WorldWideScience

Sample records for agn feedback observations

  1. Observational evidence for AGN feedback in early-type galaxies

    CERN Document Server

    Schawinski, Kevin; Sarzi, Marc; Maraston, Claudia; Kaviraj, Sugata; Joo, Seok-Joo; Yi, Sukyoung K; Silk, Joseph

    2007-01-01

    A major amendment in recent models of hierarchical galaxy formation is the inclusion of so-called AGN feedback. The energy input from an active central massive black hole is invoked to suppress star formation in early-type galaxies at later epochs. A major problem is that this process is poorly understood, and compelling observational evidence for its mere existence is still missing. In search for signatures of AGN feedback, we have compiled a sample of 16,000 early-type galaxies in the redshift range 0.05AGN are located considerably closer to and almost on the red sequence. S...

  2. Signatures of AGN feedback

    Science.gov (United States)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  3. The effect of AGN feedback on the X-ray morphologies of clusters -- simulations vs. observations

    CERN Document Server

    Chon, Gayoung; Boehringer, Hans

    2016-01-01

    We study the effect of Active Nuclei Galaxy (AGN) feedback as one of the major mechanisms modifying the cluster morphology influencing scaling relations, which are the most uncertain factor in constraining cosmology with clusters of galaxies. Using cosmological hydrodynamical simulations we investigate how the AGN feedback changes the X-ray morphology of the simulated systems, and compare to the observed REXCESS (Representative XMM-Newton Cluster Structure Survey) clusters. We apply centre shifts and power ratios to characterise the cluster morphology, and find that our simulated clusters are more substructured than the observed ones. We show that the degree of this discrepancy is affected by the inclusion of AGN feedback. While the clusters simulated with the AGN feedback are in much better agreement with the REXCESS L_X-T relation, they are also more substructured, which increases the tension with observations. This suggests that not only global cluster properties such as L_X and T and radial profiles shoul...

  4. The effect of AGN feedback on the X-ray morphologies of clusters: Simulations vs. observations

    Science.gov (United States)

    Chon, Gayoung; Puchwein, Ewald; Böhringer, Hans

    2016-07-01

    Clusters of galaxies probe the large-scale distribution of matter and are a useful tool to test the cosmological models by constraining cosmic structure growth and the expansion of the Universe. It is the scaling relations between mass observables and the true mass of a cluster through which we obtain the cosmological constraints by comparing to theoretical cluster mass functions. These scaling relations are, however, heavily influenced by cluster morphology. The presence of the slight tension in recent cosmological constraints on Ωm and σ8 based on the CMB and clusters has boosted the interests in looking for possible sources for the discrepancy. Therefore we study here the effect of active galactic nucleus (AGN) feedback as one of the major mechanisms modifying the cluster morphology influencing scaling relations. It is known that AGN feedback injects energies up to 1062 erg into the intracluster medium, controls the heating and cooling of a cluster, and re-distributes cold gas from the centre to outer radii. We have also learned that cluster simulations with AGN feedback can reproduce observed cluster properties, for example, the X-ray luminosity, temperature, and cooling rate at the centre better than without the AGN feedback. In this paper using cosmological hydrodynamical simulations we investigate how the AGN feedback changes the X-ray morphology of the simulated systems, and compare this to the observed Representative XMM-Newton Cluster Structure Survey (REXCESS) clusters. We apply two substructure measures, centre shifts (w) and power ratios (e.g. P3/P0), to characterise the cluster morphology, and find that our simulated clusters are more substructured than the observed clusters based on the values of w and P3/P0. We also show that the degree of this discrepancy is affected by the inclusion of AGN feedback. While the clusters simulated with the AGN feedback are in much better agreement with the REXCESS LX-T relation, they are also more substructured

  5. Models of AGN feedback

    CERN Document Server

    Combes, F

    2014-01-01

    The physical processes responsible of sweeping up the surrounding gas in the host galaxy of an AGN, and able in some circumstances to expel it from the galaxy, are not yet well known. The various mechanisms are briefly reviewed: quasar or radio modes, either momentum-conserving outflows, energy-conserving outflows, or intermediate. They are confronted to observations, to know whether they can explain the M-sigma relation, quench the star formation or whether they can also provide some positive feedback and how the black hole accretion history is related to that of star formation.

  6. AGN feedback works both ways

    CERN Document Server

    Zinn, Peter-Christian; Norris, Ray P; Dettmar, Ralf-Jürgen

    2013-01-01

    Simulations of galaxy growth need to invoke strong negative feedback from active galactic nuclei (AGN) to suppress the formation of stars and thus prevent the over-production of very massive systems. While some observations provide evidence for such negative feedback, other studies find either no feedback, or even positive feedback, with increased star formation associated with higher AGN luminosities. Here we report an analysis of several hundred AGN and their host galaxies in the Chandra Deep Field South using X-ray and radio data for sample selection. Combined with archival far infrared data as a reliable tracer of star formation activity in the AGN host galaxies, we find that AGN with pronounced radio jets exhibit a much higher star formation rate than the purely X-ray selected ones, even at the same X-ray luminosities. This difference implies that positive AGN feedback plays an important role, too, and therefore has to be accounted for in all future simulation work. We interpret this to indicate that the...

  7. AGN Feedback models: Correlations with star formation and observational implications of time evolution

    CERN Document Server

    Thacker, Robert J; Wurster, James; Hobbs, Alexander

    2014-01-01

    We examine the correlation between the star formation rate (SFR) and black hole accretion rate (BHAR) across a suite of different AGN feedback models, using the time evolution of a merger simulation. By considering three different stages of evolution, and a distinction between the nuclear and outer regions of star formation, we consider 63 different cases. Despite many of the feedback models fitting the M-\\sigma\\ relationship well, there are often distinct differences in the SFR-BHAR correlations, with close to linear trends only being present after the merger. Some of the models also show evolution in the SFR-BHAR parameter space that is at times directly across the long-term averaged SFR-BHAR correlation. This suggests that the observational SFR-BHAR correlation found for ensembles of galaxies is an approximate statistical trend, as suggested by Hickox et al. Decomposing the SFR into nuclear and outer components also highlights notable differences between models and there is only modest agreement with obser...

  8. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  9. AGN Feedback Mechanisms

    OpenAIRE

    Begelman, Mitchell C.

    2003-01-01

    Accreting black holes can release enormous amounts of energy to their surroundings, in various forms. Such feedback may profoundly influence a black hole's environment. After briefly reviewing the possible types of feedback, I focus on the injection of kinetic energy through jets and powerful winds. The effects of these outflows may be especially apparent in the heating of the X-ray--emitting atmospheres that pervade clusters of galaxies. Analogous heating effects, during the epoch of galaxy ...

  10. Comparing Simulations of AGN Feedback

    Science.gov (United States)

    Richardson, Mark L. A.; Scannapieco, Evan; Devriendt, Julien; Slyz, Adrianne; Thacker, Robert J.; Dubois, Yohan; Wurster, James; Silk, Joseph

    2016-07-01

    We perform adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) cosmological zoom simulations of a region around a forming galaxy cluster, comparing the ability of the methods to handle successively more complex baryonic physics. In the simplest, non-radiative case, the two methods are in good agreement with each other, but the SPH simulations generate central cores with slightly lower entropies and virial shocks at slightly larger radii, consistent with what has been seen in previous studies. The inclusion of radiative cooling, star formation, and stellar feedback leads to much larger differences between the two methods. Most dramatically, at z=5, rapid cooling in the AMR case moves the accretion shock to well within the virial radius, while this shock remains near the virial radius in the SPH case, due to excess heating, coupled with poorer capturing of the shock width. On the other hand, the addition of feedback from active galactic nuclei (AGNs) to the simulations results in much better agreement between the methods. For our AGN model, both simulations display halo gas entropies of 100 keV cm2, similar decrements in the star formation rate, and a drop in the halo baryon content of roughly 30%. This is consistent with the AGN growth being self-regulated, regardless of the numerical method. However, the simulations with AGN feedback continue to differ in aspects that are not self-regulated, such that in SPH a larger volume of gas is impacted by feedback, and the cluster still has a lower entropy central core.

  11. The Horizon-AGN Simulation: Morphological Diversity of Galaxies Promoted by AGN feedback

    OpenAIRE

    Dubois, Yohan; Peirani, Sebastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphael; Welker, Charlotte; Volonteri, Marta

    2016-01-01

    The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations Horizon-AGN and Horizon-noAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as t...

  12. AGN Feedback: Does it work?

    CERN Document Server

    Mathur, Smita; Krongold, Yair; Nicastro, Fabrizio; Brickhouse, Nancy; Elvis, Martin

    2009-01-01

    While feedback is important in theoretical models, we do not really know if it works in reality. Feedback from jets appears to be sufficient to keep the cooling flows in clusters from cooling too much and it may be sufficient to regulate black hole growth in dominant cluster galaxies. Only about 10% of all quasars, however, have powerful radio jets, so jet-related feedback cannot be generic. The outflows could potentially be a more common form of AGN feedback, but measuring mass and energy outflow rates is a challenging task, the main unknown being the location and geometry of the absorbing medium. Using a novel technique, we made first such measurement in NGC 4051 using XMM data and found the mass and energy outflow rates to be 4 to 5 orders of magnitude below those required for efficient feedback. To test whether the outflow velocity in NGC 4051 is unusually low, we compared the ratio of outflow velocity to escape velocity in a sample of AGNs and found it to be generally less than one. It is thus possible t...

  13. Feeding Versus Feedback in AGN from Near-Infrared IFU Observations XI: NGC 2110

    CERN Document Server

    Diniz, Marlon R; Storchi-Bergmann, Thaisa; Winge, Claudia

    2015-01-01

    We present a two-dimensional mapping of the gas flux distributions, as well as of the gas and stellar kinematics in the inner 220 pc of the Seyfert galaxy NGC 2110, using K-band integral field spectroscopy obtained with the Gemini NIFS at a spatial resolution of ~24pc and spectral resolution of ~40 km/s. The H2 emission extends over the whole field-of-view and is attributed to heating by X-rays from the AGN and/or by shocks, while the Brgamma emission is restricted to a bi-polar region extending along the South-East-North-West direction. The masses of the warm molecular gas and of the ionized gas are ~1.4x10^3 Msun and ~1.8x10^6 Msun, respectively. The stellar kinematics present velocity dispersions reaching 250km/s and a rotation pattern reaching an amplitude of 200 km/s. The gas velocity fields present a similar rotation pattern but also additional components that we attribute to inflows and outflows most clearly observed in the molecular gas emission. The inflows are observed beyond the inner 70 pc and are...

  14. Comparing Simulations of AGN Feedback

    CERN Document Server

    Richardson, Mark L A; Devriendt, Julien; Slyz, Adrianne; Thacker, Robert J; Dubois, Yohan; Wurster, James; Silk, Joseph

    2016-01-01

    We perform adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) cosmological zoom simulations of a region around a forming galaxy cluster, comparing the ability of the methods to handle successively more complex baryonic physics. In the simplest, non-radiative case, the two methods are in good agreement with each other, but the SPH simulations generate central cores with slightly lower entropies and virial shocks at slightly larger radii, consistent with what has been seen in previous studies. The inclusion of radiative cooling, star formation, and stellar feedback leads to much larger differences between the two methods. Most dramatically, at z=5, rapid cooling in the AMR case moves the accretion shock well within the virial radius, while this shock remains near the virial radius in the SPH case, due to excess heating, coupled with poorer capturing of the shock width. On the other hand, the addition of feedback from active galactic nuclei (AGN) to the simulations results in much better ag...

  15. Effects of AGN feedback on LCDM galaxies

    CERN Document Server

    Lagos, Claudia del P; Padilla, Nelson D

    2008-01-01

    We study the effects of Active Galactic Nuclei (AGN) feedback on the formation and evolution of galaxies in a semi-analytic model of galaxy formation. This model is an improved version of the one described by Cora (2006), which now considers the growth of black holes (BHs) as driven by (i) gas accretion during merger-driven starbursts and mergers with other BHs, (ii) accretion during starbursts triggered by disc instabilities, and (iii) accretion of gas cooled from quasi-hydrostatic hot gas haloes. It is assumed that feedback from AGN operates in the later case. The model has been calibrated in order to reproduce observational correlations between BH mass and mass, velocity dispersion, and absolute magnitudes of the galaxy bulge. AGN feedback has a strong impact on reducing or even suppressing gas cooling, an effect that becomes important at lower redshifts. This phenomenon helps to reproduce the observed galaxy luminosity function (LF) in the optical and near IR bands at z=0, and the cosmic star formation ra...

  16. A Comparative Study of AGN Feedback Algorithms

    CERN Document Server

    Wurster, James

    2013-01-01

    Modelling AGN feedback in numerical simulations is both technically and theoretically challenging, with numerous approaches having been published in the literature. We present a study of five distinct approaches to modelling AGN feedback within gravitohydrodynamic simulations of major mergers of Milky Way-sized galaxies. To constrain differences to only be between AGN feedback models, all simulations start from the same initial conditions and use the same star formation algorithm. Most AGN feedback algorithms have five key aspects: black hole accretion rate, energy feedback rate and method, particle accretion algorithm, black hole advection algorithm, and black hole merger algorithm. All models follow different accretion histories, with accretion rates that differ by up to three orders of magnitude at any given time. We consider models with either thermal or kinetic feedback, with the associated energy deposited locally around the black hole. Each feedback algorithm modifies the gas properties near the black ...

  17. SWIFT Observations AGN

    Science.gov (United States)

    Mushotzky, Richard

    2008-01-01

    I will present results from the x-ray and optical follow-up observations of the Swift Burst Alert Telescope (BAT) Active Galactic Nuclei (AGN) survey. I will discuss the nature of obscuration in these objects, the relationship to optical properties and the change of properties with luminosity and galaxy type.

  18. Feedback in AGN heating of galaxy clusters

    OpenAIRE

    Hoeft, M.; Brueggen, M

    2004-01-01

    One of the challenges that models of AGN heating of the intracluster medium (ICM) face, is the question how the mechanical luminosity of the AGN is tuned to the radiative losses of the ICM. Here we implement a simple 1D model of a feedback mechanism that links the luminosity of the AGN to the accretion rate. We demonstrate how this simple feedback mechanism leads to a quasi-steady state for a broad range of parameters. Moreover, within this feedback model, we investigate the effect of thermal...

  19. AGN feedback in elliptical galaxies: numerical simulations

    CERN Document Server

    Ciotti, L

    2011-01-01

    The importance of feedback (radiative and mechanical) from massive black holes at the centers of elliptical galaxies is not in doubt, given the well established relation among black hole mass and galaxy optical luminosity. Here, with the aid of high-resolution hydrodynamical simulations, we discuss how this feedback affects the hot ISM of isolated elliptical galaxies of different mass. The cooling and heating functions include photoionization plus Compton heating, the radiative transport equations are solved, and the mechanical feedback due to the nuclear wind is also described on a physical basis; star formation is considered. In the medium-high mass galaxies the resulting evolution is highly unsteady. At early times major accretion episodes caused by cooling flows in the recycled gas produced by stellar evolution trigger AGN flaring: relaxation instabilities occur so that duty cycles are small enough to account for the very small fraction of massive ellipticals observed to be in the QSO-phase, when the accr...

  20. MAJOR CONTRIBUTOR TO AGN FEEDBACK: VLT X-SHOOTER OBSERVATIONS OF S IV BALQSO OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Borguet, Benoit C. J.; Arav, Nahum; Edmonds, Doug; Chamberlain, Carter [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Benn, Chris, E-mail: b.borguet@alumni.ulg.ac.be [Isaac Newton Group, Apartado 321, E-38700 Santa Cruz de La Palma (Spain)

    2013-01-01

    We present the most energetic BALQSO outflow measured to date, with a kinetic luminosity of at least 10{sup 46} erg s{sup -1}, which is 5% of the bolometric luminosity of this high Eddington ratio quasar. The associated mass-flow rate is 400 solar masses per year. Such kinetic luminosity and mass-flow rate should provide strong active galactic nucleus feedback effects. The outflow is located at about 300 pc from the quasar and has a velocity of roughly 8000 km s{sup -1}. Our distance and energetic measurements are based in large part on the identification and measurement of S IV and S IV* broad absorption lines (BALs). The use of this high-ionization species allows us to generalize the result to the majority of high-ionization BALQSOs that are identified by their C IV absorption. We also report the energetics of two other outflows seen in another object using the same technique. The distances of all three outflows from the central source (100-2000 pc) suggest that we observe BAL troughs much farther away from the central source than the assumed acceleration region of these outflows (0.01-0.1 pc).

  1. Kinematic signatures of AGN feedback in moderately powerful radio galaxies at z~2 observed with SINFONI

    CERN Document Server

    Collet, C; De Breuck, C; Lehnert, M D; Best, P; Bryant, J J; Hunstead, R; Dicken, D; Johnston, H

    2015-01-01

    Most successful galaxy formation scenarios now postulate that the intense star formation in massive, high-redshift galaxies during their major growth period was truncated when powerful AGNs launched galaxy-wide outflows of gas that removed large parts of the interstellar medium. The most powerful radio galaxies at z~2 show clear signatures of such winds, but are too rare to be good representatives of a generic phase in the evolution of all massive galaxies at high redshift. Here we present SINFONI imaging spectroscopy of 12 radio galaxies at z~2 that are intermediate between the most powerful radio and vigorous starburst galaxies in radio power, and common enough to represent a generic phase in the early evolution of massive galaxies. The kinematic properties are diverse, with regular velocity gradients with amplitudes of Delta v=200-400 km s^-1 as in rotating disks as well as irregular kinematics with multiple velocity jumps of a few 100 km s^-1. Line widths are generally high, typically around FWHM=800 km s...

  2. The Horizon-AGN Simulation: Morphological Diversity of Galaxies Promoted by AGN feedback

    CERN Document Server

    Dubois, Yohan; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphael; Welker, Charlotte; Volonteri, Marta

    2016-01-01

    The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations Horizon-AGN and Horizon-noAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the center of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown not to be purely driven by mass but also by the nature of cosmic accretion: at constant galaxy mass, el...

  3. The Horizon-AGN simulation: morphological diversity of galaxies promoted by AGN feedback

    Science.gov (United States)

    Dubois, Yohan; Peirani, Sébastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphaël; Welker, Charlotte; Volonteri, Marta

    2016-09-01

    The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations Horizon-AGN and Horizon-noAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the center of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown not to be purely driven by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.

  4. AGN Feedback and Bimodality in Cluster Core Entropy

    CERN Document Server

    Guo, Fulai; Ruszkowski, M

    2009-01-01

    We investigate a series of steady-state models of galaxy clusters, in which the hot intracluster gas is efficiently heated by active galactic nucleus (AGN) feedback and thermal conduction, and in which the mass accretion rates are highly reduced compared to those predicted by the standard cooling flow models. We perform a global Lagrangian stability analysis. We show for the first time that the global radial instability in cool core clusters can be suppressed by the AGN feedback mechanism, provided that the feedback efficiency exceeds a critical lower limit. Furthermore, our analysis naturally shows that the clusters can exist in two distinct forms. Globally stable clusters are expected to have either: 1) cool cores stabilized by both AGN feedback and conduction, or 2) non-cool cores stabilized primarily by conduction. Intermediate central temperatures typically lead to globally unstable solutions. This bimodality is consistent with the recently observed anticorrelation between the flatness of the temperature...

  5. Feeding Versus Feedback in AGNs from Near-Infrared IFU Observations: The Case of Mrk79

    CERN Document Server

    Riffel, Rogemar A; Winge, Claudia

    2013-01-01

    We have mapped the gaseous kinematics and the emission-line flux distributions and ratios from the inner ~680pc radius of the Seyfert 1 galaxy Mrk79, using two-dimensional (2D) near-IR J- and Kl-band spectra obtained with the Gemini instrument NIFS at a spatial resolution of ~100pc and velocity resolution of ~40km/s. The molecular hydrogen flux distribution presents two spiral arms extending by ~700pc, one to the north and another to the south of the nucleus, with an excitation indicating heating by X-rays from the central source. The low velocity dispersion (sigma~50km/s) and rotation pattern supports a location of the H2 gas in the disk of the galaxy. Blueshifts observed along the spiral arm in the far side of the galaxy and redshifts in the spiral arm in the near side, suggest that the spiral arms are feeding channels of H2 to the inner 200pc. From channel maps along the H2 l2.1218um emission-line profile we estimate a mass inflow rate of ~4E-3 M_Sun/year, which is one order of magnitude smaller than the m...

  6. Feeding Versus Feedback in AGNs from Near-Infrared IFU Observations: The Case of Mrk 766

    CERN Document Server

    Júnior, A J Schönell; Storchi-Bergmann, Thaisa; Winge, Claudia

    2014-01-01

    We have mapped the emission-line flux distributions and ratios as well as the gaseous kinematics of the inner 450 pc radius of the Seyfert 1 galaxy Mrk 766 using integral field near-IR J- and Kl-band spectra obtained with the Gemini nifs at a spatial resolution of 60 pc and velocity resolution of 40 km/s. Emission-line flux distributions in ionized and molecular gas extend up to ~ 300 pc from the nucleus. Coronal [S IX]{\\lambda}1.2523{\\mu}m line emission is resolved, being extended up to 150 pc from the nucleus. At the highest flux levels, the [Fe II]{\\lambda}1.257{\\mu}m line emission is most extended to the south-east, where a radio jet has been observed.The emission-line ratios [Fe II]{\\lambda}1.2570{\\mu}m/Pa{\\beta} and $H_2${\\lambda}2.1218{\\mu}m/Br{\\gamma} show a mixture of Starburst and Seyfert excitation; the Seyfert excitation dominates at the nucleus, to the north-west and in an arc-shaped region between 0.2" and 0.6" to the south-east at the location of the radio jet. A contribution from shocks at thi...

  7. AGN feedback in clusters: shock and sound heating

    CERN Document Server

    Nulsen, P E J

    2013-01-01

    Observations support the view that feedback, in the form of radio outbursts from active nuclei in central galaxies, prevents catastrophic cooling of gas and rapid star formation in many groups and clusters of galaxies. Variations in jet power drive a succession of weak shocks that can heat regions close to the active galactic nuclei (AGN). On larger scales, shocks fade into sound waves. The Braginskii viscosity determines a well-defined sound damping rate in the weakly magnetized intracluster medium (ICM) that can provide sufficient heating on larger scales. It is argued that weak shocks and sound dissipation are the main means by which radio AGN heat the ICM, in which case, the power spectrum of AGN outbursts plays a central role in AGN feedback.

  8. Intracluster stars in simulations with AGN feedback

    CERN Document Server

    Puchwein, Ewald; Sijacki, Debora; Dolag, Klaus

    2010-01-01

    We use a set of high-resolution hydrodynamical simulations of clusters of galaxies to study the build-up of the intracluster light (ICL), an interesting and likely significant component of their total stellar mass. Our sample of groups and clusters includes AGN feedback and is of high enough resolution to accurately resolve galaxy populations down to the smallest galaxies that are expected to significantly contribute to the stellar mass budget. We describe and test four different methods to identify the ICL in simulations, thereby allowing us to assess the reliability of the measurements. For all of the methods, we consistently find a very significant ICL stellar fraction (~45%) which exceeds the values typically inferred from observations. However, we show that this result is robust with respect to numerical resolution and integration accuracy, remarkably insensitive to changes in the star formation model, and almost independent of halo mass. It is also almost invariant when black hole growth is included, ev...

  9. A Very Deep Chandra Observation of the Galaxy Group NGC 5813: AGN Shocks, Feedback, and Outburst History

    CERN Document Server

    Randall, S W; Jones, C; Forman, W R; Bulbul, E; Clarke, T E; Kraft, R; Blanton, E L; David, L; Werner, N; Sun, M; Donahue, M; Giacintucci, S; Simionescu, A

    2015-01-01

    We present results from a very deep (650 ks) Chandra X-ray observation of the galaxy group NGC~5813, the deepest Chandra observation of a galaxy group to date. Earlier observations showed two pairs of cavities distributed roughly collinearly, with each pair associated with an elliptical shock front. The new observations confirm a third pair of outer cavities, collinear with the other pairs, and reveal an associated outer outburst shock at ~30 kpc. This system is therefore unique in exhibiting three cavity pairs, each associated with an unambiguous AGN outburst shock front. The implied mean kinetic power is roughly the same for each outburst, demonstrating that the average AGN kinetic luminosity can remain stable over long timescales (~50 Myr). The two older outbursts have larger, roughly equal total energies as compared with the youngest outburst, implying that the youngest outburst is ongoing. We find that the radiative cooling rate and the mean shock heating rate of the gas are well balanced at each shock f...

  10. AGN Observations with STACEE

    Science.gov (United States)

    Bramel, D. A.; Boone, L. M.; Carson, J.; Chae, E.; Covault, C. E.; Fortin, P.; Gingrich, D. M.; Hanna, D. S.; Hinton, J. A.; Mukherjee, R.; Mueller, C.; Ong, R. A.; Ragan, K.; Scalzo, R. A.; Schuette, D. R.; Theoret, C. G.; Williams, D. A.; Wong, J.; Zweerink, J.

    2003-03-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a gamma-ray detector designed to study astrophysical sources at energies between 50 and 500 GeV. It uses 64 large, steerable mirrors at the National Solar Tower Test Facility near Albuquerque, NM, USA to collect Cherenkov light from extended air showers and concentrate it onto an array of photomultiplier tubes. The large light-collection area gives it a lower energy threshold than imaging-type Cherenkov detectors. STACEE is now fully operational, and we report here on the performance of the complete STACEE instrument, as well as preliminary results of recent observations of several AGN targets. This work was supported in part by the National Science Foundation (under Grant Numbers PHY-9983836, PHY-0070927, and PHY-0070953), the Natural Sciences and Engineering Research Council, Le Fond Quebecois de la Recherche sur la Nature et les Technologies (FQRNT), the Research Corporation, and the California Space Institute. CEC is a Cottrell Scholar of the Research Corporation.

  11. Inverse Compton X-ray signature of AGN feedback

    Science.gov (United States)

    Bourne, Martin A.; Nayakshin, Sergei

    2013-12-01

    Bright AGN frequently show ultrafast outflows (UFOs) with outflow velocities vout ˜ 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one-temperature regime, 1T) or decouple (2T), as has been recently suggested. Here we calculate the inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component. The limits on the 2T emission are far weaker, and in fact it is possible that the observed soft X-ray excess of AGN is partially or fully due to the 2T shock emission. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encourage X-ray observers to look for the inverse Compton components calculated here in order to constrain AGN feedback models further.

  12. Feeding and Feedback in nearby AGN from Integral Field Spectroscopy

    CERN Document Server

    Storchi-Bergmann, Thaisa

    2009-01-01

    I report results of recent integral field spectroscopy of the inner few hundred parsecs (pc) around nearby Active Galactic Nuclei (AGN) at a sampling of a few pc, obtained with the Gemini Telescopes. In the lowest activity AGNs, it is possible to observe inflows in ionized gas along nuclear spirals and filaments. In more luminous AGN inflows have been observed also in hot molecular gas (H_2) emission in the near-IR. In most cases the H_2 kinematics is dominated by circular rotation in the plane around the nucleus, tracing the AGN feeding. The ionized gas, on the other hand, traces the AGN feedback. Its kinematics shows two components: (1) one originating in the plane, and dominated by circular rotation; (2) another outflowing along the Narrow-Line Region (NLR) whose flux distribution and kinematics frequently correlate with structures seen in radio maps. Mass outflow rates along the NLR range from 10^-2 to 1 M_sun yr^-1, corresponding to 10-100 times the accretion rate to the AGN, indicating that most of the ...

  13. AGN feedback in the nucleus of M51

    CERN Document Server

    Querejeta, M; García-Burillo, S; Bigiel, F; Blanc, G A; Colombo, D; Hughes, A; Kreckel, K; Leroy, A K; Meidt, S E; Meier, D S; Pety, J; Sliwa, K

    2016-01-01

    AGN feedback is invoked as one of the most relevant mechanisms that shape the evolution of galaxies. Our goal is to understand the interplay between AGN feedback and the interstellar medium in M51, a nearby spiral galaxy with a modest AGN and a kpc-scale radio jet expanding through the disc of the galaxy. For that purpose, we combine molecular gas observations in the CO(1-0) and HCN(1-0) lines from the Plateau de Bure interferometer with archival radio, X-ray, and optical data. We show that there is a significant scarcity of CO emission in the ionisation cone, while molecular gas emission tends to accumulate towards the edges of the cone. The distribution and kinematics of CO and HCN line emission reveal AGN feedback effects out to r~500pc, covering the whole extent of the radio jet, with complex kinematics in the molecular gas which displays strong local variations. We propose that this is the result of the almost coplanar jet pushing on molecular gas in different directions as it expands; the effects are mo...

  14. AGN feedback and entropy injection in galaxy cluster cores

    OpenAIRE

    Chaudhuri, Anya; Majumdar, Subhabrata; Nath, Biman B

    2012-01-01

    The non-gravitational energy feedback is of crucial importance in modeling/simulating clusters to be used as cosmological probes. AGNs are, arguably, of primary importance in injecting energy in the cluster cores. We make the first estimate of non-gravitational energy {\\it profiles} in galaxy cluster cores (and beyond) from observational data. Comparing the observed entropy profiles within $r_{500}$, from the Representative {\\it XMM-Newton} Cluster Structure Survey (REXCESS), to simulated ent...

  15. The Abundance of Distant and Extremely Red Galaxies: The Role of AGN Feedback in Hierarchical Models

    CERN Document Server

    Menci, N; Giallongo, E; Grazian, A; Salimbeni, S

    2006-01-01

    We investigate the effect of AGN feedback associated to the bright QSO phase onto the color distribution of galaxies from z=0 up to z=4. To this aim, we insert a blast-wave model of AGN feedback in our semi-analytic model of galaxy formation, which includes the growth of supermassive black holes and the AGN activity triggered by interactions of the host galaxies. The AGN feedback is directly related to the impulsive, luminous quasar phase. We test our model by checking the consistency of its results against i) the QSO luminosity functions from z=0 to z=4; ii) the observed local relation between the black hole mass m_{BH} and the mass of the host galaxy. At low redshift the inclusion of AGN feedback enhances the number of red bright galaxies, so that the color distribution of M_r1.5) galaxies; at 0.52.5.

  16. AGN feedback in the nucleus of M 51

    Science.gov (United States)

    Querejeta, M.; Schinnerer, E.; García-Burillo, S.; Bigiel, F.; Blanc, G. A.; Colombo, D.; Hughes, A.; Kreckel, K.; Leroy, A. K.; Meidt, S. E.; Meier, D. S.; Pety, J.; Sliwa, K.

    2016-10-01

    AGN feedback is invoked as one of the most relevant mechanisms that shape the evolution of galaxies. Our goal is to understand the interplay between AGN feedback and the interstellar medium in M 51, a nearby spiral galaxy with a modest AGN and a kpc-scale radio jet expanding through the disc of the galaxy. For this purpose, we combine molecular gas observations in the CO(1-0) and HCN(1-0) lines from the Plateau de Bure interferometer with archival radio, X-ray, and optical data. We show that there is a significant scarcity of CO emission in the ionisation cone, while molecular gas emission tends to accumulate towards the edges of the cone. The distribution and kinematics of CO and HCN line emission reveal AGN feedback effects out to r ~ 500 pc, covering the whole extent of the radio jet, with complex kinematics in the molecular gas which displays strong local variations. We propose that this is the result of the almost coplanar jet pushing on molecular gas in different directions as it expands; the effects are more pronounced in HCN than in CO emission, probably as the result of radiative shocks. Following previous interpretation of the redshifted molecular line in the central 5'' as caused by a molecular outflow, we estimate the outflow rates to be ṀH2 ~ 0.9 M⊙/ yr and Ṁdense ~ 0.6 M⊙/ yr, which are comparable to the molecular inflow rates (~1 M⊙/ yr); gas inflow and AGN feedback could be mutually regulated processes. The agreement with findings in other nearby radio galaxies suggests that this is not an isolated case, and is probably the paradigm of AGN feedback through radio jets, at least for galaxies hosting low-luminosity active nuclei. The reduced HCN(1-0) datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A118

  17. AGN-starburst evolutionary connection : a physical interpretation based on radiative feedback

    CERN Document Server

    Ishibashi, W

    2016-01-01

    Observations point towards a close connection between nuclear starbursts, active galactic nuclei (AGN), and outflow phenomena. An evolutionary sequence, starting from a dust-obscured ultra-luminous infrared galaxy and eventually leading to an unobscured optical quasar, has been proposed and discussed in the literature. AGN feedback is usually invoked to expel the obscuring gas and dust in a blow-out event, but the underlying physical mechanism remains unclear. We consider AGN feedback driven by radiation pressure on dust, which directly acts on the obscuring dusty gas. We obtain that radiative feedback can potentially disrupt dense gas in the infrared-optically thick regime, and that an increase in the dust-to-gas fraction leads to an increase in the effective Eddington ratio. Thus the more dusty gas is preferentially expelled by radiative feedback, and the central AGN is prone to efficiently remove its own obscuring dust cocoon. Large amounts of dust imply heavy obscuration but also powerful feedback, sugges...

  18. AGN and the necessity of feedback.

    Science.gov (United States)

    Benson, Andrew J

    2005-03-15

    There is now good observational evidence that some type of feedback process must operate within galaxies. Such a process has long been thought to exist on the basis of theoretical studies of galaxy formation. This feedback is responsible for regulating the rate of star formation and thereby preventing the formation of an overabundance of low-mass galaxies. There is gathering evidence that this feedback process must somehow involve the supermassive black holes thought to dwell in the centres of galaxies. PMID:15681287

  19. How AGN feedback and metal cooling shape cluster entropy profiles

    CERN Document Server

    Dubois, Yohan; Teyssier, Romain; Slyz, Adrianne

    2011-01-01

    Observed clusters of galaxies essentially come in two flavors: non cool core clusters characterized by an isothermal temperature profile and a central entropy floor, and cool-core clusters where temperature and entropy in the central region are increasing with radius. Using cosmological resimulations of a galaxy cluster, we study the evolution of its intracluster medium (ICM) gas properties, and through them we assess the effect of different (sub-grid) modelling of the physical processes at play, namely gas cooling, star formation, feedback from supernovae and active galactic nuclei (AGN). More specifically we show that AGN feedback plays a major role in the pre-heating of the proto-cluster as it prevents a high concentration of mass from collecting in the center of the future galaxy cluster at early times. However, AGN activity during the cluster's later evolution is also required to regulate the mass flow into its core and prevent runaway star formation in the central galaxy. Whereas the energy deposited by...

  20. AGN outflow feedback: Constraints from variability

    CERN Document Server

    Detmers, R G

    2009-01-01

    We present an overview on how variability can be used to constrain the location of the ionized outflow in nearby Active Galactic Nuclei using high-resolution X-ray spectroscopy. Without these constraints on the location of the outflow, the kinetic luminosity and mass loss rate can not be determined. We focus on the Seyfert 1 galaxy NGC 5548, which is arguably the best studied AGN on a timescale of 10 years. Our results show that frequent observations combined with long term monitoring, such as with the \\textit{Rossi X-ray Timing Explorer (RXTE)} satellite, are crucial to investigate the effects of these outflows on their surroundings.

  1. Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows

    Science.gov (United States)

    Hopkins, Philip F.; Torrey, Paul; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman

    2016-05-01

    We study the interaction of feedback from active galactic nuclei (AGN) and a multiphase interstellar medium (ISM), in simulations including explicit stellar feedback, multiphase cooling, accretion-disc winds, and Compton heating. We examine radii ˜0.1-100 pc around a black hole (BH), where the accretion rate on to the BH is determined and where AGN-powered winds and radiation couple to the ISM. We conclude: (1) the BH accretion rate is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates ˜0.03-1 M⊙ yr-1, sufficient to power luminous AGN. (2) The gas disc in the galactic nucleus undergoes an initial burst of star formation followed by several million years where stellar feedback suppresses the star formation rate (SFR). (3) AGN winds injected at small radii with momentum fluxes ˜LAGN/c couple efficiently to the ISM and have dramatic effects on ISM properties within ˜100 pc. AGN winds suppress the nuclear SFR by factors ˜10-30 and BH accretion rate by factors ˜3-30. They increase the outflow rate from the nucleus by factors ˜10, consistent with observational evidence for galaxy-scale AGN-driven outflows. (4) With AGN feedback, the predicted column density distribution to the BH is consistent with observations. Absent AGN feedback, the BH is isotropically obscured and there are not enough optically thin sightlines to explain type-I AGN. A `torus-like' geometry arises self-consistently as AGN feedback evacuates gas in polar regions.

  2. Solving the Cooling Flow Problem through Mechanical AGN Feedback

    CERN Document Server

    Gaspari, M; Ruszkowski, M

    2012-01-01

    Unopposed radiative cooling of plasma would lead to the cooling catastrophe, a massive inflow of condensing gas, manifest in the core of galaxies, groups and clusters. The last generation X-ray telescopes, Chandra and XMM, have radically changed our view on baryons, indicating AGN heating as the balancing counterpart of cooling. This work reviews our extensive investigation on self-regulated heating. We argue that the mechanical feedback, based on massive subrelativistic outflows, is the key to solving the cooling flow problem, i.e. dramatically quenching the cooling rates for several Gyr without destroying the cool-core structure. Using a modified version of the 3D hydrocode FLASH, we show that bipolar AGN outflows can further reproduce fundamental observed features, such as buoyant bubbles, weak shocks, metals dredge- up, and turbulence. The latter is an essential ingredient to drive nonlinear thermal instabilities, which cause the formation of extended cold gas, a residual of the quenched cooling flow and,...

  3. Consequences of AGN energy feedback on the ICM

    International Nuclear Information System (INIS)

    Full text: We investigate the energy contribution by jets of active galactic nuclei (AGN) to the intra-cluster medium (ICM). The AGNs are triggered by major mergers of latetype cluster galaxies. We investigate the dependence of ICM heating by AGNs on different AGN accretion rates, different lengths of duty cycles and different mass thresholds of merging galaxies for two model clusters. The cluster components are simulated by a combination of N-body (dark matter), hydrodynamic (ICM) and semi-numerical galaxy-formation (galaxies) techniques. We find that AGN energy feedback does not increase the temperature of the ICM at low redshifts. At high redshifts (z ∼ 1) the thermal feedback increases the temperature of the galaxy clusters significantly. (author)

  4. Highlights from the VERITAS AGN Observation Program

    CERN Document Server

    Benbow, Wystan

    2015-01-01

    The VERITAS array of four 12-m imaging atmospheric-Cherenkov telescopes began full-scale operations in 2007, and is one of the world's most sensitive detectors of astrophysical VHE (E>100 GeV) $\\gamma$-rays. Observations of active galactic nuclei (AGN) are a major focus of the VERITAS Collaboration, and more than 60 AGN, primarily blazars, are known to emit VHE photons. Approximately 3400 hours have been devoted to the VERITAS AGN observation program and roughly 160 AGN are already observed with the array, in most cases with the deepest VHE exposure to date. These observations have resulted in 34 detections, most of which are accompanied by contemporaneous, multi-wavelength observations, enabling a more detailed study of the underlying jet-powered processes. Recent highlights of the VERITAS AGN observation program, and the collaboration's long-term AGN observation strategy, are presented.

  5. Inverse Compton X-ray signature of AGN feedback

    CERN Document Server

    Bourne, Martin A

    2013-01-01

    Bright AGN frequently show ultra-fast outflows (UFOs) with outflow velocities vout ! 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one temperature regime; 1T) or decouple (2T), as has been recently suggested. Here we calculate the Inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component, while the limits on the 2T emission are far weaker. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encoura...

  6. Cooling, AGN Feedback and Star Formation in Simulated Cool-Core Galaxy Clusters

    CERN Document Server

    Li, Yuan; Ruszkowski, Mateusz; Voit, G Mark; O'Shea, Brian W; Donahue, Megan

    2015-01-01

    Numerical simulations of active galactic nuclei (AGN) feedback in cool-core galaxy clusters have successfully avoided classical cooling flows, but often produce too much cold gas. We perform adaptive mesh simulations that include momentum-driven AGN feedback, self-gravity, star formation and stellar feedback, focusing on the interplay between cooling, AGN heating and star formation in an isolated cool-core cluster. Cold clumps triggered by AGN jets and turbulence form filamentary structures tens of kpc long. This cold gas feeds both star formation and the supermassive black hole (SMBH), triggering an AGN outburst that increases the entropy of the ICM and reduces its cooling rate. Within 1-2 Gyr, star formation completely consumes the cold gas, leading to a brief shutoff of the AGN. The ICM quickly cools and redevelops multiphase gas, followed by another cycle of star formation/AGN outburst. Within 6.5 Gyr, we observe three such cycles. There is good agreement between our simulated cluster and the observations...

  7. Mechanical AGN Feedback: Controlling the Thermodynamical Evolution of Elliptical Galaxies

    CERN Document Server

    Gaspari, M; Temi, P

    2012-01-01

    A fundamental gap in the current understanding of galaxies concerns the thermodynamical evolution of the ordinary, baryonic matter. On one side, radiative emission drastically decreases the thermal energy content of the interstellar plasma (ISM), inducing a slow cooling flow toward the centre. On the other side, the active galactic nucleus (AGN) struggles to prevent the runaway cooling catastrophe, injecting huge amount of energy in the ISM. The present study intends to deeply investigate the role of mechanical AGN feedback in (isolated or massive) elliptical galaxies, extending and completing the mass range of tested cosmic environments. Our previously successful feedback models, in galaxy clusters and groups, demonstrated that AGN outflows, self-regulated by cold gas accretion, are able to properly quench the cooling flow, without destroying the cool core. Via 3D hydrodynamic simulations (FLASH 3.3), including also stellar evolution, we show that massive mechanical AGN outflows can indeed solve the cooling ...

  8. AGN-starburst evolutionary connection : a physical interpretation based on radiative feedback

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.

    2016-08-01

    Observations point towards a close connection between nuclear starbursts, active galactic nuclei (AGN), and outflow phenomena. An evolutionary sequence, starting from a dust-obscured ultra-luminous infrared galaxy and eventually leading to an unobscured optical quasar, has been proposed and discussed in the literature. AGN feedback is usually invoked to expel the obscuring gas and dust in a blow-out event, but the underlying physical mechanism remains unclear. We consider AGN feedback driven by radiation pressure on dust, which directly acts on the obscuring dusty gas. We obtain that radiative feedback can potentially disrupt dense gas in the infrared-optically thick regime, and that an increase in the dust-to-gas fraction leads to an increase in the effective Eddington ratio. Thus the more dusty gas is preferentially expelled by radiative feedback, and the central AGN is prone to efficiently remove its own obscuring dust cocoon. Large amounts of dust imply heavy obscuration but also powerful feedback, suggesting a causal link between dust obscuration and blow-out. In this picture, AGN feedback and starburst phenomena are intrinsically coupled through the production of dust in supernova explosions, leading to a natural interpretation of the observed evolutionary path.

  9. Simulations of cosmic ray feedback by AGN in galaxy clusters

    CERN Document Server

    Sijacki, D; Springel, V; Ensslin, T A

    2008-01-01

    We investigate a numerical model for AGN feedback where for the first time a relativistic particle population in AGN-inflated bubbles is followed within a full cosmological context. In our high-resolution simulations of galaxy cluster formation, we assume that BH accretion is accompanied by energy feedback that occurs in two different modes, depending on the accretion rate itself. Unlike in previous work, we inject a non-thermal particle population of relativistic protons into the AGN bubbles, instead of adopting a purely thermal heating. We then follow the subsequent evolution of the cosmic ray (CR) plasma inside the bubbles, considering both its hydrodynamical interactions and dissipation processes relevant for the CR population. Due to the different buoyancy of relativistic plasma and the comparatively long CR dissipation timescale we find substantial changes in the evolution of clusters as a result of CR feedback. In particular, the non-thermal population can provide significant pressure support in centra...

  10. Ultra-fast outflows (aka UFOs) in AGNs and their relevance for feedback

    Science.gov (United States)

    Cappi, Massimo; Tombesi, F.; Giustini, M.; Dadina, M.; Braito, V.; Kaastra, J.; Reeves, J.; Chartas, G.; Gaspari, M.; Vignali, C.; Gofford, J.; Lanzuisi, G.

    2012-09-01

    During the last decade, several observational evidences have been accumulated for the existence of massive, high velocity winds/outflows (aka UFOs) in nearby AGNs and, possibly, distant quasars. I will review here such evidences, present some of the latest results in this field, and discuss the relevance of UFOs for both understanding the physics of accretion/ejection flows on supermassive black holes, and for quantifying the amount of AGN feedback.

  11. The formation of the brightest cluster galaxies in cosmological simulations: the case for AGN feedback

    OpenAIRE

    Martizzi, Davide; Teyssier, Romain; Moore, Ben

    2011-01-01

    We use 500 pc resolution cosmological simulations of a Virgo-like galaxy cluster to study the properties of the brightest cluster galaxy (BCG) that forms at the center of the halo. We compared two simulations; one incorporating only supernovae feedback and a second that also includes prescriptions for black hole growth and the resulting AGN feedback from gas accretion. As previous work has shown, with supernovae feedback alone we are unable to reproduce any of the observed properties of massi...

  12. AGN Feedback in the X-ray Surveyor Era

    Science.gov (United States)

    Reynolds, Chris

    2015-10-01

    It is now widely recognized that the growth of supermassive black holes can have a profound influence on the evolution of their host galaxy. For example, powerful quasars resulting from the merger of gas rich galaxies can produce sub-relativistic winds that may expel cold gas from the galaxy, extinguishing continued star formation. Another form of feedback occurs in giant elliptical galaxies and galaxy clusters - relativistic jets from the central AGN appear to heat the hot interstellar/intracluster gas, preventing a cooling catastrophe that would otherwise grow the stellar mass appreciably. While current observations reveal incontrovertible signatures of these feedback processes, the underlying physical mechanisms remain very poorly understood. What drives the powerful winds in luminous quasars? How does the energy injected by relativistic jets actually become thermalized in the intracluster medium? How are the feedback loops maintained? In this talk, I will discuss these questions and the impact of future observations by Astro-H, ATHENA and the X-ray Surveyor.

  13. Triggering star formation by both radiative and mechanical AGN feedback

    Institute of Scientific and Technical Information of China (English)

    Chao Liu; Zhao-Ming Gan; Fu-Guo Xie

    2013-01-01

    We perform two dimensional hydrodynamic numerical simulations to study the positive active galactic nucleus (AGN) feedback which triggers,rather than suppresses,star formation.Recently,it was shown by Nayakshin et al.and Ishibashi et al.that star formation occurs when the cold interstellar medium (ISM) is squeezed by the impact of mass outflow or radiation pressure,respectively.Mass outflow is ubiquitous in this astrophysical context,and radiation pressure is also important if the AGN is luminous.For the first time in this subject,we incorporate both mass outflow feedback and radiative feedback into our model.Consequently,the ISM is shocked into shells by the AGN feedback,and these shells soon fragment into clumps and filaments because of Rayleigh-Taylor and thermal instabilities.We have two major findings:(1)the star formation rate can indeed be very large in the clumps and filaments.However,the resultant star formation rate density is too large compared with previous works,which is mainly because we ignore the fact that most of the stars that are formed would be disrupted when they move away from the galactic center.(2) Although radiation pressure feedback has a limited effect,when mass outflow feedback is also included,they reinforce each other.Specifically,in the gas-poor case,mass outflow is always the dominant contributor to feedback.

  14. Highlights from the VERITAS AGN Observation Program

    CERN Document Server

    Benbow, Wystan

    2016-01-01

    The VERITAS array of four 12-m imaging atmospheric-Cherenkov telescopes began full-scale operations in 2007, and is one of the world's most sensitive detectors of astrophysical very high energy (VHE; E>100 GeV) gamma rays. Observations of active galactic nuclei (AGN) are a major focus of the VERITAS Collaboration, and more than 60 AGN, primarily blazars, are known to emit VHE photons. Approximately 4000 hours have been devoted to the VERITAS AGN observation program, resulting in 34 detections. Most of these detections are accompanied by contemporaneous, broadband observations, enabling a more detailed study of the underlying jet-powered processes. Recent highlights of the VERITAS AGN observation program are presented.

  15. Galaxy-scale AGN Feedback - Theory

    OpenAIRE

    Wagner, A. Y.; Bicknell, G.V.; Umemura, M; Sutherland, R. S.; Silk, J.

    2015-01-01

    Powerful relativistic jets in radio galaxies are capable of driving strong outflows but also inducing star-formation by pressure-triggering collapse of dense clouds. We review theoretical work on negative and positive active galactic nuclei feedback, discussing insights gained from recent hydrodynamical simulations of jet-driven feedback on galaxy scales that are applicable to compact radio sources. The simulations show that the efficiency of feedback and the relative importance of negative a...

  16. Galaxy-scale AGN feedback – theory

    OpenAIRE

    Wagner, A. Y.; Bicknell, G.V.; Umemura, M; Sutherland, R. S.; Silk, J.

    2016-01-01

    Powerful relativistic jets in radio galaxies are capable of driving strong outflows but also inducing star-formation by pressure-triggering collapse of dense clouds. We review theoretical work on negative and positive active galactic nuclei feedback, discussing insights gained from recent hydrodynamical simulations of jet-driven feedback on galaxy scales that are applicable to compact radio sources. The simulations show that the efficiency of feedback and the relative importance of negative a...

  17. The Effects of X-Ray Feedback from AGN on Host Galaxy Evolution

    CERN Document Server

    Hambrick, D Clay; Naab, Thorsten; Johansson, Peter H

    2011-01-01

    Hydrodynamic simulations of galaxies with active galactic nuclei (AGN) have typically employed feedback that is purely local: i.e., an injection of energy to the immediate neighborhood of the black hole. We perform GADGET-2 simulations of massive elliptical galaxies with an additional feedback component: an observationally calibrated X-ray radiation field which emanates from the black hole and heats gas out to large radii from the galaxy center. We find that including the heating and radiation pressure associated with this X-ray flux in our simulations enhances the effects which are commonly reported from AGN feedback. This new feedback model is twice as effective as traditional feedback at suppressing star formation, produces 3 times less star formation in the last 6 Gyr, and modestly lowers the final BH mass (30%). It is also significantly more effective than an X-ray background in reducing the number of satellite galaxies.

  18. Deep Chandra, HST-COS, and Megacam Observations of the Phoenix Cluster: Extreme Star Formation and AGN Feedback on Hundred Kiloparsec Scales

    CERN Document Server

    McDonald, M; van Weeren, R J; Applegate, D E; Bayliss, M; Bautz, M W; Benson, B A; Carlstrom, J E; Bleem, L E; Chatzikos, M; Edge, A C; Fabian, A C; Garmire, G P; Hlavacek-Larrondo, J; Jones-Forman, C; Mantz, A B; Miller, E D; Stalder, B; Veilleux, S; Zuhone, J A

    2015-01-01

    We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously-undetected filaments of star formation, extending to radii of ~50-100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2x10^9 Msun)), young (~4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 +/- 50 Msun/yr. We report a strong detection of OVI(1032,1038) which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 Msun/yr) from the cooling intracluster medium. We confirm the presence of deep X-ray cavities in the inner ~10 kpc, which are amongst the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2-7 x10^45 erg/s. We provide evidence that the AGN inflating these cavities may have only recently transitioned from "quasar-mode" to "radio-mode", and may currently be insufficient to completely offset ...

  19. Gas outflows in Seyfert galaxies: effects of star formation versus AGN feedbacks

    CERN Document Server

    Melioli, Claudio

    2015-01-01

    Large scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes (SMBHs) are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution specially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both star formation regions including supernova (type I and II) explosions and an AGN jet eme...

  20. The impact of mechanical AGN feedback on the formation of massive early-type galaxies

    CERN Document Server

    Choi, Ena; Naab, Thorsten; Oser, Ludwig; Moster, Benjamin P

    2014-01-01

    We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of $M_{stel} > 8.9 \\times 10^{10} M_{sun}$. Using smoothed particle hydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 halos with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter halos and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed M_BH - sigma relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of two compared to models without any AGN feedback at all halo masses. However,...

  1. Quenching histories of galaxies and the role of AGN feedback

    Science.gov (United States)

    Smethurst, Rebecca Jane; Lintott, Chris; Simmons, Brooke; Galaxy Zoo Team

    2016-01-01

    Two open issues in modern astrophysics are: (i) how do galaxies fully quench their star formation and (ii) how is this affected - or not - by AGN feedback? I present the results of a new Bayesian-MCMC analysis of the star formation histories of over 126,000 galaxies across the colour magnitude diagram showing that diverse quenching mechanisms are instrumental in the formation of the present day red sequence. Using classifications from Galaxy Zoo we show that the rate at which quenching can occur is morphologically dependent in each of the blue cloud, green valley and red sequence. We discuss the nature of these possible quenching mechanisms, considering the influence of secular evolution, galaxy interactions and mergers, both with and without black hole activity. We focus particularly on the relationship between these quenched star formation histories and the presence of an AGN by using this new Bayesian method to show a population of type 2 AGN host galaxies have recently (within 2 Gyr) undergone a rapid (τ 2 Gyr) quenching rates dominate for high stellar mass (log10[M*/M⊙] > 10.75) hosts of AGN with both early- and late-type morphology. We discuss how these results show that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes across the entirety of the colour magnitude diagram.

  2. The Effect of AGN and SNe Feedback on Star Formation,Reionization and the Near Infrared Background

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Feedback from supernovae (SNe) and from active galactic nuclei (AGN) accom-panies the history of star formation and galaxy evolution. We present an analytic model to explain how and when the SNe and AGN exert their feedback effects on the star formation and galaxy evolution processes. By using SNe and AGN kinetic feedback mechanisms based on the Lambda Cold Dark Matter (LCDM) model, we explore how these feedback mecha-nisms affect the star formation history (SFH), the Near-Infrared Background (NIRB) flux and the cosmological reionization. We find the values of the feedback strengths, ∈AGN =1.0+0.50.3and ∈SN=0.04+0.02-0.02, can provide a reasonable explanation of most of the observational re-suits, and that the AGN feedback effect on star formation history is quite different from the SNe feedback at high redshifts. Our conclusions manifest quantitatively that these feedback effects decrease star formation rate density (SFRD) and the NIRB flux (in 1.4 - 4.0μm), and postpone the time of completion of the cosmological reionization.

  3. Evidence for AGN Feedback in Galaxy Clusters and Groups

    Directory of Open Access Journals (Sweden)

    Myriam Gitti

    2012-01-01

    Full Text Available The current generation of flagship X-ray missions, Chandra and XMM-Newton, has changed our understanding of the so-called “cool-core” galaxy clusters and groups. Instead of the initial idea that the thermal gas is cooling and flowing toward the center, the new picture envisages a complex dynamical evolution of the intracluster medium (ICM regulated by the radiative cooling and the nongravitational heating from the active galactic nucleus (AGN. Understanding the physics of the hot gas and its interplay with the relativistic plasma ejected by the AGN is key for understanding the growth and evolution of galaxies and their central black holes, the history of star formation, and the formation of large-scale structures. It has thus become clear that the feedback from the central black hole must be taken into account in any model of galaxy evolution. In this paper, we draw a qualitative picture of the current knowledge of the effects of the AGN feedback on the ICM by summarizing the recent results in this field.

  4. Evidence for AGN Feedback in Galaxy Clusters and Groups

    CERN Document Server

    Gitti, Myriam; McNamara, Brian R

    2011-01-01

    The current generation of flagship X-ray missions, Chandra and XMM-Newton, has changed our understanding of the so-called "cool core" galaxy clusters and groups. Instead of the initial idea that the thermal gas is cooling and flowing toward the center, the new picture envisages a complex dynamical evolution of the intra-cluster medium (ICM) regulated by the radiative cooling and the nongravitational heating from the active galactic nucleus (AGN). Understanding the physics of the hot gas and its interplay with the relativistic plasma ejected by the AGN is key for understanding the growth and evolution of galaxies and their central black holes, the history of star formation, and the formation of large-scale structures. It has thus become clear that the feedback from the central black hole must be taken into account in any model of galaxy evolution. In this paper, we draw a qualitative picture of the current knowledge of the effects of the AGN feedback on the ICM by summarizing the recent results in this field.

