WorldWideScience

Sample records for agn accretion-disk outflows

  1. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows II

    CERN Document Server

    Sim, S A; Long, K S; Turner, T J; Reeves, J N

    2010-01-01

    Highly-ionized fast accretion-disk winds have been suggested as an explanation for a variety of observed absorption and emission features in the X-ray spectra of Active Galactic Nuclei. Simple estimates have suggested that these flows may be massive enough to carry away a significant fraction of the accretion energy and could be involved in creating the link between supermassive black holes and their host galaxies. However, testing these hypotheses, and quantifying the outflow signatures, requires high-quality theoretical spectra for comparison with observations. Here we describe extensions of our Monte Carlo radiative transfer code that allow us to generate realistic theoretical spectra for a much wider variety of disk wind models than possible in our previous work. In particular, we have expanded the range of atomic physics simulated by the code so that L- and M-shell ions can now be included. We have also substantially improved our treatment of both ionization and radiative heating such that we are now abl...

  2. Accretion Disk Outflows from Compact Object Mergers

    Science.gov (United States)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  3. The role of an accretion disk in AGN variability

    OpenAIRE

    Czerny, B.

    2004-01-01

    Optically thick accretion disks are considered to be important ingredients of luminous AGN. The claim of their existence is well supported by observations and recent years brought some progress in understanding of their dynamics. However, the role of accretion disks in optical/UV/X-ray variability of AGN is not quite clear. Most probably, in short timescales the disk reprocesses the variable X-ray flux but at longer timescales the variations of the disk structure lead directly to optical/UV v...

  4. Synthesis of accretion disk and nonthermal source models for AGN

    Energy Technology Data Exchange (ETDEWEB)

    Band, D. L.; Malkan, M. A.

    1988-05-25

    A scenario for the central engine of AGN has been developed consisting of a massive black hole (MBH) onto which gas accretes through an accretion disk. The accretion disk radiates the observed optical and ultraviolet continua. Surrounding the MBH is a nonthermal source which produces the infrared and soft x-ray continua by synchrotron emission, and the x-ray spectrum by inverse Compton scattering of the optical-ultraviolet photons from the accretion disk. Previously we modeled the accretion disk (M.A.M.) and nonthermal source (D.L.B.) separately, and here we combine the two models to form a unified description of the AGN engine. This combined model can be inverted to determine source parameters from observed spectra. A group of AGN for which multiband observations exist can then be modeled to: demonstrate the validity of the combined model for a large number of objects; establish the range of parameter values that describe the source; and search for any correlations between source description and type.

  5. Synthesis of accretion disk and nonthermal source models for AGN

    International Nuclear Information System (INIS)

    A scenario for the central engine of AGN has been developed consisting of a massive black hole (MBH) onto which gas accretes through an accretion disk. The accretion disk radiates the observed optical and ultraviolet continua. Surrounding the MBH is a nonthermal source which produces the infrared and soft x-ray continua by synchrotron emission, and the x-ray spectrum by inverse Compton scattering of the optical-ultraviolet photons from the accretion disk. Previously we modeled the accretion disk (M.A.M.) and nonthermal source (D.L.B.) separately, and here we combine the two models to form a unified description of the AGN engine. This combined model can be inverted to determine source parameters from observed spectra. A group of AGN for which multiband observations exist can then be modeled to: demonstrate the validity of the combined model for a large number of objects; establish the range of parameter values that describe the source; and search for any correlations between source description and type

  6. Wind from black hole accretion disk as the driver of a molecular outflow in a galaxy

    CERN Document Server

    Tombesi, F; Veilleux, S; Reeves, J N; Gonzalez-Alfonso, E; Reynolds, C S

    2015-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. Recent observations of large-scale molecular outflows in ultra-luminous infrared galaxies (ULIRGs) have provided the evidence to support these studies, as they directly trace the gas out of which stars form. Theoretical models suggest an origin of these outflows as energy-conserving flows driven by fast AGN accretion disk winds. Previous claims of a connection between large-scale molecular outflows and AGN activity in ULIRGs were incomplete because they were lacking the detection of the putative inner wind. Conversely, studies of powerful AGN accretion disk winds to date have focused only on X-ray observations of local Seyferts and a few higher redshift quasars. Here we show the clear detection of a powerful AGN accretion disk wind with a mildly relativistic ...

  7. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows III: application to a hydrodynamical simulation

    CERN Document Server

    Sim, S A; Miller, L; Long, K S; Turner, T J

    2010-01-01

    We perform multi-dimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disk wind from an active galactic nucleus. The synthetic spectra confirm expectations from parameterized models that a disk wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disk plane but ultimately falls back. We also confirm that the strong Fe Kalpha line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determi...

  8. A Direct Linkage between AGN Outflows in the Narrow-line Regions and the X-Ray Emission from the Accretion Disks

    Science.gov (United States)

    Wang, J.; Xu, D. W.; Wei, J. Y.

    2016-03-01

    The origin of outflow in the narrow-line region (NLR) of the active galactic nucleus (AGN) is studied in this paper by focusing on the relationship between the [O iii]λ5007 line profile and the hard-X-ray (in a bandpass of 2-10 keV) emission from the central super-massive black hole (SMBH) in type-I AGNs. A sample of 47 local X-ray selected type-I AGNs at z\\lt 0.2 is extracted from the 2XMMi/SDSS-DR7 catalog, which was originally cross-matched by Pineau et al. The X-ray luminosities in an energy band from 2 to 10 keV of these luminous AGNs range from 1042 to {10}44 {erg} {{{s}}}-1. A joint spectral analysis is performed on their optical and X-ray spectra, in which the [O iii] line profile is modeled by a sum of several Gaussian functions to quantify its deviation from a pure Gaussian function. The statistics allow us to identify a moderate correlation with a significance level of 2.78σ: luminous AGNs with stronger [O iii] blue asymmetry tend to have steeper hard-X-ray spectra. By identifying the role of L/{L}{Edd} on the correlation at a 2-3σ significance level in both direct and indirect ways, we argue that the photon index versus the asymmetry correlation provides evidence that the AGN’s outflow commonly observed in its NLR is related to the accretion process occurring around the central SMBH, which favors the wind/radiation model as the origin of the outflow in luminous AGNs.

  9. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  10. Accretion Disk Line Emission in AGN a Devil's Advocacy

    CERN Document Server

    Sulentic, J W; Dultzin-Hacyan, D

    1998-01-01

    We review the evidence for AGN optical and X-ray broad line emission from an accretion disk. We argue that there is little, if any, statistical evidence to support this assertion. The inconsistency is strongest for the rare class of Balmer profiles that show double peaks. The line profiles predicted by a simple illuminated disk model are often incompatible with the observations. We suggest that the Fe Kalpha line in Seyfert 1 galaxies, where a broad line is most often and most strongly detected, is actually a composite of two lines both with Gaussian profiles; one narrow/unshifted and the other broad/redshifted.

  11. Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-05-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  12. Magnetically-Driven Accretion-Disk Winds and Ultra-Fast Outflows in PG1211+143

    OpenAIRE

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-01-01

    We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically-driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectro...

  13. Magnetically-Driven Accretion-Disk Winds and Ultra-Fast Outflows in PG1211+143

    CERN Document Server

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-01-01

    We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically-driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an {\\it XMM-Newton}/EPIC spectrum of the narrow-line Seyfert, \\pg. We find, through identifying the detected features with Fe K$\\alpha$ transitions, that the absorber has a characteristic ionization parameter of $\\log (\\xi_c [erg~cm~s$^{-1}...

  14. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    Science.gov (United States)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  15. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    Science.gov (United States)

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows). PMID:25810204

  16. The impact of accretion disk winds on the X-ray spectrum of AGN: Part 1 - XSCORT

    CERN Document Server

    Schurch, N J

    2007-01-01

    (abridged) The accretion disk in AGN is expected to produce strong outflows, in particular a UV-line driven wind. Despite providing a good fit to the data, current spectral models of the X-ray spectrum of AGN observed through an accretion disk wind are ad-hoc in their treatment of the properties of the wind material. In order to address these limitations we adopt a numerical computation method that links a series of radiative transfer calculations, incorporating the effect of a global velocity field in a self-consistent manner (XSCORT). We present a series of example spectra from the XSCORT code that allow us to examine the shape of AGN X-ray spectra seen through a wind, for a range of velocity and density distributions, total column densities and initial ionization parameters. These detailed spectral models clearly show considerable complexity and structure that is strongly affected by all these factors. The presence of sharp features in the XSCORT spectra contrasts strongly with both the previous models and...

