by `slab' fluctuations accounting for about 20 per cent of the total power in the field variance. However, additional radial drift motion related to possible north to south gradients in the magnetic field may allow the inclusion of some diffusion according to the predictions of a theory based upon the presence of 2D turbulence. The required field gradients may arise due to field variation in the field carried by solar plasma flow deflected away from the solar equatorial plane. Modulation amounting to a total 30 per cent drop in galactic intensity requires explanation by a combination of transient effects.

  14. Agonistic antibodies reveal the function of GPR56 in human glioma U87-MG cells.

    Science.gov (United States)

    Ohta, Shigeyuki; Sakaguchi, Sayaka; Kobayashi, Yuki; Mizuno, Norikazu; Tago, Kenji; Itoh, Hiroshi

    2015-01-01

    GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) and is highly expressed in parts of tumor cells. The involvement of GPR56 in tumorigenesis has been reported. We generated agonistic monoclonal antibodies against human GPR56 and analyzed the action and signaling pathway of GPR56. The antibodies inhibited cell migration through the Gq and Rho pathway in human glioma U87-MG cells. Co-immunoprecipitation analysis indicated that the interaction between the GPR56 extracellular domain and transmembrane domain was potentiated by agonistic antibodies. These results demonstrated that functional antibodies are invaluable tools for GPCR research and should open a new avenue for therapeutic treatment of tumors.

  15. Agonist trigger: what is the best approach? Agonist trigger and low dose hCG

    DEFF Research Database (Denmark)

    Humaidan, Peter; Al Humaidan, Peter Samir Heskjær

    2012-01-01

    Low-dose hCG supplementation after GnRH agonist trigger may normalize reproductive outcome while minimizing the occurrence of OHSS in high risk IVF patients. (Fertil Steril (R) 2012;97:529-30. (C) 2012 by American Society for Reproductive Medicine.)......Low-dose hCG supplementation after GnRH agonist trigger may normalize reproductive outcome while minimizing the occurrence of OHSS in high risk IVF patients. (Fertil Steril (R) 2012;97:529-30. (C) 2012 by American Society for Reproductive Medicine.)...

  16. Effects of structural modifications of N-CPM-normorphine derivatives on agonist and antagonist activities in isolated organs.

    Science.gov (United States)

    Riba, P; Tóth, Z; Hosztafi, S; Friedmann, T; Fürst, S

    2003-01-01

    The agonistic and antagonistic properties of N-cyclopropylmethyl (N-CPM) morphine derivatives were observed in mouse vas deferens (MVD), longitudinal muscle of guinea pig ileum (GPI) and rabbit vas deferens (LVD). In MVD the K(e) values of the titled compounds (N-CPM-morphine, N-CPM-isomorphine, N-CPM-dihydromorphine, N-CPM-dihydroisomorpPhine, N-CPM-dihydromorphone and naltrexone) were measured for mu-, kappa- and delta-receptors using normorphine, ethylketocyclazocine (EKC) and D-Pen2-D-Pen5-enkephaline (DPDPE) as selective agonists on the receptors, respectively. For mu-receptors of MVD the tested compounds showed similar affinity. For kappa-receptors the non-iso-6-OH derivatives possessed much less affinity than the iso-derivatives. Similar difference could be observed for delta-receptors. The agonistic activities of these compounds in MVD were observed to be between 0-20% of the inhibition of muscle contractions. In GPI the compounds except naltrexone possessed strong agonistic activities effectively antagonized by nor-binaltorphimine (nor-BNI) (K(e) of nor-BNI was 0.23 nM) suggesting that they were strong kappa-receptor agonists. We investigated these agents in LVD too, which contains kappa-receptors, but they did not produce any agonist potencies. It raises the possibility that the kappa-receptor subtypes of LVD and MVD are different from the kappa-receptor subtype of GPI or the vasa deferentia contain much fewer kappa-receptors than GPI and the intrinsic activities of these compounds are too small to reach the 50% inhibition of the contractions.

  17. Comparison of innate immune agonists for induction of tracheal antimicrobial peptide gene expression in tracheal epithelial cells of cattle.

    Science.gov (United States)

    Berghuis, Lesley; Abdelaziz, Khaled Taha; Bierworth, Jodi; Wyer, Leanna; Jacob, Gabriella; Karrow, Niel A; Sharif, Shayan; Clark, Mary Ellen; Caswell, Jeff L

    2014-10-12

    Bovine respiratory disease is a complex of bacterial and viral infections of economic and welfare importance to the beef industry. Although tracheal antimicrobial peptide (TAP) has microbicidal activity against bacterial pathogens causing bovine respiratory disease, risk factors for bovine respiratory disease including BVDV and stress (glucocorticoids) have been shown to inhibit the induced expression of this gene. Lipopolysaccharide is known to stimulate TAP gene expression, but the maximum effect is only observed after 16 h of stimulation. The present study investigated other agonists of TAP gene expression in primary cultures of bovine tracheal epithelial cells. PCR analysis of unstimulated tracheal epithelial cells, tracheal tissue and lung tissue each showed mRNA expression for Toll-like receptors (TLRs) 1-10. Quantitative RT-PCR analysis showed that Pam3CSK4 (an agonist of TLR1/2) and interleukin (IL)-17A significantly induced TAP gene expression in tracheal epithelial cells after only 4-8 h of stimulation. Flagellin (a TLR5 agonist), lipopolysaccharide and interferon-α also had stimulatory effects, but little or no response was found with class B CpG ODN 2007 (TLR9 agonist) or lipoteichoic acid (TLR2 agonist). The use of combined agonists had little or no enhancing effect above that of single agonists. Thus, Pam3CSK4, IL-17A and lipopolysaccharide rapidly and significantly induce TAP gene expression, suggesting that these stimulatory pathways may be of value for enhancing innate immunity in feedlot cattle at times of susceptibility to disease.

  18. Investigating Aging-Related Changes in the Coordination of Agonist and Antagonist Muscles Using Fuzzy Entropy and Mutual Information

    Directory of Open Access Journals (Sweden)

    Wenbo Sun

    2016-06-01

    Full Text Available Aging alters muscular coordination patterns. This study aimed to investigate aging-related changes in the coordination of agonist and antagonist muscles from two aspects, the activities of individual muscles and the inter-muscular coupling. Eighteen young subjects and 10 elderly subjects were recruited to modulate the agonist muscle activity to track a target during voluntary isometric elbow flexion and extension. Normalized muscle activation and fuzzy entropy (FuzzyEn were applied to depict the activities of biceps and triceps. Mutual information (MI was utilized to measure the inter-muscular coupling between biceps and triceps. The agonist activation decreased and the antagonist activation increased significantly during elbow flexion and extension with aging. FuzzyEn values of agonist electromyogram (EMG were similar between the two age groups. FuzzyEn values of antagonist EMG increased significantly with aging during elbow extension. MI decreased significantly with aging during elbow extension. These results indicated increased antagonist co-activation and decreased inter-muscular coupling with aging during elbow extension, which might result from the reduced reciprocal inhibition and the recruitment of additional cortical-spinal pathways connected to biceps. Based on FuzzyEn and MI, this study provided a comprehensive understanding of the mechanisms underlying the aging-related changes in the coordination of agonist and antagonist muscles.

  19. The MWA Transients Survey (MWATS).

    Science.gov (United States)

    Bell, M.; Murphy, T.; Kaplan, D. L.; Croft, S. D.; Hancock, P.; Rowlinson, A.; Wayth, R.; Gaensler, B.; Hurley-Walker, N.; Offringa, A.; Loi, C.; Bannister, K.; Trott, C.; Marquart, J.

    2017-01-01

    We propose the continuation of the MWA transients survey to search for and monitor low frequency transient and variable radio sources in the southern sky. This proposal is aimed at commensally utilising data from the GLEAM-X (G0008) project in semester 2017-A. The aim of this commensal data acquisition is to commission long baseline observations for transient science. In particular this will involve studying the impact of the ionosphere on calibration and imaging, and developing the techniques needed to produce science quality data products. The proposed drift scans with LST locking (see G0008 proposal) are particularly exciting as we can test image subtraction for transient and variable identification. This survey is targeted at studying objects such as AGN (intrinsic and extrinsic variability), long duration synchrotron emitters, pulsars and transients of unknown origin. The maps generated from this survey will be analysed with the Variables and Slow Transients (VAST) detection pipeline. The motivation for this survey is as follows: (i) To obtain temporal data on an extremely large and robust sample of low frequency sources to explore and quantify both intrinsic and extrinsic variability; (ii) To search and find new classes of low frequency radio transients that previously remained undetected and obscured from multi-wavelength discovery; (iii) To place rigorous statistics on the occurrence of both transients and variables prior to the Australian SKA era.

  20. Pressure transients in pipeline systems

    DEFF Research Database (Denmark)

    Voigt, Kristian

    1998-01-01

    This text is to give an overview of the necessary background to do investigation of pressure transients via simulations. It will describe briefly the Method of Characteristics which is the defacto standard for simulating pressure transients. Much of the text has been adopted from the book Pressur...

  1. Dopamine agonist: pathological gambling and hypersexuality.

    Science.gov (United States)

    2008-10-01

    (1) Pathological gambling and increased sexual activity can occur in patients taking dopaminergic drugs. Detailed case reports and small case series mention serious familial and social consequences. The frequency is poorly documented; (2) Most affected patients are being treated for Parkinson's disease, but cases have been reported among patients prescribed a dopamine agonist for restless legs syndrome or pituitary adenoma; (3) Patients treated with this type of drug, and their relatives, should be informed of these risks so that they can watch for changes in behaviour. If such disorders occur, it may be necessary to reduce the dose or to withdraw the drug or replace it with another medication.

  2. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose...... potential of GLP-1RA-insulin combination therapy, typically showing beneficial effects on glycaemic control and body weight, with a low incidence of hypoglycaemia and, in established insulin therapy, facilitating reductions in insulin dose. In this review, the physiological and pharmacological rationale...

  3. SNC 80 and related delta opioid agonists.

    Science.gov (United States)

    Calderon, S N; Coop, A

    2004-01-01

    The discovery of the selective delta (delta) opioid agonists SNC 80 and BW373U86, which possess a diarylmethylpiperazine structure unique among opioids, was a major advance in the field of delta-opioid ligands. Much research has been performed to uncover the structure-activity relationships (SAR) of this class of ligands and also to compare the diarylmethylpiperazines with the traditional morphinan-based delta opioids. This review focuses on the development of the SAR of this unique series of ligands, and discusses questions which remain unanswered.

  4. Sports doping: emerging designer and therapeutic β2-agonists.

    Science.gov (United States)

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future.

  5. Toll-like receptor 4 activation promotes cardiac arrhythmias by decreasing the transient outward potassium current (Ito) through an IRF3-dependent and MyD88-independent pathway.

    Science.gov (United States)

    Monnerat-Cahli, Gustavo; Alonso, Hiart; Gallego, Monica; Alarcón, Micaela Lopez; Bassani, Rosana A; Casis, Oscar; Medei, Emiliano

    2014-11-01

    Cardiac arrhythmias are one of the main causes of death worldwide. Several studies have shown that inflammation plays a key role in different cardiac diseases and Toll-like receptors (TLRs) seem to be involved in cardiac complications. In the present study, we investigated whether the activation of TLR4 induces cardiac electrical remodeling and arrhythmias, and the signaling pathway involved in these effects. Membrane potential was recorded in Wistar rat ventricle. Ca(2+) transients, as well as the L-type Ca(2+) current (ICaL) and the transient outward K(+) current (Ito), were recorded in isolated myocytes after 24 h exposure to the TLR4 agonist, lipopolysaccharide (LPS, 1 μg/ml). TLR4 stimulation in vitro promoted a cardiac electrical remodeling that leads to action potential prolongation associated with arrhythmic events, such as delayed afterdepolarization and triggered activity. After 24 h LPS incubation, Ito amplitude, as well as Kv4.3 and KChIP2 mRNA levels were reduced. The Ito decrease by LPS was prevented by inhibition of interferon regulatory factor 3 (IRF3), but not by inhibition of interleukin-1 receptor-associated kinase 4 (IRAK4) or nuclear factor kappa B (NF-κB). Extrasystolic activity was present in 25% of the cells, but apart from that, Ca(2+) transients and ICaL were not affected by LPS; however, Na(+)/Ca(2+) exchanger (NCX) activity was apparently increased. We conclude that TLR4 activation decreased Ito, which increased AP duration via a MyD88-independent, IRF3-dependent pathway. The longer action potential, associated with enhanced Ca(2+) efflux via NCX, could explain the presence of arrhythmias in the LPS group.

  6. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation

    DEFF Research Database (Denmark)

    Nassini, Romina; Pedretti, Pamela; Moretto, Nadia

    2012-01-01

    and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide...... substance P (SP), which is released from sensory nerve terminals by capsaicin, acrolein or CS), produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue) in bronchoalveolar lavage (BAL...

  7. Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)--preclinical and clinical results

    DEFF Research Database (Denmark)

    Madsbad, Sten

    2009-01-01

    , with average reductions in HbA1c of about 1.0% point, fasting plasma glucose of about 1.4 mmol l(-1), and causes a weight loss of approximately 2-3 kg after 30 weeks of treatment. The adverse effects are transient nausea and vomiting. The long-acting once-daily human GLP-1 receptor agonist liraglutide reduces...... HbA1c by about 1.0-2.0% point, weight by 1-3 kg and seems to have fewer gastrointestinal side effects than exenatide. The final place of the GLP-1 receptor agonists in the diabetes treatment algorithm will be clarified when we have long-term trials with cardiovascular end-points and data illustrating...

  8. Tolerability, pharmacokinetics, and neuroendocrine effects of PRX-00023, a novel 5-HT1A agonist, in healthy subjects.

    Science.gov (United States)

    Iyer, Ganesh R; Reinhard, John F; Oshana, Scott; Kauffman, Michael; Donahue, Stephen

    2007-07-01

    PRX-00023 is a novel, nonazapirone 5-HT1A agonist in clinical development for treatment of affective disorders. The objectives of the initial clinical phase I studies (a single ascending dose study and multiple dose-ascending and high-dose titration studies) were to measure the pharmacokinetics, pharmacodynamic (neuroendocrine) effects, and tolerability of PRX-00023 in healthy subjects. The studies evaluated 10-mg to 150-mg doses of PRX-00023 in up to 112 healthy male and female subjects aged 18 to 54 years. Single and multiple oral doses of PRX-00023 were found to be safe and well tolerated in healthy subjects. PRX-00023 was absorbed relatively rapidly, with a tmax of 0.5 to 2 hours, and eliminated with a half-life of approximately 12 hours. PRX-00023 treatment transiently increased blood prolactin levels 2 to 3 hours after administration, consistent with its mechanism as a 5-HT1A agonist.

  9. The Rapid Transient Surveyor

    CERN Document Server

    Baranec, Christoph; Wright, Shelley A; Tonry, John; Tully, R Brent; Szapudi, István; Takamiya, Marianne; Hunter, Lisa; Riddle, Reed; Chen, Shaojie; Chun, Mark

    2016-01-01

    The Rapid Transient Surveyor (RTS) is a proposed rapid-response, high-cadence adaptive optics (AO) facility for the UH 2.2-m telescope on Maunakea. RTS will uniquely address the need for high-acuity and sensitive near-infrared spectral follow-up observations of tens of thousands of objects in mere months by combining an excellent observing site, unmatched robotic observational efficiency, and an AO system that significantly increases both sensitivity and spatial resolving power. We will initially use RTS to obtain the infrared spectra of ~4,000 Type Ia supernovae identified by the Asteroid Terrestrial-Impact Last Alert System over a two year period that will be crucial to precisely measuring distances and mapping the distribution of dark matter in the z < 0.1 universe. RTS will comprise an upgraded version of the Robo-AO laser AO system and will respond quickly to target-of-opportunity events, minimizing the time between discovery and characterization. RTS will acquire simultaneous-multicolor images with a...

  10. The rapid transient surveyor

    Science.gov (United States)

    Baranec, C.; Lu, J. R.; Wright, S. A.; Tonry, J.; Tully, R. B.; Szapudi, I.; Takamiya, M.; Hunter, L.; Riddle, R.; Chen, S.; Chun, M.

    2016-07-01

    The Rapid Transient Surveyor (RTS) is a proposed rapid-response, high-cadence adaptive optics (AO) facility for the UH 2.2-m telescope on Maunakea. RTS will uniquely address the need for high-acuity and sensitive near-infrared spectral follow-up observations of tens of thousands of objects in mere months by combining an excellent observing site, unmatched robotic observational efficiency, and an AO system that significantly increases both sensitivity and spatial resolving power. We will initially use RTS to obtain the infrared spectra of 4,000 Type Ia supernovae identified by the Asteroid Terrestrial-Impact Last Alert System over a two year period that will be crucial to precisely measuring distances and mapping the distribution of dark matter in the z efficiency prism integral field unit spectrograph: R = 70-140 over a total bandpass of 840-1830nm with an 8.7" by 6.0" field of view (0.15" spaxels). The AO correction boosts the infrared point-source sensitivity of the spectrograph against the sky background by a factor of seven for faint targets, giving the UH 2.2-m the H-band sensitivity of a 5.7-m telescope without AO.

  11. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  12. The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Edmond F O'Donnell

    Full Text Available BACKGROUND: The aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor that mediates the toxicity and biological activity of dioxins and related chemicals. The AhR influences a variety of processes involved in cellular growth and differentiation, and recent studies have suggested that the AhR is a potential target for immune-mediated diseases. METHODOLOGY/PRINCIPAL FINDINGS: During a screen for molecules that activate the AhR, leflunomide, an immunomodulatory drug presently used in the clinic for the treatment of rheumatoid arthritis, was identified as an AhR agonist. We aimed to determine whether any biological activity of leflunomide could be attributed to a previously unappreciated interaction with the AhR. The currently established mechanism of action of leflunomide involves its metabolism to A771726, possibly by cytochrome P450 enzymes, followed by inhibition of de novo pyrimidine biosynthesis by A771726. Our results demonstrate that leflunomide, but not its metabolite A771726, caused nuclear translocation of AhR into the nucleus and increased expression of AhR-responsive reporter genes and endogenous AhR target genes in an AhR-dependent manner. In silico Molecular Docking studies employing AhR ligand binding domain revealed favorable binding energy for leflunomide, but not for A771726. Further, leflunomide, but not A771726, inhibited in vivo epimorphic regeneration in a zebrafish model of tissue regeneration in an AhR-dependent manner. However, suppression of lymphocyte proliferation by leflunomide or A771726 was not dependent on AhR. CONCLUSIONS: These data reveal that leflunomide, an anti-inflammatory drug, is an agonist of the AhR. Our findings link AhR activation by leflunomide to inhibition of fin regeneration in zebrafish. Identification of alternative AhR agonists is a critical step in evaluating the AhR as a therapeutic target for the treatment of immune disorders.

  13. Noribogaine is a G-protein biased κ-opioid receptor agonist.

    Science.gov (United States)

    Maillet, Emeline L; Milon, Nicolas; Heghinian, Mari D; Fishback, James; Schürer, Stephan C; Garamszegi, Nandor; Mash, Deborah C

    2015-12-01

    Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of action remained uncharacterized thus far. Our binding experiments and computational simulations indicate that noribogaine may bind to the orthosteric morphinan binding site of the opioid receptors. Functional activities of noribogaine at G-protein and non G-protein pathways of the mu and kappa opioid receptors were characterized. Noribogaine was a weak mu antagonist with a functional inhibition constants (Ke) of 20 μM at the G-protein and β-arrestin signaling pathways. Conversely, noribogaine was a G-protein biased kappa agonist 75% as efficacious as dynorphin A at stimulating GDP-GTP exchange (EC50=9 μM) but only 12% as efficacious at recruiting β-arrestin, which could contribute to the lack of dysphoric effects of noribogaine. In turn, noribogaine functionally inhibited dynorphin-induced kappa β-arrestin recruitment and was more potent than its G-protein agonistic activity with an IC50 of 1 μM. This biased agonist/antagonist pharmacology is unique to noribogaine in comparison to various other ligands including ibogaine, 18-MC, nalmefene, and 6'-GNTI. We predict noribogaine to promote certain analgesic effects as well as anti-addictive effects at effective concentrations>1 μM in the brain. Because elevated levels of dynorphins are commonly observed and correlated with anxiety, dysphoric effects, and decreased dopaminergic tone, a therapeutically relevant functional inhibition bias to endogenously released dynorphins by noribogaine might be worthy of consideration for treating anxiety and substance related disorders.

  14. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  15. Helioseismic Effects of Energetic Transients

    Indian Academy of Sciences (India)

    Ashok Ambastha

    2008-03-01

    Photospheric and chromospheric signatures related to large, energetic transients such as flares and CMEs, have been extensively reported during the last several years. In addition, energetic solar transients are expected to cause helioseismic effects. Some of the recent results are reviewed here; in particular, the helioseismic effects of the powerful flares in superactive region, NOAA 10486, including the 4B/X17 superflare of October 28, 2003. We also examine the temporal variations of power in low- modes during the period May 1995–October 2005, and compare with daily, disk-integrated flare- and CME-indices to infer the effect of transients on the scale of whole solar disk.

  16. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input

    Directory of Open Access Journals (Sweden)

    Paolo eBotta

    2014-02-01

    Full Text Available Golgi cells (GoCs are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

  17. Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants.