  5. Can AGN feedback break the self-similarity of galaxies, groups, and clusters?

    CERN Document Server

    Gaspari, M; Temi, P; Ettori, S

    2014-01-01

    It is commonly thought that AGN feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution 3D hydrodynamic simulations, we isolate the impact of AGN feedback on the $L_{\\rm x}-T_{\\rm x} $ relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within $R_{500}$, while the central cooling times are inversely proportional to the core density. Breaking self-similarity implies thus breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents the dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive ...

  6. AGN Observations with the MAGIC Telescope

    OpenAIRE

    Bigongiari, Ciro

    2006-01-01

    MAGIC is presently the imaging atmospheric Cherenkov telescope with the largest reflecting surface and the lowest energy threshold. MAGIC concluded its first year of regular observation in April 2006. During this period and the preceding commissioning phase, 25 Active Galactic Nuclei have been observed and VHE gamma-ray emission has been confirmed by 4 of them. Two more AGNs have been detected as gamma-ray sources with high statistical significance for the first time. We report in this paper ...

  7. Connecting AGN Feedback, the Star-Forming Interstellar Medium, and Galaxy Formation

    Science.gov (United States)

    Hopkins, Philip

    historical sub- grid models. As a result, these models have already had a large impact on the field and motivated a new generation of 'sub-grid' models for cosmological simulations. With them, we are now for the first time able to study black hole feedback in a realistic galactic environment. We will combine these models with realistic treatments of AGN feedback via radiative heating, radiation pressure, and accretion-disk winds, to understand how physical AGN feedback mechanisms interact with galaxies. Our proposal focuses on building up theory over a range of scales, from sub-pc simulations of the obscuring torus region to fully cosmological simulations. This will allow us to follow a range of processes and develop an understanding of how the small-scale physics of AGN accretion impacts cosmological star formation (and to develop improved 'sub-grid' models for other studies). We will study the evolution of black hole accretion rates, generation of nuclear and galactic-scale winds, interaction of AGN-driven and stellar-driven galactic outflows, the effects of AGN feedback on star formation, and nature of black hole-host galaxy correlations. Our team has unique access to and is developing for three fundamentally distinct simulation codes, widely used in galaxy formation and cosmology. This gives us the ability to directly address and resolve long-standing uncertainties regarding the relative effects of physical, versus purely numerical, differences in various simulations, which have complicated interpretations of results in this field. Our focus on AGN feedback interacting with a realistic ISM is also motivated by rapidly mounting observations of multi-phase galactic outflows. We will make direct predictions for outflow properties in different ISM phases (molecular, atomic, ionized gas), especially relevant for recent multi-wavelength observations from HST COS, NuSTAR, Herschel, GALEX, XMM-Newton, and Chandra, and future observations with ALMA and JWST.

  8. AGN and stellar feedback in star-forming galaxies at redshift 2 : outflows, mass-loading and quenching

    Science.gov (United States)

    Roos, O.

    2016-06-01

    Galactic-scale outflows are ubiquitous in observations of star-forming galaxies, up to high redshift. Such galactic outflows are mainly generated by internal sources of feedback: young stars, supernovae and active galactic nuclei (AGNs). Still, the physical origins of such outflows are not well understood, and their main driver is still debated. Up to now, most simulations take into account AGN feedback or stellar feedback but not both, because both phenomena happen on very different spatial and time scales. Most of them also still fail to reproduce all observed parameters from first principles. In this poster, we present the POGO project: Physical Origins of Galactic Outflows. With this suite of 23 simulations, we model AGN and stellar feedback simultaneously based on physical assumptions for the first time at very high resolution (6 to 1.5 pc), and investigate their impact on the outflow parameters of the host-galaxy. Here, we show that AGN and stellar feedback couple non-linearly, and that the mass-loading of the resulting outflow highly depends on the mass of the host, all the more because the coupling can either be positive (small masses) or negative (intermediate masses). Nevertheless, the main driver of the outflow remains the AGN at all masses.

  9. Central gas entropy excess as direct evidence for AGN feedback in galaxy groups and clusters

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Hai-Guang Xu; Jun-Hua Gu; Li-Yi Gu; Jing-Ying Wang; Zhong-Li Zhang

    2010-01-01

    By analyzing Chandra X-ray data of a sample of 21 galaxy groups and 19galaxy clusters,we find that in 31 sample systems there exists a significant central(R ≤10h-171 kpc)gas entropy excess(△K0),which corresponds to(=)0.1-0.5 keV per gas particle,beyond the power-law model that best fits the radial entropy profile of the outer regions.We also find a distinct correlation between the central entropy excess△K0 and K-band luminosity LK of the central dominating galaxies(CDGs),which is scaled as △K0 ∝ L1.6±0.4K,where LK is tightly associated with the mass of the supermassive black hole hosted in the CDG.In fact,if an effective mass-to-energy conversion-efficiency of 0.02 is assumed for the accretion process,the cumulative AGN feedback EAGNfeedback(=)ηMBHC2 yields an extra heating of(=)0.5-17.0keV per particle,which feedback is sufficient to explain the central entropy excess.In most cases,the AGN contribution can compensate the radiative loss of the X-ray gas within the cooling radius((=)0.002-2.2 keV per particle),and apparently exceeds the energy required to cause the scaling relations to deviate from the self-similar predictions((=)0.2-1.0 keV per particle).In contrast to the AGN feedback,the extra heating provided by supernova explosions accounts for(=)0.01-0.08 keV per particle in groups and is almost negligible in clusters.Therefore,the observed correlation between ΔK0 and LK can be considered as direct evidence for AGN feedback in galaxy groups and clusters.

  10. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    Science.gov (United States)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  11. X-ray Cavities in Galaxy Groups and Clusters: Central Gas Entropy Excess as Direct Evidence for AGN Feedback

    Indian Academy of Sciences (India)

    Yu Wang

    2011-03-01

    Observations of X-ray jets and cavities in clusters of galaxies observed by Chandra are briefly reviewed. A recent study on the excess of central gas entropy, which can be considered as direct evidence for AGN feedback in galaxy groups and clusters is presented. An expanded account of this study has been presented in RAA (Wang et al. 2010).

  12. AGN Feedback in Overdense Environments at z=2.23

    Science.gov (United States)

    Lucy, Adrian B.; Lehmer, B.; Alexander, D. M.; Best, P.; Geach, J.; Harrison, C. M.; Hornschemeier, A. E.; Matsuda, Y.; Mullaney, J.; Smail, I.; Sobral, D.

    2013-01-01

    We present results from a ≈100 ks Chandra observation of the 2QZ Cluster 1004+00 galaxy overdensity at z=2.23. This 2QZ Clus structure was first identified as an overdensity of four optically-selected quasars; that sample was subsequently found to overlap with an overdensity of 22 Hα-emitting galaxies (HAEs) identified through narrow and broad band near-infrared imaging by Matsuda et al. (2011). In addition to the preselected quasars in 2QZ Clus, our Chandra observation reveals that a further three HAEs are X-ray sources, all characterized by X-ray luminosities and spectral slopes consistent with unobscured active galactic nuclei (AGN). In total, we find that ≈30% of HAEs in our observed region of 2QZ Clus are AGN. This AGN fraction is high compared to AGN fractions among HAEs in the Chandra-COSMOS field (C-COSMOS), and if this enhancement is purely a result of the quasar selection bias of our sample, we estimate that such activity is rare at this redshift. Hα is a tracer of star formation, so 2QZ Clus is well suited to the investigation of the coeval growth of supermassive black holes and their host galaxies in the precursors to rich local clusters. Moreover, we have an ideal control sample in C-COSMOS; this survey contains a large sample of HAEs classified identically using infrared imaging, but without any selection of quasars. We calculate AGN fraction as a function of galaxy overdensity in C-COSMOS, and perform stacking analyses of Chandra and 250μ Herschel SPIRE data to obtain mean black hole accretion rates dMBH/dt and star formation rates SFR. Preliminary results indicate that dMBH/dt and its ratio to SFR are significantly elevated in 2QZ Clus compared to similarly overdense regions of C-COSMOS. We discuss these relations in the context of theoretical models describing the emergence of the MBH/Mgal relation of the local Universe.

  13. Can AGN feedback-driven star formation explain the size evolution of massive galaxies?

    CERN Document Server

    Ishibashi, W; Canning, R E A

    2013-01-01

    Observations indicate that massive galaxies at z~2 are more compact than galaxies of comparable mass at z~0, with effective radii evolving by a factor of ~3-5. This implies that galaxies grow significantly in size but relatively little in mass over the past ~10 Gyr. Two main physical models have been proposed in order to explain the observed evolution of massive galaxies: "mergers" and "puffing-up" scenarios. Here we introduce another possibility, and discuss the potential role of the central active galactic nucleus (AGN) feedback on the evolution of its host galaxy. We consider triggering of star formation, due to AGN feedback, with radiation pressure on dusty gas as the driving feedback mechanism. In this picture, stars are formed in the feedback-driven outflow at increasingly larger radii and build up the outer regions of the host galaxy. The resulting increase in size and stellar mass can be compared with the observed growth of massive galaxies. Star formation in the host galaxy is likely obscured due to ...

  14. XMM-NEWTON Observations of Red AGN

    CERN Document Server

    Wilkes, B J; Schmidt, G D; Smith, P S; Cutri, R M; Ghosh, H; Nelson, B; Hines, D C

    2005-01-01

    XMM-Newton spectra of five red, 2MASS AGN, selected from a sample observed by Chandra to be relatively X-ray bright and to cover a range of hardness ratios, confirm the presence of substantial absorbing material in three sources with optical classifications ranging from Type 1 to Type 2. A flat (hard), power law continuum is observed in the other two. The combination of X-ray absorption and broad optical emission lines suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this may arise in an extended region of ionised gas, perhaps linked with the polarised (scattered) optical light present in these sources. The spectral complexity revealed by XMM-Newton emphasizes the limitations of the low S/N \\chandra data. The new results strengthen our earlier conclusions that the observed X-ray continua of red AGN are unusually hard at energies >2 keV. Th...

  15. A simple way to improve AGN feedback prescription in SPH simulations

    CERN Document Server

    Zubovas, Kastytis; Nayakshin, Sergei

    2015-01-01

    AGN feedback is an important ingredient in galaxy evolution, however its treatment in numerical simulations is necessarily approximate, requiring subgrid prescriptions due to the dynamical range involved in the calculations. We present a suite of SPH simulations designed to showcase the importance of the choice of a particular subgrid prescription for AGN feedback. We concentrate on two approaches to treating wide-angle AGN outflows: thermal feedback, where thermal and kinetic energy is injected into the gas surrounding the SMBH particle, and virtual particle feedback, where energy is carried by tracer particles radially away from the AGN. We show that the latter model produces a far more complex structure around the SMBH, which we argue is a more physically correct outcome. We suggest a simple improvement to the thermal feedback model - injecting the energy into a cone, rather than spherically symmetrically - and show that this markedly improves the agreement between the two prescriptions, without requiring ...

  16. GAS OUTFLOWS IN SEYFERT GALAXIES: EFFECTS OF STAR FORMATION VERSUS AGN FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Melioli, C.; Pino, E. M. de Gouveia Dal, E-mail: claudio.melioli@iag.usp.br, E-mail: dalpino@iag.usp.br [Department of Astronomy (IAG-USP), University of Sao Paulo (Brazil)

    2015-10-20

    Large-scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy, where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution especially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both SF regions, including supernova (Type I and II) explosions and an AGN jet emerging from the central region of the active spiral galaxy. We computed the gas mass lost by the system, separating the role of each of these injection energy sources on the galaxy evolution, and found that at scales within 1 kpc an outflow can be generally established considering intense nuclear SF only. The jet alone is unable to drive a massive gas outflow, although it can sporadically drag and accelerate clumps of the underlying outflow to very high velocities.

  17. Momentum Driving: which physical processes dominate AGN feedback?

    CERN Document Server

    Ostriker, Jeremiah P; Ciotti, Luca; Novak, Gregory S; Proga, Daniel

    2010-01-01

    The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus (AGN) into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be summarized by the dimensionless parameter $\\eta=dot{M_outflow}/dot{M_accretion}= (2 \\epsilon_w c^2)/v_w^2$ where ($\\epslion_w \\equiv dot{E}_w/(dot{M_accretion} c^2)$) is the efficiency by which accreted matter is turned into wind energy in the disc surrounding the central SMBH. The outflowing mass and omentum are proportional to $\\eta$, and many prior treatments have essentially assumed that $\\eta=0$. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to an hundred fold increase in the mass of the SMBH to over $...

  18. Cool core cycles: Cold gas and AGN jet feedback in cluster cores

    CERN Document Server

    Prasad, Deovrat; Babul, Arif

    2015-01-01

    Using high-resolution 3-D and 2-D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGN) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity $\\approx \\epsilon \\dot{M}_{\\rm acc} c^2$; where $\\dot{M}_{\\rm acc}$ is the mass accretion rate at 1 kpc) as small as $5 \\times 10^{-5}$ is sufficient to reduce the cooling/accretion rate by $\\sim 10$ compared to a pure cooling flow. This value is smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted on to the supermassive black hole (SMBH). We find hysteresis cycles in all our simulations with cold mode feedback: {\\em condensation} of cold gas when the ratio...

  19. XMM-Newton, powerful AGN winds and galaxy feedback

    Science.gov (United States)

    Pounds, K.; King, A.

    2016-06-01

    The discovery that ultra-fast ionized winds - sufficiently powerful to disrupt growth of the host galaxy - are a common feature of luminous AGN is major scientific breakthrough led by XMM-Newton. An extended observation in 2014 of the prototype UFO, PG1211+143, has revealed an unusually complex outflow, with distinct and persisting velocities detected in both hard and soft X-ray spectra. While the general properties of UFOs are consistent with being launched - at the local escape velocity - from the inner disc where the accretion rate is modestly super-Eddington (King and Pounds, Ann Rev Astron Astro- phys 2015), these more complex flows have raised questions about the outflow geometry and the importance of shocks and enhanced cooling. XMM-Newton seems likely to remain the best Observatory to study UFOs prior to Athena, and further extended observations, of PG1211+143 and other bright AGN, have the exciting potential to establish the typical wind dynamics, while providing new insights on the accretion geometry and continuum source structure. An emphasis on such large, coordinated observing programmes with XMM-Newton over the next decade will continue the successful philosophy pioneered by EXOSAT, while helping to inform the optimum planning for Athena

  20. On the Importance of Very-light Internally-subsonic AGN Jets in Radio-mode AGN Feedback

    CERN Document Server

    Guo, Fulai

    2016-01-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kpc-scale interaction of AGN jets with the hot halo gas, where jet properties may play an important role. Large-scale jet simulations often initiate light internally-supersonic jets with density contrast $0.01<\\eta<1$. Here we argue for the importance of very-light ($\\eta<0.01$) internally-subsonic jets in AGN feedback. We investigated the shapes of young X-ray cavities produced by AGN jets in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally-subsonic jets, while internally-supersonic jets produce cylindrical, center-wide, or top-wide cavities. We found examples of real cavities inflated by internally-subsonic and internally-supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resul...

  1. A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations

    CERN Document Server

    Bachmann, Lisa K; Hirschmann, Michaela; Prieto, M Almudena; Remus, Rhea-Silvia

    2014-01-01

    In large scale cosmological hydrodynamic simulations simplified sub-grid models for gas accretion onto black holes and AGN feedback are commonly used. Such models typically depend on various free parameters, which are not well constrained. We present a new advanced model containing a more detailed description of AGN feedback, where those parameters reflect the results of recent observations. The model takes the dependency of these parameters on the black hole properties into account and describes a continuous transition between the feedback processes acting in the so-called radio-mode and quasar-mode. In addition, we implement a more detailed description of the accretion of gas onto black holes by distinguishing between hot and cold gas accretion. Our new implementations prevent black holes from gaining too much mass, particularly at low redshifts so that our simulations are now very successful in reproducing the observed present-day black hole mass function. Our new model also suppresses star formation in ma...

  2. Convection and AGN Feedback in Clusters of Galaxies

    CERN Document Server

    Chandran, Benjamin D G

    2007-01-01

    In this paper we investigate the role of convection in clusters of galaxies. A number of studies have shown that the convective stability criterion for the intracluster medium (ICM) is very different from the Schwarzchild criterion due to the effects of anisotropic thermal conduction and cosmic rays. Building on these studies, we present a model in which a central active galactic nucleus (AGN) accretes hot intracluster plasma at the Bondi rate and produces cosmic rays that cause the ICM to become convectively unstable. The resulting convection heats the intracluster plasma and regulates its temperature and density profiles. By adjusting a single parameter in the model (the size of the cosmic-ray acceleration region), we are able to achieve a good match to the observed density and temperature profiles in a sample of eight clusters. Our results suggest that convection is an important process in cluster cores. An interesting feature of our solutions is that the cooling rate is more sharply peaked about the clust...

  3. Multiphase Signatures of AGN Feedback in Abell 2597

    CERN Document Server

    Tremblay, G R; Baum, S A; Clarke, T E; Sarazin, C L; Bregman, J N; Combes, F; Donahue, M; Edge, A C; Fabian, A C; Ferland, G J; McNamara, B R; Mittal, R; Oonk, J B R; Quillen, A C; Russell, H R; Sanders, J S; Salomé, P; Voit, G M; Wilman, R J; Wise, M W

    2012-01-01

    We present new Chandra X-ray observations of the brightest cluster galaxy (BCG) in the cool core cluster Abell 2597. The data reveal an extensive kpc-scale X-ray cavity network as well as a 15 kpc filament of soft-excess gas exhibiting strong spatial correlation with archival VLA radio data. In addition to several possible scenarios, multiwavelength evidence may suggest that the filament is associated with multiphase (10^3 - 10^7 K) gas that has been entrained and dredged-up by the propagating radio source. Stemming from a full spectral analysis, we also present profiles and 2D spectral maps of modeled X-ray temperature, entropy, pressure, and metal abundance. The maps reveal an arc of hot gas which in projection borders the inner edge of a large X-ray cavity. Although limited by strong caveats, we suggest that the hot arc may be (a) due to a compressed rim of cold gas pushed outward by the radio bubble or (b) morphologically and energetically consistent with cavity-driven active galactic nucleus (AGN) heatin...

  4. Satellites of Radio AGN in SDSS: Insights into AGN Triggering and Feedback

    CERN Document Server

    Pace, Cameron

    2014-01-01

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7,220 radio AGNs at z < 0.3 (identified by Best & Heckman 2012 from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17{\\sigma} significance) in the number of satellites within 100 kpc even though the cluster membership was controlled for (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via t...

  5. The effects of AGN feedback and SPH formulation on black hole growth in galaxies

    Science.gov (United States)

    Liu, MaoSheng; Di Matteo, Tiziana; Feng, Yu

    2016-05-01

    We perform simulations of isolated galaxies and major mergers to investigate the effects on black hole (BH) growth due to variations in active galactic nuclei (AGN) feedback models and different smooth particle hydrodynamic (SPH) solvers. In particular we examine density-SPH versus newer pressure-SPH formulation and their significance relative to minor changes in subgrid AGN feedback prescriptions. The aim is to use these idealized simulations to understand the impact of these effects for large cosmological volume simulations where these models are often adopted. In both isolated galaxies and galaxy mergers, we find that star formation histories are largely insensitive to the choice of SPH schemes whilst BH accretion rate can change. This can result in a factor of 2-3 difference in final BH mass for the two hydrodynamic formulations. However, the differences are much smaller than those obtained even with small changes in the subgrid AGN feedback prescription. In particular, depending on the size of the region and the manner in which the AGN energy is deposited, the star formation rate is suppressed by a factor of 2 in isolated galaxies and the star burst completely quenched during the coalescence of two galaxies. The final BH mass differs by over an order of magnitude by changes in AGN feedback model. Our results indicated that any change in the hydrodynamic formulation is likely subdominant to the effects of changing subgrid physics around the BH, although thermodynamic state and morphology of the gas remnant are also sensitive to the change in hydrodynamic solver.

  6. Upper Limits from HESS AGN Observations in 2005-2007

    CERN Document Server

    Aharonian, F; Barresde Almeida, U; Bazer-Bachi, A R; Behera, B; Beilicke, M; Benbow, W; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brion, E; Brown, A M; Buhler, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Chounet, L M; Clapson, A C; Coignet, G; Cornils, R; Costamante, L; Dalton, M; Degrange, B; Dickinson, H J; Djannati-Ata, A; Domainko, W; O'Connor-Drury, L; Dubois, F; Dubus, G; Dyks, J; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Frster, A; Fontaine, G; Funk, Seb; Fuling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Jung, I; Katarzynski, K; Kendziorra, E; Kerschhaggl, M; Khlifi, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Latham, I J; Lemi`re, A; Lemoine-Goumard, M; Lenain, J P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, D; Maurin, G; McComb, T J L; Moderski, R; Moulin, E; De Naurois, Mathieu; Nedbal, D; Nolan, S J; Ohm, S; Olive, J P; de Ona Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Rudak, B; Ruppel, J; Sahakian, V V; Santangelo, A; Schlickeiser, R; Schock, F; Schroder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spangler, D; Stawarz, L; Steenkamp, R; Stegmann, C; Superina, G; Tam, A Shalchi P H; Tavernet, J P; Terrier, R; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Vlk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2007-01-01

    AIMS: Very high energy (VHE; E>100 GeV) gamma-ray studies were performed for 18 active galactic nuclei (AGN) from a variety of AGN classes. METHODS: VHE observations of a sample of 14 AGN, considered candidate VHE emitters, were made with the High Energy Stereoscopic System (HESS) between January 2005 and July 2007. Large-zenith-angle observations of three northern AGN (Mkn 421, Mkn 501, 1ES 1218+304), known to emit VHE gamma rays, were also performed in order to sample their spectral energy distributions (SEDs) above 1 TeV. In addition, the VHE flux from 1ES 1101-232, previously detected by HESS in 2004-2005, was monitored during 2006 and 2007. RESULTS: As significant detections from the HESS observation program are reported elsewhere, the results reported here are primarily integral flux upper limits. The average exposure for each of the 14 VHE-candidate AGN is ~7 h live time, and the observations have an average energy threshold between 230 GeV and 590 GeV. Upper limits for these 14 AGN range from <0.9%...

  7. Observations of AGN with large telescopes

    Directory of Open Access Journals (Sweden)

    Meg Urry

    2007-01-01

    Full Text Available Aquí describo cuatro cuestiones científicas apremiantes en lo referente a AGN que pueden ser abordadas empleando el telescopio de 10-m como el GTC. (1 La demografía de agujeros negros puede ser determinada mediante exploraciones profundas de longitudes de ondas múltiples (incluyendo rayos X seguidas por espectroscopia del óptico e infrarrojo con un telescopio de la clase de 10-m. En la época de la actividad pico de AGN, alrededor de z 2, la mayoría de los AGN será clasificada erróneamente por las exploraciones ópticas, ya que los más fuertemente oscurecidos solamente cuentan con emisión de la galaxia anfitriona en el óptico; si la galaxia es muy roja, la espectroscopia infrarroja resulta esencial. (2 Masas precisas de agujeros negros pueden ser determinadas utilizando la relación MBH-. Esta puede revelar las tendencias en luminosidad con masa de agujero negro que hasta ahora no resultan aparentes. La evolución de la relación MBH- con el corrimiento al rojo potencialmente constriñe modelos de formación de galaxias y de retroalimentación. La medición de requiere un telescopio de la clase de 10-m para todos los AGN excepto los más cercanos. (3 Imaginería óptica profunda de alta resolución puede revelar directamente las propiedades de la galaxia anfitriona de AGN, incluyendo los episodios de formación estelar. Con imaginería muy profunda, el GTC podrá de esta manera indagar las escalas de tiempo relativas de la actividad de formación estelar a escala galáctica y de la acreción nuclear de agujeros negros, revelando así la conexión entre agujeros negros y galaxias. (4 Finalmente, imaginería profunda con alta resolución espacial, en un amplio rango de longitudes de ondas desde el infrarrojo al óptico, promete esclarecer las condiciones físicas en jets relativistas y ofrecer importante información para llegar a entender sus procesos de emisión, su fuerza cinética y el contenido de materia.

  8. A Mechanism for Stimulated AGN Feedback in Massive Galaxies

    CERN Document Server

    McNamara, B R; Nulsen, P E J; Hogan, M T; Fabian, A C; Pulido, F; Edge, A C

    2016-01-01

    Observation shows that cooling instabilities leading to nebular emission, molecular gas, and star formation in giant galaxies are formed behind buoyantly-rising X-ray bubbles inflated by radio jets launched from massive nuclear black holes. We propose a model where molecular clouds condense from hot but relatively low entropy gas lifted by X-ray bubbles to an altitude where its cooling time is shorter than the time required for it to fall to its equilibrium location in the galaxy i.e., t_c/t_I <~1$. Here the infall time can exceed the free-fall time, t_ff, by factors of a few. This mechanism, which we refer to as stimulated feedback, is motivated by recent ALMA observations of central galaxies in clusters and groups revealing molecular clouds apparently forming in the wakes of rising X-ray bubbles and with surprisingly low cloud velocities. Supported by recent numerical simulations, our model would naturally sustain a continual feedback-loop in galaxies fuelled by cooling gas stimulated by radio-mechanical...

  9. Interplay among Cooling, AGN Feedback and Anisotropic Conduction in the Cool Cores of Galaxy Clusters

    CERN Document Server

    Yang, H -Y K

    2015-01-01

    Feedback from the active galactic nuclei (AGN) is one of the most promising heating mechanisms to circumvent the cooling-flow problem in galaxy clusters. However, the role of thermal conduction remains unclear. Previous studies have shown that anisotropic thermal conduction in cluster cool cores (CC) could drive the heat-flux driven buoyancy instabilities (HBI) that re-orient the field lines in the azimuthal directions and isolate the cores from conductive heating from the outskirts. However, how the AGN interacts with the HBI is still unknown. To understand these interwined processes, we perform the first 3D magnetohydrodynamic (MHD) simulations of isolated CC clusters that include anisotropic conduction, radiative cooling, and AGN feedback. We find that: (1) For realistic magnetic field strengths in clusters, magnetic tension can suppress a significant portion of HBI-unstable modes and thus the HBI is either completely inhibited or significantly impaired, depending on the unknown magnetic field coherence le...

  10. The case for AGN feedback in galaxy groups

    CERN Document Server

    McCarthy, Ian G; Ponman, Trevor J; Bower, Richard G; Booth, Craig M; Vecchia, Claudio Dalla; Crain, Robert A; Springel, Volker; Theuns, Tom; Wiersma, Robert P C

    2009-01-01

    [Abridged] The relatively recent insight that energy input from supermassive black holes (BHs) can have a substantial effect on the star formation rates (SFRs) of galaxies motivates us to examine its effects on the scale of galaxy groups. At present, groups contain most of the galaxies and a significant fraction of the overall baryon content of the universe. To explore the effects of BH feedback on groups, we analyse two high resolution cosmological hydro simulations from the OverWhelmingly Large Simulations project. While both include galactic winds driven by supernovae, only one includes feedback from BHs. We compare the properties of the simulated groups to a wide range of observational data, including hot gas radial profiles and gas mass fractions (fgas), luminosity-mass-temperature (L-M-T) scaling relations, K-band luminosity of the group and its central brightest galaxy (BCG), SFRs and ages of the BCG, and gas/stellar metallicities. Both runs yield entropy profiles similar to the data, while the run wit...

  11. The Hot and Energetic Universe: AGN feedback in galaxy clusters and groups

    CERN Document Server

    Croston, J H; Heinz, S; Hardcastle, M J; Zhuravleva, I; Bîrzan, L; Bower, R G; Brüggen, M; Churazov, E; Edge, A C; Ettori, S; Fabian, A C; Finoguenov, A; Kaastra, J; Gaspari, M; Gitti, M; Nulsen, P E J; McNamara, B R; Pointecouteau, E; Ponman, T J; Pratt, G W; Rafferty, D A; Reiprich, T H; Sijacki, D; Worrall, D M; Kraft, R P; McCarthy, I; Wise, M

    2013-01-01

    Mechanical feedback via Active Galactic Nuclei (AGN) jets in the centres of galaxy groups and clusters is a crucial ingredient in current models of galaxy formation and cluster evolution. Jet feedback is believed to regulate gas cooling and thus star formation in the most massive galaxies, but a robust physical understanding of this feedback mode is currently lacking. The large collecting area, excellent spectral resolution and high spatial resolution of Athena+ will provide the breakthrough diagnostic ability necessary to develop this understanding, via: (1) the first kinematic measurements on relevant spatial scales of the hot gas in galaxy, group and cluster haloes as it absorbs the impact of AGN jets, and (2) vastly improved ability to map thermodynamic conditions on scales well-matched to the jets, lobes and gas disturbances produced by them. Athena+ will therefore determine for the first time how jet energy is dissipated and distributed in group and cluster gas, and how a feedback loop operates in group...

  12. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population

    CERN Document Server

    Harrison, C M; Mullaney, J R; Swinbank, A M

    2014-01-01

    We present integral field unit (IFU) observations covering the [O III]4959,5007 and H-Beta emission lines of sixteen z~(6-16) kpc in all targets and observe signatures of spherical outflows and bi-polar superbubbles. We show that our targets are representative of z 5x10^41 erg/s) type 2 AGN and that ionised outflows are not only common but also in >=70% (3 sigma confidence) of cases, they are extended over kiloparsec scales. Our study demonstrates that galaxy-wide energetic outflows are not confined to the most extreme star-forming galaxies or radio-luminous AGN; however, there may be a higher incidence of the most extreme outflow velocities in quasars hosted in ultra-luminous infrared galaxies. Both star formation and AGN activity appear to be energetically viable to drive the outflows and we find no definitive evidence that favours one process over the other. Although highly uncertain, we derive mass outflow rates (typically ~10x the SFRs), kinetic energies (~0.5-10% of L[AGN]) and momentum rates (typically...

  13. Submillimetre observations of WISE/radio-selected AGN and their environments

    CERN Document Server

    Jones, Suzy F; Lonsdale, Carol; Condon, James; Farrah, Duncan; Stern, Daniel; Tsai, Chao-Wei; Assef, Roberto J; Bridge, Carrie; Kimball, Amy; Lacy, Mark; Eisenhardt, Peter; Wu, Jingwen; Jarrett, Tom

    2015-01-01

    We present JCMT SCUBA-2 850microns submillimetre (submm) observations of 30 mid-infrared (mid-IR) luminous AGN, detected jointly by the WISE all-sky IR survey and the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-infrared spectral energy distributions (SEDs) and compact radio counterparts. Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. These galaxies appear to be consistent with an AGN-dominated galaxy, and could be a transient phase of merging galaxies. When comparing the number of submm galaxies (SMGs) detected serendipitously in the surrounding 1.5-arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 5, but no sign of radial clustering centred at our primary objects. The WISE/radio-selected AGN thus reside in 10-Mpc-scale overdense environments, that could be forming in pre-viralised clusters of galaxies. WISE/radio-selected...

  14. Feeding and Feedback in nearby AGN - Comparison with the Milky Way center

    CERN Document Server

    Storchi-Bergmann, Thaisa

    2014-01-01

    I discuss feeding and feedback processes observed in the inner few hundred parsecs of nearby active galaxies using integral field spectroscopy at spatial resolutions of a few to tens of parsecs. Signatures of feedback include outflows from the nucleus with velocities ranging from 200 to 1000km/s, with mass outflow rates between 0.5 and a few Msun/yr. Signatures of feeding include the observation of gas inflows along nuclear spirals and filaments, with velocities ranging from 50 to 100km/s and mass flow rates from 0.1 to 1 Msun/yr. These rates are 2--3 orders of magnitude larger than the mass accretion rate to the supermassive black hole (SMBH). These inflows can thus lead, during less than one activity cycle, to the accumulation of enough gas in the inner few hundred parsecs, to trigger the formation of new stars, leading to the growth of the galaxy bulge. Young to intermediate age stars have indeed been found in circumnuclear rings around a number of Active Galactic Nuclei (AGN). One of these rings, with ~10...

  15. X-ray Surface Brightness Profiles of Active Galactic Nuclei in the Extended Groth Strip: Implications for AGN Feedback

    CERN Document Server

    Chatterjee, Suchetana; Jeltema, Tesla; Myers, Adam D; Aird, James; Coil, Alison L; Cooper, Michael; Finoguenov, Alexis; Laird, Elise; Montero-Dorta, Antonio; Nandra, Kripal; Willmer, Christopher; Yan, Renbin

    2013-01-01

    Using data from the All Wavelength Extended Groth Strip International Survey (AEGIS) we statistically detect the extended X-ray emission in the interstellar medium (ISM) in both active and normal galaxies at 0.3 < z < 1.3 at a scale of 40-60 kpc. We study the effect of feedback from active galactic nuclei (AGN) on the diffuse interstellar gas by comparing the stacked X-ray surface brightness profiles of active and normal galaxies in the same redshift range with identical properties in optical color--magnitude space. In accordance with theoretical studies we detect a slight deficit (< 1.5 \\sigma) of X-ray photons when averaged over a scale of 0-30 kpc in the profile of AGN host galaxies at 0.3 < z < 0.7. The equivalent flux deficit is (1.25 +/- 0.75) X 10^(-19) ergs/s/cm^(-2). When averaged over a scale of 30-60 kpc, beyond the PSF scales of our AGN sources, we observe a (~ 2 \\sigma) photon excess in the profile of the AGN host galaxies with an equivalent flux excess of (1.1 +/- 0.5) X 10^{-19} ...

  16. Probing the extreme realm of AGN feedback in the massive galaxy cluster, RX J1532.9+3021

    CERN Document Server

    Hlavacek-Larrondo, J; Taylor, G B; Fabian, A C; Canning, R E A; Werner, N; Sanders, J S; Grimes, C K; Ehlert, S; von der Linden, A

    2013-01-01

    We present a detailed Chandra, XMM-Newton, VLA and HST analysis of the highly X-ray luminous galaxy cluster RX J1532.9+3021 (z=0.3613), one of the strongest cool core clusters known. Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these AGN-driven outflows is 22+/-9*10^44 erg/s, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in extreme cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbours older AGN-driven outflows along the north to south direction. The jet of the central AGN is therefore either precessing, or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with ...

  17. AGN Jet-induced Feedback in Galaxies. II. Galaxy colours from a multicloud simulation

    CERN Document Server

    Tortora, C; Kaviraj, S; Silk, J; Romeo, A D; Becciani, U

    2009-01-01

    We study the feedback from an AGN on stellar formation within its host galaxy, mainly using one high resolution numerical simulation of the jet propagation within the interstellar medium of an early-type galaxy. In particular, we show that in a realistic simulation where the jet propagates into a two-phase ISM, star formation can initially be slightly enhanced and then, on timescales of few million years, rapidly quenched, as a consequence both of the high temperatures attained and of the reduction of cloud mass (mainly due to Kelvin-Helmholtz instabilities). We then introduce a model of (prevalently) {\\em negative} AGN feedback, where an exponentially declining star formation is quenched, on a very short time scale, at a time t_AGN, due to AGN feedback. Using the Bruzual & Charlot (2003) population synthesis model and our star formation history, we predict galaxy colours from this model and match them to a sample of nearby early-type galaxies showing signs of recent episodes of star formation (Kaviraj et...

  18. Stellar and Quasar Feedback in Concert: Effects on AGN Accretion, Obscuration, and Outflows

    CERN Document Server

    Hopkins, Philip F; Faucher-Giguere, Claude-Andre; Quataert, Eliot; Murray, Norman

    2015-01-01

    We use hydrodynamic simulations to study the interaction of realistic active galactic nucleus (AGN) feedback mechanisms (accretion-disk winds & Compton heating) with a multi-phase interstellar medium (ISM). Our ISM model includes radiative cooling and explicit stellar feedback from multiple processes. We simulate radii ~0.1-100 pc around an isolated (non-merging) black hole. These are the scales where the accretion rate onto the black hole is determined and where AGN-powered winds and radiation couple to the ISM. Our primary results include: (1) The black hole accretion rate on these scales is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates of ~0.03-1 Msun/yr, sufficient to power a luminous AGN. (2) The gas disk in the galactic nucleus undergoes an initial burst of star formation followed by several Myrs where stellar feedback suppresses the star formation rate per dynamical time. (3) AGN winds injected at small radii with mome...

  19. Kinetic AGN feedback effects on cluster cool cores simulated using SPH

    Science.gov (United States)

    Barai, Paramita; Murante, Giuseppe; Borgani, Stefano; Gaspari, Massimo; Granato, Gian Luigi; Monaco, Pierluigi; Ragone-Figueroa, Cinthia

    2016-09-01

    We implement novel numerical models of AGN feedback in the SPH code GADGET-3, where the energy from a supermassive black hole (BH) is coupled to the surrounding gas in the kinetic form. Gas particles lying inside a bi-conical volume around the BH are imparted a one-time velocity (10 000 km s-1) increment. We perform hydrodynamical simulations of isolated cluster (total mass 1014 h-1 M⊙), which is initially evolved to form a dense cool core, having central T ≤ 106 K. A BH resides at the cluster centre, and ejects energy. The feedback-driven fast wind undergoes shock with the slower moving gas, which causes the imparted kinetic energy to be thermalized. Bipolar bubble-like outflows form propagating radially outward to a distance of a few 100 kpc. The radial profiles of median gas properties are influenced by BH feedback in the inner regions (r AGN with a periodicity of 100 Myr.

  20. The M-sigma relation in simulations of isolated and merging disk galaxies with kinetic or thermal AGN feedback

    CERN Document Server

    Barai, Paramita; Murante, Giuseppe; Gaspari, Massimo; Borgani, Stefano

    2013-01-01

    (Abridged) We investigate two modes of coupling the feedback energy from a central AGN to the neighboring gas in galaxy simulations: kinetic - velocity boost, and thermal - heating. We formulate kinetic feedback models for energy-driven wind (EDW) and momentum-driven wind (MDW), using two free parameters: feedback efficiency epsilon_f, and AGN wind velocity v_w. A novel numerical algorithm is implemented in the SPH code GADGET-3, to prevent the expansion of a hole in the gas distribution around the BH. We perform simulations of isolated evolution and merger of disk galaxies, of Milky-Way mass as well as lower and higher masses. We find that in the isolated galaxy BH kinetic feedback generates intermittent bipolar jet-like gas outflows. We infer that current prescriptions for BH subgrid physics in galaxy simulations can grow the BH to observed values even in an isolated disk galaxy. The BH growth is enhanced in a galaxy merger. Comparing the [M_BH - sigma_star] relation obtained in our simulations with observa...

  1. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    International Nuclear Information System (INIS)

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (AGN component and that of star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  2. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (AGN component and that of star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  3. Neutral hydrogen in galaxy clusters: impact of AGN feedback and implications for intensity mapping

    CERN Document Server

    Villaescusa-Navarro, Francisco; Borgani, Stefano; Viel, Matteo; Rasia, Elena; Murante, Giuseppe; Dolag, Klaus; Steinborn, Lisa K; Biffi, Veronica; Beck, Alexander M; Ragone-Figueroa, Cinthia

    2016-01-01

    By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split in two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analyzed to account for HI self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter halos monotonically increases with the halo mass and can be well described by a power-law of the form $M_{\\rm HI}(M,z)\\propto M^{3/4}$. Our results point out that AGN feedback reduces both the total halo mass and its HI mass, although it is more efficient in removing HI. We conclude that AGN feedback reduces the neutral hydrogen mass of a given halo by $\\sim50\\%$, with a weak dependence on halo mass and redshift. The...

  4. Triggering of star formation by both radiative and mechanical AGN feedback

    CERN Document Server

    Liu, Chao; Xie, Fu-guo

    2013-01-01

    We perform two dimensional (2D) hydrodynamic (HD) numerical simulations to study the positive active galaxy nuclei (AGN) feedback which triggers, rather than suppresses, star formation. Recently, it is shown by Nayakshin et al. (2012) and Ishibashi et al. (2012) that star formation occurs when the cold interstellar medium (ISM) is squeezed by the impact of mass outflow or radiation pressure, respectively. Mass outflow is ubiquitous in this astrophysical context, and radiation pressure is also important if the AGN is luminous. For the first time on this subject, we take both mass outflow feedback and radiative feedback into our model. Consequently, the ISM is shocked into shells by the AGN feedback, and then these shells fragment into clumps and filaments very soon because of the Rayleigh-Taylor and thermal instabilities. We have two major findings in this paper: (1) the star formation rate (SFR) can indeed be very large in the clumps and filaments. However, the resultant star formation rate density (SFRD) is ...

  5. Residual Cooling and Persistent Star Formation amid AGN Feedback in Abell 2597

    CERN Document Server

    Tremblay, G R; Baum, S A; Clarke, T E; Sarazin, C L; Bregman, J N; Combes, F; Donahue, M; Edge, A C; Fabian, A C; Ferland, G J; McNamara, B R; Mittal, R; Oonk, J B R; Quillen, A C; Russell, H R; Sanders, J S; Salomé, P; Voit, G M; Wilman, R J; Wise, M W

    2012-01-01

    New Chandra X-ray and Herschel FIR observations enable a multiwavelength study of active galactic nucleus (AGN) heating and intracluster medium (ICM) cooling in the brightest cluster galaxy of Abell 2597. The new Chandra observations reveal the central < 30 kiloparsec X-ray cavity network to be more extensive than previously thought, and associated with enough enthalpy to theoretically inhibit the inferred classical cooling flow. Nevertheless, we present new evidence, consistent with previous results, that a moderately strong residual cooling flow is persisting at 4%-8% of the classically predicted rates in a spatially structured manner amid the feedback-driven excavation of the X-ray cavity network. New Herschel observations are used to estimate warm and cold dust masses, a lower-limit gas-to-dust ratio, and a star formation rate consistent with previous measurements. The cooling time profile of the ambient X-ray atmosphere is used to map the locations of the observational star formation entropy threshold...

  6. AGN host galaxy mass function in COSMOS: is AGN feedback responsible for the mass-quenching of galaxies?

    CERN Document Server

    Bongiorno, A; Merloni, A; Zamorani, G; Ilbert, O; La Franca, F; Peng, Y; Piconcelli, E; Mainieri, V; Silverman, J D; Brusa, M; Fiore, F; Salvato, M; Scoville, N

    2016-01-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate i.e., lambda_SAR, distribution function (SARDF) up to z~2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best fit model characterizes the SARDF as a double power-law with mass dependent but redshift independent break whose low lambda_SAR slope flattens with increasing redshift while the normalization increases. This implies that, for a given stellar mass, higher lambda_SAR objects have a peak in their space density at earlier epoch compared to the lower lambda_SAR ones, following and mimicking the well known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schech...

  7. Four dual AGN candidates observed with the VLBA

    CERN Document Server

    Gabányi, K É; Frey, S; Komossa, S; Paragi, Z; Hong, X -Y; Shen, Z -Q

    2016-01-01

    According to hierarchical structure formation models, merging galaxies are expected to be seen in different stages of their coalescence. However, currently there are no straightforward observational methods neither to select nor to confirm a large number of dual active galactic nuclei (AGN) candidates. Most attempts involve the better understanding of double-peaked narrow emission line sources, to distinguish the objects where the emission lines originate from narrow-line kinematics or jet-driven outflows from those which might harbour dual AGN. We observed four such candidate sources with the Very Long Baseline Array (VLBA) at 1.5 GHz with $\\sim$ 10 milli-arcsecond angular resolution where spectral profiles of AGN optical emission suggested the existence of dual AGN. In SDSS J210449.13-000919.1 and SDSS J23044.82-093345.3, the radio structures are aligned with the optical emission features, thus the double-peaked emission lines might be the results of jet-driven outflows. In the third detected source SDSS J1...

  8. The self-regulated AGN feedback loop: the role of chaotic cold accretion

    CERN Document Server

    Gaspari, M

    2015-01-01

    Supermassive black hole accretion and feedback play central role in the evolution of galaxies, groups, and clusters. I review how AGN feedback is tightly coupled with the formation of multiphase gas and the newly probed chaotic cold accretion (CCA). In a turbulent and heated atmosphere, cold clouds and kpc-scale filaments condense out of the plasma via thermal instability and rain toward the black hole. In the nucleus, the recurrent chaotic collisions between the cold clouds, filaments, and central torus promote angular momentum cancellation or mixing, boosting the accretion rate up to 100 times the Bondi rate. The rapid variability triggers powerful AGN outflows, which quench the cooling flow and star formation without destroying the cool core. The AGN heating stifles the formation of multiphase gas and accretion, the feedback subsides and the hot halo is allowed to cool again, restarting a new cycle. Ultimately, CCA creates a symbiotic link between the black hole and the whole host via a tight self-regulate...

  9. Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence

    CERN Document Server

    Gaspari, M; Ruszkowski, M

    2014-01-01

    The hot plasma filling galaxy clusters emits copious radiation in the X-ray band. The classic unheated and unperturbed cooling flow model predicts dramatic cooling rates and an isobaric X-ray spectrum with constant differential luminosity distribution, $dL_{\\rm x}/dT \\propto (T/T_{\\rm hot})^0$. Combining past observations, it is however clear that the cores of clusters (and groups) show a strong deficit of emission increasing toward the soft X-ray band: $dL_{\\rm x}/dT \\propto (T/T_{\\rm hot})^{\\alpha=2\\pm1}$. Using 3D hydrodynamic simulations, we show that the deficit arises from the competition of thermal instability condensation and AGN outflow injection. During tight self-regulated feedback, the average luminosity distribution slope is $\\alpha\\approx2$, oscillating within the observed $18$), while pure cooling drives a too shallow slope, $\\alpha<1$. We disentangle the role of heating and turbulence via controlled experiments. Distributed heating alone induces a declining X-ray spectrum with $1<\\alpha&...

  10. Finding AGN with wide-field VLBI observations

    CERN Document Server

    Middelberg, Enno; Morgan, John; Rottmann, Helge; Alef, Walter; Tingay, Steven; Norris, Ray; Bach, Uwe; Brisken, Walter; Lenc, Emil

    2010-01-01

    VLBI observations are a reliable method to identify AGN, since they require high brightness temperatures for a detection to be made. However, because of the tiny fields of view it is unpractical to carry out VLBI observations of many sources using conventional methods. We used an extension of the DiFX software correlator to image with high sensitivity 96 sources in the Chandra Deep Field South, using only 9h of observing time with the VLBA. We detected 20 sources, 8 of which had not been identified as AGN at any other wavelength, despite the comprehensive coverage of this field. The lack of X-ray counterparts to 1/3 of the VLBI-detected sources, despite the sensitivity of co-located X-ray data, demonstrates that X-ray observations cannot be solely relied upon when searching for AGN activity. Surprisingly, we find that sources classified as type 1 QSOs using X-ray data are always detected, in contrast to the 10% radio-loud objects which are found in optically-selected QSOs. We present the continuation of this ...

  11. Four Dual AGN Candidates Observed with the VLBA

    Science.gov (United States)

    Gabányi, K. É.; An, T.; Frey, S.; Komossa, S.; Paragi, Z.; Hong, X.-Y.; Shen, Z.-Q.

    2016-08-01

    According to hierarchical structure formation models, merging galaxies are expected to be seen in different stages of coalescence. However, there are currently no straightforward observational methods to either select or to confirm a large number of dual active galactic nucleus (AGN) candidates. Most attempts involve obtaining a better understanding of double-peaked narrow emission line sources, in order to distinguish the objects for which the emission lines originate from narrow-line kinematics or jet-driven outflows, from those which might harbor dual AGNs. We observed four such candidate sources with the Very Long Baseline Array (VLBA), at 1.5 GHz with a ∼10 mas angular resolution, for which the spectral profiles of AGN optical emission suggested the existence of dual AGNs. In SDSS J210449.13–000919.1 and SDSS J23044.82–093345.3 the radio structures are aligned with the optical emission features, thus the double-peaked emission lines might be the results of jet-driven outflows. In the third detected source SDSS J115523.74+150756.9, the radio structure is less extended and is oriented nearly perpendicular to the position angle derived from optical spectroscopy. The fourth source remained undetected with the VLBA, but it was imaged with the Very Large Array at arcsec resolution a few months before our observations, suggesting the existence of an extended radio structure. We did not detect two radio-emitting cores in any of the four sources, a convincing signature of duality.

  12. Key Science Observations of AGNs with KaVA Array

    CERN Document Server

    Kino, Motoki; Zhao, Guang-Yao; Sohn, Bong Won

    2015-01-01

    KaVA (KVN and VERA Array) is a new combined VLBI array with KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). First, we briefly review the imaging capabilities of KaVA array which actually achieves more than three times better dynamic range than that achieved by VERA alone. The KaVA images clearly show detailed structures of extended radio jets in AGNs. Next, we represent the key science program to be led by KaVA AGN sub working group. We will conduct the monitoring observations of Sgr A* and M87 because of the largeness of their central super-massive black hole angular sizes. The main science goals of the program are (i) testing magnetically-driven-jet paradigm by mapping velocity fields of the M87 jet, and (ii) obtaining tight constraints on physical properties of radio emitting region in Sgr A*.

  13. Physics Insights from Recent MAGIC AGN Observations

    OpenAIRE

    Wagner, Robert; Collaboration, for the MAGIC

    2009-01-01

    The total set of the 14 active galactic nuclei detected by MAGIC so far includes well-studied bright blazars like Mkn 501, the giant radio galaxy M 87, but also the distant flat-spectrum radio quasar 3C 279, and an intriguing gamma-ray source in the 3C 66A/B region, whose energy spectrum is not compatible with the expectations from 3C 66A. Besides scheduled observations, so far MAGIC succeeded in discovering TeV gamma rays from three blazars following triggers from high optical states. I repo...

  14. Finding AGN with wide-field VLBI observations

    OpenAIRE

    Middelberg, Enno; Deller, Adam; Morgan, John; Rottmann, Helge; Alef, Walter; Tingay, Steven; Norris, Ray; Bach, Uwe; Brisken, Walter; Lenc, Emil

    2010-01-01

    VLBI observations are a reliable method to identify AGN, since they require high brightness temperatures for a detection to be made. However, because of the tiny fields of view it is unpractical to carry out VLBI observations of many sources using conventional methods. We used an extension of the DiFX software correlator to image with high sensitivity 96 sources in the Chandra Deep Field South, using only 9h of observing time with the VLBA. We detected 20 sources, 8 of which had not been iden...

  15. Constraining AGN Feedback in Massive Ellipticals with South Pole Telescope Measurements of the Thermal Sunyaev-Zel'dovich Effect

    CERN Document Server

    Spacek, Alexander; Cohen, Seth; Joshi, Bhavin; Mauskopf, Philip

    2016-01-01

    Energetic feedback due to active galactic nuclei (AGN) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of CMB spectral distortions due to the thermal Sunyaev-Zel'dovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGN. Here we co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at z >= 0.5. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins, with 3394 galaxies at 0.5 <= z <= 1.0 and 924 galaxies at 1.0 <= z <= 1.5, with typical stellar masses of 1.5 x 10^11 M_Sun. We then co-add the emission around these galaxies, resulting in a measured tSZ signal at 2.2 sigma significance for the lower redsh...

  16. Constraining AGN Feedback in Massive Ellipticals with South Pole Telescope Measurements of the Thermal Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Spacek, Alexander; Scannapieco, Evan; Cohen, Seth; Joshi, Bhavin; Mauskopf, Philip

    2016-03-01

    Energetic feedback due to active galactic nuclei (AGNs) is likely to play an important role in the observed anti-hierarchical trend in the evolution of galaxies, and yet the energy injected into the circumgalactic medium by this process is largely unknown. One promising approach to constrain this feedback is through measurements of spectral distortions in the cosmic microwave background due to the thermal Sunyaev-Zeldovich (tSZ) effect, whose magnitude is directly proportional to the energy input by AGNs. With current instruments, making such measurements requires stacking large numbers of objects to increase signal-to-noise. While one possible target for such stacks is AGNs themselves, these are relatively scarce sources that contain contaminating emission that complicates tSZ measurements. Here we adopt an alternative approach and co-add South Pole Telescope SZ (SPT-SZ) survey data around a large set of massive quiescent elliptical galaxies at z≥slant 0.5, which are much more numerous and less contaminated than active AGNs, yet are subject to the same feedback processes from the AGNs they hosted in the past. We use data from the Blanco Cosmology Survey and VISTA Hemisphere Survey to create a large catalog of galaxies split up into two redshift bins: one with 3394 galaxies at 0.5≤slant z≤slant 1.0 and one with 924 galaxies at 1.0≤slant z≤slant 1.5, with typical stellar masses of 1.5× {10}11{M}⊙ . We then co-add the emission around these galaxies, resulting in a measured tSZ signal at 2.2σ significance for the lower redshift bin and a contaminating signal at 1.1σ for the higher redshift bin. To remove contamination due to dust emission, we use SPT-SZ source counts to model a contaminant source population in both the SPT-SZ bands and Planck high-frequency bands for a subset of 937 galaxies in the low-redshift bin and 240 galaxies in the high-redshift bin. This increases our detection to 3.6σ for low redshifts and 0.9σ for high redshifts. We find the

  17. Identifying Mentors' Observations for Providing Feedback

    Science.gov (United States)

    Hudson, Peter

    2016-01-01

    Mentors' feedback can assist preservice teachers' development; yet feedback tends to be variable from one mentor to the next. What do mentors observe for providing feedback? In this study, 24 mentors observed a final-year preservice teacher through a professionally video-recorded lesson and provided written notes for feedback. They observed the…

  18. Investigating the properties of AGN feedback in hot atmospheres triggered by cooling-induced gravitational collapse

    CERN Document Server

    Pope, Edward C D; Shabala, Stanislav S

    2011-01-01

    Radiative cooling may plausibly cause hot gas in the centre of a massive galaxy, or galaxy cluster, to become gravitationally unstable. The subsequent collapse of this gas on a dynamical timescale can provide an abundant source of fuel for AGN heating and star formation. Thus, this mechanism provides a way to link the AGN accretion rate to the global properties of an ambient cooling flow, but without the implicit assumption that the accreted material must have flowed onto the black hole from 10s of kiloparsecs away. It is shown that a fuelling mechanism of this sort naturally leads to a close balance between AGN heating and the radiative cooling rate of the hot, X-ray emitting halo. Furthermore, AGN powered by cooling-induced gravitational instability would exhibit characteristic duty cycles (delta) which are redolent of recent observational findings: delta is proportional to L_X/sigma_{*}^{3}, where L_X is the X-ray luminosity of the hot atmosphere, and sigma_{*} is the central stellar velocity dispersion of...

  19. Kinetic AGN Feedback Effects on Cluster Cool Cores Simulated using SPH

    CERN Document Server

    Barai, Paramita; Borgani, Stefano; Gaspari, Massimo; Granato, Gian Luigi; Monaco, Pierluigi; Ragone-Figueroa, Cinthia

    2016-01-01

    We implement novel numerical models of AGN feedback in the SPH code GADGET-3, where the energy from a supermassive black hole (BH) is coupled to the surrounding gas in the kinetic form. Gas particles lying inside a bi-conical volume around the BH are imparted a one-time velocity (10,000 km/s) increment. We perform hydrodynamical simulations of isolated cluster (total mass 10^14 /h M_sun), which is initially evolved to form a dense cool core, having central T<10^6 K. A BH resides at the cluster center, and ejects energy. The feedback-driven fast wind undergoes shock with the slower-moving gas, which causes the imparted kinetic energy to be thermalized. Bipolar bubble-like outflows form propagating radially outward to a distance of a few 100 kpc. The radial profiles of median gas properties are influenced by BH feedback in the inner regions (r<20-50 kpc). BH kinetic feedback, with a large value of the feedback efficiency, depletes the inner cool gas and reduces the hot gas content, such that the initial c...