  17. MHD Accretion-Disk Winds as X-ray Absorbers in AGNs

    CERN Document Server

    Fukumura, Keigo; Contopoulos, Ioannis; Behar, Ehud

    2009-01-01

    We present two-dimensional (2D), self-similar solutions of magnetohydrodynamic (MHD) winds blowing off accretion disks around black holes and compute their 2D ionization structure due to a central X-ray point source. We focus our attention on winds with a specific density function of the spherical radial coordinate r, i.e. n(r)~1/r. We employ the photoionization code XSTAR to compute the line-of-sight (LOS) absorption of these magnetocentrifugally accelerated winds. We discuss the distribution of the local column density of various ions as a function of the ionization parameter \\xi (or equivalently r) and their corresponding absorption line profiles for different LOS angles. Particular attention is paid to the absorption measure distribution (AMD), dN_H/dlog(\\xi), which for the n(r)~1/r density profile is found to be independent of \\xi, in good agreement with AMD properties inferred from X-ray spectra of several active galactic nuclei (AGNs) outflows. We compute detailed absorption line profiles, demonstratin...

  18. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    International Nuclear Information System (INIS)

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=cs2/r2ΩK2≪(H/r)2, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r)2. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  19. Nucleosynthesis in the gamma-ray burst accretion disks and associated outflows

    CERN Document Server

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars and outflows launched from these disks. We deal with accretion disks having relatively low accretion rates: 0.001 M_sun s^{-1} <~ Mdot <~ 0.01 M_sun s^{-1} and hence they are predominantly advection dominated. We report the synthesis of several unusual nuclei like 31P, 39K, 43Sc, 35Cl and various isotopes of titanium, vanadium, chromium, manganese and copper in the disk. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthesized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk and survive in the outflows. Indeed, emission lines of many of these heavy elements have been observed in the X-ray afterglows of several GRBs.

  20. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    Science.gov (United States)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  1. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    CERN Document Server

    Cappi, M; Giustini, M

    2013-01-01

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  2. Nucleosynthesis in the outflows associated with accretion disks of Type II collapsars

    CERN Document Server

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the outflows from gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, massive stars undergo core collapse to form a proto-neutron star initially and a mild supernova explosion is driven. The supernova ejecta lack momentum and subsequently this newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics and the nucleosynthesis in these accretion disks has been studied extensively in the past. Several heavy elements are synthesized in the disk and much of these heavy elements are ejected from the disk via winds and outflows. We study nucleosynthesis in the outflows launched from these disks by using an adiabatic, spherically expanding outflow model, to understand which of these elements thus synthesized in the disk survive in the outflow. While studying this we find that many new elements like isotopes of titanium, copper, zinc etc. are present in the outflows. 56Ni is abundantly sy...

  3. NUCLEOSYNTHESIS IN THE OUTFLOWS ASSOCIATED WITH ACCRETION DISKS OF TYPE II COLLAPSARS

    International Nuclear Information System (INIS)

    We investigate nucleosynthesis inside the outflows from gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, massive stars undergo core collapse to form a proto-neutron star initially, and a mild supernova (SN) explosion is driven. The SN ejecta lack momentum, and subsequently this newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics and the nucleosynthesis in these accretion disks have been studied extensively in the past. Several heavy elements are synthesized in the disk, and much of these heavy elements are ejected from the disk via winds and outflows. We study nucleosynthesis in the outflows launched from these disks by using an adiabatic, spherically expanding outflow model, to understand which of these elements thus synthesized in the disk survive in the outflow. While studying this, we find that many new elements like isotopes of titanium, copper, zinc, etc., are present in the outflows. 56Ni is abundantly synthesized in most of the cases in the outflow, which implies that the outflows from these disks in a majority of cases will lead to an observable SN explosion. It is mainly present when outflow is considered from the He-rich, 56Ni/54Fe-rich zones of the disks. However, outflow from the Si-rich zone of the disk remains rich in silicon. Although emission lines of many of these heavy elements have been observed in the X-ray afterglows of several GRBs by Chandra, BeppoSAX, XMM-Newton, etc., Swift seems to have not yet detected these lines

  4. A Warped Accretion Disk and Wide Angle Outflow in the Inner Parsec of the Circinus Galaxy

    CERN Document Server

    Greenhill, L J; Ellingsen, S P; Herrnstein, J R; Jauncey, D L; McCulloch, P M; Moran, J M; Norris, R P; Reynolds, J E; Tzioumis, A K

    2003-01-01

    We present the first VLBI maps of H2O maser emission (lambda 1.3cm) in the nucleus of the Circinus Galaxy, constructed from data obtained with the Australia Telescope Long Baseline Array. The maser emission traces a warped, edge-on accretion disk between radii of 0.11+/-0.02 and ~0.40 pc, as well as a wide-angle outflow that extends up to ~1 pc from the estimated disk center. The disk rotation is close to Keplerian (v varies as 1/sqrt(r)), the maximum detected rotation speed is 260 km/s, and the inferred central mass is 1.7+/-0.3 x 10^6 solar masses. The outflowing masers are irregularly distributed above and below the disk, with relative outflow velocities up to ~+/-160 km/s, projected along the line of sight. The flow probably originates closer than 0.1 pc to the central engine, possibly in an inward extension of the accretion disk, though there is only weak evidence of rotation in the outward moving material. We observe that the warp of the disk appears to collimate the outflow and to fix the extent of the...

  5. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    CERN Document Server

    Cao, Xinwu

    2014-01-01

    The inner region of a luminous accretion disk is radiation pressure dominated. We estimate the surface temperature of a radiation pressure dominated accretion disk, \\Theta=(c_s/r\\Omega_K)^2<<(H/r)^2, which is significantly lower than that of a gas pressure dominated disk, \\Theta (H/r)^2. This means that the outflow can be launched magnetically from the photosphere of the radiation pressure dominate disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow may probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching a jet from the radiation pressure dominated disk, which provides a natural explanation on the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated f...

  6. Probing the connection between the accretion disk, outflows and the jet in 3C111

    Science.gov (United States)

    Tombesi, Francesco

    2011-10-01

    Recent XMM-Newton and Suzaku observations of 3C111 demonstrated the presence of ultra-fast outflows (UFOs) with v~0.1c and their relation with the accretion disk. Independent studies found that X-ray dips are followed by ejection of superluminal radio knots, therefore providing a proof of the disk-jet connection. We acquired evidence that UFOs are preferentially present between X-ray dips and new knots, possibly indicating also a link between disk outflows and the jet. The goal of this XMM-Newton proposal is to confirm this evidence. Given the strong correlation with X-rays, we will use an ongoing optical monitoring campaign to trigger a 90ks observation within two days of a dip to detect a UFO and we request a possible additional 60ks >15 days after to compare with the non-dipped state.

  7. Nucleosynthesis inside accretion disks and outflows formed during core collapse of massive stars

    CERN Document Server

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks and in the outflows launched from these disks mainly in the context of Type II collapsars. We report the synthesis of several unusual nuclei like 31P, 39K, 43Sc, 35Cl and various isotopes of titanium, vanadium, chromium, manganese and copper in the disk. We also confirm the presence of iron-group and alpha-elements in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk and survive in the outflows. While emission lines of several of these elements have been observed in the X-ray afterglows of GRBs by BeppoSAX, Chandra, XMM-Newton etc., Swift seems to have not found these lines yet.