    Science.gov (United States)

    Taylor, Linnéa; Arnér, Karin; Ghosh, Fredrik

    2017-01-01

    Signaling through the polymodal cation channel Transient Receptor Potential Vanilloid 4 (TRPV4) has been implicated in retinal neuronal degeneration. To further outline the involvement of this channel in this process, we here explore modulation of Transient Receptor Potential Vanilloid 4 (TRPV4) activity on neuronal health and glial activation in an in vitro model of retinal degeneration. For this purpose, adult porcine retinal explants were cultured using a previously established standard protocol for up to 5 days with specific TRPV4 agonist GSK1016790A (GSK), or specific antagonist RN-1734, or culture medium only. Glial and neuronal cell health were evaluated by a battery of immunohistochemical markers, as well as morphological staining. Specific inhibition of TRPV4 by RN-1734 significantly enhanced ganglion cell survival, improved the maintenance of the retinal laminar architecture, reduced apoptotic cell death and attenuated the gliotic response as well as preserved the expression of TRPV4 in the plexiform layers and ganglion cells. In contrast, culture controls, as well as specimens treated with GSK, displayed rapid remodeling and neurodegeneration as well as a downregulation of TRPV4 and the Müller cell homeostatic mediator glutamine synthetase. Our results indicate that TRPV4 signaling is an important contributor to the retinal degeneration in this model, affecting neuronal cell health and glial homeostasis. The finding that pharmacological inhibition of the receptor significantly attenuates neuronal degeneration and gliosis in vitro, suggests that TRPV4 signaling may be an interesting pharmaceutical target to explore for treatment of retinal degenerative disease.

  18. THIP and isoguvacine are partial agonists of GABA-stimulated benzodiazepine receptor binding.

    Science.gov (United States)

    Karobath, M; Lippitsch, M

    1979-10-15

    The effects of THIP and isoguvacine on 3H-flunitrazepam binding to washed membranes prepared from the cerebral cortex of adult rats have been examined. THIP, which has only minimal stimulatory effects on benzodiazepine (BZ) receptor binding, has been found to inhibit the stimulation induced by small concentrations (2 microM) of exogenous GABA. While isoguvacine stimulates BZ receptor binding, although to a smaller extent than GABA, it also antagonizes the stimulation of BZ receptor binding induced by GABA. Thus THIP and isoguvacine exhibit the properties of a partial agonist of GABA-stimulated BZ receptor binding.

  19. Novel histamine H3-receptor antagonists and partial agonists with a non-aminergic structure

    OpenAIRE

    Nickel, Tobias; Bauer, Ulrich; Schlicker, Eberhard; Kathmann, Markus; Göthert, Manfred; Sasse, Astrid; Stark, Holger; Schunack, Walter

    2001-01-01

    We determined the affinities of eight novel histamine H3-receptor ligands (ethers and carbamates) for H3-receptor binding sites and their agonistic/antagonistic effects in two functional H3-receptor models. The compounds differ from histamine in that the ethylamine chain is replaced by a propyloxy chain; in the three ethers mentioned below (FUB 335, 373 and 407), R is n-pentyl, 3-methylbutyl and 3,3-dimethylbutyl, respectively.The compounds monophasically inhibited [3H]-Nα-methylhistamine bin...

  20. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    Directory of Open Access Journals (Sweden)

    Eun Ju Oh

    2016-04-01

    Full Text Available BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2 and microphthalmia-associated transcription factor (MITF in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA and cAMP response element-binding protein (CREB activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders.

  1. Beta-Adrenergic Receptors and Mechanisms in Asthma: The New Long-Acting Beta-Agonists

    Directory of Open Access Journals (Sweden)

    Robert G Townley

    1996-01-01

    Full Text Available The objective is to review β-adrenergic receptors and mechanisms in the immediate and late bronchial reaction in asthma and the new long-acting β-agonist. This will be discussed in light of the controversy of the potential adverse effect of regular use of long-acting β-agonists. We studied the effect of formoterol on the late asthmatic response (LAR and airway inflammation in guinea-pigs. Formoterol suppressed the LAR, antigen-induced airway inflammation and hyperresponsiveness, although isoproterenol failed to inhibit these parameters. β-Adrenergic hyporesponsiveness, and cholinergic and a- adrenergic hyperresponsiveness have been implicated in the pathogenesis of asthma. A decrease in β-adrenoreceptor function can result either from exogenously administered β-agonist or from exposure to allergens resulting in a late bronchial reaction. There is increasing evidence that eosinophils, macrophages, and lymphocytes which are of primary importance in the late bronchial reaction are also modulated by β2- adrenoreceptors. In functional studies of guinea-pig or human isolated trachea and lung parenchyma, PAF and certain cytokines significantly reduced the potency of isoproterenol to reverse methacholine- or histamine-induced contraction. The effect of glucocorticoids on pulmonary β-adrenergic receptors and responses suggests an important role for glucocorticoids to increase β-adrenergic receptors and responsiveness.

  2. Activation of human tonsil and skin mast cells by agonists of proteinase activated receptor-2

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Hua XIE; Yi-ling FU

    2005-01-01

    Aim: To investigate the effects of the agonists of proteinase activated receptor (PAR)-2,and histamine on degranulation of human mast cells. Methods: Human mast cells were enzymatically dispersed from tonsil and skin tissues. The dis persed cells were then cultured with various stimuli, and tryptase and histamine levels in cell supernatants collected from challenge tubes were measured. Results:PAR-2 agonist peptide SLIGKV provoked a dose-dependent release of histamine from skin mast cells. It also induced tryptase release from tonsil mast cells, tcLIGRLO appeared less potent than SLIGKV in induction of release of histamine and tryptase. Trypsin was able to induce a "bell" shape increase in tryptase release from tonsil mast cells. It was also able to induce a dose-dependent release of histamine from both tonsil and skin mast cells. The actions of trypsin on mast cells were inhibited by soy bean trypsin inhibitor (SBTI) or α1-antitrypsin (α1-AT).Time course study revealed that both stimulated tryptase or histamine release initiated within 10 s and reached their peak release between 4 and 6 min. Pretreatment of cells with metabolic inhibitors or pertussis toxin reduced the ability of mast cells to release tryptase or histamine. Conclusion: It was demonstrated that the in vitro tryptase release properties of human tonsil and skin mast cells suggested a novel type of mast cell heterogeneity. The activation of mast cells by PAR-2 agonists indicated a self-amplification mechanism of mast cell degranulation.

  3. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    Science.gov (United States)

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.

  4. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy

    Science.gov (United States)

    Gallo, S; Gatti, S; Sala, V; Albano, R; Costelli, P; Casanova, E; Comoglio, P M; Crepaldi, T

    2014-01-01

    Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) – surprisingly – autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury. PMID:24743740

  5. Regulation of TNF-alpha secretion by a specific melanocortin-1 receptor peptide agonist.

    Science.gov (United States)

    Ignar, Diane M; Andrews, John L; Jansen, Marilyn; Eilert, Michelle M; Pink, Heather M; Lin, Peiyuan; Sherrill, Ronald G; Szewczyk, Jerzy R; Conway, James G

    2003-05-01

    The lack of specific pharmacological tools has impeded the evaluation of the role of each melanocortin receptor (MCR) subtype in the myriad physiological effects of melanocortins. 154N-5 is an octapeptide (MFRdWFKPV-NH(2)) that was first identified as an MC1R antagonist in Xenopus melanophores [J. Biol. Chem. 269 (1994) 29846]. In this manuscript, we show that 154N-5 is a specific agonist for human and murine MC1R. The peptide has negligible activity at MC3R and MC4R and is 25-fold less potent and a weak agonist at MC5R. 154N-5 was tested in both a cellular and an animal model of tumor necrosis factor-alpha (TNF-alpha) secretion. The inhibitory efficacy of 154N-5 on TNF-alpha secretion in both models was similar to the nonselective agonist NDP-alpha-melanocyte stimulating hormone (NDP-alphaMSH), thus, we conclude that inhibition of TNF-alpha secretion by melanocortin peptides is mediated by MC1R. 154N-5 is a valuable new tool for the evaluation of specific contribution of MC1R agonism to physiological and pathological processes.

  6. Design and synthesis of benzoxazole containing indole analogs as peroxisome proliferator-activated receptor-γ/δ dual agonists.

    Science.gov (United States)

    Gim, Hyo Jin; Cheon, Ye-Jin; Ryu, Jae-Ha; Jeon, Raok

    2011-05-15

    A series of benzoxazole or benzothiazole containing indole analogs, 6-alkoxyindole-2-carboxylic acids and 5-alkoxy-3-indolylacetic acids, were synthesized as novel candidates of PPARγ/δ dual agonists and their ligand activities for PPAR subtypes (α, γ, and δ) were investigated. In transient transactivation assay, several compounds activated PPARγ and δ with little activity of PPARα. Putative binding mode of the compounds 1a and 2a in the active site of PPARγ was similar with that of rosiglitazone and the molecular modeling provides molecular insight to the observed activity.

  7. Potential roles for calcium-sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin).

    Science.gov (United States)

    Wu, Wenda; Zhou, Hui-Ren; Pestka, James J

    2017-01-01

    Food contamination by the trichothecene mycotoxin deoxynivalenol (DON, vomitoxin) has the potential to adversely affect animal and human health by suppressing food intake and impairing growth. In mice, the DON-induced anorectic response results from aberrant satiety hormone secretion by enteroendocrine cells (EECs) of the gastrointestinal tract. Recent in vitro studies in the murine STC-1 EEC model have linked DON-induced satiety hormone secretion to activation of calcium-sensing receptor (CaSR), a G-coupled protein receptor, and transient receptor potential ankyrin-1 (TRPA1), a TRP channel. However, it is unknown whether similar mechanisms mediate DON's anorectic effects in vivo. Here, we tested the hypothesis that DON-induced food refusal and satiety hormone release in the mouse are linked to activation of CaSR and TRPA1. Oral treatment with selective agonists for CaSR (R-568) or TRPA1 (allyl isothiocyanate (AITC)) suppressed food intake in mice, and the agonist's effects were suppressed by pretreatment with corresponding antagonists NPS-2143 or ruthenium red (RR), respectively. Importantly, NPS-2143 or RR inhibited both DON-induced food refusal and plasma elevations of the satiety hormones cholecystokinin (CCK) and peptide YY3-36 (PYY3-36); cotreatment with both antagonists additively suppressed both anorectic and hormone responses to DON. Taken together, these in vivo data along with prior in vitro findings support the contention that activation of CaSR and TRPA1 contributes to DON-induced food refusal by mediating satiety hormone exocytosis from EEC.

  8. Transient heating of moving objects

    Directory of Open Access Journals (Sweden)

    E.I. Baida

    2014-06-01

    Full Text Available A mathematical model of transient and quasistatic heating of moving objects by various heat sources is considered. The mathematical formulation of the problem is described, examples of thermal calculation given.

  9. Transient or permanent fisheye views

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2012-01-01

    , about the benefits and limitations of transient visualizations. We describe an experiment that compares the usability of a fisheye view that participants could call up temporarily, a permanent fisheye view, and a linear view: all interfaces gave access to source code in the editor of a widespread......Transient use of information visualization may support specific tasks without permanently changing the user interface. Transient visualizations provide immediate and transient use of information visualization close to and in the context of the user’s focus of attention. Little is known, however...... programming environment. Fourteen participants performed varied tasks involving navigation and understanding of source code. Participants used the three interfaces for between four and six hours in all. Time and accuracy measures were inconclusive, but subjective data showed a preference for the permanent...

  10. The importance of β2-agonists in myocardial infarction

    DEFF Research Database (Denmark)

    Rørth, Rasmus; Fosbøl, Emil L; Mogensen, Ulrik M;

    2015-01-01

    PURPOSE: β2-Agonists are widely used for relief of respiratory symptoms. Studies so far have reported conflicting results regarding use of β2-agonists and risk of myocardial infarction (MI). Yet, coronary angiographical data and longitudinal outcomes data are sparse and could help explain...

  11. Stimulation of α1a adrenergic receptors induces cellular proliferation or antiproliferative hypertrophy dependent solely on agonist concentration.

    Directory of Open Access Journals (Sweden)

    Beilei Lei

    Full Text Available Stimulation of α1aAdrenergic Receptors (ARs is known to have anti-proliferative and hypertrophic effects; however, some studies also suggests this receptor can increase cell proliferation. Surprisingly, we find the α1aAR expressed in rat-1 fibroblasts can produce either phenotype, depending exclusively on agonist concentration. Stimulation of the α1aAR by high dose phenylephrine (>10(-7 M induces an antiproliferative, hypertrophic response accompanied by robust and extended p38 activation. Inhibition of p38 with SB203580 prevented the antiproliferative response, while inhibition of Erk or Jnk had no effect. In stark contrast, stimulation of the α1aAR with low dose phenylephrine (∼10(-8 M induced an Erk-dependent increase in cellular proliferation. Agonist-induced Erk phosphorylation was preceded by rapid FGFR and EGFR transactivation; however, only EGFR inhibition blocked Erk activation and proliferation. The general matrix metalloprotease inhibitor, GM6001, blocked agonist induced Erk activation within seconds, strongly suggesting EGFR activation involved extracellular triple membrane pass signaling. Erk activation required little Ca(2+ release and was blocked by PLCβ or PKC inhibition but not by intracellular Ca(2+ chelation, suggesting Ca(2+ independent activation of novel PKC isoforms. In contrast, Ca(2+ release was essential for PI3K/Akt activation, which was acutely maximal at non-proliferative doses of agonist. Remarkably, our data suggests EGFR transactivation leading to Erk induced proliferation has the lowest activation threshold of any α1aAR response. The ability of α1aARs to induce proliferation are discussed in light of evidence suggesting antagonistic growth responses reflect native α1aAR function.

  12. Probing the GnRH receptor agonist binding site identifies methylated triptorelin as a new anti-proliferative agent

    Directory of Open Access Journals (Sweden)

    Robert P Millar

    2012-06-01

    Full Text Available D-amino acid substitutions at Glycine postion-6 in GnRH-I decapeptide can possess super-agonist activity and enhanced in vivo pharmacokinetics. Agonists elicit growth-inhibition in tumorigenic cells expressing the GnRH receptor above threshold levels. However, new agonists with modified properties are required to improve the anti-proliferative range. Effects of residue substitutions and methylations on tumourigenic HEK293[SCL60] and WPE-1-NB26-3 prostate cells expressing the rat GnRH receptor were compared. Peptides were ranked according to receptor binding affinity, induction of inositol phosphate production and cell growth-inhibition. Analogues possessing D-Trp6 (including Triptorelin, D-Leu6 (including Leuprolide, D-Ala6, D-Lys6, or D-Arg6 exhibited agonist and anti-proliferative activity. Residues His5 or His5,Trp7,Tyr8, corresponding to residues found in GnRH-II , were tolerated, with retention of sub-nanomolar/low nanomolar binding affinities and EC50s for receptor activation and IC50s for cell growth-inhibition. His5D-Arg6-GnRH-I exhibited reduced binding affinity and potency, effective in the mid-nanomolar range. However, all GnRH-II-like analogues were less potent than Triptorelin. By comparison, three methylated-Trp6 Triptorelin variants showed differential binding, receptor activation and anti-proliferation potency. Significantly, 5-Methyl-DL-Trp6-Triptorelin was equipotent to triptorelin. Subsequent studies should determine whether pharmacologically enhanced derivatives of Triptorelin can be developed by further alkylations, without substitutions or cleavable cytotoxic adducts, to improve the extent of growth-inhibition of tumour cells expressing the GnRH receptor.

  13. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  14. Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist.

    Science.gov (United States)

    Kaminski, Rafal M; Banerjee, Madhumita; Rogawski, Michael A

    2004-06-01

    Although the mechanism of action of topiramate is not fully understood, its anticonvulsant properties may result, at least in part, from an interaction with AMPA/kainate receptors. We have recently shown that topiramate selectively inhibits postsynaptic responses mediated by GluR5 kainate receptors. To determine if this action of topiramate is relevant to the anticonvulsant effects of the drug in vivo, we determined the protective activity of topiramate against seizures induced by intravenous infusion of various ionotropic glutamate receptor agonists in mice. Topiramate (25-100 mg/kg, i.p.) produced a dose-dependent elevation in the threshold for clonic seizures induced by infusion of ATPA, a selective agonist of GluR5 kainate receptors. Topiramate was less effective in protecting against clonic seizures induced by kainate, a mixed agonist of AMPA and kainate receptors. Topiramate did not affect clonic seizures induced by AMPA or NMDA. In contrast, the thresholds for tonic seizures induced by higher doses of these various glutamate receptor agonists were all elevated by topiramate. Unlike topiramate, carbamazepine elevated the threshold for AMPA- but not ATPA-induced clonic seizures. Our results are consistent with the possibility that the effects of topiramate on clonic seizure activity are due to functional blockade of GluR5 kainate receptors. Protection from tonic seizures may be mediated by other actions of the drug. Together with our in vitro cellular electrophysiological results, the present observations strongly support a unique mechanism of action of topiramate, which involves GluR5 kainate receptors.

  15. Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity

    Science.gov (United States)

    Gupta, Achla; Gomes, Ivone; Bobeck, Erin N.; Fakira, Amanda K.; Massaro, Nicholas P.; Sharma, Indrajeet; Cavé, Adrien; Hamm, Heidi E.; Parello, Joseph

    2016-01-01

    Among the opioid receptors, the κ-opioid receptor (κOR) has been gaining considerable attention as a potential therapeutic target for the treatment of complex CNS disorders including depression, visceral pain, and cocaine addiction. With an interest in discovering novel ligands targeting κOR, we searched natural products for unusual scaffolds and identified collybolide (Colly), a nonnitrogenous sesquiterpene from the mushroom Collybia maculata. This compound has a furyl-δ-lactone core similar to that of Salvinorin A (Sal A), another natural product from the plant Salvia divinorum. Characterization of the molecular pharmacological properties reveals that Colly, like Sal A, is a highly potent and selective κOR agonist. However, the two compounds differ in certain signaling and behavioral properties. Colly exhibits 10- to 50-fold higher potency in activating the mitogen-activated protein kinase pathway compared with Sal A. Taken with the fact that the two compounds are equipotent for inhibiting adenylyl cyclase activity, these results suggest that Colly behaves as a biased agonist of κOR. Behavioral studies also support the biased agonistic activity of Colly in that it exhibits ∼10-fold higher potency in blocking non–histamine-mediated itch compared with Sal A, and this difference is not seen in pain attenuation by these two compounds. These results represent a rare example of functional selectivity by two natural products that act on the same receptor. The biased agonistic activity, along with an easily modifiable structure compared with Sal A, makes Colly an ideal candidate for the development of novel therapeutics targeting κOR with reduced side effects. PMID:27162327

  16. Gaia transient detection efficiency: hunting for nuclear transients

    CERN Document Server

    Blagorodnova, Nadejda; Harrison, Diana L; Koposov, Sergey; Mattila, Seppo; Campbell, Heather; Walton, Nicholas A; Wyrzykowski, Lukasz

    2015-01-01

    We present a study of the detectability of transient events associated with galaxies for the Gaia European Space Agency astrometric mission. We simulated the on-board detections, and on-ground processing for a mock galaxy catalogue to establish the properties required for the discovery of transient events by Gaia, specifically tidal disruption events (TDEs) and supernovae (SNe). Transients may either be discovered by the on-board detection of a new source or by the brightening of a previously known source. We show that Gaia transients can be identified as new detections on-board for offsets from the host galaxy nucleus of 0.1--0.5,arcsec, depending on magnitude and scanning angle. The Gaia detection system shows no significant loss of SNe at close radial distances to the nucleus. We used the detection efficiencies to predict the number of transients events discovered by Gaia. For a limiting magnitude of 19, we expect around 1300 SNe per year: 65% SN Ia, 28% SN II and 7% SN Ibc, and ~20 TDEs per year.

  17. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures.

    Science.gov (United States)

    Ohtsubo, Sena; Fujita, Tsugumi; Matsushita, Akitomo; Kumamoto, Eiichi

    2015-03-01

    Plant-derived chemicals including aroma oil compounds have an ability to inhibit nerve conduction and modulate transient receptor potential (TRP) channels. Although applying aroma oils to the skin produces a local anesthetic effect, this has not been yet examined throughly. The aim of the present study was to know how nerve conduction inhibitions by aroma oil compounds are related to their chemical structures and whether these activities are mediated by TRP activation. Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. Citral (aldehyde), which activates various types of TRP channels, attenuated the peak amplitude of CAP with the half-maximal inhibitory concentration (IC50) value of 0.46 mmol/L. Another aldehyde (citronellal), alcohol (citronellol, geraniol, (±)-linalool, (-)-linalool, (+)-borneol, (-)-borneol, α-terpineol), ester (geranyl acetate, linalyl acetate, bornyl acetate), and oxide (rose oxide) compounds also reduced CAP peak amplitudes (IC50: 0.50, 0.35, 0.53, 1.7, 2.0, 1.5, 2.3, 2.7, 0.51, 0.71, 0.44, and 2.6 mmol/L, respectively). On the other hand, the amplitudes were reduced by a small extent by hydrocarbons (myrcene and p-cymene) and ketone (camphor) at high concentrations (2-5 mmol/L). The activities of citral and other TRP agonists ((+)-borneol and camphor) were resistant to TRP antagonist ruthenium red. An efficacy sequence for the CAP inhibitions was generally aldehydes ≥ esters ≥ alcohols > oxides > hydrocarbons. The CAP inhibition by the aroma oil compound was not related to its octanol-water partition coefficient. It is suggested that aroma oil compounds inhibit nerve conduction in a manner specific to their chemical structures without TRP activation.

  18. Agonist-induced Ca2+ sensitization in smooth muscle: redundancy of Rho guanine nucleotide exchange factors (RhoGEFs) and response kinetics, a caged compound study.