  20. Probing the feeding and feedback of AGN through molecular line maps

    CERN Document Server

    García-Burillo, S; Usero, A; Gracia-Carpio, J

    2006-01-01

    Current mm-interferometers can provide a complete view of the distribution and kinematics of molecular gas in the circumnuclear disks of nearby galaxies. High-resolution CO maps are paramount in order to track down the feeding of active nuclei and quantitatively address the issue of how and for how long nuclear activity can be sustained in galaxies. Going beyond CO mapping, the use of more specific molecular tracers of dense gas can probe the feedback influence of activity on the chemistry and energy balance/redistribution in the interstellar medium of nearby galaxies, a prerequisite to interpret how feedback may operate at higher redshift galaxies. In this context we present the latest results issued from the NUclei of GAlaxies (NUGA) project, a high-resolution (0.5''-1'') CO survey of low luminosity AGNs conducted with the IRAM interferometer. The efficiency of gravity torques as a mechanism to account for the feeding of low luminosity AGNs (LLAGNs) can be analyzed. We discuss an evolutionary scenario in wh...

  1. AGN feedback in action: a new powerful wind in 1SXPS J050819.8+172149?

    Science.gov (United States)

    Ballo, L.; Severgnini, P.; Braito, V.; Campana, S.; Della Ceca, R.; Moretti, A.; Vignali, C.

    2015-09-01

    Context. Galaxy merging is widely accepted to be a driving factor in galaxy formation and evolution, while the feedback from actively accreting nuclei is thought to regulate the black hole-bulge coevolution and the star formation process. Aims: In this context, we focused on 1SXPS J050819.8+172149, a local (z = 0.0175) Seyfert 1.9 galaxy (L bol ~ 4 × 1043 erg s-1). The source belongs to an infrared-luminous interacting pair of galaxies, characterized by a luminosity for the whole system (due to the combination of star formation and accretion) of log (L IR/L⊙) = 11.2. We present here the first detailed description of the 0.3-10 keV spectrum of 1SXPS J050819.8+172149, monitored by Swift with nine pointings performed in less than one month. Methods: The X-ray emission of 1SXPS J050819.8+172149 is analysed by combining all the Swift pointings, for a total of ~72 ks XRT net exposure. The averaged Swift-BAT spectrum from the 70-month survey is also analysed. Results: The slope of the continuum is Γ ~ 1.8, with an intrinsic column density of ~2.4 × 1022cm-2, and a de-absorbed luminosity of ~4 × 1042 erg s-1 in the 2-10 keV band. Our observations provide a tentative (2.1σ) detection of a blueshifted Fe xxvi absorption line (rest-frame E ~ 7.8 keV), thus suggesting the discovery of a new candidate powerful wind in 1SXPS J050819.8+172149. The physical properties of the outflow cannot be firmly assessed owing to the low statistics of the spectrum and to the observed energy of the line, too close to the higher boundary of the Swift-XRT bandpass. However, our analysis suggests that, if the detection is confirmed, the line could be associated with a high-velocity (v out ~ 0.1c) outflow most likely launched within 80 r S. To our knowledge this is the first detection of a previously unknown ultrafast wind with Swift. The high column density suggested by the observed equivalent width of the line (EW ~ -230 eV, although with large uncertainties) would imply a kinetic output

  2. Feedback by AGN Jets and Wide-Angle Winds on a Galactic Scale

    CERN Document Server

    Dugan, Zachary; Silk, Joseph

    2016-01-01

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet Active Galactic Nuclei (AGN) on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2-3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0 degrees (perpendicular to the galactic plane), and the winds have inclinations of 0, 45, and 90 degrees. We analyze the impact on the host's gas, star formation, and circum-galactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical comp...

  3. Fueling the central engine of radio galaxies. II. The footprints of AGN feedback on the ISM of 3C 236

    CERN Document Server

    Labiano, A; Combes, F; Usero, A; Soria-Ruiz, R; Tremblay, G; Neri, R; Fuente, A; Morganti, R; Oosterloo, T

    2012-01-01

    Aims: We study the emission of molecular gas in 3C236, a FR II radio source at z~0.1, and search for the footprints of AGN feedback. 3C236 shows signs of a reactivation of its AGN triggered by a recent minor merger episode. Observations have also previously identified an extreme HI outflow in this source. Methods: The IRAM PdBI has been used to study the distribution and kinematics of molecular gas in 3C236 by imaging with high spatial resolution the emission of the 12CO(2-1) line in the nucleus of the galaxy. We have searched for outflow signatures in the CO map. We have also derived the SFR in 3C236 using data available from the literature at UV, optical and IR wavelengths, to determine the star-formation efficiency of molecular gas. Results: The CO emission in 3C236 comes from a spatially resolved 2.6 kpc disk with a regular rotating pattern. Within the limits imposed by the sensitivity and velocity coverage of the CO data, we do not detect any outflow signatures in the cold molecular gas. The disk has a c...

  4. Broadband, radio spectro-polarimetric observations of radiative-mode and jet-mode AGN

    Science.gov (United States)

    O'Sullivan, Shane P.; Purcell, C. R.; Farnes, J. S.; Sun, X. H.; Anderson, C. S.; Gaensler, B. M.

    2016-08-01

    Observations of polarised synchrotron emission from radio-loud AGN, along with the associated Faraday rotation, provides a highly sensitive probe of magneto-ionic material in AGN environments. Here we present the results from our investigation of the environments of two broad classes of radio-loud AGN (radiative-mode & jet mode) using broadband radio spectro-polarimetry, from 1 to 10 GHz. By spectrally resolving the spatial unresolved polarised emission, we directly probe the different magneto-ionic environments of radiative-mode and jet-mode AGN. We also present results for the dependence of the polarisation and Faraday rotation properties of the two AGN types based on the number of polarised emission components, the spectral index, and the intrinsic magnetic field structure. Finally, we outline the prospects for future Faraday rotation studies of radio-loud AGN with the Australian SKA Pathfinder telescope, and present some preliminary results from the early science observations.

  5. AGN feedback and gas mixing in the core of NGC 4636

    CERN Document Server

    O'Sullivan, E; Kempner, J C

    2005-01-01

    Chandra observations of NGC 4636 show disturbances in the galaxy X-ray halo, including arm-like high surface brightness features (tentatively identified as AGN driven shocks) and a possible cavity on the west side of the galaxy core. We present Chandra and XMM spectral maps of NGC 4636 which confirm the presence of the cavity and show it to be bounded by the arm features. The maps also reveal a ~15 kpc wide plume of low temperature, high abundance gas extending 25-30 kpc to the southwest of the galaxy. The cavity appears to be embedded in this plume, and we interpret the structure as being entrained gas drawn out of the galaxy core during previous episodes of AGN activity. The end of the plume is marked by a well defined edge, with significant falls in surface brightness, temperature and abundance, indicating a boundary between galaxy and group/cluster gas. This may be evidence that as well as preventing gas cooling through direct heating, AGN outbursts can produce significant gas mixing, disturbing the tempe...

  6. AGN counts at 15um. XMM observations of the ELAIS-S1-5 sample

    CERN Document Server

    La Franca, F; Sacchi, N; Feruglio, C; Fiore, F; Gruppioni, C; Lamastra, A; Matute, I; Melini, G; Pozzi, F

    2007-01-01

    Context: The counts of galaxies and AGN in the mid infra-red (MIR) bands are important instruments for studying their cosmological evolution. However, the classic spectral line ratios techniques can become misleading when trying to properly separate AGN from starbursts or even from apparently normal galaxies. Aims: We use X-ray band observations to discriminate AGN activity in previously classified MIR-selected starburst galaxies and to derive updated AGN1 and (Compton thin) AGN2 counts at 15 um. Methods: XMM observations of the ELAIS-S1 15um sample down to flux limits ~2x10^-15 erg cm^-2 s^-1 (2-10 keV band) were used. We classified as AGN all those MIR sources with a unabsorbed 2-10 keV X-ray luminosity higher that ~10^42 erg/s. Results: We find that at least about 13(+/-6) per cent of the previously classified starburst galaxies harbor an AGN. According to these figures, we provide an updated estimate of the counts of AGN1 and (Compton thin) AGN2 at 15 um. It turns out that at least 24% of the extragalacti...

  7. Suzaku Observations of Iron Lines and Reflection in AGN

    CERN Document Server

    Reeves, J N; Kataoka, J; Kunieda, H; Markowitz, A; Miniutti, G; Okajima, T; Serlemitsos, P; Takahashi, T; Terashima, Y; Yaqoob, T

    2006-01-01

    Initial results on the iron K-shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed time program are reviewed. This paper discusses a small sample of Compton-thin Seyferts observed to date with Suzaku; namely MCG -5-23-16, MCG -6-30-15, NGC 4051, NGC 3516, NGC 2110, 3C 120 and NGC 2992. The broad iron K$\\alpha$ emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG -6-30-15 shows the most extreme relativistic blurring of all the objects, the red-wing of the line requires the inner accretion disk to extend inwards to within 2.2Rg of the black hole, in agreement with the XMM-Newton observations. Strong excess emission in the Hard X-ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton-thick matter (e.g. the accretion disk). Only on...

  8. AGN Feedback, Host Halo Mass and Central Cooling Time: Implications for Galaxy Formation Efficiency and $M_{BH} - \\sigma$

    CERN Document Server

    Main, Robert; Nulsen, Paul; Russell, Helen; Vantyghem, Adrian

    2015-01-01

    We derive X-ray mass, luminosity, and temperature profiles for 45 galaxy clusters to explore relationships between halo mass, AGN feedback, and central cooling time. We find that radio--mechanical feedback power (referred to here as "AGN power") in central cluster galaxies correlates with halo mass, but only in halos with central atmospheric cooling times shorter than 1 Gyr. This timescale corresponds approximately to the cooling time (entropy) threshold for the onset of cooling instabilities and star formation in central galaxies (Rafferty et al. 2008). No correlation is found in systems with central cooling times greater than 1 Gyr. The trend with halo mass is consistent with self-similar scaling relations assuming cooling is regulated by feedback. The trend is also consistent with galaxy and central black hole co-evolution along the $M_{BH} - \\sigma $ relation. AGN power further correlates with X-ray gas mass and the host galaxy's K-band luminosity. AGN power in clusters with central atmospheric cooling ti...

  9. Extreme Gas Kinematics in the z=2.2 Powerful Radio Galaxy MRC1138-262: Evidence for Efficient AGN Feedback in the Early Universe?

    Energy Technology Data Exchange (ETDEWEB)

    Nesvadba, N H; Lehnert, M D; Eisenhauer, F; Gilbert, A M; Tecza, M; Abuter, R

    2007-06-26

    To explain the properties of the most massive low-redshift galaxies and the shape of their mass function, recent models of galaxy evolution include strong AGN feedback to complement starburst-driven feedback in massive galaxies. Using the near-infrared integral-field spectrograph SPIFFI on the VLT, we searched for direct evidence for such a feedback in the optical emission line gas around the z = 2.16 powerful radio galaxy MRC1138-262, likely a massive galaxy in formation. The kpc-scale kinematics, with FWHMs and relative velocities {approx}< 2400 km s{sup -1} and nearly spherical spatial distribution, do not resemble large-scale gravitational motion or starburst-driven winds. Order-of-magnitude timescale and energy arguments favor the AGN as the only plausible candidate to accelerate the gas, with a total energy injection of {approx} few x 10{sup 60} ergs or more, necessary to power the outflow, and relatively efficient coupling between radio jet and ISM. Observed outflow properties are in gross agreement with the models, and suggest that AGN winds might have a similar, or perhaps larger, cosmological significance than starburst-driven winds, if MRC1138-262 is indeed archetypal. Moreover, the outflow has the potential to remove significant gas fractions ({approx}< 50%) from a > L* galaxy within a few 10 to 100 Myrs, fast enough to preserve the observed [{alpha}/Fe] overabundance in massive galaxies at low redshift. Using simple arguments, it appears that feedback like that observed in MRC1138-262 may have sufficient energy to inhibit material from infalling into the dark matter halo and thus regulate galaxy growth as required in some recent models of hierarchical structure formation.

  10. MULTI-WAVELENGTHS OBSERVATIONS OF AGN: FIFTEEN YEARS ALONG

    Institute of Scientific and Technical Information of China (English)

    Willem Wamsteker

    2001-01-01

    We discuss the results of the extensive efforts done over the past decade on the near environment of the central engines in Active Galactic Nuclei. The observational material is mainly based on the observations from Ground based observatories in the optical, infrared and radio bands, and of space missions like GINGA, IUE, HST, CGRO, ISO, BeppoSAX and RXTE. The availability of this instrumentation with sufficient sensitivity for the study of these objects in the γ-rays, X-rays, EUV, UV as well as Optical, IR and radio domain has opened a complete new insight. Although the results have not yet lead to a complete and full understanding, they have demonstrated with a high degree of probability that the central engines of these objects are associated with massive blackholes. A strong effort will be required from the theoretical side to make certain that we can actually use the results to distinguish between the different model parameters and place the AGN's in their proper place, not only as individual objects of interest,but also to clarify their place in the general scheme of the evolution in the Universe.The results obtained so far have not solved all the early questions, but with the promise of the new instruments a very exciting outlook exists for the future of the study of the physics of accretion in massive Black Holes.

  11. Thermal and radiative AGN feedback have a limited impact on star formation in high-redshift galaxies

    CERN Document Server

    Roos, Orianne; Bournaud, Frédéric; Gabor, Jared M

    2014-01-01

    Active Galactic Nuclei (AGNs) are good candidates to explain star formation quenching, depending on the coupling between the energy they re-inject in the galaxy and the interstellar medium. The purpose of this study is to model and quantify the impact of AGN long-range ionizing radiation -- on top of the often considered small-scale energy deposition -- on the physical state of the gas of the host-galaxy, and therefore on its ability to form stars. We formulated an AGN Spectral Energy Distribution, which we used with the radiative transfer code Cloudy to compute ionization in a simulated high-redshift disk-galaxy. This simulation has a high resolution ($\\sim$ 6 pc) and includes standard thermal AGN feedback, and we calculate the radiative transfer in post-processing. Surprisingly, while these models give birth to significant AGN-driven outflows, we find that the reduction in Star Formation Rate due to ionization radiation and thermal heating is of a few percents at most for a quasar luminosity ($L_{bol}=10^{4...

  12. High School Observations of AGN Using the GTN

    Science.gov (United States)

    McLin, Kevin M.; Jordan, R.; Perkins, A.; Adkins, J.; Cominsky, L.

    2008-03-01

    Students at Deer Valley High School in Antioch, California have undertaken an AGN monitoring program using telescopes of the Global Telescope Network (GTN) and SkyNet. The GTN is a network of small telescopes funded by GLAST to support the science of high energy astrophysics missions, specifically GLAST, Swift and XMM-Newton. It is managed by the NASA E/PO Group at Sonoma State University. SkyNet is a network of small telescopes managed from the University of North Carolina to catch gamma ray burst afterglows. A primary motivator behind both networks is education. In the program outlined here, high school students will schedule, reduce and analyze observations of active galaxies in order to determine if any microflaring activity has occurred. Students will compare their results with previous studies reported in the literature and then report their own results at the Contra Costa County Science and Engineering Fair. This work will give the students direct experience with several aspects of scientific research, including literature searches, data acquisition and analysis, and reporting of results.

  13. INTEGRAL observations of AGN in the Galactic Plane

    CERN Document Server

    Soldi, S; Bassani, L; Courvoisier, T J L; Landi, R; Malizia, A; Dean, A J; De Rosa, A; Fabian, A C; Walter, R

    2005-01-01

    We present results on approximately one year of INTEGRAL observations of six AGN detected during the regular scans of the Galactic Plane. The sample is composed by five Seyfert 2 objects (MCG -05-23-16, NGC 4945, the Circinus galaxy, NGC 6300, ESO 103-G35) and the radio galaxy Centaurus A. The continuum emission of each of these sources is well represented by a highly absorbed (NH > 1e22 1/cm^2) power law, with average spectral index Gamma = 1.9 +/- 0.3. A high energy exponential cut-off at Ec ~ 50 keV is required to fit the spectrum of the Circinus galaxy, whereas a lower limit of 130 keV has been found for NGC 4945 and no cut-off has been detected for NGC 6300 in the energy range covered by these INTEGRAL data. The flux of Centaurus A was found to vary by a factor of ~ 2 in 10 months, showing a spectral change between the high and low state, which can be modelled equally well by a change in the absorption (NH from 17e22 to 33e22 1/cm^2) or by the presence of a cut-off at >~ 120 keV in the low state spectrum...

  14. The Star Formation and AGN luminosity relation: Predictions from a semi-analytical model

    CERN Document Server

    Gutcke, Thales A; Maccio`, Andrea V; Lacey, Cedric

    2015-01-01

    In a Universe where AGN feedback regulates star formation in massive galaxies, a strong correlation between these two quantities is expected. If the gas causing star formation is also responsible for feeding the central black hole, then a positive correlation is expected. If powerful AGNs are responsible for the star formation quenching, then a negative correlation is expected. Observations so far have mainly found a mild correlation or no correlation at all (i.e. a flat relation between star formation rate (SFR) and AGN luminosity), raising questions about the whole paradigm of "AGN feedback". In this paper, we report the predictions of the GALFORM semi-analytical model, which has a very strong coupling between AGN activity and quenching of star formation. The predicted SFR-AGN luminosity correlation appears negative in the low AGN luminosity regime, where AGN feedback acts, but becomes strongly positive in the regime of the brightest AGN. Our predictions reproduce reasonably well recent observations by Rosa...

  15. BAT AGN Spectroscopic Survey-III. An observed link between AGN Eddington ratio and narrow emission line ratios

    CERN Document Server

    Oh, Kyuseok; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D Michael; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Soto, Kurt T; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro

    2016-01-01

    We investigate the observed relationship between black hole mass ($M_{\\rm BH}$), bolometric luminosity ($L_{\\rm bol}$), and Eddington ratio (${\\lambda}_{\\rm Edd}$) with optical emission line ratios ([NII] {\\lambda}6583/H{\\alpha}, [SII] {\\lambda}{\\lambda}6716,6731/H{\\alpha}, [OI] {\\lambda}6300/H{\\alpha}, [OIII] {\\lambda}5007/H{\\beta}, [NeIII] {\\lambda}3869/H{\\beta}, and HeII {\\lambda}4686/H{\\beta}) of hard X-ray-selected AGN from the BAT AGN Spectroscopic Survey (BASS). We show that the [NII] {\\lambda}6583/H{\\alpha} ratio exhibits a significant correlation with ${\\lambda}_{\\rm Edd}$ ($R_{\\rm Pear}$ = -0.44, $p$-value=$3\\times10^{-13}$, {\\sigma} = 0.28 dex), and the correlation is not solely driven by $M_{\\rm BH}$ or $L_{\\rm bol}$. The observed correlation between [NII] {\\lambda}6583/H{\\alpha} ratio and $M_{\\rm BH}$ is stronger than the correlation with $L_{\\rm bol}$, but both are weaker than the ${\\lambda}_{\\rm Edd}$ correlation. This implies that the large-scale narrow lines of AGN host galaxies carry informa...

  16. Large-scale outflows in luminous QSOs revisited: The impact of beam smearing on AGN feedback efficiencies

    CERN Document Server

    Husemann, B; Bennert, V N; Manieri, V; Woo, J -H; Kakkad, D

    2015-01-01

    Enormous observational effort has been made to constrain the energetics of AGN feedback by mapping the kinematics of the ionized gas on kpc scale with integral-field spectroscopy. Here, we investigate how the observed kinematics and inferred energetics are affected by beam smearing of a bright unresolved NLR due to seeing effects. We analysed optical IFU spectroscopy of a sample of twelve luminous unobscured QSOs (0.4observations is directly obtained from the light distribution of the broad Hbeta line component. Therefore, we are able to compare the ionized gas kinematics and derived energetics of the total [OIII] and spatially extended [OIII] line component. We find that the width of the spatially resolved [OIII] line on kpc scales is significantly narrower than the one before PSF deblending. The extended NLRs (ENLRs) appear intrinsically offset from the QSO position or more elongated which can be interpreted in favour of a conical outfl...

  17. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    CERN Document Server

    Gaspari, M; Sharma, P

    2011-01-01

    Multiwavelength data indicate that the X-ray emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To large extent, cooling is offset by heating due to active galactic nuclei (AGN) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by highly-collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t_TI/t_ff) falls below a critical threshold of \\approx 10. When this happens, dense cold gas decouples from the hot ICM phase and generates inhomogeneous and spatially extended Halpha filaments. These cold gas clumps and filaments `rain' down onto the ce...

  18. Feedback under the microscope: thermodynamic structure and AGN driven shocks in M87

    CERN Document Server

    Million, E T; Simionescu, A; Allen, S W; Nulsen, P E J; Fabian, A C; Bohringer, H; Sanders, J S

    2010-01-01

    (abridged) Using a deep Chandra exposure (574 ks), we present high-resolution thermodynamic maps created from the spectra of $\\sim$16,000 independent regions, each with $\\sim$1,000 net counts. The excellent spatial resolution of the thermodynamic maps reveals the dramatic and complex temperature, pressure, entropy and metallicity structure of the system. Excluding the 'X-ray arms', the diffuse cluster gas at a given radius is strikingly isothermal. This suggests either that the ambient cluster gas, beyond the arms, remains relatively undisturbed by AGN uplift, or that conduction in the intracluster medium (ICM) is efficient along azimuthal directions. We confirm the presence of a thick ($\\sim$40 arcsec or $\\sim$3 kpc) ring of high pressure gas at a radius of $\\sim$180 arcsec ($\\sim$14 kpc) from the central AGN. We verify that this feature is associated with a classical shock front, with an average Mach number M = 1.25. Another, younger shock-like feature is observed at a radius of $\\sim$40 arcsec ($\\sim$3 kpc...

  19. AGN feedback in action: a new powerful wind in 1SXPSJ050819.8+172149

    CERN Document Server

    Ballo, L; Braito, V; Campana, S; Della Ceca, R; Moretti, A; Vignali, C

    2015-01-01

    Galaxy merging is widely accepted to be a key driving factor in galaxy formation and evolution, while the feedback from AGN is thought to regulate the BH-bulge coevolution and the star formation process. In this context, we focused on 1SXPSJ050819.8+172149, a local (z=0.0175) Seyfert 1.9 galaxy (L_bol~4x10^43 ergs/s). The source belongs to an IR-luminous interacting pair of galaxies, characterized by a luminosity for the whole system (due to the combination of star formation and accretion) of log(L_IR/L_sun)=11.2. We present the first detailed description of the 0.3-10keV spectrum of 1SXPSJ050819.8+172149, monitored by Swift with 9 pointings performed in less than 1 month. The X-ray emission of 1SXPSJ050819.8+172149 is analysed by combining all the Swift pointings, for a total of ~72ks XRT net exposure. The averaged Swift-BAT spectrum from the 70-month survey is also analysed. The slope of the continuum is ~1.8, with an intrinsic column density NH~2.4x10^22 cm-2, and a deabsorbed luminosity L(2-10keV)~4x10^42...

  20. Radiative feedback from massive black holes in elliptical galaxies. AGN flaring and central starburst fueled by recycled gas

    CERN Document Server

    Ciotti, L

    2007-01-01

    The importance of the radiative output from massive black holes at the centers of elliptical galaxies is not in doubt, given the well established relations among electromagnetic output, black hole mass and galaxy optical luminosity. We show how this AGN radiative output affects the hot ISM of an isolated elliptical galaxy with the aid of a high-resolution hydrodynamical code, where the cooling and heating functions include photoionization plus Compton heating. We find that radiative heating is a key factor in the self-regulated coevolution of massive black holes and their host galaxies and that 1) the mass accumulated by the central black hole is limited by feedback to the range observed today, and 2) relaxation instabilities occur so that duty cycles are small enough (~0.03) to account for the very small fraction of massive ellipticals observed to be in the "on" -QSO- phase, when the accretion luminosity approaches the Eddington luminosity. The duty cycle of the hot bubbles inflated at the galaxy center duri...

  1. Giant outflows in z~2 radio galaxies: The smoking gun of AGN feedback in the early universe

    CERN Document Server

    Nesvadba, N P H

    2009-01-01

    AGN feedback is now a major component of models of galaxy evolution. Using near-infrared imaging spectroscopy on the VLT we identify kpc-sized outflows of few x 10^10 M_s of ionized gas in powerful radio galaxies at z~2-3. Velocity fields are consistent with bipolar outflows, with total velocity offsets of ~1000 km s-1. FWHMs ~1000 km s-1 suggest strong turbulence. IRAM follow-up observations of parts of the sample suggest a remarkable deficit in cold molecular relative to ionized gas, which may imply that significant fractions of the interstellar medium of these galaxies are participating in the winds. Kinetic energies of the gas correspond to ~0.2% of the rest-mass equivalent of the mass of the supermassive black hole, roughly in agreement with model predictions. We also report the detection of a massive reservoir of few x 10^10 M_s of cold molecular gas in the halo of the z=2.6 radio galaxy TXS0828+193 with the IRAM Plateau de Bure Interferometer. The gas is at a distance of ~90 kpc from the radio galaxy, ...

  2. AGN and their host galaxies

    Science.gov (United States)

    Steinborn, L. K.; Dolag, K.; Hirschmann, M.; Remus, R.-S.; Teklu, A. F.

    2016-06-01

    Large scale cosmological hydrodynamic simulations are an important tool to study the co-evolution between black holes (BHs) and their host galaxies. However, in order to model the accretion onto BHs and AGN feedback we need sub-grid models which contain several free parameters. The choice of these parameters has a significant impact on the properties of the BHs and their host galaxies. Therefore, we improve the accretion model and the AGN feedback model based on both theory and observations to eliminate most free parameters. In that way, the slope of the observed relation between BH mass and stellar mass is reproduced self-consistently. We performed a few extremely large simulation runs as part of the Magneticum Pathfinder simulation set, combining a high resolution with very large cosmological volumes, enabling us to study for example dual AGN, the role of galaxy mergers and AGN clustering properties.

  3. Gemini GMOS and WHT SAURON integral-field spectrograph observations of the AGN driven outflow in NGC 1266

    CERN Document Server

    Davis, Timothy A; McDermid, Richard M; Bureau, Martin; Sarzi, Marc; Nyland, Kristina; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Cappellari, Michele; Crocker, Alison; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-01-01

    We use the SAURON and GMOS integral field spectrographs to observe the active galactic nucleus (AGN) powered outflow in NGC 1266. This unusual galaxy is relatively nearby (D=30 Mpc), allowing us to investigate the process of AGN feedback in action. We present maps of the kinematics and line strengths of the ionised gas emission lines Halpha, Hbeta, [OIII], [OI], [NII] and [SII], and report on the detection of Sodium D absorption. We use these tracers to explore the structure of the source, derive the ionised and atomic gas kinematics and investigate the gas excitation and physical conditions. NGC 1266 contains two ionised gas components along most lines of sight, tracing the ongoing outflow and a component closer to the galaxy systemic, the origin of which is unclear. This gas appears to be disturbed by a nascent AGN jet. We confirm that the outflow in NGC 1266 is truly multiphase, containing radio plasma, atomic, molecular and ionised gas and X-ray emitting plasma. The outflow has velocities up to \\pm900 km/...

  4. Feeding versus feedback in AGN from near-infrared Integral Field Spectroscopy X: NGC5929

    CERN Document Server

    Riffel, Rogemar A; Riffel, Rogerio

    2015-01-01

    We present near-infrared emission-line flux distributions, excitation and kinematics, as well as stellar kinematics, of the inner 520x520 pc2$ of the Seyfert 2 galaxy NGC5929. The observations were performed with the Gemini's Near-Infrared Integral Field Spectrograph (NIFS) at a spatial resolution of 20 pc and spectral resolution of 40km/s in the J- and K-bands. The flux distributions of H2, [FeII], [PII] and recombination lines are extended over most of the field of view, with the highest intensity levels observed along PA=60/240deg, and well correlated with the radio emission. The H2 and [FeII] line emission are originated in thermal processes, mainly due to heating of the gas by X-rays from the central Active Galactic Nucleus (AGN). Contribution of shocks due to the radio jet is observed at locations co-spatial with the radio hotspots at 0.5" northeast and 0.6" southwest of the nucleus, as evidenced by the emission-line ratio and gas kinematics. The stellar kinematics shows rotation with an amplitude at 25...

  5. Supermassive Black Holes, AGN Feedback, and Hot X-ray Coronae in Early Type Galaxies

    Science.gov (United States)

    Forman, William R.; Anderson, Michael E.; Churazov, Eugene; Nulsen, Paul; Jones, Christine; Kraft, Ralph P.

    2016-06-01

    We present the analysis of a sample of more than 200 nearby, early type galaxies observed with the Chandra X-ray Observatory. We exclude resolved point sources, and model the emission from both unresolved X-ray binaries and CVs and ABs to derive the residual thermal emission from the hot atmosphere around each galaxy. We compute the X-ray luminosity of the central supermassive black hole (SMBH). Using galaxy velocity dispersion (or stellar mass) as a proxy for SMBH mass, we derive the Eddington ratios for these low luminosity AGN. We present the X-ray luminosity and gas temperature of the hot coronae as a function of stellar mass (a proxy for dark matter halo mass) and central velocity dispersion to look for anomalously X-ray bright gaseous coronae and to determine the stellar (or halo) mass, below which galactic winds may be important. For hot coronae with X-ray cavities, we derive the "mechanical" power of SMBHs and compare these to their radiative luminosities.

  6. From Starburst to Quiescence: Testing AGN feedback in Rapidly Quenching Post-Starburst Galaxies

    CERN Document Server

    Yesuf, Hassen M; Trump, Jonathan R; Koo, David C; Fang, Jerome J; Liu, F S; Wild, Vivienne; Hayward, Christopher C

    2014-01-01

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses SDSS, GALEX, and WISE observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts in the narrow mass range $\\log M(M_\\odot) = 10.3-10.7$, and identifies "transiting" post-starbursts which are intermediate between these two populations. In this mass range, $\\sim 0.3\\%$ of galaxies are starbursts, $\\sim 0.1\\%$ are quenched post-starbursts, and $\\sim 0.5\\%$ are the transiting types in between. The transiting post-starbursts have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The AGN fraction, as estimated from optical line ratios, of these post-starbursts is about 3 times higher ($\\gtrsim 36 \\pm 8 \\%$) than that of normal star-forming galaxies of the same mass, but ther...

  7. AGN feedback and iron enrichment in the powerful radio galaxy, 4C+55.16

    CERN Document Server

    Hlavacek-Larrondo, J; Sanders, J S; Taylor, G B

    2011-01-01

    We present a detailed X-ray analysis of 4C+55.16, an unusual and interesting radio galaxy, located at the centre of a cool core cluster of galaxies. 4C+55.16 is X-ray bright (~10^45 erg/s), radio powerful, and shows clear signs of interaction with the surrounding intracluster medium. By combining deep Chandra (100 ks) with 1.4 GHz VLA observations, we find evidence of multiple outbursts from the central AGN, providing enough energy to offset cooling of the ICM (P_bubbles=6.7x10^44 erg/s). Furthermore, 4C+55.16 has an unusual intracluster iron distribution showing a plume-like feature rich in Fe L emission that seems to run along one of the X-ray cavities. The excess of Fe associated with the plume is around 10^7M_sol. The metal abundances are consistent with being Solar-like, indicating that both SNIa and SNII contribute to the enrichment. The plume and southern cavity form a region of cool metal-rich gas. At the edge of this region, there is a clear discontinuity in temperature (from kT~2.5 keV to kT~5.0 keV...

  8. The XMM Cluster Survey: The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback

    CERN Document Server

    Stott, John P; Edge, Alastair C; Collins, Chris A; Hilton, Matt; Harrison, Craig D; Romer, A Kathy; Rooney, Philip J; Kay, Scott T; Miller, Christopher J; Sahlen, Martin; Lloyd-Davies, Ed J; Mehrtens, Nicola; Hoyle, Ben; Liddle, Andrew R; Viana, Pedro T P; McCarthy, Ian G; Schaye, Joop; Booth, C M

    2012-01-01

    Using a sample of 123 X-ray clusters and groups drawn from the XMM-Cluster Survey first data release, we investigate the interplay between the brightest cluster galaxy (BCG), its black hole, and the intra-cluster/group medium (ICM). It appears that for groups and clusters with a BCG likely to host significant AGN feedback, gas cooling dominates in those with Tx > 2 keV while AGN feedback dominates below. This may be understood through the sub-unity exponent found in the scaling relation we derive between the BCG mass and cluster mass over the halo mass range 10^13 2 keV) and again co-located with an effective fuel supply of dense, cooling gas. This demonstrates that the most massive black holes appear to know more about their host cluster than they do about their host galaxy. The results lead us to propose a physically motivated, empirical definition of 'cluster' and 'group', delineated at 2 keV.

  9. The Close AGN Reference Survey (CARS)

    Science.gov (United States)

    Rothberg, Barry; Husemann, Bernd; Busch, Gerold; Dierkes, Jens; Eckart, Andreas; Krajnovic, Davor; Scharwaechter, Julia; Tremblay, Grant R.; Urrutia, Tanya

    2015-08-01

    We present the first science results from the Close AGN Reference Survey (CARS). This program is a snapshot survey of 39 local type 1 AGN (0.01 MUSE), an optical wavelength integral field unit (IFU) with a 1'x1' field of view on the VLT. The optical 3D spectroscopy complements existing sub-mm CO(1-0) data and near-IR imaging to establish a unique dataset combining molecular and stellar masses with star formation rates, gas, stellar kinematics and AGN properties. The primary goals of CARS are to:1) investigate if the star formation efficiency and gas depletion time scales are suppressed as a consequence of AGN feedback; 2) identify AGN-driven outflows and their relation to the molecular gas reservoir of the host galaxy; 3) investigate the the balance of AGN feeding and feedback through the ratio of the gas reservoir to the AGN luminosity; and 4) provide the community with a reference survey of local AGN with a high legacy value. Future work will incorporate near-infrared IFU observations to present a complete spatially resolved picture of the interplay among AGN, star-formation, stellar populations, and the ISM.

  10. 活动星系核VLBI观测的新进展%Progress in the VLBI observation of AGNs

    Institute of Scientific and Technical Information of China (English)

    蒋栋荣

    2003-01-01

    This paper reports some recent progresses in the VLBI observation of the AGNs,specially those in the investigations about the central structure of the AGNs and the low luminosity AGNs.The main goal is to show the importance of the VLBI observations in this field.%介绍了活动星系核(AGN)的VLBI观测的新近展,特别关注其中心结构和低光度的活动星系核.主要目的是强调VLBI观测在该领域的重要性.

  11. The small observed scale of AGN--driven outflows, and inside--out disc quenching

    CERN Document Server

    Zubovas, Kastytis

    2016-01-01

    Observations of massive outflows with detectable central AGN typically find them within radii $\\lesssim 10$ kpc. We show that this apparent size restriction is a natural result of AGN driving if this process injects total energy only of order the gas binding energy to the outflow, and the AGN varies over time (`flickers') as suggested in recent work. After the end of all AGN activity the outflow continues to expand to larger radii, powered by the thermal expansion of the remnant shocked AGN wind. We suggest that on average, outflows should be detected further from the nucleus in more massive galaxies. In massive gas--rich galaxies these could be several tens of kpc in radius. We also consider the effect that pressure of such outflows has on a galaxy disc. In moderately gas--rich discs, with gas-to-baryon fraction $< 0.2$, the outflow may induce star formation significant enough to be distinguished from quiescent by an apparently different normalisation of the Kennicutt-Schmidt law. The star formation enhan...

  12. A tale of two feedbacks: star-formation in the host galaxies of radio-AGN

    CERN Document Server

    Karouzos, Marios; Trichas, Markos; Ruiz, Angel; Goto, Tomo; Malkan, Matt; Jeon, Yiseul; Kim, Ji Hoon; Lee, Hyung Mok; Kim, Seongjin; Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, Kazumi; Wada, Takehiko; Wada, Kensuke; Shim, Hyunjin; Hanami, Hitoshi; Serheant, Stephen; White, Glenn J; Pearson, Crhis; Ohyama, Youichi

    2013-01-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star-formation activity in these galaxies. The exact nature of this link is still under debate. Radio jets have long been argued to be an ideal mechanism that allows AGN to interact with their host galaxy and regulate star-formation. In this context, we are using a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of the putative link between AGN activity and star-formation. This is done by means of spectral energy distribution (SED) fitting. We use the excellent spectral coverage of the AKARI infrared space telescope together with the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. Through SED fitting we constrain both the AGN and host galaxy components. We find a significant AGN component in our sample of relatively faint radio-sources ($<$mJy), that increases in power...

  13. AGN Observations in the GeV/TeV Energy Range with the MAGIC Telescope

    OpenAIRE

    Wagner, Robert

    2008-01-01

    MAGIC currently is the largest imaging atmospheric Cerenkov telescope world-wide. Since 2004, gamma-ray emission from several active galactic nuclei in the GeV/TeV energy range has been detected, some of which were newly discovered as very-high energy gamma-ray sources. The gamma-rays are assumed to originate from particle acceleration processes in the AGN jets. We give an overview of the AGN observed and detected by MAGIC, discuss spectral and temporal properties of these and show physics im...

  14. Interferometric Monitoring of Gamma-ray Bright AGNs I: Results of Single-epoch Multifrequency Observations

    CERN Document Server

    Lee, Sang-Sung; Algaba, Juan-Carlos; Zhao, Guang-Yao; Hodgson, Jeffrey A; Kim, Dae-Won; Park, Jongho; Kim, Jae-Young; Miyazaki, Atsushi; Byun, Do-Young; Kang, Sincheol; Kim, Jeong-Sook; Kim, Soon-Wook; Kino, Motoki; Trippe, Sascha

    2016-01-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at 22, 43, 86, and 129~GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA). We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of $>6\\times10^{-10}$~ph~cm$^{-2}$~s$^{-1}$. Single-epoch multi-frequency VLBI observations of the target sources were conducted during a 24-hr session on 2013 November 19 and 20. All observed sources were detected and imaged at all frequency bands with or without a frequency phase transfer technique which enabled the imaging of 12 faint sources at 129~GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure with the VLBI core dominating the synchrotron emission on the milliarcsecond scale. CLEAN flux densities of the target s...

  15. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    CERN Document Server

    Cappi, M; Giustini, M

    2013-01-01

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  16. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    Science.gov (United States)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  17. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    CERN Document Server

    Tombesi, Francesco

    2016-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been dir...

  18. Classical bulges, supermassive blackholes and AGN feedback: Extension to low-mass galaxies

    CERN Document Server

    Lu, Zhankui

    2014-01-01

    The empirical model of Lu et al. 2014a for the relation between star formation rate and halo mass growth is adopted to predict the classical bulge mass ($M_{\\rm cb}$) - total stellar mass ($M_\\star$) relation for central galaxies. The assumption that the supermassive black hole (SMBH) mass ($M_{\\rm BH}$) is directly proportional to the classical bulge mass, with the proportionality given by that for massive galaxies, predicts a $M_{\\rm BH}$ - $M_\\star$ relation that matches well the observed relation for different types of galaxies. In particular, the model reproduces the strong transition at $M_\\star=10^{10.5}$ - $10^{11}M_{\\odot}$, below which $M_{\\rm BH}$ drops rapidly with decreasing $M_\\star$. Our model predicts a new sequence at $M_\\star 10^{11}M_{\\odot}$. If all SMBH grow through similar quasar modes with a feedback efficiency of a few percent, the energy produced in low-mass galaxies at redshift $z\\gtrsim 2$ can heat the circum-galactic medium up to a specific entropy level that is required to prevent...

  19. Radio Observation of the 11-Month Fermi-AGN at Urumqi Observatory

    Indian Academy of Sciences (India)

    Zhen Ding; Xiang Liu; Jun Liu; Lang Cui; H. G. Song

    2011-03-01

    We carry out flux observation at 5 GHz for 124 sources from the ‘clean’ sample of Fermi catalog 1LAC (The First LAT AGN Catalog) with Urumqi 25 m telescope. We find that it is obvious that there is a correlation between the -ray and the radio flux density for blazars. For the subclasses, the correlation for FSRQs is strong, but the correlation for BL Lacs is weak.

  20. IFU observations of luminous type II AGN - I. Evidence for ubiquitous winds

    CERN Document Server

    McElroy, Rebecca; Pracy, Michael; Sharp, Rob; Ho, I-Ting; Medling, Anne M

    2014-01-01

    We present observations of 17 luminous (log(L[O III]/L_Sun) > 8.7) local (z 95 %) correlation between the [N II]/H{\\alpha} ratio and the velocity dispersion of the gas. Such a correlation is the natural consequence of a contribution to the ionization from shock excitation and we argue that this demonstrates that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies.

  1. NuSTAR observations of water megamaser AGN

    DEFF Research Database (Denmark)

    Masini, A.; Comastri, A.; Balokovic, M.;

    2016-01-01

    Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the m...

  2. NuSTAR observations of water megamaser AGN

    CERN Document Server

    Masini, A; Baloković, M; Zaw, I; Puccetti, S; Ballantyne, D R; Bauer, F E; Boggs, S E; Brandt, W N; Brightman, M; Christensen, F E; Craig, W W; Gandhi, P; Hailey, C J; Harrison, F A; Koss, M J; Madejski, G; Ricci, C; Rivers, E; Stern, D; Zhang, W W

    2016-01-01

    Aims. Study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser Active Galactic Nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with available physical quantities from VLBI mapping. Results. Most of the sources analyzed are heavily obscured, showing a column density in excess of $\\sim 10^{23}$ cm$^{-2}$. In particular, $79\\%$ are Compton-thick ($N_{\\rm H} > 1.5 \\times 10^{24}$ cm$^{-2}$). Using column densities measured by NuSTAR, with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, the torus dimensions can be predicted. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected ...

  3. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    International Nuclear Information System (INIS)

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO+/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO+ J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO+ J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO+ J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  4. Radiative and Momentum Based Mechanical AGN Feedback in a 3-Dimensional Galaxy Evolution Code

    CERN Document Server

    Choi, Ena; Naab, Thorsten; Johansson, Peter H

    2012-01-01

    We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic (SPH) simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted bythe black hole, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the black hole growth is similar to what has been obtained by earlier workers using the Springel, Di Matteo, & Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v_w ~ 1000-3000 km/s) compared to the standard thermal feedback model (v_w ~ 50-100 km/s). While the thermal feedback model emits only 0.1 % of BH released energ...

  5. Recent Results for AGN Observed by the Rossi X-Ray Timing Explorer

    Science.gov (United States)

    Madejski, G. M.; Done, C.; Zycki, P.

    2000-01-01

    The Rossi X-ray Timing Explorer (RXTE) has produced many excellent observations of active galaxies, providing the best sensitivity in the 10 - 20 keV range so far. This presentation reports selected RTXE data for AGN in the context of the currently popular models. One is the recent result for two Seyfert 1 galaxies, NGC 5548 and IC4329a: both show the "canonical" Seyfert I X-ray spectra, with an underlying power law, plus Gaussian iron K line and Compton reflection. Interestingly, in both cases, the profile of the Fe K line does not extend as far to the red as seen in the famous NCG-6-30-15, and this indicates that the regions where the Fe K lines originate in AGN are diverse. Independently, in both objects we see a strong spectral variability of the primary continua, which soften as the sources brighten. The second result is for the heavily absorbed Seyfert 2 NGC 4945. The RXTE data confirm the strong absorption corresponding to the optical depth to electron scattering of about 2, but also reveal rapid variability of the hard (8-30 keV) X-ray emission on a time scale of a day or less. This suggests that for NGC 4945, the putative parsec-size molecular torus cannot be both geometrically and optically thick, and implies that the Cosmic X-ray Background is unlikely to be made up primarily of AGN with geometry as inferred for this object.

  6. Self-consistent 2-phase AGN torus models: SED library for observers

    CERN Document Server

    Siebenmorgen, Ralf; Efstathiou, Andreas

    2015-01-01

    We assume that dust near active galactic nuclei (AGN) is distributed in a torus-like geometry, which may be described by a clumpy medium or a homogeneous disk or as a combination of the two (i.e. a 2-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse ISM. The dust-photon interaction is treated in a fully self-consistent three dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGN, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10mic. silic...

  7. Detection of faint broad emission lines in type 2 AGN: I. Near infrared observations and spectral fitting

    Science.gov (United States)

    Onori, F.; La Franca, F.; Ricci, F.; Brusa, M.; Sani, E.; Maiolino, R.; Bianchi, S.; Bongiorno, A.; Fiore, F.; Marconi, A.; Vignali, C.

    2016-09-01

    We present medium resolution near infrared spectroscopic observations of 41 obscured and intermediate class AGN (type 2, 1.9 and 1.8; AGN2) with redshift z ≲0.1, selected from the Swift/BAT 70-month catalogue. The observations have been carried out in the framework of a systematic study of the AGN2 near infrared spectral properties and have been executed using ISAAC/VLT, X-shooter/VLT and LUCI/LBT, reaching an average S/N ratio of ˜30 per resolution element. For those objects observed with X-shooter we also obtained simultaneous optical and UV spectroscopy. We have identified a component from the broad line region in 13 out of 41 AGN2, with FWHM >800 km s-1. We have verified that the detection of the broad line region components does not significantly depend on selection effects due to the quality of the spectra, the X-ray or near infrared fluxes, the orientation angle of the host galaxy or the hydrogen column density measured in the X-ray band. The average broad line region components found in AGN2 has a significantly (a factor 2) smaller FWHM if compared with a control sample of type 1 AGN.

  8. Physical properties of simulated galaxy populations at z=2 -- I. Effect of metal-line cooling and feedback from star formation and AGN

    CERN Document Server

    Haas, Marcel R; Booth, C M; Vecchia, Claudio Dalla; Springel, Volker; Theuns, Tom; Wiersma, Robert P C

    2012-01-01

    We use hydrodynamical simulations from the OWLS project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on metal-line cooling and feedback from star formation and active galactic nuclei (AGN). We find that if the sub-grid feedback from star formation is implemented kinetically, the feedback is only efficient if the initial wind velocity exceeds a critical value. This critical velocity increases with galaxy mass and also if metal-line cooling is included. This suggests that radiative losses quench the winds if their initial velocity is too low. If the feedback is efficient, then the star formation rate is inversely proportional to the amount of energy injected per unit stellar mass formed (which is proportional to the initial mass loading for a fixed wind velocity). This can be understood if the star formation is self-regulating, i.e. if the star formation rate (and thus the gas fraction) increase until the outflow rate balances the inflow rate. Feedback from AGN is...

  9. A study of a sample of high rotation measure AGNs through multifrequency single dish observations

    CERN Document Server

    Pasetto, Alice; Mack, Karl-Heinz; Bruni, Gabriele; Carrasco-Gonzalez, Carlos

    2015-01-01

    We characterised and studied, in the radio band, a sample of candidates of high Rotation Measure (RM). These point-like objects show a strong depolarisation at 21cm. This feature suggests the presence of a very dense medium surrounding them in a combination of a strong magnetic field. This work aims at selecting and studying a sample of radio sources with high RM, thus to study their physical conditions and their status with respect to their surrounding medium. We want to understand if any connection is present between the AGN hosting galaxy medium with some evolutionary track and/or some restarting phase of the AGN itself. Multifrequency single-dish observations were performed with the 100-m Effelsberg telescope to define the initial sample, to characterise the SED of the final sample (30 targets) and to determine their RM in the 11 to 2 cm wavelength range. From the observations, the SED together with polarisation information, i.e. the fractional polarisation and the polarisation angle, have been determined...

  10. Goddard Robotic Telescope - Optical Follow-up of GRBs and Coordinated Observations of AGNs -

    CERN Document Server

    Sakamoto, T; Donato, D; Gehrels, N; Okajima, T; Ukwatta, T N

    2010-01-01

    Since it is not possible to predict when a Gamma-Ray Burst (GRB) will occur or when Active Galactic Nucleus (AGN) flaring activity starts, follow-up/monitoring ground telescopes must be located as uniformly as possible all over the world in order to collect data simultaneously with Fermi and Swift detections. However, there is a distinct gap in follow-up coverage of telescopes in the eastern U.S. region based on the operations of Swift. Motivated by this fact, we have constructed a 14" fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up Swift/Fermi GRBs and 2) to perform the coordinated optical observations of Fermi Large Area Telescope (LAT) AGN. Our telescope system consists of off-the-shelf hardware. With the focal reducer, we are able to match the field of view of Swift narrow instruments (20' x 20'). We started scientific observations in mid-November 2008 and GRT has been...

  11. The Effect of the AGN Feedback on the Interstellar Medium of Early-Type Galaxies: 2D Hydrodynamical Simulations of the Low-Rotation Case

    CERN Document Server

    Ciotti, L; Negri, A; Ostriker, J P

    2016-01-01

    We present 2D hydrodynamical simulations for the evolution of early-type galaxies containing central massive black holes (MBHs), starting at age 2 Gyr. The code contains accurate and physically consistent radiative and mechanical AGN wind feedback, with parsec-scale central resolution. Mass input comes from stellar evolution; energy input includes Type Ia and II supernova and stellar heating; star-formation is included. Realistic, axisymmetric dynamical models for the galaxies are built solving the Jeans' equations. The lowest mass models (Mstar = 8 10^{10}Msun) develop global outflows sustained by SNIa's heating, ending with a significantly lower amount of hot gas and new stars. In more massive models, nuclear outbursts last to the present epoch, with large and frequent fluctuations in nuclear emission and from the gas (Lx). Each burst last ~ 10^{7.5} yr, during which (for r 0.1. The duty-cycle of AGN activity approximates 4% (Abridged).

  12. Long-term X-Ray Spectral Variability in AGN from the Palomar sample observed by Swift

    CERN Document Server

    Connolly, S D; Skipper, C J; Emmanoulopoulos, D

    2016-01-01

    We present X-ray spectral variability of 24 local active galactic nuclei (AGN) from the Palomar sample of nearby galaxies, as observed mainly by Swift. From hardness ratio measurements, we find that 18 AGN with low accretion rates show hardening with increasing count rate, converse to the softer-when-brighter behaviour normally observed in AGN with higher accretion rates. Two AGN show softening with increasing count rate, two show more complex behaviour, and two do not show any simple relationship. Sufficient data were available for the spectra of 13 AGN to be summed in flux-bins. In 9 of these sources, correlated luminosity-dependent changes in the photon index ($\\Gamma$) of a power-law component are found to be the main cause of hardness variability. For 6 objects, with a low accretion rate as a fraction of the Eddington rate (\\.m$\\mathrm{_{Edd}}$), $\\Gamma$ is anticorrelated with \\.m$\\mathrm{_{Edd}}$, i.e. `harder-when-brighter' behaviour is observed. The 3 higher-\\.m$\\mathrm{_{Edd}}$-rate objects show a p...

  13. AGN BLR structure, luminosity and mass from combined Reverberation Mapping and Optical Interferometry observations

    CERN Document Server

    Rakshit, Suvendu

    2014-01-01

    Unveiling the structure of the Broad Line Region (BLR) of AGN is critical to understand the quasar phenomenon. Detail study of the geometry and kinematic of these objects can answer the basic questions about the central BH mass, accretion mechanism and rate, growth and evolution history. Observing the response of the BLR clouds to continuum variations, Reverberation Mapping (RM) provides size vs luminosity and mass vs luminosity relations for QSOs and Sy1 AGNs with the goal to use these objects as standard candles and mass tags. However, the RM size can receive different interpretations depending on the assumed geometry and the corresponding mass depends on an unknown geometrical factor as well on the possible confusion between local and global velocity dispersion. From RM alone, the scatter around the mean mass is as large as a factor 3. Though BLRs are expected to be much smaller than the current spatial resolution of large optical interferometers (OI), we show that differential interferometry with AMBER, G...

  14. On the physical origin of AGN outflow driving mechanisms

    Science.gov (United States)

    Ishibashi, Wako

    2016-07-01

    Super-massive black holes in active galactic nuclei (AGN) respond to the accretion process by feeding back energy and momentum into the surrounding environment. Galaxy-scale outflows are thought to provide the physical link connecting the small scales of the central black hole to the large scales of the host galaxy. Such powerful outflows are now starting to be commonly observed, and have been considered as a proof of AGN feedback in action. However, the physical origin of the mechanism driving the observed outflows is still unclear, and whether it is due to energy-driving or radiation-driving is a source of much debate in the literature. We consider AGN feedback driven by radiation pressure on dust, and show that AGN radiative feedback is capable of driving powerful outflows on galactic scales. In particular, we can obtain outflowing shells with high velocity and large momentum flux, by properly taking into account the effects of radiation trapping. Alternatively, the observed outflow characteristics may be significantly biased by AGN variability. I will discuss the resulting implications in the global context of black hole accretion-AGN feedback coupling.

  15. Three years of Swift/BAT Survey of AGN: Reconciling Theory and Observations?

    Energy Technology Data Exchange (ETDEWEB)

    Burlon, D.; /Garching, Max Planck Inst., MPE; Ajello, M.; /SLAC /KIPAC, Menlo Park; Greiner, J.; /Garching, Max Planck Inst., MPE; Comastri, A.; /Muenchen, Tech. U. Universe; Merloni, A.; /Garching, Max Planck Inst., MPE /Muenchen, Tech. U. Universe; Gehrels, N.; /NASA, Goddard

    2011-02-07

    It is well accepted that unabsorbed as well as absorbed AGN are needed to explain the nature and the shape of the Cosmic X-ray background, even if the fraction of highly absorbed objects (dubbed Compton-thick sources) substantially still escapes detection. We derive and analyze the absorption distribution using a complete sample of AGN detected by Swift-BAT in the first three years of the survey. The fraction of Compton-thick AGN represents only 4.6% of the total AGN population detected by Swift-BAT. However, we show that once corrected for the bias against the detection of very absorbed sources the real intrinsic fraction of Compton-thick AGN is 20{sub -6}{sup +9}%. We proved for the first time (also in the BAT band) that the anti-correlation of the fraction of absorbed AGN and luminosity it tightly connected to the different behavior of the luminosity functions (XLFs) of absorbed and unabsorbed AGN. This points towards a difference between the two subsamples of objects with absorbed AGN being, on average, intrinsically less luminous than unobscured ones. Moreover the XLFs show that the fraction of obscured AGN might also decrease at very low luminosity. This can be successfully interpreted in the framework of a disk cloud outflow scenario as the disappearance of the obscuring region below a critical luminosity. Our results are discussed in the framework of population synthesis models and the origin of the Cosmic X-ray Background.

  16. 18–22 cm VLBA Observational Evidence for Toroidal B-Field Components in Six AGN Jets

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Motter

    2016-08-01

    Full Text Available The formation of relativistic jets in Active Galactic Nuclei (AGN is related to accretion onto their central supermassive black holes, and magnetic (B fields are believed to play a central role in launching, collimating, and accelerating the jet streams from very compact regions out to kiloparsec scales. We present results of Faraday rotation studies based on Very Long Baseline Array (VLBA data obtained at 18–22 cm for six well known AGN (OJ 287, 3C 279, PKS 1510-089, 3C 345, BL Lac, and 3C 454.3, which probe projected distances out to tens of parsecs from the observed cores. We have identified statistically significant, monotonic, transverse Faraday rotation gradients across the jets of all but one of these sources, indicating the presence of toroidal B fields, which may be one component of helical B fields associated with these AGN jets.

  17. Radio AGN in the local universe: unification, triggering and evolution

    CERN Document Server

    Tadhunter, Clive

    2016-01-01

    Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_1.4GHz > 10^24 W Hz^-1) are a key sub-class of the overall AGN population. Here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest ...