  8. Accretion Disks and the Nature and Origin of AGN Continuum Variability

    CERN Document Server

    Gaskell, C Martin

    2007-01-01

    Theory and observations of the dominant thermal continuum emission in AGNs are examined. After correction for reddening, the steady state AGN optical--UV spectral energy distributions (SEDs) are very similar. The SEDs are dominated energetically by the big blue bump (BBB), but this bump never shows the nu^{+1/3} spectrum predicted for a standard thin accretion disk with a r^{-0.75} radial temperature gradient. Instead, the observed optical-UV SED implies a temperature gradient of r^{-0.57} independent of the thickness of the disk. This means that there is some flow of heat outwards in the disk. The disk is large and the region emitting the optical continuum is as large as the inner broad-line region (BLR). Because optical variability is seen in all AGNs on the light-crossing time of the BLR, variations must propagate at close to the speed of light, rather than on dynamical timescales. This argues that the energy-generation mechanism is electromagnetic rather that hydrodynamic. Since the velocities are near th...

  9. AGN Unification, X-Ray Absorbers and Accretion Disk MHD Winds

    Science.gov (United States)

    Kazanas, Demos

    2011-01-01

    We present the 2D photoionization structure of the MHD winds of AGN accretion disks. We focus our attention on a specific subset of winds, those with poloidal currents that lead to density profiles n(r) \\propto 1/r. We employ the code XSTAR to compute the local ionization balance, emissivities and opacity which are then used in the self-consistent transfer of radiation and ionization of a host of ionic species of a large number of elements over then entire poloidal plane. Particular attention is paid to the Absorption Measure Distribution (AMD), namely their hydrogen-equivalent column of these ions per logarithmic 7 interval, dN_H/dlog ? (? = L/n(r)r(sup 2) is the ionization parameter), which provides a measure of the winds' radial density profiles. For the given density profile, AMD is found to be independent of ?, in good agreement with analyses of Chandra and XMM data, suggesting the specific profile as a fundamental AGN property. Furthermore, the ratio of equatorial to polar column densities of these winds is \\simeq 10(exp 4); as such, it is shown they serve as the "torus" necessary for AGN unification with phenomenology consistent with the observations. The same winds are also shown to reproduce the observed columns and velocities of C IV and Fe XXV of SAL QSOs once the proper ionizing spectra and inclination angles are employed.

  10. Search for and follow-up imaging of subparsec accretion disks in AGN

    Science.gov (United States)

    Kondratko, Paul Thomas

    We report results of several large surveys for water maser emission among Active Galactic Nuclei with the 100-m Green Bank Telescope and the two NASA Deep Space Network 70-m antennas at Tidbinbilla, Australia and at Robledo, Spain. We detected 23 new sources, which resulted in a 60% increase in the number of then known nuclear water maser sources. Eight new detections show the characteristic spectral signature of emission from an edge-on accretion disk and therefore constitute good candidates for the determination of black hole mass and geometric distance. This increase in the number of known sources has enabled us to reconsider statistical properties of the resulting sample. For the 30 water maser sources with available hard X-ray data, we found a possible correlation between unabsorbed X-ray luminosity (2-10 keV) and total isotropic water maser luminosity of the form L 2-10 0([Special characters omitted.] , consistent with the model proposed by Neufeld et al. (1994) in which X-ray irradiation of molecular accretion disk gas by the central engine excites the maser emission. We mapped for the first time with Very Long Baseline Interferomatey (VLBI) the full extent of the pc-scale accretion disk in NGC 3079 as traced by water maser emission. Positions and line-of-sight velocities of maser emission are consistent with a nearly edge-on pc-scale disk and a central mass of ~ 2 x 10^6 [Special characters omitted.] enclosed within ~ 0.4 pc. Based on the kinematics of the system, we propose that the disk is geometrically-thick, massive, subject to gravitational instabilities, and hence most likely clumpy and star- forming. The accretion disk in NGC 3079 is thus markedly different from the compact, thin, warped, differentially rotating disk in the archetypal maser galaxy NGC 4258. We also detect maser emission at high latitudes above the disk and suggest that it traces an inward extension of the kpc-scale bipolar wide- angle outflow previously observed along the galactic

  11. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  12. Disk-Driven Outflows in AGNs

    CERN Document Server

    Koenigl, A

    2003-01-01

    Analysis of spectral absorption features has led to the identification of several distinct outflow components in AGNs. The outflowing gas is evidently photoionized by the nuclear continuum source and originates in the accretion flow toward the central black hole. The most likely driving mechanisms are continuum and line radiation pressure and magnetic stresses. The theoretical modeling of these outflows involves such issues as: (1) Which of the above mechanisms actually contributes in each case? (2) How is the gas uplifted from the underlying accretion disk? (3) How can the intense central continuum radiation be shielded to allow efficient radiative driving? (4) Is the outflow continuous or clumpy, and, if clumpy, what is the nature and dynamical state of the ``clouds''? This review summarizes recent theoretical and observational results that bear on these questions and outlines prospects for further progress.

  13. An extensive numerical survey of the correlation between outflow dynamics and accretion disk magnetization

    CERN Document Server

    Stepanovs, Deniss

    2016-01-01

    We investigate the accretion-ejection process of jets from magnetized accretion disks. We apply a novel approach to the jet-launching problem in order to obtain correlations between the physical properties of the jet and the underlying disk. We extend and confirm the previous works of \\citet{2009MNRAS.400..820T} and \\citet{2010A&A...512A..82M} by scanning a large parameter range for the disk magnetization, $\\mu_{\\rm D} = 10^{-3.5} ... 10^{-0.7}$. We disentangle the disk magnetization at the foot point of the outflow as the main parameter that governs the properties of the outflow. We show how the four jet integrals known from steady-state MHD are correlated to the disk magnetization at the jet foot point. This agrees with the usual findings of the steady-state theory, however, here we obtain these correlations from time-dependent simulations that include the dynamical evolution of the disk in the treatment. In particular, we obtain robust correlations between the local disk magnetization and (i)the outflo...

  14. An Extensive Numerical Survey of the Correlation Between Outflow Dynamics and Accretion Disk Magnetization

    Science.gov (United States)

    Stepanovs, Deniss; Fendt, Christian

    2016-07-01

    We investigate the accretion–ejection process of jets from magnetized accretion disks. We apply a novel approach to the jet-launching problem in order to obtain correlations between the physical properties of the jet and the underlying disk. We extend and confirm the previous works of Tzeferacos et al. and Murphy et al. by scanning a large parameter range for the disk magnetization, {μ }{{D}}={10}-3.5...{10}-0.7. We disentangle the disk magnetization at the foot point of the outflow as the main parameter that governs the properties of the outflow. We show how the four jet integrals known from steady-state MHD are correlated to the disk magnetization at the jet foot point. This agrees with the usual findings of the steady-state theory, however, here we obtain these correlations from time-dependent simulations that include the dynamical evolution of the disk in the treatment. In particular, we obtain robust correlations between the local disk magnetization and (i) the outflow velocity, (ii) the jet mass loading, (iii) the jet angular momentum, and (iv) the local mass accretion rate. Essentially, we find that strongly magnetized disks launch more energetic and faster jets and, due to a larger Alfvén lever arm, these jets extract more angular momentum from the underlying disk. These kinds of disk–jet systems have, however, a smaller mass loading parameter and a lower mass ejection–accretion ratio. The jets are launched at the disk surface where the magnetization is μ (r,z)≃ 0.1. The magnetization rapidly increases vertically providing the energy reservoir for subsequent jet acceleration. We find indications of a critical disk magnetization {μ }{{D}}≃ 0.01 that separates the regimes of magneto-centrifugally driven and magnetic pressure-driven jets.

  15. Production of all $r$-process nuclides by black hole accretion disk outflows from neutron star mergers

    CERN Document Server

    Wu, Meng-Ru; Martínez-Pinedo, Gabriel; Metzger, Brian D

    2016-01-01

    We consider $r$-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important -- and in some cases dominant -- contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second $r$-process peak (mass number $A \\sim 130$), independent of model parameters, with significant production of $A < 130$ nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of $r$-process elements in metal poor stars. Disk outflows reach the third peak ($ A \\sim 195$) in most of our simulations, although the amounts produced depend sensitively on the ...