    Science.gov (United States)

    Artamonov, Mykhaylo V; Momotani, Ko; Stevenson, Andra; Trentham, David R; Derewenda, Urszula; Derewenda, Zygmunt S; Read, Paul W; Gutkind, J Silvio; Somlyo, Avril V

    2013-11-22

    Many agonists, acting through G-protein-coupled receptors and Gα subunits of the heterotrimeric G-proteins, induce contraction of smooth muscle through an increase of [Ca(2+)]i as well as activation of the RhoA/RhoA-activated kinase pathway that amplifies the contractile force, a phenomenon known as Ca(2+) sensitization. Gα12/13 subunits are known to activate the regulator of G-protein signaling-like family of guanine nucleotide exchange factors (RhoGEFs), which includes PDZ-RhoGEF (PRG) and leukemia-associated RhoGEF (LARG). However, their contributions to Ca(2+)-sensitized force are not well understood. Using permeabilized blood vessels from PRG(-/-) mice and a new method to silence LARG in organ-cultured blood vessels, we show that both RhoGEFs are activated by the physiologically and pathophysiologically important thromboxane A2 and endothelin-1 receptors. The co-activation is the result of direct and independent activation of both RhoGEFs as well as their co-recruitment due to heterodimerization. The isolated recombinant C-terminal domain of PRG, which is responsible for heterodimerization with LARG, strongly inhibited Ca(2+)-sensitized force. We used photolysis of caged phenylephrine, caged guanosine 5'-O-(thiotriphosphate) (GTPγS) in solution, and caged GTPγS or caged GTP loaded on the RhoA·RhoGDI complex to show that the recruitment and activation of RhoGEFs is the cause of a significant time lag between the initial Ca(2+) transient and phasic force components and the onset of Ca(2+)-sensitized force.

  19. Transient systemic inflammation does not alter the induction of tolerance to gastric autoantigens by migratory dendritic cells.

    Science.gov (United States)

    Bourges, Dorothée; Ross, Ellen M; Allen, Stacey; Read, Simon; Houghton, Fiona J; Bedoui, Sammy; Boon, Louis; Gleeson, Paul A; van Driel, Ian R

    2014-06-01

    It has been proposed that activation of dendritic cells (DCs) presenting self-antigens during inflammation may lead to activation of autoreactive T cells and the development of autoimmunity. To test this hypothesis, we examined the presentation of the autoantigen recognized in autoimmune gastritis, gastric H(+)/K(+) ATPase, which is naturally expressed in the stomach and is constitutively presented in the stomach-draining lymph nodes. Systemic administration to mice of the TLR9 agonist CpG DNA, agonist anti-CD40 Ab, or TLR4 agonist LPS all failed to abrogate the process of peripheral clonal deletion of H(+)/K(+) ATPase-specific CD4 T cells or promote the development of autoimmune gastritis. We demonstrated that migratory DCs from the stomach-draining lymph nodes are the only DC subset capable of constitutively presenting the endogenous gastric H(+)/K(+) ATPase autoantigen in its normal physiological context. Analysis of costimulatory molecules indicated that, relative to resident DCs, migratory DCs displayed a partially activated phenotype in the steady state. Furthermore, migratory DCs were refractory to stimulation by transient exposure to TLR agonists, as they failed to upregulate costimulatory molecules, secrete significant amounts of inflammatory cytokines, or induce differentiation of effector T cells. Together, these data show that transient systemic inflammation failed to break tolerance to the gastric autoantigen, as migratory DCs presenting the gastric autoantigen remain tolerogenic under such conditions, demonstrating the robust nature of peripheral tolerance.

  20. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.

  1. Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARγ agonists

    Science.gov (United States)

    To, Kenneth K W; Tomlinson, Brian

    2013-01-01

    Background and Purpose Multidrug resistance (MDR), usually mediated by overexpression of efflux transporters such as P-gp, ABCG2 and/or MRP1, remains a major obstacle hindering successful cancer chemotherapy. There has been great interest in the development of inhibitors towards these transporters to circumvent resistance. However, since the inhibition of transporter is not specific to cancer cells, a decrease in the cytotoxic drug dosing may be needed to prevent excess toxicity, thus undermining the potential benefit brought about by a drug efflux inhibitor. The design of potent MDR modulators specific towards resistant cancer cells and devoid of drug-drug interactions will be needed to effect MDR reversal. Experimental Approach Recent evidence suggests that the PTEN/PI3K/Akt pathway may be exploited to alter ABCG2 subcellular localization, thereby circumventing MDR. Three PPARγ agonists (telmisartan, pioglitazone and rosiglitazone) that have been used in the clinics were tested for their effect on the PTEN/PI3K/Akt pathway and possible reversal of ABCG2-mediated drug resistance. Key Results The PPARγ agonists were found to be weak ABCG2 inhibitors by drug efflux assay. They were also shown to elevate the reduced PTEN expression in a resistant and ABCG2-overexpressing cell model, which inhibit the PI3K-Akt pathway and lead to the relocalization of ABCG2 from the plasma membrane to the cytoplasma, thus apparently circumventing the ABCG2-mediated MDR. Conclusions and Implications Since this PPARγ/PTEN/PI3K/Akt pathway regulating ABCG2 is only functional in drug-resistant cancer cells with PTEN loss, the PPARγ agonists identified may represent promising agents targeting resistant cells for MDR reversal. PMID:24032744

  2. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells.

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    Full Text Available Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC. Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2, estrogen receptor-α (ER-α selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients.

  3. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    Science.gov (United States)

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation.

  4. Recent development of transient electronics

    Directory of Open Access Journals (Sweden)

    Huanyu Cheng

    2016-01-01

    Full Text Available Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.

  5. Presynaptic inhibition by kainate receptors converges mechanistically with presynaptic inhibition by adenosine and GABAB receptors.

    Science.gov (United States)

    Partovi, Dara; Frerking, Matthew

    2006-11-01

    Kainate receptors are widely reported to regulate the release of neurotransmitter in the CNS, but the mechanisms involved remain controversial. Previous studies have found that the kainate receptor agonist ATPA, which selectively activates Glu(K5)-containing kainate receptors, depresses glutamate release at Schaffer-collateral synapses in the hippocampus. In the present study, we provide pharmacological evidence that this depressant effect is mediated by Glu(K5)-containing heteromers, but is distinct from a similar depressant effect engaged by the kainate receptor agonist domoate. The depressant effect of ATPA is insensitive to antagonists for GABA(A), GABA(B), and adenosine receptors, and is also unaffected by lowering the release probability by reducing extracellular calcium. However, the effect of ATPA is partly occluded by prior activation of GABA(B) receptors and completely occluded by prior activation of adenosine receptors, suggesting a mechanistic convergence of heteromeric Glu(K5) kainate receptor signaling with GABA(B) receptors and adenosine receptors. The effects of domoate are partially occluded by both adenosine and GABA(B) receptor agonists, indicating at least a partial convergence of Glu(K5)-lacking kainate receptor signaling with these other pathways. The depressant effect of ATPA is not blocked by inhibition of serine/threonine protein kinases. These results suggest that ATPA and domoate inhibit glutamate release through mechanisms that converge with those of classical metabotropic receptor agonists, although they do so through different receptors.

  6. Agonists of fibroblast growth factor receptor induce neurite outgrowth and survival of cerebellar granule neurons

    DEFF Research Database (Denmark)

    Li, Shizhong; Christensen, Claus; Køhler, Lene B;

    2009-01-01

    Fibroblast growth factor receptor (FGFR) signaling is pivotal in the regulation of neurogenesis, neuronal differentiation and survival, and synaptic plasticity both during development and in adulthood. In order to develop low molecular weight agonists of FGFR, seven peptides, termed hexafins......, corresponding to the beta6-beta7 loop region of the FGF 1, 2, 3, 8, 9, 10, and 17, were synthesized. This region shares a homologous amino acid sequence with the FG-loop region of the second fibronectin Type III module of the neural cell adhesion molecule (NCAM) that binds to the FGFR. Hexafins were shown...... by surface plasmon resonance to bind to FGFR1-IIIc-Ig2-3 and FGFR2-IIIb-Ig2-3. The heparin analog sucrose octasulfate inhibited hexafin binding to FGFR1-IIIc-Ig2-3 indicating overlapping binding sites. Hexafin-binding to FGFR1-IIIc resulted in receptor phosphorylation, but inhibited FGF1-induced FGFR1...

  7. Efficacy of a triple treatment with irradiation, agonistic TRAIL receptor antibodies and EGFR blockade

    Energy Technology Data Exchange (ETDEWEB)

    Niyazi, Maximilian; Marini, Patrizia [Dept. of Radiation Oncology, CCC Tuebingen (Germany); Daniel, Peter T. [Clinical and Molecular Oncology, Charite, Humboldt Univ., Berlin (Germany); Humphreys, Robin [Oncology Research Dept., Human Genome Sciences Inc., Rockville, MD (United States); Jendrossek, Verena [Dept. of Radiation Oncology, CCC Tuebingen (Germany); Dept. of Molecular Cell Biology, Essen (Germany); Belka, Claus [Dept. of Radiation Oncology, CCC Tuebingen (Germany); Dept. of Radiation Oncology, Ludwig Maximilian Univ., Munich (Germany)

    2009-01-15

    Background and purpose: since the efficacy of a single targeted agent in combination with ionizing radiation is limited by putative treatment resistances, a rationally designed triple treatment consisting of an agonistic antibody targeting either TRAIL-R1 (mapatumumab) or TRAIL-R2 (lexatumumab), radiation and an epidermal growth factor receptor-(EGFR-)inhibiting antibody (cetuximab) was tested. Material and methods: induction of apoptosis after triple treatment was determined in Colo205, HCT116 and FaDu cells by Hoechst 33342 stain. The degree of interaction was determined by isobologram analysis. A knockout variant of HCT116 was used to examine Bax dependence of the triple treatment. The role of Akt/PKB signaling was analyzed using the phosphatidylinositol 3-kinase inhibitor LY294002. Clonogenic assays were performed to examine the effect on clonogenic survival of tumor cells. Results: a synergistic effect of radiation, cetuximab and agonistic TRAIL-R antibodies was demonstrated in cell lines derived from colorectal tumors or head-and-neck cancers. The efficacy of this multimodal approach was dependent on Bax and inhibition of Akt/PKB in the cell systems used. The results also show a positive impact on clonogenic cell death in several cell lines. Conclusion: these data suggest that rationally designed multimodal therapy approaches integrating radiation with more than one targeted agent will open new perspectives in radiation oncology. (orig.)

  8. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility.

    Science.gov (United States)

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function.

  9. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability.

    Science.gov (United States)

    Fairfax, Benjamin P; Pitcher, Julie A; Scott, Mark G H; Calver, Andrew R; Pangalos, Menelas N; Moss, Stephen J; Couve, Andrés

    2004-03-26

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.

  10. Delayed cardioprotection is mediated via a non-peptide delta opioid agonist, SNC-121, independent of opioid receptor stimulation.

    Science.gov (United States)

    Patel, Hemal H; Hsu, Anna; Gross, Garrett J

    2004-01-01

    Acute cardioprotection is mediated primarily through delta opioid receptor stimulation independent of micro or kappa opioid receptor stimulation. Delayed cardioprotection is mediated by delta opioid receptor agonists but ambiguity remains about direct receptor involvement. Therefore, we investigated the potential of SNC-121, a non-peptide delta opioid agonist, to produce delayed cardioprotection and characterized the role of opioid receptors in this delayed response. All rats underwent 30 minutes of ischemia followed by 2 hours of reperfusion. SNC-121 induced a significant delayed cardioprotective effect. To determine the nature of this SNC-121-induced delayed cardioprotection, rats were treated with specific opioids receptor antagonists and underwent pertussis toxin (PT) treatment prior to opioid agonist stimulation. Control rats were injected with saline and allowed to recover for 24 hours. Pretreatment and early treatment with opioid receptor antagonists failed to inhibit the delayed protective effects of SNC-121, as did pretreatment with PT. Treatment with a free radical scavenger, 2-mercaptopropionyl glycine, at the time of opioid stimulation attenuated the delayed cardioprotective effects of SNC-121. These data suggest that delayed cardioprotection is stimulated via non-peptide delta opioid agonists by a mechanism unrelated to opioid receptor activation. The mechanism appears to be a non-opioid receptor mediated production of reactive oxygen species that triggers the signaling cascade leading to delayed cardioprotection.

  11. Unique interaction pattern for a functionally biased ghrelin receptor agonist

    DEFF Research Database (Denmark)

    Sivertsen, Bjørn Behrens; Lang, Manja; Frimurer, Thomas M.

    2011-01-01

    /13) pathway. The recognition pattern of wFw-Isn-NH(2) with the ghrelin receptor also differed significantly from that of all previously characterized unbiased agonists. Most importantly, wFw-Isn-NH(2) was not dependent on GluIII:09 (Glu3.33), which otherwise is an obligatory TM III anchor point residue...... orientation as compared with, for example, the wFw peptide agonists. It is concluded that the novel peptide-mimetic ligand wFw-Isn-NH(2) is a biased ghrelin receptor agonist and that the selective signaling pattern presumably is due to its unique receptor recognition pattern lacking interaction with key...

  12. Cohabitation Duration and Transient Domesticity.

    Science.gov (United States)

    Golub, Andrew; Reid, Megan; Strickler, Jennifer; Dunlap, Eloise

    2013-01-01

    Research finds that many impoverished urban Black adults engage in a pattern of partnering and family formation involving a succession of short cohabitations yielding children, a paradigm referred to as transient domesticity. Researchers have identified socioeconomic status, cultural adaptations, and urbanicity as explanations for aspects of this pattern. We used longitudinal data from the 2001 Survey of Income and Program Participation to analyze variation in cohabitation and marriage duration by race/ethnicity, income, and urban residence. Proportional hazards regression indicated that separation risk is greater among couples that are cohabiting, below 200% of the federal poverty line, and Black but is not greater among urban dwellers. This provides empirical demographic evidence to support the emerging theory of transient domesticity and suggests that both socioeconomic status and race explain this pattern. We discuss the implications of these findings for understanding transient domesticity and make recommendations for using the Survey of Income and Program Participation to further study this family formation paradigm.

  13. Transient Faults in Computer Systems

    Science.gov (United States)

    Masson, Gerald M.

    1993-01-01

    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.

  14. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation.

    Science.gov (United States)

    Zhao, Limin; Sullivan, Michelle N; Chase, Marlee; Gonzales, Albert L; Earley, Scott

    2014-06-01

    Proliferation of airway smooth muscle cells (ASMCs) contributes to the remodeling and irreversible obstruction of airways during severe asthma, but the mechanisms underlying this disease process are poorly understood. Here we tested the hypothesis that Ca(2+) influx through the vanilliod transient receptor potential channel (TRPV) 4 stimulates ASMC proliferation. We found that synthetic and endogenous TRPV4 agonists increase proliferation of primary ASMCs. Furthermore, we demonstrate that Ca(2+) influx through individual TRPV4 channels produces Ca(2+) microdomains in ASMCs, called "TRPV4 Ca(2+) sparklets." We also show that TRPV4 channels colocalize with the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin in ASMCs. Activated calcineurin dephosphorylates nuclear factor of activated T cells (NFAT) transcription factors cytosolic (c) to allow nuclear translocation and activation of synthetic transcriptional pathways. We show that ASMC proliferation in response to TRPV4 activity is associated with calcineurin-dependent nuclear translocation of the NFATc3 isoform tagged with green florescent protein. Our findings suggest that Ca(2+) microdomains created by TRPV4 Ca(2+) sparklets activate calcineurin to stimulate nuclear translocation of NFAT and ASMC proliferation. These findings further suggest that inhibition of TRPV4 could diminish asthma-induced airway remodeling.

  15. Functional Selectivity of Kappa Opioid Receptor Agonists in Peripheral Sensory Neurons

    Science.gov (United States)

    Jamshidi, Raehannah J.; Jacobs, Blaine A.; Sullivan, Laura C.; Chavera, Teresa A.; Saylor, Rachel M.; Prisinzano, Thomas E.; Clarke, William P.

    2015-01-01

    Activation of kappa opioid receptors (KORs) expressed by peripheral sensory neurons that respond to noxious stimuli (nociceptors) can reduce neurotransmission of pain stimuli from the periphery to the central nervous system. We have previously shown that the antinociception dose-response curve for peripherally restricted doses of the KOR agonist (–)-(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50488) has an inverted U shape. Here, we found that the downward phase of the U50488 dose-response curve was blocked by an inhibitor of extracellular signal-regulated kinase (ERK) activation U0126. Local administration of the selective KOR agonist salvinorin A (Sal-A), also resulted in an inverted U-shaped curve; however, the downward phase was insensitive to U0126. By contrast, inhibition of c-Jun N-terminal kinase (JNK) partially blocked the downward phase of the dose-response curve to Sal-A, suggesting a role for JNK. In cultures of peripheral sensory neurons, U50488 and Sal-A inhibited adenylyl cyclase activity with similar efficacies; however, their ability to activate ERK and JNK differed. Whereas U50488 activated ERK but not JNK, Sal-A activated JNK but not ERK. Moreover, although both U50488 and Sal-A produced homologous desensitization, desensitization to U50488 was blocked by inhibition of ERK activation, whereas desensitization to Sal-A was blocked by inhibition of JNK. Substitution of an ethoxymethyl ether for the C2 position acetyl group of Sal-A reduced stimulation of JNK, prevented desensitization by ethoxymethyl ether for the C2 position acetyl group of Sal-A, and resulted in a monotonic antinociception dose-response curve. Collectively, these data demonstrate the functional selectivity of KOR ligands for signaling in peripheral sensory neurons, which results in differential effects on behavioral responses in vivo. PMID:26297384

  16. Influenza A virus infection and cigarette smoke impair bronchodilator responsiveness to β-adrenoceptor agonists in mouse lung

    Science.gov (United States)

    Donovan, Chantal; Seow, Huei Jiunn; Bourke, Jane E.

    2016-01-01

    β2-adrenoceptor agonists are the mainstay therapy for patients with asthma but their effectiveness in cigarette smoke (CS)-induced lung disease such as chronic obstructive pulmonary disease (COPD) is limited. In addition, bronchodilator efficacy of β2-adrenoceptor agonists is decreased during acute exacerbations of COPD (AECOPD), caused by respiratory viruses including influenza A. Therefore, the aim of the present study was to assess the effects of the β2-adrenoceptor agonist salbutamol (SALB) on small airway reactivity using mouse precision cut lung slices (PCLS) prepared from CS-exposed mice and from CS-exposed mice treated with influenza A virus (Mem71, H3N1). CS exposure alone reduced SALB potency and efficacy associated with decreased β2-adrenoceptor mRNA expression, and increased tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) expression. This impaired relaxation was restored by day 12 in the absence of further CS exposure. In PCLS prepared after Mem71 infection alone, responses to SALB were transient and were not well maintained. CS exposure prior to Mem71 infection almost completely abolished relaxation, although β2-adrenoceptor and TNFα and IL-1β expression were unaltered. The present study has shown decreased sensitivity to SALB after CS or a combination of CS and Mem71 occurs by different mechanisms. In addition, the PCLS technique and our models of CS and influenza infection provide a novel setting for assessment of alternative bronchodilators. PMID:27128803

  17. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels;

    2015-01-01

    A high degree of structural heterogeneity of the GABAA receptors (GABAARs) has been revealed and is reflected in multiple receptor subtypes. The subunit composition of GABAAR subtypes is believed to determine their localization relative to the synapses and adapt their functional properties...... to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown...

  18. Enhanced BRET technology for the monitoring of agonist-induced and agonist-independent interactions between GPCRs and β-arrestins

    Directory of Open Access Journals (Sweden)

    Martina eKocan

    2011-01-01

    Full Text Available The bioluminescence resonance energy transfer (BRET technique has become extremely valuable for the real-time monitoring of protein-protein interactions in live cells. This method is highly amenable to the detection of G protein-coupled receptor (GPCR interactions with proteins critical for regulating their function, such as β-arrestins. Of particular interest to endocrinologists is the ability to monitor interactions involving endocrine receptors, such as orexin receptor 2 (OxR2 or vasopressin type II receptor (V2R. The BRET method utilizes heterologous co-expression of fusion proteins linking one protein of interest (GPCR to a bioluminescent donor enzyme, a variant of Renilla luciferase, and a second protein of interest (β-arrestin to an acceptor fluorophore. If in close proximity, energy resulting from oxidation of the coelenterazine substrate by the donor will transfer to the acceptor, which in turn fluoresces. Using novel luciferase constructs, we were able to monitor interactions not detectable using less sensitive BRET combinations in the same configuration. In particular, we were able to show receptor/β-arrestin interactions in an agonist-independent manner using Rluc8-tagged mutant receptors, in contrast to when using Rluc. Therefore, the enhanced BRET methodology has not only enabled live cell compound screening as we have recently published, it now provides a new level of sensitivity for monitoring specific transient, weak or hardly detectable protein-protein complexes, including agonist-independent GPCR/β-arrestin interactions. This has important implications for the use of BRET technologies in endocrine drug discovery programs as well as academic research.

  19. Nicotine receptor partial agonists for smoking cessation

    Directory of Open Access Journals (Sweden)

    Kate Cahill

    Full Text Available BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist and reducing smoking satisfaction (acting as an antagonist. OBJECTIVES: The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist' in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialized register was in December 2011. We also searched online clinical trials registers. SELECTION CRITERIA: We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. DATA COLLECTION AND ANALYSIS: We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up. The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs, using the Mantel-Haenszel fixed-effect model. MAIN RESULTS: Two recent cytisine trials (937 people

  20. Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques.