  18. Three years Swift-BAT Survey of AGN: reconciling theory and observations?

    CERN Document Server

    Burlon, D; Greiner, J; Comastri, A; Merloni, A; Gehrels, N; .,

    2010-01-01

    It is well accepted that unabsorbed as well as absorbed AGN are needed to explain the nature and the shape of the Cosmic X-ray background, even if the fraction of highly absorbed objects (dubbed Compton-thick sources) substantially still escapes detection. We derive and analyze the absorption distribution using a complete sample of AGN detected by Swift-BAT in the first three years of the survey. The fraction of Compton-thick AGN represents only 4.6% of the total AGN population detected by Swift-BAT. However, we show that once corrected for the bias against the detection of very absorbed sources the real intrinsic fraction of Compton-thick AGN is 20$^{+9}_{-6}$%. We proved for the first time (also in the BAT band) that the anti-correlation of the fraction of absorbed AGN and luminosity it tightly connected to the different behavior of the luminosity functions (XLFs) of absorbed and unabsorbed AGN. This points towards a difference between the two subsamples of objects with absorbed AGN being, on average, intri...

  19. Gemini GMOS and WHT SAURON integral-field spectrograph observations of the AGN-driven outflow in NGC 1266

    NARCIS (Netherlands)

    Davis, Timothy A.; Krajnovic, Davor; McDermid, Richard M.; Bureau, Martin; Sarzi, Marc; Nyland, Kristina; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2012-01-01

    We use the Spectrographic Areal Unit for Research on Optical Nebulae and Gemini Multi-Object Spectrograph integral-field spectrographs to observe the active galactic nucleus (AGN) powered outflow in NGC?1266. This unusual galaxy is relatively nearby (D = 30?Mpc), allowing us to investigate the proce

  20. Detection of faint broad emission lines in type 2 AGN: I. Near infrared observations and spectral fitting

    CERN Document Server

    Onori, F; Ricci, F; Brusa, M; Sani, E; Maiolino, R; Bianchi, S; Bongiorno, A; Fiore, F; Marconi, A; Vignali, C

    2016-01-01

    We present medium resolution near infrared spectroscopic observations of 41 obscured and intermediate class AGN (type 2, 1.9 and 1.8; AGN2) with redshift $z \\lesssim$0.1, selected from the Swift/BAT 70-month catalogue. The observations have been carried out in the framework of a systematic study of the AGN2 near infrared spectral properties and have been executed using ISAAC/VLT, X-shooter/VLT and LUCI/LBT, reaching an average S/N ratio of $\\sim$30 per resolution element. For those objects observed with X-shooter we also obtained simultaneous optical and UV spectroscopy. We have identified a component from the broad line region in 13 out of 41 AGN2, with FWHM ${\\rm > 800 }$ km/s. We have verified that the detection of the broad line region components does not significantly depend on selection effects due to the quality of the spectra, the X-ray or near infrared fluxes, the orientation angle of the host galaxy or the hydrogen column density measured in the X-ray band. The average broad line region components f...

  1. Long-term X-ray spectral variability in AGN from the Palomar sample observed by Swift

    Science.gov (United States)

    Connolly, S. D.; McHardy, I. M.; Skipper, C. J.; Emmanoulopoulos, D.

    2016-07-01

    We present X-ray spectral variability of 24 local active galactic nuclei (AGN) from the Palomar sample of nearby galaxies, as observed mainly by Swift. From hardness ratio measurements, we find that 18 AGN with low accretion rates show hardening with increasing count rate, converse to the softer-when-brighter behaviour normally observed in AGN with higher accretion rates. Two AGN show softening with increasing count rate, two show more complex behaviour, and two do not show any simple relationship. Sufficient data were available for the spectra of 13 AGN to be summed in flux-bins. In nine of these sources, correlated luminosity-dependent changes in the photon index (Γ) of a power-law component are found to be the main cause of hardness variability. For six objects, with a low accretion rate as a fraction of the Eddington rate (dot{m}_{Edd}), Γ is anticorrelated with dot{m}_{Edd}, i.e. `harder-when-brighter' behaviour is observed. The three higher dot{m}_{Edd}-rate objects show a positive correlation between Γ and dot{m}_{Edd}. This transition from harder-when-brighter at low dot{m}_{Edd}to softer-when-brighter at high dot{m}_{Edd} can be explained by a change in the dominant source of seed-photons for X-ray emission from cyclo-synchrotron emission from the Comptonizing corona itself to thermal seed-photons from the accretion disc. This transition is also seen in the `hard state' of black hole X-ray binaries (BHXRBs). The results support the idea that low-ionization nuclear emission-line regions are analogues of BHXRBs in the hard state and that Seyferts are analogues of BHXRBs in either the high-accretion rate end of the hard state or in the hard-intermediate state.

  2. MOJAVE XIII. Parsec-Scale AGN Jet Kinematics Analysis Based on 19 years of VLBA Observations at 15 GHz

    CERN Document Server

    Lister, M L; Aller, H D; Homan, D C; Kellermann, K I; Kovalev, Y Y; Pushkarev, A B; Richards, J L; Ros, E; Savolainen, T

    2016-01-01

    We present 1625 new 15 GHz (2 cm) VLBA images of 295 jets associated with active galactic nuclei (AGNs) from the MOJAVE and 2 cm VLBA surveys, spanning observations between 1994 Aug 31 and 2013 Aug 20. For 274 AGNs with at least 5 VLBA epochs, we have analyzed the kinematics of 961 individual bright features in their parsec-scale jets. A total of 122 of these jets have not been previously analyzed by the MOJAVE program. In the case of 451 jet features that had at least 10 epochs, we also examined their kinematics for possible accelerations. At least half of the well-sampled features have non-radial and/or accelerating trajectories, indicating that non-ballistic motion is common in AGN jets. Since it is impossible to extrapolate any accelerations that occurred before our monitoring period, we could only determine reliable ejection dates for about 24% of those features that had significant proper motions. The distribution of maximum apparent jet speeds in all 295 AGNs measured by our program to date is peaked b...

  3. Observer-based H-infinity output feedback control with feedback gain and observer gain variations for Delta operator system

    Institute of Scientific and Technical Information of China (English)

    Ruiquan LIN; Fuwen YANG; Renchong PENG

    2009-01-01

    Considering that the controller feedback gain and the observer gain are of additive norm-bounded variations, a design method of observer-based H-infinity output feedback controller for uncertain Delta operator systems is proposed in this paper. A sufficient condition of such controllers is presented in linear matrix inequality (LMI) forms. A numerical example is then given to illustrate the effectiveness of this method, that is, the obtained controller guarantees the closed-loop system asymptotically stable and the expected H-infinity performance even if the controller feedback gain and the observer gain are varied.

  4. Observations of Protostellar Outflow Feedback in Clustered Star Formation

    CERN Document Server

    Nakamura, Fumitaka

    2015-01-01

    We discuss the role of protostellar outflow feedback in clustered star formation using the observational data of recent molecular outflow surveys toward nearby cluster-forming clumps. We found that for almost all clumps, the outflow momentum injection rate is significantly larger than the turbulence dissipation rate. Therefore, the outflow feedback is likely to maintain supersonic turbulence in the clumps. For less massive clumps such as B59, L1551, and L1641N, the outflow kinetic energy is comparable to the clump gravitational energy. In such clumps, the outflow feedback probably affects significantly the clump dynamics. On the other hand, for clumps with masses larger than about 200 M$_\\odot$, the outflow kinetic energy is significantly smaller than the clump gravitational energy. Since the majority of stars form in such clumps, we conclude that outflow feedback cannot destroy the whole parent clump. These characteristics of the outflow feedback support the scenario of slow star formation.

  5. Near-IR observations of the HE0450-2958 system: discovery of a second AGN?

    CERN Document Server

    Letawe, G; Chantry, V; Letawe, Y

    2009-01-01

    The QSO HE0450-2958 was brought to the front scene by the non-detection of its host galaxy and strong upper limits on the latter's luminosity. The QSO is also a powerful infrared emitter, in gravitational interaction with a strongly distorted UltraLuminous InfraRed companion galaxy. We investigate the properties of the companion galaxy, through new near- and mid-infrared observations of the system obtained with NICMOS onboard HST, ISAAC and VISIR on the ESO VLT. The companion galaxy is found to harbour a point source revealed only in the infrared, in what appears as a hole or dark patch in the optical images. Various hypotheses on the nature of this point source are analyzed and it is found that the only plausible one is that it is a strongly reddened AGN hidden behind a thick dust cloud. The hypothesis that the QSO supermassive black hole might have been ejected from the companion galaxy in the course of a galactic collision involving 3-body black holes interaction is also reviewed, on the basis of this new ...

  6. XMM-Newton observations of 4 luminous radio-quiet AGN, and the soft X-ray excess problem

    CERN Document Server

    D'Ammando, F; Jimenez-Bailon, E; Matt, G

    2008-01-01

    The nature and origin of the soft X-ray excess in radio quiet AGN is still an open issue. The interpretation in terms of thermal disc emission has been challanged by the discovery of the constancy of the effective temperature despite the wide range of Black Hole masses of the observed sources. Alternative models are reflection from ionized matter and absorption in a relativistically smeared wind. We analyzed XMM-Newton observations of four luminous radio quiet AGN with the aim of characterising their main properties and in particular the soft excess. Different spectral models for the soft excess were tried: thermal disc emission, Comptonization, ionized reflection, relativistically smeared winds. Comptonization of thermal emission and the smeared winds provide the best fits, but the other models also provide acceptable fits. All models, however, return parameters very similar from source to source, despite the large differences in luminosities, Black Hole masses and Eddington ratios. Moreover, the smeared win...

  7. Extending the bolometric L-T relation from galaxy clusters to groups: Impact of ICM cooling, AGN feedback and selection effects

    Science.gov (United States)

    Vijaysarathy, B.

    2014-07-01

    With a sample of 26 galaxy groups with Chandra data, we endeavour to construct the bolometric luminosity-temperature relation. We fit the relation for five different cases; the complete sample, sub-samples which factor the presence/absence of a strong cool core (SCC), and the presence/absence of a central radio source (CRS). To correct for malmquist bias, we undertook simulations and determined the bias corrected slopes, normalisations and the intrinsic scatter in luminosity. Important similarities and differences of the relation on the group scale vis-a-vis clusters is presented and we try to come up with a cohesive picture of the impact of ICM cooling and AGN feedback on the group regime.

  8. Flux upper limits for 47 AGN observed with H.E.S.S. in 2004-2011

    CERN Document Server

    Abramowski, A; Benkhali, F Ait; Akhperjanian, A G; Angüner, E; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Bernlöhr, K; Birsin, E; Bissaldi, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Chalme-Calvet, R; Chaves, R C G; Cheesebrough, A; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Grondin, M -H; Grudzińska, M; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kneiske, T; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Moderski, R; Mohamed, M; Moulin, E; Murach, T; Naumann, C L; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Rob, L; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Zabalza, V; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2014-01-01

    About 40% of the observation time of the High Energy Stereoscopic System (H.E.S.S.) is dedicated to studying active galactic nuclei (AGN), with the aim of increasing the sample of known extragalactic very-high-energy (VHE, E>100 GeV) sources and constraining the physical processes at play in potential emitters. H.E.S.S. observations of AGN, spanning a period from April 2004 to December 2011, are investigated to constrain their gamma-ray fluxes. Only the 47 sources without significant excess detected at the position of the targets are presented. Upper limits on VHE fluxes of the targets were computed and a search for variability was performed on the nightly time scale. For 41 objects, the flux upper limits we derived are the most constraining reported to date. These constraints at VHE are compared with the flux level expected from extrapolations of Fermi-LAT measurements in the two-year catalog of AGN. The H.E.S.S. upper limits are at least a factor of two lower than the extrapolated Fermi-LAT fluxes for 11 ob...

  9. Morphological research on radio loud AGN 4C39.25 using KaVA observations

    Science.gov (United States)

    Yoo, Hyemin; Sohn, Bong Won; Yi, Sukyoung; KaVA AGN WG members

    2016-01-01

    4C39.25 (0923+392) is a distant radio loud AGN placed at redshift 0.695. Its kilo-parsec scale jet observed by VLBA(Kollgaard et al. 1990) and parsec scale jet observed by VLBA(Kellermann et al. 1998) are misaligned. This might indicate episodic-jet activity which recently turned on. This object currently shows two stationary compact parsec-scale components:a bright jet component on the east and less luminous core on the west. Also, it is known that there have been superluminal jet components which are flowing from the core toward east, and then merging with the bright jet component (Marscher et al. 1991, Alberdi et al. 2000, Lister et al. 2013). Including the detection of broad emission lines(SDSS), its viewing angle was concluded to be small. However, the jet component being more luminous than the core is abnormal for a source with a small viewing angle. Furthermore, it has young radio galaxy-like properties such as non-variation in total flux(Alberdi et al. 1997, 2000, MOJAVE database) and a high frequency peak in the spectral energy distribution(Orienti et al 2007). In this case, it is more reliable to think that viewing angle of 4C39.25 is large. Korean VLBI Network (KVN) and VLBI Exploration of Radio Astronomy (VERA) Array (KaVA) is a cooperated VLBI system of Korea and Japan which provides high-frequency (23GHz and 43GHz) and high spatial resolution(1.2mas and 0.6mas). Their advantages of multi-wavelength and relatively high S/N ratio relative to its number of baseline allow us to discover the central region and dim structures of 4C39.25. We present results of several epochs observed during 2013 to 2014, focusing on morphological changes of 4C39.25 using KaVA images. According to these results, we were able to find a recently emitted counter-jet component for images of first 6 epochs. Also the counter-jet component propagates along a curved trajectory, and it shows an extreme superluminal motion. This might indicate a necessity of relatively large viewing

  10. The Tropical Water Vapor Feedback Implied by Aqua Observations

    Science.gov (United States)

    Minschwaner, K.; Dessler, A. E.; Sawaengphokhai, P. C.; Laight, P. A.

    2006-12-01

    We investigate the climate feedback by water vapor in the middle and upper troposphere of the tropics using data from Earth Observing System instruments on the Aqua satellite. The measured water vapor and sea surface temperatures are obtained from AIRS (Atmospheric Infrared Sounder), and outgoing longwave fluxes from CERES (Clouds and Earth's Radiant Energy System). These data are used to quantify any response in tropical mean water vapor to changes in sea surface temperatures. We focus on the effect of variations in both tropical mean sea surface temperature and on variability confined to regions of active convection. Results are compared to feedback estimates based on previous measurements from UARS MLS, as well as the water vapor feedback predicted by global climate model simulations as part of the IPCC AR4 analysis.

  11. Observable properties of X-ray heated winds in AGN warm reflectors and warm absorbers

    CERN Document Server

    Krolik, J H; Krolik, Julian H; Kriss, Gerard A

    1995-01-01

    When an AGN is obscured, the warm reflecting gas nearby can be seen by a combination of bremsstrahlung, intrinsic line emission, and reflection of the nuclear continuum, both by electron scattering and by resonance line scattering. Resonance lines, due both to intrinsic emission and scattering, are particularly prominent in the soft X-ray band. When our line of sight to the nucleus is not obscured, the dominant effect is absorption. In the soft X-ray band, ionization edges of highly ionized species and resonance lines contribute comparably to the opacity; in the ultraviolet, the gas is almost transparent except for a small number of resonance lines. We identify the ``warm absorbers" seen in many AGN X-ray spectra with this gas, but argue that most of the UV absorption lines seen must be due to a small amount of more weakly ionized gas which is embedded in the main body of the warm, reflecting gas. Because the ionization equilibration timescales of some ions may be as long as the variability timescales in AGN,...

  12. Finding Rare AGN: XMM-Newton and Chandra Observations of SDSS Stripe 82

    CERN Document Server

    LaMassa, Stephanie M; Cappelluti, Nico; Civano, Francesca; Ranalli, Piero; Glikman, Eilat; Treister, Ezequiel; Richards, Gordon; Ballantyne, David; Stern, Daniel; Comastri, Andrea; Cardamone, Carie; Schawinski, Kevin; Boehringer, Hans; Chon, Gayoung; Murray, Stephen S; Green, Paul; Nandra, Kirpal

    2013-01-01

    We have analyzed the {\\it XMM-Newton} and {\\it Chandra} data overlapping $\\sim$16.5 deg$^2$ of Sloan Digital Sky Survey Stripe 82, including $\\sim$4.6 deg$^2$ of proprietary {\\it XMM-Newton} data that we present here. In total, 3362 unique X-ray sources are detected at high significance. We derive the {\\it XMM-Newton} number counts and compare them with our previously reported {\\it Chandra} Log$N$-Log$S$ relations and other X-ray surveys. The Stripe 82 X-ray source lists have been matched to multi-wavelength catalogs using a maximum likelihood estimator algorithm. We discovered the highest redshift ($z=5.86$) quasar yet identified in an X-ray survey. We find 2.5 times more high luminosity (L$_x \\geq 10^{45}$ erg s$^{-1}$) AGN than the smaller area {\\it Chandra} and {\\it XMM-Newton} survey of COSMOS and 1.3 times as many identified by XBo\\"otes. Comparing the high luminosity AGN we have identified with those predicted by population synthesis models, our results suggest that this AGN population is a more import...

  13. A Deep Chandra Observation of the AGN Outburst and Merger in Hickson Compact Group 62

    CERN Document Server

    Rafferty, D A; Nulsen, P E J; McNamara, B R; Brandt, W N; Wise, M W; Röttgering, H J A

    2012-01-01

    We report on an analysis of new Chandra data of the galaxy group HCG 62, well known for possessing cavities in its intragroup medium (IGM) that were inflated by the radio lobes of its central active galactic nucleus (AGN). With the new data, a factor of three deeper than previous Chandra data, we re-examine the energetics of the cavities and determine new constraints on their contents. We confirm that the ratio of radiative to mechanical power of the AGN outburst that created the cavities is less than 10^-4, among the lowest of any known cavity system, implying that the relativistic electrons in the lobes can supply only a tiny fraction of the pressure required to support the cavities. This finding implies additional pressure support in the lobes from heavy particles (e.g., protons) or thermal gas. Using spectral fits to emission in the cavities, we constrain any such volume-filling thermal gas to have a temperature kT > 4.3 keV. For the first time, we detect X-ray emission from the central AGN, with a lumino...

  14. VLBI observations of bright AGN jets with KVN and VERA Array (KaVA): Evaluation of Imaging Capability

    CERN Document Server

    Niinuma, Kotaro; Kino, Motoki; Sohn, Bong Won; Akiyama, Kazunori; Zhao, Guang-Yao; Sawada-Satoh, Satoko; Trippe, Sascha; Hada, Kazuhiro; Jung, Taehyun; Hagiwara, Yoshiaki; Dodson, Richard; Koyama, Shoko; Honma, Mareki; Nagai, Hiroshi; Chung, Aeree; Doi, Akihiro; Fujisawa, Kenta; Han, Myoung-Hee; Kim, Joeng-Sook; Lee, Jeewon; Lee, Jeong Ae; Miyazaki, Atsushi; Oyama, Tomoaki; Sorai, Kazuo; Wajima, Kiyoaki; Bae, Jaehan; Byun, Do-Young; Cho, Se-Hyung; Choi, Yoon Kyung; Chung, Hyunsoo; Chung, Moon-Hee; Han, Seog-Tae; Hirota, Tomoya; Hwang, Jung-Wook; Je, Do-Heung; Jike, Takaaki; Jung, Dong-Kyu; Jung, Jin-Seung; Kang, Ji-Hyun; Kang, Jiman; Kang, Yong-Woo; Kan-ya, Yukitoshi; Kanaguchi, Masahiro; Kawaguchi, Noriyuki; Kim, Bong Gyu; Kim, Hyo Ryoung; Kim, Hyun-Goo; Kim, Jaeheon; Kim, Jongsoo; Kim, Kee-Tae; Kim, Mikyoung; Kobayashi, Hideyuki; Kono, Yusuke; Kurayama, Tomoharu; Lee, Changhoon; Lee, Jung-Won; Lee, Sang Hyun; Minh, Young Chol; Matsumoto, Naoko; Nakagawa, Akiharu; Oh, Chung Sik; Oh, Se-Jin; Park, Sun-Youp; Roh, Duk-Gyoo; Sasao, Tetsuo; Shibata, Katsunori M; Song, Min-Gyu; Tamura, Yoshiaki; Wi, Seog-Oh; Yeom, Jae-Hwan; Yun, Young Joo

    2014-01-01

    The Korean very-long-baseline interferometry (VLBI) network (KVN) and VLBI Exploration of Radio Astrometry (VERA) Array (KaVA) is the first international VLBI array dedicated to high-frequency (23 and 43 GHz bands) observations in East Asia. Here, we report the first imaging observations of three bright active galactic nuclei (AGNs) known for their complex morphologies: 4C 39.25, 3C 273, and M 87. This is one of the initial result of KaVA early science. Our KaVA images reveal extended outflows with complex substructure such as knots and limb brightening, in agreement with previous Very Long Baseline Array (VLBA) observations. Angular resolutions are better than 1.4 and 0.8 milliarcsecond at 23 GHz and 43 GHz, respectively. KaVA achieves a high dynamic range of ~1000, more than three times the value achieved by VERA. We conclude that KaVA is a powerful array with a great potential for the study of AGN outflows, at least comparable to the best existing radio interferometric arrays.

  15. Observable Properties of X-ray Heated Winds in AGN: Warm Reflectors and Warm Absorbers

    OpenAIRE

    Krolik, Julian H.; Kriss, Gerard A.

    1995-01-01

    When an AGN is obscured, the warm reflecting gas nearby can be seen by a combination of bremsstrahlung, intrinsic line emission, and reflection of the nuclear continuum, both by electron scattering and by resonance line scattering. Resonance lines, due both to intrinsic emission and scattering, are particularly prominent in the soft X-ray band. When our line of sight to the nucleus is not obscured, the dominant effect is absorption. In the soft X-ray band, ionization edges of highly ionized s...

  16. Obscured AGN

    Science.gov (United States)

    Ptak, Andrew

    2011-01-01

    Many obscured AGN show evidence of significant starburst emission dominating below 2 keV. Therefore wide-field X-ray surveys sensitive enough to luminosities below approximately 10^42 ergs per second will result in detections of galaxies with contributions of both obscured AGN and starburst emission. We will discuss Bayesian approaches to assessing the relative contribution of each component, minimizing survey biases and using the resultant posterior probabilities for the AGN and starburst components to determine their evolution.

  17. Radio AGN in the local universe: unification, triggering and evolution

    Science.gov (United States)

    Tadhunter, Clive

    2016-06-01

    Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_{1.4 GHz} > 10^{24} W Hz^{-1}) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff-Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.

  18. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    Science.gov (United States)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  19. Finding Fossil Evidence of AGN Feedback in WISE-Selected Stripe-82 Galaxies By Measuring the Thermal Sunyaev-Zel'dovich Effect With the Atacama Cosmology Telescope

    CERN Document Server

    Spacek, Alexander; Cohen, Seth; Joshi, Bhavin; Mauskopf, Philip

    2016-01-01

    We directly measure the thermal energy of the gas surrounding galaxies through the thermal Sunyaev-Zel'dovich (tSZ) effect. We perform a stacking analysis of microwave background images from the Atacama Cosmology Telescope (ACT), around 1179 massive quiescent elliptical galaxies at 0.5 <= z <= 1.0 ('low-z') and 3274 galaxies at 1.0 <= z <= 1.5 ('high-z'), selected using data from the Wide-Field Infrared Survey Explorer (WISE) All-Sky Survey and the Sloan Digital Sky Survey (SDSS) within the SDSS Stripe-82 field. The gas surrounding these galaxies is expected to contain energy from past episodes of AGN feedback, and after using modeling to subtract undetected contaminants, we detect a tSZ signal at a significance of 0.9-sigma for our low-z galaxies and 1.8-sigma for our high-z galaxies. We then include data from the high-frequency Planck bands for a subset of 227 low-z galaxies and 529 high-z galaxies and find low-z and high-z tSZ detections of 1.0-sigma and 1.5-sigma, respectively. These results i...

  20. YOUNG AGN OUTBURST RUNNING OVER OLDER X-RAY CAVITIES

    International Nuclear Information System (INIS)

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193—a nearby lenticular galaxy—based on X-ray (Chandra) and radio (Very Large Array and Giant Meter-wave Radio Telescope) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ∼78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers

  1. Herschel observed Stripe 82 quasars and their host galaxies: connections between the AGN activity and the host galaxy star formation

    CERN Document Server

    Dong, Xiaoyi

    2016-01-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high luminosity quasars with a mean bolometric luminosity of $10^{46.4}$ erg s$^{-1}$. The redshift range of this sample is within $z<4$, with a mean value of $1.5\\pm0.78$. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, FIR luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 $M_{\\odot}$ yr$^{-1}$ and the mean gas mass is $\\sim 10^{11.3}$ $M_{\\odot}$. All these results point to an IR luminous quasar system. Comparing with star format...

  2. Xray cavities in a sample of 83 SPT-selected clusters galaxies. Tracing the evolution of AGN feedback in clusters of galaxies out to z=1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; Forman, W. R.; Allen, S. W.; Bleem, L. E.; Ashby, M. L. N.; Bocquet, S.; Brodwin, M.; Dietrich, J. P.; Jones, C.; Liu, J.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Song, J.; Stalder, B.; Vikhlinin, A.; Zenteno, A.

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). We report on a survey for X-ray cavities in 83 massive, high-redshift ($0.4\\lt z\\lt 1.2$) clusters of galaxies selected by their Sunyaev-Zel’dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). The majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($z\\gtrsim 0.5$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($\\gt 7$ Gyr at $z\\sim 0.8$). On average, the detected X-ray cavities have powers of $(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$, enthalpies of $(3-6)\\times {{10}^{59}}\\ {\\rm erg}$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 10(8) to several ${{10}^{9}}\\,{{M}_{\\odot }}$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Although this result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.

  3. Consequences of Radiative and Mechanical Feedback from Black Holes in Galaxy Mergers

    CERN Document Server

    Choi, Ena; Ostriker, Jeremiah P; Johansson, Peter H; Moster, Benjamin P

    2013-01-01

    We employ hydrodynamical simulations to study the effect of AGN mechanical and radiation feedback on the formation of bulge dominated galaxies via mergers of disk galaxies. The merging galaxies have mass-ratios of 1:1 to 6:1 and include pre-existing hot gaseous halos to properly account for the global impact of AGN feedback. We compare three models: (1) no black hole and no AGN feedback; (2) thermal AGN feedback; and (3) mechanical and radiative AGN feedback. The last model is motivated by observations of broad absorption line quasars which show winds with initial velocities of v_w ~ 10,000 km/s and also heating associated with the central AGN X-ray radiation. The primary changes in gas properties due to mechanical AGN feedback are lower thermal X-ray luminosity from the final galaxy - in better agreement with observations - and galactic outflows with higher velocity ~ 1000 km/s similar to recent direct observations of nearby merger remnants. The kinetic energy of the outflowing gas is a factor of ~ 20 higher...

  4. The X-ray Zurich Environmental Study (X-ZENS). I. Chandra and XMM-Newton observations of AGNs in galaxies in nearby groups

    CERN Document Server

    Silverman, J D; Finoguenov, A; Carollo, C M; Cibinel, A; Lilly, S J; Schawinski, K

    2013-01-01

    We describe X-ray observations with Chandra and XMM-Newton of 18 galaxy groups (M_group ~ 1-6x10^13 Msolar, z~0.05) from the Zurich Environmental Study (ZENS). We aim to establish the frequency and properties, unaffected by host galaxy dilution and obscuration, of AGNs in central and satellite galaxy members, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of 177 observed galaxies, down to a limit of f_(0.5-8 keV) ~ 5x10^-15 erg cm^-2 s^-1, corresponding to a limiting luminosity of L_(0.5-8 keV)~3x10^40 erg s^-1. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L_Edd>~10^-4), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift, and compare the structural/morphological properties between AGN-active and non-active galaxies of different rank and location within the group halos. We see a slight tendency for AGN hosts to have either relatively brighter/denser disks (or re...

  5. The Effects of Post-Observational Reflective Feedback Modes on Teaching Beliefs: Peer vs. Teacher-Mediated Feedback

    Directory of Open Access Journals (Sweden)

    İlknur Yüksel

    2011-01-01

    Full Text Available The aim of this study was to investigate whether the pre-service teachers’ language teaching beliefs changed as a result of two different post-observational reflective feedback modes; teacher mediated and peer feedback, during their teaching practice. For each post-observational feedback mode, two groups of eight Turkish pre-service language teachers attending to the final year at English Language Teaching Department at Anadolu University, totally 16 pre-service teachers participated in the study. The qualitative and quantitative data was collected at the beginning and end of the different feedback treatments from each group. The results indicated that the feedback modes on pre-service teachers’ teaching practice could influence their beliefs about teaching. Peer feedback had a potential to change the teachers’ beliefs through critical reflection skills that were fostered as a result of collaboration within the peer group.

  6. ALMA HCN and HCO+ J=3-2 observations of optical Seyfert and luminous infrared galaxies -- Confirmation of elevated HCN-to-HCO+ flux ratios in AGNs --

    CERN Document Server

    Imanishi, Masatoshi; Izumi, Takuma

    2016-01-01

    We present the results of our ALMA observations of three AGN-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO+ J=3-2 emission lines. The HCN and HCO+ J=3-2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited (v2=1f) HCN J=3-2 and HCO+ J=3-2 emission lines are simultaneously covered, and HCN v2=1f J=3-2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491-1808, neither of which show clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 um photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrational...

  7. Theory of winds in AGNs

    OpenAIRE

    Proga, Daniel

    2007-01-01

    I present a brief review of theory of winds in active galactic nuclei (AGN). Magnetic, radiation, and thermal driving likely operate in AGN. In many cases, it is difficult to distinguish, both from observational and theoretical point of view, which of these wind driving mechanisms dominates in producing winds. Therefore, I focus on specific theoretical predictions which could help to improve our understanding of the physics of AGN winds.

  8. Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of ~1e5 years

    CERN Document Server

    Schawinski, Kevin; Berney, Simon; Sartori, Lia

    2015-01-01

    We present an observational constraint for the typical active galactic nucleus (AGN) phase lifetime. The argument is based on the time lag between an AGN central engine switching on and becoming visible in X-rays, and the time the AGN then requires to photoionize a large fraction of the host galaxy. Based on the typical light travel time across massive galaxies, and the observed fraction of X-ray selected AGN without AGN-photoionized narrow lines, we estimate that the AGN phase typically lasts $\\sim10^{5}$ years. This lifetime is short compared to the total growth time of $10^{7}-10^{9}$ years estimated from e.g. the Soltan argument and implies that black holes grow via many such short bursts and that AGN therefore "flicker" on and off. We discuss some consequences of this flickering behavior for AGN feedback and the analogy of X-ray binaries and AGN lifecycles.

  9. A study of a sample of high rotation-measure AGNs through multifrequency single-dish observations

    Science.gov (United States)

    Pasetto, Alice; Kraus, Alex; Mack, Karl-Heinz; Bruni, Gabriele; Carrasco-González, Carlos

    2016-02-01

    Context. We characterised and studied, in the radio band, a sample of candidates for high rotation measure (RM). These point-like objects show a strong depolarisation at 21 cm. This feature suggests the presence of a very dense medium surrounding them combined with a strong magnetic field. Aims: This work aims at selecting and studying a sample of radio sources with high RM, thus studying their physical conditions and their status with respect to their surrounding medium. We want to understand whether any connection is present between the AGN-hosting galaxy medium with some evolutionary track and/or some restarting phase of the AGN itself. Methods: Multifrequency single-dish observations were performed with the 100-m Effelsberg telescope to define the initial sample, to characterise the spectral energy distribution (SED) of the final sample (30 targets), and to determine their RM in the 11 to 2 cm wavelength range. Results: From the observations, the SED and the polarisation information, i.e. the fractional polarisation and the polarisation angle, have been determined. Three different object types were revealed from the SED analysis: older, GPS-like, and mixed. For each of the targets, the rotation measure was found and the depolarisation modelled. No significant correlation is found between the depolarisation behaviours and the SEDs, while a correlation is found between sources with mixed SED (with an old component at low frequency and compact components at high frequencies) and high values of the rotation measure (with values in the rest frame greater than 1000 rad/m2). Conclusions: This work helps us to define and identify a sample of sources with high RM. From the analysis we can conclude that the sources showing a restarting phase at high frequency (with a mixed SED) are characterised by a really dense and/or a magnetised medium that strongly rotates the polarisation angle at the different frequencies, leading to a high RM.

  10. Extreme AGN Feedback and Cool Core Destruction in the X-ray Luminous Galaxy Cluster MACS J1931.8-2634

    CERN Document Server

    Ehlert, Steven; von der Linden, Anja; Simionescu, Aurora; Werner, Norbert; Taylor, Greg; Gentile, Gianfranco; Allen, Mark T; Applegate, Douglas; Dunn, Robert; Fabian, Andy; Kelly, Patrick; Million, Evan; Morris, R Glenn; Sanders, Jeremy; Schmidt, Robert

    2010-01-01

    We report on a deep, multiwavelength study of the galaxy cluster \\MACS \\ using \\cha \\ X-ray, \\sub \\ optical, and \\vla \\ 1.4 GHz radio data. This cluster ($z=0.352$) harbors one of the most X-ray luminous cool cores yet discovered, with an equivalent mass cooling rate within the central $50\\h70^{-1} \\kpc$ \\ is $\\sim$700 \\msolaryr. Unique features observed in the central core of \\MACS \\ hint to a wealth of past activity that has greatly disrupted the original cool core. We observe a spiral of relatively cool, dense, X-ray emitting gas connected to the cool core, as well as highly elongated intracluster light (ICL) surrounding the cD galaxy. Extended radio emission is observed surrounding the central AGN, elongated in the east-west direction, spatially coincident with X-ray cavities. The power input required to inflate these `bubbles' is estimated from both the X-ray and radio emission to reside between $\\mysub{P}{jet} \\sim$4 -- 14 $\\times 10^{45}$ \\ergs, putting it among the most powerful jets ever observed. Th...

  11. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    Science.gov (United States)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  12. The Jet/Disk Connection in AGN: Chandra and XMM-Newton Observations of Three Powerful Radio-Loud Quasars

    Science.gov (United States)

    Sambruna, Rita; Gliozzi, Mario; Tavecchio, F.; Maraschi, L.; Foschini, Luigi

    2007-01-01

    The connection between the accretion process that powers AGN and the formation of jets is still poorly understood. Here we tackle this issue using new, deep Chandra and XMM-Newton observations of tlie cores of three powerful radio loud quasars: 1136-135, 1150+497 (Chandra), and 0723+679 (XMM-Newton), in the redshift range z=0.3-0.8. These sources are known from our previous Chandra siiapsliot survey to liave kpc-scale X-ray jets. In 1136-135 and 1150-1+497; evidence is found for the presence of diffuse thermal X-ray emission around the cores; on scales of 40-50 kpc and with luminosity L(sub 0.3-2 kev approx. 10(sup 43) erg per second, suggesting thermal emission from the host galaxy or a galaxy group. The X-ray continua of the cores in the three sources are described by an upward-curved (concave) broken power law, with photon indices GAMMA (sub soft) approx. 1.8 - 2.1 and GAMMA (sub hard) approx. 1.7 below and above approx. equal to 2 keV, respectively. There is evidence for an uiiresolved Fe K alpha line with EW approx. 70 eV in the three quasars. The Spectral Energy Distributions of the sources can be well described by a mix of jet and disk emission, with the jet dominating the radio and hard X-rays (via synchrotron and external Compton) and the disk dominating the optical/UV through soft X-rays. The ratio of the jet-to-disk powers is approx. 1, consistent with those derived for a number of gamma ray emitting blazars. This indicates that near equality of accretion and jet power may be common in powerful radio-loud AGN.

  13. Fossil Galaxy Groups -- Ideal Laboratories for Studying the Effects of AGN Heating

    CERN Document Server

    Jetha, Nazirah N; Raychaudhury, Somak; Sengupta, Chandreyee; Hardcastle, Martin

    2009-01-01

    We present the first of a sample of fossil galaxy groups with pre-existing Chandra and/or XMM-Newton X-ray observations and new or forthcoming low frequency GMRT data -- RXJ1416.4+2315 (z=0.137). Fossil galaxy groups are ideal laboratories for studying feedback mechanisms and how energy injection affects the IGM, since due to the lack of recent merging activity, we expect the IGM to be relatively pristine and affected only by any AGN activity that has occurred in the group. Our Chandra X-ray observations reveal features resembling AGN-inflated bubbles, whilst our GMRT radio data show evidence of extended emission from the central AGN that may be filling the bubble. This has enabled us to estimate the work done by the central AGN, place limits on the rates of energy injection and discuss the nature of the plasma filling the bubble.

  14. ICM cooling, AGN feedback and BCG properties of galaxy groups-Five properties where groups differ from clusters

    CERN Document Server

    Bharadwaj, V; Schellenberger, G; Eckmiller, H J; Mittal, R; Israel, H

    2014-01-01

    Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC) and non-cool-core (NCC) based on their CCTs. The total radio luminosity of the brightest cluster galaxy (BCG) was obtained using radio catalog data and literature, which was compared to the CCT to understand the link between gas cooling and radio output. We determined K-band luminosities of the BCG with 2MASS data, and used it to constrain the masses of the SMBH, which were then compared to the radio output. We also tested for correlations between the BCG luminosity and the overall X-ray luminosity and mass of the group. The observed cool-core/non-cool-core fractions for groups are comparable to those of clusters. However, notable differences are seen. For clusters, all SCCs have a central temperature drop, but for groups, this is not the case as some SCCs have centrally rising temperature profiles. While for the cluster sampl...

  15. Hubble Space Telescope Wide Field Camera 3 Observations of Escaping Lyman Continuum Radiation from Galaxies and Weak AGN at Redshifts z~2.3--5

    CERN Document Server

    Smith, Brent M; Jansen, Rolf A; Cohen, Seth H; Jiang, Linhua; Dijkstra, Mark; Koekemoer, Anton M; Bielby, Richard; Inoue, Akio K; MacKenty, John W; O'Connell, Robert W; Silk, Joseph I

    2016-01-01

    We present observations of escaping Lyman Continuum (LyC) radiation from 50 massive star-forming galaxies and 14 weak AGN with reliable spectroscopic redshifts at z~2.3--5.8. We analyzed HST WFC3/UVIS mosaics of the ERS field in three UV filters, and ACS B in the GOODS-South field to sample the rest-frame LyC over these redshifts. The average LyC emission of galaxies at z_mean=2.38, 2.68, 3.47, and 5.02 is detected at the >=3sigma level in image stacks of 11--15 galaxies in the WFC3/UVIS F225W, F275W, F336W, and ACS/WFC F435W filters. Their average LyC flux corresponds to AB~29.5--30.7 mag. The LyC flux of weak AGN is typically ~1 mag brighter at z~2.3--4.8, but averaged over ~4x fewer galaxies. The stacked galaxy LyC profiles are flatter than their non-ionizing UV-continuum profiles out to r~0".7, possibly indicating a radial porosity dependence in the ISM. The average LyC emission from AGN is more extended and sometimes more elongated compared to galaxies without AGN, possibly due to the viewing-angle at wh...

  16. X-ray observations of highly obscured 9.7 micron sources: an efficient method for selecting Compton-thick AGN ?

    CERN Document Server

    Georgantopoulos, I; Rovilos, E; Pope, A; Wu, Y; Dickinson, M; Comastri, A; Gilli, R; Elbaz, D; Armus, L; Akylas, A

    2011-01-01

    Spitzer/IRS has revealed many sources with very deep Si features at 9.7micron (tau>1). We set out to investigate whether a strong Si absorption feature is a good indicator for the presence of a heavily obscured AGN. We compile X-ray spectroscopic observations available in the literature on the optically-thick,tau(9.7)>1 sources from the IRAS Seyfert sample. We find that the majority of the high-tau optically confirmed Seyferts (6/9) in this sample are probably CT. Thus we provide direct evidence for a connection between mid-IR optically-thick galaxies and CT AGN, with the success rate being close to 70% in the local Universe. This is at least comparable, if not better, than other rates obtained with photometric information in the mid to far-IR, or even mid-IR to Xray. However, this technique cannot provide complete CT AGN samples,ie there are many CT AGN which do not show significant Si absorption, with the most notable example being N1068. Having assessed the validity of the high 9.7micron technique locally,...

  17. The connection between AGN-driven dusty outflows and the surrounding environment

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.

    2016-04-01

    Significant reservoirs of cool gas are observed in the circumgalactic medium (CGM) surrounding galaxies. The CGM is also found to contain substantial amounts of metals and dust, which require some transport mechanism. We consider AGN (active galactic nucleus) feedback-driven outflows based on radiation pressure on dust. Dusty gas is ejected when the central luminosity exceeds the effective Eddington luminosity for dust. We obtain that a higher dust-to-gas ratio leads to a lower critical luminosity, implying that the more dusty gas is more easily expelled. Dusty outflows can reach large radii with a range of velocities (depending on the outflowing shell configuration and the ambient density distribution) and may account for the observed CGM gas. In our picture, dust is required in order to drive AGN feedback, and the preferential expulsion of dusty gas in the outflows may naturally explain the presence of dust in the CGM. On the other hand, the most powerful AGN outflow events can potentially drive gas out of the local galaxy group. We further discuss the effects of radiation pressure of the central AGN on satellite galaxies. AGN radiative feedback may therefore have a significant impact on the evolution of the whole surrounding environment.

  18. Bidirectional feedback observed between a magmatic intrusion and shallow earthquake

    Science.gov (United States)

    Ebmeier, Susanna; Elliott, John; Nocquet, Jean-Mathieu; Biggs, Juliet; Mothes, Patricia; Jarrín, Paúl; Yépez, Marco; Aguaiza, Santiago; Lundgren, Paul; Samsonov, Sergey

    2016-04-01

    Moderate volcano-tectonic earthquakes (M 5-6) during volcanic unrest are unusual, and tend to be associated with major stress perturbations to the crust, occurring during episodes of rifting or the onset of volcanic eruptions. The feedback from such events may be positive, easing magma ascent and eruption, or, as we demonstrate here, negative, hindering any further magma movement. We present measurements of deformation at Chiles-Cerro Negro volcanoes on the Ecuador-Colombian border. There was previously no record of historical activity at either volcano, but between 2013 and early 2015 there were three episodes of unrest characterised by swarms of volcano-tectonic earthquakes of increasing energy and duration and thought to be associated with the hydrothermal system. In October 2014, magmatic processes not only caused many thousands of small earthquakes per day, but culminated in a Mw 5.6 earthquake located on a system of active tectonic faults that last ruptured in 1868. We find that inflation of a mid-crustal magmatic source ~10 km south of the volcanoes ceased abruptly at the time of the earthquake, after which time the rate of seismicity also began a gradual decline. The Chiles-Cerro Negro unrest is therefore an interesting example of magma ascent triggering a moderate earthquake on a tectonic fault and subsequently being inhibited by co-seismic stress changes. This is an important observation for the interpretation of moderate earthquakes during volcanic unrest in terms of evolving hazard.

  19. Dissociation between active and observational learning from positive and negative feedback in Parkinsonism.

    Directory of Open Access Journals (Sweden)

    Stefan Kobza

    Full Text Available Feedback to both actively performed and observed behaviour allows adaptation of future actions. Positive feedback leads to increased activity of dopamine neurons in the substantia nigra, whereas dopamine neuron activity is decreased following negative feedback. Dopamine level reduction in unmedicated Parkinson's Disease patients has been shown to lead to a negative learning bias, i.e. enhanced learning from negative feedback. Recent findings suggest that the neural mechanisms of active and observational learning from feedback might differ, with the striatum playing a less prominent role in observational learning. Therefore, it was hypothesized that unmedicated Parkinson's Disease patients would show a negative learning bias only in active but not in observational learning. In a between-group design, 19 Parkinson's Disease patients and 40 healthy controls engaged in either an active or an observational probabilistic feedback-learning task. For both tasks, transfer phases aimed to assess the bias to learn better from positive or negative feedback. As expected, actively learning patients showed a negative learning bias, whereas controls learned better from positive feedback. In contrast, no difference between patients and controls emerged for observational learning, with both groups showing better learning from positive feedback. These findings add to neural models of reinforcement-learning by suggesting that dopamine-modulated input to the striatum plays a minor role in observational learning from feedback. Future research will have to elucidate the specific neural underpinnings of observational learning.

  20. Revealing the heavily obscured AGN population of High Redshift 3CRR Sources with Chandra X-ray Observations

    CERN Document Server

    Wilkes, Belinda J; Haas, Martin; Barthel, Peter; Leipski, Christian; Willner, S P; Worrall, D M; Birkinshaw, Mark; Antonucci, Robert; Ashby, M L N; Chini, Rolf; Fazio, G G; Lawrence, Charles; Ogle, Patrick; Schulz, Bernhard

    2013-01-01

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (10) indicating obscuration (log N_H ~ 22-24 cm^-2). These properties and the correlation between obscuration and radio core-fraction are consistent with orientation-dependent obscuration as in Unification models. About half the NLRGs have soft X-ray hardness ratios and/or high [OIII] emission line to X-ray luminosity ratio suggesting obscuration by Compton thick (CT) material so that scattered nuclear or extended X-ray emission dominates (as in NGC1068). The ratios of unobscured to Compton-thin (10^{22} 1.5 x 10^{24} cm^-2) is 2.5:1.4:1 in this high luminosity, radio-selected sample. The obscured fraction is 0.5, higher than is typically reported for AGN at comparable luminosities from multi-wavelength surveys (0.1-0.3). Assuming random nuclear orientation, the unobscured half-opening angle of the disk/wind/torus structure is ~ 60deg and the obscuring material covers 30deg of which ~ 12deg is Compton thick. The multi-wavelength prope...

  1. Circular polarisation in AGN

    NARCIS (Netherlands)

    Macquart, JP

    2002-01-01

    We discuss the constraints that recent observations place on circular polarisation in AGN. In many sources the circular polarisation is variable on short timescales, indicating that it originates in compact regions of the sources. The best prospects for gleaning further information about circular po

  2. Fast cold gas in hot AGN outflows

    CERN Document Server

    Costa, Tiago; Haehnelt, Martin

    2014-01-01

    Observations of the emission from spatially extended cold gas around bright high-redshift QSOs reveal surprisingly large velocity widths exceeding 2000 km s^(-1), out to projected distances as large as 30 kpc. The high velocity widths have been interpreted as the signature of powerful AGN-driven outflows. Naively, these findings appear in tension with hydrodynamic models in which AGN-driven outflows are energy-driven and thus very hot with typical temperatures T = 10^6-7 K. Using the moving-mesh code Arepo, we perform 'zoom-in' cosmological simulations of a z = 6 QSO and its environment, following black hole growth and feedback via energy-driven outflows. In the simulations, the QSO host galaxy is surrounded by a clumpy circum-galactic medium pre-enriched with metals due to supernovae-driven galactic outflows. As a result, part of the AGN-driven hot outflowing gas can cool radiatively, leading to large amounts (> 10^9 M_sun) of cold gas comoving with the hot bipolar outflow. This results in velocity widths of...

  3. Ionized Absorbers in AGN

    Science.gov (United States)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  4. HST-COS observations of AGNs. II. Extended survey of ultraviolet composite spectra from 159 active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Stevans, Matthew L. [Present address: Astronomy Department, University of Texas, Austin, TX 78712, USA. (United States); Shull, J. Michael [Also at Institute of Astronomy, Cambridge University, Cambridge CB3 OHA, UK. (United Kingdom); Danforth, Charles W.; Tilton, Evan M., E-mail: stevans@astro.as.utexas.edu, E-mail: michael.shull@colorado.edu, E-mail: charles.danforth@colorado.edu, E-mail: evan.tilton@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2014-10-10

    The ionizing fluxes from quasars and other active galactic nuclei (AGNs) are critical for interpreting their emission-line spectra and for photoionizing and heating the intergalactic medium. Using far-ultraviolet (FUV) spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we directly measure the rest-frame ionizing continua and emission lines for 159 AGNs at redshifts 0.001 < z {sub AGN} < 1.476 and construct a composite spectrum from 475 to 1875 Å. We identify the underlying AGN continuum and strong extreme ultraviolet (EUV) emission lines from ions of oxygen, neon, and nitrogen after masking out absorption lines from the H I Lyα forest, 7 Lyman-limit systems (N{sub H} {sub I}≥10{sup 17.2} cm{sup –2}) and 214 partial Lyman-limit systems (14.5AGNs exhibit a wide range of FUV/EUV spectral shapes, F{sub ν}∝ν{sup α{sub ν}}, typically with –2 ≤ α{sub ν} ≤ 0 and no discernible continuum edges at 912 Å (H I) or 504 Å (He I). The composite rest-frame continuum shows a gradual break at λ{sub br} ≈ 1000 Å, with mean spectral index α{sub ν} = –0.83 ± 0.09 in the FUV (1200-2000 Å) steepening to α{sub ν} = –1.41 ± 0.15 in the EUV (500-1000 Å). We discuss the implications of the UV flux turnovers and lack of continuum edges for the structure of accretion disks, AGN mass inflow rates, and luminosities relative to Eddington values.

  5. Multi-wavelength observations of H.E.S.S. AGN

    CERN Document Server

    Tluczykont, Martin

    2012-01-01

    Multi-frequency observations are a powerful tool of astrophysical investigation. Not only is data in each wavelength band providing different clues to the objects nature, but taken simultaneously, these data can reveal the mechanisms at work in astrophysical objects. In the past years, joint multi-frequency observations with the H.E.S.S. telescopes in the very high energy (VHE, E>100GeV) band and several other experiments in the radio, optical, X-ray, and high energy (HE, E>100MeV) bands have lead to intriguing results that will ultimately help answering the open questions of the location of the very high energy emission, details of the acceleration mechanism, and the role of the central black hole.

  6. Powerful Outflows and Feedback from Active Galactic Nuclei

    CERN Document Server

    King, Andrew

    2015-01-01

    Active Galactic Nuclei (AGN) represent the growth phases of the supermassive black holes in the center of almost every galaxy. Powerful, highly ionized winds, with velocities $\\sim 0.1- 0.2c$ are a common feature in X--ray spectra of luminous AGN, offering a plausible physical origin for the well known connections between the hole and properties of its host. Observability constraints suggest that the winds must be episodic, and detectable only for a few percent of their lifetimes. The most powerful wind feedback, establishing the $M -\\sigma$ relation, is probably not directly observable at all. The $M - \\sigma$ relation signals a global change in the nature of AGN feedback. At black hole masses below $M-\\sigma$ feedback is confined to the immediate vicinity of the hole. At the $M-\\sigma$ mass it becomes much more energetic and widespread, and can drive away much of the bulge gas as a fast molecular outflow.

  7. DIAGNOSTICS OF AGN-DRIVEN MOLECULAR OUTFLOWS IN ULIRGs FROM HERSCHEL-PACS OBSERVATIONS OF OH AT 119 μm

    Energy Technology Data Exchange (ETDEWEB)

    Spoon, H. W. W.; Lebouteiller, V. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); González-Alfonso, E. [Departamento de Física y Matemáticas, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Bernard-Salas, J. [Department of Physical Sciences, Milton Keynes MK7 6AA (United Kingdom); Urrutia, T. [Leibniz Institut für Astrophysik, Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Rigopoulou, D.; Verma, A. [Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Westmoquette, M. S. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Afonso, J. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Pearson, C. [RAL Space, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Cormier, D. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Borys, C. [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Etxaluze, M. [Departamento de Astrofísica. Centro de Astrobiología. CSIC-INTA. Torrejón de Ardoz, E-28850 Madrid (Spain); Clements, D. L., E-mail: spoon@isc.astro.cornell.edu [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2013-10-01

    We report on our observations of the 79 and 119 μm doublet transitions of OH for 24 local (z < 0.262) ULIRGs observed with Herschel-PACS as part of the Herschel ULIRG Survey (HERUS). Some OH 119 μm profiles display a clear P-Cygni shape and therefore imply outflowing OH gas, while other profiles are predominantly in absorption or are completely in emission. We find that the relative strength of the OH emission component decreases as the silicate absorption increases. This result locates the OH outflows inside the obscured nuclei. The maximum outflow velocities for our sources range from less than 100 to ∼2000 km s{sup –1}, with 15/24 (10/24) sources showing OH absorption at velocities exceeding 700 km s{sup –1} (1000 km s{sup –1}). Three sources show maximum OH outflow velocities exceeding that of Mrk231. Since outflow velocities above 500-700 km s{sup –1} are thought to require an active galactic nucleus (AGN) to drive them, about two-thirds of our ULIRG sample may host AGN-driven molecular outflows. This finding is supported by the correlation we find between the maximum OH outflow velocity and the IR-derived bolometric AGN luminosity. No such correlation is found with the IR-derived star formation rate. The highest outflow velocities are found among sources that are still deeply embedded. We speculate that the molecular outflows in these sources may be in an early phase of disrupting the nuclear dust veil before these sources evolve into less-obscured AGNs. Four of our sources show high-velocity wings in their [C II] fine-structure line profiles, implying neutral gas outflow masses of at least (2-4.5) × 10{sup 8} M{sub ☉}.

  8. The radio luminosity function and redshift evolution of radio-mode and quasar-mode AGN

    Science.gov (United States)

    Pracy, Mike

    2016-08-01

    The properties of the AGN population indicate that there are two fundamentally different accretion modes operating. In the quasar-mode, material is accreted onto the supermassive black hole via a small, thin, optically luminous accretion disc. Accretion in this mode is recognisable by emission lines in the optical spectrum. However, there is a population of AGN observable only by their radio emission and without optical emission lines. These radio-mode AGN are likely powered by radiatively inefficient accretion from a hot gas halo. I will describe the cosmic evolution of these two populations via radio luminosity functions. The radio luminosity functions are constructed from a new survey of over 4000 radio galaxies out to z=1, all with confirmed redshifts and their accretion mode classified from their optical spectra. This is 20 times larger than the only other survey used to make such a measurement. The radio-mode AGN population displays no statistically significant evolution in space density out to redshift z=1. In contrast the quasar mode AGN exhibits rapid evolution in space density, increasing by a factor of 8 over the same redshift range. The characteristic break in the radio luminosity function occurs at a significantly higher power for the quasar-mode AGN in comparison to the radio-mode AGN and we demonstrate this is consistent with the two populations representing fundamentally different accretion modes. The radio luminosity function is used to estimate the total amount of mechanical energy available for radio mode feedback as a function of redshift, and is found to be in good agreement with cosmological models and previous measurements. Again, by separating by accretion mode, the previously estimated increase in available mechanical energy per unit volume out to z=1 (approximately a factor of 2) can be attributed to the rapid evolution of the quasar-mode AGN, while for the classical radio-mode AGN the total mechanical energy output remains roughly

  9. HST-COS Observations of AGN. II. Extended Survey of Ultraviolet Composite Spectra from 159 Active Galactic Nuclei

    CERN Document Server

    Stevans, Matthew L; Danforth, Charles W; Tilton, Evan M

    2014-01-01

    The ionizing fluxes from quasars and other active galactic nuclei (AGN) are critical for interpreting their emission-line spectra and for photoionizing and heating the intergalactic medium (IGM). Using far-ultraviolet spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we directly measure the rest-frame ionizing continua and emission lines for 159 AGN at redshifts 0.001 10^17.2 cm^-2) and 214 partial Lyman-limit systems (15.0 < log N_HI < 17.2). The 159 AGN exhibit a wide range of FUV/EUV spectral shapes, F_nu \\propto nu^(alpha_nu), typically with -2 < alpha_nu < 0 and no discernible continuum edges at 912A (H I) or 504A (He I). The composite rest-frame continuum shows a gradual break at 1000 A, with mean spectral index alpha_nu = -0.83 +/- 0.09 in the FUV (1200-2000A) steepening to alpha_nu = -1.41 +/- 0.15 in the EUV (500-1000A). We discuss the implications of the UV flux turnovers and lack of continuum edges for the structure of accretion disks, AGN mass inf...