  16. Formation of Turbulent Cones in Accretion Disk Outflows and Application to Broad Line Regions of Active Galactic Nuclei

    CERN Document Server

    Poludnenko, A Y; Frank, A

    2002-01-01

    We consider the stability of an accretion disk wind to cloud formation when subject to a central radiation force. For a vertical launch velocity profile that is Keplerian or flatter and the presence of a significant radiation pressure, the wind flow streamlines cross in a conical layer. We argue that such regions are highly unstable, and are natural sites for supersonic turbulence and, consequently, density compressions. We suggest that combined with thermal instability these will all conspire to produce clouds. Such clouds can exist in dynamical equilibrium, constantly dissipating and reforming. As long as there is an inner truncation radius to the wind, our model emerges with a biconical structure similar to that inferred by Elvis (2000) for the broad line region (BLR) of active galactic nuclei (AGN). Our results may also apply to other disk-wind systems.

  17. Production of the entire range of r-process nuclides by black hole accretion disk outflows from neutron star mergers

    Science.gov (United States)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-08-01

    We consider r-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar System r-process distribution. The spike arises from convection in the disk and depends on the treatment of nuclear heating in the simulations. We conclude that disk outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  18. Accretion Disks

    OpenAIRE

    Spruit, H.C.

    1995-01-01

    This is an introduction to accretion disk theory, with emphasis on aspects relevant for X-ray Binaries and Cataclysmic Variables. The text corrects some mistakes in an earlier version, which appeared in 'Lives of Neutron Stars', A. Alpar, \\"U. Kizilo\\u glu and J. van Paradijs (eds.), Kluwer, Dordrecht (NATO ASI series, 1994).

  19. Constraints for the accretion disk evaporation rate in AGN from the existence of the Broad Line Region

    CERN Document Server

    Czerny, B; Kuraszkiewicz, J

    2004-01-01

    We analyze the consequences of the hypothesis that the formation of the Broad Line Region is intrinsically connected with the existence of the cold accretion disk. We assume that the Broad Line Region radius is well estimated by the formula of Kaspi et al. (2000). We consider three models of the disappearance of the inner disk which limit the existence of the Broad Line Region: (i) classical ADAF approach, i.e. the inner hot flow develops whenever it can exist (ii) disk evaporation model of Meyer & Meyer-Hofmeister (2002) (iii) generalized disk evaporation model of Rozanska & Czerny (2000b). For each of the models, we determine the minimum value of the Eddington ratio and the maximum value of the broad line widths as functions of the viscosity parameter alpha and the magnetic field parameter beta. We compare the predicted parameter space with observations of several AGN. Weak dependence of the maximum value of the FWHM and minimum value of the Eddington ratio on the black hole mass in our sample is no...

  20. Quasar Accretion Disks Are Strongly Inhomogeneous

    OpenAIRE

    Dexter, Jason; Agol, Eric

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with l...

  1. Accretion Disks and the Nature and Origin of AGN Continuum Variability

    Directory of Open Access Journals (Sweden)

    C. Martin Gaskell

    2008-01-01

    Full Text Available Se examinan la teoría y las observaciones de la emisión de continuo térmico de los AGN. Después de una corrección por enrojecimiento, las distribuciones espectrales de energía (SEDs en reposo del óptico-UV tienen gran similitud. Las SEDs están dominadas energéticamente por el big blue bump (BBB, pero éste no muestra el espectro ν+1=3 predicho para un disco de acreción delgado con un gradiente radial térmico r -0.75. En su lugar, la SED del óptico-UV muestra un gradiente térmico de r -0.57 independiente del espesor del disco. Esto indicaría algo de flujo de calor hacia afuera del disco. El disco es grande y la región emisora del continuo óptico es tan grande como la región interna de líneas anchas (BLR. Como se observa variabilidad óptica en todos los AGN en el tiempo de cruce de la BLR, las variaciones deben propagarse con velocidad cercana a la de la luz, en lugar de tiempos dinámicos. Esto sostiene que el mecanismo de generación de energía sea electromagnético en lugar de hidrodinámico. Con velocidades casi lumínicas puede haber una anisotropía local significativa en la emisión. Las enormes variaciones rápidas del BBB implican que la generación de energía magnetohidrodinámica es fundamentalmente inestable. Debido al inevitable gradiente radial térmico en el material en acreción, distintas regiones espectrales provienen predominantemente de distintos radios, y variaciones en distintas zonas espectrales corresponden a variabilidad en diferentes radios. Esto explica la independencia observada frecuentemente entre variaciones ópticas y en rayos-X, casos de variabilidad a menores energías antecediendo la variabilidad a altas energías, y los cambios rápidos en la demora por reverberación en las líneas de emisión. Se proponen algunas pruebas observacionales de la hipótesis de variabilidad local.

  2. Revealing the Evolving Accretion Disk Corona in AGNs with Multi-Epoch X-ray Spectroscopy: the case of Mrk 335

    Science.gov (United States)

    Ballantyne, David R.; Keek, Laurens

    2016-04-01

    Active galactic nuclei host an accretion disk with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disk has been observed. Reflection produces numerous spectral features, such as the Fe Kα emission line and absorption edge, which allow various properties of the inner accretion disk and corona to be constrained. We perform a multi-epoch spectral analysis of a dozen XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and optimize the fitting procedure to unveil correlations between the Eddington ratio and multiple spectral parameters. We find that the ionization parameter of the accretion disk correlates strongly with the Eddington ratio: the inner disk is more strongly ionized at higher flux. Interestingly, the slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this behaviour as geometrical changes of the corona as a function of the accretion rate. Below ~10% of the Eddington limit, the compact and optically thick corona is located close to the inner disk, whereas at higher accretion rates the corona is likely optically thin and extends vertically further away from the disk surface. Compared to previous work that considered individual spectra, we find that multi-epoch spectroscopy is essential for breaking degeneracies in the spectral fits and for obtaining accurate spectral parameters. Furthermore, we show that this method provides a powerful tool to study coronal evolution. The rich archives of XMM-Newton, Suzaku, and NuSTAR provide the opportunity to extend this investigation to include several other bright AGN, which will reveal whether the behaviour that we found is common or unique to Mrk 335.

  3. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  4. Review: Accretion Disk Theory

    OpenAIRE

    Montesinos, Matias

    2012-01-01

    In this paper I review and discuss the basic concepts of accretion disks, focused especially on the case of accretion disks around black holes. The well known alpha-model is revisited, showing the strengths and weaknesses of the model. Other turbulent viscosity prescription, based on the Reynolds number, that may improve our understanding of the accretion paradigm is discussed. A simple but efficient mathematical model of a self-gravitating accretion disk, as well as observational evidence of...

  5. Quasar Accretion Disks Are Strongly Inhomogeneous

    CERN Document Server

    Dexter, Jason

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with large fluctuations (\\sigma_T=0.35-0.50) in 100-1000 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of \\sigma_T, inhomogeneous disk spectra provide excellent fits to the HST quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microl...

  6. Jets from magnetized accretion disks

    Science.gov (United States)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  7. Accretion and Outflow Traced by Water Masers in the Circinus AGN

    CERN Document Server

    Greenhill, L J; Booth, R S; Ellingsen, S P; McCulloch, P M; Jauncey, D L; Norris, R P; Reynolds, J E; Tzioumis, A K; Herrnstein, J R

    2000-01-01

    The first VLBI images of water maser emission in the Circinus Galaxy AGN show both a warped, edge-on accretion disk and an outflow 0.1 to 1 pc from the central engine. The inferred central mass is 1.3 million suns, while the disk mass may be on the order of 0.1 million suns, based on a nearly Keplerian rotation curve. The bipolar, wide-angle outflow appears to contain ``bullets'' ejected from within <0.1 pc of the central mass. The positions of filaments and bullets observed in the AGN ionization cone on kpc-scales suggest that the disk channels the flow to a radius of about 0.4 pc, at which the flow appears to disrupt the disk.

  8. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  9. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  10. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    CERN Document Server

    Tombesi, Francesco

    2016-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been dir...

  11. X-ray evidence for ultra-fast outflows in local AGNs

    CERN Document Server

    Tombesi, F; Sambruna, R M; Reeves, J N; Reynolds, C S; Braito, V; Dadina, M

    2012-01-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in >40% of the sources. Their outflow velocities are in the range 0.03-0.3c, with a mean value of ~0.14c. The ionization is high, in the range logxi~3-6 erg s^{-1} cm, and also the associated column densities are large, in the interval ~10^{22}-10^{24} cm^{-2}. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets and their study can provide important clues on th...