    Science.gov (United States)

    West, Elizabeth A; DesJardin, Jacqueline T; Gale, Karen; Malkova, Ludise

    2011-10-19

    The orbitofrontal cortex (OFC) and its interactions with the basolateral amygdala (BLA) are critical for goal-directed behavior, especially for adapting to changes in reward value. Here we used a reinforcer devaluation paradigm to investigate the contribution of OFC to this behavior in four macaques. Subjects that had formed associations between objects and two different primary reinforcers (foods) were presented with choices of objects overlying the two different foods. When one of the two foods was devalued by selective satiation, the subjects shifted their choices toward the objects that represented the nonsated food reward (devaluation effect). Transient inactivation of OFC by infusions of the GABA(A) receptor agonist muscimol into area 13 blocked the devaluation effect: the monkeys did not reduce their selection of objects associated with the devalued food. This effect was observed when OFC was inactivated during both satiation and the choice test, and during the choice test only. This supports our hypothesis that OFC activity is required during the postsatiety object choice period to guide the selection of objects. This finding sharply contrasts with the role of BLA in the same devaluation process (Wellman et al., 2005). Whereas activity in BLA was required during the selective satiation procedure, it was not necessary for guiding the subsequent object choice. Our results are the first to demonstrate that transient inactivation of OFC is sufficient to disrupt the devaluation effect, and to document a role for OFC distinct from that of BLA for the conditioned reinforcer devaluation process in monkeys.

  1. MELATONIN DAN MELATONIN RECEPTOR AGONIST SEBAGAI PENANGANAN INSOMNIA PRIMER KRONIS

    Directory of Open Access Journals (Sweden)

    Ni Luh Putu Ayu Maha Iswari

    2013-04-01

    Full Text Available Melatonin is a hormone that has an important role in the mechanism of sleep. Hypnotic effects of melatonin and melatonin receptor agonist are mediated via MT1 and MT2 receptors, especially in circadian rhythm pacemaker, suprachiasmatic nucleus, which is worked on the hypothalamic sleep switch. This mechanism is quite different with the GABAergic drugs such as benzodiazepine. Agonist melatonin triggers the initiation of sleep and normalize circadian rhythms so that makes it easier to maintain sleep. The main disadvantage of melatonin in helping sleep maintenance on primary insomnia is that the half life is very short. The solution to this problem is the use of prolonged-release melatonin and melatonin receptor agonist agents such as ramelteon. Melatoninergic agonist does not cause withdrawal effects, dependence, as well as cognitive and psychomotor disorders as often happens on the use of benzodiazepine.  

  2. Nicotine inhibits potassium currents in Aplysia bag cell neurons.

    Science.gov (United States)

    White, Sean H; Sturgeon, Raymond M; Magoski, Neil S

    2016-06-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K(+) with Cs(+) Consistent with an underlying mechanism of direct inhibition of one or more K(+) channels, nicotine was found to rapidly reduce the fast-inactivating A-type K(+) current as well as both components of the delayed-rectifier K(+) current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K(+) channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time.

  3. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    Science.gov (United States)

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  4. Toll-like receptor agonists in cancer therapy

    OpenAIRE

    Adams, Sylvia

    2009-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recen...

  5. A neuropeptide FF agonist blocks the acquisition of conditioned place preference to morphine in C57Bl/6J mice.

    Science.gov (United States)

    Marchand, Stéphane; Betourne, Alexandre; Marty, Virginie; Daumas, Stéphanie; Halley, Hélène; Lassalle, Jean-Michel; Zajac, Jean-Marie; Frances, Bernard

    2006-05-01

    Neuropeptide FF behaves as an opioid-modulating peptide that seems to be involved in morphine tolerance and physical dependence. Nevertheless, the effects of neuropeptide FF agonists on the rewarding properties of morphine remain unknown. C57BL6 mice were conditioned in an unbiased balanced paradigm of conditioned place preference to study the effect of i.c.v. injections of 1DMe (D-Tyr1(NMe)Phe3]NPFF), a stable agonist of the neuropeptide FF system, on the acquisition of place conditioning by morphine or alcohol (ethanol). Morphine (10 mg/kg, i.p.) or ethanol (2 g/kg, i.p.) induced a significant place preference. Injection of 1DMe (1-20 nmol), given 10 min before the i.p. injection of the reinforcing drug during conditioning, inhibited the rewarding effect of morphine but had no effect on the rewarding effect of ethanol. However, a single injection of 1DMe given just before place preference testing was unable to inhibit the rewarding effects of morphine. By itself, 1DMe was inactive but an aversive effect of this agonist could be evidenced if the experimental procedure was biased. These results suggest that neuropeptide FF, injected during conditioning, should influence the development of rewarding effects of morphine and reinforce the hypothesis of strong inhibitory interactions between neuropeptide FF and opioids.

  6. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  7. Dynamic and Transient Infinite Elements

    CERN Document Server

    Zhao, Chongbin

    2009-01-01

    Intends to provide the theory and the application of dynamic and transient infinite elements for simulating the far fields of infinite domains involved in many of scientific and engineering problems, based on the author's own work over the years. This title is suitable for computational geoscientists, geotechnical engineers, and civil engineers.

  8. Audiovisual integration of stimulus transients

    DEFF Research Database (Denmark)

    Andersen, Tobias; Mamassian, Pascal

    2008-01-01

    leaving only unsigned stimulus transients as the basis for audiovisual integration. Facilitation of luminance detection occurred even with varying audiovisual stimulus onset asynchrony and even when the sound lagged behind the luminance change by 75 ms supporting the interpretation that perceptual...

  9. Stationary and Transient Response Statistics

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Krenk, Steen

    1982-01-01

    The covariance functions for the transient response of a linear MDOF-system due to stationary time limited excitation with an arbitrary frequency content are related directly to the covariance functions of the stationary response. For rational spectral density functions closed form expressions fo...

  10. Short-Acting Beta-Agonist Research: A Perspective

    Directory of Open Access Journals (Sweden)

    Malcolm R Sears

    2001-01-01

    Full Text Available Asthma mortality increased sharply in New Zealand in 1977, prompting a national investigation into circumstances of asthma deaths. Subsequent observations of improved asthma control in subjects withdrawn from regular beta2-agonist treatment raised the question of whether asthma severity and, therefore, mortality could relate to frequent beta-agonist use. A randomized controlled trial of regular inhaled fenoterol versus as-needed bronchodilator use showed worsened asthma control during regular treatment despite concomitant use of inhaled corticosteroids. Assessment of these findings led to delay in the publishing of the American Asthma Guidelines, which were modified to suggest caution in using beta2-agonist treatments. Simultaneously, case control studies in New Zealand suggested that prescription of fenoterol was a substantial risk factor for asthma mortality. The causal association was hotly debated, but increasing evidence pointed to an adverse effect of fenoterol on asthma severity and, hence, mortality. This was supported by dramatic decreases in both morbidity and mortality when fenoterol was effectively withdrawn from use in New Zealand. The link between worsening asthma morbidity and mortality, and the use of potent short-acting beta2-agonists fulfills the Bradford Hill criteria for attributing causality. Application of evidence from randomized, controlled trials of short-acting beta-agonist use has led to a major shift in therapy in asthma to the recommendation of as-needed use only of short-acting beta-agonists and decreased patient reliance on regular bronchodilator therapy.

  11. Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state

    Directory of Open Access Journals (Sweden)

    Ozinsky Adrian O

    2001-10-01

    Full Text Available Abstract Background Macrophages sense microorganisms through activation of members of the Toll-like receptor family, which initiate signals linked to transcription of many inflammation associated genes. In this paper we examine whether the signal from Toll-like receptors [TLRs] is sustained for as long as the ligand is present, and whether responses to different TLR agonists are additive. Results RAW264 macrophage cells were doubly-transfected with reporter genes in which the IL-12p40, ELAM or IL-6 promoter controls firefly luciferase, and the human IL-1β promoter drives renilla luciferase. The resultant stable lines provide robust assays of macrophage activation by TLR stimuli including LPS [TLR4], lipopeptide [TLR2], and bacterial DNA [TLR9], with each promoter demonstrating its own intrinsic characteristics. With each of the promoters, luciferase activity was induced over an 8 hr period, and thereafter reached a new steady state. Elevated expression required the continued presence of agonist. Sustained responses to different classes of agonist were perfectly additive. This pattern was confirmed by measuring inducible cytokine production in the same cells. While homodimerization of TLR4 mediates responses to LPS, TLR2 appears to require heterodimerization with another receptor such as TLR6. Transient expression of constitutively active forms of TLR4 or TLR2 plus TLR6 stimulated IL-12 promoter activity. The effect of LPS, a TLR4 agonist, was additive with that of TLR2/6 but not TLR4, whilst that of lipopeptide, a TLR2 agonist, was additive with TLR4 but not TLR2/6. Actions of bacterial DNA were additive with either TLR4 or TLR2/6. Conclusions These findings indicate that maximal activation by any one TLR pathway does not preclude further activation by another, suggesting that common downstream regulatory components are not limiting. Upon exposure to a TLR agonist, macrophages enter a state of sustained activation in which they continuously

  12. Activation of Transient Receptor Potential Ankyrin-1 by Insoluble Particulate Material and Association with Asthma.

    Science.gov (United States)

    Deering-Rice, Cassandra E; Shapiro, Darien; Romero, Erin G; Stockmann, Chris; Bevans, Tatjana S; Phan, Quang M; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2015-12-01

    Inhaled irritants activate transient receptor potential ankyrin-1 (TRPA1), resulting in cough, bronchoconstriction, and inflammation/edema. TRPA1 is also implicated in the pathogenesis of asthma. Our hypothesis was that particulate materials activate TRPA1 via a mechanism distinct from chemical agonists and that, in a cohort of children with asthma living in a location prone to high levels of air pollution, expression of uniquely sensitive forms of TRPA1 may correlate with reduced asthma control. Variant forms of TRPA1 were constructed by mutating residues in known functional elements and corresponding to single-nucleotide polymorphisms in functional domains. TRPA1 activity was studied in transfected HEK-293 cells using allyl-isothiocynate, a model soluble electrophilic agonist; 3,5-ditert butylphenol, a soluble nonelectrophilic agonist and a component of diesel exhaust particles; and insoluble coal fly ash (CFA) particles. The N-terminal variants R3C and R58T exhibited greater, but not additive, activity with all three agonists. The ankyrin repeat domain-4 single nucleotide polymorphisms E179K and K186N exhibited decreased response to CFA. The predicted N-linked glycosylation site residues N747A and N753A exhibited decreased responses to CFA, which were not attributable to differences in cellular localization. The pore-loop residue R919Q was comparable to wild-type, whereas N954T was inactive to soluble agonists but not CFA. These data identify roles for ankyrin domain-4, cell surface N-linked glycans, and selected pore-loop domain residues in the activation of TRPA1 by insoluble particles. Furthermore, the R3C and R58T polymorphisms correlated with reduced asthma control for some children, which suggest that TRPA1 activity may modulate asthma, particularly among individuals living in locations prone to high levels of air pollution.

  13. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release.

    Science.gov (United States)

    Shen, Dongbiao; Wang, Xiang; Li, Xinran; Zhang, Xiaoli; Yao, Zepeng; Dibble, Shannon; Dong, Xian-ping; Yu, Ting; Lieberman, Andrew P; Showalter, Hollis D; Xu, Haoxing

    2012-03-13

    Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.

  14. Identification and characterization of ZEL-H16 as a novel agonist of the histamine H3 receptor.

    Directory of Open Access Journals (Sweden)

    Ying Shi

    Full Text Available The histamine H3 receptor (H3R has been recognized as a promising target for the treatment of various central and peripheral nervous system diseases. In this study, a non-imidazole compound, ZEL-H16, was identified as a novel histamine H3 receptor agonist. ZEL-H16 was found to bind to human H3R with a Ki value of approximately 2.07 nM and 4.36 nM to rat H3R. Further characterization indicated that ZEL-H16 behaved as a partial agonist on the inhibition of forskolin-stimulated cAMP accumulation (the efficacy was 60% of that of histamine and activation of ERK1/2 signaling (the efficacy was 50% of that of histamine at H3 receptors, but acted as a full agonist just like histamin in the guinea-pig ileum contraction assay. These effects were blocked by pertussis toxin and H3 receptor specific antagonist thioperamide. ZEL-H16 showed no agonist or antagonist activities at the cloned human histamine H1, H2, and H4 receptors and other biogenic amine GPCRs in the CRE-driven reporter assay. Furthermore, our present data demonstrated that treatment of ZEL-H16 resulted in intensive H3 receptor internalization and delayed recycling to the cell surface as compared to that of control with treatment of histamine. Thus, ZEL-H16 is a novel and potent nonimidazole agonist of H3R, which might serve as a pharmacological tool for future investigations or as possible therapeutic agent of H3R.

  15. Identification and characterization of ZEL-H16 as a novel agonist of the histamine H3 receptor.

    Science.gov (United States)

    Shi, Ying; Sheng, Rong; Zhong, Tingting; Xu, Yu; Chen, Xiaopan; Yang, Dong; Sun, Yi; Yang, Fenyan; Hu, Yongzhou; Zhou, Naiming

    2012-01-01

    The histamine H3 receptor (H3R) has been recognized as a promising target for the treatment of various central and peripheral nervous system diseases. In this study, a non-imidazole compound, ZEL-H16, was identified as a novel histamine H3 receptor agonist. ZEL-H16 was found to bind to human H3R with a Ki value of approximately 2.07 nM and 4.36 nM to rat H3R. Further characterization indicated that ZEL-H16 behaved as a partial agonist on the inhibition of forskolin-stimulated cAMP accumulation (the efficacy was 60% of that of histamine) and activation of ERK1/2 signaling (the efficacy was 50% of that of histamine) at H3 receptors, but acted as a full agonist just like histamin in the guinea-pig ileum contraction assay. These effects were blocked by pertussis toxin and H3 receptor specific antagonist thioperamide. ZEL-H16 showed no agonist or antagonist activities at the cloned human histamine H1, H2, and H4 receptors and other biogenic amine GPCRs in the CRE-driven reporter assay. Furthermore, our present data demonstrated that treatment of ZEL-H16 resulted in intensive H3 receptor internalization and delayed recycling to the cell surface as compared to that of control with treatment of histamine. Thus, ZEL-H16 is a novel and potent nonimidazole agonist of H3R, which might serve as a pharmacological tool for future investigations or as possible therapeutic agent of H3R.

  16. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    Science.gov (United States)

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p histamine-GABA(A) receptor interaction on food intake in broiler cockerels.

  17. Exploring the Optical Transient Sky with the Palomar Transient Factory

    CERN Document Server

    Rau, Arne; Law, Nicholas M; Bloom, Joshua S; Ciardi, David; Djorgovski, George S; Fox, Derek B; Gal-Yam, Avishay; Grillmair, Carl C; Kasliwal, Mansi M; Nugent, Peter E; Ofek, Eran O; Quimby, Robert M; Reach, William T; Shara, Michael; Bildsten, Lars; Cenko, S Bradley; Drake, Andrew J; Filippenko, Alexei V; Helfand, David J; Helou, George; Howell, D Andrew; Poznanski, Dovi; Sullivan, Mark

    2009-01-01

    The Palomar Transient Factory (PTF) is a wide-field experiment designed to investigate the optical transient and variable sky on time scales from minutes to years. PTF uses the CFH12k mosaic camera, with a field of view of 7.9 deg^2 and a plate scale of 1 asec/pixel, mounted on the the Palomar Observatory 48-inch Samuel Oschin Telescope. The PTF operation strategy is devised to probe the existing gaps in the transient phase space and to search for theoretically predicted, but not yet detected, phenomena, such as fallback supernovae, macronovae, .Ia supernovae and the orphan afterglows of gamma-ray bursts. PTF will also discover many new members of known source classes, from cataclysmic variables in their various avatars to supernovae and active galactic nuclei, and will provide important insights into understanding galactic dynamics (through RR Lyrae stars) and the Solar system (asteroids and near-Earth objects). The lessons that can be learned from PTF will be essential for the preparation of future large sy...

  18. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties.

    Science.gov (United States)

    Meyer, E M; Tay, E T; Zoltewicz, J A; Meyers, C; King, M A; Papke, R L; De Fiebre, C M

    1998-03-01

    The goals of this study were to develop compounds that were selective and highly efficacious agonists at alpha-7 receptors, while varying in antagonist activity; and to test the hypothesis that these compounds had memory-related and neuroprotective actions associated with both agonist and antagonist alpha-7 receptor activities. Three compounds were identified; E,E-3-(cinnamylidene)anabaseine (3-CA), E,E-3-(2-methoxycinnamylidene) anabaseine (2-MeOCA) and E,E-3-(4-methoxycinnamylidene) anabaseine (4-MeOCA) each displaced [125I]alpha-bungarotoxin binding from rat brain membranes and activated rat alpha-7 receptors in a Xenopus oocyte expression system fully efficaciously. The potency series for binding and receptor activation was 2-MeOCA > 4-MeOCA = 3-CA and 2-MeOCA = 3-CA > 4-MeOCA, respectively. No compound significantly activated oocyte-expressed alpha-4beta-2 receptors. Although each cinnamylidene-anabaseine caused a long-term inhibition of alpha-7 receptors, as measured by ACh-application 5 min later, this inhibition ranged considerably, from less than 20% (3-CA) to 90% (2-MeOCA) at an identical concentration (10 microM). These compounds improved passive avoidance behavior in nucleus basalis lesioned rats, with 2-MeOCA most potent in this respect. In contrast, only 3-CA was neuroprotective against neurite loss during nerve growth factor deprivation in differentiated rat pheochromocytoma (PC12) cells. Choline, an efficacious alpha-7 agonist without antagonist activity, was also protective in this model. These results suggest that the neurite-protective action of alpha-7 receptor agonists may be more sensitive to potential long-term antagonist properties than acute behavioral actions are.

  19. Cerebellar cortical inhibition and classical eyeblink conditioning.

    Science.gov (United States)

    Bao, Shaowen; Chen, Lu; Kim, Jeansok J; Thompson, Richard F

    2002-02-01

    The cerebellum is considered a brain structure in which memories for learned motor responses (e.g., conditioned eyeblink responses) are stored. Within the cerebellum, however, the relative importance of the cortex and the deep nuclei in motor learning/memory is not entirely clear. In this study, we show that the cerebellar cortex exerts both basal and stimulus-activated inhibition to the deep nuclei. Sequential application of a gamma-aminobutyric acid type A receptor (GABA(A)R) agonist and a noncompetitive GABA(A)R antagonist allows selective blockade of stimulus-activated inhibition. By using the same sequential agonist and antagonist methods in behaving animals, we demonstrate that the conditioned response (CR) expression and timing are completely dissociable and involve different inhibitory inputs; although the basal inhibition modulates CR expression, the conditioned stimulus-activated inhibition is required for the proper timing of the CR. In addition, complete blockade of cerebellar deep nuclear GABA(A)Rs prevents CR acquisition. Together, these results suggest that different aspects of the memories for eyeblink CRs are encoded in the cerebellar cortex and the cerebellar deep nuclei.

  20. Cytisine-based nicotinic partial agonists as novel antidepressant compounds.

    Science.gov (United States)

    Mineur, Yann S; Eibl, Christoph; Young, Grace; Kochevar, Christopher; Papke, Roger L; Gündisch, Daniela; Picciotto, Marina R

    2009-04-01

    Nicotine and other nicotinic agents are thought to regulate mood in human subjects and have antidepressant-like properties in animal models. Recent studies have demonstrated that blockade of nicotinic acetylcholine receptors (nAChRs) including those containing the beta2 subunit (beta2(*)), results in antidepressant-like effects. Previous studies have shown that cytisine, a partial agonist at alpha4/beta2(*) nAChRs, and a full agonist at alpha3/beta4(*) and alpha7 nAChRs, has antidepressant-like properties in several rodent models of antidepressant efficacy; however, it is not clear whether more selective partial agonists will also be effective in these models. We tested cytisine and two derivatives, 5-bromo-cytisine (5-Br-Cyt) and 3-(pyridin-3'-yl)-cytisine (3-pyr-Cyt) for their ability to act as a partial agonist of different nAChR subtypes and to show antidepressant-like activity in C57/BL6 mice in the tail suspension, the forced-swim, and the novelty-suppressed feeding tests. 3-pyr-Cyt was a partial agonist with very low efficacy at alpha4/beta2(*) nAChRS but had no agonist effects at other nAChRs normally targeted by cytisine, and it was effective in mouse models of antidepressant efficacy. Animals showed dose-dependent antidepressant-like effects in all three behavioral paradigms. 5-Br-Cyt was not effective in behavioral tests when administered peripherally, probably because of its inability to penetrate the blood-brain barrier, because it efficiently reduced immobility in the tail suspension test when administered intraventricularly. These results suggest that novel nicotinic partial agonists may provide new possibilities for development of drugs to treat mood disorders.

  1. Romiplostim: a second-generation thrombopoietin agonist.

    Science.gov (United States)

    Cohn, Claudia S; Bussel, James B

    2009-03-01

    in bone marrow reticulin have been reported. Other TPO nonpeptide mimetics have been created by using a similar strategy with libraries of nonpeptide molecules that can stimulate TPO-dependent cell lines. Eltrombopag and AKR-501 are two drugs of this type that have shown positive results in clinical trials. In addition, antibodies that can stimulate the c-Mpl receptor are being engineered to act as potent TPO agonists. These and other drugs in preclinical development represent a new line of therapy for thrombocytopenic patients.

  2. Peroxisome proliferator-activated receptor-γ agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Feng Xu

    Full Text Available Peroxisome proliferator-activated receptor-γ (PPAR-γ has recently emerged as potential therapeutic agents for cerebral ischemia-reperfusion (I/R injury because of anti-neuronal apoptotic actions. However, whether PPAR-γ activation mediates neuronal autophagy in such conditions remains unclear. Therefore, in this study, we investigated the role of PPAR-γ agonist 15-PGJ(2 on neuronal autophagy induced by I/R. The expression of autophagic-related protein in ischemic cortex such as LC3-II, Beclin 1, cathepsin-B and LAMP1 increased significantly after cerebral I/R injury. Furthermore, increased punctate LC3 labeling and cathepsin-B staining occurred in neurons. Treatment with PPAR-γ agonist 15d-PGJ(2 decreased not only autophagic-related protein expression in ischemic cortex, but also immunoreactivity of LC3 and cathepsin-B in neurons. Autophagic inhibitor 3-methyladenine (3-MA decreased LC3-II levels, reduced the infarct volume, and mimicked some protective effect of 15d-PGJ(2 against cerebral I/R injury. These results indicate that PPAR-γ agonist 15d-PGJ(2 exerts neuroprotection by inhibiting neuronal autophagy after cerebral I/R injury. Although the molecular mechanisms underlying PPAR-γ agonist in mediating neuronal autophagy remain to be determined, neuronal autophagy may be a new target for PPAR-γ agonist treatment in cerebral I/R injury.