  10. Herschel Observed Stripe 82 Quasars and Their Host Galaxies: Connections between AGN Activity and host Galaxy Star Formation

    Science.gov (United States)

    Dong, X. Y.; Wu, Xue-Bing

    2016-06-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s-1. The redshift range of this sample is within z luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M ⊙ yr-1 and the mean gas mass is ˜1011.3 M ⊙. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where {L}{{FIR}}\\propto {L}{{Bol}}0.46+/- 0.03. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between L FIR and L Bol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The M BH/M * ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the M BH-M * scaling relation.

  11. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: Tracing the evolution of AGN feedback in clusters of galaxies out to z=1.2

    CERN Document Server

    Hlavacek-Larrondo, J; Benson, B A; Forman, W R; Allen, S W; Bleem, L E; Ashby, M L N; Bocquet, S; Brodwin, M; Dietrich, J P; Jones, C; Liu, J; Saliwanchik, B R; Saro, A; Schrabback, T; Song, J; Stalder, B; Vikhlinin, A; Zenteno, A

    2014-01-01

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGN) in brightest cluster galaxies. We report on a survey for X-ray cavities in 83 massive, high-redshift (0.40.5) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in brightest cluster galaxies has remained unchanged for over half of the age of the Universe (>7 Gyrs at z=0.8). On average, the detected X-ray cavities have powers of 0.8-5*10^45 erg/s, enthalpies of 3-6*10^59 erg, and radii of 17 kpc. Integrating over 7 Gyrs, we find that the supermassive black holes in the brightest cluster galaxies may have accreted 10^8 to several 10^9M_sun of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high-redshift may inject an excess heat of 0.1-1.0 keV per particle into the hot i...

  12. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  13. A method for determining AGN accretion phase in field galaxies

    Science.gov (United States)

    Micic, Miroslav; Martinović, Nemanja; Sinha, Manodeep

    2016-09-01

    Recent observations of active galactic nucleus (AGN) activity in massive galaxies (log M*/ M⊙ > 10.4) show the following: (1) at z AGN-hosting galaxies do not show enhanced merger signatures compared with normal galaxies, (2) also at z AGNs are hosted by quiescent galaxies and (3) at z > 1, the percentage of AGNs in star-forming galaxies increases and becomes comparable to the AGN percentage in quiescent galaxies at z ˜ 2. How can major mergers explain AGN activity in massive quiescent galaxies that have no merger features and no star formation to indicate a recent galaxy merger? By matching merger events in a cosmological N-body simulation to the observed AGN incidence probability in the COSMOS survey, we show that major merger-triggered AGN activity is consistent with the observations. By distinguishing between `peak' AGNs (recently merger-triggered and hosted by star-forming galaxies) and `faded' AGNs (merger-triggered a long time ago and now residing in quiescent galaxies), we show that the AGN occupation fraction in star-forming and quiescent galaxies simply follows the evolution of the galaxy merger rate. Since the galaxy merger rate drops dramatically at z AGNs left to be observed are the ones triggered by old mergers that are now in the declining phase of their nuclear activity, hosted by quiescent galaxies. As we go towards higher redshifts, the galaxy merger rate increases and the percentages of `peak' AGNs and `faded' AGNs become comparable.

  14. Extended X-ray emission in the IC 2497 - Hanny's Voorwerp system: energy injection in the gas around a fading AGN

    Science.gov (United States)

    Sartori, Lia F.; Schawinski, Kevin; Koss, Michael; Treister, Ezequiel; Maksym, W. Peter; Keel, William C.; Urry, C. Megan; Lintott, Chris J.; Wong, O. Ivy

    2016-04-01

    We present deep Chandra X-ray observations of the core of IC 2497, the galaxy associated with Hanny's Voorwerp and hosting a fading AGN. We find extended soft X-ray emission from hot gas around the low intrinsic luminosity (unobscured) AGN (Lbol ˜ 1042-1044 erg s-1). The temperature structure in the hot gas suggests the presence of a bubble or cavity around the fading AGN ({{E}}_bub ˜ 10^{54}{-}10^{55} erg). A possible scenario is that this bubble is inflated by the fading AGN, which after changing accretion state is now in a kinetic mode. Other possibilities are that the bubble has been inflated by the past luminous quasar (Lbol ˜ 1046 erg s-1), or that the temperature gradient is an indication of a shock front from a superwind driven by the AGN. We discuss the possible scenarios and the implications for the AGN-host galaxy interaction, as well as an analogy between AGN and X-ray binaries lifecycles. We conclude that the AGN could inject mechanical energy into the host galaxy at the end of its lifecycle, and thus provide a source for mechanical feedback, in a similar way as observed for X-ray binaries.

  15. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  16. The Horizon-AGN simulation: evolution of galaxy properties over cosmic time

    CERN Document Server

    Kaviraj, S; Kimm, T; Devriendt, J E G; Dubois, Y; Pichon, C; Slyz, A; Chisari, E; Peirani, S

    2016-01-01

    We compare the predictions of Horizon-AGN, a hydro-dynamical cosmological simulation that uses an adaptive mesh refinement code, to observational data in the redshift range 0AGN, which is not tuned to reproduce the local Universe, produces good overall agreement with these quantities, from the present day to the epoch when the Universe was 5% of its current age. By comparison to Horizon-noAGN, a twin simulation without AGN feedback, we quantify how feedback from black holes is likely to help shape galaxy stellar-mass growth in the redshift range 0AGN successfully captures the evolutionary trends of ob...

  17. Balancing Feedback and Inquiry: How Novice Observers (Supervisors) Learn from Inquiry into Their Own Practice

    Science.gov (United States)

    Kilbourn, Brent; Keating, Catherine; Murray, Karen; Ross, Irene

    2005-01-01

    Giving constructive feedback to a teacher is a complex process. This article addresses the difficulty of giving feedback by discussing three different cases, each of which illustrates a dimension of the complexity of learning the process. It argues that an attitude of inquiry increases the likelihood that a novice observer (supervisor) will become…

  18. Absorbing Outflows in AGN

    Science.gov (United States)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  19. Stellar processes near AGN

    CERN Document Server

    Nayakshin, S

    2007-01-01

    Precise mechanisms by which Active Galactic Nuclei (AGN) receive their gaseous fuel is still a mystery. Here I draw attention to the extra ordinary star formation event that took place in the central ~ 0.5 parsec of our Galaxy. The most reliable explanation of the event seems to be that two somewhat massive nearly co-eval gaseous disks failed to accrete on Sgr A*, the super-massive black hole (SMBH) in our Galaxy, and instead cooled down and gravitationally collapsed, forming the stars observed now. This emphasises that star formation must be an important part of AGN feeding puzzle. I also discuss a model in which stellar winds create the observed obscuration of AGN. These winds are cold, clumpy and dusty, as required by the observations, but they are Compton-thin unless wind outflow rate is highly super-Eddington. This argument is in fact a general one, independent of the wind driving mechanism. I thus suggest that winds may be important for optically thin absorbers, and that a better model for optically thi...

  20. The First INTEGRAL AGN Catalog

    CERN Document Server

    Beckmann, V; Shrader, C R; Soldi, S

    2006-01-01

    We present the first INTEGRAL AGN catalog, based on observations performed from launch of the mission in October 2002 until January 2004. The catalog includes 42 AGN, of which 10 are Seyfert 1, 17 are Seyfert 2, and 9 are intermediate Seyfert 1.5. The fraction of blazars is rather small with 5 detected objects, and only one galaxy cluster and no star-burst galaxies have been detected so far. A complete subset consists of 32 AGN with a significance limit of 7 sigma in the INTEGRAL/ISGRI 20-40 keV data. Although the sample is not flux limited, the distribution of sources shows a ratio of obscured to unobscured AGN of 1.5 - 2.0, consistent with luminosity dependent unified models for AGN. Only four Compton-thick AGN are found in the sample. Based on the INTEGRAL data presented here, the Seyfert 2 spectra are slightly harder (Gamma = 1.95 +- 0.01) than Seyfert 1.5 (Gamma = 2.10 +- 0.02) and Seyfert 1 (Gamma = 2.11 +- 0.05).

  1. AGN-stimulated Cooling of Hot Gas in Elliptical Galaxies

    CERN Document Server

    Valentini, Milena

    2015-01-01

    We study the impact of relatively weak AGN feedback on the interstellar medium of intermediate and massive elliptical galaxies. We find that the AGN activity, while globally heating the ISM, naturally stimulates some degree of hot gas cooling on scales of several kpc. This process generates the persistent presence of a cold ISM phase, with mass ranging between 10$^4$ and $\\gtrsim$ 5 $\\times$ 10$^7$ M$_\\odot$, where the latter value is appropriate for group centered, massive galaxies. Widespread cooling occurs where the ratio of cooling to free-fall time before the activation of the AGN feedback satisfies $t_{cool}/t_{ff} \\lesssim 70$, that is we find a less restrictive threshold than commonly quoted in the literature. This process helps explaining the body of observations of cold gas (both ionized and neutral/molecular) in Ellipticals and, perhaps, the residual star formation detected in many early-type galaxies. The amount and distribution of the off-center cold gas vary irregularly with time. The cold ISM v...

  2. A window on stochastic processes and gamma-ray cosmology through spectral and temporal studies of AGN observed with H.E.S.S

    International Nuclear Information System (INIS)

    Fifty years after the discovery that quasars are extragalactic sources, their bright cores (AGN) and the jets that some of them exhibit still have plenty of secrets to share, particularly through observations in the gamma-ray band. Above 100 GeV, Cherenkov telescopes such as H.E.S.S. have detected 50 AGN, mostly blazars, objects whose jets are pointed toward the observer. The detection of two faint ones, 1ES 1312-423 and SHBL J001355.9-185406, is described in this thesis. Their multiwavelength spectra are reproduced with a synchrotron self-Compton model. The γ rays emitted by blazars are partly absorbed by the extragalactic background light (EBL), the second most intense cosmological background, which carries the integrated history of star formation. The first detection of this absorption above 100 GeV is performed, enabling the measurement of the EBL peak-amplitude in the optical band at the 20% level. In addition to these spectral studies, the fast flux-variations of blazars are investigated using the outbursts of PKS 2155-304 seen by H.E.S.S.. The observation of a skewed flux distribution and of an R.M.S.-flux correlation are interpreted within a kinematic model, where the emission is a realization of a stochastic process. (author)

  3. Role of AGNs in the Ultra-Luminous Infrared Galaxy phase since z ~ 3

    CERN Document Server

    Lin, Ming-Yi; Hashimoto, Yasuhiro

    2013-01-01

    In order to understand the mutual influence between active galactic nuclei (AGN) and star formation during the evolution of galaxies, we investigate 142 galaxies detected in both X-ray and 70{\\mu}m observations in the COSMOS (Cosmic Evolution Survey) field. All of our data are obtained from archive, X-ray point source catalogs from Chandra and XMM-Newton observation; far-infrared 70{\\mu}m point source catalog from Spitzer-MIPS observation. Although the IRAC colors of our samples indicate the existence of star formation, the ratio of rest frame 2-10 keV luminosity to total infrared luminosity (8-1000{\\mu}m) shows that AGN predominates the spectral energy distribution (SED). We identify obscured AGN in these 70{\\mu}m luminous galaxies as characterized by a larger hardness ratio. The higher X-ray obscuration fraction indicates an extra contribution from the star formation in the host galaxy in addition to the usual AGN dusty torus. If AGN feedback occurs in their host galaxies, the star formation must be quenche...

  4. AGNs as main contributors to the UV ionizing emissivity at high redshifts: predictions from a Lambda-CDM model with linked AGN/galaxy evolution

    CERN Document Server

    Giallongo, E; Fiore, F; Castellano, M; Fontana, A; Grazian, A; Pentericci, L

    2012-01-01

    We have evaluated the contribution of the AGN population to the ionization history of the Universe based on a semi-analytic model of galaxy formation and evolution in the CDM cosmological scenario. The model connects the growth of black holes and of the ensuing AGN activity to galaxy interactions. In the model we have included a self consistent physical description of the escape of ionizing UV photons; this is based on the blast-wave model for the AGN feedback we developed in a previous paper to explain the distribution of hydrogen column densities in AGNs of various redshifts and luminosities, due to absorption by the host galaxy gas. The model predicts UV luminosity functions for AGNs which are in good agreement with those derived from the observations especially at low and intermediate redshifts (z=3). At higher redshifts (z>5) the model tends to overestimate the data at faint luminosities. Critical biases both in the data and in the model are discussed to explain such apparent discrepancies. The predicted...

  5. Starbursts and AGN Fueling through Secular Evolution

    CERN Document Server

    Combes, F

    2006-01-01

    Except in the most extreme cases of nuclear activity, either starbursts or AGN, it is difficult to find observationnally a close link between the dynamics and the activity. Theoretically however, the necessary step to fuel the gas to the center, is that gravity torques are created through a non-axisymmetric pattern, either bar and/or spiral, triggered or not by a tidal interaction. We describe the sequence of processes for a typical evolution cycle for a spiral galaxy, and the possible efficient feedback mechanisms. The various morphologies and dynamical states of spiral galaxies are interpreted in terms of a sequence of evolutionary phases, and the corresponding time-scales can be estimated from observations. In this scenario, activity in galaxies is related to the appearance of bar instability, although they might not be synchronised in phase. The role of external gas accretion in the secular evolution is discussed.

  6. Quenching the X-ray spectrum of hot halos with AGN outflows and turbulence

    Science.gov (United States)

    Gaspari, M.

    2016-06-01

    I highlight recent advancements in the astrophysics of AGN outflow feedback and diffuse hot gas. Thanks to XMM RGS resolution, we know that the X-ray cores of clusters, groups, and massive galaxies have a strong deficit of soft X-ray emission compared with the classic cooling flow prediction: dL_{x}/dT ∝ (T/T_{hot})^{2±1}. Using 3D hydrodynamic simulations, I show that such deficit arises from the tight self-regulation between thermal instability condensation and AGN outflow feedback. Multiphase filaments condense out of the hot plasma, they rain onto the central SMBH, and boost the AGN outflows via chaotic cold accretion. The sub-relativistic outflows thermalize in the core via shocks and turbulence, releasing more heat in the inner cooler phase, thus inducing the observed soft X-ray decline. I discuss how we can leverage XMM capabilities in the next decade by probing turbulence, conduction, AGN accretion and outflows via the information contained in X-ray spectra and surface brightness. I focus on the importance of selecting a few objects with Ms exposure and how we can unveil multiphase halos through the synergy between simulations and multiwavelength observations.

  7. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; /KIPAC, Menlo Park; Alexander, D.M.; /Durham U.; Greiner, J.; /Garching, Max Planck Inst., MPE; Madejski, G.M.; /KIPAC, Menlo Park; Gehrels, N.; /NASA, Goddard; Burlon, D.; /Garching, Max Planck Inst., MPE

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thick AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.

  8. Observer-based output feedback control of discrete-time linear systems with input and output delays

    Science.gov (United States)

    Zhou, Bin

    2014-11-01

    In this paper, we study observer-based output feedback control of discrete-time linear systems with both multiple input and output delays. By generalising our recently developed truncated predictor feedback approach for state feedback stabilisation of discrete-time time-delay systems to the design of observer-based output feedback, two types of observer-based output feedback controllers, one being memory and the other memoryless, are constructed. Both full-order and reduced-order observer-based controllers are established in both the memory and memoryless schemes. It is shown that the separation principle holds for the memory observer-based output feedback controllers, but does not hold for the memoryless ones. We further show that the proposed observer-based output feedback controllers solve both the l2 and l∞ semi-global stabilisation problems. A numerical example is given to illustrate the effectiveness of the proposed approaches.

  9. Observations of feedback between protostars and their natal clouds

    Science.gov (United States)

    Green, Joel D.

    2008-06-01

    different directions on the sky. Weaker shocks (less than ~ 10000 K) excite the molecular hydrogen into various rotational states detectable at IRS wavelengths, while strong shocks completely destroy the molecules and illuminate the ions. The Infrared Spectrograph on board Spitzer has enabled us to gather spatial information on a number of higher excitation species, and place greater constraints on the flows, allowing us to separate them chemically. How does the instability of driving sources of Herbig Haro jets affect their surrounding medium? By studying the pre-and post-shock gas, we can determine whether outflows from young stars have greater clumping or dispersive effects on their environment. Do outflows trigger or suppress star formation in the neighborhood? We present evidence that powerful flows such as HH 168 can unbind a protostar in its early stages of development, opening a ~ 10000 AU cavity of ionized material. And finally, new observations from the IRS open the question: precisely where is the protostar that is driving HH 168? We provide evidence that the source of the HH 168 flow is at the radio source W2, rather than the more distant HW3c.

  10. Observer design and output feedback stabilization for linear singular time-delay systems with unknown inputs

    Institute of Scientific and Technical Information of China (English)

    Peng CUI; Chenghui ZHANG

    2008-01-01

    The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed.The sufficient conditions of the existence of observers,which are normal linear time-delay systems,and the corresponding design steps are presented via linear matrix inequality(LMI).Moreover,the observer-based feedback stabilizing controller is obtained.Three examples are given to show the effectiveness of the proposed methods.

  11. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    CERN Document Server

    Volonteri, Marta; Pichon, Christophe; Devriendt, Julien

    2016-01-01

    We analyze the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted onto BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Yet there seem to be too many BHs with mass~ 1e7 Msun at high redshift, and too few BHs with similar mass at z=0 in intermediate-mass galaxies. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal process are likely to be responsible for this, and for a tight BH-galaxy mass correlation. Starting at z~2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavel...

  12. AGN identification: what lies ahead

    Science.gov (United States)

    Fotopoulou, Sotiria

    2016-08-01

    Classification has been one the first concerns of modern astronomy, starting from stars sorted in the famous Harvard classification system and promptly followed by the morphological classification of galaxies by none other than Edwin Hubble himself (Hubble 1926). Both classification schema are essentially connected to the physics of the objects reflecting the temperature for stars and e.g. the age of the star population for galaxies. Systematic observations of galaxies have revealed the intriguing class of Active Galactic Nuclei (AGN), objects of tremendous radiation that do not share the same properties of what we now call normal galaxies. Observations have led to the definition of distinct and somewhat arbitrary categories (Seyfert galaxies, quasars, QSO, radio AGN, etc), essentially rediscovering the many faces of the same phenomenon, up until the unification of AGN (Antonucci 1993, Urry and Padovani 1995). Even after the realization that all AGN have the same engine powering their amazing radiation, astronomers are still using and refining the selection criteria within their favorite electromagnetic range in the hope to better understand the impact of the AGN phenomenon in the greater context of galaxy evolution. In the dawn of Big Data astronomy we find ourselves equipped with new tools. I will present the prospects of machine learning methods in better understanding the AGN population. Namely, I will show results from supervised learning algorithms whereby a labeled training set is used to amalgamate decision tree(s) (Fotopoulou et al., 2016) or neural network(s), and unsupervised learning where the algorithm performs clustering analysis of the full dataset in a multidimensional space identifying clusters of objects sharing potentially the same physical properties (Fotopoulou in prep.).

  13. Multi-faceted AGN

    Science.gov (United States)

    Farrar, Glennys R.; Chen, Yanping; Dai, Yuxiao; Zaw, Ingyin

    2016-08-01

    An interesting question is how frequently an object is an AGN by multiple different criteria — e.g., is simultaneously a narrow-line optical AGN and an X-ray or radio AGN, possibly as a function of luminosities in the various wavebands and perhaps host galaxy type. Answering such questions quantitatively has been difficult up to now because of the lack of a complete, uniformly selected optical AGN catalog. Here we report first results of such an analysis, using the new, all-sky catalog of uniformly selected optical AGNs from Zaw, Chen and Farrar (2016), the Swift-BAT 70-month catalog of X-ray AGN (Baumgartner et al., 2013), and the van Velzen et al. (2012) catalog of radio AGN.

  14. The radio AGN population dichotomy: Green valley Seyferts versus red sequence low-excitation AGN

    CERN Document Server

    Smolcic, V

    2009-01-01

    Radio outflows of active galactic nuclei (AGN) are invoked in cosmological models as a key feedback mechanism in the latest phases of massive galaxy formation. Recently it has been suggested that the two major radio AGN populations -- the powerful high-excitation, and the weak low-excitation radio AGN (HERAGN and LERAGN, resp.) -- represent two earlier and later stages of massive galaxy build-up. To test this, here we make use of a local (0.04AGN with available optical spectroscopy, drawn from the FIRST, NVSS, SDSS, and 3CRR surveys. A clear dichotomy is found between the properties of low-excitation (absorption line AGN, and LINERs) and high-excitation (Seyferts) radio AGN. The hosts of the first have the highest stellar masses, reddest optical colors, and highest mass black holes but accrete inefficiently (at low rates). On the other hand, the high-excitation radio AGN have lower stellar masses, bluer optical colors (consistent with the `green valley'), and lower mass blac...

  15. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    CERN Document Server

    Ajello, M; Greiner, J; Madejski, G M; Gehrels, N; Burlon, D

    2012-01-01

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15--55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of \\sim2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thick AGN represent a ~5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN--LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN--LogS of AGN selected above 10 keV is now established to a ~10% precision. We derive the luminosity function of Compton-thick ...

  16. Corrective Feedback in L2 Latvian Classrooms: Teacher Perceptions versus the Observed Actualities of Practice

    Science.gov (United States)

    Dilans, Gatis

    2016-01-01

    This two-part study aims to investigate teacher perceptions about providing oral corrective feedback (CF) to minority students of Latvian as a second language and compare the perceptions to the actual provision of CF in L2 Latvian classrooms. The survey sample represents sixty-six L2 Latvian teachers while the classroom observations involved 13…

  17. The Effects of Training, Feedback, and Participant Involvement in Behavioral Safety Observations on Office Ergonomic Behavior

    Science.gov (United States)

    Sasson, Joseph R.; Austin, John

    2005-01-01

    Eleven computer terminal operators participated in an experiment that assessed effects of several interventions aimed at increasing safe ergonomic performance. All participants received ergonomics training and performance feedback while six of them collected observations of safe behavior among the remaining five participants. Effects of…

  18. Instructiveness of feedback during clerkships : Influence of supervisor, observation and student initiative

    NARCIS (Netherlands)

    van Hell, Elisabeth A.; Kuks, Jan B.M.; Raat, A.N.; van Lohuizen, M.T.; Cohen-Schotanus, J.

    2009-01-01

    Background: Several authors assume that the supervisor's role, observation of behaviour and students' active participation are important factors in the instructiveness of feedback. Aim: This study aims to provide empirical evidence for these expectations. Methods: For two weeks, 142 clerks from eigh

  19. Morphologies of z~0.7 AGN Host Galaxies in CANDELS: No trend of merger incidence with AGN luminosity

    CERN Document Server

    Villforth, C; Rosario, D J; Santini, P; McGrath, E J; van der Wel, A; Chang, Y -Y; Guo, Yicheng; Dahlen, T; Bell, E F; Conselice, C J; Croton, D; Dekel, A; Faber, S M; Grogin, N; Hamilton, T; Hopkins, P F; Juneau, S; Kartaltepe, J; Kocevski, D; Koekemoer, A; Koo, D C; Lotz, J; McIntosh, D; Mozena, M; Somerville, R; Wild, V

    2014-01-01

    The processes that trigger Active Galactic Nuclei (AGN) remain poorly understood. While lower luminosity AGN may be triggered by minor disturbances to the host galaxy, stronger disturbances are likely required to trigger luminous AGN. Major wet mergers of galaxies are ideal environments for AGN triggering since they provide large gas supplies and galaxy scale torques. There is however little observational evidence for a strong connection between AGN and major mergers. We analyse the morphological properties of AGN host galaxies as a function of AGN and host galaxy luminosity and compare them to a carefully matched sample of control galaxies. AGN are X-ray selected in the redshift range 0.5 < z < 0.8 and have luminosities 41 < log(L_X [erg/s]) < 44.5. 'Fake AGN' are simulated in the control galaxies by adding point sources with the magnitude of the matched AGN. We find that AGN host and control galaxies have comparable assymetries, Sersic indices and ellipticities at restframe ~950nm. AGN host gala...

  20. Average Heating Rate of Hot Atmospheres in Distant Clusters by Radio AGN: Evidence for Continuous AGN Heating

    CERN Document Server

    Ma, C -J; Nulsen, P E J; Schaffer, R; Vikhlinin, A

    2011-01-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from active galactic nuclei (AGN) is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 - 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in...

  1. Observations of the Upper Tropospheric Water Vapor Feedback in UARS MLS and HALOE Data

    Science.gov (United States)

    Dessler, A. E.; Minschwaner, K. R.

    2004-01-01

    One of the biggest uncertainties in climate science today concerns the water vapor feedback. Most GCMs hold relative humidity fixed as the climate changes, which provides a strong positive feedback to warming due from anthropogenic greenhouse gas emissions. Some in the community, on the other hand, have speculated that tropospheric specific humidity will remain fixed as the climate changes. Observational studies have attempted to resolve this disagreement, but the results have been inconclusive, and few of the studies have focused on the upper troposphere (UT). This is a significant oversight: the surface temperature is especially sensitive to changes in water vapor in the UT owing to the cold temperatures found there. We present an analysis of UARS MLS and HALOE water vapor measurements at 21 5 hPa. We find strong evidence that the water vapor feedback in the UT is positive, but not as strong as fixed relative humidity scenarios. This suggests that GCMs are overestimating the sensitivity of the climate.

  2. KAIT Fermi AGN Light-Curve Reservoir

    Data.gov (United States)

    National Aeronautics and Space Administration — This web page shows the light curves of a total of 163 AGNs that are monitored by KAIT with average cadence of 3 days. These are unfiltered observations; in...

  3. Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi and H.E.S.S

    CERN Document Server

    ,

    2013-01-01

    Feedback by active galactic nuclei (AGN) appears to be critical in balancing radiative cooling of the low-entropy gas at the centers of galaxy clusters and in mitigating the star formation of elliptical galaxies. New observations of M87 enable us to put forward a comprehensive model for the physical heating mechanism. Low-frequency radio observations by LOFAR revealed the absence of fossil cosmic ray (CR) electrons in the radio halo surrounding M87. This puzzle can be resolved by accounting for the CR release from the radio cocoons and the subsequent mixing of CRs with the dense ambient intracluster gas, which thermalizes the electrons on a timescale similar to the radio halo age of 40 Myrs. Hadronic interactions of similarly injected CR protons with the ambient gas should produce an observable gamma-ray signal in accordance with the steady emission of the low state of M87 detected by Fermi and H.E.S.S. Hence, we normalize the CR population to the gamma-ray emission, which shows the same spectral slope as the...

  4. Incomplete state feedback for time delay systems: observer applications in multidelay compensation

    Energy Technology Data Exchange (ETDEWEB)

    Ogunnaike, B.A.; Ray, W.H.

    1984-09-01

    This paper demonstrates how a recently developed observer for time delay systems may be used to estimate needed state variables for implementation of multivariable time delay compensation. The general results are illustrated by an example of a multireactor plant in which only one reactor concentration can be measured. The observer worked well in simulation for both multivariable PID control and multidelay compensated PID control and allowed both schemes to function with estimated state variables in the feedback loop. 16 references, 5 figures.

  5. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L bol = 1046.5 erg s–1). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 102 – 3 cm–3) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm–3)—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for

  6. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M., E-mail: orianne.roos@cea.fr [CEA-Saclay, F-91190 Gif-sur-Yvette (France)

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  7. Feedback of Active Galactic Nuclei in Seyfert 2 Galaxies

    Institute of Scientific and Technical Information of China (English)

    En-Peng Zhang; Wei-Hao Bian; Chen Hu; Wei-Ming Mao; ALi Luo; Yong-Heng Zhao

    2008-01-01

    It is well accepted that feedback from active galactic nuclei (AGNs) plays an important role in the coevolution of the supermassive black hole (SMBH) and its host galaxy,but the concrete mechanism of feedback remains unclear.A considerable body of evidence suggests that AGN feedback suppresses star formation in the host galaxy.We assemble a sample of Seyfert 2 galaxies with recent observational data of compact nuclear starbursts and estimate the gas surface density as a function of column density to illuminate the relation between feedback and AGN properties.Although there are some uncertainties,our data still imply the deviation from the star formation law (Kennicutt-Schmidt law).Further,they indicate that:(1) Feedback correlates with the Eddington ratio,rather than with the mass of SMBH,as a result of decreasing star formation efficiency.(2) The SMBH and the torus are probably undergoing coevolution.Conclusions presented here can be refined through future high resolution CO or HCN observations.

  8. Cosmological Effects of Powerful AGN Outbursts in Galaxy Clusters: Insights from an XMM-Newton Observation of MS 0735+7421

    Science.gov (United States)

    Gitti, M.; McNamara, B. R.; Nulsen, P. E. J.; Wise, M. W.

    2007-01-01

    We report on the results of an analysis o f XMM-Newton observations o f MS 0735+7421, the galaxy cluster that hosts the most energetic AGN outburst currently known. .The previous chandra image shows twin giant x-ray cavities (approx.200 kpc diameter) filled with radio emission and surrounded by a weak shock front. XMM data are consistent with these findings. The total energy in cavities and shock (1E62 erg(approx.100 kpc), to heat the gas within 1 Mpc by approx.1/4 kev per particle. The cluster exhibits an upward departure (factor approx.2) from the mean L-T relation. The boost in emissivity produced by the ICM compression in the bright shells due to the cavity expansion may contribute to explain the high luminosity and high central gas mass fraction that we measure. The scaled temperature and metallicity profiles are in general agreement with those observed in re1axed clusters. Also, the quantities we measure are consistent with the observed M-T relation. We conclude that violent outbursts such as the one in MS 0735+7421 do not cause dramatic scaling relations (other than the L-T relation). However, if they are relatively common they may play a role in creating the global cluster properties.

  9. HST-COS Observations of AGNs. III. Spectral Constraints in the Lyman Continuum from Composite COS/G140L Data

    CERN Document Server

    Tilton, Evan M; Shull, J Michael; Danforth, Charles W

    2015-01-01

    The rest-frame ultraviolet (UV) spectra of active galactic nuclei (AGNs) are important diagnostics of both accretion disk physics and their contribution to the metagalactic ionizing UV background. Though the mean AGN spectrum is well characterized with composite spectra at wavelengths greater than 912 Angstroms, the shorter-wavelength extreme-UV (EUV) remains poorly studied. In this third paper in a series on the spectra of AGNs, we combine 11 new spectra taken with the Cosmic Origins Spectrograph on the Hubble Space Telescope with archival spectra to characterize the typical EUV spectral slope of AGNs from $\\lambda_{\\rm rest}\\sim 850~{\\rm Angstroms}$ down to $\\lambda_{\\rm rest}\\sim 425~{\\rm Angstroms}$. Parameterizing this slope as a power law, we obtain $F_\

  10. ACTIVE GALACTIC NUCLEI AS MAIN CONTRIBUTORS TO THE ULTRAVIOLET IONIZING EMISSIVITY AT HIGH REDSHIFTS: PREDICTIONS FROM A {Lambda}-CDM MODEL WITH LINKED AGN/GALAXY EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Giallongo, E.; Menci, N.; Fiore, F.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L. [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio (Italy)

    2012-08-20

    We have evaluated the contribution of the active galactic nuclei (AGN) population to the ionization history of the universe based on a semi-analytic model of galaxy formation and evolution in the cold dark matter cosmological scenario. The model connects the growth of black holes and of the ensuing AGN activity to galaxy interactions. In the model we have included a self-consistent physical description of the escape of ionizing UV photons; this is based on the blast-wave model for the AGN feedback we developed in a previous paper to explain the distribution of hydrogen column densities in AGNs of various redshifts and luminosities, due to absorption by the host galaxy gas. The model predicts UV luminosity functions for AGNs that are in good agreement with those derived from the observations especially at low and intermediate redshifts (z {approx} 3). At higher redshifts (z > 5), the model tends to overestimate the data at faint luminosities. Critical biases in both the data and in the model are discussed to explain such apparent discrepancies. The predicted hydrogen photoionization rate as a function of redshift is found to be consistent with that derived from the observations. All of the above suggests that we should reconsider the role of the AGNs as the main driver of the ionization history of the universe.

  11. Anatomy of the AGN in NGC 5548: II. The Spatial, Temporal and Physical Nature of the Outflow from HST/COS Observations

    CERN Document Server

    Arav, N; Kriss, G A; Kaastra, J S; Cappi, M; Mehdipour, M; Petrucci, P -O; Steenbrugge, K C; Behar, E; Bianchi, S; Boissay, R; Branduardi-Raymont, G; Costantini, E; Ely, J C; Ebrero, J; di Gesu, L; Harrison, F A; Kaspi, S; Malzac, J; De Marco, B; Matt, G; Nandra, K P; Paltani, S; Peterson, B M; Pinto, C; Ponti, G; Nuñez, F Pozo; De Rosa, A; Seta, H; Ursini, F; de Vries, C P; Walton, D J; Whewel, M

    2014-01-01

    (Abridged) Our deep multiwavelength campaign on NGC 5548 revealed an unusually strong X-ray obscuration. The resulting dramatic decrease in incident ionizing flux allowed us to construct a comprehensive physical, spatial and temporal picture for the long-studied AGN wind in this object. Here we analyze the UV spectra of the outflow acquired during the campaign as well as from four previous epochs. We find that a simple model based on a fixed total column-density absorber, reacting to changes in ionizing illumination, matches the very different ionization states seen in five spectroscopic epochs spanning 16 years. Absorption troughs from C III* appeared for the first time during our campaign. From these troughs, we infer that the main outflow component is situated at 3.5+-1 pc from the central source. Three other components are situated between 5-70 pc and two are further than 100 pc. The wealth of observational constraints and the disparate relationship of the observed X-ray and UV flux between different epoc...

  12. e-MERLIN and VLBI observations of the luminous infrared galaxy IC883: a nuclear starburst and an AGN candidate revealed

    CERN Document Server

    Romero-Canizales, C; Alberdi, A; Argo, M K; Beswick, R J; Kankare, E; Batejat, F; Efstathiou, A; Mattila, S; Conway, J E; Garrington, S T; Muxlow, T W B; Ryder, S D; Vaisanen, P

    2012-01-01

    The high star formation rates of luminous infrared galaxies (LIRGs) make them ideal places for core-collapse supernova (CCSN) searches. At radio frequencies, free from dust extinction, it is possible to detect compact components within the innermost LIRG nuclear regions, such as SNe and SN remnants, as well as AGN buried deep in the LIRG nuclei. We studied the LIRG IC883 aiming at: (i) investigating its (circum-)nuclear regions using the e-EVN at 5GHz, and e-MERLIN at 6.9GHz, complemented by archival VLBI data; (ii) detecting at radio frequencies the two recently reported circumnuclear SNe 2010cu and 2011hi, which were discovered by near-IR (NIR) adaptive optics observations of IC883; and (iii) further investigating the nature of SN2011hi at NIR by means of observations with Gemini-North. The circumnuclear regions traced by e-MERLIN at 6.9GHz have an extension of ~1kpc, and show a striking double-sided structure, which very likely corresponds to a warped rotating ring, in agreement with previous studies. Our ...

  13. THE ROLE OF OBSERVATION AND FEEDBACK IN ENHANCING PERFORMANCE WITH MEDICATION ADMINISTRATION.

    Science.gov (United States)

    Davies, Karen; Mitchell, Charles; Coombes, Ian

    2015-12-01

    Legislation in Queensland such as the Health (Drugs and Poisons) Regulation 1996, the national registration competency standards set by the Nursing and Midwifery Board of Australia, and the Continuing Professional Development Registration Standards made pursuant to the Health Practitioner Regulation National Law define expected standards of practice for nurses. The Framework for Assessing Standards for Practice for Registered Nurses, Enrolled Nurses and Midwives, released in July 2015, includes the principles for assessing standards but not the methods. Local policies and procedures offer specific requirements founded on evidence-based practice. Observation of clinical practice with the provision of immediate descriptive feedback to individual practitioners has been associated with improved performance. This column describes the role of regular observation and individual feedback on medication administration as a strategy to enhance performance and patient care. PMID:26939498

  14. Method for Determining AGN Accretion Phase in Field Galaxies

    CERN Document Server

    Micic, Miroslav; Sinha, Manodeep

    2016-01-01

    Recent observations of AGN activity in massive galaxies (log Mstar / Msun > 10.4) show that: 1) at z 1, percentage of AGNs in star forming galaxies increases and becomes comparable to AGN percentage in quiescent galaxies at z ~ 2. How can major mergers explain AGN activity in massive quiescent galaxies which have no merger features and no star formation to indicate recent galaxy merger? By matching merger events in a cosmological N-body simulation to the observed AGN incidence probability in the COSMOS survey, we show that major merger triggered AGN activity is consistent with the observations. By distinguishing between "peak" AGNs (recently merger triggered and hosted by star forming galaxies) and "faded" AGNs (merger triggered a long time ago and now residing in quiescent galaxies), we show that the AGN occupation fraction in star forming and quiescent galaxies simply follows the evolution of the galaxy merger rate. Since the galaxy merger rate drops dramatically at z < 1, the only AGNs left to be obser...

  15. Quasar Structure and Cosmological Feedback

    CERN Document Server

    Elvis, M

    2006-01-01

    Feedback from quasars and AGNs is being invoked frequently in several cosmological settings. Currently, order of magnitude, or more, uncertainties in the structure of both the wind and the 'obscuring torus' make predictions highly uncertain. To make testable models of this 'cosmological feedback' it is essential to understand the detailed structure of AGNs sufficiently well to predict their properties for the whole quasar population, at all redshifts. Progress in both areas is rapid, and I describe the near-term prospects for reducing these uncertainties for 'slow' (non-relativistic) AGN winds and the obscuring torus.

  16. Adaptive high gain observer based output feedback predictive controller for induction motor

    OpenAIRE

    Hadj Saïd, S.; M'Sahli, F.; Mimouni, F; Farza, Mondher

    2013-01-01

    An accurate estimation of both rotor and stator resistances is usually required to achieve high performance control in induction machine drive systems. In our study, an output feedback predictive controller which is adaptive with respect to these parameters uncertainties is proposed. Such design attempts to a fully decoupling in speed and flux magnitude when conjoint estimation of the state and the critical parameters is performed. Precisely, two-stage of high gain observer are used to provid...

  17. Stabilization of a class of discrete-time switched systems via observer-based output feedback

    Institute of Scientific and Technical Information of China (English)

    Jiao LI; Yuzhong LIU

    2007-01-01

    In this paper, observer-based static output feedback control problem for discrete-time uncertain switched systems is investigated under an arbitrary switching rule. The main method used in this note is combining switched. Lyapunov function (SLF) method with Finsler's Lemma. Based on linear matrix inequality (LMI) a less conservative stability condition is established and this condition allows extra degree of freedom for stability analysis. Finally, a simulation example is given to illustrate the efficiency of the result.

  18. ROBUST POSITIONING OF LASER BEAMS USING PROPORTIONAL INTEGRAL DERIVATIVE AND BASED OBSERVER-FEEDBACK CONTROL

    OpenAIRE

    Kwabena A. Konadu; Sun Yi; Wonchang Choi; Taher Abu-Lebdeh

    2013-01-01

    High-precision positioning of laser beams has been a great challenge in industry due to inevitable existence of noise and disturbance. The work presented in this study addresses this problem by employing two different control strategies: Proportional Integral Derivative (PID) control and state feedback control with an observer. The control strategies are intended to stabilize the position of a laser beam on a Position Sensing Device (PSD) located on a Laser Beam Stabilization (or, laser beam ...

  19. The Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During Drought

    KAUST Repository

    Meng, X. H.

    2014-04-01

    Moderate Resolution Imaging Spectroradiometer (MODIS)-derived vegetation fraction data were used to update the boundary conditions of the advanced research Weather Research and Forecasting (WRF) Model to assess the influence of realistic vegetation cover on climate simulations in southeast Australia for the period 2000–08. Results show that modeled air temperature was improved when MODIS data were incorporated, while precipitation changes little with only a small decrease in the bias. Air temperature changes in different seasons reflect the variability of vegetation cover well, while precipitation changes have a more complicated relationship to changes in vegetation fraction. Both MODIS and climatology-based simulation experiments capture the overall precipitation changes, indicating that precipitation is dominated by the large-scale circulation, with local vegetation changes contributing variations around these. Simulated feedbacks between vegetation fraction, soil moisture, and drought over southeast Australia were also investigated. Results indicate that vegetation fraction changes lag precipitation reductions by 6–8 months in nonarid regions. With the onset of the 2002 drought, a potential fast physical mechanism was found to play a positive role in the soil moisture–precipitation feedback, while a slow biological mechanism provides a negative feedback in the soil moisture–precipitation interaction on a longer time scale. That is, in the short term, a reduction in soil moisture leads to a reduction in the convective potential and, hence, precipitation, further reducing the soil moisture. If low levels of soil moisture persist long enough, reductions in vegetation cover and vigor occur, reducing the evapotranspiration and thus reducing the soil moisture decreases and dampening the fast physical feedback. Importantly, it was observed that these feedbacks are both space and time dependent.

  20. The connection between AGN-driven dusty outflows and the surrounding environment

    CERN Document Server

    Ishibashi, W

    2016-01-01

    Significant reservoirs of cool gas are observed in the circumgalactic medium (CGM) surrounding galaxies. The CGM is also found to contain substantial amounts of metals and dust, which require some transport mechanism. We consider AGN (active galactic nucleus) feedback-driven outflows based on radiation pressure on dust. Dusty gas is ejected when the central luminosity exceeds the effective Eddington luminosity for dust. We obtain that a higher dust-to-gas ratio leads to a lower critical luminosity, implying that the more dusty gas is more easily expelled. Dusty outflows can reach large radii with a range of velocities (depending on the outflowing shell configuration and the ambient density distribution) and may account for the observed CGM gas. In our picture, dust is required in order to drive AGN feedback, and the preferential expulsion of dusty gas in the outflows may naturally explain the presence of dust in the CGM. On the other hand, the most powerful AGN outflow events can potentially drive gas out of ...

  1. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  2. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  3. AGN-driven outflows without quenching in simulations of high-redshift disk galaxies

    CERN Document Server

    Gabor, Jared M

    2014-01-01

    Recent observations have revealed nuclear outflows in high-redshift, star forming galaxies. We study outflows driven by Active Galactic Nuclei (AGNs) using high- resolution simulations of idealized z=2 isolated disk galaxies. Episodic accretion events lead to outflows with velocities >1000 km/s and mass outflow rates up to the star formation rate (several tens of Msun/yr). Outflowing winds escape perpendicular to the disk with wide opening angles, and are typically asymmetric (i.e. unipolar) because dense gas above or below the AGN in the resolved disk inhibits outflow. Owing to rapid variability in the accretion rates, outflowing gas may be detectable even when the AGN is effectively "off." The highest velocity outflows are concentrated within 2-3 kpc of the galactic center during the peak accretion. With our purely thermal AGN feedback model -- standard in previous literature -- the outflowing material is mostly hot (10^6 K) and diffuse (nH<10^(-2) cm-3), but includes a cold component entrained in the ho...

  4. PLAYING WITH POSITIVE FEEDBACK: EXTERNAL PRESSURE-TRIGGERING OF A STAR-FORMING DISK GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A., E-mail: bieri@iap.fr [Institut d’Astrophysique de Paris (UMR 7095: CNRS and UPMC—Sorbonne Universités), 98 bis bd Arago, F-75014 Paris (France)

    2015-10-20

    In massive galaxies, the currently favored method for quenching star formation is via active galactic nuclei (AGN) feedback, which ejects gas from the galaxy using a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGNs may require a more vigorous mode of star formation than is attainable by simply enriching the gas content of galaxies in the usual gravitationally driven mode that is associated with the nearby universe. Using idealized hydrodynamical simulations, we show that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant universe.

  5. Time Series Analysis of the UV Flickering in AGN

    Science.gov (United States)

    Robinson, Edward L.

    2003-01-01

    Goals of the Research: Many active galactic nuclei (AGN) exhibit large-amplitude luminosity fluctuations on short timescales. The fluctuations lead to a profound conclusion: The size of the emitting region is remarkably small. This observational fact is one of the pillars supporting the AGN paradigm: Prodigious amounts of gravitational potential energy are liberated in an accretion disk around a supermassive black hole. The goals of the research were to extract from the IUE Archive the very best observational characterizations of AGN flickering, and to use these to test and develop models for AGN variability.

  6. Compact radio cores in radio-quiet AGNs

    CERN Document Server

    Maini, Alessandro; Norris, Ray P; Giovannini, Gabriele; Spitler, Lee R

    2016-01-01

    The mechanism of radio emission in radio-quiet (RQ) active galactic nuclei (AGN) is still debated and might arise from the central AGN, from star formation activity in the host, or from either of these sources. A direct detection of compact and bright radio cores embedded in sources that are classified as RQ can unambiguously determine whether a central AGN significantly contributes to the radio emission. We search for compact, high-surface-brightness radio cores in RQ AGNs that are caused unambiguously by AGN activity. We used the Australian Long Baseline Array to search for compact radio cores in four RQ AGNs located in the Extended Chandra Deep Field South (ECDFS). We also targeted four radio-loud (RL) AGNs as a control sample. We detected compact and bright radio cores in two AGNs that are classified as RQ and in one that is classified as RL. Two RL AGNs were not imaged because the quality of the observations was too poor. We report on a first direct evidence of radio cores in RQ AGNs at cosmological reds...

  7. [Results from the X-ray and Optical Follow-up Observations of the Swift BAT AGN Survey

    Science.gov (United States)

    Mushotzky, R.

    2008-01-01

    I will present results from the x-ray and optical follow-up observations of the Swift BAT ACN survey. I will discuss the nature of obscuration in these objects, the relationship to optical properties and the change of properties with luminosity and galaxy type and how they will influence the design of XO.

  8. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    Science.gov (United States)

    Lihavainen, H.; Asmi, E.; Aaltonen, V.; Makkonen, U.; Kerminen, V. M.

    2015-12-01

    Biogenic secondary organic aerosol (BSOA) originating from the emissions of volatile organic compounds from terrestrial vegetation constitutes an important part of the natural aerosol system. According to large-scale model simulations, the direct and indirect radiative effects of the BSOA are potentially large, yet poorly quantified. We used more than 5 years of continuous aerosol measurements to estimate the direct radiative feedback associated with the formation of biogenic secondary organic aerosol at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback during the summer period (ambient temperatures above 10 °C) was -97±66 mW m-2 K-1 (mean ± STD) when using measurements of the aerosol optical depth (fAOD) and -63±40 mW m-2 K-1 when using measurements of the "dry" aerosol scattering coefficient at the ground level (fσ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of this direct radiative feedback is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution.

  9. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    International Nuclear Information System (INIS)

    We used more than five years of continuous aerosol measurements to estimate the direct radiative feedback parameter associated with the formation of biogenic secondary organic aerosol (BSOA) at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback parameter during the summer period (ambient temperatures above 10 °C) was −97 ± 66 mW m−2 K−1 (mean ± STD) when using measurements of the aerosol optical depth (fAOD) and −63 ± 40 mW m−2 K−1 when using measurements of the ‘dry’ aerosol scattering coefficient at the ground level (fσ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of the direct radiative feedback associated with BSOA is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution. (letter)

  10. Are the hosts of VLBI selected radio-AGN different to those of radio-loud AGN?

    CERN Document Server

    Rees, G A; Spitler, L R; Herrera-Ruiz, N; Middelberg, E

    2016-01-01

    Recent studies have found that radio-AGN selected by radio-loudness show little difference in terms of their host galaxy properties when compared to non-AGN galaxies of similar stellar mass and redshift. Using new 1.4~GHz VLBI observations of the COSMOS field we find that approximately 49$\\pm8$\\% of high-mass (M $>$ 10$^{10.5}$ M$_{\\odot}$), high luminosity (L$_{1.4}$ $>$ 10$^{24}$ W~Hz$^{-1}$) radio-AGN possess a VLBI detected counterpart. These objects show no discernible bias towards specific stellar masses, redshifts or host properties other than what is shown by the radio-AGN population in general. Radio-AGN that are detected in VLBI observations are not special, but form a representative sample of the radio-loud AGN population.

  11. Neutrinos from AGN

    Science.gov (United States)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  12. Gamma-ray-selected AGN

    Science.gov (United States)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  13. Extracting Information from AGN Variability

    CERN Document Server

    Kasliwal, Vishal P; Richards, Gordon T

    2016-01-01

    AGN exhibit rapid, high amplitude stochastic flux variability across the entire electromagnetic spectrum on timescales ranging from hours to years. The cause of this variability is poorly understood. We present a new method for using variability to (1) measure the time-scales on which flux perturbations evolve and (2) characterize the driving flux perturbations. We model the observed light curve of an AGN as a linear differential equation driven by stochastic impulses. Physically, the impulses could be local `hot-spots' in the accretion disk---the linear differential equation then governs how the hot spots evolve and dissipate. The impulse-response function of the accretion disk material is given by the Green's function of the linear differential equation. The timescales on which the hot-spots radiate energy is characterized by the powerspectrum of the driving stochastic impulses. We analyze the light curve of the \\Kepler AGN Zw 229-15 and find that the observed variability behavior can be modeled as a damped...

  14. Challenges in Finding AGNs in the Low Luminosity Regime

    Science.gov (United States)

    Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara

    2016-08-01

    Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.

  15. X-ray/UV Observing Campaign on the Mrk 279 AGN Outflow: A Global Fitting Analysis of the UV Absorption

    CERN Document Server

    Gabel, J R; Kaastra, J S; Kriss, G A; Behar, E; Costantini, E; Gaskell, C M; Korista, K T; Laor, A; Paerels, F; Proga, D; Quijano, J K; Sako, M; Scott, J E; Steenbrugge, K C; Gabel, Jack R.; Arav, Nahum; Kaastra, Jelle S.; Kriss, Gerard A.; Behar, Ehud; Costantini, Elisa; Korista, Kirk T.; Laor, Ari; Paerels, Frits; Proga, Daniel; Quijano, Jessica Kim; Sako, Masao; Scott, Jennifer E.; Steenbrugge, Katrien C.

    2005-01-01

    We present an analysis of the intrinsic UV absorption in the Seyfert 1 galaxy Mrk 279 based on simultaneous long observations with the Hubble Space Telescope (41 ks) and the Far Ultraviolet Spectroscopic Explorer (91 ks). To extract the line-of-sight covering factors and ionic column densities, we separately fit two groups of absorption lines: the Lyman series and the CNO lithium-like doublets. For the CNO doublets we assume that all three ions share the same covering factors. The fitting method applied here overcomes some limitations of the traditional method using individual doublet pairs; it allows for the treatment of more complex, physically realistic scenarios for the absorption-emission geometry and eliminates systematic errors that we show are introduced by spectral noise. We derive velocity-dependent solutions based on two models of geometrical covering -- a single covering factor for all background emission sources, and separate covering factors for the continuum and emission lines. Although both mo...

  16. HST-COS OBSERVATIONS OF AGNs. III. SPECTRAL CONSTRAINTS IN THE LYMAN CONTINUUM FROM COMPOSITE COS/G140L DATA

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Evan M.; Shull, J. Michael; Danforth, Charles W. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Stevans, Matthew L., E-mail: evan.tilton@colorado.edu, E-mail: michael.shull@colorado.edu, E-mail: charles.danforth@colorado.edu, E-mail: stevans@astro.as.utexas.edu [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States)

    2016-01-20

    The rest-frame ultraviolet (UV) spectra of active galactic nuclei (AGNs) are important diagnostics of both accretion disk physics and their contribution to the metagalactic ionizing UV background. Though the mean AGN spectrum is well characterized with composite spectra at wavelengths greater than 912 Å, the shorter-wavelength extreme-UV (EUV) remains poorly studied. In this third paper in a series on the spectra of AGNs, we combine 11 new spectra taken with the Cosmic Origins Spectrograph on the Hubble Space Telescope with archival spectra to characterize the typical EUV spectral slope of AGNs from λ{sub rest} ∼ 850 Å down to λ{sub rest} ∼ 425 Å. Parameterizing this slope as a power law, we obtain F{sub ν} ∝ ν{sup −0.72±0.26}, but we also discuss the limitations and systematic uncertainties of this model. We identify broad emission features in this spectral region, including emission due to ions of O, Ne, Mg, and other species, and we limit the intrinsic He i 504 Å photoelectric absorption edge opacity to τ{sub He} {sub i} < 0.047.

  17. HST-COS Observations of AGNs. III. Spectral Constraints in the Lyman Continuum from Composite COS/G140L Data

    Science.gov (United States)

    Tilton, Evan M.; Stevans, Matthew L.; Shull, J. Michael; Danforth, Charles W.

    2016-01-01

    The rest-frame ultraviolet (UV) spectra of active galactic nuclei (AGNs) are important diagnostics of both accretion disk physics and their contribution to the metagalactic ionizing UV background. Though the mean AGN spectrum is well characterized with composite spectra at wavelengths greater than 912 Å, the shorter-wavelength extreme-UV (EUV) remains poorly studied. In this third paper in a series on the spectra of AGNs, we combine 11 new spectra taken with the Cosmic Origins Spectrograph on the Hubble Space Telescope with archival spectra to characterize the typical EUV spectral slope of AGNs from λrest ˜ 850 Å down to λrest ˜ 425 Å. Parameterizing this slope as a power law, we obtain Fν ∝ ν-0.72±0.26, but we also discuss the limitations and systematic uncertainties of this model. We identify broad emission features in this spectral region, including emission due to ions of O, Ne, Mg, and other species, and we limit the intrinsic He i 504 Å photoelectric absorption edge opacity to τHe i contract NAS5-26555.

  18. Observer based output feedback tuning for underwater remotely operated vehicle based on linear quadratic performance

    Science.gov (United States)

    Aras, Mohd Shahrieel Mohd; Abdullah, Shahrum Shah; Kamarudin, Muhammad Nizam; Rahman, Ahmad Fadzli Nizam Abdul; Azis, Fadilah Abd; Jaafar, Hazriq Izzuan

    2015-05-01

    This paper describes the effectiveness of observer-based output feedback for Unmanned Underwater Vehicle (UUV) with Linear Quadratic Regulation (LQR) performance. Tuning of observer parameters is crucial for tracking purpose. Prior to tuning facility, the ranges of observer and LQR parameters are obtained via system output cum error. The validation of this technique using unmanned underwater vehicles called Remotely Operated Vehicle (ROV) modelling helps to improve steady state performance of system response. The ROV modeling is focused for depth control using ROV 1 developed by the Underwater Technology Research Group (UTeRG). The results are showing that this technique improves steady state performances in term of overshoot and settling time of the system response.

  19. Quasars Are Not Light-Bulbs: Testing Models of Quasar Lifetimes with the Observed Eddington Ratio Distribution

    CERN Document Server

    Hopkins, Philip F

    2008-01-01

    We use the observed distribution of Eddington ratios as a function of supermassive black hole (BH) mass to constrain models of AGN lifetimes and lightcurves. Given the observed AGN luminosity function, a model for AGN lifetimes (time above a given luminosity) translates directly to a predicted Eddington ratio distribution. Models for self-regulated BH growth, in which feedback produces a 'blowout' decay phase after some peak luminosity (shutting down accretion) make specific predictions for the lifetimes distinct from those expected if AGN are simply gas starved (without feedback) and very different from simple phenomenological 'light bulb' models. Present observations of the Eddington ratio distribution, spanning 5 decades in Eddington ratio, 3 in BH mass, and redshifts z=0-1, agree with the predictions of self-regulated models, and rule out 'light-bulb', pure exponential, and gas starvation models at high significance. We compare the Eddington ratio distributions at fixed BH mass and fixed luminosity (both ...