  12. X-ray evidence for ultra-fast outflows in AGNs

    Science.gov (United States)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  13. The observational appearance of slim accretion disks

    CERN Document Server

    Szuszkiewicz, E; Abramowicz, M A; Szuszkiewicz, Ewa; Malkan, Matthew A; Abramowicz, Marek Artur

    1995-01-01

    We reexamine the hypothesis that the optical/UV/soft X-ray continuum of Active Galactic Nuclei is thermal emission from an accretion disk. Previous studies have shown that fitting the spectra with the standard, optically thick and geometrically thin accretion disk models often led to luminosities which contradict the basic assumptions adopted in the standard model. There is no known reason why the accretion rates in AGN should not be larger than the thin disk limit. In fact, more general, slim accretion disk models are self-consistent even for moderately super-Eddington luminosities. We calculate here spectra from a set of thin and slim, optically thick accretion disks. We discuss the differences between the thin and slim disk models, stressing the implications of these differences for the interpretation of the observed properties of AGN. We found that the spectra can be fitted not only by models with a high mass and a low accretion rate (as in the case of thin disk fitting) but also by models with a low mass...

  14. AGN outflow feedback: Constraints from variability

    CERN Document Server

    Detmers, R G

    2009-01-01

    We present an overview on how variability can be used to constrain the location of the ionized outflow in nearby Active Galactic Nuclei using high-resolution X-ray spectroscopy. Without these constraints on the location of the outflow, the kinetic luminosity and mass loss rate can not be determined. We focus on the Seyfert 1 galaxy NGC 5548, which is arguably the best studied AGN on a timescale of 10 years. Our results show that frequent observations combined with long term monitoring, such as with the \\textit{Rossi X-ray Timing Explorer (RXTE)} satellite, are crucial to investigate the effects of these outflows on their surroundings.

  15. X-Ray Iron Line Constraints on the Inner Accretion Disk and Black Hole Spin

    Science.gov (United States)

    Reynolds, C. S.

    2000-01-01

    The broad iron line, seen in the X-ray spectra of many AGN, is thought to originate from the inner regions of the black hole accretion disk. I will summarize recent developments in using this line to probe the accretion disk structure, as well as the mass and spin of black holes n Seyfert galaxies. In particular, I will present observational evidence suggesting that the inner regions of the accretion disks in low-luminosity AGN (LLAGN) are distinctly different from those in higher-luminosity AGN. This tentative result lends support models of LLAGN based upon advective accretion disks.

  16. Accretion disk electrodynamics

    Science.gov (United States)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  17. Accretion Disks, Jets and Blazar Variability

    OpenAIRE

    Wiita, Paul J.

    2005-01-01

    Although blazar variability is probably dominated by emission from relativistic jets, accretion disks should be present in all blazars. These disks produce emission over most of the electromagnetic spectrum; various unstable processes operate in those disks which lead to variable emission. Here I summarize some of the most relevant disk mechanisms for AGN variability. I also discuss some aspects of jet variability, focusing on the possibility that ultrarelativisitic jets of modest opening ang...

  18. Ringed accretion disks: instabilities

    CERN Document Server

    Pugliese, D

    2016-01-01

    We analyze the possibility that several instability points may be formed, due to the Paczy\\'nski mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider recently proposed model of ringed accretion disk, made up by several tori (rings) which can be corotating or counterrotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  19. Ringed Accretion Disks: Instabilities

    Science.gov (United States)

    Pugliese, D.; Stuchlík, Z.

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  20. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    Science.gov (United States)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  1. Evidence for ultra-fast outflows in radio-quiet AGNs: III - location and energetics

    CERN Document Server

    Tombesi, F; Reeves, J N; Braito, V

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultra-fast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ~0.0003-0.03pc (~10^2-10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between ~0.01-1 M_{\\odot} yr^{-1}, corresponding to >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are log\\dot{E}_K~42.6-44.6 erg s^{-1}. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs ...

  2. Warped accretion disks and the unification of Active Galactic Nuclei

    CERN Document Server

    Nayakshin, S

    2004-01-01

    Orientation of parsec-scale accretion disks in AGN is likely to be nearly random for different black hole feeding episodes. Since AGN accretion disks are unstable to self-gravity on parsec scales, star formation in these disks will create young stellar disks, similar to those recently discovered in our Galactic Center. The disks blend into the quasi-spherical star cluster enveloping the AGN on time scales much longer than a likely AGN lifetime. Therefore, the gravitational potential within the radius of the black hole influence is at best axi-symmetric rather than spherically symmetric. Here we show that as a result, a newly formed accretion disk will be warped. For the simplest case of a potential resulting from a thin stellar ring, we calculate the disk precession rates, and the time dependent shape. We find that, for a realistic parameter range, the disk becomes strongly warped in few hundred orbital times. We suggest that this, and possibly other mechanisms of accretion disk warping, have a direct relevan...

  3. AGN outflows trigger starbursts in gas-rich galaxies

    CERN Document Server

    Zubovas, Kastytis; King, Andrew; Wilkinson, Mark

    2013-01-01

    Recent well resolved numerical simulations of AGN feedback have shown that its effects on the host galaxy may be not only negative but also positive. In the late gas poor phase, AGN feedback blows the gas away and terminates star formation. However, in the gas-rich phase(s), AGN outflows trigger star formation by over-compressing cold dense gas and thus provide positive feedback on their hosts. In this paper we study this AGN-triggered starburst effect. We show that star formation rate in the burst increases until the star formation feedback counteracts locally the AGN outflow compression. Globally, this predicts a strong nearly linear statistical correlation between the AGN and starburst bolometric luminosities in disc galaxies, L_* \\propto L_{AGN}^{5/6}. The correlation is statistical only because AGN activity may fluctuate on short time scales (as short as tens of years), and because AGN may turn off but its effects on the host may continue to last until the AGN-driven outflow leaves the host, which may be...

  4. SUPERNOVAE AND AGN DRIVEN GALACTIC OUTFLOWS

    International Nuclear Information System (INIS)

    signifies the crossover of AGN domination in outflow properties from starburst activity at lower masses. We find that stellar mass for massive galaxies scales as M *∝M 0.26h, and for low-mass galaxies, M *∝M 5/3h.

  5. Absorption-line measurements of AGN outflows

    Science.gov (United States)

    Fields, Dale L.

    Investigations into the elemental abundances in two nearby active galaxies, the narrow-line Seyfert 1 Markarian 1044 and the Seyfert 1 Markarian 279, are reported. Spectra from three space-based observatories HST, FUSE, and CHANDRA, are used to measure absorption lines in material outflowing from the nucleus. I make multi-wavelength comparisons to better convert the ionic column densities into elemental column densities which can then be used to determine abundances (metallicities). Narrow-line Seyfert 1 galaxies are known to have extreme values of a number of properties compared to active galactic nuclei (AGNs) as a class. In particular, emission-line studies have suggested that NLS1s are unusually metal-rich compared to broad-line AGNs of comparable luminosity. To test these suggestions I perform absorption-line studies on the NLS1 Markarian 1044, a nearby and bright AGN. I use lines of H I, C IV, N V, and O VI to properly make the photoionization correction through the software Cloudy and determine abundances of Carbon, Nitrogen and Oxygen. I find two results. The first is that Markarian 1044 has a bulk metallicity greater than five times solar. The second is that the N/C ratio in Markarian 1044 is consistent with a solar mixture. This is in direct contradiction of extrapolations from local H II regions which state N/ C should scale with bulk metallicity. This implies a different enrichment history in Markarian 1044 than in the Galactic disk. I also report discovery of three new low-redshift Lya forest lines with log N HI >= 12:77 in the spectrum of Markarian 1044. This number is consistent with the 2.6 expected Lya forest lines in the path length to Markarian 1044. I also investigate the CHANDRA X-ray spectrum of Markarian 279, a broad-line Seyfert 1. I use a new code, PHASE, to self-consistently model the entire absorption spectrum simultaneously. Using solely the X-ray spectrum I am able to determine the physical parameters of this absorber to a degree only

  6. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    Science.gov (United States)

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  7. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  8. Alignments Of Black Holes With Their Warped Accretion Disks And Episodic Lifetimes Of Active Galactic Nuclei

    CERN Document Server

    Li, Yan-Rong; Cheng, Cheng; Qiu, Jie

    2015-01-01

    Warped accretion disks have attracted intensive attention because of their critical role on shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of AGNs that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing to determine the gravitomagnetic torque that drives the alignments in a quite simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to...