  3. Systemic administration of the neurotensin NTS₁-receptor agonist PD149163 improves performance on a memory task in naturally deficient male brown Norway rats.

    Science.gov (United States)

    Keiser, Ashley A; Matazel, Katelin S; Esser, Melissa K; Feifel, David; Prus, Adam J

    2014-12-01

    Agonists for the neurotensin NTS₁ receptor consistently exhibit antipsychotic effects in animal models without producing catalepsy, suggesting that NTS₁-receptor agonists may be a novel class of drugs to treat schizophrenia. Moreover, studies utilizing NTS₁ agonists have reported improvements in some aspects of cognitive functioning, including prepulse inhibition and learning procedures, which suggest an ability of NTS₁-receptor agonists to diminish neurocognitive deficits. The present study sought to assess both baseline delay-induced memory performance and the effects of NTS₁-receptor activation on learning and memory consolidation in male Long-Evans and Brown Norway rats using a delayed nonmatch-to-position task radial arm-maze task. In the absence of drugs, Brown Norway rats displayed a significant increase in spatial memory errors following 3-, 7-, and 24-hr delay, whereas Long-Evans rats exhibited an increase in spatial memory errors following only a 7-, and 24-hr delay. With Brown Norway rats, administration of PD149163 before or after an information trial significantly reduced errors during a retention trial after a 24 hr delay. Administration of the NTS(1/2)-receptor antagonist SR142948 prior to the information trial did not affect retention-trial errors. These data are consistent with previous findings that Brown Norway rats have natural cognitive deficits and that they may be useful for assessing putative antipsychotic drugs for cognitive efficacy. Moreover, the results of this study support previous findings suggesting that NTS₁-receptor agonists may improve some aspects of cognitive functioning.

  4. Transient stability and emergency control

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Comparability of emergency control strategies with different instability modes is the key issue to decide which control strategy to be implemented. This paper considers that the essential factor causing instability should be used to form a unified standard to assess the effectiveness of control strategies with different instability modes. Thus a switching control stabilization principle was proposed based on elimination of the unbalanced energy between mechanical and electrical energies of generator sets. Along this way, the difficulty of seeking a Lyapunov function was circumvented. According to the principle, an emergency control algorithm framework was established to handle transient stability assessment, control location selection and control amount evaluation. Within the framework, this paper studied instability mode transition, then proposed an algorithm based on prediction function and a new approach to normalized stability margin stemmed from static EEAC method, which can increase comparability of various control locations. The simulations on the New-England System verified the proposed emergency control method for stabilizing transient stability.

  5. Nonlinear Diffusion and Transient Osmosis

    Institute of Scientific and Technical Information of China (English)

    Akira Igarashi; Lamberto Rondon; Antonio Botrugno; Marco Pizzi

    2011-01-01

    We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.

  6. Transient Ablation of Teflon Hemispheres

    Science.gov (United States)

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  7. Nonlinear Diffusion and Transient Osmosis

    Science.gov (United States)

    Akira, Igarashi; Lamberto, Rondoni; Antonio, Botrugno; Marco, Pizzi

    2011-08-01

    We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call “transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.

  8. Computer Aided Transient Stability Analysis

    Directory of Open Access Journals (Sweden)

    Nihad M. Al-Rawi

    2007-01-01

    Full Text Available A program for handling and improving the transient stability of the Iraqi Super Grid electrical network was developed. The idea was demonstrated by applying it to the outages of the main generating units. The methodology was built upon a state of increasing power transfer through the healthy portion of network during disturbances. There were three parts concerned; the first part was the developing of the load flow program using fast decoupled method and the transient stability program using Modified Euler’s method in the step by step solution, the second part was the engagement between the two programs, the third part was the application of the new program on the Iraqi supper grid network (400 kV.

  9. Acetylcholine modulates transient outward potassium channel in acutely isolated cerebral cortical neurons of rats

    Institute of Scientific and Technical Information of China (English)

    Lanwei Cui; Tao Sun; Lihui Qu; Yurong Li; Haixia Wen

    2009-01-01

    BACKGROUND:The neuronal transient outward potassium channel has been shown to be highly associated with acetylcholine.However,the influence of acetylcholine on the transient outward potassium current in cerebral cortical neurons remains poorly understood.OBJECTIVE:To investigate acetylcholine modulation on transient outward potassium current in rat parietal cortical neurons using the whole-cell patch-clamp technique.DESIGN,TIME AND SETTING:A neuroelectrophysiology study was performed at the Department of Physiology,Harbin Medical University between January 2005 and January 2006.MATERIALS:Wistar rats were provided by the Animal Research Center,the Second Hospital of Harbin Medical University;PC-IIC patch-clamp amplifier and IBBClamp data collection analysis system were provided by Huazhong University for Science and Technology,Wuhan,China;PP-83 microelectrode puller was purchased from Narrishage,Japan.METHODS:The parietal somatosensory cortical neurons were acutely dissociated,and the modulation of acetylcholine (0.1,1,10,100 μmol/L) on transient outward potassium channel was recorded using the whole-cell patch-clamp technique.MAIN OUTCOME MEASURES:Influence of acetylcholine on transient outward potassium current,potassium channel activation,and inactivation.RESULTS:The inhibitory effect of acetylcholine on transient outward potassium current was dose- and voltage-dependent (P<0.01).Acetylcholine was found to significantly affect the activation process of transient outward potassium current,i.e.,the activation curve of transient outward potassium current was left-shifted,while the inactivation curve was shifted to hyperpolarization.Acetylcholine significantly prolonged the time constant of recovery from inactivation of transient outward potassium current (P<0.01).CONCLUSION:These results suggest that acetylcholine inhibits transient outward potassium current by regulating activation and inactivation processes of the transient outward potassium channel.

  10. Persistent memories in transient networks

    OpenAIRE

    Babichev, Andrey; Dabaghian, Yuri

    2016-01-01

    Spatial awareness in mammals is based on an internalized representation of the environment, encoded by large networks of spiking neurons. While such representations can last for a long time, the underlying neuronal network is transient: neuronal cells die every day, synaptic connections appear and disappear, the networks constantly change their architecture due to various forms of synaptic and structural plasticity. How can a network with a dynamic architecture encode a stable map of space? W...

  11. ATLAS discoveries of optical transients

    Science.gov (United States)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-09-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  12. ATLAS discoveries of optical transients

    Science.gov (United States)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-10-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  13. Developmental regulation of intracellular calcium transients during cardiomyocyte differentiation of mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Ji-dong FU; Hui-mei YU; Rong WANG; Ji LIANG; Huang-tian YANG

    2006-01-01

    Aim: To investigate the developmental regulation of intracellular Ca2+ transients, an essential event in excitation-contraction coupling, during cardiomyocyte differentiation. Methods: Using the embryonic stem (ES) cell in vitro differentiation system and pharmacological intervention, we investigated the molecular and functional regulation of Ca2+ handling proteins on the Ca2+ transients at early, intermediate and later differentiation stages of ES cell-derived cardiomyocytes (ESCM). Results: Nifedipine, a selective antagonist of L-type Ca2+ channels, totally blocked Ca2+ transients even in the condition of field-electric stimulation in ESCM at three differentiation stages. The Ca2+ transients of ESCM were also inhibited by both ryanodine [an inhibitor of ryanodine receptors (RyRs)] and 2-aminoethoxydipheylborate [2-APB, an inhibitor of inositol-1,4,5-trisphosphate receptors (IP3Rs)]. The inhibitory effect of ryanodine increased with the time of differentiation, while the effect of 2-APB decreased with the differentiation. Thapsigargin, an inhibitor of SR Ca2+-pump ATPase, inhibited Ca2+ transients equally at three differentiation stages that matched the expression profile. Na+ free solution, which inhibits Na+-Ca2+ exchanger (NCX) to extrude Ca2+ from cytosol, did not affect the amplitude of Ca2+ transients of ESCM until the latter differentiation stage, but it significantly enhanced the basal Ca2+concentration. Conclusion: The Ca2+ transients in ESCM depend on both the sarcolemmal Ca2+ entry via L-type Ca2+ channels and the SR Ca2+ release from RyRs and IP3Rs even at the early differentiation stage; but NCX seems not to regulate the peak of Ca2+ transients until the latter differentiation stage.

  14. Transient virulence of emerging pathogens.

    Science.gov (United States)

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  15. Intracerebroventricular administration of kappa-agonists induces convulsions in mice.

    Science.gov (United States)

    Bansinath, M; Ramabadran, K; Turndorf, H; Shukla, V K

    1991-07-01

    Intracerebroventricular (ICV) administration of kappa-agonists (PD 117302, U-50488H and U-69593) induced convulsions in a dose-related manner in mice. The dose at which 50% of animals convulsed (CD50) was in nmol ranges for all opioids. Among the opioids used, PD 117302 was the most potent convulsant. ICV administration of either vehicle alone or U-53445E, a non-kappa-opioid (+) enantiomer of U-50488H did not induce convulsions. The convulsive response of kappa-agonists was differentially susceptible for antagonism by naloxone and/or MR 2266. Collectively, these findings support the view that convulsions induced by kappa-agonists in mice involve stereospecific opioid receptor mechanisms. Furthermore, the convulsant effect of kappa-agonists could not be modified by pretreatment with MK-801, ketamine, muscimol or baclofen. It is concluded that kappa-opioid but not NMDA or GABA receptor mechanisms are involved in convulsions induced by kappa-agonists. These results are the first experimental evidence implicating stereospecific kappa-receptor mechanisms in opioid-induced convulsions in mice.

  16. Prejunctional and peripheral effects of the cannabinoid CB(1) receptor inverse agonist rimonabant (SR 141716).

    Science.gov (United States)

    van Diepen, Hester; Schlicker, Eberhard; Michel, Martin C

    2008-10-01

    Rimonabant is an inverse agonist specific for cannabinoid receptors and selective for their cannabinoid-1 (CB(1)) subtype. Although CB(1) receptors are more abundant in the central nervous system, rimonabant has many effects in the periphery, most of which are related to prejunctional modulation of transmitter release from autonomic nerves. However, CB(1) receptors are also expressed in, e.g., adipocytes and endothelial cells. Rimonabant inhibits numerous cardiovascular cannabinoid effects, including the decrease of blood pressure by central and peripheral (cardiac and vascular) sites of action, with the latter often being endothelium dependent. Rimonabant may also antagonize cannabinoid effects in myocardial infarction and in hypotension associated with septic shock or liver cirrhosis. In the gastrointestinal tract, rimonabant counteracts the cannabinoid-induced inhibition of secretion and motility. Although not affecting most cannabinoid effects in the airways, rimonabant counteracts inhibition of smooth-muscle contraction by cannabinoids in urogenital tissues and may interfere with embryo attachment and outgrowth of blastocysts. It inhibits cannabinoid-induced decreases of intraocular pressure. Rimonabant can inhibit proliferation of, maturation of, and energy storage by adipocytes. Among the many cannabinoid effects on hormone secretion, only some are rimonabant sensitive. The effects of rimonabant on the immune system are not fully clear, and it may inhibit or stimulate proliferation in several types of cancer. We conclude that direct effects of rimonabant on adipocytes may contribute to its clinical role in treating obesity. Other peripheral effects, many of which occur prejunctionally, may also contribute to its overall clinical profile and lead to additional indications as well adverse events.

  17. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist.

    Science.gov (United States)

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi; Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko; Neffati, Mohamed; Akita, Toru; Maejima, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Mori, Naoki; Irie, Kazuhiro; Nagao, Masaya

    2013-10-18

    6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  18. Cannabidiol is a partial agonist at dopamine D2High receptors, predicting its antipsychotic clinical dose

    Science.gov (United States)

    Seeman, P

    2016-01-01

    Although all current antipsychotics act by interfering with the action of dopamine at dopamine D2 receptors, two recent reports showed that 800 to 1000 mg of cannabidiol per day alleviated the signs and symptoms of schizophrenia, although cannabidiol is not known to act on dopamine receptors. Because these recent clinical findings may indicate an important exception to the general rule that all antipsychotics interfere with dopamine at dopamine D2 receptors, the present study examined whether cannabidiol acted directly on D2 receptors, using tritiated domperidone to label rat brain striatal D2 receptors. It was found that cannabidiol inhibited the binding of radio-domperidone with dissociation constants of 11 nm at dopamine D2High receptors and 2800 nm at dopamine D2Low receptors, in the same biphasic manner as a dopamine partial agonist antipsychotic drug such as aripiprazole. The clinical doses of cannabidiol are sufficient to occupy the functional D2High sites. it is concluded that the dopamine partial agonist action of cannabidiol may account for its clinical antipsychotic effects. PMID:27754480

  19. [Albiglutide (Eperzan): a new once-weekly agonist of glucagon-like peptide-1 receptors].

    Science.gov (United States)

    Scheen, A J

    2015-04-01

    Albiglutide (Eperzan) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors that is indicated in the treatment of type 2 diabetes. Two doses are available, 30 mg and 50 mg, to be injected subcutaneously once a week. It has been extensively evaluated in the HARMONY programme of eight large randomised controlled trials that were performed at different stages of type 2 diabetes, in comparison with placebo or an active comparator. The endocrine and metabolic effects of albiglutide are similar to those of other GLP-1 receptor agonists: stimulation of insulin secretion (incretin effect) and inhibition of glucagon secretion, both in a glucose-dependent manner, retardation of gastric emptying and increase of satiety. These effects lead to a reduction in glycated haemoglobin (HbA(1c)) levels, combined with a weight reduction. The overall tolerance profile is good. Albiglutide is currently reimbursed in Belgium after failure (HbA(1c) > 7.5%) of and in combination with a dual therapy with metformin and a sulfonylurea as well as in combination with a basal insulin (with or without oral antidiabetic drugs). To avoid hypoglycaemia, a reduction in the dose of sulfonylurea or insulin may be recommended. A once-weekly administration should increase patient's acceptance of injectable therapy and improve compliance.

  20. [N-allyl-Dmt1]-endomorphins are micro-opioid receptor antagonists lacking inverse agonist properties.

    Science.gov (United States)

    Marczak, Ewa D; Jinsmaa, Yunden; Li, Tingyou; Bryant, Sharon D; Tsuda, Yuko; Okada, Yoshio; Lazarus, Lawrence H

    2007-10-01

    [N-allyl-Dmt1]-endomorphin-1 and -2 ([N-allyl-Dmt1]-EM-1 and -2) are new selective micro-opioid receptor antagonists obtained by N-alkylation with an allyl group on the amino terminus of 2',6'-dimethyl-L-tyrosine (Dmt) derivatives. To further characterize properties of these compounds, their intrinsic activities were assessed by functional guanosine 5'-O-(3-[35S]thiotriphosphate) binding assays and forskolin-stimulated cyclic AMP accumulation in cell membranes obtained from vehicle, morphine, and ethanol-treated SK-N-SH cells and brain membranes isolated from naive and morphine-dependent mice; their mode of action was compared with naloxone or naltrexone, which both are standard nonspecific opioid-receptor antagonists. [N-allyl-Dmt1]-EM-1 and -2 were neutral antagonists under all of the experimental conditions examined, in contrast to naloxone and naltrexone, which behave as neutral antagonists only in membranes from vehicle-treated cells and mice but act as inverse agonists in membranes from morphine- and ethanol-treated cells as well as morphine-treated mice. Both endomorphin analogs inhibited the naloxone- and naltrexone-elicited withdrawal syndromes from acute morphine dependence in mice. This suggests their potential therapeutic application in the treatment of drug addiction and alcohol abuse without the adverse effects observed with inverse agonist alkaloid-derived compounds that produce severe withdrawal symptoms.

  1. Effects of the neurotensin NTS₁ receptor agonist PD149163 on visual signal detection in rats.

    Science.gov (United States)

    Hillhouse, Todd M; Prus, Adam J

    2013-12-01

    Antipsychotic drugs provide limited efficacy for cognitive impairment in schizophrenia. Recent studies have found that the neurotensin NTS1 receptor agonist and putative atypical antipsychotic drug PD149163 reverses deficits in sensory-gating and novel object recognition, suggesting that this compound may have the potential to improve cognitive functioning in schizophrenia. The present study sought to extend these investigations by evaluating the effects of PD149163 on sustained attention using a visual signal detection operant task in rats. PD149163, the atypical antipsychotic drug clozapine, and the dopamine D2/3 receptor antagonist raclopride all significantly decreased percent "hit" accuracy, while none of these compounds altered "correct rejections" (compared to vehicle control). Clozapine and raclopride significantly increased response latency, while high doses of PD149163 and raclopride significantly increased trial omissions. Nicotine, which was tested as a positive control, significantly improved overall performance in this task and did not affect response latency or trial omissions. The present findings suggest that neurotensin NTS1 receptor agonists, like antipsychotic drugs, may inhibit sustained attention in this task despite having different pharmacological mechanisms of action.

  2. Effects of PPARg agonist pioglitazone on rat hepatic fibrosis

    Institute of Scientific and Technical Information of China (English)

    Guang-Jin Yuan; Ming-Liang Zhang; Zuo-Jiong Gong

    2004-01-01

    dramatically compared with model group.CONCLUSION: PPARγ agonist pioglitazone greatly retards the progression of rat hepatic fibrosis induced by CCl4through inhibition of HSC activation and amelioration of hepatocyte necroinflammation in rats.

  3. In silico discovery of novel Retinoic Acid Receptor agonist structures

    Directory of Open Access Journals (Sweden)

    Samuels Herbert H

    2001-06-01

    Full Text Available Abstract Background Several Retinoic Acid Receptors (RAR agonists have therapeutic activity against a variety of cancer types; however, unacceptable toxicity profiles have hindered the development of drugs. RAR agonists presenting novel structural and chemical features could therefore open new avenues for the discovery of leads against breast, lung and prostate cancer or leukemia. Results We have analysed the induced fit of the active site residues upon binding of a known ligand. The derived binding site models were used to dock over 150,000 molecules in silico (or virtually to the structure of the receptor with the Internal Coordinates Mechanics (ICM program. Thirty ligand candidates were tested in vitro. Conclusions Two novel agonists resulting from the predicted receptor model were active at 50 nM. One of them displays novel structural features which may translate into the development of new ligands for cancer therapy.

  4. Compulsive eating and weight gain related to dopamine agonist use.

    Science.gov (United States)

    Nirenberg, Melissa J; Waters, Cheryl

    2006-04-01

    Dopamine agonists have been implicated in causing compulsive behaviors in patients with Parkinson's disease (PD). These have included gambling, hypersexuality, hobbyism, and other repetitive, purposeless behaviors ("punding"). In this report, we describe 7 patients in whom compulsive eating developed in the context of pramipexole use. All of the affected patients had significant, undesired weight gain; 4 had other comorbid compulsive behaviors. In the 5 patients who lowered the dose of pramipexole or discontinued dopamine agonist treatment, the behavior remitted and no further weight gain occurred. Physicians should be aware that compulsive eating resulting in significant weight gain may occur in PD as a side-effect of dopamine agonist medications such as pramipexole. Given the known risks of the associated weight gain and obesity, further investigation is warranted.

  5. Principles of agonist recognition in Cys-loop receptors

    Directory of Open Access Journals (Sweden)

    Timothy eLynagh

    2014-04-01

    Full Text Available Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine and GABA. After the term chemoreceptor emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands.

  6. Hippocampal CA1 Ripples as Inhibitory Transients.

    Directory of Open Access Journals (Sweden)

    Paola Malerba

    2016-04-01

    Full Text Available Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  7. Hippocampal CA1 Ripples as Inhibitory Transients.

    Science.gov (United States)

    Malerba, Paola; Krishnan, Giri P; Fellous, Jean-Marc; Bazhenov, Maxim

    2016-04-01

    Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  8. Neural inhibition enables selection during language processing.

    Science.gov (United States)

    Snyder, Hannah R; Hutchison, Natalie; Nyhus, Erika; Curran, Tim; Banich, Marie T; O'Reilly, Randall C; Munakata, Yuko

    2010-09-21

    Whether grocery shopping or choosing words to express a thought, selecting between options can be challenging, especially for people with anxiety. We investigate the neural mechanisms supporting selection during language processing and its breakdown in anxiety. Our neural network simulations demonstrate a critical role for competitive, inhibitory dynamics supported by GABAergic interneurons. As predicted by our model, we find that anxiety (associated with reduced neural inhibition) impairs selection among options and associated prefrontal cortical activity, even in a simple, nonaffective verb-generation task, and the GABA agonist midazolam (which increases neural inhibition) improves selection, whereas retrieval from semantic memory is unaffected when selection demands are low. Neural inhibition is key to choosing our words.