  20. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    Science.gov (United States)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  1. Output feedback non-linear decoupled control synthesis and observer design for manoeuvring aircraft

    Science.gov (United States)

    Singh, S. N.; Schy, A. A.

    1980-01-01

    A study of the applicability of nonlinear decoupling theory to the design of control systems using output feedback for maneuvering aircraft is presented. The response variables chosen for decoupled control were angular velocity components along roll, pitch, and yaw axes, angle of attack (p), and angle of sideslip, using aileron, rudder, and elevator controls. An observer design for a class of nonlinear systems was presented and this method was used to estimate angle of attack and sideslip; an approximate observer was obtained by neglecting derivatives of p and aileron deflection angles and it was used in a simulation study. A simulation study showed that precise rapid combined lateral and longitudinal maneuvers can be performed; it was also demonstrated that a bank-angle-command outer loop could be designed for precise bank angles changes and simultaneous large lift maneuvers.

  2. ASTRO-H White Paper - AGN Reflection

    CERN Document Server

    Reynolds, C; Awaki, H; Gallo, L; Gandhi, P; Haba, Y; Kawamuro, T; LaMassa, S; Lohfink, A; Ricci, C; Tazaki, F; Zoghbi, A

    2014-01-01

    X-ray observations provide a powerful tool to probe the central engines of active galactic nuclei (AGN). A hard X-ray continuum is produced from deep within the accretion flow onto the supermassive black hole, and all optically thick structures in the AGN (the dusty torus of AGN unification schemes, broad emission line clouds, and the black hole accretion disk) "light up" in response to irradiation by this continuum. This White Paper describes the prospects for probing AGN physics using observations of these X-ray reflection signatures. High-resolution SXS spectroscopy of the resulting fluorescent iron line in type-2 AGN will give us an unprecedented view of the obscuring torus, allowing us to assess its dynamics (through line broadening) and geometry (through the line profile as well as observations of the "Compton shoulder"). The broad-band view obtained by combining all of the ASTRO-H instruments will fully characterize the shape of the underlying continuum (which may be heavily absorbed) and reflection/sc...

  3. Combining experimental observation and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using contempora

  4. Relativistic HD and MHD modelling for AGN jets

    Science.gov (United States)

    Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.

    2013-12-01

    Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed

  5. Is Turbulence in the Interstellar Medium Driven by Feedback or Gravity? An Observational Test

    CERN Document Server

    Krumholz, Mark R

    2015-01-01

    Galaxies' interstellar media (ISM) are observed to be supersonically-turbulent, but the ultimate power source that drives turbulent motion remains uncertain. The two dominant models are that the turbulence is driven by star formation feedback and/or that it is produced by gravitational instability in the gas. Here we show that, while both models predict that the galaxies' ISM velocity dispersions will be positively correlated with their star formation rates, the forms of the correlation predicted by these two models are subtly but measurably different. A feedback-driven origin for the turbulence predicts a velocity dispersion that rises more sharply with star formation rate, and that does not depend on the gas fraction (i.e. $\\dot{M}_* \\propto \\sigma^2$), while a gravity-driven model yields a shallower rise and a strong dependence on gas fraction(i.e. $\\dot{M}_* \\propto f_g^2 \\sigma$). We compare the models to a collection of data on local and high-redshift galaxies culled from the literature, and show that t...

  6. Auroral Current and Electrodynamics Structure (ACES) Observations of Ionospheric Feedback in the Alfven Resonator

    Science.gov (United States)

    Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.; Pfaff, Robert F.; Rowland, Doug; Jones, Sarah; Anderson, Brian Jay; Heinselman, Craig J.; Gjerloev, Jesper W.; Dudok de Wit, Thierry

    2011-01-01

    In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.

  7. Do AGN suppress star formation in early-type galaxies?

    OpenAIRE

    Schawinski, Kevin

    2010-01-01

    The observation that AGN host galaxies preferentially inhabit the "green valley" between the blue cloud and the red sequence has significant consequences for our understanding of the co-evolution of galaxies and black holes via accretion events. I discuss the interpretation of green valley AGN host galaxy colours with particular focus on early-type galaxies.

  8. Dynamical Delays Between Starburst and AGN Activity in Galaxy Nuclei

    CERN Document Server

    Hopkins, Philip F

    2011-01-01

    Observations of AGN have suggested a possible delay between the peak of star formation (on some scale) and AGN activity. Feedback from fast stellar winds has been invoked to explain this, but this is not likely to be viable in bright systems accreting primarily cold dense gas. We show that such a delay can arise even in bright quasars for purely dynamical reasons. If some large-scale process produces rapid inflow, smaller scales will quickly become gas-dominated. As the gas density peaks, so does the SFR. However, gravitational torques which govern further inflow are relatively inefficient in gas-dominated systems; as more gas is turned into stars, the stars provide an efficient angular momentum sink allowing more rapid inflow. Moreover, the gas provided to the central regions in mergers or strong disk instabilities will typically be ~100 times larger than that needed to fuel the BH; the system is effectively in the 'infinite gas supply' limit. BH growth can therefore continue for some time while the gas supp...

  9. Soft X-Ray Spectra of AGN Discovered Via Their Hard X-Ray

    Science.gov (United States)

    Schwartz, Daniel

    1998-01-01

    This final report is a study of the Active Galactic Nuclei (AGN). Investigation of the soft x-ray spectra of AGN were performed by using their hard x-ray emission. ROSAT observations of AGN was also performed, which allowed for the study of these x-ray spectra and the structures of 7 clusters of galaxies.

  10. AGN Winds and Blazar Phenomenology

    Science.gov (United States)

    Kazanas, Demos

    2012-01-01

    The launch of {\\em Fermi} produced a significant number of AGN detections to allow statistical treatment of their properties. One of the first such systematics was the "Blazar Divide" in FSRQs and BL Lacs according to their gamma-ray spectral index and luminosity. Further data accumulation indicated this separation to be less clear than thought before. An MHD wind model which can model successfully the Seyfert X-ray absorber properties provides the vestiges of an account of the observed blazar classification. We propose to employ this model to model in detail the broad band blazar spectra and their statistical properties in terms of the physical parameters of these MHD winds.

  11. Simulating galaxy formation with black hole driven thermal and kinetic feedback

    CERN Document Server

    Weinberger, Rainer; Hernquist, Lars; Pillepich, Annalisa; Marinacci, Federico; Pakmor, Rüdiger; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Naiman, Jill; Torrey, Paul

    2016-01-01

    The inefficiency of star formation in massive elliptical galaxies is widely believed to be caused by the interactions of an active galactic nucleus (AGN) with the surrounding gas. Achieving a sufficiently rapid reddening of moderately massive galaxies without expelling too many baryons has however proven difficult for hydrodynamical simulations of galaxy formation, prompting us to explore a new model for the accretion and feedback effects of supermassive black holes. For high accretion rates relative to the Eddington limit, we assume that a fraction of the accreted rest mass energy heats the surrounding gas thermally, similar to the `quasar mode' in previous work. For low accretion rates, we invoke a new, pure kinetic feedback model which imparts momentum into the surrounding gas in a stochastic manner. These two modes of feedback are motivated both by theoretical conjectures for the existence of different types of accretion flows as well as recent observational evidence for the importance of kinetic AGN wind...

  12. Predicting the future by explaining the past: constraining carbon-climate feedback using contemporary observations

    Science.gov (United States)

    Denning, S.

    2014-12-01

    The carbon-climate community has an historic opportunity to make a step-function improvement in climate prediction by using regional constraints to improve mechanistic model representation of carbon cycle processes. Interactions among atmospheric CO2, global biogeochemistry, and physical climate constitute leading sources of uncertainty in future climate. First-order differences among leading models of these processes produce differences in climate as large as differences in aerosol-cloud-radiation interactions and fossil fuel combustion. Emergent constraints based on global observations of interannual variations provide powerful constraints on model parameterizations. Additional constraints can be defined at regional scales. Organized intercomparison experiments have shown that uncertainties in future carbon-climate feedback arise primarily from model representations of the dependence of photosynthesis on CO2 and drought stress and the dependence of decomposition on temperature. Just as representations of net carbon fluxes have benefited from eddy flux, ecosystem manipulations, and atmospheric CO2, component carbon fluxes (photosynthesis, respiration, decomposition, disturbance) can be constrained at regional scales using new observations. Examples include biogeochemical tracers such as isotopes and carbonyl sulfide as well as remotely-sensed parameters such as chlorophyll fluorescence and biomass. Innovative model evaluation experiments will be needed to leverage the information content of new observations to improve process representations as well as to provide accurate initial conditions for coupled climate model simulations. Successful implementation of a comprehensive benchmarking program could have a huge impact on understanding and predicting future climate change.

  13. Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation

    CERN Document Server

    Chisari, Nora Elisa; Laigle, Clotilde; Dubois, Yohan; Pichon, Christophe; Devriendt, Julien; Slyz, Adrianne; Miller, Lance; Gavazzi, Raphael; Benabed, Karim

    2015-01-01

    The intrinsic alignments of galaxies are recognised as a contaminant to weak gravitational lensing measurements. In this work, we study the alignment of galaxy shapes and spins at low redshift (z~0.5) in Horizon-AGN, an adaptive-mesh-refinement hydrodynamical cosmological simulation box of 100 Mpc/h a side with AGN feedback implementation. We find that spheroidal galaxies in the simulation show a tendency to be aligned radially towards over-densities in the dark matter density field and other spheroidals. This trend is in agreement with observations, but the amplitude of the signal depends strongly on how shapes are measured and how galaxies are selected in the simulation. Disc galaxies show a tendency to be oriented tangentially around spheroidals in three-dimensions. While this signal seems suppressed in projection, this does not guarantee that disc alignments can be safely ignored in future weak lensing surveys. The shape alignments of luminous galaxies in Horizon-AGN are in agreement with observations and...

  14. The Chemo-Dynamical Evolution of Elliptical Galaxies: Pre-heating and AGN heating

    CERN Document Server

    Kawata, D; Gibson, Brad K.; Kawata, Daisuke

    2004-01-01

    We study the chemodynamical evolution of elliptical galaxies and their X-ray and optical properties using high-resolution cosmological simulations. Our Tree N-body/SPH code includes a self-consistent treatment of radiative cooling, star formation, supernovae feedback, and chemical enrichment. We present a series of LCDM cosmological simulations which trace the spatial and temporal evolution of abundances of heavy elements in both the stellar and gas components of galaxies. A giant elliptical galaxy formed in one of the simulations is quantitatively compared with the observational data in both the X-ray and optical regime. We implement a treatment of both pre-heating and AGN heating in this simulation, and examine the effect of these processes on elliptical galaxy formation. We find that the adopted pre-heating (T=10^7 K at z=4) is not strong enough to explain the observed X-ray or optical properties. On the other hand, our AGN heating model in which the gas inflow induces the AGN heating is consistent with bo...

  15. Radio mini-halos and AGN heating in cool core clusters of galaxies

    CERN Document Server

    Gitti, Myriam

    2016-01-01

    The brightest cluster galaxy (BCG) in the majority of relaxed, cool core galaxy clusters is radio loud, showing non-thermal radio jets and lobes ejected by the central active galactic nucleus (AGN). Such relativistic plasma has been unambiguously shown to interact with the surrounding thermal intra-cluster medium (ICM) thanks to spectacular images where the lobe radio emission is observed to fill the cavities in the X-ray-emitting gas. This `radio-mode AGN feedback' phenomenon, which is thought to quench cooling flows, is widespread and is critical to understand the physics of the inner regions of galaxy clusters and the properties of the central BCG. At the same time, mechanically-powerful AGN are likely to drive turbulence in the central ICM which may contribute to gas heating and also play a role for the origin of non-thermal emission on cluster-scales. Diffuse non-thermal emission has been observed in a number of cool core clusters in the form of a radio mini-halo surrounding the radio-loud BCG on scales ...

  16. SWIFT BAT Survey of AGN

    Science.gov (United States)

    Tueller, J.; Mushotzky, R. F.; Barthelmy, S.; Cannizzo, J. K.; Gehrels, N.; Markwardt, C. B.; Skinner, G. K.; Winter, L. M.

    2008-01-01

    We present the results1 of the analysis of the first 9 months of data of the Swift BAT survey of AGN in the 14-195 keV band. Using archival X-ray data or follow-up Swift XRT observations, we have identified 129 (103 AGN) of 130 objects detected at [b] > 15deg and with significance > 4.8-delta. One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the logN - log S distribution, and find the slope to be 1.42+/-0.14. Characterizing the differential luminosity function data as a broken power law, we find a break luminosity logL*(ergs/s)= 43.85+/-0.26. We obtain a mean photon index 1.98 in the 14-195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGN above 10(exp 41) erg/s of 2.4x10(exp -3) Mpc(sup -3), which is about 10% of the total luminous local galaxy density above M* = -19.75. We have obtained X-ray spectra from the literature and from Swift XRT follow-up observations. These show that the distribution of log nH is essentially flat from nH = 10(exp 20)/sq cm to 10(exp 24)/sq cm, with 50% of the objects having column densities of less than 10(exp 22)/sq cm. BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log nH > 22.

  17. Infrared Classification and Luminosities For Dusty AGN and the Most Luminous Quasars

    OpenAIRE

    Weedman, Daniel; Sargsyan, Lusine; Lebouteiller, Vianney; Houck, James; Barry, Donald

    2012-01-01

    Mid-infrared spectroscopic measurements from the Infrared Spectrometer on Spitzer (IRS) are given for 125 hard X-ray AGN (14-195 keV) from the Swift Burst Alert Telescope sample and for 32 AGN with black hole masses from reverberation mapping. The 9.7 um silicate feature in emission or absorption defines an infrared AGN classification describing whether AGN are observed through dust clouds, indicating that 55% of the BAT AGN are observed through dust. The mid-infrared dust continuum luminosit...

  18. Unveiling multiple AGN activity in galaxy mergers

    CERN Document Server

    De Rosa, A; Bogdanovic, T; Decarli, R; Heidt, J; Herrero-Illana, R; Husemann, B; Komossa, S; Kun, E; Loiseau, N; Guainazzi, M; Paragi, Z; Perez-Torres, M; Piconcelli, E; Schawinski, K; Vignali, C

    2016-01-01

    In this paper we present an overview of the MAGNA (Multiple AGN Activity) project aiming at a comprehensive study of multiple supemassive black hole systems. With the main goal to characterize the sources in merging systems at different stages of evolution, we selected a sample of objects optically classified as multiple systems on the basis of emission line diagnostics and started a massive multiband observational campaign. Here we report on the discovery of the exceptionally high AGN density compact group SDSS~J0959+1259. A multiband study suggests that strong interactions are taking place among its galaxies through tidal forces, therefore this system represents a case study for physical mechanisms that trigger nuclear activity and star formation. We also present a preliminary analysis of the multiple AGN system SDSS~J1038+3921.}

  19. MEASURING SUPERMASSIVE BLACK HOLE SPINS IN AGN

    Directory of Open Access Journals (Sweden)

    Laura Brenneman

    2013-12-01

    Full Text Available Measuring the spins of supermassive black holes (SMBHs in active galactic nuclei (AGN can inform us about the relative role of gas accretion vs. mergers in recent epochs of the life of the host galaxy and its AGN. Recent theoretical and observation advances have enabled spin measurements for ten SMBHs thus far, but this science is still very much in its infancy. Herein, I discuss how we measure black hole spin in AGN, using recent results from a long Suzaku campaign on NGC 3783 to illustrate this process and its caveats. I then present our current knowledge of the distribution of SMBH spins in the local universe. I also address prospects for improving the accuracy, precision and quantity of these spin constraints in the next decade and beyond with instruments such as NuSTAR, Astro-H and future large-area X-ray telescopes.

  20. Galaxy And Mass Assembly (GAMA): The 325 MHz Radio Luminosity Function of AGN and Star Forming Galaxies

    CERN Document Server

    Prescott, Matthew; Jarvis, M J; McAlpine, K; Smith, D J B; Fine, S; Johnston, R; Hardcastle, M J; Baldry, I K; Brough, S; Brown, M J I; Bremer, M N; Driver, S P; Hopkins, A M; Kelvin, L S; Loveday, J; Norberg, P; Obreschkow, D; Sadler, E M

    2016-01-01

    Measurement of the evolution of both active galactic nuclei (AGN) and star-formation in galaxies underpins our understanding of galaxy evolution over cosmic time. Radio continuum observations can provide key information on these two processes, in particular via the mechanical feedback produced by radio jets in AGN, and via an unbiased dust-independent measurement of star-formation rates. In this paper we determine radio luminosity functions at 325 MHz for a sample of AGN and star-forming galaxies by matching a 138 deg sq. radio survey conducted with the Giant Metrewave Radio Telescope (GMRT), with optical imaging and redshifts from the Galaxy And Mass Assembly (GAMA) survey. We find that the radio luminosity function at 325 MHz for star-forming galaxies closely follows that measured at 1.4 GHz. By fitting the AGN radio luminosity function out to $z = 0.5$ as a double power law, and parametrizing the evolution as ${\\Phi} \\propto (1 + z)^{k}$ , we find evolution parameters of $k = 0.92 \\pm 0.95$ assuming pure d...

  1. Propiedades de los AGNs oscurecidos y no oscurecidos

    Science.gov (United States)

    Taormina, M.; Bornancini, C.

    In this work we analyze the properties of obscured and unobscured AGNs selected from the "Multiwavelength Survey by Yale-Chile" (MUSYC). The sample of AGNs was selected base on their mid-infrared colors ([3.6], [4.5], [5.8] y [8.0] μm), from images obtained with the Spitzer Space Telescope. We select obscured and unobscured AGN samples using a simple criterion based on the observed optical to mid-IR color with limits R - [4.5] = 3.04 (AB system) and with redshifts in the range 1 < z < 3. Obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR- selected AGNs have significant dust extinction. FULL TEXT IN SPANISH

  2. Observations of Feedback from Radio-Quiet Quasars: II. Kinematics of Ionized Gas Nebulae

    CERN Document Server

    Liu, Guilin; Greene, Jenny E; Nesvadba, Nicole P H; Liu, Xin

    2013-01-01

    The prevalence and energetics of quasar feedback is a major unresolved problem in galaxy formation theory. In this paper, we present Gemini Integral Field Unit observations of ionized gas around eleven luminous, obscured, radio-quiet quasars at z~0.5 out to ~15 kpc from the quasar; specifically, we measure the kinematics and morphology of [O III]5007 emission. The round morphologies of the nebulae and the large line-of-sight velocity widths (with velocities containing 80% of the emission as high as 1000 km/s combined with relatively small velocity difference across them (from 90 to 520 km/s) point toward wide-angle quasi-spherical outflows. We use the observed velocity widths to estimate a median outflow velocity of 760 km/s, similar to or above the escape velocities from the host galaxies. The line-of-sight velocity dispersion declines slightly toward outer parts of the nebulae (by 3% per kpc on average). The majority of nebulae show blueshifted excesses in their line profiles across most of their extents, s...

  3. Unobscured Type 2 AGNs

    CERN Document Server

    Shi, Yong; Smith, Paul; Rigby, Jane; Hines, Dean; Donley, Jennifer; Schmidt, Gary; Diamond-Stanic, Aleksandar M; 10.1088/0004-637X/714/1/115

    2010-01-01

    Type 2 AGNs with intrinsically weak broad emission lines (BELs) would be exceptions to the unified model. After examining a number of proposed candidates critically, we find that the sample is contaminated significantly by objects with BELs of strengths indicating that they actually contain intermediate-type AGNs, plus a few Compton-thick sources as revealed by extremely low ratios of X-ray to nuclear IR luminosities. We develop quantitative metrics that show two (NGC 3147 and NGC 4594) of the remaining candidates to have BELs 2-3 orders of magnitude weaker than those of typical type-1 AGNs. Several more galaxies remain as candidates to have anomalously weak BELs, but this status cannot be confirmed with the existing information. Although the parent sample is poorly defined, the two confirmed objects are well under 1% of its total number of members, showing that the absence of a BEL is possible, but very uncommon in AGN. We evaluate these two objects in detail using multi-wavelength measurements. They have li...

  4. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    Science.gov (United States)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  5. Helical Magnetic Fields in AGN Jets

    Indian Academy of Sciences (India)

    Y. J. Chen; G.-Y. Zhao; Z.-Q. Shen

    2014-09-01

    We establish a simple model to describe the helical magnetic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observation of many blazar objects, suggesting the existence of helical magnetic fields in these sources.

  6. Transrelativistic pair plasmas in AGN jets

    DEFF Research Database (Denmark)

    Bottcher, M.; Pohl, M.; Schlickeiser, R.

    1999-01-01

    Models of relativistic jets filled with ultrarelativistic pair plasma are very successful in explaining the broadband radiation of gamma-ray blazars. Assuming that the initial injection and cooling of ultrarelativistic pair plasma in an AGN jet has occurred, producing the observed high-energy gamma...

  7. A remarkably flat relationship between the average star formation rate and AGN luminosity for distant X-ray AGN

    CERN Document Server

    Stanley, F; Alexander, D M; Swinbank, A M; Aird, J A; Del Moro, A; Hickox, R C; Mullaney, J R

    2015-01-01

    In this study we investigate the relationship between the star formation rate, SFR, and AGN luminosity, L(AGN), for ~2000 X-ray detected AGN. The AGN span over three orders of magnitude in X-ray luminosity (10^(42) < L(2-8keV) < 10^(45.5) erg/s) and are in the redshift range z = 0.2 - 2.5. Using infrared (IR) photometry (8 - 500um), including deblended Spitzer and Herschel images and taking into account photometric upper limits, we decompose the IR spectral energy distributions into AGN and star formation components. Using the IR luminosities due to star formation, we investigate the average SFRs as a function of redshift and AGN luminosity. In agreement with previous studies, we find a strong evolution of the average SFR with redshift, tracking the observed evolution of the overall star forming galaxy population. However, we find that the relationship between the average SFR and AGN luminosity is flat at all redshifts and across all the AGN luminosities investigated. By comparing to empirical models, w...

  8. Sub-arcsec mid-IR observations of NGC 1614: Nuclear star-formation or an intrinsically X-ray weak AGN?

    CERN Document Server

    Pereira-Santaella, M; Alonso-Herrero, A; Usero, A; Díaz-Santos, T; García-Burillo, S; Alberdi, A; Gonzalez-Martin, O; Herrero-Illana, R; Imanishi, M; Levenson, N A; Pérez-Torres, M A; Almeida, C Ramos

    2015-01-01

    We present new mid-infrared N-band spectroscopy and Q-band photometry of the local luminous infrared galaxy NGC1614, one of the most extreme nearby starbursts. We analyze the mid-IR properties of the nucleus (central 150 pc) and four regions of the bright circumnuclear (diameter~600 pc) star-forming (SF) ring of this object. The nucleus differs from the circumnuclear SF ring by having a strong 8-12 micron continuum (low 11.3 micron PAH equivalent width). These characteristics, together with the nuclear X-ray and sub-mm properties, can be explained by an X-ray weak active galactic nucleus (AGN), or by peculiar SF with a short molecular gas depletion time and producing an enhanced radiation field density. In either case, the nuclear luminosity (L(IR) < 6e43 erg/s) is only <5% of the total bolometric luminosity of NGC1614. So this possible AGN does not dominate the energy output in this object. We also compare three star-formation rate (SFR) tracers (Pa$\\alpha$, 11.3 micron PAH, and 24 micron emissions) at...

  9. X-ray evidence for ultra-fast outflows in local AGNs

    CERN Document Server

    Tombesi, F; Sambruna, R M; Reeves, J N; Reynolds, C S; Braito, V; Dadina, M

    2012-01-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in >40% of the sources. Their outflow velocities are in the range 0.03-0.3c, with a mean value of ~0.14c. The ionization is high, in the range logxi~3-6 erg s^{-1} cm, and also the associated column densities are large, in the interval ~10^{22}-10^{24} cm^{-2}. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets and their study can provide important clues on th...

  10. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  11. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  12. Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    Science.gov (United States)

    Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald

    2016-06-01

    West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.

  13. Observations of feedback from radio-quiet quasars - II. Kinematics of ionized gas nebulae

    Science.gov (United States)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.; Nesvadba, Nicole P. H.; Liu, Xin

    2013-12-01

    The prevalence and energetics of quasar feedback is a major unresolved problem in galaxy formation theory. In this paper, we present Gemini Integral Field Unit observations of ionized gas around 11 luminous, obscured, radio-quiet quasars at z ˜ 0.5 out to ˜15 kpc from the quasar; specifically, we measure the kinematics and morphology of [O III] λ5007 Å emission. The round morphologies of the nebulae and the large line-of-sight velocity widths (with velocities containing 80 per cent of the emission as high as 103 km s-1) combined with relatively small velocity difference across them (from 90 to 520 km s-1) point towards wide-angle quasi-spherical outflows. We use the observed velocity widths to estimate a median outflow velocity of 760 km s-1, similar to or above the escape velocities from the host galaxies. The line-of-sight velocity dispersion declines slightly towards outer parts of the nebulae (by 3 per cent kpc-1 on average). The majority of nebulae show blueshifted excesses in their line profiles across most of their extents, signifying gas outflows. For the median outflow velocity, we find dot{E}_kin between 4 × 1044 and 3 × 1045 erg s-1 and dot{M} between 2 × 103 and 2 × 104 M⊙ yr-1. These values are large enough for the observed quasar winds to have a significant impact on their host galaxies. The median rate of converting bolometric luminosity to kinetic energy of ionized gas clouds is ˜2 per cent. We report four new candidates for `superbubbles' - outflows that may have broken out of the denser regions of the host galaxy.

  14. Observations of Feedback from Radio-Quiet Quasars: I. Extents and Morphologies of Ionized Gas Nebulae

    CERN Document Server

    Liu, Guilin; Greene, Jenny E; Nesvadba, Nicole P H; Liu, Xin

    2013-01-01

    Black hole feedback -- the strong interaction between the energy output of supermassive black holes and their surrounding environments -- is routinely invoked to explain the absence of overly luminous galaxies, the black hole vs. bulge correlations and the similarity of black hole accretion and star formation histories. Yet direct probes of this process in action are scarce and limited to small samples of active nuclei. We present Gemini IFU observations of the distribution of ionized gas around luminous, obscured, radio-quiet (RQ) quasars at z~0.5. We detect extended ionized gas nebulae via [O III]5007 emission in every case, with a mean diameter of 28 kpc. These nebulae are nearly perfectly round. The regular morphologies of nebulae around RQ quasars are in striking contrast with lumpy or elongated nebulae seen around radio galaxies at low and high redshifts. We present the uniformly measured size-luminosity relationship of [O III] nebulae around Seyfert 2 galaxies and type 2 quasars spanning 6 orders of ma...

  15. Railway Station Facilities in Rural and Urban Services Based on Observation and User Feedback

    Directory of Open Access Journals (Sweden)

    Mohd Masirin Mohd Idrus

    2016-01-01

    Full Text Available Public transport is one of the facilities available in Malaysia. Overwhelming demand from the community has demanded public transport as an alternative for some people to do their daily activities. The increasing of Malaysian population brought many problems to the environment especially traffic congestion problem. The Government spends a lot of money to overcome this problem [10]. Public transport has been upgraded to ensure user comfort. Most people in the city are more interested in using railway transport as traffic congestion and travel time accuracy is better than other public transport [1, 5]. To influence public demand, the facilities available at the train station should be complete [3, 5]. The choice of location for the study are Batu Gajah station (station 1 and Kluang station (station 2 for rural services while Bandar Tasik Selatan station (station 3 and KL Central station (station 4 for urban services. The results of this study showed that, based on data and information obtained from field survey work and the feedback questionnaires from users, basic facilities at railway stations surveyed for urban and rural services can be identified and listed. An analysis of the status of the facilities at railway stations can be established through the safety of passengers and observations in the field. The facilities available at the urban service station are more complete than in rural service station. Facilities at railway station should be improved to attract people using the facilities.

  16. IFU Observations of Feedback from Radio-Quiet Quasars at 0.5

    Science.gov (United States)

    Liu, Guilin; Zakamska, N. L.; Greene, J. E.; Nesvadba, N.; Liu, X.

    2014-01-01

    Feedback from black holes is now understood to be a key ingredient in galaxy formation modeling, but direct probes of this process in action are scarce and limited to small samples of active nuclei. Meanwhile, theories have long predicted an evolutionary scenario in which galaxy mergers induce both star formation and nuclear activity, triggering a violent transition from an obscured accretion stage to an unobscured phase as a Type 1 quasar, yet direct evidence is lacking. We present Gemini Integral Field Unit (IFU) observations of the distribution of warm ionized gas 104 K) around two luminous radio-quiet quasars: 11 obscured (Type 2) and 12 unobscured (Type 1) quasars with matched [O III]5007 luminosities (L[O III] > 1042.7-43.6 erg/s) and redshifts ( 0.5). For the Type 2 quasar sample, we have found that their gas nebulae are: (1) existent and extended on galactic scales in every case (15-39 kpc across); (2) nearly perfectly round, in striking contrast with lumpy and/or elongated nebulae around radio galaxies; (3) signifying wide-angle quasi-spherical outflows by their roundness and large velocity dispersion (FWHM˜1000 km/s); (4) likely escaping from the host galaxies (the derived median outflow velocity is 760 km/s); (5) showing slightly declining velocity dispersions toward their outer parts (˜3% per kpc); (6) blowing winds with high kinetic energy (1045 erg/s, ˜2% of Lbol) and mass (2×103-4 M⊙/yr) flows. (7) showing a universal radial profile of [O III]/Hβ (8) constructing a size-luminosity relation with a flat slope, implying clumpy nebulae that transition from being ionization-bounded at small radii to being matter-bounded in the outer parts. For the Type 1 quasar sample, we also detect extended nebulae surrounding all quasars with sizes, morphology and gas kinematics surprisingly similar to the Type 2 quasar nebulae. In conclusion, energetic quasi-spherical outflows are ubiquitous in luminous quasars of all types at 0.5. Such striking smooth and

  17. A UV to mid-IR study of AGN selection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sun Mi; Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Vic 3800 (Australia); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Jannuzi, Buell T. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hickox, Ryan C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  18. Improved Disturbance Observer (DOB) Based Advanced Feedback Control for Optimal Operation of a Mineral Grinding Process%Improved Disturbance Observer (DOB) Based Advanced Feedback Control for Optimal Operation of a Mineral Grinding Process

    Institute of Scientific and Technical Information of China (English)

    周平; 向波; 柴天佑

    2012-01-01

    Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.

  19. Vegetation controls on northern high latitude snow-albedo feedback: Observations and CMIP5 model simulations

    OpenAIRE

    Loranty, MM; Berner, LT; Goetz, SJ; Jin, Y.; Randerson, JT

    2014-01-01

    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, ...

  20. Radio Loud AGNs are Mergers

    CERN Document Server

    Chiaberge, Marco; Lotz, Jennifer; Norman, Colin

    2015-01-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei at z>1 using new samples. The objects have HST images taken with WFC3 in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z>1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%) radio-loud galaxies at z>1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38% are merging systems. The merger fraction for the sample of non-active galaxies at z>1 is indistinguishable from radio-quiet objects. This...

  1. AGNs as main contributors to the UV ionizing emissivity at high redshifts: predictions from a Lambda-CDM model with linked AGN/galaxy evolution

    OpenAIRE

    Giallongo, E.; Menci, N.; Fiore, F.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L

    2012-01-01

    We have evaluated the contribution of the AGN population to the ionization history of the Universe based on a semi-analytic model of galaxy formation and evolution in the CDM cosmological scenario. The model connects the growth of black holes and of the ensuing AGN activity to galaxy interactions. In the model we have included a self consistent physical description of the escape of ionizing UV photons; this is based on the blast-wave model for the AGN feedback we developed in a previous paper...

  2. AGN variability at hard X-rays

    CERN Document Server

    Soldi, S; Beckmann, V; Lubinski, P

    2010-01-01

    We present preliminary results on the variability properties of AGN above 20 keV in order to show the potential of the INTEGRAL IBIS/ISGRI and Swift/BAT instruments for hard X-ray timing analysis of AGN. The 15-50 keV light curves of 36 AGN observed by BAT during 5 years show significantly larger variations when the blazar population is considered (average normalized excess variance = 0.25) with respect to the Seyfert one (average normalized excess variance = 0.09). The hard X-ray luminosity is found to be anti-correlated to the variability amplitude in Seyfert galaxies and correlated to the black hole mass, confirming previous findings obtained with different AGN hard X-ray samples. We also present results on the Seyfert 1 galaxy IC 4329A, as an example of spectral variability study with INTEGRAL/ISGRI data. The position of the high-energy cut-off of this source is found to have varied during the INTEGRAL observations, pointing to a change of temperature of the Comptonising medium. For several bright Seyfert...

  3. How are AGN Found?

    CERN Document Server

    Mushotzky, R

    2004-01-01

    We discuss the very different methods in each wavelength band for selecting and finding Active Galactic Nuclei (AGN). We briefly review the history of the different techniques for finding AGN and compare and contrast the advantages and difficulties of selection in different wavelength bands. We stress the strong selection effects in each wavelength band and the difficulty of defining complete samples. Of all the techniques presently used, we conclude that selection in the hard X-ray band via imaging and spectroscopy is the most complete and allows the best estimate of the number and evolution of active galaxies. However, all of the techniques have difficulties at low luminosities where emission due to stellar processes can have similar sizes and luminosities.

  4. Cadence Requirements for AGN Accretion Studies with LSST

    Science.gov (United States)

    Moreno, Jackeline; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.

    2016-01-01

    We test various samplings of mock AGN lightcurves to determine minimum cadence requirements for future technologies like the Large Synoptic Survey Telescope (LSST). AGN lightcurves exhibit stochastic behavior, with variability seen in ground-based optical surveys on timescales from days to years. Significant variability structure on timescales up to a few days was revealed by the high time resolution (~30 minutes) of Kepler Satellite. Now it is apparent that under-sampling by ground based instruments may be leaving out a big chunk of the AGN accretion picture. To probe Kepler AGN, recent studies have investigated the suitability of sophisticated models like CARMA processes to better understand dominant mechanisms driving observed variability across these timescales. By testing models against AGN photometry, we gain insights about accretion physics, intrinsic differences between AGN sub-types, and physical scales pertaining to orbits or casually connected matter flows. We investigate cadence, time window, and regularity requirements that accurately recover parameters of our model lightcurves constructed with a CARMA process and observations such that ground based telescopes can optimally collect data for AGN science.

  5. Sub-arcsec mid-IR observations of NGC 1614: Nuclear star formation or an intrinsically X-ray weak AGN?

    Science.gov (United States)

    Pereira-Santaella, M.; Colina, L.; Alonso-Herrero, A.; Usero, A.; Díaz-Santos, T.; García-Burillo, S.; Alberdi, A.; Gonzalez-Martin, O.; Herrero-Illana, R.; Imanishi, M.; Levenson, N. A.; Pérez-Torres, M. A.; Ramos Almeida, C.

    2015-12-01

    We present new mid-infrared (mid-IR) N-band spectroscopy and Q-band photometry of the local luminous IR galaxy NGC 1614, one of the most extreme nearby starbursts. We analyse the mid-IR properties of the nucleus (central 150 pc) and four regions of the bright circumnuclear (diameter˜600 pc) star-forming (SF) ring of this object. The nucleus differs from the circumnuclear SF ring by having a strong 8-12 μm continuum (low 11.3 μm PAH equivalent width). These characteristics, together with the nuclear X-ray and sub-mm properties, can be explained by an X-ray weak active galactic nucleus (AGN), or by peculiar SF with a short molecular gas depletion time and producing an enhanced radiation field density. In either case, the nuclear luminosity (LIR < 6 × 1043 erg s-1) is only <5 per cent of the total bolometric luminosity of NGC 1614. So this possible AGN does not dominate the energy output in this object. We also compare three star formation rate (SFR) tracers (Pa α, 11.3 μm PAH, and 24 μm emissions) at 150 pc scales in the circumnuclear ring. In general, we find that the SFR is underestimated (overestimated) by a factor of 2-4 (2-3) using the 11.3 μm PAH (24 μm) emission with respect to the extinction corrected Pa α SFR. The former can be explained because we do not include diffuse polycyclic aromatic hydrocarbon (PAH) emission in our measurements, while the latter might indicate that the dust temperature is particularly warmer in the central regions of NGC 1614.

  6. Introducing the individual Teamwork Observation and Feedback Tool (iTOFT): Development and description of a new interprofessional teamwork measure.

    Science.gov (United States)

    Thistlethwaite, Jill; Dallest, Kathy; Moran, Monica; Dunston, Roger; Roberts, Chris; Eley, Diann; Bogossian, Fiona; Forman, Dawn; Bainbridge, Lesley; Drynan, Donna; Fyfe, Sue

    2016-07-01

    The individual Teamwork Observation and Feedback Tool (iTOFT) was devised by a consortium of seven universities in recognition of the need for a means of observing and giving feedback to individual learners undertaking an interprofessional teamwork task. It was developed through a literature review of the existing teamwork assessment tools, a discussion of accreditation standards for the health professions, Delphi consultation and field-testing with an emphasis on its feasibility and acceptability for formative assessment. There are two versions: the Basic tool is for use with students who have little clinical teamwork experience and lists 11 observable behaviours under two headings: 'shared decision making' and 'working in a team'. The Advanced version is for senior students and junior health professionals and has 10 observable behaviours under four headings: 'shared decision making', 'working in a team', 'leadership', and 'patient safety'. Both versions include a comprehensive scale and item descriptors. Further testing is required to focus on its validity and educational impact.

  7. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  8. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    Science.gov (United States)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  9. Observations of feedback from radio-quiet quasars - I. Extents and morphologies of ionized gas nebulae

    Science.gov (United States)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.; Nesvadba, Nicole P. H.; Liu, Xin

    2013-04-01

    Black hole feedback - the strong interaction between the energy output of supermassive black holes and their surrounding environments - is routinely invoked to explain the absence of overly luminous galaxies, the black hole versus bulge correlations and the similarity of black hole accretion and star formation histories. Yet direct probes of this process in action are scarce and limited to small samples of active nuclei. In this paper, we present Gemini Integral Field Unit observations of the distribution of ionized gas around luminous, obscured, radio-quiet quasars at z ˜ 0.5. We detect extended ionized gas nebulae via [O III] λ5007 Å emission in every case, with a mean diameter of 28 kpc. These nebulae are nearly perfectly round, with Hβ surface brightness declining ∝R-3.5 ± 1.0. The regular morphologies of nebulae around radio-quiet quasars are in striking contrast with lumpy or elongated [O III] nebulae seen around radio galaxies at low and high redshifts. We present the uniformly measured size-luminosity relationship of [O III] nebulae around Seyfert 2 galaxies and type 2 quasars spanning six orders of magnitude in luminosity and confirm the flat slope of the correlation (R_{[O III]}∝ L_{[O III]}^{0.25± 0.02}). We propose a model of clumpy nebulae in which clouds that produce line emission transition from being ionization-bounded at small distances from the quasar to being matter-bounded in the outer parts of the nebula. The model - which has a declining pressure profile - qualitatively explains line ratio profiles and surface brightness profiles seen in our sample. It is striking that we see such smooth and round large-scale gas nebulosities in this sample, which are inconsistent with illuminated merger debris and which we suggest may be the signature of accretion energy from the nucleus reaching gas at large scales.

  10. Multiwavelength Studies of X-ray Selected AGN

    Science.gov (United States)

    Paronyan, G. M.; Mickaelian, A. M.; Abrahamyan, H. V.

    2016-06-01

    We present multiwavelength studies of the AGN and galaxy samples of the HRC/BHRC Joint Catalogue, optical identifications of ROSAT BSC and FSC sources. The extragalactic sample contains 4253 candidate AGN and 492 galaxies without a sign of activity. Multiwavelength data were retrieved from γ-ray to radio providing 62 photometric points in the range 100 GeV - 151 MHz. Color-color diagrams were built to investigate the nature of these objects. Activity types were taken from the SDSS DR12 spectroscopic database, as well as NED and HyperLEDA. So far, 451 objects remain as AGN candidates to be confirmed by spectroscopic observations.

  11. The Starburst Model for AGN Past, Present & Future

    CERN Document Server

    Fernandes, R C

    1996-01-01

    It is now eleven years since Terlevich \\& Melnick first proposed an `AGN without black-holes' model, an idea which since then evolved into what is now called the starburst model for AGN. This model has been the subject of much debate in the last decade, with observational evidence both for and against it further fuelling the controversy. Can we after all these years reach a veredictum on whether starbursts can power AGN? This contribution tries to answer this question reviewing the main achievements of the starburst model, its current status and future prospects.

  12. The Starburst Model for AGN: Past, Present & Future

    OpenAIRE

    Fernandes, R. Cid

    1996-01-01

    It is now eleven years since Terlevich \\& Melnick first proposed an `AGN without black-holes' model, an idea which since then evolved into what is now called the starburst model for AGN. This model has been the subject of much debate in the last decade, with observational evidence both for and against it further fuelling the controversy. Can we after all these years reach a veredictum on whether starbursts can power AGN? This contribution tries to answer this question reviewing the main achie...

  13. TORUS2015: The AGN unification scheme after 30 years

    Science.gov (United States)

    Gandhi, P.; Hoenig, S. F.

    2015-09-01

    The torus paradigm has proved to be remarkably successful at unifying the observed zoo of active galaxy (AGN) classes, despite having many manifest holes. The field is still data-driven with novel observational results at multiple wavelengths emerging rapidly. We are only now beginning to map out the structure of dusty gas feeding and obscuring AGN, and to model its evolution in galaxy growth. But these have also brought out several apparently contradictory results which must hold the key to future progress. As we celebrate 30 years of the paradigm, this is the perfect time to draw together our current knowledge and reassess the state of the field. This will be an international workshop at the University of Southampton, UK, with the objective of laying out the major challenges to the field and paving future research directions. Our hope is to facilitate plenty of informal discussions between multiwavelength observers and theorists, addressing some key issues: * What is the main driver in the unification scheme? What are the roles of orientation, mass accretion rate and feedback? * What is the nature and structure of gas and dust in the torus? Do we have a self-consistent picture across multiple wavelengths? * How critical is the role of the torus as an interface between small nuclear scales and large galactic scales? Does galaxy evolution necessarily require tori? * How close are we to self-consistently simulating nuclear activity including AGN feeding and nuclear star-formation? Workshop Rationale The three themes of accretion, orientation, and evolution will be covered through invited and solicited contributions. Different to other conferences, we are building each session around some key papers that have shaped the field or those with great future potential to do so. We specifically pit competing ideas against each other to help painting a realistic picture of the state-of-the-art. Each session will end with discussion rounds delving into important future

  14. A Global Picture of AGN Winds

    Science.gov (United States)

    Kazanas, D.; Fukumura, K.

    2011-01-01

    We present a unified structure for accretion powered sources across their entire luminosity range from accreting galactic black holes to the most luminous quasars, with emphasis on AGN and their phenomenology. Central to this end is the notion of MHD winds launched from the accretion disks that power these objects. This work similar in spirit to that of Elvis of more that a decade ago, provides, on one hand, only the broadest characteristics of these objects, but on the other, also scaling laws that allow one to make contact with objects of different luminosity. The conclusion of this work is that AGN phenomenology can be accounted for in terms of dot(m), the wind mass flux in units of the Eddington value, the observer's inclination angle theta and alpha_OX the logarithmic slope between UV and X-ray flares. However given the well known correlation between alpha(sub ox) and UV Luminosity, we conclude that the AGN structure depends on only two parameters. The small number of model parameters hence suggests that an understanding of the global AGN properties maybe within reach.

  15. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    Science.gov (United States)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  16. Observing Decadal Trends in Atmospheric Feedbacks and Climate Change with Zeus and CLARREO

    Science.gov (United States)

    Revercomb, H. E.; Best, F. A.; Knuteson, R. O.; Tobin, D. C.; Taylor, J. K.; Gero, P.; Adler, D. P.; Pettersen, C.; Mulligan, M.; Tobin, D. C.

    2012-12-01

    New technologies for observing decadal trends in atmospheric feedbacks and climate change from space have been recently demonstrated via a NASA Instrument Incubator Program (IIP) project of our group and the Anderson Group of Harvard University. Using these new technologies, a mission named Zeus has been proposed to the first NASA Earth Venture Instruments opportunity (EVI-1). Zeus would provide a low cost mechanism to initiate a new era in high spectral resolution IR climate Benchmark and Intercalibration observations, the basis for which has been established by definition of the CLARREO mission in the 2007 NRC "Decadal Survey" and by the Science Definition Team established by NASA LaRC to further the full blown CLARREO mission. Zeus EVI is a low-cost, low-risk, and high-value EVI mission that will deploy an Absolute Radiance Interferometer (ARI) instrument to measure absolute spectrally resolved infrared radiance over much of the Earth-emitted spectrum with ultra-high accuracy (attractive baseline option for Zeus EVI is the 51.6 degrees inclination orbit of the International Space Station (ISS). For Zeus deployment on the ISS, higher latitude climate benchmark information will be obtained from operational sounders intercalibrated by Zeus. A key aspect of the Zeus ARI instrument is the On-orbit Verification and Test System (OVTS) for verifying its accuracy by reference to International Standards (SI) and testing on orbit. The OVTS includes an On-orbit Absolute Radiance Standard (OARS), which is a high emissivity cavity blackbody that can be operated over a wide range of temperatures to verify ARI calibration. The OARS uses multiple small phase change cells to establish its fundamental temperature scale to better than 5 mK absolute and a broad-band heated-halo source for monitoring its cavity spectral emissivity throughout the mission. A Quantum Cascade Laser (QCL) is also used by the OVTS to monitor the ARI instrument spectral lineshape and the emissivity of its

  17. Feedback under the microscope II: heating, gas uplift, and mixing in the nearest cluster core

    OpenAIRE

    Werner, N.; Simionescu, A.; Million, E. T.; Allen, S. W.; Nulsen, P. E. J.; von der Linden, A.; Hansen, S. M.; Boehringer, H.; Churazov, E.; Fabian, A. C.; Forman, W.R.; Jones, C.; Sanders, J. S.; Taylor, G. B.

    2010-01-01

    Using a combination of deep 574ks Chandra data, XMM-Newton high-resolution spectra, and optical Halpha+NII images, we study the nature and spatial distribution of the multiphase plasma in M87. Our results provide direct observational evidence of `radio mode' AGN feedback in action, stripping the central galaxy of its lowest entropy gas and preventing star-formation. This low entropy gas was entrained with and uplifted by the buoyantly rising relativistic plasma, forming long "arms". These arm...

  18. Mini-Survey on SDSS OIII AGN with Swift

    Science.gov (United States)

    Angelini, Lorella

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. There is a common wisdom that every massive galaxy has a massive black hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low $L_X$ (at all $z$). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of {it optically-selected samples} shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [O{\\sc iii}] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a min-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([O{\\sc iii}]) to check the relation with the $L_X$ observed with Swift.

  19. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    Science.gov (United States)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  20. Toward a Unified AGN Structure

    Science.gov (United States)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris; Behar, Ehud; Contopoulosa, Ioannis

    2012-01-01

    We present a unified model for the structure and appearance of accretion powered sources across their entire luminosity range from galactic X-ray binaries (XRB) to luminous quasars, with emphasis on AG N and their phenomenology. Central to this model is the notion of MHD winds launched by the accretion disks that power these objects. These winds provide the matter that manifests as blueshifted absorption features in the UV and X-ray spectra of a large fraction of these sources; furthermore, their density distribution in the poloidal plane determines their "appearance" (i.e. the column and velocity structure of these absorption features and the obscuration of the continuum source) as a function of the observer inclination angle (a feature to which INTEGRAL has made significant contributions). This work focuses on just the broadest characteristics of these objects; nonetheless, it provides scaling laws that allow one to reproduce within this model the properties of objects extending in luminosity from luminous quasars to XRBs. Our general conclusion is that the AGN phenomenology can be accounted for in terms of three parameters: The wind maSS flux in units of the Eddington value, m(dot), the observers' inclination angle Theta and the logarithmic slope between the 0/UV and X-ray fluxes alpha(sub ox); however because of a correlation between alpha(sub ox) and UV luminosity the number of significant parameters is two. The AGN correlations implied by this model appear to extend to and consistent with the XRB phenomenology, suggesting the presence of a truly unified underlying structure for accretion powered sources.

  1. X-ray View of Four High-Luminosity Swift-BAT AGN: Unveiling Obscuration and Reflection with Suzaku

    Science.gov (United States)

    Fiorettil, V.; Angelini, L.; Mushotzky, R. F.; Koss, M.; Malaguti, G.

    2013-01-01

    Aims. A complete census of obscured Active Galactic Nuclei (AGN) is necessary to reveal the history of the super massive black hole (SMBH) growth and galaxy evolution in the Universe given the complex feedback processes and the fact that much of this growth occurs in an obscured phase. In this context, hard X-ray surveys and dedicated follow-up observations represent a unique tool for selecting highly absorbed AGN and for characterizing the obscuring matter surrounding the SMBH. Here we focus on the absorption and reflection occurring in highly luminous, quasar-like AGN, to study the relation between the geometry of the absorbing matter and the AGN nature (e.g. X-ray, optical, and radio properties), and to help to determine the column density dependency on the AGN luminosity. Methods. The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10(exp -11) erg per square centimeter and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 less than LogLBAT less than 45.31) were selected as targets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis, adding an original spectral analysis when non was available from the literature. Results. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption (N(sub H) approximately 4 × 10(exp 23) per square centimeter) and strong Compton reflection; ii) the lack of variability; iii) the "buried" nature, i.e. the low scattering fraction (less than 0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density

  2. Exploring Multiwavelength AGN Variability with Swift Archival Data

    OpenAIRE

    Gelbord, Jonathan; Gronwall, Caryl; Grupe, Dirk; Berk, Dan Vanden; Wu, Jian

    2015-01-01

    We are conducting an archival Swift program to measure multiwavelength variability in active galactic nuclei (AGN). This variability information will provide constraints on the geometry, physical conditions and processes of the structures around the central black holes that emit and reprocess the observed flux. Among our goals are: (1) to produce a catalog of type 1 AGN with time-resolved multi-wavelength data; (2) to characterize variability in the optical, UV and X-ay bands as well as chang...

  3. Optical Identifications of X-ray Selected AGNs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For investigating the statistical properties of X-ray selected Active Galactic Nuclei (AGNs), we have carried out a program of optical identification of a selection of X-ray sources from ROSAT All Sky Survey Bright Source Catalogue (RASS-BSC) using the 2.16 m telescope of Beijing Astronomical Observatory (BAO). In the preliminary observations, 23 new AGNs were discovered, of which 9 are quasars, and 14 are Seyfert galaxies.

  4. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    Science.gov (United States)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  5. Beyond Str\\"omgren Spheres and Wind-Blown Bubbles: An Observational Perspective on H II Region Feedback

    CERN Document Server

    Povich, Matthew S

    2012-01-01

    Massive stars produce copious quantities of ultraviolet radiation beyond the Lyman limit, photoionizing the interstellar medium (ISM) and producing H II regions. As strong sources of recombination- and forbidden-line emission, infrared continuum, and thermal (free-free) radio continuum, H II regions serve as readily-observable beacons of massive star formation in the Milky Way and external galaxies. Along with supernovae, H II regions are dominant sources of feedback in star-forming galaxies, injecting radiative and mechanical luminosity into the ISM. H II regions may prove more important than supernovae as triggers of star formation through localized compression of cold cloud cores. In this review, I give a broad overview of the structure and time-evolution of H II regions, emphasizing complications to the theoretical picture revealed by multiwavelength observations. I discuss a recent controversy surrounding the dominant feedback mechanism in 30 Doradus, the most luminous H II region in the Local Group. I s...

  6. Obscured AGN at High Redshift

    Science.gov (United States)

    Stern, Daniel

    2008-01-01

    This viewgraph presentation reviews the obscured sources of Active Galactic Nuclei (AGN) in the universe at high redshift. The cosmic X-ray background, unified models of AGN and clues to galaxy formation/evolution is the motivation for this study.

  7. Disturbance observer based fault estimation and dynamic output feedback fault tolerant control for fuzzy systems with local nonlinear models.

    Science.gov (United States)

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Liu, Yang

    2015-11-01

    This paper addresses the problems of fault estimation (FE) and fault tolerant control (FTC) for fuzzy systems with local nonlinear models, external disturbances, sensor and actuator faults, simultaneously. Disturbance observer (DO) and FE observer are designed, simultaneously. Compared with the existing results, the proposed observer is with a wider application range. Using the estimation information, a novel fuzzy dynamic output feedback fault tolerant controller (DOFFTC) is designed. The controller can be used for the fuzzy systems with unmeasurable local nonlinear models, mismatched input disturbances, and measurement output affecting by sensor faults and disturbances. At last, the simulation shows the effectiveness of the proposed methods. PMID:26456728

  8. DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY

    International Nuclear Information System (INIS)

    Dual supermassive black holes (SMBHs) with kiloparsec-scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z +3.6-1.9% to 18+5-5%). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ∼3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9+3-2% to 29-19+26%). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs

  9. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    Science.gov (United States)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1985-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  10. The Impact of Galactic Feedback on the Circumgalactic Medium

    CERN Document Server

    Suresh, Joshua; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Sijacki, Debora; Springel, Volker; Hernquist, Lars

    2015-01-01

    Galactic feedback strongly affects the way galactic environments are enriched. We examine this connection by performing a suite of cosmological hydrodynamic simulations, exploring a range of parameters based on the galaxy formation model developed in Vogelsberger et al. 2013 (henceforth V13). We examine the effects of AGN feedback, wind mass loading, wind specific energy, and wind metal-loading on the properties of the circumgalactic medium (CGM) of galaxies with $M_\\text{halo} > 10^{11} M_\\odot$. Note that while the V13 model was tuned to match observations including the stellar mass function, no explicit tuning was done for the CGM. The wind energy per unit outflow mass has the most significant effect on the CGM enrichment. High energy winds launch metals far beyond the virial radius. AGN feedback also has a significant effect, but only at $z < 3$. We compare to high redshift HI and CIV observations. All our simulations produce the observed number of Damped Lyman-$\\alpha$ Absorbers. At lower column densi...

  11. What Shapes the Galaxy Mass Function? Exploring the Roles of Supernova-Driven Winds and AGN

    CERN Document Server

    Bower, R G; Crain, R A

    2011-01-01

    The observed stellar mass function (SMF) is very different to the halo mass function predicted by Lambda-CDM, and it is widely accepted that this is due to energy feedback from supernovae and black holes. However, the strength and form of this feedback is not understood. In this paper, we use the phenomenological model GALFORM to explore how galaxy formation depends on the strength and halo mass dependence of feedback. We focus on 'expulsion' models in which the wind mass loading, beta, is proportional to 1/\\vdisk^n, with n=0,1,2 and contrast these models with the successful Bower et al.\\ 2008 model (B8W7). A crucial development is that our code explicitly accounts for the recapture of expelled gas as the system's halo mass (and thus gravitational potential) increases. We find that a model with modest wind speed but high mass loading matches the flat portion of the SMF. When combined with AGN feedback, the model provides a good description of the observed SMF above 10^9 h^-1 Msol. However, in the expulsion mo...

  12. AGN Broad Line Regions Scale with Bolometric Luminosity

    CERN Document Server

    Trippe, Sascha

    2015-01-01

    The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with bolometric rather than monochromatic AGN luminosity, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on H-alpha / H-beta and C IV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.