  9. Thermal radiation from an accretion disk

    OpenAIRE

    Prigara, F. V.

    2003-01-01

    An effect of stimulated radiation processes on thermal radiation from an accretion disk is considered. The radial density waves triggering flare emission and producing quasi-periodic oscillations in radiation from an accretion disk are discussed. It is argued that the observational data suggest the existence of the weak laser sources in a two-temperature plasma of an accretion disk.

  10. Magnetohydrodynamic Origin of Jets from Accretion Disks

    Science.gov (United States)

    Lovelace, R. V. E.; Romanova, M. M.

    1998-01-01

    A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.

  11. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population

    CERN Document Server

    Harrison, C M; Mullaney, J R; Swinbank, A M

    2014-01-01

    We present integral field unit (IFU) observations covering the [O III]4959,5007 and H-Beta emission lines of sixteen z~(6-16) kpc in all targets and observe signatures of spherical outflows and bi-polar superbubbles. We show that our targets are representative of z 5x10^41 erg/s) type 2 AGN and that ionised outflows are not only common but also in >=70% (3 sigma confidence) of cases, they are extended over kiloparsec scales. Our study demonstrates that galaxy-wide energetic outflows are not confined to the most extreme star-forming galaxies or radio-luminous AGN; however, there may be a higher incidence of the most extreme outflow velocities in quasars hosted in ultra-luminous infrared galaxies. Both star formation and AGN activity appear to be energetically viable to drive the outflows and we find no definitive evidence that favours one process over the other. Although highly uncertain, we derive mass outflow rates (typically ~10x the SFRs), kinetic energies (~0.5-10% of L[AGN]) and momentum rates (typically...

  12. Spiral Waves in Accretion Disks

    Science.gov (United States)

    Harlaftis, Emilios

    A review with the most characteristic spiral waves in accretion disks of cataclysmic variables will be presented. Recent work on experiments targeting the detection of spiral waves from time lapse movies of real disks and the study of permanent spiral waves will be discussed. The relevance of spiral waves with other systems such as star-planet X-ray binaries and Algols will be reviewed.

  13. Tracing outflows in the AGN forbidden region with SINFONI

    CERN Document Server

    Kakkad, D; Padovani, P; Cresci, G; Husemann, B; Carniani, S; Brusa, M; Lamastra, A; Lanzuisi, G; Piconcelli, E; Schramm, M

    2016-01-01

    AGN driven outflows are invoked in numerical simulations to reproduce several observed properties of local galaxies. The z > 1 epoch is of particular interest as it was during this time that the volume averaged star formation and the accretion rate of black holes were maximum. Radiatively driven outflows are therefore believed to be common during this epoch. We aim to trace and characterize outflows in AGN hosts with high mass accretion rates at z > 1 using integral field spectroscopy. We obtain spatially-resolved kinematics of the [OIII]5007 line in two targets which reveal the morphology and spatial extension of the outflows. We present J and H+K band SINFONI observations of 5 AGNs at 1.2 < z < 2.2. To maximize the chance of observing radiatively driven outflows, our sample was pre-selected based on peculiar values of the Eddington ratio and the hydrogen column density of the surrounding interstellar medium. We observe high velocity (~600-1900 km/s) and kiloparsec scale extended ionized outflows in at...

  14. On the warm absorber in AGN outflow

    CERN Document Server

    Adhikari, T P; Sobolewska, M; Czerny, B

    2016-01-01

    Warm absorber (WA) is an ionised gas present in the line of sight to the AGN central engine. The effect of the absorber is imprinted in the absorption lines observed in X-ray spectra of AGN. In this work, we model the WA in Seyfert 1 galaxy Mrk 509 using its recently published shape of broad band spectral energy distribution (SED) as a continuum illuminating the absorber. Using the photoionization code {\\sc Titan}, recently we have shown that the absorption measure distribution (AMD) found for this object can be successfully modelled as a single slab of gas in total pressure (radiation+gas) equilibrium, contrary to the usual models of constant density multiple slabs. We discuss the transmitted spectrum that would be recorded by an observer after the radiation from the nucleus passes through the WA.

  15. Relativistic reflection X-ray spectra of accretion disks

    Institute of Scientific and Technical Information of China (English)

    Khee-Gan Lee; Kinwah Wu; Steven V. Fuerst; Graziella Branduardi-Raymont; Oliver Crowley

    2009-01-01

    We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.

  16. The large scale magnetic fields of thin accretion disks

    CERN Document Server

    Cao, Xinwu

    2013-01-01

    Large scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared to the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number Pm is around unity. In this work, we revisit this problem considering the angular momentum of the disk is removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-bet...

  17. The Prevalence of Gas Outflows in Type 2 AGNs

    CERN Document Server

    Woo, Jong-Hak; Son, Donghoon; Karouzos, Marios

    2015-01-01

    To constrain the nature and fraction of the ionized gas outflows in AGNs, we perform a detailed analysis on gas kinematics as manifested by the velocity dispersion and shift of the OIII {\\lambda}5007 emission line, using a large sample of ~39,000 type 2 AGNs at z<0.3. First, we confirm a broad correlation between OIII and stellar velocity dispersions, indicating that the bulge gravitational potential plays a main role in determining the OIII kinematics. However, OIII velocity dispersion is on average larger than stellar velocity dispersion by a factor of 1.3-1.4, suggesting that the non-gravitational component, i.e., outflows, is almost comparable to the gravitational component. Second, the increase of the OIII velocity dispersion (after normalized by stellar velocity dispersion) with both AGN luminosity and Eddington ratio suggests that non-gravitational kinematics are clearly linked to AGN accretion. The distribution in the OIII velocity - velocity dispersion diagram dramatically expands toward large val...

  18. Disc outflows and high-luminosity true type 2 AGN

    Science.gov (United States)

    Elitzur, Moshe; Netzer, Hagai

    2016-06-01

    The absence of intrinsic broad-line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such `true type 2 AGN' are inherent to the disc-wind scenario for the broad-line region: broad-line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disc. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad-line emission can disappear at luminosities as high as ˜4 × 1046 erg s-1 and any Eddington ratio, though more detections can be expected at Eddington ratios below ˜1 per cent. Our results are applicable to every disc outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. While other factors, such as changes in spectral energy distribution or covering factor, can affect the intensities of broad emission lines, within this scenario they can only produce true type 2 AGN of higher luminosity then those prescribed by mass conservation.

  19. Ringed accretion disks: equilibrium configurations

    CERN Document Server

    Pugliese, D

    2015-01-01

    We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...

  20. Neutrino transport in accretion disks

    CERN Document Server

    Sawyer, R F

    2003-01-01

    We test approximate approaches to solving a neutrino transport problem that presents itself in the analysis of some accretion-disk models. Approximation #1 consists of replacing the full, angular- dependent, distribution function by a two-stream simulation, where the streams are respectively outwardly and inwardly directed, with angles $\\cos \\theta=\\pm 1/\\sqrt{3}$ to the vertical. In this approximation the full energy dependence of the distribution function is retained, as are the energy and temperature dependences of the scattering rates. Approximation #2, used in recent works on the subject, replaces the distribution function by an intensity function and the scattering rates by temperature-energy-averaged quantities. We compare the approximations to the results of solving the full Boltzmann equation. Under some interesting conditions, approximation #1 passes the test; approximation #2 does not. We utilize the results of our analysis to construct a toy model of a disc at a temperature and density such that r...