  9. TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts.

    Science.gov (United States)

    Damiano, Vincenzo; Caputo, Rosa; Garofalo, Sonia; Bianco, Roberto; Rosa, Roberta; Merola, Gerardina; Gelardi, Teresa; Racioppi, Luigi; Fontanini, Gabriella; De Placido, Sabino; Kandimalla, Ekambar R; Agrawal, Sudhir; Ciardiello, Fortunato; Tortora, Giampaolo

    2007-07-24

    Synthetic agonists of Toll-like receptor 9 (TLR9), a class of agents that induce specific immune response, exhibit antitumor activity and are currently being investigated in cancer patients. Intriguingly, their mechanisms of action on tumor growth and angiogenesis are still incompletely understood. We recently discovered that a synthetic agonist of TLR9, immune modulatory oligonucleotide (IMO), acts by impairing epidermal growth factor receptor (EGFR) signaling and potently synergizes with anti-EGFR antibody cetuximab in GEO human colon cancer xenografts, whereas it is ineffective in VEGF-overexpressing cetuximab-resistant GEO cetuximab-resistant (GEO-CR) tumors. VEGF is activated by EGFR, and its overexpression causes resistance to EGFR inhibitors. Therefore, we used IMO and the anti-VEGF antibody bevacizumab as tools to study IMO's role on EGFR and angiogenesis and to explore its therapeutic potential in GEO, LS174T, and GEO-CR cancer xenografts. We found that IMO enhances the antibody-dependent cell-mediated cytotoxicity (ADCC) activity of cetuximab, that bevacizumab has no ADCC, and IMO is unable to enhance it. Nevertheless, the IMO-plus-bevacizumab combination synergistically inhibits the growth of GEO and LS174T as well as of GEO-CR tumors, preceded by inhibition of signaling protein expression, microvessel formation, and human, but not murine, VEGF secretion. Moreover, IMO inhibited the growth, adhesion, migration, and capillary formation of VEGF-stimulated endothelial cells. The antitumor activity was irrespective of the TLR9 expression on tumor cells. These studies demonstrate that synthetic agonists of TLR9 interfere with growth and angiogenesis also by EGFR- and ADCC-independent mechanisms affecting endothelial cell functions and provide a strong rationale to combine IMO with bevacizumab and EGFR inhibitory drugs in colon cancer patients.

  10. Treatment potential of the GLP-1 receptor agonists in type 2 diabetes mellitus: a review.

    Science.gov (United States)

    Østergaard, L; Frandsen, Christian S; Madsbad, S

    2016-01-01

    Over the last decade, the discovery of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) has increased the treatment options for patients with type 2 diabetes mellitus (T2DM). GLP-1 RAs mimic the effects of native GLP-1, which increases insulin secretion, inhibits glucagon secretion, increases satiety and slows gastric emptying. This review evaluates the phase III trials for all approved GLP-1 RAs and reports that all GLP-1 RAs decrease HbA1c, fasting plasma glucose, and lead to a reduction in body weight in the majority of trials. The most common adverse events are nausea and other gastrointestinal discomfort, while hypoglycaemia is rarely reported when GLP-1 RAs not are combined with sulfonylurea or insulin. Treatment options in the near future will include co-formulations of basal insulin and a GLP-1 RA.

  11. Transcriptional analysis of antiviral small molecule therapeutics as agonists of the RLR pathway

    Directory of Open Access Journals (Sweden)

    R.R. Green

    2016-03-01

    Full Text Available The recognition of pathogen associated molecular patterns (PAMPs by pattern recognition receptors (PRR during viral infection initiates the induction of antiviral signaling pathways, including activation of the Interferon Regulator Factor 3 (IRF3. We identified small molecule compounds that activate IRF3 through MAVS, thereby inhibiting infection by viruses of the families Flaviviridae (West Nile virus, dengue virus and hepatitis C virus, Filoviridae (Ebola virus, Orthomyxoviridae (influenza A virus, Arenaviridae (Lassa virus and Paramyxoviridae (respiratory syncytial virus, Nipah virus (1. In this study, we tested a lead compound along with medicinal chemistry-derived analogs to compare the gene transcriptional profiles induced by these molecules to that of other known MAVS-dependent IRF3 agonists. Transcriptional analysis of these small molecules revealed the induction of specific antiviral genes and identified a novel module of host driven immune regulated genes that suppress infection of a range of RNA viruses. Microarray data can be found in Gene Expression Omnibus (GSE74047.

  12. Effects of hormone agonists on Sf9 cells, proliferation and cell cycle arrest.

    Science.gov (United States)

    Giraudo, Maeva; Califano, Jérôme; Hilliou, Frédérique; Tran, Trang; Taquet, Nathalie; Feyereisen, René; Le Goff, Gaëlle

    2011-01-01

    Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells.

  13. Effects of hormone agonists on Sf9 cells, proliferation and cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Maeva Giraudo

    Full Text Available Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells.

  14. Treatment of type 2 diabetes, lifestyle, GLP1 agonists and DPP4 inhibitors

    Institute of Scientific and Technical Information of China (English)

    Gerald; H; Tomkin

    2014-01-01

    In recent years the treatment focus for type 2 diabetes has shifted to prevention by lifestyle change and to more aggressive reduction of blood sugars during the early stage of treatment. Weight reduction is an important goal for many people with type 2 diabetes.Bariatric surgery is no longer considered a last resort treatment. Glucagon-like peptide-1 agonists given by injection are emerging as a useful treatment since they not only lower blood sugar but are associated with a modest weight reduction. The role of the oral dipeptidyl peptidase 4 inhibitors is emerging as second line treatment ahead of sulphonylureas due to a possible beneficial effect on the beta cell and weight neutrality.Drugs which inhibit glucose re-absorption in the kidney,sodium/glucose co-transport 2 inhibitors, may have a role in the treatment of diabetes. Insulin treatment still remains the cornerstone of treatment in many patients with type 2 diabetes.

  15. Glucagon-like peptide 1 receptor agonist (GLP-1 RA)

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Hansen, Tine Willum; Goetze, Jens Peter;

    2015-01-01

    AIMS: In a short-term study including 31 patients with type 2 diabetes, glucagon-like peptide 1 receptor agonist (GLP-1 RA) treatment was associated with a significant reversible decline in GFR. Twenty-three patients re-initiated GLP-1 RA treatment after the primary study, and the aim was to inve......AIMS: In a short-term study including 31 patients with type 2 diabetes, glucagon-like peptide 1 receptor agonist (GLP-1 RA) treatment was associated with a significant reversible decline in GFR. Twenty-three patients re-initiated GLP-1 RA treatment after the primary study, and the aim...

  16. Partial agonistic action of endomorphins in the mouse spinal cord.

    Science.gov (United States)

    Mizoguchi, H; Wu, H E; Narita, M

    2001-09-07

    The partial agonistic properties of endogenous mu-opioid peptides endomorphin-1 and endomorphin-2 for G-protein activation were determined in the mouse spinal cord, monitoring the increases in guanosine-5'-o-(3-[35S]thio)triphosphate binding. The G-protein activation induced by endogenous opioid peptide beta-endorphin in the spinal cord was significantly, but partially, attenuated by co-incubation with endomorphin-1 or endomorphin-2. The data indicates that endomorphin-1 and endomorphin-2 are endogenous partial agonists for mu-opioid receptor in the mouse spinal cord.

  17. Metastable Packaging For Transient Electronics

    Science.gov (United States)

    2014-09-01

    Degradation of Resistors The  blue  curve represents a film containing MBTT while the green curve represents a film containing  TPST. Films are similar...at 25 °C after 38 h.  Degradation experiments were performed with free-standing PPA and poly(o-(α- methyl )benzaldehyde (PMBA) films embedded with...preparation and fabrication of transient electronics on robust PPA and POS films were optimized. Three degradation triggers -- direct activation by

  18. Transient eddy current flow metering

    Science.gov (United States)

    Forbriger, J.; Stefani, F.

    2015-10-01

    Measuring local velocities or entire flow rates in liquid metals or semiconductor melts is a notorious problem in many industrial applications, including metal casting and silicon crystal growth. We present a new variant of an old technique which relies on the continuous tracking of a flow-advected transient eddy current that is induced by a pulsed external magnetic field. This calibration-free method is validated by applying it to the velocity of a spinning disk made of aluminum. First tests at a rig with a flow of liquid GaInSn are also presented.

  19. Transient eddy current flow metering

    CERN Document Server

    Forbriger, Jan

    2015-01-01

    Measuring local velocities or entire flow rates in liquid metals or semiconductor melts is a notorious problem in many industrial applications, including metal casting and silicon crystal growth. We present a new variant of an old technique which relies on the continuous tracking of a flow-advected transient eddy current that is induced by a pulsed external magnetic field. This calibration-free method is validated by applying it to the velocity of a spinning disk made of aluminum. First tests at a rig with a flow of liquid GaInSn are also presented.

  20. Critical states of transient chaos

    CERN Document Server

    Kaufmann, Z; Szépfalusy, P

    1999-01-01

    One-dimensional maps exhibiting transient chaos and defined on two preimages of the unit interval [0,1] are investigated. It is shown that such maps have continuously many conditionally invariant measures $\\mu_{\\sigma}$ scaling at the fixed point at $x=0$ as $x^{\\sigma}$, but smooth elsewhere. Here $\\sigma$ should be smaller than a critical value $\\sigma_{c}$ that is related to the spectral properties of the Frobenius-Perron operator. The corresponding natural measures are proven to be entirely concentrated on the fixed point.

  1. of Transient Flows in Turbomachines

    Directory of Open Access Journals (Sweden)

    Alexander Wiedermann

    1999-01-01

    Full Text Available This paper focuses on development and validation of a viscous solver for the computation of unsteady flows in turbomachinery blade rows and stages consisting of rotors and stators. The code has been evolved from steady-state single flow solvers developed by Wiedermann based on time-marching finite difference schemes. A two-equation eddy viscosity model is applied, and the wall boundary conditions are determined by the y+-distance of the first grid line away from the wall. For the solution of transient flow fields the original time-stepping algorithm is replaced by a time-accurate scheme.

  2. The effect of Dopamine receptor agonists on twich response of Guinea-pig ileum longitudinal muscle and its relation to Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Keshavarz M

    1998-09-01

    Full Text Available In this study the effects of bromocriptine and apomorphine (dopamine receptor agonists on electrical field induced twitch response of longitudinal muscle of guinea-pig illeum was investigated. Bromocriptine and apomorphine dose dependently inhibited illeal contraction. IC50 for this inhibitory effects were 6.22±0.645×10^-7 M and 5.48±0.647×10^-6 M, respectively. sulpiride (a specific D2 dopamine receptor antagonist with concentration of 10^-5 M inhibited the effects of these agonists. Yohimbine (an ?2 adrenergic receptor antagonist only blocked the inhibitory effect of bromocriptine but failed to block apomorphine inhibitory effects. L-NAME (nitric oxide synthetase inhibitor with concentration of 10^-3 M blocked the effects of bromocriptine and apomorphine. These data suggest that there is inhibitory presynaptic dopamine receptors in cholinergic terminals of guinea-pig ileum and its function is related to formation of nitric oxide.

  3. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Science.gov (United States)

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes.

  4. Pyrrolo- and pyridomorphinans: non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists.

    Science.gov (United States)

    Kumar, V; Clark, M J; Traynor, J R; Lewis, J W; Husbands, S M

    2014-08-01

    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse.

  5. Transient effects in Herschel/PACS spectroscopy

    Science.gov (United States)

    Fadda, Dario; Jacobson, Jeffery D.; Appleton, Philip N.

    2016-10-01

    Context. The Ge:Ga detectors used in the PACS spectrograph onboard the Herschel space telescope react to changes of the incident flux with a certain delay. This generates transient effects on the resulting signal which can be important and last for up to an hour. Aims: The paper presents a study of the effects of transients on the detected signal and proposes methods to mitigate them especially in the case of the unchopped mode. Methods: Since transients can arise from a variety of causes, we classified them in three main categories: transients caused by sudden variations of the continuum due to the observational mode used; transients caused by cosmic ray impacts on the detectors; transients caused by a continuous smooth variation of the continuum during a wavelength scan. We propose a method to disentangle these effects and treat them separately. In particular, we show that a linear combination of three exponential functions is needed to fit the response variation of the detectors during a transient. An algorithm to detect, fit, and correct transient effects is presented. Results: The solution proposed to correct the signal for the effects of transients substantially improves the quality of the final reduction with respect to the standard methods used for archival reduction in the cases where transient effects are most pronounced. Conclusions: The programs developed to implement the corrections are offered through two new interactive data reduction pipelines in the latest releases of the Herschel Interactive Processing Environment.

  6. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R. (Univ. of Michigan Medical School, Ann Arbor (USA))

    1990-08-01

    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which represented approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.

  7. Glucocorticosteroids and beta(2)-Adrenoceptor Agonists Synergize to Inhibit Airway Smooth Muscle Remodeling

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Pehlic, Adnan; Mariani, Raissa; Bos, I. Sophie T.; Meurs, Herman; Zaagsma, Johan

    2012-01-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to increased airway narrowing in asthma. Increased ASM mass may be caused by exposure to mitogens, including platelet-derived growth factor (PDGF) and collagen type I, which induce a proliferative,

  8. The Zwicky Transient Facility Camera

    Science.gov (United States)

    Dekany, Richard; Smith, Roger M.; Belicki, Justin; Delacroix, Alexandre; Duggan, Gina; Feeney, Michael; Hale, David; Kaye, Stephen; Milburn, Jennifer; Murphy, Patrick; Porter, Michael; Reiley, Daniel J.; Riddle, Reed L.; Rodriguez, Hector; Bellm, Eric C.

    2016-08-01

    The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.

  9. Transient stability and emergency control

    Institute of Scientific and Technical Information of China (English)

    ZHANG XueMin; MEI ShengWei; WU ShengYu

    2009-01-01

    Comparability of emergency control strategies with different instability modes is the key issue to de-cide which control strategy to be implemented. This paper considers that the essential factor causing instability should be used to form a unified standard to assess the effectiveness of control strategies with different instability modes. Thus a switching control stabilization principle was proposed based on elimination of the unbalanced energy between mechanical and electrical energies of generator sets. Along this way, the difficulty of seeking a Lyapunov function was circumvented. According to the prin-ciple, an emergency control algorithm framework was established to handle transient stability as-sessment, control location selection and control amount evaluation. Within the framework, this paper studied instability mode transition, then proposed an algorithm based on prediction function and a new approach to normalized stability margin stemmed from static EEAC method, which can increase com-parability of various control locations. The simulations on the New-England System verified the pro-posed emergency control method for stabilizing transient stability.

  10. Special issue on transient plasmas

    Science.gov (United States)

    Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki

    2015-11-01

    This special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is dedicated to the "spectroscopy of transient plasmas" covering plasma conditions produced by a range of pulsed laboratory sources including short and long pulse lasers, pulsed power devices, and free electron lasers (FELs). The full range of plasma spectroscopy up to high energy bremsstrahlung radiation, including line broadening analysis for application to data recorded with the ChemCam instrument on the Mars Science Laboratory rover Curiosity, is covered. This issue is timely as advances in optical lasers and x-ray FELs (XFEL) are enabling transient plasma to be probed at higher energies and shorter durations than ever before. New XFEL facilities being commissioned in Europe and Asia are adding to those operating in the US and Japan and the ELI high power laser project in Europe, due to open this year, will provide short pulse lasers of unprecedented power. This special issue represents a snapshot of the theoretical and experimental research in dense plasmas, electron kinetics, laser-induced breakdown spectroscopy of low temperature plasmas, inertial confinement fusion and non-equilibrium atomic physics using spectroscopy to diagnose plasmas produced by optical lasers, XFELs and pulsed-power machines.

  11. Melatonin agonists for treatment of sleep and depressive disorders

    Directory of Open Access Journals (Sweden)

    Seithikurippu R. Pandi-Perumal

    2011-06-01

    Full Text Available Melatonin the hormone secreted by the pineal gland has been effective in improving sleep both in normal sleepers and insomniacs and has been used successfully in treating sleep and circadian rhythm sleep disorders. The lack of consistency in the reports published by the authors is attributed to the differential bioavailabilty and short half-life of melatonin. Sleep disturbances are also prominent features of depressive disorders. To overcome this problem, melatonergic agonists with sleep promoting properties have been introduced in clinical practice. Ramelteon, the MT1/ MT2 melatonergic agonist, has been used in a large number of clinical trials involving chronic insomniacs and has been found effective in improving the total sleep time and sleep efficiency of insomniacs and has not manifested serious adverse effects. The development of another MT1/MT2 melatonergic agonist agomelatine with antagonsim to 5-HT2c serotonin receptors has been found useful not only in treating sleep problems of patients but also as a first line antidepressant with earlier onset of actions in patients with major depressive disorder. An agonist for MT3 melatonin receptor has also been found effective in animal models of depression. [J Exp Integr Med 2011; 1(3.000: 149-158

  12. Pharmacophore-driven identification of PPARγ agonists from natural sources

    DEFF Research Database (Denmark)

    Petersen, R. K.; Christensen, Kathrine Bisgaard; Assimopoulou, A. N.;

    2011-01-01

    In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk...

  13. Use of ß-adrenergic agonists in hybrid catfish

    Science.gov (United States)

    Ractopamine hydrochloride (RH) is a potent ß-adrenergic agonist that has been used in some species of fish to improve growth performance and dress out characteristics. While this metabolic modifier has been shown to have positive effects on growth of fish, little research has focused on the mechani...

  14. Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonists

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Due-Hansen, Maria E; Urban, Christian;

    2012-01-01

    FFA1 (GPR40) is a new target for treatment of type 2 diabetes. We recently identified the potent FFA1 agonist TUG-469 (5). Inspired by the structurally related TAK-875, we explored the effects of a mesylpropoxy appendage on 5. The appendage significantly lowers lipophilicity and improves metaboli...

  15. Partial Agonists Activate PPARgamma Using a Helix 12 Independent Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Bruning, J.B.; Chalmers, M.J.; Prasad, S.; Bushby, S.A.; Kamenecka, T.A.; He, Y.; Nettles, K.W.; Griffin, P.R.

    2009-05-28

    Binding to helix 12 of the ligand-binding domain of PPAR{gamma} is required for full agonist activity. Previously, the degree of stabilization of the activation function 2 (AF-2) surface was thought to correlate with the degree of agonism and transactivation. To examine this mechanism, we probed structural dynamics of PPAR{gamma} with agonists that induced graded transcriptional responses. Here we present crystal structures and amide H/D exchange (HDX) kinetics for six of these complexes. Amide HDX revealed each ligand induced unique changes to the dynamics of the ligand-binding domain (LBD). Full agonists stabilized helix 12, whereas intermediate and partial agonists did not at all, and rather differentially stabilized other regions of the binding pocket. The gradient of PPAR{gamma} transactivation cannot be accounted for solely through changes to the dynamics of AF-2. Thus, our understanding of allosteric signaling must be extended beyond the idea of a dynamic helix 12 acting as a molecular switch.

  16. Principles of agonist recognition in Cys-loop receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Pless, Stephan Alexander

    2014-01-01

    diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework...

  17. THE EFFECT OF INTRASTRIATAL APPLICATION OF DIRECTLY AND INDIRECTLY ACTING DOPAMINE AGONISTS AND ANTAGONISTS ON THE INVIVO RELEASE OF ACETYLCHOLINE MEASURED BY BRAIN MICRODIALYSIS - THE IMPORTANCE OF THE POSTSURGERY INTERVAL

    NARCIS (Netherlands)

    DEBOER, P; DAMSMA, G; SCHRAM, Q; STOOF, JC; ZAAGSMA, J; WESTERINK, BHC

    1992-01-01

    The effect of intrastriatal application of D-1, D-2 and indirect dopaminergic drugs on the release of striatal acetylcholine as a function of the post-implantation intervals was studied using in vivo microdialysis. The dopamine D-2 agonists LY 171555 and (-)N0437 inhibited the release of striatal ac

  18. Effects of intracellular alkalinization on resting and agonist-induced vascular tone.

    Science.gov (United States)

    Danthuluri, N R; Deth, R C

    1989-03-01

    To evaluate the influence of intracellular alkalinization on basal and agonist-induced vascular tone, we studied the effect of NH4Cl on rat aorta. NH4Cl induced a gradually developing contraction in a dose-dependent manner. Although the contractile response to 20 mM NH4Cl was associated with a latent period (LP) of 23.4 +/- 2.8 min, intracellular pH (pHi) measurements in cultured rat aortic smooth muscle cells showed that NH4Cl-induced intracellular alkalinization was immediate and transient, returning to basal pHi levels in about 30-35 min. Agents that elevate Ca2+, such as A23187 and high KCl, significantly reduced the LP associated with 20 mM NH4Cl-induced contraction. NH4Cl-induced contractions were sensitive to extracellular Ca2+ removal and to the addition of forskolin (1 microM); however, NH4Cl by itself did not cause Ca2+-influx as shown by 45Ca-uptake studies. Addition of 20 mM NH4Cl to precontracted tissues resulted in a transient relaxation, which was complete in approximately 10 min, followed by a contraction above the original level of tone. NH4Cl pretreatment caused time-dependent alterations in both the rapid and slow phases of phenylephrine and angiotensin II contractions. Rapid-phase of phenylephrine and angiotensin II contractions. Rapid-phase responses were diminished at shorter NH4Cl incubation times (10 min), whereas slow-phase response was augmented after a longer incubation (20 min). Overall, the vasorelaxant and vasoconstrictor effects induced by NH4Cl suggest a complex relationship between intracellular alkalinization and arterial contractility.

  19. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models.