  13. Acceleration feedback control (AFC) enhanced by disturbance observation and compensation (DOC) for high precision tracking in telescope systems

    Science.gov (United States)

    Wang, Qiang; Cai, Hua-Xiang; Huang, Yong-Mei; Ge, Liang; Tang, Tao; Su, Yan-Rui; Liu, Xiang; Li, Jin-Ying; He, Dong; Du, Sheng-Ping; Ling, Yu

    2016-08-01

    In this paper, a cascade acceleration feedback control (AFC) enhanced by a disturbance observation and compensation (DOC) method is proposed to improve the tracking precision of telescope systems. Telescope systems usually suffer some uncertain disturbances, such as wind load, nonlinear friction and other unknown disturbances. To ensure tracking precision, an acceleration feedback loop which can increase the stiffness of such a system is introduced. Moreover, to further improve the tracking precision, we introduce the DOC method which can accurately estimate the disturbance and compensate it. Furthermore, the analysis of tracking accuracy used by this method is proposed. Finally, a few comparative experimental results show that the proposed control method has excellent performance for reducing the tracking error of a telescope system.

  14. Reduced-order observer-based output feedback control of nonlinear time-delay systems with prescribed performance

    Science.gov (United States)

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2016-04-01

    This paper studies the problem of output feedback control for a class of nonlinear time-delay systems with prescribed performance. The system is in the form of triangular structure with unmodelled dynamics. First, we introduce a reduced-order observer to provide the estimate of the unmeasured states. Then, by setting a new condition with the performance function, we design the state transformation with prescribed performance control. By employing backstepping method, we construct the output feedback controller. It is proved that the resulting closed-loop system is asymptotically stable and both transient and steady-state performance of the output are preserved with the changing supply function idea. Finally, a simulation example is conducted to show the effectiveness of the main results.

  15. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    Science.gov (United States)

    Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A. A.; Forman, W. R.; Allen, S. W.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2016-05-01

    Cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ˜8-70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambient medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ˜13 per cent. In the region dominated by weak `ripples', about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling-heating balance.

  16. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    CERN Document Server

    Assef, R J; Brightman, M; Stern, D; Alexander, D; Bauer, F; Blain, A W; Diaz-Santos, T; Eisenhardt, P R M; Finkelstein, S L; Hickox, R C; Tsai, C -W; Wu, J W

    2015-01-01

    Hot Dust-Obscured Galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the WISE mission from their very red mid-IR colors, and characterized by hot dust temperatures ($T>60~\\rm K$). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured AGN that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of 8 Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot D...

  17. Broadcast Channels with Delayed Finite-Rate Feedback: Predict or Observe?

    CERN Document Server

    Xu, Jiaming; Jafar, Syed A

    2011-01-01

    Most multiuser precoding techniques require accurate transmitter channel state information (CSIT) to maintain orthogonality between the users. Such techniques have proven quite fragile in time-varying channels because the CSIT is inherently imperfect due to estimation and feedback delay, as well quantization noise. An alternative approach recently proposed by Maddah-Ali and Tse (MAT) allows for significant multiplexing gain in the multi-input single-output (MISO) broadcast channel (BC) even with transmit CSIT that is completely stale, i.e. uncorrelated with the current channel state. With $K$ users, their scheme claims to lose only a $\\log(K)$ factor relative to the full $K$ degrees of freedom (DoF) attainable in the MISO BC with perfect CSIT for large $K$. However, their result does not consider the cost of the feedback, which is potentially very large in high mobility (short channel coherence time). In this paper, we more closely examine the MAT scheme and compare its DoF gain to single user transmission (w...

  18. APEX-CHAMP+ high-J CO observations of low-mass young stellar objects: IV. Mechanical and radiative feedback

    CERN Document Server

    Yıldız, Umut A; van Dishoeck, Ewine F; Hogerheijde, Michiel R; Karska, Agata; Belloche, Arnaud; Endo, Akira; Frieswijk, Wilfred; Güsten, Rolf; van Kempen, Tim A; Leurini, Silvia; Nagy, Zsofia; Pérez-Beaupuits, Juan-Pablo; Risacher, Christophe; van der Marel, Nienke; van Weeren, Reinout J; Wyrowski, Friedrich

    2015-01-01

    During the embedded stage of star formation, bipolar molecular outflows and UV radiation from the protostar are important feedback processes. Our aim is to quantify the feedback, mechanical and radiative, for a large sample of low-mass sources. The outflow activity is compared to radiative feedback in the form of UV heating by the accreting protostar to search for correlations and evolutionary trends. Large-scale maps of 26 young stellar objects, which are part of the Herschel WISH key program are obtained using the CHAMP+ instrument on the APEX (12CO and 13CO 6-5), and the HARP-B instrument on the JCMT (12CO and 13CO 3-2). Maps are used to determine outflow parameters and envelope models are used to quantify the amount of UV-heated gas and its temperature from 13CO 6-5 observations. All sources in our sample show outflow activity and the outflow force, F_CO, is larger for Class 0 sources than for Class I sources, even if their luminosities are comparable. The outflowing gas typically extends to much greater ...

  19. The INTEGRAL/IBIS AGN catalogue: an update

    CERN Document Server

    Malizia, A; Molina, M; Bassani, L; Bazzano, A; Bird, A J; Ubertini, P

    2016-01-01

    In the most recent IBIS survey based on observations performed during the first 1000 orbits of INTEGRAL, are listed 363 high energy emitters firmly associated with AGN, 107 of which are reported here for the first time. We have used X-ray data to image the IBIS 90\\% error circle of all the AGN in the sample of 107, in order to obtain the correct X-ray counterparts, locate them with arcsec accuracy and therefore pinpoint the correct optical counterparts. This procedure has led to the optical and spectral characterization of the entire sample. This new set consists of 34 broad line or type 1 AGN, 47 narrow line or type 2 AGN, 18 Blazars and 8 sources of unknown class. These 8 sources have been associated with AGN from their positional coincidence with 2MASX/Radio/X-ray sources. Seven high energy emitters have been included since they are considered to be good AGN candidates. Spectral analysis has been already performed on 55 objects and the results from the most recent and/or best statistical measurements have ...

  20. Introducing the individual Teamwork Observation and Feedback Tool (iTOFT): Development and description of a new interprofessional teamwork measure.

    Science.gov (United States)

    Thistlethwaite, Jill; Dallest, Kathy; Moran, Monica; Dunston, Roger; Roberts, Chris; Eley, Diann; Bogossian, Fiona; Forman, Dawn; Bainbridge, Lesley; Drynan, Donna; Fyfe, Sue

    2016-07-01

    The individual Teamwork Observation and Feedback Tool (iTOFT) was devised by a consortium of seven universities in recognition of the need for a means of observing and giving feedback to individual learners undertaking an interprofessional teamwork task. It was developed through a literature review of the existing teamwork assessment tools, a discussion of accreditation standards for the health professions, Delphi consultation and field-testing with an emphasis on its feasibility and acceptability for formative assessment. There are two versions: the Basic tool is for use with students who have little clinical teamwork experience and lists 11 observable behaviours under two headings: 'shared decision making' and 'working in a team'. The Advanced version is for senior students and junior health professionals and has 10 observable behaviours under four headings: 'shared decision making', 'working in a team', 'leadership', and 'patient safety'. Both versions include a comprehensive scale and item descriptors. Further testing is required to focus on its validity and educational impact. PMID:27269996

  1. X-ray AGN in the XMM-LSS galaxy clusters: no evidence for AGN suppression

    CERN Document Server

    Koulouridis, E; Melnyk, O; Elyiv, A; Georgantopoulos, I; Clerc, N; Surdej, J; Chiappetti, L; Pierre, M

    2014-01-01

    We present a study of the overdensity of X-ray selected AGN in 33 galaxy clusters in the XMM-LSS field, up to redhift z=1.05. Previous studies have shown that the presence of X-ray selected AGN in rich galaxy clusters is suppressed. In the current study we investigate the occurrence of X-ray selected AGN in low and moderate X-ray luminosity galaxy clusters. Due to the wide contiguous XMM-LSS survey area we are able to extend the study to the cluster outskirts. We therefore determine the projected overdensity of X-ray point-like sources out to 6r_{500} radius. To provide robust statistical results we also use a stacking analysis of the cluster projected overdensities. We investigate whether the observed X-ray overdensities are to be expected by estimating also the corresponding optical galaxy overdensities. We find a positive X-ray projected overdensity at the first radial bin, which is however of the same amplitude as that of optical galaxies. Therefore, no suppression of X-ray AGN activity with respect to th...

  2. Extended multiwavelength fuzz around red quasars: observational appearance of radiative feedback in action

    CERN Document Server

    Wang, Jian-Min

    2008-01-01

    Red quasars are a population, characterized by significant extinction in UV, which could be explained by absorption of dusty gas on a scale of a few kpc. We show that the enhanced radiation-pressure drives the dusty gas to supersonically expand and produces shocks. The shocks energize electrons to be relativistic via the first Fermi acceleration. As a balance of shock acceleration and synchrotron emission and inverse Compton scattering, the maximum Lorentz factor of the electrons reaches as $\\sim 10^6$. The shocked interstellar medium appears as extended multiwavelength fuzz, in which synchrotron emission from the electrons peaks at near infrared or UV bands and inverse Compton scattering around 1.0GeV$-$0.1TeV. Future multiwavelength images of the fuzz would provide new clues to study the details of radiative feedback if red quasars could be a certain phase in evolutionary chains of galaxies.

  3. A soil moisture-rainfall feedback mechanism. 1. Theory and observations

    International Nuclear Information System (INIS)

    This paper presents a hypothesis regarding the fundamental role of soil moisture conditions in land-atmosphere interactions. We propose that wet soil moisture conditions over any large region should be associated with relatively large boundary layer moist static energy, which favors the occurrence of more rainfall. Since soil moisture conditions themselves reflect past occurrence of rainfall, the proposed hypothesis implies a positive feedback mechanism between soil moisture and rainfall. This mechanism is based on considerations of the energy balance at the land-atmosphere boundary, in contrast to similar mechanisms that were proposed in the past and that were based on the concepts of water balance and precipitation recycling. The control of soil moisture on surface albedo and Bowen ratio is the fundamental basis of the proposed soil moisture-rainfall feedback mechanism. The water content in the upper soil layer affects these two important properties of the land surface such that both variables decrease with any increase in the water content of the top soil layer. The direct effect of soil moisture on surface albedo implies that wet soil moisture conditions enhance net solar radiation. The direct effect of soil moisture on Bowen ratio dictates that wet soil moisture conditions would tend to enhance net terrestrial radiation at the surface through cooling of surface temperature, reduction of upwards emissions of terrestrial radiation, and simultaneous increase in atmospheric water vapor content and downwards flux of terrestrial radiation. Thus, under wet soil moisture conditions, both components of net radiation are enhanced, resulting in a larger total flux of heat from the surface into the boundary layer. This total flux represents the sum of the corresponding sensible and latent heat fluxes. Simultaneously, cooling of surface temperature should be associated with a smaller sensible heat flux and a smaller depth of the boundary layer

  4. Viscous time lags between starburst and AGN activity

    Science.gov (United States)

    Blank, Marvin; Duschl, Wolfgang J.

    2016-10-01

    There is strong observational evidence indicating a time lag of order of some 100 Myr between the onset of starburst and AGN activity in galaxies. Dynamical time lags have been invoked to explain this. We extend this approach by introducing a viscous time lag the gas additionally needs to flow through the AGN's accretion disc before it reaches the central black hole. Our calculations reproduce the observed time lags and are in accordance with the observed correlation between black hole mass and stellar velocity dispersion.

  5. Viscous time lags between starburst and AGN activity

    CERN Document Server

    Blank, Marvin

    2016-01-01

    There is strong observational evidence indicating a time lag of order of some 100 Myr between the onset of starburst and AGN activity in galaxies. Dynamical time lags have been invoked to explain this. We extend this approach by introducing a viscous time lag the gas additionally needs to flow through the AGN's accretion disc before it reaches the central black hole. Our calculations reproduce the observed time lags and are in accordance with the observed correlation between black hole mass and stellar velocity dispersion.

  6. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling

    International Nuclear Information System (INIS)

    To assess the biogeophysical impacts of land cover/land use change (LCLUC) on surface temperature, two observation-based metrics and their applicability in climate modeling were explored in this study. Both metrics were developed based on the surface energy balance, and provided insight into the contribution of different aspects of land surface change (such as albedo, surface roughness, net radiation and surface heat fluxes) to changing climate. A revision of the first metric, the intrinsic biophysical mechanism, can be used to distinguish the direct and indirect effects of LCLUC on surface temperature. The other, a decomposed temperature metric, gives a straightforward depiction of separate contributions of all components of the surface energy balance. These two metrics well capture observed and model simulated surface temperature changes in response to LCLUC. Results from paired FLUXNET sites and land surface model sensitivity experiments indicate that surface roughness effects usually dominate the direct biogeophysical feedback of LCLUC, while other effects play a secondary role. However, coupled climate model experiments show that these direct effects can be attenuated by large scale atmospheric changes (indirect feedbacks). When applied to real-time transient LCLUC experiments, the metrics also demonstrate usefulness for assessing the performance of climate models and quantifying land–atmosphere interactions in response to LCLUC. (letter)

  7. The central parsecs of AGN across the electromagnetic spectrum

    Science.gov (United States)

    Prieto, Almudena

    2016-08-01

    High angular resolution observations across the electromagnetic spectrum of the nearest AGN are providing a view of the nuclear region rather different from- and somewhat simpler than-the one envisaged by the canonical AGN Unification Schemes. I will review the challenges that parsec-scale observations in the IR when combined with comparable physical scales in radio, millimetre, optical, UV and X-ray of some of the nearest AGN are revealing about the nature of the nuclear emission, the transition from the most luminous to the feeble ones, and their accretion power. I will discuss how these observations challenge the requirement of a torus and question one of its fundamental attributes which is the collimation of the nuclear radiation.

  8. The origin of ultrafast outflows in AGN: Monte Carlo simulations of the wind in PDS 456

    Science.gov (United States)

    Hagino, Kouichi; Odaka, Hirokazu; Done, Chris; Gandhi, Poshak; Watanabe, Shin; Sako, Masao; Takahashi, Tadayuki

    2015-01-01

    Ultrafast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback on to the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionized that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3D Monte Carlo code for radiation transport. The code only handles highly ionized ions, but the data show the ionization state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass-loss rate in the wind is around 30 per cent of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass-loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows on to high-mass black holes, as observed.

  9. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    Science.gov (United States)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  10. AGN Outflow Shocks on Bonnor-Ebert Spheres

    CERN Document Server

    Dugan, Zachary; Bieri, Rebekka; Silk, Joseph; Rahman, Mubdi

    2016-01-01

    Feedback from Active Galactic Nuclei (AGN) and subsequent jet cocoons and outflow bubbles can have a significant impact on star formation in the host galaxy. To investigate feedback physics on small scales, we perform hydrodynamic simulations of realistically fast AGN winds striking Bonnor-Ebert (BE) spheres and examine gravitational collapse and ablation. We test AGN wind velocities ranging from 300--3,000 km s$^{-1}$ and wind densities ranging from 0.5--10 $m_\\mathrm{p}\\,\\mathrm{cm}^{-3}$. We include heating and cooling of low- and high-temperature gas, self-gravity, and spatially correlated perturbations in the shock, with a maximum resolution of 0.01 pc. We find that the ram pressure is the most important factor that determines the fate of the cloud. High ram pressure winds increase fragmentation and decrease the star formation rate, but also cause star formation to occur on a much shorter time scale and with increased velocities of the newly formed stars. We find a threshold ram pressure of $\\sim 2\\times...

  11. Quality of written narrative feedback and reflection in a modified mini-clinical evaluation exercise: an observational study

    NARCIS (Netherlands)

    Pelgrim, E.A.M.; Kramer, A.W.M.; Mokkink, H.G.A.; Vleuten, C.P.M. van der

    2012-01-01

    ABSTRACT: BACKGROUND: Research has shown that narrative feedback, (self) reflections and a plan to undertake and evaluate improvements are key factors for effective feedback on clinical performance. We investigated the quantity of narrative comments comprising feedback (by trainers), self-reflection

  12. Diagnostics comparing sea surface temperature feedbacks from operational hurricane forecasts to observations

    Directory of Open Access Journals (Sweden)

    Ian D. Lloyd

    2011-11-01

    Full Text Available This paper examines the ability of recent versions of the Geophysical Fluid Dynamics Laboratory Operational Hurricane Forecast Model (GHM to reproduce the observed relationship between hurricane intensity and hurricane-induced Sea Surface Temperature (SST cooling. The analysis was performed by taking a Lagrangian composite of all hurricanes in the North Atlantic from 1998–2009 in observations and 2005–2009 for the GHM. A marked improvement in the intensity-SST relationship for the GHM compared to observations was found between the years 2005 and 2006–2009 due to the introduction of warm-core eddies, a representation of the loop current, and changes to the drag coefficient parameterization for bulk turbulent flux computation. A Conceptual Hurricane Intensity Model illustrates the essential steady-state characteristics of the intensity-SST relationship and is explained by two coupled equations for the atmosphere and ocean. The conceptual model qualitatively matches observations and the 2006–2009 period in the GHM, and presents supporting evidence for the conclusion that weaker upper oceanic thermal stratification in the Gulf of Mexico, caused by the introduction of the loop current and warm core eddies, is crucial to explaining the observed SST-intensity pattern. The diagnostics proposed by the conceptual model offer an independent set of metrics for comparing operational hurricane forecast models to observations.

  13. Cosmological simulations of galaxy clusters with feedback from active galactic nuclei: profiles and scaling relations

    CERN Document Server

    Pike, Simon R; Newton, Richard D A; Thomas, Peter A; Jenkins, Adrian

    2014-01-01

    We present results from a new set of 30 cosmological simulations of galaxy clusters, including the effects of radiative cooling, star formation, supernova feedback, black hole growth and AGN feedback. We first demonstrate that our AGN model is capable of reproducing the observed cluster pressure profile at redshift, z~0, once the AGN heating temperature of the targeted particles is made to scale with the final virial temperature of the halo. This allows the ejected gas to reach larger radii in higher-mass clusters than would be possible had a fixed heating temperature been used. Such a model also successfully reduces the star formation rate in brightest cluster galaxies and broadly reproduces a number of other observational properties at low redshift, including baryon, gas and star fractions; entropy profiles outside the core; and the X-ray luminosity-mass relation. Our results are consistent with the notion that the excess entropy is generated via selective removal of the densest material through radiative c...

  14. The Second INTEGRAL AGN Catalogue

    CERN Document Server

    Beckmann, V; Ricci, C; Alfonso-Garzón, J; Courvoisier, T J -L; Domingo, A; Gehrels, N; Lubinski, P; Mas-Hesse, J M; Zdziarski, A A

    2009-01-01

    The INTEGRAL mission provides a large data set for studying the hard X-ray properties of AGN and allows to test the unified scheme for AGN. We present analysis of INTEGRAL IBIS/ISGRI, JEM-X, and OMC data for 199 AGN that have been reported to be detected by INTEGRAL above 20 keV. The data analysed here allow a significant spectral extraction on 148 objects and optical variability study of 57 AGN. The slopes of the hard X-ray spectra of Seyfert 1 and Seyfert 2 galaxies are found to be consistent within the uncertainties, whereas lower luminosities are measured for the more absorbed / type 2 AGN. The intermediate Seyfert 1.5 objects exhibit hard X-ray spectra consistent with those of Seyfert 1. When applying a Compton reflection model, the underlying continua appear still the same in Seyfert 1 and 2 with photon index 2, and the reflection strength is about R = 1, when assuming different inclination angles. A significant correlation is found between the hard X-ray and optical luminosity and the mass of the centr...

  15. Lessons learnt from INTEGRAL AGN

    CERN Document Server

    Beckmann, V; Soldi, S; Alfonso-Garzon, J; Courvoisier, T J -L; Domingo, A; Gehrels, N; Lubinski, P; Mas-Hesse, J M; Zdziarski, A A

    2010-01-01

    The INTEGRAL mission provides a large data set for studying the hard X-ray properties of AGN and allows to test the unified scheme for AGN. We present results based on the analysis of 199 AGN. A difference between the Seyfert types is detected in slightly flatter spectra with higher cut-off energies and lower luminosities for the more absorbed/type 2 AGN. When applying a Compton reflection model, the underlying continua (photon index 1.95) appear the same in Seyfert 1 and 2, and the reflection strength is R=1 in both cases, with differences in the inclination angle only. A difference is seen in the sense that Seyfert 1 are on average twice as luminous in hard X-rays than the Seyfert 2 galaxies. The unified model for Seyfert galaxies seems to hold, showing in hard X-rays that the central engine is the same in Seyfert 1 and 2 galaxies, seen under different inclination angle and absorption. Based on our knowledge of AGN from INTEGRAL data, we briefly outline open questions and investigations to answer them. In t...

  16. Similarities between circular polarization in Galactic jet sources and AGN

    NARCIS (Netherlands)

    Macquart, JP; Wu, K; Hannikainen, DC; Sault, RJ; Jauncey, DL

    2003-01-01

    We compare the observational properties of the circular polarization in Galactic jet sources with that observed in AGN, and outline the constraints they place on the mechanism responsible for the circular polarization. We also discuss the implications of the time scale of polarization variations on

  17. Active Galactic Nuclei Feedback and Clusters

    Indian Academy of Sciences (India)

    Biman B. Nath

    2011-12-01

    The Intracluster Medium (ICM) is believed to have been affected by feedback from Active Galactic Nuclei (AGN) and/or supernovae-driven winds. These sources are supposed to have injected entropy into the ICM gas. The recently determined universal pressure profile of the ICM gas has been used and after comparing with the entropy profile of the gas from gravitational effects of the dark matter halo, the additional entropy injected by non-gravitational sources, as a function of the total cluster mass is determined. The current observational data of red-shift evolution of cluster scaling relation is shown that allow models in which the entropy injection decreases at high red-shift.

  18. IR properties of AGN and SB

    Science.gov (United States)

    Talezade Lari, M. H.; Davoudifar, P.; Mickaelian, A. M.

    2016-09-01

    Through multi-wavelength flux ratios it is possible to detect AGN and Star-burst Galaxies. Techniques of detecting extragalactic objects as well as AGN are studied in different wavelengths (X-Ray, Radio and IR). Specification of AGN as IR and radio sources is discussed. IR catalogues of 2MASS and WISE were used to study the interrelationship between interactions/merging, starburst and AGN phenomena.

  19. A compendium of AGN inclinations with corresponding UV/optical continuum polarization measurements

    CERN Document Server

    Marin, F

    2014-01-01

    The anisotropic nature of active galactic nuclei (AGN) is thought to be responsible for the observational differences between type-1 (pole-on) and type-2 (edge-on) nearby Seyfert-like galaxies. In this picture, the detection of emission and/or absorption features is directly correlated to the inclination of the system. The AGN structure can be further probed by using the geometry-sensitive technique of polarimetry, yet the pairing between observed polarization and Seyfert type remains poorly examined. Based on archival data, I report here the first compilation of 53 estimated AGN inclinations matched with ultraviolet/optical continuum polarization measurements. Corrections, based on the polarization of broad emission lines, are applied to the sample of Seyfert-2 AGN to remove dilution by starburst light and derive information about the scattered continuum alone. The resulting compendium agrees with past empirical results, i.e. type-1 AGN show low polarization degrees (P 7%) with perpendicular polarization an...

  20. The spectral details of observed and simulated short-term water vapor feedbacks of El Niño-Southern Oscillation

    Science.gov (United States)

    Pan, F.; Huang, X.; Chen, X.

    2015-12-01

    Radiative kernel method has been validated and widely used in the study of climate feedbacks. This study uses spectrally resolved longwave radiative kernels to examine the short-term water vapor feedbacks associated with the ENSO cycles. Using a 500-year GFDL CM3 and a 100-year NCAR CCSM4 pre-industry control simulation, we have constructed two sets of longwave spectral radiative kernels. We then composite El Niño, La Niña and ENSO-neutral states and estimate the water vapor feedbacks associated with the El Niño and La Niña phases of ENSO cycles in both simulations. Similar analysis is also applied to 35-year (1979-2014) ECMWF ERA-interim reanalysis data, which is deemed as observational results here. When modeled and observed broadband feedbacks are compared to each other, they show similar geographic patterns but with noticeable discrepancies in the contrast between the tropics and extra-tropics. Especially, in El Niño phase, the feedback estimated from reanalysis is much greater than those from the model simulations. Considering the observational data span, we carry out a sensitivity test to explore the variability of feedback-deriving using 35-year data. To do so, we calculate the water vapor feedback within every 35-year segment of the GFDL CM3 control run by two methods: one is to composite El Nino or La Nina phases as mentioned above and the other is to regressing the TOA flux perturbation caused by water vapor change (δR_H­2O) against the global-mean surface temperature a­­­­nomaly. We find that the short-term feedback strengths derived from composite method can change considerably from one segment to another segment, while the feedbacks by regression method are less sensitive to the choice of segment and their strengths are also much smaller than those from composite analysis. This study suggests that caution is warranted in order to infer long-term feedbacks from a few decades of observations. When spectral details of the global-mean feedbacks

  1. Direct Microlensing-Reverberation Observations of the Intrinsic magnetic Structure of AGN in Different Spectral States: A Tale of Two Quasars

    CERN Document Server

    Schild, Rudolph E; Robertson, Stanley L

    2007-01-01

    We show how direct microlensing-reverberation analysis performed on two well-known Quasars (Q2237 - The Einstein Cross and Q0957 - The Twin) can be used to observe the inner structure of two quasars which are in significantly different spectral states. These observations allow us to measure the detailed internal structure of quasar Q2237 in a radio quiet high-soft state, and compare it to quasar Q0957 in a radio loud low-hard state. We find that the observed differences in the spectral states of these two quasars can be understood as being due to the location of the inner radii of their accretion disks relative to the co-rotation radii of rotating intrinsically magnetic supermassive compact objects in the centers of these quasars.

  2. AGN and Star Formation in HerMES-IRS sources

    Science.gov (United States)

    Feltre, Anna; Hatziminaoglou, Evanthia; Hernán-Caballero, Antonio; Fritz, Jacopo; Franceschini, Alberto

    2014-07-01

    One of the remaining open issues in the context of the analysis of Active Galactic Nuclei (AGN) is the evidence that nuclear gravitational accretion is often accompanied by a concurrent starburst activity. We developed a spectral energy distribution (SED) fitting technique to derive simultaneously the physical properties of active galaxies and coexisting starbursts making the best use of Spitzer and Herschel IR observations. We apply the SED fitting procedure to a large sample of extragalactic sources representing the HerMES (Herschel/Multi-tiered Extragalactic Survey) population with IRS spectra with a plethora of multi-wavelength data in order to study the impact of a possible presence of an AGN on the host galaxy's properties. We analyze the star formation rate (SFR) in conncetion to the presence of an AGN and compared the properties of the hot (AGN) and cold (starburst) dust component. Our findings are consistent with no evidence for the presence of an AGN affecting the star formation processes of the host galaxies.

  3. Mini-Survey of SDSS OIII AGN with Swift

    Science.gov (United States)

    Angelina, Lorella; George, Ian

    2007-01-01

    There is a common wisdom that every massive galaxy has a massive block hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low Lx (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of (optically-selected samples) shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [OIII] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a mini-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([OIII]) to check the relation with the Lx observed with Swift.

  4. The unusual X-ray morphology of NGC4636 revealed by deep Chandra observations: cavities and shocks created by past AGN outbursts

    CERN Document Server

    Baldi, A; Jones, C; Kraft, R; Nulsen, P; Churazov, E; David, L; Giacintucci, S

    2009-01-01

    We present Chandra ACIS-I and ACIS-S observations ($\\sim$200 ks in total) of the X-ray luminous elliptical galaxy NGC 4636, located in the outskirts of the Virgo cluster. A soft band (0.5-2 keV) image shows the presence of a bright core in the center surrounded by an extended X-ray corona and two pronounced quasi-symmetric, 8 kpc long, arm-like features. Each of this features defines the rimof an ellipsoidal bubble. An additional bubble-like feature, whose northern rim is located $\\sim2$ kpc south of the north-eastern arm, is detected as well. We present surface brightness and temperature profiles across the rims of the bubbles, showing that their edges are sharp and characterized by temperature jumps of about 20-25%. Through a comparison of the observed profiles with theoretical shock models, we demonstrate that a scenario where the bubbles were produced by shocks, probably driven by energy deposited off-center by jets, is the most viable explanation to the X-ray morphology observed in the central part of NG...

  5. Do Some AGN Lack X-ray Emission?

    CERN Document Server

    Simmonds, Charlotte; Thuan, Trinh X; Izotov, Yuri I; Stern, Daniel; Harrison, Fiona A

    2016-01-01

    $Context:$ Intermediate-Mass Black Holes (IMBHs) are thought to be the seeds of early Supermassive Black Holes (SMBHs). While $\\gtrsim$100 IMBH and small SMBH candidates have been identified in recent years, few have been robustly confirmed to date, leaving their number density in considerable doubt. Placing firmer constraints both on the methods used to identify and confirm IMBHs/SMBHs, as well as characterizing the range of host environments that IMBHs/SMBHs likely inhabit is therefore of considerable interest and importance. Additionally, finding significant numbers of IMBHs in metal-poor systems would be particularly intriguing, since such systems may represent local analogs of primordial galaxies, and therefore could provide clues of early accretion processes. $Aims:$ Here we study in detail several candidate Active Galactic Nuclei (AGN) found in metal-poor hosts. $Methods:$ We utilize new X-ray and optical observations to characterize these metal-poor AGN candidates and compare them against known AGN lu...

  6. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  7. The AGN phenomenon: open issues

    CERN Document Server

    Beckmann, Volker

    2013-01-01

    The aim of this short paper is to motivate and encourage research in the field of Active Galactic Nuclei (AGN). Here we summarize the main open questions concerning the central engine. Is the central black hole rapidly spinning and can we prove this? What is the dominant accretion mechanism in AGN? Why do some AGN form jets while others don't and how do the jets originate? What keeps jets collimated out to distances of 100 kpc? Is the emission of blazars dominated rather by synchrotron self-Compton or by external Compton processes? Which parameters are important in the unified model? We outline the status of related research, formulate the questions and try to hint at research projects able to tackle these fundamental topics. Deep surveys, polarization measurements, improved models, faster and more accurate simulations as well as bridging the gap in the MeV range can be part of the tools to bring us closer to an understanding of AGN.

  8. Radio properties of local AGN

    NARCIS (Netherlands)

    Nagar, NM; Falcke, H; Wilson, AS; Mujica, R; Maiolino, R

    2004-01-01

    This article focuses on the radio properties of the similar to 470 nearby bright (northern) galaxies of the Palomar spectroscopic sample. Almost half the sample's galaxies have nuclei with emission-lines characteristic of AGN but with L-H alpha = 50% of all LLAGNs; there is no evidence against all L

  9. Observing the Arctic Carbon Feedback: Regional scale methane flux measurements over the Alaskan North Slope using airplane flux observations and in situ measurements of δ13CH4.

    Science.gov (United States)

    Healy, C. E.; Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Munster, J. B.; Kochendorfer, J.; Wilkerson, J.; Baker, B.; Dubey, M. K.; Anderson, J. G.

    2015-12-01

    One of the most powerful positive feedback mechanisms to anthropogenic climate change postulated is the increase in carbon emissions from polar-regions. Warmer temperatures at the poles is predicted to increase the rate of methanogensesis in thawing permafrost soils as well as destabilize the network of arctic marine and terrestrial methane hydrates. Recent estimates put the quantity of organic carbon stored in soils in the northern permafrost zone around 1,700 Pg of C, which is well in excess of the maximum carbon emissions necessary to limit global average temperature increase to only 2 C° (260-410 Pg of C between 2011 and 2100 as CO2). However, many climate models used to forecast changes in average global temperature and inform policy decisions do not take into account arctic carbon feedback. This is largely due in part to the daunting observational challenge presented by observing methane fluxes in the Arctic. An ideal measurement system must be able to distinguish between biological and anthropogenic methane sources, have the ability to cover large spatial ranges, and have the sensitivity to distinguish changes from season to season, and year to year. The FOCAL platform has been engineered to address these challenges and help bridge the gap in spatial coverage between ground based and inverse modelling studies. It consists of a small aircraft equipped with the best atmospheric turbulence (BAT) probe, and gas sensors for in situ measurements of CH4, CO2, δ13CH4, δ13CO2 to make regional scale surface eddy-covariance flux measurements of methane and carbon dioxide as well as their stable isotopologues. We will present data from the initial FOCAL flight series in August 2013 based out of Deadhorse, AK, including CH4 concentration and running flux data, as well as in situ δ13CH4 observations to gain mechanistic insight. With the FOCAL platform we were able to dramatically extend regional coverage of methane flux observations beyond what can normally be observe

  10. Results from the First INTEGRAL AGN Catalogue

    CERN Document Server

    Beckmann, V; Shrader, C R; Gehrels, N

    2005-01-01

    We present results based on the first INTEGRAL AGN catalogue. The catalogue includes 42 AGN, of which 10 are Seyfert 1, 17 are Seyfert 2, and 9 are intermediate Seyfert 1.5. The fraction of blazars is rather small with 5 detected objects, and only one galaxy cluster and no star-burst galaxies have been detected so far. The sample consists of bright (fx > 5e-12 erg/cm**2/s), low luminosity (L = 2e43 erg/s), local (z = 0.020) AGN. Although the sample is not flux limited, we find a ratio of obscured to unobscured AGN of 1.5 - 2.0, consistent with luminosity dependent unified models for AGN. Only four Compton-thick AGN are found in the sample. This implies that the missing Compton-thick AGN needed to explain the cosmic hard X-ray background would have to have lower fluxes than discovered by INTEGRAL so far.

  11. A Statistical Study of H I Gas in Nearby Narrow-Line AGN-Hosting Galaxies

    CERN Document Server

    Zhu, Yi-Nan

    2015-01-01

    As a quenching mechanism, AGN feedback could suppress on-going star formation in their host galaxies. On the basis of a sample of galaxies selected from ALFALFA HI survey, the dependence of their HI mass M[HI], stellar mass M[*] & HI-to-stellar mass ratio M[HI]/M[*] on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN-hostings in this sample are gas-rich galaxies, and there is no any evidence to be shown to indicate that the AGN activity could increase/decrease either M[HI] or M[HI]/M[*]. The cold neutral gas can not be fixed positions accurately just based on available HI data due to the large beam size of ALFALFA survey. In addition, even though AGN-hostings are more easily detected by HI survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN-hosting would ultimately evolve into an old red galaxy with few cold gas, then when and how the gas has been exhausted have to be solved by future hypothes...

  12. Why are there strong radio AGNs in the center of "non-cool core" clusters?

    CERN Document Server

    Sun, Ming

    2009-01-01

    Radio AGN feedback in X-ray cool cores has been proposed as a crucial ingredient in the evolution of baryonic structures. However, it has long been known that strong radio AGNs also exist in "noncool core" clusters, which brings up the question whether an X-ray cool core is always required for radio feedback. We present a systematic analysis of 152 groups and clusters to show that every BCG with a strong radio AGN has an X-ray cool core. Those strong radio AGNs in the center of the "noncool core" systems identified before are in fact associated with small X-ray cool cores with typical radii of < 5 kpc (we call them coronae). Small coronae are most likely of ISM origin and they carry enough fuel to power radio AGNs. Our results suggest that the traditional cool core/noncool core dichotomy is too simple. A better alternative is the cool core distribution function with the enclosed X-ray luminosity. Other implications of our results are also discussed, including a warning on the simple extrapolation of the de...

  13. Progress of research on AGNs at the Urumqi Observatory

    Institute of Scientific and Technical Information of China (English)

    T.P.KRICHBAUM; L.FUHRMANN; N.MARCHILI

    2010-01-01

    We report the progress on Very Long Baseline Interferometry(VLBI) observations of Gigahertz Peaked Spectrum(GPS) radio sources,and single-dish observations of active galactic nuclei(AGNs).The GPS sources are a kind of young AGNs observable in radio.From our VLBI observations at 1.6 and 5 GHz with the European VLBI Network(EVN) including the Urumqi and Shanghai stations,most GPS sources show compact doubles with sizes less than 1 kiloparsec.We have classified the sources into double-lobes,core-jets,and complex structures according to the spectral indices as well as images.We also estimated the values of the jet viewing angle for the symmetric objects.In addition,we are monitoring a few samples of AGNs with the Urumqi 25-meter radio telescope,in order to find flux variability.We detected rapid flux variability in quasar 1156+295,and relatively slow variability in a few of the others.The origin of the rapid variability is discussed.Moreover,we launched a radio-optical monitoring program called Fermi-AGN in 2009.

  14. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    Science.gov (United States)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  15. Feedback Consistencies and Inconsistencies: Eight Mentors' Observations on One Preservice Teacher's Lesson

    Science.gov (United States)

    Hudson, Peter

    2014-01-01

    Mentors play a key role in developing preservice teachers for their chosen careers, and providing feedback appears as a significant relational interaction between the mentor and mentee that assists in guiding the mentee's practices. But what are mentors' perspectives on providing feedback to their mentees? In this case study, eight…

  16. Extending the Fermi - Swift Joint AGN Sample

    Science.gov (United States)

    Shrader, Chris R.; Macomb, D. J.

    2014-01-01

    The Swift BAT and the Fermi LAT each provide excellent sky coverage and have led to impressive compilations of extragalactic source catalogs. For the most part they sample separate AGN subpopulations - Swift the lower-luminosity and relatively nearby Seyfert galaxies while the Fermi sample is dominated by blazars and does not include any radio-quiet objects. The overlap between these samples is among the radio-loud subset of the Swift sample as has been discussed elsewhere in the literature. The observable properties at these two bands - flux and spectral indices - are not expected to be well correlated as they sample different portions of the synchrotron self-Compton (SSC) spectral energy distribution. In this contribution we consider an extension of the high-latitude Swift sample by relaxing the significance cut to less than 5 standard deviations and consider the overlap of that subsample with the Fermi AGN catalog. While such a threshold is generally inadvisable as it introduces the strong possibility of spurious detections, the objects of the overlapping sample which are detected at high significance in Fermi can be considered as reasonably high-confidence Swift detections. For example, there are 190 Swift sub-5-sigma Swift sources that have significance >2-sigma with Fermi counterparts, whereas we predict only ~5 due to statistical fluctuation. We also investigate any coincident INTEGRAL/IBIS observations to further bolster or diminish candidate Swift detections. We present our correlation analyses and offer interpretation in the context of the blazar sequence.

  17. Pharmacokinetics of a novel retinoid AGN 190168 and its metabolite AGN 190299 after intravenous administration of AGN 190168 to rats.

    Science.gov (United States)

    Hsyu, P H; Bowen, B; Tang-Liu, D

    1994-07-01

    The pharmacokinetics of AGN 190168, a novel synthetic retinoid, and its major metabolite, AGN 190299, in rat blood after intravenous administration was investigated. Approximately 4.4 mg kg-1 (high dose) or 0.49 mg kg-1 (low dose) of AGN 190168 was administered to rats via the femoral vein. Blood was collected from the femoral artery at various time points during an 8 h period. Blood concentrations of AGN 190168 and AGN 190299 were determined by a specific and sensitive high-pressure liquid chromatographic (HPLC) method. AGN 190168 was rapidly metabolized in rats. The only detectable drug-related species in the blood was AGN 190299. Therefore, only pharmacokinetics of AGN 190299 were calculated. Elimination of AGN 190299 appeared to be non-linear after administration of the high dose, and linear after administration of the low dose. The maximum elimination rate (Vmax) and the concentration at half of the Vmax (km), as estimated by a Michaelis-Menten one-compartment model, were 7.58 +/- 2.42 micrograms min-1 (mean +/- SD) and 6.10 +/- 1.58 micrograms mL-1, respectively. The value of the area under the blood concentration time curve (AUC) was 9.54 +/- 1.68 micrograms h mL-1 after administration of the high dose and 0.594 +/- 0.095 micrograms h mL-1 after administration of the low dose. The clearance value was 7.79 +/- 1.20 mL min-1 kg-1 after the high dose, statistically significantly different from that after the low dose (p AGN 190168 to AGN 190299, non-linear pharmacokinetics of AGN 190299 after the 4.4 mg kg-1 dose, and the lack of difference in disposition profiles between sexes after intravenous administration of AGN 190168 to rats.

  18. The INTEGRAL/IBIS AGN catalogue: an update

    Science.gov (United States)

    Malizia, A.; Landi, R.; Molina, M.; Bassani, L.; Bazzano, A.; Bird, A. J.; Ubertini, P.

    2016-07-01

    In the most recent IBIS survey based on observations performed during the first 1000 orbits of INTEGRAL, are listed 363 high-energy emitters firmly associated with AGN, 107 of which are reported here for the first time. We have used X-ray data to image the IBIS 90 per cent error circle of all the AGN in the sample of 107, in order to obtain the correct X-ray counterparts, locate them with arcsec accuracy and therefore pinpoint the correct optical counterparts. This procedure has led to the optical and spectral characterization of the entire sample. This new set consists of 34 broad line or type 1 AGN, 47 narrow line or type 2 AGN, 18 blazars and 8 sources of unknown class. These eight sources have been associated with AGN from their positional coincidence with 2MASX/Radio/X-ray sources. Seven high-energy emitters have been included since they are considered to be good AGN candidates. Spectral analysis has been already performed on 55 objects and the results from the most recent and/or best statistical measurements have been collected. For the remaining 52 sources, we report the spectral analysis for the first time in this work. We have been able to obtain the full X-ray coverage of the sample making use of data from Swift/XRT, XMM-Newton and NuSTAR. In addition to the spectral characterization of the entire sample, this analysis has enabled us to identify peculiar sources and by comparing different data sets, highlight flux variability in the 2-10 keV and 20-40 keV bands.

  19. The most obscured AGN in the COSMOS field

    Science.gov (United States)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Cappelluti, N.; Comastri, A.; Gilli, R.; Gruppioni, C.; Mignoli, M.; Pozzi, F.; Vietri, G.; Vignali, C.; Zamorani, G.

    2015-06-01

    Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thick (CT) absorbers (NH ≳ 1024 cm-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 1024 cm-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH ≳ 1025 cm-2), intrinsically luminous (L2-10 > 1044 erg s-1) AGN at z = 0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6 μm luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a ≳1025 cm-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morphology, which is known to correlate with the presence of CT absorbers. Finally, asymmetric and blueshifted components in several optical high-ionization emission lines indicate the presence of a galactic outflow, possibly driven by the intense AGN activity (LBol/LEdd = 0.3-0.5). Such highly obscured, highly accreting AGN are intrinsically very rare at low redshift, whereas they are expected to be much more common at the peak of the star formation and BH accretion history, at z ~ 2-3. We demonstrate that a fully multi-wavelength approach can recover a sizable sample of such peculiar sources in large and deep surveys such as COSMOS.

  20. The most mysterious object in our universe—Quasar (Ⅲ): The family of AGNs and the observational characters%宇宙中最神秘的天体——类星体(三):活动星系核及其观测特征

    Institute of Scientific and Technical Information of China (English)

    何香涛

    2016-01-01

    活动星系核大家族中,除类星体之外,还有塞弗特星系和BL Lac天体等.据估计,河外星系中有将近一半的河外星系具有某种剧烈的活动.大家族的最主要成员是类星体.天文学家对类星体的表面特征做了详细的观测,包括它的亮度、大小和喷流结构.但是,到目前为止,我们只能绘出一张带有想象力的、并不十分确切的类星体结构图.%There is a big family of AGNs (active galactic nuclei), which includes Quasar, Seyfert, BL Lac and others. About half of the AGNs have some active phenomenon. Quasar is the main member of the AGN family. We observed the possible various detail of the quasar including the brightness, size and jets. We show the imaging picture of the quasar structure which may not be a real.

  1. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    Science.gov (United States)

    Bernhard, E.; Mullaney, J. R.; Daddi, E.; Ciesla, L.; Schreiber, C.

    2016-07-01

    We investigate the star-forming properties of 1620 X-ray selected active galactic nuclei (AGN) host galaxies as a function of their specific X-ray luminosity (i.e. X-ray luminosity per unit host stellar mass) - a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star formation at high Eddington ratios, which may hint towards `AGN feedback' effects. Star formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01 lesssim L_X/M_{ast } lesssim 100 L_{{⊙}} M_{{⊙}}^{-1}). After normalizing for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e. 8-10 per cent versus 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star formation.

  2. Two-phase model for Black Hole feeding and feedback

    CERN Document Server

    Nayakshin, Sergei

    2013-01-01

    We study effects of AGN feedback outflows on multi-phase inter stellar medium (ISM) of the host galaxy. We argue that SMBH growth is dominated by accretion of dense cold clumps and filaments. AGN feedback outflows overtake the cold medium, compress it, and trigger a powerful starburst -- a positive AGN feedback. This predicts a statistical correlation between AGN luminosity and star formation rate at high luminosities. Most of the outflow's kinetic energy escapes from the bulge via low density voids. The cold phase is pushed outward only by the ram pressure (momentum) of the outflow. The combination of the negative and positive forms of AGN feedback leads to an $M-\\sigma$ relation similar to the result of King (2003). Due to porosity of cold ISM in the bulge, SMBH influence on the low density medium of the host galaxy is significant even for SMBH well below the $M-\\sigma$ mass. The role of SMBH feedback in our model evolves in space and time with the ISM structure. In the early gas rich phase, SMBH accelerate...

  3. The Detectability of AGN Cavities in Cooling-Flow Clusters

    CERN Document Server

    Birzan, L; McNamara, B R; Nulsen, P E J; Wise, M W

    2009-01-01

    Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling flows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.

  4. Finite-time observer-based output-feedback control for the global stabilisation of the PVTOL aircraft with bounded inputs

    Science.gov (United States)

    Zavala-Río, A.; Fantoni, I.; Sanahuja, G.

    2016-05-01

    In this work, an output-feedback scheme for the global stabilisation of the planar vertical take-off and landing aircraft with bounded inputs is developed taking into account the positive nature of the thrust. The global stabilisation objective is proven to be achieved avoiding input saturation and by exclusively considering the system positions in the feedback. To cope with the lack of velocity measurements, the proposed algorithm involves a finite-time observer. The generalised versions of the involved finite-time stabilisers have not only permitted to solve the output-feedback stabilisation problem avoiding input saturation, but also provide additional flexibility in the control design that may be used in aid of performance improvements. With respect to previous approaches, the developed finite-time observer-based scheme guarantees the global stabilisation objective disregarding velocity measurements in a bounded input context. Simulation tests corroborate the analytical developments. The study includes further experimental results on an actual flying device.

  5. Metals and dust in high redshift AGNs

    CERN Document Server

    Maiolino, R; Marconi, A; Schneider, R; Bianchi, S; Pedani, M; Pipino, A; Matteucci, F; Cox, P; Caselli, P

    2006-01-01

    We summarize some recent results on the metallicity and dust properties of Active Galactic Nuclei (AGN) at high redshift (110). The properties of dust in high-z QSOs are discussed within the context of the dust production mechanisms in the early universe. The dust extinction curve is observed to evolve beyond z>4, and by z~6 it is well described by the properties expected for dust produced by SNe, suggesting that the latter is the main mechanism of dust production in the early universe. We also show that the huge dust masses observed in distant QSOs can be accounted for by SN dust within the observational constraints currently available. Finally, we show that QSO winds, which have been proposed as an alternative mechanism of dust production, may also contribute significantly to the total dust budget at high redshift.

  6. How AGN Jets Heat the Intracluster Medium -- Insights from Hydrodynamic Simulations

    CERN Document Server

    Yang, H -Y K

    2016-01-01

    Feedback from active galactic nuclei (AGN) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms reproducing the properties of cool cores. We find that there is net heating within two `jet cones' (within ~30 degrees from the axis of jet precession) where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore forming a `reduced' cooling flow. Consequently, the cluster core is in a process of `gentle circulation' over billions of years. Within t...

  7. Highly variable AGN from the XMM-Newton Slew Survey

    CERN Document Server

    Strotjohann, N L; Starling, R L C; Esquej, P; Read, A M; Evans, P A; Miniutti, G

    2016-01-01

    We investigate the properties of a variability-selected complete sample of AGN in order to identify the mechanisms which cause large amplitude X-ray variability on time scales of years. A complete sample of 24 sources was constructed, from AGN which changed their soft X-ray luminosity by more than one order of magnitude over 5--20 years between ROSAT observations and the XMM Slew Survey. Follow-up observations were obtained with the Swift satellite. After removal of two probable spurious sources, we find that the sample has global properties which differ little from a non-varying control sample drawn from the wider XMM-Slew/ROSAT/Veron sample of all secure AGN detections. A wide range of AGN types are represented in the varying sample. The black hole mass distributions for the varying and non-varying sample are not significantly different. This suggests that long timescale variability is not strongly affected by black hole mass. There is marginal evidence that the variable sources have a lower redshift (2$\\si...

  8. Disentangling star formation and AGN activity in powerful infrared luminous radio galaxies at 1 < z < 4

    Science.gov (United States)

    Drouart, G.; Rocca-Volmerange, B.; De Breuck, C.; Fioc, M.; Lehnert, M.; Seymour, N.; Stern, D.; Vernet, J.

    2016-09-01

    High-redshift radio galaxies present signs of both star formation and AGN activity, making them ideal candidates to investigate the connection and coevolution of AGN and star formation in the progenitors of present-day massive galaxies. We make use of a sample of 11 powerful radio galaxies spanning 1 relative contribution of the AGN and star formation by combining the galaxy evolution code PÉGASE.3 with an AGN torus model. We find that three components are necessary to reproduce the observed SEDs: an evolved and massive stellar component, a submm bright young starburst, and an AGN torus. We find that powerful radio galaxies form at very high-redshift, but experience episodic and important growth at 1 mass of the associated starburst varies from 5 to 50% of the total mass of the system. The properties of star formation differ from source to source, indicating no general trend of the star formation properties in the most infrared luminous high-redshift radio galaxies and no correlation with the AGN bolometric luminosity. Moreover, we find that AGN scattered light have a very limited impact on broad-band SED fitting on our sample. Finally, our analysis also suggests a wide range in origins for the observed star formation,which we partially constrain for some sources.

  9. Constraining AGN triggering mechanisms through the clustering analysis of active black holes

    Science.gov (United States)

    Gatti, M.; Shankar, F.; Bouillot, V.; Menci, N.; Lamastra, A.; Hirschmann, M.; Fiore, F.

    2016-02-01

    The triggering mechanisms for active galactic nuclei (AGN) are still debated. Some of the most popular ones include galaxy interactions (IT) and disc instabilities (DIs). Using an advanced semi-analytic model (SAM) of galaxy formation, coupled to accurate halo occupation distribution modelling, we investigate the imprint left by each separate triggering process on the clustering strength of AGN at small and large scales. Our main results are as follows: (i) DIs, irrespective of their exact implementation in the SAM, tend to fall short in triggering AGN activity in galaxies at the centre of haloes with Mh > 1013.5 h-1 M⊙. On the contrary, the IT scenario predicts abundance of active central galaxies that generally agrees well with observations at every halo mass. (ii) The relative number of satellite AGN in DIs at intermediate-to-low luminosities is always significantly higher than in IT models, especially in groups and clusters. The low AGN satellite fraction predicted for the IT scenario might suggest that different feeding modes could simultaneously contribute to the triggering of satellite AGN. (iii) Both scenarios are quite degenerate in matching large-scale clustering measurements, suggesting that the sole average bias might not be an effective observational constraint. (iv) Our analysis suggests the presence of both a mild luminosity and a more consistent redshift dependence in the AGN clustering, with AGN inhabiting progressively less massive dark matter haloes as the redshift increases. We also discuss the impact of different observational selection cuts in measuring AGN clustering, including possible discrepancies between optical and X-ray surveys.

  10. The Study of Relativistic AGN Jets and Experimental Survey of AGN Properties

    Science.gov (United States)

    Sabzali, V.; Davoudifar, P.; Mickaelian, A. M.

    2016-09-01

    AGN, their evolution and their relativistic jets were studied on the basis of data from multi-wavelength surveys. NRAO VLA Sky Survey (NVSS) and VLBI were used to study radio jets and radio continuum emission of AGN. A population of AGN will be selected and used in a future optical survey for their jets.

  11. Finding AGN in Deep X-ray Flux States with Swift

    CERN Document Server

    Grupe, Dirk; Bush, Mason; Pruett, Chelsea; Ernst, Sonny; Barber, Taylor; Carter, Jen; Schartel, Norbert; Rodriguez, Pedro; Santos-Lleó, Maria

    2015-01-01

    We report on our ongoing project of finding Active Galactic Nuclei (AGN) that go into deep X-ray flux states detected by Swift. Swift is performing an extensive study on the flux and spectral variability of AGN using Guest Investigator and team fill-in programs followed by triggering XMM_Newton for deeper follow-up observations. So far this program has been very successful and has led to a number of XMM-Newton follow up observations, including Mkn 335, PG 0844+349, and RX J2340.8-5329. Recent analysis of new Swift AGN observations reveal several AGN went into a very low X-ray flux state, particularly Narrow-Line Seyfert 1 galaxies. One of these is RX J2317-4422, which dropped by a factor of about 60 when compared to the ROSAT All-Sky Survey.

  12. Fast ionized X-ray absorbers in AGNs

    Science.gov (United States)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  13. Modeling the reverberation of optical polarization in AGN

    CERN Document Server

    Lobos, P Andrea Rojas; Marin, Frederic

    2016-01-01

    According to the standard paradigm, the strong and compact luminosity of active galactic nuclei (AGN) is due to multi-temperature black body emission originating from an accretion disk formed around a supermassive black hole. This central engine is thought to be surrounded by a dusty region along the equatorial plane and by ionized winds along the poles. The innermost regions cannot yet be resolved neither in the optical nor in the infrared and it is fair to say that we still lack a satisfactory understanding of the physical processes, geometry and composition of the central (sub-parsec) components of AGN. Like spectral or polarimetric observations, the reverberation data needs to be modeled in order to infer constraints on the AGN geometry (such as the inner radius or the half-opening angle of the dusty torus). In this research note, we present preliminary modeling results using a time-dependent Monte Carlo method to solve the radiative transfer in a simplified AGN set up. We investigate different model conf...

  14. The most obscured AGN in the COSMOS field

    CERN Document Server

    Lanzuisi, G; Delvecchio, I; Berta, S; Brusa, M; Cappelluti, N; Comastri, A; Gilli, R; Gruppioni, C; Mignoli, M; Pozzi, F; Vietri, G; Vignali, C; Zamorani, G

    2015-01-01

    Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thick (CT) absorbers (NH>10^24 cm^-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 10^24 cm^-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH>~10^25 cm^-2), intrinsically luminous (L(2-10keV)>10^44 erg s^-1) AGN at z=0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6{\\mu}m luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a 10^25 cm^-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morp...

  15. Probing AGN Unification with galaxy neighbours: pitfalls and prospects

    Science.gov (United States)

    Villarroel, B.

    2015-09-01

    Statistical tests of AGN unification harbour many caveats. One way of constraining the validity of the AGN unification is through studies of close neighbours to Type-1 and Type-2 AGN. Examining thousands of AGN- galaxy pairs from the Sloan Digital Sky Survey Data Release 7 and the Galaxy Zoo project, we found that Type-2 AGN appear to reside in more star-forming environments than Type-1 AGN.