  1. Non-linear variability in microquasars in relation with the winds from their accretion disks

    CERN Document Server

    Janiuk, Agnieszka; Sukova, Petra; Capitanio, Fiamma; Bianchi, Stefano; Kowalski, Wojtek

    2016-01-01

    The microquasar IGR J17091, which is the recently discovered analogue of the well known source GRS 1915+105, exhibits quasi-periodic outbursts, with a period of 5-70 seconds, and regular amplitudes, referred to as "heartbeat state". We argue that these states are plausibly explained by accretion disk instability, driven by the dominant radiation pressure. Using our GLobal Accretion DIsk Simulation hydrodynamical code, we model these outbursts quantitatively. We also find a correlation between the presence of massive outflows launched from the accretion disk and the stabilization of its oscillations. We verify the theoretical predictions with the available timing and spectral observations. Furthermore, we postulate that the underlying non-linear differential equations that govern the evolution of an accretion disk are responsible for the variability pattern of several other microquasars, including XTE J1550-564, GX 339-4, and GRO J1655-40. This is based on the signatures of deterministic chaos in the observed ...

  2. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    Science.gov (United States)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  3. Fueling AGN II: Spatially Resolved Molecular Inflows and Outflows

    CERN Document Server

    Davies, R I; Hicks, E K S; Emsellem, E; Erwin, P; Burtscher, L; Dumas, G; Lin, M; Malkan, M A; Mueller-Sanchez, F; de Xivry, G Orban; Rosario, D J; Schnorr-Mueller, A; Tran, A

    2014-01-01

    We analyse the 2-dimensional distribution and kinematics of the stars as well as molecular and ionised gas in the central few hundred parsecs of 5 active and 5 matched inactive galaxies. The equivalent widths of the Br-gamma line indicate there is no on-going star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0S(1) H_2 kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H_2 kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three AGN, and hydrodynamical models indicate it can be driven by a large scale bar. In three of the five AGN, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk - which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall...

  4. Energy- and momentum-conserving AGN feedback outflows

    CERN Document Server

    Zubovas, Kastytis

    2014-01-01

    It is usually assumed that outflows from luminous AGN are either in the energy-conserving (non-radiative) or in the momentum-conserving (radiative) regime. We show that in a non-spherical geometry the effects of both regimes may manifest at the same time, and that it is the momentum of the outflow that sets the $M_{\\rm BH}-\\sigma$ relation. Considering an initially elliptical distribution of gas in the host galaxy, we show that a non-radiative outflow opens up a wide ``escape route'' over the paths of least resistance. Most of the outflow energy escapes in that direction. At the same time, in the directions of higher resistance, the ambient gas is affected mainly by the incident momentum from the outflow. Quenching SMBH growth requires quenching gas delivery along the paths of highest resistance, and therefore, it is the momentum of the outflow that limits the black hole growth. We present an analytical argument showing that such energy-conserving feedback bubbles driving leaky ambient shells will terminate S...

  5. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  6. Foundations of Black Hole Accretion Disk Theory

    OpenAIRE

    Abramowicz, Marek A.; P. Chris Fragile

    2011-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads ...

  7. The Sub-Pc Scale Accretion Disk of Ngc 4258

    Science.gov (United States)

    Humphreys, E. M. L.; Argon, A. L.; Greenhill, L. J.; Reid, M. J.; Moran, J. M.

    2005-01-01

    Water megamasers have been found to trace parsec/sub-parsec, circumnuclear accretion disks in several AGN (e.g., Circinus, NGC 1068 & NGC 4258). High-spatial (0.5 mas) and velocity resolution (0.2 km s-1) VLBA imaging of the disks reveals thin, warped `pannekoeken (pancake)'-style structures as opposed to thick tori in the inner regions of the central engines (40 000 Rsch). In this contribution, I will describe some current investigations into the dynamical and physical attributes of the water maser disk in NGC 4258, as revealed by VLBA, VLA and Effelsberg monitoring over 8 years.

  8. Disk Outflows and High-Luminosity True Type 2 AGN

    CERN Document Server

    Elitzur, Moshe

    2016-01-01

    The absence of intrinsic broad line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such "true type 2 AGN" are inherent to the disk-wind scenario for the broad line region: Broad line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disk. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad line emission can disappear at luminosities as high as about 4x$10^{46}$ erg s$^{-1}$ and any Eddington ratio, though more detections can be expected at Eddington ratios below about 1%. Our results are applicable to every disk outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. ...

  9. Ringed Accretion Disks: Equilibrium Configurations

    Science.gov (United States)

    Pugliese, D.; Stuchlík, Z.

    2015-12-01

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  10. Gravitomagnetic acceleration from black hole accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  11. AGN Outflow Shocks on Bonnor-Ebert Spheres

    CERN Document Server

    Dugan, Zachary; Bieri, Rebekka; Silk, Joseph; Rahman, Mubdi

    2016-01-01

    Feedback from Active Galactic Nuclei (AGN) and subsequent jet cocoons and outflow bubbles can have a significant impact on star formation in the host galaxy. To investigate feedback physics on small scales, we perform hydrodynamic simulations of realistically fast AGN winds striking Bonnor-Ebert (BE) spheres and examine gravitational collapse and ablation. We test AGN wind velocities ranging from 300--3,000 km s$^{-1}$ and wind densities ranging from 0.5--10 $m_\\mathrm{p}\\,\\mathrm{cm}^{-3}$. We include heating and cooling of low- and high-temperature gas, self-gravity, and spatially correlated perturbations in the shock, with a maximum resolution of 0.01 pc. We find that the ram pressure is the most important factor that determines the fate of the cloud. High ram pressure winds increase fragmentation and decrease the star formation rate, but also cause star formation to occur on a much shorter time scale and with increased velocities of the newly formed stars. We find a threshold ram pressure of $\\sim 2\\times...

  12. Accretion disks in Algols: progenitors and evolution

    CERN Document Server

    Van Rensbergen, W

    2016-01-01

    There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. We investigate the origin and evolution of 6 Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Initial parameters for 6 Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. When RLOF starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  13. AGN-driven outflows without immediate quenching in simulations of high-redshift disk galaxies

    OpenAIRE

    Gabor, Jared M.; Bournaud, Frédéric

    2014-01-01

    We study outflows driven by Active Galactic Nuclei (AGNs) using high- resolution simulations of idealized z=2 isolated disk galaxies. Episodic accretion events lead to outflows with velocities >1000 km/s and mass outflow rates up to the star formation rate (several tens of Msun/yr). Outflowing winds escape perpendicular to the disk with wide opening angles, and are typically asymmetric (i.e. unipolar) because dense gas above or below the AGN in the resolved disk inhibits outflow. Owing to rap...

  14. Accretion Disk Winds in AM CVn Binaries - a Monte Carlo Approach

    CERN Document Server

    Kusterer, D J; Werner, K

    2009-01-01

    AM CVn systems are interacting binaries similar to cataclysmic variables (CVs), but more compact with orbital periods of less than 80 minutes. The primary is a white dwarf, whereas the nature of the secondary is not completely clear, yet. Abundances and composition of the outer layer of the secondary can be found by analysis of the accretion disk (presented by Nagel et al. these proceedings). Spectra from high-state AM CVn systems do not only show typical signatures of accretion disks, but also P Cygni line profiles, a sign of outflow being present in the system. Here we present the first quantitative spectral analysis of an accretion-disk wind in AM CVn systems. Emergent wind spectra are modeled with our 3-D Monte Carlo radiative transfer code WOMPAT. We show that P Cygni profiles can be reproduced with our wind models.

  15. Stellar and Quasar Feedback in Concert: Effects on AGN Accretion, Obscuration, and Outflows

    CERN Document Server

    Hopkins, Philip F; Faucher-Giguere, Claude-Andre; Quataert, Eliot; Murray, Norman

    2015-01-01

    We use hydrodynamic simulations to study the interaction of realistic active galactic nucleus (AGN) feedback mechanisms (accretion-disk winds & Compton heating) with a multi-phase interstellar medium (ISM). Our ISM model includes radiative cooling and explicit stellar feedback from multiple processes. We simulate radii ~0.1-100 pc around an isolated (non-merging) black hole. These are the scales where the accretion rate onto the black hole is determined and where AGN-powered winds and radiation couple to the ISM. Our primary results include: (1) The black hole accretion rate on these scales is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates of ~0.03-1 Msun/yr, sufficient to power a luminous AGN. (2) The gas disk in the galactic nucleus undergoes an initial burst of star formation followed by several Myrs where stellar feedback suppresses the star formation rate per dynamical time. (3) AGN winds injected at small radii with mome...