    Science.gov (United States)

    Vincenzi, Fabrizio; Targa, Martina; Corciulo, Carmen; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania; Saponaro, Giulia; Baraldi, Pier Giovanni; Borea, Pier Andrea; Varani, Katia

    2013-06-01

    Cannabinoid CB(2) receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory, neuropathic, and bone cancer pain. In this study the effect of a novel CB(2)agonist (MT178) was evaluated in different animal models of pain. First of all, in vitro competition binding experiments performed on rat, mouse, or human CB receptors revealed a high affinity, selectivity, and potency of MT178. The analgesic properties of the novel CB(2) agonist were evaluated in various in vivo experiments, such as writhing and formalin assays, showing a good efficacy comparable with that produced by the nonselective CB agonist WIN 55,212-2. A dose-dependent antiallodynic effect of the novel CB(2) compound in the streptozotocin-induced diabetic neuropathy was found. In a bone cancer pain model and in the acid-induced muscle pain model, MT178 was able to significantly reduce mechanical hyperalgesia in a dose-related manner. Notably, MT178 failed to provoke locomotor disturbance and catalepsy, which were observed following the administration of WIN 55,212-2. CB(2) receptor mechanism of action was investigated in dorsal root ganglia where MT178 mediated a reduction of [(3)H]-d-aspartate release. MT178 was also able to inhibit capsaicin-induced substance P release and NF-κB activation. These results demonstrate that systemic administration of MT178 produced a robust analgesia in different pain models via CB(2) receptors, providing an interesting approach to analgesic therapy in inflammatory and chronic pain without CB(1)-mediated central side effects.

  20. Estrogen receptor beta-selective agonists stimulate calcium oscillations in human and mouse embryonic stem cell-derived neurons.

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    Full Text Available Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERalpha and ERbeta on calcium oscillations in neurons derived from human (hES and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERbeta, but not ERalpha. The non-selective ER agonist 17beta-estradiol (E(2 rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERalpha agonist 4,4',4''-(4-Propyl-[1H]-pyrazole-1,3,5-triyltrisphenol (PPT. In contrast, the selective ERbeta agonists, 2,3-bis(4-Hydroxyphenyl-propionitrile (DPN, MF101, and 2-(3-fluoro-4-hydroxyphenyl-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041 stimulated calcium oscillations similar to E(2. The ERbeta agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERbeta activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERbeta signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds.

  1. The GABAB receptor agonist, baclofen, contributes to three distinct varieties of amnesia in the human brain - A detailed case report.

    Science.gov (United States)

    Zeman, Adam; Hoefeijzers, Serge; Milton, Fraser; Dewar, Michaela; Carr, Melanie; Streatfield, Claire

    2016-01-01

    We describe a patient in whom long-term, therapeutic infusion of the selective gamma-amino-butyric acid type B (GABAB) receptor agonist, baclofen, into the cerebrospinal fluid (CSF) gave rise to three distinct varieties of memory impairment: i) repeated, short periods of severe global amnesia, ii) accelerated long-term forgetting (ALF), evident over intervals of days and iii) a loss of established autobiographical memories. This pattern of impairment has been reported in patients with temporal lobe epilepsy (TLE), in particular the subtype of Transient Epileptic Amnesia (TEA). The amnesic episodes and accelerated forgetting remitted on withdrawal of baclofen, while the autobiographical amnesia (AbA) persisted. This exceptional case highlights the occurrence of 'non-standard' forms of human amnesia, reflecting the biological complexity of memory processes. It suggests a role for GABAB signalling in the modulation of human memory over multiple time-scales and hints at its involvement in 'epileptic amnesia'.

  2. Non-glycaemic effects mediated via GLP-1 receptor agonists and the potential for exploiting these for therapeutic benefit

    DEFF Research Database (Denmark)

    Vilsbøll, T; Garber, A J

    2012-01-01

    The glucagon-like peptide-1 receptor agonists (GLP-1 RAs) liraglutide and exenatide can improve glycaemic control by stimulating insulin release through pancreatic β-cells in a glucose-dependent manner. GLP-1 receptors are not restricted to the pancreas; therefore, GLP-1 RAs cause additional non-...... for GLP-1 RAs in the cardiovascular and central nervous systems has been suggested from animal studies and short-term clinical trials. These effects and other safety aspects of GLP-1 therapy are currently being investigated in ongoing long-term clinical studies....... are affected by β-cell dysfunction, obesity and hypertension. Transient gastrointestinal adverse events, such as nausea and diarrhoea, are also common. To improve gastrointestinal tolerability, an incremental dosing approach is used with liraglutide and exenatide twice daily. A potential protective role...

  3. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist

    Energy Technology Data Exchange (ETDEWEB)

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko [Alliance for Research on North Africa (ARENA), University of Tsukuba, Ibaraki 305-8572 (Japan); Faculty of Life and Environment, University of Tsukuba, Ibaraki 305-8572 (Japan); Neffati, Mohamed [Arid Zone Research Institute (IRA), Médenine 4119 (Tunisia); Akita, Toru; Maejima, Kazuhiro [Nippon Shinyaku CO., LTD., Kyoto 601-8550 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Mori, Naoki; Irie, Kazuhiro [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)

    2013-10-18

    Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPARγ agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  4. Preventive and treatment value of dopamine receptor agonists in ovarian hyperstimulation syndrome%多巴胺受体激动剂在卵巢过度刺激综合征的防治价值

    Institute of Scientific and Technical Information of China (English)

    杨蕊; 马彩虹

    2012-01-01

    The vascular endothelial growth factor (VEGF) is a crucial element for increased vascular permeability which determines ovarian hyperstimulation syndrome (OHSS). Dopamine receptor agonists can selectively inhibit VEGF-induced vascular permeability without interfering with angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) phosphorylation reduction seems to he associated with this effect. The preventive use of dopamine receptor agonists reduces the risk of OHSS in women after ovarian stimulation for in vitro fertilization (IVF). Statistically, evidence of their preventive effect on the severe OHSS is not as clear as on the moderate OHSS. The use of dopamine receptor agonists does not influence the outcome of IVF cycles. The occurrence of obstetric or neonatal complications is similar with that in control groups. The oral administration of cahergoline is the best studied dopamine receptor agonists regimen in the prevention of OHSS. High-dose quinagolide is rarely applied due to its intolerable side effects. Oral bromocriptine can also be occasionally associated with severe gastric discomfort, although less frequently than with quinagoline. Rectal bromocriptine is used with more and more frequency because of its safety, but it still requires further study. Although published data suggest that dopamine agonists also improve the clinical evolution of established OHSS, no randomized controlled trials have been reported to confirm their effectiveness. The use of dopamine receptor agonists may be combined with with other strategies to prevent or control OHSS, such as GnRH antagonists, in order to improve its efficacy.

  5. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    Science.gov (United States)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  6. Effects of the 5-HT(4) receptor agonist RS67333 and paroxetine on hippocampal extracellular 5-HT levels

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Knudsen, Gitte Moos; Sharp, Trevor

    2010-01-01

    The 5-HT(4) receptor modulates activity of serotonergic neurons and is a new potential target for antidepressant treatment. This microdialysis study evaluated the effect of the 5-HT(4) receptor agonist, RS67333, on extracellular serotonin (5-hydroxytryptamine, 5-HT) and 5-HIAA levels in rat ventral...... on extracellular 5-HT or 5-HIAA levels, while acute paroxetine (0.5mg/kg i.v.) increased 5-HT levels by 299+/-16% and decreased 5-HIAA levels by 25+/-4%. Administration of RS67333 80 min after paroxetine caused an additional transient increase in 5-HT levels (to 398+/-52% of baseline). Subchronic RS67333...... administration (1.5mg/kg i.p.) increased basal 5-HT levels by 73+/-15% and decreased 5-HIAA levels by 27+/-13%. In conclusion, the 5-HT(4) receptor agonist RS67333 augmented the acute effect of paroxetine on extracellular 5-HT levels in the ventral hippocampus, and after 3 days increased basal hippocampal 5-HT...

  7. Changes in rat uterine and cervical phospholipase A2 activity following progesterone agonist or antagonist administration at term.

    Science.gov (United States)

    Kurusu, Shiro; Ishii, Shizuka; Kawaminami, Mitsumori

    2007-04-01

    Our previous study revealed that a fall in plasma progesterone (P(4)) level was associated with a transient increase in cytosolic phospholipase A(2) (PLA(2)) activity and prostaglandin F(2)alpha level in the rat uterus and cervix during natural parturition. This study determined the changes in the PLA(2) activities during modulated occurrence of delivery by P(4) antagonist or agonist late in pregnancy. In rats undergoing P(4) antagonist-induced preterm delivery, the PLA(2) activities of both uterine and cervical cytosol significantly decreased 12 h after the challenge and tended to be attenuated within 72 h. The plasma P(4) level altered in a similar pattern. Blockade of delivery by chronic treatment with P(4) agonist was not associated with changes in uterine PLA(2) activity compared with that in normally delivering rats, although there was a persistent rise in cervical PLA(2) activity. The obtained data indicates that the PLA(2) activities in rat uterine and cervical cytosol are not regulated solely by P(4) and that delivery can occur without activation of this enzyme.

  8. Identification of Transient and Permanent Faults

    Institute of Scientific and Technical Information of China (English)

    李幼仪; 董新洲; 孙元章

    2003-01-01

    A new algorithm was developed for arcing fault detection based on high-frequency current transients analyzed with wavelet transforms to avoid automatic reclosing on permanent faults. The characteristics of arc currents during transient faults were investigated. The current curves of transient and permanent faults are quite similar since current variation from the fault arc is much less than the voltage variation. However, the fault current details are quite different because of the arc extinguishing and reigniting. Dyadic wavelet transforms were used to identify the current variation since wavelet transform has time-frequency localization ability. Many electric magnetic transient program (EMTP) simulations have verified the feasibility of the algorithm.

  9. Transient spirals as superposed instabilities

    CERN Document Server

    Sellwood, J A

    2014-01-01

    We present evidence that recurrent spiral activity, long manifested in simulations of disk galaxies, results from the super-position of a few transient spiral modes. Each mode lasts between five and ten rotations at its corotation radius where its amplitude is greatest. The scattering of stars as each wave decays takes place over narrow ranges of angular momentum, causing abrupt changes to the impedance of the disk to subsequent traveling waves. Partial reflections of waves at these newly created features, allows new standing-wave instabilities to appear that saturate and decay in their turn, scattering particles at new locations, creating a recurring cycle. The spiral activity causes the general level of random motion to rise, gradually decreasing the ability of the disk to support further activity unless the disk contains a dissipative gas component from which stars form on near-circular orbits. We also show that this interpretation is consistent with the behavior reported in other recent simulations with l...

  10. Transient Heat Transfer in Cylinpers.

    Directory of Open Access Journals (Sweden)

    M.G. Chopra

    2000-07-01

    Full Text Available A numerical solution has been obtained for transient heat transfer in cylinders by appropriate choice of body ,conforming grid points. The physical domain is transformed to computational domain using elliptic partial differential equation technique, wherein the grid spacing becomes uniform. The advantage of this method is that the discretisation of transformed equations. and accompanying boundary conditipns becdme very simple. The applicability of this method is very broad, as it can beused for carryinI giout study of any comple'x domain in contrast to finite difference methods, which have limited applicability. Detailedcalculations have been carried out to trace the evolution of temperaturedistribution frpm the initiial stages to the steadystate for circular cylinder, elliptical cylinder and square block with circular hole. This paper is aimed for general-shaped bodies and it has been applied to studytransient heat transfer in combustion-driven shock tube.

  11. X33 Transient Liftoff Analysis

    Science.gov (United States)

    Peck, Jeff; Brunty, Joseph

    2000-01-01

    The successful design of a launch vehicle requires the careful characterization of the various loads the structure will experience over its lifetime. Many of the most demanding load environments occur during the launch/ascent phase of a mission, typically defined as the point of engine start through engine cut off. One of the critical events during the launch phase is the liftoff event. This event imparts high loads on the vehicle due to transient events such as thrust build-up and vehicle release. This paper describes the theory and procedures used to calculate structural loads due to the liftoff event for the Lockheed-Martin X33 technology demonstrator vehicle. These procedures were developed at NASA's Marshall Space Flight Center and verified previously on other advanced launch system concepts and the Space Shuttle system.

  12. Electromagnetic Transients in Power Cables

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth

    For more than a century, overhead lines have been the most commonly used technology for transmitting electrical energy at all voltage levels, especially on the highest levels. However, in recent years, an increase in both the number and length of HVAC cables in the transmission networks......, the majority of publications tend to ignore HVAC cables, which is understandable as the use of long HVAC cables was not very common until recent years. This book proposes to address some of the transient phenomena that may occur when operating power networks with HVAC cables. The book is written as a textbook...... for this information in Ph.D. theses and scientific papers. To finish the chapter, we study short-circuits in cables, which can be rather different from short-circuit in OHLs, because of the current returning in the screen. The screen can also be bonded on different configurations, influencing both the magnitude...

  13. Charging transient in polyvinyl formal

    Indian Academy of Sciences (India)

    P K Khare; P L Jain; R K Pandey

    2001-08-01

    In the present paper charging and discharging transient currents in polyvinyl formal (PVF) were measured as a function of temperatures (40–80°C), poling fields (9.0 × 103–9.0 × 104 V/cm) and electrode combinations (Al–Al, Au–Al, Zn–Al, Bi–Al, Cu–Al and Ag–Al). The current–time characteristics have different values of slope lying between 0.42–0.56 and 1.42–1.63. The polarization is considered to be due to dipolar reorientation associated with structural motions and space charge relaxations due to trapping of injected charge carriers in energetically distributed traps.

  14. Structural determinants of agonist-specific kinetics at the ionotropic glutamate receptor 2

    DEFF Research Database (Denmark)

    Holm, Mai Marie; Lunn, Marie-Louise; Traynelis, Stephen F;

    2005-01-01

    Glutamate receptors (GluRs) are the most abundant mediators of the fast excitatory neurotransmission in the human brain. Agonists will, after activation of the receptors, induce different degrees of desensitization. The efficacy of agonists strongly correlates with the agonist-induced closure of ...

  15. Agonist signalling properties of radiotracers used for imaging of dopamine D-2/3 receptors

    NARCIS (Netherlands)

    van Wieringen, Jan-Peter; Michel, Martin C.; Janssen, Henk M.; Janssen, Anton G.; Elsinga, Philip H.; Booij, Jan

    2014-01-01

    Background: Dopamine D-2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists ar

  16. Spontaneous NA+ transients in individual mitochondria of intact astrocytes.

    Science.gov (United States)

    Azarias, Guillaume; Van de Ville, Dimitri; Unser, Michael; Chatton, Jean-Yves

    2008-02-01

    Mitochondria in intact cells maintain low Na(+) levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. The authors report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na(+) concentration (Na(mit)(+) spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with approximately 30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Na(mit)(+) spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Na(mit)(+) spikes averaged 12.2 +/- 0.8 s in duration and 35.5 +/- 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Na(mit)(+) spiking activity was significantly inhibited by mitochondrial Na(+)/H(+) exchanger inhibition and sensitive to cellular pH and Na(+) concentration. Ca(2+) played a permissive role on Na(mit)(+) spiking activity. Finally, the authors present evidence suggesting that Na(mit)(+) spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na(+) exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.

  17. Borneol Is a TRPM8 Agonist that Increases Ocular Surface Wetness.

    Directory of Open Access Journals (Sweden)

    Gui-Lan Chen

    Full Text Available Borneol is a compound widely used in ophthalmic preparations in China. Little is known about its exact role in treating eye diseases. Here we report that transient receptor potential melastatin 8 (TRPM8 channel is a pharmacological target of borneol and mediates its therapeutic effect in the eyes. Ca2+ measurement and electrophysiological recordings revealed that borneol activated TRPM8 channel in a temperature- and dose-dependent manner, which was similar to but less effective than the action of menthol, an established TRPM8 agonist. Borneol significantly increased tear production in guinea pigs without evoking nociceptive responses at 25°C, but failed to induce tear secretion at 35°C. In contrast, menthol evoked tearing response at both 25 and 35°C. TRPM8 channel blockers N-(3-Aminopropyl-2-[(3-methylphenylmethoxy]-N-(2-thienylmethylbenzamide hydrochloride (AMTB and N-(4-tert-butylphenyl-4-(3-chloropyridin-2-ylpiperazine-1-carboxamide (BCTC abolished borneol- and menthol-induced tear secretion. Borneol at micromolar concentrations did not affect the viability of human corneal epithelial cells. We conclude that borneol can activate the cold-sensing TRPM8 channel and modestly increase ocular surface wetness, which suggests it is an active compound in ophthalmic preparations and particularly useful in treating dry eye syndrome.

  18. Borneol Is a TRPM8 Agonist that Increases Ocular Surface Wetness

    Science.gov (United States)

    Chen, Gui-Lan; Lei, Ming; Zhou, Lu-Ping; Zou, Fangdong

    2016-01-01

    Borneol is a compound widely used in ophthalmic preparations in China. Little is known about its exact role in treating eye diseases. Here we report that transient receptor potential melastatin 8 (TRPM8) channel is a pharmacological target of borneol and mediates its therapeutic effect in the eyes. Ca2+ measurement and electrophysiological recordings revealed that borneol activated TRPM8 channel in a temperature- and dose-dependent manner, which was similar to but less effective than the action of menthol, an established TRPM8 agonist. Borneol significantly increased tear production in guinea pigs without evoking nociceptive responses at 25°C, but failed to induce tear secretion at 35°C. In contrast, menthol evoked tearing response at both 25 and 35°C. TRPM8 channel blockers N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide hydrochloride (AMTB) and N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide (BCTC) abolished borneol- and menthol-induced tear secretion. Borneol at micromolar concentrations did not affect the viability of human corneal epithelial cells. We conclude that borneol can activate the cold-sensing TRPM8 channel and modestly increase ocular surface wetness, which suggests it is an active compound in ophthalmic preparations and particularly useful in treating dry eye syndrome. PMID:27448228

  19. Effect of alpha-2-agonist premedication on intraocular pressure after selective laser trabeculoplasty

    Directory of Open Access Journals (Sweden)

    Julius T Oatts

    2015-01-01

    Full Text Available Aim: To determine the effect of alpha-2-agonist (AA premedication (PM on intraocular pressure (IOP following selective laser trabeculoplasty (SLT. Methods: Retrospective cohort study of all patients undergoing 360° SLT at an institution with two prevalent practice patterns consisting of SLT performed with PM and without premedication (NPM with AA. The association between pre- and post-operative IOP was evaluated using a linear regression model in 49 (59% PM and 34 (41% NPM eyes. Results: The prevalence of IOP elevations up to 5 mmHg 1 h postoperatively was similar in both groups, occurring in 18% of PM and in 15% of NPM. Elevations above 5 mmHg were seen in 4% of PM and 8% of NPM (P = 0.732. After correcting for age, gender, diagnosis, number of medications, and preoperative IOP, the presence or absence of AA PM had no significant association with any postoperative IOP (P > 0.5. Conclusion: The practice of using AAs before SLT and measuring IOP at 1 h has not been validated yet adds to expenses and workflow burden. Our retrospective study showed no significant correlation between PM and postoperative or longer-term IOP. IOP at 1 h should be measured in patients who cannot tolerate transient pressure elevations. Further studies are needed to elucidate this relationship.

  20. The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network.

    Science.gov (United States)

    Kendall, Ryan T; Strungs, Erik G; Rachidi, Saleh M; Lee, Mi-Hye; El-Shewy, Hesham M; Luttrell, Deirdre K; Janech, Michael G; Luttrell, Louis M

    2011-06-01

    The angiotensin II peptide analog [Sar(1),Ile(4),Ile(8)]AngII (SII) is a biased AT(1A) receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT(1A) receptor signaling, we performed a gel-based phosphoproteomic analysis of AngII and SII-induced signaling in HEK cells stably expressing AT(1A) receptors. A total of 34 differentially phosphorylated proteins were detected, of which 16 were unique to SII and eight to AngII stimulation. MALDI-TOF/TOF mass fingerprinting was employed to identify 24 SII-sensitive phosphoprotein spots, of which three (two peptide inhibitors of protein phosphatase 2A (I1PP2A and I2PP2A) and prostaglandin E synthase 3 (PGES3)) were selected for validation and further study. We found that phosphorylation of I2PP2A was associated with rapid and transient inhibition of a β-arrestin 2-associated pool of protein phosphatase 2A, leading to activation of Akt and increased phosphorylation of glycogen synthase kinase 3β in an arrestin signalsome complex. SII-stimulated PGES3 phosphorylation coincided with an increase in β-arrestin 1-associated PGES3 and an arrestin-dependent increase in cyclooxygenase 1-dependent prostaglandin E(2) synthesis. These findings suggest that AT(1A) receptors regulate a robust G protein-independent signaling network that affects protein phosphorylation and autocrine/paracrine prostaglandin production and that these pathways can be selectively modulated by biased ligands that antagonize G protein activation.

  1. The CB2-preferring agonist JWH015 also potently and efficaciously activates CB1 in autaptic hippocampal neurons.

    Science.gov (United States)

    Murataeva, N; Mackie, K; Straiker, A

    2012-11-01

    The G protein coupled receptors CB(1) and CB(2) are targets for the psychoactive constituents of cannabis, chief among them Δ(9)-THC. They are also key components of the multifunctional endogenous cannabinoid signaling system. CB(1) and CB(2) receptors modulate a wide variety of physiological systems including analgesia, memory, mood, reward, appetite and immunity. Identification and characterization of selective CB(1) and CB(2) receptor agonists and antagonists will facilitate understanding the precise physiological and pathophysiological roles of cannabinoid receptors in these systems. This is particularly necessary in the case of CB(2) because these receptors are sparsely expressed and problematic to detect using traditional immunocytochemical approaches. 1-Propyl-2-methyl-3-(1-naphthoyl)indole (JWH015) is an aminoalkylindole that has been employed as a "CB(2)-selective" agonist in more than 40 published papers. However, we have found that JWH015 potently and efficaciously activates CB(1) receptors in neurons. Using murine autaptic hippocampal neurons, which express CB(1), but not CB(2) receptors, we find that JWH015 inhibits excitatory postsynaptic currents with an EC50 of 216nM. JWH015 inhibition is absent in neurons from CB(1)(-/-) cultures and is reversed by the CB(1) antagonist, SR141716 [200nM]. Furthermore, JWH015 partially occludes CB(1)-mediated DSE (∼35% remaining), an action reversed by the CB(2) antagonist, AM630 [1 and 3μM], suggesting that high concentrations of AM630 also antagonize CB(1) receptors. We conclude that while JWH015 is a CB(2)-preferring agonist, it also activates CB(1) receptors at experimentally encountered concentrations. Thus, CB(1) agonism of JWH015 needs to be considered in the design and interpretation of experiments that use JWH015 to probe CB(2)-signaling.