  16. A radio view of high-energy emitting AGNs

    Science.gov (United States)

    Schulz, Robert Frank

    2016-07-01

    Active galactic nuclei (AGNs) are among the most energetic objects in the Universe. These galaxies that are dominated in part or even throughout the electromagnetic spectrum by emission from their central, compact region. AGNs are extensively studied by multi-wavelength observations. In the standard picture, the main driver of an AGN is a supermassive black hole (SMBH) in its centre that is surrounded by an accretion disk. Perpendicular to the disk, in the vicinity of highly magnetized SMBH relativistic outflows of plasma, so-called jets, can form on either side that can reach far beyond the host galaxy. Only about 10% of all AGNs are dominated by emission from these jets due to relativistic beaming effects and these so-called blazars dominate the extragalactic gamma-ray sky. It is commonly accepted that the low-energy emission (radio to UV/X-ray) is due to synchrotron emission from the jet. The high-energy emission is considered to stem from inverse-Compton scattering of photons on the jet particles, but different sources for these photons are discussed (internal or external to the AGN) and other models for the high-energy emission have also been proposed. The nature of the high-energy emission is strongly linked to the location of the emission region in the jet which requires a detailed understanding of the formation and evolution of jets. Radio observations especially using very long baseline interferometry (VLBI) provide the best way to gain direct information on the intrinsic properties of jets down to sub-pc scales, close to their formation region. In this thesis, I focus on the properties of three different AGNs, IC 310, PKS2004-447, and 3C 111 that belong to the small non-blazar population of gamma-ray-loud AGNs. I study them in detail with a variety of radio astronomical instruments with respect to their high-energy emission and in the context of the large monitoring programmes MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments) and

  17. On the Lx-L6micron ratio as a diagnostic for Compton-thick AGN

    CERN Document Server

    Georgantopoulos, I; Akylas, A; Comastri, A; Ranalli, P; Vignali, C; Balestra, I; Gilli, R; Cappelluti, N

    2011-01-01

    As the mid-IR luminosity represents a good isotropic proxy of the AGN power, a low X-ray to mid-IR luminosity ratio is often claimed to be a reliable indicator for selecting Compton-thick (CT) AGN. We assess the efficiency of this diagnostic by examining the 12mu IRAS AGN sample for which high signal-to-noise XMM observations have been recently become available. We find that the vast majority (10/11) of the AGN that have been classified as CT on the basis the X-ray spectroscopy by Brightman & Nandra present a low Lx/L6 luminosity ratio, i.e. lower than a few percent of the average AGN ratio which is typical of reflection-dominated CT sources. At low Lx/L6 ratios we also find a comparable number of AGN, most of which are heavily absorbed but not CT. This implies that although most Compton-thick AGN present low Lx/L6 ratios, at least in the local, Universe, the opposite is not necessarily true. Next, we extend our analysis to higher redshifts. We perform the same analysis in the CDFS where excellent quality...

  18. Morphologies of Radio, X-Ray, and Mid-Infrared Selected AGN

    CERN Document Server

    Griffith, Roger L

    2010-01-01

    We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 AGN host galaxies from the VLA, XMM-Newton and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the radio-selected AGN are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray selected AGN, mid-IR selected AGN have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform with the results of Hickox et al. 2009 who studied the colors and large-scale clustering of AGN, and found a general association of radio-selected AGN with ``red sequence'' galaxies, mi...

  19. AGN are cooler than you think: the intrinsic far-IR emission from QSOs

    CERN Document Server

    Symeonidis, M; Page, M J; Pearson, C; Bendo, G; Seymour, N; Oliver, S J

    2016-01-01

    We present an intrinsic AGN SED extending from the optical to the submm, derived with a sample of unobscured, optically luminous (vLv(5100)>10^43.5 erg/s) QSOs at z 10^43.5 erg/s). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe' broadband photometric observation (at lambda<1000um) which can be used in calculating star-formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 Ang is at least a factor of 4 smaller than the total infrared luminosity (L_IR; 8-1000um) of the galaxy. Finally, we examine the implication of our work in statistical studies of star-formation in AGN host galaxies.

  20. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    Science.gov (United States)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  1. Extragalactic Jets as Probes of Distant Clusters of Galaxies and the Clusters Occupied by Bent Radio AGN (COBRA) Survey

    CERN Document Server

    Blanton, Elizabeth L; Wing, Joshua D; Ashby, M L N; Golden-Marx, Emmet; Brodwin, Mark; Douglass, E M; Randall, Scott W; Clarke, T E

    2014-01-01

    We are conducting a large survey of distant clusters of galaxies using radio sources with bent jets and lobes as tracers. These radio sources are driven by AGN and achieve their bent morphologies through interaction with the surrounding gas found in clusters of galaxies. Based on low-redshift studies, these types of sources can be used to identify clusters very efficiently. We present initial results from our survey of 653 bent-double radio sources with optical hosts too faint to appear in the SDSS. The sample was observed in the infrared with Spitzer, and it has revealed $\\sim$200 distant clusters or proto-clusters in the redshift range $z\\sim0.7 - 3.0$. The sample of bent-doubles contains both quasars and radio galaxies enabling us to study both radiative and kinetic mode feedback in cluster and group environments at a wide range of redshifts.

  2. X-ray Scattering Echoes and Ghost Halos from the Intergalactic Medium: Relation to the nature of AGN variability

    CERN Document Server

    Corrales, Lia

    2015-01-01

    X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of grey dust larger than 0.1 um, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the Universe is ~1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGN offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (> 3 dex) due to a major feedback event, the Chandra point source image will be ...

  3. Gas kinematics in powerful radio galaxies at z~2: Energy supply from star formation, AGN, and radio jet

    CERN Document Server

    Nesvadba, N; De Breuck, C; Best, P; Seymour, N; Vernet, J

    2016-01-01

    We compare the kinetic energy and momentum injection rates from intense star formation, bolometric AGN radiation, and radio jets with the kinetic energy and momentum observed in the warm ionized gas in 24 powerful radio galaxies at z~2. These galaxies are amongst our best candidates for being massive galaxies near the end of their active formation period, when intense star formation, quasar activity, and powerful radio jets all co-exist. All galaxies have VLT/SINFONI imaging spectroscopy of the rest-frame optical line emission, showing emission-line regions with large velocity offsets (up to 1500 km/s) and line widths (typically 800-1000 km/s) consistent with very turbulent, often outflowing gas. As part of the HeRGE sample, they also have FIR estimates of the star formation and quasar activity obtained with Herschel/PACS and SPIRE, which enables us to measure the relative energy and momentum release from each of the three main sources of feedback in massive, star-forming AGN host galaxies during their most r...

  4. Observation, control and modal analysis of longitudinal coupled-bunch instabilities in the ALS via a digital feedback system

    International Nuclear Information System (INIS)

    The operation of a longitudinal multi-bunch damping system using digital signal processing techniques is shown via measurements from the LBL Advanced Light Source. The feedback system (developed for use by PEP-II, ALS and DAΦNE) uses a parallel array of signal processors to implement a bunch by bunch feedback system for sampling rates up to 500 MHz. The programmable DSP system allows feedback control as well as accelerator diagnostics. A diagnostic technique is illustrated which uses the DSP system to excite and then damp the beam. The resulting 12 ms time domain transient is Fourier analyzed to provide the simultaneous measurement of growth rates and damping rates of all unstable coupled-bunch beam modes

  5. Observation, control, and modal analysis of longitudinal coupled-bunch instabilities in the ALS via a digital feedback system

    International Nuclear Information System (INIS)

    The operation of a longitudinal multibunch damping system using digital signal processing (DSP) techniques is shown via measurements from the Lawrence Berkeley Laboratory (LBL) Advanced Light Source (ALS). The feedback system (developed for use by PEP-II, ALS, and DAΦNE) uses a parallel array of signal processors to implement a bunch-by-bunch feedback system for sampling rates up to 500 MHz. The programmable DSP system allows feedback control as well as accelerator diagnostics. A diagnostic technique is illustrated which uses the DSP system to excite and then damp the beam. The resulting 12-ms time domain transient is Fourier analyzed to provide the simultaneous measurement of growth rates and damping rates of all unstable coupled-bunch beam modes. copyright 1997 American Institute of Physics

  6. X-ray emission of post-starburst galaxies: looking into the feedback mechanism

    Science.gov (United States)

    Ballo, Lucia

    2011-11-01

    The tight relation between galaxy bulges and black holes shows that star formation and accretion must have co-evolved throughout the history of the Universe. The leading hypothesis is that intense periods of star formation and black hole growth concurrently occur in the history of massive galaxies, possibly triggered by mergers. The feedback from the AGN could terminate the star formation and, eventually, extinguish the AGN itself. The complex physics involved in such a scenario is, however, poorly understood. The best class of objects to investigate the relative time-scales of this feedback are the post-starburst galaxies, i.e. galaxies observed shortly after the star-formation has ended (about 0.1-1 Gyr). ~0.3% of the SDSS galaxies in the local Universe show evidence in the optical band of the presence of both a nucleus still accreting in their centre and a post-starburst signature. This suggests that the switching off for a starburst event occurs before the extinguishing of the nuclear activity. However, it is not clear whether this result is a common law in the feedback mechanisms. Here we present a project devoted to study the X-ray emission of the apparently quiescent post-starburst galaxies detected in the SDSS, to deeply investigate the real lack of nuclear activity (possibly obscured in the optical band), and to study the energetics of these systems.

  7. Disk-Driven Outflows in AGNs

    CERN Document Server

    Koenigl, A

    2003-01-01

    Analysis of spectral absorption features has led to the identification of several distinct outflow components in AGNs. The outflowing gas is evidently photoionized by the nuclear continuum source and originates in the accretion flow toward the central black hole. The most likely driving mechanisms are continuum and line radiation pressure and magnetic stresses. The theoretical modeling of these outflows involves such issues as: (1) Which of the above mechanisms actually contributes in each case? (2) How is the gas uplifted from the underlying accretion disk? (3) How can the intense central continuum radiation be shielded to allow efficient radiative driving? (4) Is the outflow continuous or clumpy, and, if clumpy, what is the nature and dynamical state of the ``clouds''? This review summarizes recent theoretical and observational results that bear on these questions and outlines prospects for further progress.

  8. Galaxy Zoo: Evidence for rapid, recent quenching within a population of AGN host galaxies

    CERN Document Server

    Smethurst, R J; Simmons, B D; Schawinski, K; Bamford, S P; Cardamone, C N; Kruk, S J; Masters, K L; Urry, C M; Willett, K W; Wong, O I

    2016-01-01

    We present a population study of the star formation history of 1244 Type 2 AGN host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualise the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolutio...

  9. Galaxy Zoo: Evidence for rapid, recent quenching within a population of AGN host galaxies

    Science.gov (United States)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-09-01

    We present a population study of the star formation history of 1244 Type 2 AGN host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualise the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  10. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    CERN Document Server

    Bernhard, E; Daddi, E; Ciesla, L; Schreiber, C

    2016-01-01

    We investigate the star-forming properties of 1620 X-ray selected AGN host galaxies as a function of their specific X-ray luminosity (i.e., X-ray luminosity per unit host stellar mass) -- a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star-formation at high Eddington ratios, which may hint toward "AGN feedback" effects. Star-formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning $0.01 \\lesssim L_{\\rm X}/M_{\\ast} \\lesssim 100~L_{\\odot} ~M_{\\odot}^{-1}$). After normalising for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This sugges...

  11. Do Radio Jets Contribute to Driving Ionized Gas Outflows in Moderate Luminosity Type 2 AGN?

    Science.gov (United States)

    Fowler, Julia; Sajina, Anna; Lacy, Mark

    2016-01-01

    This poster examines the role of AGN-driven feedback in low to intermediate power radio galaxies. We begin with [OIII] measurements of ionized gas outflows in 29 moderate AGN-luminosity z~0.3-0.7 dust-obscured Type 2 AGN. We aim to examine the relative role of the AGN itself, of star-formation and of nascent radio jets in driving these outflows. The strength of the AGN and star formation are based on the [OIII] luminosities, and the far-IR luminosities respectively. For the radio jets, we present multi-frequency radio (X, S, and L-bands) JVLA imaging of our sample, which allows us both to constrain the overall radio power, but also look for signatures of young radio sources, including Giga-hertz Peaked Spectrum (GPS) sources, as well as small-scale jets. While radio jet-driven outflows are well known for powerful radio-loud galaxies, this study allows us to constrain the degree to which this mechanism is significant at more modest radio luminosities of L5GHz~10^22-25 W/Hz.

  12. The interaction between feedback from active galactic nuclei and supernovae

    OpenAIRE

    Booth, C. M.; Joop Schaye

    2012-01-01

    Energetic feedback from supernovae (SNe) and from active galactic nuclei (AGN) are both important processes that are thought to control how much gas is able to condense into galaxies and form stars. We show that although both AGN and SNe suppress star formation, they mutually weaken one another's effect by up to an order of magnitude in haloes in the mass range for which both feedback processes are efficient (10^11.25 M_sun < m_200 < 10^12.5 M_sun). These results demonstrate the importance of...

  13. HerMES: Far infrared properties of known AGN in the HerMES fields

    OpenAIRE

    Hatziminaoglou, E; Omont, A.; Stevens, J. A.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Babbedge, T.; Blain, A.; Bock, J.; Boselli, A.; Buat, V.; Burgarella, D.; Castro-Rodriguez, N.; Cava, A.

    2010-01-01

    Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the far-infrared (FIR) spectral energy distributions (SEDs) of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to ...

  14. Understanding active galactic nuclei using near-infrared high angular resolution polarimetry I : MontAGN - stokes comparison

    CERN Document Server

    Grosset, Lucas; Gratadour, Damien; Goosmann, René; Rouan, Daniel; Clénet, Yann; Pelat, Didier; Lobos, Patricia Andrea Rojas

    2016-01-01

    In this first research note of a series of two, we present a comparison between two Monte Carlo radiative transfer codes: MontAGN and STOKES. Both were developed in order to better understand the observed polarisation of Active Galactic Nuclei (AGN). Our final aim is to use these radiative transfer codes to simulate the polarisation maps of a prototypical type-2 radio-quiet AGN on a wide range of wavelengths, from the infrared band with MontAGN to the X-ray energies with STOKES. Doing so, we aim to analyse in depth the recent SPHERE/IRDIS polarimetric observations conducted on NGC 1068. In order to validate the codes and obtain preliminary results, we set for both codes a common and simple AGN model, and compared their polaro-imaging results.

  15. The interaction between feedback from active galactic nuclei and supernovae

    CERN Document Server

    Booth, C M

    2012-01-01

    Energetic feedback from supernovae (SNe) and from active galactic nuclei (AGN) are both important processes that are thought to control how much gas is able to condense into galaxies and form stars. We show that although both AGN and SNe suppress star formation, they mutually weaken one another's effect by up to an order of magnitude in haloes in the mass range for which both feedback processes are efficient (10^11.25 M_sun < m_200 < 10^12.5 M_sun). These results demonstrate the importance of the simultaneous, non-independent inclusion of these two processes in models of galaxy formation to estimate the total feedback strength. These results are of particular relevance to semi-analytic models, which implicitly assume the effects of the two feedback processes to be independent, and also to hydrodynamical simulations that model only one of the feedback processes.

  16. Simulated star formation rate functions at $\\bf{z\\sim4-7}$, and the role of feedback in high-$\\bf{z}$ galaxies

    CERN Document Server

    Tescari, Edoardo; Wyithe, Stuart; Dolag, Klaus; Tornatore, Luca; Barai, Paramita; Viel, Matteo; Borgani, Stefano

    2013-01-01

    We study the role of feedback from supernovae and black holes in the evolution of the star formation rate function (SFRF) of $z\\sim4-7$ galaxies. We use a new set of cosmological hydrodynamic simulations, ANGUS (AustraliaN GADGET-3 early Universe Simulations), run with a modified and improved version of the parallel TreePM-smoothed particle hydrodynamics code GADGET-3 called P-GADGET3(XXL), that includes a self-consistent implementation of stellar evolution and metal enrichment. In our simulations both Supernova (SN) driven galactic winds and Active Galactic Nuclei (AGN) act simultaneously in a complex interplay. The SFRF is insensitive to feedback prescription at $z>5$, meaning that it cannot be used to discriminate between feedback models during reionisation. However, the SFRF is sensitive to the details of feedback prescription at lower redshift. By exploring different SN driven wind velocities and regimes for the AGN feedback, we find that the key factor for reproducing the observed SFRFs is a combination...

  17. Quantifying AGN-Driven Metal-Enhanced Outflows in Chemodynamical Simulations

    CERN Document Server

    Taylor, Philip

    2015-01-01

    We show the effects of AGN-driven outflows on the ejection of heavy elements using our cosmological simulations, where super-massive black holes originate from the first stars. In the most massive galaxy, we have identified two strong outflows unambiguously driven by AGN feedback. These outflows have a speed greater than $\\sim 8000$ km\\,s$^{-1}$ near the AGN, and travel out to a half Mpc with $\\sim 3000$ km\\,s$^{-1}$. These outflows remove the remaining gas ($\\sim 3$ per cent of baryons) and significant amounts of metals ($\\sim 2$ per cent of total produced metals) from the host galaxy, chemically enriching the circumgalactic medium (CGM) and the intergalactic medium (IGM). 17.6 per cent of metals from this galaxy, and 18.4 per cent of total produced metals in the simulation, end up in the CGM and IGM, respectively. The metallicities of the CGM and IGM are higher with AGN feedback, while the mass--metallicity relation of galaxies is not affected very much. We also find `selective' mass-loss where iron is more...

  18. X-ray evidence for ultra-fast outflows in AGNs

    Science.gov (United States)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  19. Spectral Energy Distributions of Type 1 AGNs

    Science.gov (United States)

    Hao, Heng

    The spectral energy distributions (SEDs) of active galactic nuclei (AGNs) are essential to understand the physics of supermassive black holes (SMBHs) and their host galaxies. This thesis present a detailed study of AGN SED shapes in the optical-near infrared bands (0.3--3microm) for 413 X-ray selected Type 1 AGNs from the XMM-COSMOS Survey. We define a useful near-IR/optical index-index ('color-color') diagram to investigate the mixture of AGN continuum, host galaxy and reddening contributions. We found that ˜90% of the AGNs lie on mixing curves between the Elvis et al. (1994) mean AGN SED (E94) and a host galaxy, with only the modest reddening [E(B-V)=0.1--0.2] expected in type 1 AGNs. Lower luminosity and Eddington ratio objects have more host galaxy, as expected. The E94 template is remarkably good in describing the SED shape in the 0.3--3microrn decade of the spectrum over a range of 3.2 dex in LOPT, 2.7 dex in L/LEdd, and for redshifts up to 3. The AGN phenomenon is thus insensitive to absolute or relative accretion rate and to cosmic time. However, 10% of the AGNs are inconsistent with any AGN+host+reddening mix. These AGNs have weak or non-existent near-IR bumps, suggesting a lack of the hot dust characteristic of AGNs. The fraction of these hot-dust-poor AGNs evolves with redshift from 6% at low redshift (z times the gravitational stability radii. Either the host-dust is destroyed (dynamically or by radiation), or is offset from the central black hole due to recoiling. Alternatively, the universality of HDP quasars in samples with different selection methods and the continuous distribution of dust covering factor in type 1 AGNs, suggest that the range of SEDs could be related to the range of tilts in warped fueling disks, as in the model of Lawrence and Elvis (2010), with HDP quasars having relatively small warps. A small number of other outliers are found with the help of the mixing diagram, which could represent quasars on different evolutionary stage

  20. A Multi-Wavelength Study of Low Redshift Clusters of Galaxies I. Comparison of X-ray and Mid-Infrared Selected AGNs

    OpenAIRE

    Atlee, David W.; Martini, Paul; Assef, Roberto J.; Kelson, Daniel D.; Mulchaey, John S.

    2011-01-01

    Clusters of galaxies have long been used as laboratories for the study of galaxy evolution, but despite intense, recent interest in feedback between AGNs and their hosts, the impact of environment on these relationships remains poorly constrained. We present results from a study of AGNs and their host galaxies found in low-redshift galaxy clusters. We fit model spectral energy distributions (SEDs) to the combined visible and mid-infrared (MIR) photometry of cluster members and use these model...

  1. AGN Zoo and Classifications of Active Galaxies

    Science.gov (United States)

    Mickaelian, Areg M.

    2015-07-01

    We review the variety of Active Galactic Nuclei (AGN) classes (so-called "AGN zoo") and classification schemes of galaxies by activity types based on their optical emission-line spectrum, as well as other parameters and other than optical wavelength ranges. A historical overview of discoveries of various types of active galaxies is given, including Seyfert galaxies, radio galaxies, QSOs, BL Lacertae objects, Starbursts, LINERs, etc. Various kinds of AGN diagnostics are discussed. All known AGN types and subtypes are presented and described to have a homogeneous classification scheme based on the optical emission-line spectra and in many cases, also other parameters. Problems connected with accurate classifications and open questions related to AGN and their classes are discussed and summarized.

  2. Supervisor Feedback.

    Science.gov (United States)

    Hayman, Marilyn J.

    1981-01-01

    Investigated the effectiveness of supervisor feedback in contributing to learning counseling skills. Counselor trainees (N=64) were assigned to supervisor feedback, no supervisor feedback, or control groups for three training sessions. Results indicated counseling skills were learned best by students with no supervisor feedback but self and peer…

  3. The physical properties of AGN host galaxies as a probe of SMBH feeding mechanisms

    CERN Document Server

    Gatti, M; Menci, N; Bongiorno, A; Fiore, F

    2014-01-01

    Using a state-of-the-art semi analytic model (SAM) for galaxy formation, we have investigated the statistical effects of assuming two different mechanisms for triggering AGN activity on the properties of AGN host galaxies. We have considered a first accretion mode where AGN activity is triggered by disk instabilities (DI) in isolated galaxies, and a second feeding mode where such an activity is triggered by galaxy mergers and fly-by events (interactions, IT). We obtained the following results:i) for hosts with $M_* \\lesssim 10^{11} M_{\\bigodot}$, both DI and IT modes are able to account for the observed AGN hosts stellar mass function; for more massive hosts, the DI scenario predicts a lower space density than the IT model, lying below the observational estimates for z>0.8.ii) The analysis of the color-magnitude diagram (CMD) of AGN hosts for redshift z < 1.5 can provide a good observational test to effectively discriminate between the DI and IT mode, since DIs are expected to yield AGN host galaxy colors ...

  4. The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS

    Science.gov (United States)

    Mingo, B.; Watson, M. G.; Rosen, S. R.; Hardcastle, M. J.; Ruiz, A.; Blain, A.; Carrera, F. J.; Mateos, S.; Pineau, F.-X.; Stewart, G. C.

    2016-11-01

    We cross-correlate the largest available mid-infrared (Wide-field Infrared Survey Explorer - WISE), X-ray (3XMM) and radio (Faint Images of the Radio Sky at Twenty centimetres+NRAO VLA Sky Survey) catalogues to define the MIXR sample of AGN and star-forming galaxies. We pre-classify the sources based on their positions on the WISE colour/colour plot, showing that the MIXR triple selection is extremely effective to diagnose the star formation and AGN activity of individual populations, even on a flux/magnitude basis, extending the diagnostics to objects with luminosities and redshifts from SDSS DR12. We recover the radio/mid-IR star formation correlation with great accuracy, and use it to classify our sources, based on their activity, as radio-loud and radio-quiet active galactic nuclei (AGN), low excitation radio galaxies/low ionization nuclear emission line regions, and non-AGN galaxies. These diagnostics can prove extremely useful for large AGN and galaxy samples, and help develop ways to efficiently triage sources when data from the next generation of instruments becomes available. We study bias in detail, and show that while the widely used WISE colour selections for AGN are very successful at cleanly selecting samples of luminous AGN, they miss or misclassify a substantial fraction of AGN at lower luminosities and/or higher redshifts. MIXR also allows us to test the relation between radiative and kinetic (jet) power in radio-loud AGN, for which a tight correlation is expected due to a mutual dependence on accretion. Our results highlight that long-term AGN variability, jet regulation, and other factors affecting the Q/Lbol relation, are introducing a vast amount of scatter in this relation, with dramatic potential consequences on our current understanding of AGN feedback and its effect on star formation.

  5. Still Red and Dead? Measuring feedback and star-formation in clusters at z > 1

    Science.gov (United States)

    Khullar, Gourav; McDonald, Michael; Bleem, Lindsey; Benson, Bradford; Gladders, Michael; South Pole Telescope (SPT) Collaboration

    2016-06-01

    Optical and infrared (IR) surveys have discovered that galaxy clusters at z 2 and underwent passive evolution thereafter without dominant star formation, some samples indicate that an era of star formation and AGN activity is seen in cluster galaxies at z > 1. Only recently have large samples of z > 1 clusters been identified, mostly through IR and Sunyaev-Zel’dovich (SZ) surveys, which indicate an increase in SFR in clusters at high redshifts and incomplete quenching. Moreover, a robust cluster sample in-hand allows us to understand how galaxy clusters become "red and dead", and the role of astrophysical feedback in this process. The South Pole Telescope (SPT) collaboration has produced mass-limited redshift-independent catalog of 516 clusters from 0.0 1.0, with three newly found systems having a zphot > 1.5. In this work, we focus on a sub-sample of SPT-SZ selected clusters at z > 1.2 with multi-wavelength observations in X-ray (Chandra), infrared (Herschel, Spitzer), optical (Magellan - imaging and spectroscopy), and mm-wavelength (SPT) bands. These observations enable constraints on cluster stellar, baryonic, and total mass, in addition to a host of other information, including the star-formation rate, level of AGN activity, cluster dynamical state, and signatures of astrophysical feedback in the intra-cluster gas. We will describe the overall observing program, early results, and future directions.

  6. Radio Loud AGN Unification: Connecting Jets and Accretion

    Directory of Open Access Journals (Sweden)

    Meyer Eileen T.

    2013-12-01

    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample

  7. Tracing outflows in the AGN forbidden region with SINFONI

    CERN Document Server

    Kakkad, D; Padovani, P; Cresci, G; Husemann, B; Carniani, S; Brusa, M; Lamastra, A; Lanzuisi, G; Piconcelli, E; Schramm, M

    2016-01-01

    AGN driven outflows are invoked in numerical simulations to reproduce several observed properties of local galaxies. The z > 1 epoch is of particular interest as it was during this time that the volume averaged star formation and the accretion rate of black holes were maximum. Radiatively driven outflows are therefore believed to be common during this epoch. We aim to trace and characterize outflows in AGN hosts with high mass accretion rates at z > 1 using integral field spectroscopy. We obtain spatially-resolved kinematics of the [OIII]5007 line in two targets which reveal the morphology and spatial extension of the outflows. We present J and H+K band SINFONI observations of 5 AGNs at 1.2 < z < 2.2. To maximize the chance of observing radiatively driven outflows, our sample was pre-selected based on peculiar values of the Eddington ratio and the hydrogen column density of the surrounding interstellar medium. We observe high velocity (~600-1900 km/s) and kiloparsec scale extended ionized outflows in at...

  8. High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    CERN Document Server

    Jacobsen, Idunn B; On, Alvina Y L; Saxton, Curtis J

    2015-01-01

    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A \\citep{KT2008,BB2009}, we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from {\\it Chandra} and {\\it Swift}/BAT X-ray luminosity functions \\citep{SGB2008,ACS2009}. We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). B...

  9. ACTIVE GALACTIC NUCLEUS FEEDBACK AT z ∼ 2 AND THE MUTUAL EVOLUTION OF ACTIVE AND INACTIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cimatti, A.; Brusa, M.; Talia, M. [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, I-30127 Bologna (Italy); Mignoli, M. [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Rodighiero, G. [Dipartimento di Fisica e Astronomia, Università di Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Kurk, J. [Max-Planck-Institut für Extraterrestrial Physik, Giessenbachstrasse, D-85748 Garching bei München (Germany); Cassata, P. [Aix Marseille Universite, CNRS, Laboratoire d' Astrophysique de Marseille, UMR 7326, F-13388 Marseille (France); Halliday, C. [23 rue d' Yerres, F-91230 Montgeron (France); Renzini, A. [INAF, Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Daddi, E., E-mail: a.cimatti@unibo.it [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France)

    2013-12-10

    The relationship between galaxies of intermediate stellar mass and moderate luminosity active galactic nuclei (AGNs) at 1 < z < 3 is investigated with a Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GMASS) sample complemented with public data in the GOODS-South field. Using X-ray data, hidden AGNs are identified in unsuspected star-forming galaxies with no apparent signs of non-stellar activity. In the color-mass plane, two parallel trends emerge during the ∼2 Gyr between the average redshifts z ∼ 2.2 and z ∼ 1.3: while the red sequence becomes significantly more populated by ellipticals, the majority of AGNs with L(2-10 keV) > 10{sup 42.3} erg s{sup –1} disappear from the blue cloud/green valley where they were hosted predominantly by star-forming systems with disk and irregular morphologies. These results are even clearer when the rest-frame colors are corrected for dust reddening. At z ∼ 2.2, the ultraviolet spectra of active galaxies (including two Type 1 AGNs) show possible gas outflows with velocities up to about –500 km s{sup –1}, which are observed neither in inactive systems at the same redshift, nor at lower redshifts. Such outflows indicate the presence of gas that can move faster than the escape velocities of active galaxies. These results suggest that feedback from moderately luminous AGNs (log L{sub X} < 44.5 erg s{sup –1}) played a key role at z ≳ 2 by contributing to outflows capable of ejecting part of the interstellar medium and leading to a rapid decrease in star formation in host galaxies with stellar masses 10 < log(M/M{sub ⊙})< 11.

  10. The Wide-angle Outflow of the Lensed z = 1.51 AGN HS 0810+2554

    Science.gov (United States)

    Chartas, G.; Cappi, M.; Hamann, F.; Eracleous, M.; Strickland, S.; Giustini, M.; Misawa, T.

    2016-06-01

    We present results from X-ray observations of the gravitationally lensed z = 1.51 active galactic nucleus (AGN) HS 0810+2554 performed with the Chandra X-ray Observatory and XMM-Newton. Blueshifted absorption lines are detected in both observations at rest-frame energies ranging between ˜1 and 12 keV at ≳99% confidence. The inferred velocities of the outflowing components range between ˜0.1c and ˜0.4c. A strong emission line at ˜6.8 keV that is accompanied by a significant absorption line at ˜7.8 keV is also detected in the Chandra observation. The presence of these lines is a characteristic feature of a P-Cygni profile supporting the presence of an expanding, outflowing, highly ionized iron absorber in this quasar. Modeling of the P-Cygni profile constrains the covering factor of the wind to be ≳0.6, assuming disk shielding. A disk-reflection component is detected in the XMM-Newton observation accompanied by blueshifted absorption lines. The XMM-Newton observation constrains the inclination angle to be detection of an ultrafast and wide-angle wind in an AGN with intrinsic narrow absorption lines (NALs) would suggest that quasar winds may couple efficiently with the intergalactic medium and provide significant feedback if ubiquitous in all NAL and broad absorption line (BAL) quasars. We estimate the mass-outflow rate of the absorbers to lie in the range of 1.5–3.4 M ⊙ yr‑1 for the two observations. We find that the fraction of kinetic to electromagnetic luminosity released by HS 0810+2554 is large (ɛ k = 9{}-6+8), which suggests that magnetic driving is likely a significant contributor to the acceleration of this outflow.

  11. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Science.gov (United States)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  12. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  13. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  14. Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the ``Quasar Era''

    Science.gov (United States)

    Nesvadba, N. P. H.; Lehnert, M. D.; De Breuck, C.; Gilbert, A. M.; van Breugel, W.

    2008-11-01

    AGN feedback now appears as an attractive mechanism to resolve some of the outstanding problems with the “standard” cosmological models, in particular those related to massive galaxies. At low redshift, evidence is growing that gas cooling and star formation may be efficiently suppressed by mechanical energy input from radio sources. To directly constrain how this may influence the formation of massive galaxies near the peak in the redshift distribution of powerful quasars, z˜ 2, we present an analysis of the emission-line kinematics of 3 powerful radio galaxies at z˜ 2-3 (HzRGs) based on rest-frame optical integral-field spectroscopy obtained with SINFONI on the VLT. The host galaxies of powerful radio-loud AGN are among the most massive galaxies, and thus AGN feedback may have a particularly clear signature in these galaxies. We find evidence for bipolar outflows in all HzRGs, with kinetic energies that are equivalent to 0.2% of the rest-mass of the supermassive black hole. Observed total velocity offsets in the outflows are ~800-1000 km s-1 between the blueshifted and redshifted line emission, and FWHMs ~ 1000 km s-1 suggest strong turbulence. Line ratios allow to measure electron temperatures, ~104 K from [OIII]λλλ4363, 4959, 5007 at z˜ 2, electron densities (~500 cm-3) and extinction (A_V˜ 1-4 mag). Ionized gas masses estimated from the Hα luminosity are of order 1010~M⊙, similar to the molecular gas content of HzRGs, underlining that these outflows may indicate a significant phase in the evolution of the host galaxy. The total energy release of ~1060 erg during a dynamical time of ~107 yrs corresponds to about the binding energy of a massive galaxy, similar to the prescriptions adopted in galaxy evolution models. Geometry, timescales and energy injection rates of order 10% of the kinetic energy flux of the jet suggest that the outflows are most likely driven by the radio source. The global energy density release of ~1057 erg s-1 Mpc-3 may also

  15. Observation of poloidal current flowed to the vessel after failure of vertical position feedback control in EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    Qian Jin-Ping; Wan Bao-Nian; Shen Biao; L. L. Lao; Xiao Bing-Jia; Li Jian-Gang; Lin Shi-Yao; Luo Zheng-Ping

    2009-01-01

    Plasmas with vertically elongated cross-sections tend to be unstable to an axis-symmetric instability. This paper studies the magnetohydrodynamic equilibria in elongated plasmas after failure of vertical feedback control by using magnetic data for EAST device. Vertical forces on the vessel due to the induced polodial and toroidal currents are evaluated. The maximum force of the Fzpol in vertical displacement events for EAST designed parameters is given.

  16. The Relationship between black hole accretion and host star formation in dusty AGNs

    CERN Document Server

    Dai, Y Sophia; Bergeron, Jacqueline; Omont, Alain; Kuraszkiewicz, Joanna; Teplitz, Harry I

    2015-01-01

    We study the relationship between the X-ray luminosity and star formation rate (SFR) in an unbiased sample of dusty active galactic nuclei (AGNs), detected in both the hard X-ray and far-infrared (IR) bands in the XMM-LSS field. The sample consists of 451 AGNs with spectroscopic redshifts of 0.04 < z <3.3, and spans an X-ray luminosity range of L(2-10keV)=10^41-45 erg/s. We find a positive correlation between the X-ray luminosity and SFR derived from AGN-removed IR luminosity. We find that binning the sample by SFR instead of LX results in a more positive correlation. This is consistent with the scenario in which the shorter variability time scale of AGN than star formation flattens the observed correlation between AGN and star formation. We do not find significant diversity in the observed correlation when considering subsets selected based on supermassive black hole mass or Eddington ratio, indicating that AGN accretion has at most a limited effect on the SFR-Lx relation. Comparing to results in the l...

  17. Compton reflection in AGN with Simbol-X

    CERN Document Server

    Beckmann, V; Gehrels, N; Lubinski, P; Malzac, J; Petrucci, P O; Shrader, C R; Soldi, S

    2009-01-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies above 20 keV.

  18. Damped Lyman α absorbers as a probe of stellar feedback

    Science.gov (United States)

    Bird, Simeon; Vogelsberger, Mark; Haehnelt, Martin; Sijacki, Debora; Genel, Shy; Torrey, Paul; Springel, Volker; Hernquist, Lars

    2014-12-01

    We examine the abundance, clustering and metallicity of Damped Lyman α Absorbers (DLAs) in a suite of hydrodynamic cosmological simulations using the moving mesh code AREPO. We incorporate models of supernova and AGN feedback, as well as molecular hydrogen formation. We compare our simulations to the column density distribution function at z = 3, the total DLA abundance at z = 2-4, the measured DLA bias at z = 2.3 and the DLA metallicity distribution at z = 2-4. Our preferred models produce populations of DLAs in good agreement with most of these observations. The exception is the DLA abundance at z DLA population probes a wide range of halo masses, we find the cross-section is dominated by haloes of mass 1010-1011 h-1 M⊙ and virial velocities 50-100 km s-1. The simulated DLA population has a linear theory bias of 1.7, whereas the observations require 2.17 ± 0.2. We show, however, that non-linear growth increases the bias in our simulations to 2.3 at k = 1 h Mpc-1, the smallest scale observed. The scale-dependence of the bias is, however, very different in the simulations compared against the observations. We show that, of the observations we consider, the DLA abundance and column density function provide the strongest constraints on the feedback model.

  19. Exploring Multiwavelength AGN Variability with Swift Archival Data

    CERN Document Server

    Gelbord, Jonathan; Grupe, Dirk; Berk, Dan Vanden; Wu, Jian

    2015-01-01

    We are conducting an archival Swift program to measure multiwavelength variability in active galactic nuclei (AGN). This variability information will provide constraints on the geometry, physical conditions and processes of the structures around the central black holes that emit and reprocess the observed flux. Among our goals are: (1) to produce a catalog of type 1 AGN with time-resolved multi-wavelength data; (2) to characterize variability in the optical, UV and X-ay bands as well as changes in spectral slope; (3) to quantify the impact of variability on multi-wavelength properties; and (4) to measure correlated variability between bands. Our initial efforts have revealed a UVOT calibration issue that can cause a few percent of measured UV fluxes to be anomalously low, by up to 30%.

  20. The orientation of the nuclear obscurer of the AGNs

    CERN Document Server

    Shen, Shiyin; Gu, Minfeng

    2010-01-01

    We examine the distribution of axis ratios of a large sample of disk galaxies hosting type 2 AGNs selected from the Sloan Digital Sky Survey and compare it with a well-defined control sample of non-active galaxies. We find them significantly different, where the type 2 AGNs show both an excess of edge-on objects and deficit of round objects. This systematical bias can not be explained by a nuclear obscurer oriented randomly with respect to the stellar disk. However, a nuclear obscurer coplanar with the stellar disk also does not fit the data very well. By assuming that the nuclear obscurer having an opening angle of ~60 degree, we find the observed axis ratio distribution can be nicely reproduced by a mean tilt angle of ~30 degree between the nuclear obscurer and the stellar disk.

  1. Subgrid Modeling of AGN-Driven Turbulence in Galaxy Clusters

    CERN Document Server

    Scannapieco, Evan

    2008-01-01

    Hot, underdense bubbles powered by active galactic nuclei (AGN) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive-mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure-hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus bubbles are transformed into hot clouds of mixed material as they move outwards in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive ``mushroo...

  2. Red AGN in XMM-Newton/SDSS fields

    CERN Document Server

    Georgakakis, A; Akylas, A

    2006-01-01

    In this paper we combine archival and proprietary XMM-Newton observations (about 5deg^2) that overlap with the Sloan Digital Sky Survey to explore the nature of the moderate-z X-ray population. We focus on X-ray sources with optically red colours (g-r>0.4), which we argue are important for understanding the origin of the X-ray background. Firstly, these systems constitute a significant fraction, about 2/3, of the z1e22 cm^{-2}) and unobscured (N_H2mag) AGNs identified in the Two Micron All Sky Survey (2MASS). The median N_H of the red X-ray sources studied here is ~1e21cm^{-2}, lower than that found for the 2MASS AGNs, suggesting different populations.

  3. Observation of reflection feedback induced the formation of bright-dark pulse pairs in an optically pumped semiconductor laser.

    Science.gov (United States)

    Tsou, C H; Liang, H C; Huang, K F; Chen, Y F

    2016-06-13

    It is experimentally demonstrated that the tiny reflection feedback can lead the optically pumped semiconductor laser (OPSL) to be operated in a self-mod-locked state with a pulse train of bright-dark pulse pairs. A theoretical model based on the multiple reflections in a phase-locked multi-longitudinal-mode laser is developed to confirm the formation of bright-dark pulse pairs. The present finding can offer an important insight into the temporal dynamics in mode-locked OPSLs. PMID:27410319

  4. A Compton thick AGN in the barred spiral NGC 4785

    CERN Document Server

    Gandhi, P; Ricci, C; Asmus, D; Mushotzky, R F; Ueda, Y; Terashima, Y; La Parola, V

    2014-01-01

    We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66 month Swift/BAT all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width >~1 keV. Fitting the broadband spectra with physical reflection models shows the source to be a bona fide Compton thick AGN with Nh of at least 2x10^{24} cm^{-2} and absorption-corrected 2-10 keV X-ray power L(2-10) ~ few times 10^{42} erg s^{-1}. Realistic uncertainties on L(2-10) computed from the joint confidence interval on the intrinsic power law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton thick AGN population is highly heterogeneous in terms of WISE mid-...

  5. Probing the central parsecs of AGN using Faraday Rotation

    Science.gov (United States)

    Zavala, R. T.; Taylor, G. B.

    2002-05-01

    A broad frequency range and low instrumental polarization makes the Very Long Baseline Array (VLBA) an ideal instrument for studying polarimetry at sub-milliarcsecond resolution. To take advantage of these unique capabilities we have conducted a multi-frequency polarization survey of 40 radio-loud AGN (Quasars, BL Lacs, and radio galaxies). Our aim is to use Faraday Rotation Measures (RMs) as a probe of the central 1-50 parsecs of these objects. The RM is produced by the line of sight magnetic field weighted by the electron density. Using the electron density established through spectral line diagnostics a magnetic field strength and topology can be estimated within a few parsecs of the central engines of these AGN. The observations for the survey are complete, and we present the first results for 8 quasars, 5 BL Lacs, and 4 radio galaxies. The magnitudes for the RMs range from several thousand rad m-2 in the quasars and radio galaxies to a few hundred rad m-2 in the BL Lac objects. These values are in agreement with the basic ideas of the unified model for AGN. We also observe variations in the RM on small spatial (Mexico Alliance for Graduate Education and the Professiorate through NSF grant HRD-0086701.

  6. AGN polarization modeling with STOKES

    CERN Document Server

    Goosmann, R W; Shoji, M; Goosmann, Rene W.

    2007-01-01

    We introduce a new, publicly available Monte Carlo radiative transfer code, STOKES, which has been developed to model polarization induced by scattering off free electrons and dust grains. It can be used in a wide range of astrophysical applications. Here, we apply it to model the polarization produced by the equatorial obscuring and scattering tori assumed to exist in active galactic nuclei (AGNs). We present optical/UV modeling of dusty tori with a curved inner shape and for two different dust types: one composition reproduces extinction properties of our Galaxy, and the other is derived from composite quasar spectra. The polarization spectra enable us to clearly distinguish between the two dust compositions. The STOKES code and its documentation can be freely downloaded from http://www.stokes-program.info/.

  7. A spectroscopic survey of X-ray-selected AGNs in the northern XMM-XXL field

    Science.gov (United States)

    Menzel, M.-L.; Merloni, A.; Georgakakis, A.; Salvato, M.; Aubourg, E.; Brandt, W. N.; Brusa, M.; Buchner, J.; Dwelly, T.; Nandra, K.; Pâris, I.; Petitjean, P.; Schwope, A.

    2016-03-01

    This paper presents a survey of X-ray-selected active galactic nuclei (AGNs) with optical spectroscopic follow-up in a ˜ 18 deg2 area of the equatorial XMM-XXL north field. A sample of 8445 point-like X-ray sources detected by XMM-Newton above a limiting flux of F_{0.5-10 keV} > 10^{-15} erg cm^{-2} s^{-1} was matched to optical (Sloan Digital Sky Survey, SDSS) and infrared (IR; WISE) counterparts. We followed up 3042 sources brighter than r = 22.5 mag with the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) spectrograph. The spectra yielded a reliable redshift measurement for 2578 AGNs in the redshift range z = 0.02-5.0, with 0.5-2 keV luminosities ranging from 1039-1046 erg s- 1. This is currently the largest published spectroscopic sample of X-ray-selected AGNs in a contiguous area. The BOSS spectra of AGN candidates show a distribution of optical line widths which is clearly bimodal, allowing an efficient separation between broad- and narrow-emission line AGNs. The former dominate our sample (70 per cent) due to the relatively bright X-ray flux limit and the optical BOSS magnitude limit. We classify the narrow-emission line objects (22 per cent of the full sample) using standard optical emission line diagnostics: the majority have line ratios indicating the dominant source of ionization is the AGN. A small number (8 per cent of the full sample) exhibit the typical narrow line ratios of star-forming galaxies, or only have absorption lines in their spectra. We term the latter two classes `elusive' AGN, which would not be easy to identify correctly without their X-ray emission. We also compare X-ray (XMM-Newton), optical colour (SDSS) and and IR (WISE) AGN selections in this field. X-ray observations reveal, by far, the largest number of AGN. The overlap between the selections, which is a strong function of the imaging depth in a given band, is also remarkably small. We show using spectral stacking that a large fraction of the X-ray AGNs would not be

  8. On the Anomalous Silicate Emission Features of AGNs: A Possible Interpretation Based on Porous Dust

    CERN Document Server

    Li, M P; Li, Aigen

    2008-01-01

    The recent Spitzer detections of the 9.7 micron Si--O silicate emission in type 1 AGNs provide support for the AGN unification scheme. The properties of the silicate dust are of key importance to understanding the physical, chemical and evolutionary properties of the obscuring dusty torus around AGNs. Compared to that of the Galactic interstellar medium (ISM), the 10 micron silicate emission profile of type 1 AGNs is broadened and has a clear shift of peak position to longer wavelengths. In literature this is generally interpreted as an indication of the deviations of the silicate composition, size, and degree of crystallization of AGNs from that of the Galactic ISM. In this Letter we show that the observed peak shift and profile broadening of the 9.7 micron silicate emission feature can be explained in terms of porous composite dust consisting of ordinary interstellar amorphous silicate, amorphous carbon and vacuum. Porous dust is naturally expected in the dense circumnuclear region around AGNs, as a consequ...

  9. The Detection of Fermi AGN above 100 GeV using Clustering Analysis

    CERN Document Server

    Armstrong, Thomas; Chadwick, Paula M; Nolan, S J

    2015-01-01

    The density-based clustering algorithm DBSCAN has been applied to the Fermi Large Area Telescope (LAT) dataset of $ E_{\\gamma} \\geqslant 100$~GeV events with $\\lvert b\\rvert>10^{\\circ}$, in order to search for new very high energy (VHE) $\\gamma$-ray sources. The clustering analysis returned 49 clusters, of which 21 correspond to already known VHE-emitting active galactic nuclei (AGN) within the TeVCat catalogue and a further 11 were found to be significant in a full Fermi analysis. Of these, 2 are previously detected Fermi VHE AGN, and 9 represent new VHE sources consisting of 6 BL Lac objects, one blazar of unknown type and 2 unassociated sources. Comparing these, along with the VHE AGN RBS 0679 and RBS 0970 previously detected with Fermi-LAT, to the current populations of AGN detected with ground-based instruments and Fermi suggests that the VHE-emitting AGN discovered in this study are very similar to the TeVCat AGN and therefore further observations with ground-based imaging atmospheric Cherenkov telescop...

  10. A Model for Type 2 Coronal Line Forest (CLiF) AGN

    CERN Document Server

    Glidden, Ana; Elvis, Martin; McDowell, Jonathan

    2016-01-01

    We present a model for the classification of Coronal-Line Forest Active Galactic Nuclei (CLiF AGN). CLiF AGN are of special interest due to their remarkably large number of emission lines, especially forbidden high ionization lines (FHILs). Rose et al. (2015a) suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGN laboratories to test AGN-torus models. Modeling AGN as an accreting supermassive black hole, surrounded by a cylinder of dust and gas, we show a relationship between viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [FeVII]{\\lambda}6087 emission for a number of intermediate angles (30{\\deg}, 40{\\deg}, and 50{\\deg}) and compare the results with the luminosity of the observed emission line from six known CLiF AGN. We find that there is good agreement between our mode...

  11. Higher prevalence of X-ray selected AGN in intermediate age galaxies up to z~1

    CERN Document Server

    Hernán-Caballero, Antonio; Pérez-González, Pablo G; Barro, Guillermo; Aird, James; Ferreras, Ignacio; Cava, Antonio; Cardiel, Nicolás; Esquej, Pilar; Gallego, Jesús; Nandra, Kirpal; Rodríguez-Zaurín, Javier

    2014-01-01

    We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.3410^10.5 M_sun) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependencies of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U-V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 AA breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U-V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. ...

  12. HerMES: Far-infrared properties of known AGN in the HerMES fields

    CERN Document Server

    Hatziminaoglou, E; Stevens, J A; Amblard, A; Arumugam, V; Auld, R; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Burgarella, D; Castro-Rodriguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Solares, E A Gonzalez; Griffin, M; Halpern, M; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Mortier, A M J; Nguyen, H T; O'Halloran, B; Oliver, S J; Page, M J; Panuzzo, P; Papageorgiou, A; Pearson, C P; Perez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Rizzo, D; Roseboom, I G; Rowan-Robinson, M; Portal, M Sanchez; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Symeonidis, M; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2010-01-01

    Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the FIR SEDs of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5-sigma detections at 250um, in agreement with previous (sub)mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours - specifically S(250)/S(70) vs. S(70)/S(24) - quite clearly separate them from the non-AGN, star-forming galaxy population, as their 24-um flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SE...

  13. Dusting off the star formation history of AGN hosts with SHARDS

    Science.gov (United States)

    Hernán-Caballero, Antonio

    2015-03-01

    Recent works show that the restframe colours of X-ray selected AGN host galaxies at z~1 are no different from those of inactive galaxies once stellar mass selection effects are taken into account. However, there is a clear deficit of AGN among quiescent galaxies, and the average star formation rates of AGN hosts are comparable or higher than those of inactive star-forming galaxies. These apparently contradictory findings could be a consequence of higher extinction in star-forming AGN hosts compensating for their younger stellar populations in observed colours. In this talk I will present a new method of extinction correction that breaks the degeneracy with stellar age and metallicity by comparing the restframe U-V colour with measurements of the Dn(4000) index on intermediate band photospectra from SHARDS. I'll show that the distribution of extinction corrected U-V colours and Dn(4000) for AGN hosts at z<1 is significantly different from that of comparison samples of inactive galaxies, with a clear deficit of AGN in intrinsic red galaxies and a higher prevalence among those with intermediate age stellar populations.

  14. A Multi-wavelength Survey of AGN in Massive Clusters: AGN Distribution and Host Galaxy Properties

    CERN Document Server

    Klesman, Alison J

    2014-01-01

    We investigate the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability (178), X-ray emission (74), and mid-IR SEDs (64) in multi- wavelength surveys covering regions centered on 12 galaxy clusters at redshifts 0.5 < z < 0.9. In this paper, we present the radial distribution of AGN in clusters to examine how local environment affects the presence of an AGN and its host galaxy. While distributions vary from cluster to cluster, we find that the radial distribution of AGN generally differs from that of normal galaxies. AGN host galaxies also show a different colour distribution than normal galaxies, with many AGN hosts displaying galaxy colours in the "green valley" between the red sequence and blue star-forming normal galaxies. This result is similar to those found in field galaxy studies. The colour distribution of AGN hosts is ...

  15. Do stellar winds play a decisive role in feeding AGN?

    CERN Document Server

    Davies, R; Dodds-Eden, K; de Xivry, G Orban

    2012-01-01

    While the existence of a starburst-AGN connection is undisputed, there is no consensus on what the connection is. In this contribution, we begin by noting that the mechanisms which drive gas inwards in disk galaxies are generally inefficient at removing angular momentum, leading to stalled inflows. Thus, a tiered series of such processes is required to bring gas to the smallest scales, each of which on its own may not correlate with the presence of an AGN. Similarly, each may be associated with a starburst event, making it important to discriminate between 'circumnuclear' and 'nuclear' star formation. In this contribution, we show that stellar feedback on scales of tens of parsecs plays a critical role in first hindering and then helping accretion. We argue that it is only after the initial turbulent phases of a starburst that gas from slow stellar winds can accrete efficiently to smaller scales. This would imply that the properties of the obscuring torus are directly coupled to star formation and that the to...

  16. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    Science.gov (United States)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  17. Satellite observed changes in the Northern Hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013

    Science.gov (United States)

    Chen, Xiaona; Liang, Shunlin; Cao, Yunfeng

    2016-08-01

    Quantifying continental-scale changes in snow cover phenology (SCP) and evaluating their associated radiative forcing and feedback is essential for meteorological, hydrological, ecological, and societal purposes. However, the current SCP research is inadequate because few published studies have explored the long-term changes in SCP, as well as their associated radiative forcing and feedback in the context of global warming. Based on satellite-observed snow cover extent (SCE) and land surface albedo datasets, and using a radiative kernel modeling method, this study quantified changes in SCP and the associated radiative forcing and feedback over the Northern Hemisphere (NH) snow-covered landmass from 1982 to 2013. The monthly SCE anomaly over the NH displayed a significant decreasing trend from May to August (‑0.89 × 106 km2 decade‑1), while an increasing trend from November to February (0.65 × 106 km2 decade‑1) over that period. The changes in SCE resulted in corresponding anomalies in SCP. The snow onset date (D o) moved forward slightly, but the snow end date (D e) advanced significantly at the rate of 1.91 days decade‑1, with a 73% contribution from decreased SCE in Eurasia (EU). The anomalies in D e resulted in a weakened snow radiative forcing of 0.12 (±0.003) W m‑2 and feedback of 0.21 (±0.005) W m‑2 K‑1, in melting season, over the NH, from 1982 to 2013. Compared with the SCP changes in EU, the SCP anomalies in North America were relatively stable because of the clearly contrasting D e anomalies between the mid- and high latitudes in this region.

  18. Modeling the cosmological co-evolution of supermassive black holes and galaxies: I. BH scaling relations and the AGN luminosity function

    CERN Document Server

    Marulli, Federico; Branchini, Enzo; Moscardini, Lauro; Springel, Volker

    2007-01-01

    We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail in Croton et al. (2006) and De Lucia & Blaizot (2007), introduces a `radio mode' feedback from Active Galactic Nuclei (AGN) at the centre of X-ray emitting atmospheres in galaxy groups and clusters. Thanks to this mechanism, the model can simultaneously explain: (i) the low observed mass drop-out rate in cooling flows; (ii) the exponential cut-off in the bright end of the galaxy luminosity function; and (iii) the bulge-dominated morphologies and old stellar ages of the most massive galaxies in clusters. This paper is the first of a series in which we investigate how well this model can also reproduce the physical properties of BHs and AGN. Here we analyze the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. M...

  19. Low luminosity AGNs in the local universe

    Science.gov (United States)

    Ikiz, Tuba; Peletier, Reynier F.; Yesilyaprak, Cahit

    2016-04-01

    Galaxies are known to contain black holes (e.g. Ferrarese & Merritt 2000), whose mass correlates with the mass of their bulge. A fraction of them also has an Active Galactic Nucleus (AGN), showing excess emission thought to be due to accretion of mass by the supermassive black hole at the center of the galaxy. It is thought that AGNs play a very important role during the formation of galaxies by creating large outflows that stop star formation in the galaxy (see e.g. Kormendy & Ho 2013). The aim is to detect the fraction of Low Luminosity Active Galactic Nucleus (LLAGN) in the nearby Universe. At present, they are typically found using optical spectroscopy (e.g. Kauffmann, Heckman et al. 2003), who discuss the influence of the AGN on the host galaxy and vice versa. However, optical spectra are seriously affected by extinction in these generally very dusty objects, and therefore can only give us partial information about the AGN. I used a newly-found method, and apply it to the S4G sample, a large, complete, sample of nearby galaxies, which I am studying in detail with a large collaboration, to detect the fraction of low luminosity AGNs, and to better understand the relation between AGNs and their host galaxy which is thought to be crucial for their formation.

  20. AGN Absorption Linked to Host Galaxies

    CERN Document Server

    Juneau, Stéphanie

    2013-01-01

    Multiwavelength identification of AGN is crucial not only to obtain a more complete census, but also to learn about the physical state of the nuclear activity (obscuration, efficiency, etc.). A panchromatic strategy plays an especially important role when the host galaxies are star-forming. Selecting far-Infrared galaxies at 0.3AGN tracers in the X-ray, optical spectra, mid-infrared, and radio regimes, we found a twice higher AGN fraction than previous studies, thanks to the combined AGN identification methods and in particular the recent Mass-Excitation (MEx) diagnostic diagram. We furthermore find an intriguing relation between AGN X-ray absorption and the specific star formation rate (sSFR) of the host galaxies, indicating a physical link between X-ray absorption and either the gas fraction or the gas geometry in the hosts. These findings have implications for our current understanding of both the AGN unification model and the nature of the black hole-galaxy connection. These proceedi...