  2. Actions of Xanthurenic acid, a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus.

    Science.gov (United States)

    Copeland, C S; Neale, S A; Salt, T E

    2013-03-01

    Xanthurenic acid (XA), a molecule arising from tryptophan metabolism by transamination of 3-hydroxykynurenine, has recently been identified as an endogenous Group II (mGlu2 and mGlu3) metabotropic glutamate (mGlu) receptor ligand in vitro. Impairments in Group II mGlu receptor expression and function have been implicated in the pathophysiology of schizophrenia, as have multiple steps in the kynurenine metabolism pathway. Therefore, we examined XA in vivo to further investigate its potential as a Group II mGlu receptor ligand using a preparation that has been previously demonstrated to efficiently reveal the action of other Group II mGlu receptor ligands in vivo. Extracellular single-neurone recordings were made in the rat ventrobasal thalamus (VB) in conjunction with iontophoresis of agonists, an antagonist and a positive allosteric modulator and/or intravenous (i.v.) injection of XA. We found the XA effect on sensory inhibition, when applied iontophoretically and i.v., was similar to that of other Group II mGlu receptor agonists in reducing inhibition evoked in the VB from the thalamic reticular nucleus upon physiological sensory stimulation. Furthermore, we postulate that XA may be the first potential endogenous allosteric agonist (termed 'endocoid') for the mGlu receptors. As the Group II receptors and kynurenine metabolism pathway have both been heavily implicated in the pathophysiology of schizophrenia, XA could play a pivotal role in antipsychotic research as this potential endocoid represents both a convergence within these two biological parameters and a novel class of Group II mGlu receptor ligand. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.

  3. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss

    DEFF Research Database (Denmark)

    Iepsen, E W; Lundgren, J; Dirksen, C

    2015-01-01

    BACKGROUND: Recent studies indicate that glucagon-like peptide (GLP)-1 inhibits appetite in part through regulation of soluble leptin receptors. Thus, during weight loss maintenance, GLP-1 receptor agonist (GLP-1RA) administration may inhibit weight loss-induced increases in soluble leptin...... receptors thereby preserving free leptin levels and preventing weight regain. METHODS: In a randomized controlled trial, 52 healthy obese individuals were, after a diet-induced 12% body weight loss, randomized to treatment with or without administration of the GLP-1RA liraglutide (1.2 mg per day). In case...... of weight gain, low-calorie diet products were allowed to replace up to two meals per day to achieve equal weight maintenance. Glucose tolerance and hormone responses were investigated before and after weight loss and after 52 weeks weight maintenance. Primary end points: increase in soluble leptin receptor...

  4. Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences

    OpenAIRE

    Gupta, Rupali; Saito, Shigeru; Mori, Yoshiharu; Itoh, Satoru G.; Okumura, Hisashi; Tominaga, Makoto

    2016-01-01

    Pain is a harmful sensation that arises from noxious stimuli. Transient receptor potential ankyrin 1 (TRPA1) is one target for studying pain mechanisms. TRPA1 is activated by various stimuli such as noxious cold, pungent natural products and environmental irritants. Since TRPA1 is an attractive target for pain therapy, a few TRPA1 antagonists have been developed and some function as analgesic agents. The responses of TRPA1 to agonists and antagonists vary among species and these species diffe...

  5. Hyposmotic membrane stretch potentiated muscarinic receptor agonist-induced depolarization of membrane potential in guinea-pig gastric myocytes

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Nan-Ge Jin; Lin Piao; Ming-Yu Hong; Zheng-Yuan Jin; Ying Li; Wen-Xie Xu

    2002-01-01

    AIM: To investigate the relationship betweenhyposmotic membrane stretch and muscarinic receptoragonist-induced depolarization of membrane potentialin antral gastric circular myocytes of guinea-pig.METHODS: Using whole cell patch-clamp techniquerecorded membrane potential and current in singlegastric myocytes isolated by collagena se.RESULTS: Hyposmotic membrane stretch hyperpolarizedmembrane potential from -60.0mV±1.0mV to -67.9mV±1.0mV. TEA (10mmol/L), a nonselective potassiumchannel blocker significantly inhibited hyposmoticmembrane stretch-induced hyperpolarization. After KCIin the pipette and NaCI in the external solution werereplaced by CsCI to block the potassium current,hyposmotic membrane stretch depolarized the membranepotential from -60.0 mV±-1.0mV to -44.8 mV±2.3mV(P<0.05), and atropine (1 pmol/L) inhibited thedepolarization of the membrane potential. Muscarinicreceptor agonist Carbachol depolarized membranepotential from -60.0mV±1.0mV to -50.3 mV±0.3mV(P<0.05) and hyposmotic membrane stretchpotentiated the depolarization. Carbachol inducedmuscarinic current (Icch) was greatly increased byhyposmotic membrane stretch.CONCLUSION: Hyposmotic membrane stretchpotentiated muscarinic receptor agonist-induceddepolarization of membrane potential, which is relatedto hyposmotic membrane stretch-induced increase ofmuscarinic current.

  6. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro.

    Science.gov (United States)

    Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang

    2016-01-01

    The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals.

  7. Down-Regulation of Ca2+-Activated K+ Channel KCa1.1 in Human Breast Cancer MDA-MB-453 Cells Treated with Vitamin D Receptor Agonists

    Directory of Open Access Journals (Sweden)

    Anowara Khatun

    2016-12-01

    Full Text Available Vitamin D (VD reduces the risk of breast cancer and improves disease prognoses. Potential VD analogs are being developed as therapeutic agents for breast cancer treatments. The large-conductance Ca2+-activated K+ channel KCa1.1 regulates intracellular Ca2+ signaling pathways and is associated with high grade tumors and poor prognoses. In the present study, we examined the effects of treatments with VD receptor (VDR agonists on the expression and activity of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, flow cytometry, and voltage-sensitive dye imaging. Treatments with VDR agonists for 72 h markedly decreased the expression levels of KCa1.1 transcripts and proteins in MDA-MB-453 cells, resulting in the significant inhibition of depolarization responses induced by paxilline, a specific KCa1.1 blocker. The specific proteasome inhibitor MG132 suppressed VDR agonist-induced decreases in KCa1.1 protein expression. These results suggest that KCa1.1 is a new downstream target of VDR signaling and the down-regulation of KCa1.1 through the transcriptional repression of KCa1.1 and enhancement of KCa1.1 protein degradation contribute, at least partly, to the antiproliferative effects of VDR agonists in breast cancer cells.

  8. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.

    Science.gov (United States)

    Jensen, Dane D; Zhao, Peishen; Jimenez-Vargas, Nestor N; Lieu, TinaMarie; Gerges, Marina; Yeatman, Holly R; Canals, Meritxell; Vanner, Stephen J; Poole, Daniel P; Bunnett, Nigel W

    2016-05-20

    Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.

  9. Asiago spectroscopic classification of two transients

    Science.gov (United States)

    Turatto, M.; Benetti, S.; Tomasella, L.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Pastorello, A.; Terreran, G.

    2016-12-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of Gaia16bzi, AT2016isl. The targets were supplied by the ESA Gaia Photometric Science Alerts Team and DPAC (http://gsaweb.ast.cam.ac.uk/alerts), the Tsinghua-NAOC Transient Survey (TNTS) and by Kunihiro Shima..

  10. Transient receptor potential channels in essential hypertension

    DEFF Research Database (Denmark)

    Liu, Daoyan; Scholze, Alexandra; Zhu, Zhiming;

    2006-01-01

    The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated.......The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated....

  11. First airborne transient em survey in antarctica

    DEFF Research Database (Denmark)

    Auken, Esben; Mikucki, J. J.; Sørensen, Kurt Ingvard K.I.

    2012-01-01

    A first airborne transient electromagnetic survey was flown in Antarctica in December 2011 with the SkyTEM system. This transient airborne EM system has been optimized in Denmark for almost ten years and was specially designed for ground water mapping. The SkyTEM tool is ideal for mapping...

  12. Species and agonist dependent zinc modulation of endogenous and recombinant ATP-gated P2X7 receptors.

    Science.gov (United States)

    Moore, Samantha F; Mackenzie, Amanda B

    2008-12-15

    Zinc (Zn2+) and copper (Cu2+) are key signalling molecules in the immune system and regulate the activity of many ion channels. Both Zn2+ and Cu2+ potently inhibit rat P2X7 receptors via a binding site identified by mutagenesis. Here we show that extracellular Cu2+ also potently inhibits mouse P2X7 receptors. By contrast, the receptor expression system and agonist strongly influence the action of extracellular Zn2+ at mouse P2X7 receptors. Consistent with previous reports, Zn2+ inhibits recombinant rat P2X7 receptors. However, recombinant mouse P2X7 receptors are potentiated by Zn2+ when activated by ATP4- but inhibited when stimulated with the ATP analogue BzATP4-. Endogenous murine macrophage P2X7 receptors are not modulated by Zn2+ when stimulated by ATP4- however Zn2+ inhibits BzATP4- mediated responses. In summary, these findings provide a fundamental insight into the differential actions of Zn2+ and Cu2+ between different P2X7 receptor species.

  13. Transient Neurological Symptoms after Spinal Anesthesia

    Directory of Open Access Journals (Sweden)

    Zehra Hatipoglu

    2013-02-01

    Full Text Available Lidocaine has been used for more than 50 years for spinal anesthesia and has a remarkable safety record. In 1993, a new adverse effect, transient neurologic toxicity was described in patients recovering from spinal anesthesia with lidocaine. Transient neurological symptoms have been defined as pain in the lower extremities (buttocks, thighs and legs after an uncomplicated spinal anesthesia and after an initial full recovery during the immediate postoperative period (less than 24 h. The incidence of transient neurological symptoms reported in prospective, randomized trials varies from 4% to 37%. The etiology of transient neurological symptoms remains unkonwn. Despite the transient nature of this syndrome, it has proven to be difficult to treat effectively. Drug or some interventional therapy may be necessary. [Archives Medical Review Journal 2013; 22(1.000: 33-44

  14. The 4 Pi Sky Transient Alerts Hub

    CERN Document Server

    Staley, Tim D

    2016-01-01

    We introduce the 4 Pi Sky 'hub', a collection of open data-services and underlying software packages built for rapid, fully automated reporting and response to astronomical transient alerts. These packages build on the mature 'VOEvent' standardized message-format, and aim to provide a decentralized and open infrastructure for handling transient alerts. In particular we draw attention to the initial release of voeventdb, an archive and remote-query service that allows astronomers to make historical queries about transient alerts. By employing spatial filters and web-of-citation lookups, voeventdb enables cross-matching of transient alerts to bring together data from multiple sources, as well as providing a point of reference when planning new follow-up campaigns. We also highlight the recent addition of optical-transient feeds from the ASASSN and GAIA projects to our VOEvent distribution stream. Both the source-code and deployment-scripts which implement these services are freely available and permissively lic...

  15. β2-Agonist clenbuterol hinders human monocyte differentiation into dendritic cells.

    Science.gov (United States)

    Giordani, Luciana; Cuzziol, Noemi; Del Pinto, Tamara; Sanchez, Massimo; Maccari, Sonia; Massimi, Alessia; Pietraforte, Donatella; Viora, Marina

    2015-12-10

    Clenbuterol (CLB) is a beta2-adrenergic agonist commonly used in asthma therapy, but is also a non-steroidal anabolic drug often abused in sport doping practices. Here we evaluated the in vitro impact of CLB on the physiology and function of human monocytes and dendritic cells (DCs), instrumental in the development of immune responses. We demonstrate that CLB inhibits the differentiation of monocytes into DCs and this effect is specific and dependent on β2-adrenergic receptor (AR) activation. We found that CLB treatment reduced the percentage of CD1a(+) immature DCs, while increasing the frequency of monocytes retaining CD14 surface expression. Moreover, CLB inhibited tumor necrosis factor-alpha (TNF-alpha) enhanced IL-(interleukin)-10 and IL-6 production. In contrast, CLB did not modulate the phenotypic and functional properties of monocytes and DCs, such as the surface expression of HLA-DR, CD83, CD80 and CD86 molecules, cytokine production, immunostimulatory activity and phagocytic activity. Moreover, we found that CLB did not modulate the activation of NF-kB in DCs. Moreover, we found that the differentiation of monocytes into DCs was associated with a significant decrease of β2-ARs mRNA expression. These results provide new insights on the effect of CLB on monocyte differentiation into DCs. Considering the frequent illegal use of CLB in doping, our work suggests that this drug is potentially harmful to immune responses decreasing the supply of DCs, thus subverting immune surveillance.

  16. Liver X receptor agonist prevents LPS-induced mastitis in mice.

    Science.gov (United States)

    Fu, Yunhe; Tian, Yuan; Wei, Zhengkai; Liu, Hui; Song, Xiaojing; Liu, Wenbo; Zhang, Wenlong; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Liver X receptor-α (LXR-α) which belongs to the nuclear receptor superfamily, is a ligand-activated transcription factor. Best known for its ability to regulate lipid metabolism and transport, LXRs have recently also been implicated in regulation of inflammatory response. The aim of this study was to investigate the preventive effects of synthetic LXR-α agonist T0901317 on LPS-induced mastitis in mice. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. T0901317 was injected 1h before and 12h after induction of LPS intraperitoneally. The results showed that T0901317 significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase (MPO); down-regulated the level of pro-inflammatory mediators including TNF-α, IL-1β, IL-6, COX-2 and PEG2; inhibited the phosphorylation of IκB-α and NF-κB p65, caused by LPS. Moreover, we report for the first time that LXR-α activation impaired LPS-induced mastitis. Taken together, these data indicated that T0901317 had protective effect on mastitis and the anti-inflammatory mechanism of T0901317 on LPS induced mastitis in mice may be due to its ability to inhibit NF-κB signaling pathway. LXR-α activation can be used as a therapeutic approach to treat mastitis.

  17. Effects of PPAR-γ agonist treatment on LPS-induced mastitis in rats.

    Science.gov (United States)

    Mingfeng, Ding; Xiaodong, Ming; Yue, Liu; Taikui, Piao; Lei, Xiao; Ming, Liu

    2014-12-01

    PPAR-γ, a member of the nuclear receptor superfamily, plays an important role in lipid metabolism and inflammation. The aim of this study was to investigate the preventive effects of synthetic PPAR-γ agonist rosiglitazone on lipopolysaccharide (LPS)-induced mastitis in rats. The mouse model of mastitis was induced by the injection of LPS through the duct of the mammary gland. Rosiglitazone was injected 1 h before the induction of LPS intraperitoneally. The results showed that rosiglitazone attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting showed that rosiglitazone inhibited the phosphorylation of IκB-α and NF-κB p65. These results indicated that rosiglitazone has a protective effect on mastitis, and the anti-inflammatory mechanism of rosiglitazone on LPS-induced mastitis in rats may be due to its ability to inhibit NF-κB signaling pathways. PPAR-γ may be a potential therapeutic target against mastitis.

  18. Pioglitazone, a Peroxisome Proliferator-Activated Receptor γ Agonist, Suppresses Rat Prostate Carcinogenesis

    Science.gov (United States)

    Suzuki, Shugo; Mori, Yukiko; Nagano, Aya; Naiki-Ito, Aya; Kato, Hiroyuki; Nagayasu, Yuko; Kobayashi, Mizuho; Kuno, Toshiya; Takahashi, Satoru

    2016-01-01

    Pioglitazone (PGZ), a peroxisome proliferator-activated receptor γ agonist, which is known as a type 2 diabetes drug, inhibits cell proliferation in various cancer cell lines, including prostate carcinomas. This study focused on the effect of PGZ on prostate carcinogenesis using a transgenic rat for an adenocarcinoma of prostate (TRAP) model. Adenocarcinoma lesions as a percentage of overall lesions in the ventral prostate were significantly reduced by PGZ treatment in a dose-dependent manner. The number of adenocarcinomas per given area in the ventral prostate was also significantly reduced by PGZ treatment. The Ki67 labeling index in the ventral prostate was also significantly reduced by PGZ. Decreased cyclin D1 expression in addition to the inactivation of both p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)κB were detected in PGZ-treated TRAP rat groups. In LNCaP, a human androgen-dependent prostate cancer cell line, PGZ also inhibited cyclin D1 expression and the activation of both p38 MAPK and NFκB. The suppression of cultured cell growth was mainly regulated by the NFκB pathway as detected using specific inhibitors in both LNCaP and PC3, a human androgen-independent prostate cancer cell line. These data suggest that PGZ possesses a chemopreventive potential for prostate cancer. PMID:27973395

  19. PPAR-γ agonist pioglitazone affects rat gouty arthritis by regulating cytokines.

    Science.gov (United States)

    Wang, R-C; Jiang, D-M

    2014-08-28

    The objective was to study peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone regulation effect and its mechanism of expression of cytokines on acute gouty arthritis synovial in rats. Rats with unilateral ankle were injected with artificial monosodium urate (MSU) crystals to make the acute gouty arthritis model. Taking the synovium 48 h after the injection of MSU and using RT-PCR, we assessed the effect of pioglitazone (20 mg·kg(-1)·day(-1), oral administration) on synovial expression, by detecting tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ). The pioglitazone treatment group showed synovial expression of TNF-α, and IFN-γ was significantly lower than in the control group; the inhibition rates were 78.5 and 60.4%. The IL-1 expression difference was not statistically significant between the two groups. Pioglitazone has anti-inflammatory effects on acute gouty arthritis by inhibiting the expression of TNF-α and IFN-γ.

  20. Reduction of vitellogenin synthesis by an aryl hydrocarbon receptor agonist in the white sturgeon (Acipenser transmontamus).

    Science.gov (United States)

    Palumbo, Amanda J; Denison, Michael S; Doroshov, Serge I; Tjeerdema, Ronald S

    2009-08-01

    Migrating white sturgeon (Acipenser transmontamus) may be subject to agricultural, municipal, and industrial wastewater effluents that likely contain different classes of endocrine-disrupting contaminants. Concern is mounting about the negative effects of environmental estrogens on fish reproduction; however, in environmental mixtures, the affects from estrogenic compounds may be suppressed by aryl hydrocarbon receptor (AhR) ligands. Indeed, reductions in 17beta-estradiol-induced (0.01 and 1 mg/kg) vitellogenin (VTG) levels were observed in white sturgeon coinjected with beta-naphthoflavone (BNF; 50 mg/kg), a model for contaminants that activate the AhR. Variation in the time of injection was used to attempt to correlate VTG inhibition to ethoxyresorufin-O-deethylase activity. No evidence was found to suggest that the inhibition of VTG is a direct result of enhanced estrogen metabolism by BNF-induced enzymes. Results of the present study are relevant for monitoring programs that measure VTG, because these results show that AhR-active environmental contaminants can repress VTG synthesis, which commonly is used as an indicator of estrogen-mimicking contaminants. Furthermore, suppression of natural estrogen signaling by AhR agonists may have significant effects on fish reproduction.

  1. Grooming, rank, and agonistic support in tufted capuchin monkeys.

    Science.gov (United States)

    Schino, Gabriele; Di Giuseppe, Francesca; Visalberghi, Elisabetta

    2009-02-01

    Studies investigating the relation between allogrooming and social rank in capuchin monkeys (genus Cebus) have yielded inconsistent results. In this study, we investigated the relation between grooming, agonistic support, aggression and social rank in a captive group of tufted capuchin monkeys (C. apella). Differently from most previous studies, we based our analyses on a relatively large database and studied a group with known genealogical relationships. Tufted capuchin females did not exchange grooming for rank-related benefits such as agonistic support or reduced aggression. Coherently with this picture, they did not groom up the hierarchy and did not compete for accessing high-ranking grooming partners. It is suggested that a small group size, coupled with a strong kin bias, may make the exchange of grooming for rank-related benefits impossible or unprofitable, thus eliminating the advantages of grooming up the hierarchy. We provide several possible explanations for the heterogeneity of results across capuchin studies that have addressed similar questions.

  2. A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis.

    Science.gov (United States)

    Malek, Natalia; Mrugala, Monika; Makuch, Wioletta; Kolosowska, Natalia; Przewlocka, Barbara; Binkowski, Marcin; Czaja, Martyna; Morera, Enrico; Di Marzo, Vincenzo; Starowicz, Katarzyna

    2015-05-01

    The pharmacological inhibition of anandamide (AEA) hydrolysis by fatty acid amide hydrolase (FAAH) attenuates pain in animal models of osteoarthritis (OA) but has failed in clinical trials. This may have occurred because AEA also activates transient receptor potential vanilloid type 1 (TRPV1), which contributes to pain development. Therefore, we investigated the effectiveness of the dual FAAH-TRPV1 blocker OMDM-198 in an MIA-model of osteoarthritic pain. We first investigated the MIA-induced model of OA by (1) characterizing the pain phenotype and degenerative changes within the joint using X-ray microtomography and (2) evaluating nerve injury and inflammation marker (ATF-3 and IL-6) expression in the lumbar dorsal root ganglia of osteoarthritic rats and differences in gene and protein expression of the cannabinoid CB1 receptors FAAH and TRPV1. Furthermore, we compared OMDM-198 with compounds acting exclusively on FAAH or TRPV1. Osteoarthritis was accompanied by the fragmentation of bone microstructure and destroyed cartilage. An increase of the mRNA levels of ATF3 and IL-6 and an upregulation of AEA receptors and FAAH in the dorsal root ganglia