  16. Quasar Accretion Disks are Strongly Inhomogeneous

    Science.gov (United States)

    Dexter, Jason; Agol, Eric

    2011-01-01

    Active galactic nuclei have been observed to vary stochastically with 10%-20% rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of σ T in dex. Models with large fluctuations (σ T = 0.35-0.50) in 102-103 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of σ T , inhomogeneous disk spectra provide excellent fits to the Hubble Space Telescope quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microlensing light curves for the Einstein cross from our time-varying toy models are well fit using a time-steady power-law temperature disk and produce magnification light curves that are consistent with current microlensing observations. Deviations due to the inhomogeneous, time-dependent disk structure should occur above the 1% level in the light curves, detectable in future microlensing observations with millimagnitude sensitivity.

  17. QPOs and Resonance in Accretion Disks

    Czech Academy of Sciences Publication Activity Database

    Kluzniak, W.; Abramowicz, M. A.; Bursa, Michal; Török, G.

    2007-01-01

    Roč. 27, Marzo 2007 (2007), s. 18-25. ISSN 1405-2059 R&D Projects: GA AV ČR IAA300030510 Institutional research plan: CEZ:AV0Z10030501 Keywords : quasi-periodic oscillations * accretion disks * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  18. Nucleosynthesis in the accretion disks of Type II collapsars

    International Nuclear Information System (INIS)

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an outward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly advection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate ( M-dot ) is, the higher the density and temperature are in the disks. We deal with accretion disks with relatively low accretion rates: 0.001 Msun s−1 ≲ M-dot ≲ 0.01 Msun s−1 and hence these disks are predominantly advection dominated. We use He-rich and Sirich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like 31P, 39K, 43Sc, 35Cl and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthesized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they

  19. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    Science.gov (United States)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  20. AGN-driven outflows without quenching in simulations of high-redshift disk galaxies

    CERN Document Server

    Gabor, Jared M

    2014-01-01

    Recent observations have revealed nuclear outflows in high-redshift, star forming galaxies. We study outflows driven by Active Galactic Nuclei (AGNs) using high- resolution simulations of idealized z=2 isolated disk galaxies. Episodic accretion events lead to outflows with velocities >1000 km/s and mass outflow rates up to the star formation rate (several tens of Msun/yr). Outflowing winds escape perpendicular to the disk with wide opening angles, and are typically asymmetric (i.e. unipolar) because dense gas above or below the AGN in the resolved disk inhibits outflow. Owing to rapid variability in the accretion rates, outflowing gas may be detectable even when the AGN is effectively "off." The highest velocity outflows are concentrated within 2-3 kpc of the galactic center during the peak accretion. With our purely thermal AGN feedback model -- standard in previous literature -- the outflowing material is mostly hot (10^6 K) and diffuse (nH<10^(-2) cm-3), but includes a cold component entrained in the ho...

  1. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability UFOs) those highly ionized absorbers with outflow velocities higher than 104 km s-1, then the majority of the lines are consistent with being associated to UFOs and the fraction of objects with detected UFOs in the whole sample is at least ~35%. This fraction is similar for type 1 and type 2 sources. The global covering fraction of

  2. A recipe for making hot accretion disks

    International Nuclear Information System (INIS)

    A powerful new method to determine the structure of effectively optically thin accretion disks is described. The method reduces the set of equations needed to be numerically solved to the microphysical equations only and reduces the dimension of the parameter space needed to be explored from three to two. It is shown why proton optical depth and compactness are natural parameters in studying hot plasma clouds (HPCs), and the structure equations of geometrically thin alpha disk are studied and the accretion disk parameters are related to the HPC parameters. As an example, the method is applied to an effectively optically thin bremsstrahlung disk. It is shown how a full disk solution is constructed from the generic solution profile. 17 refs

  3. A Note on Bimodal Accretion Disks

    OpenAIRE

    Dullemond, C.P.; Turolla, R.

    1998-01-01

    The existence of bimodal disks is investigated. Following a simple argument based on energetic considerations we show that stationary, bimodal accretion disk models in which a Shakura--Sunyaev disk (SSD) at large radii matches an advection dominated accretion flow (ADAF) at smaller radii are never possible using the standard slim disk approach, unless some extra energy flux is present. The same argument, however, predicts the possibility of a transition from an outer Shapiro--Lightman--Eardle...

  4. Local Magnetohydrodynamical Models of Layered Accretion Disks

    OpenAIRE

    Fleming, Timothy; Stone, James M.

    2002-01-01

    Using numerical MHD simulations, we have studied the evolution of the magnetorotational instability in stratified accretion disks in which the ionization fraction (and therefore resistivity) varies substantially with height. This model is appropriate to dense, cold disks around protostars or dwarf nova systems which are ionized by external irradiation of cosmic rays or high-energy photons. We find the growth and saturation of the MRI occurs only in the upper layers of the disk where the magne...

  5. A New Parameter In Accretion Disk Model

    OpenAIRE

    Yuan, Feng(Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA)

    2000-01-01

    Taking optically thin accretion flows as an example, we investigate the dynamics and the emergent spectra of accretion flows with different outer boundary conditions (OBCs) and find that OBC plays an important role in accretion disk model. This is because the accretion equations describing the behavior of accretion flows are a set of {\\em differential} equations, therefore, accretion is intrinsically an initial-value problem. We argue that optically thick accretion flow should also show OBC-d...

  6. Hoyle-Lyttleton Accretion onto Accretion Disks

    OpenAIRE

    Fukue, Jun; Ioroi, Masayuki

    1999-01-01

    We investigate Hoyle-Lyttleton accretion for the case where the central source is a luminous accretion disk. %In classical Hoyle-Lyttleton accretion onto a ``spherical'' source, accretion takes place in an axially symmetric manner around a so-called accretion axis. The accretion rate of the classical Hoyle-Lyttleton accretion onto a non-luminous object and $\\Gamma$ the luminosity of the central object normalized by the Eddington luminosity. %If the central object is a compact star with a lumi...

  7. Radiative Transfer in Accretion-Disk Winds

    OpenAIRE

    Fukue, Jun

    2007-01-01

    Radiative transfer equation in an accretion disk wind is examined analytically and numerically under the plane-parallel approximation in the subrelativistic regime of $(v/c)^1$, where $v$ is the wind vertical velocity. Emergent intensity is analytically obtained for the case of a large optical depth, where the flow speed and the source function are almost constant. The usual limb-darkening effect, which depends on the direction cosine at the zero-optical depth surface, does not appear, since ...

  8. The origin of ultrafast outflows in AGN : Monte Carlo simulations of the wind in PDS 456.

    OpenAIRE

    Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Watanabe, S; Sako, M.; Takahashi, T.

    2015-01-01

    Ultrafast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback on to the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionized that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore condi...

  9. X-ray iron line variability constraints on the inner accretion disk

    CERN Document Server

    Reynolds, C S

    2000-01-01

    After reviewing the basic physics of X-ray reflection in AGN, we present three case studies which illustrate the current state of X-ray reflection studies. For the low-luminosity AGN NGC4258, we find that the iron line is much narrower than is typically found in higher luminosity AGN. We argue that this is evidence for either a truncated cold accretion disk (possibly due to a transition to an advection dominate accretion flow at r ~ 100GM/c^2) or a large r ~ 100GM/c^2 X-ray emitting corona surrounding the accretion disk. We also present results for the higher luminosity Seyfert nuclei in NGC5548 and MCG-6-30-15. In both of these sources, RXTE shows that the iron line equivalent width decreases with increasing luminosity. Furthermore, the iron line equivalent width is found to be anticorrelated with the relative strength of the reflection continuum, contrary to all simple reflection models. It is proposed that continuum-flux correlated changes in the ionization of the accretion disk surface can explain this sp...

  10. Unravelling the complex structure of AGN-driven outflows: II. Photoionization and energetics

    CERN Document Server

    Karouzos, Marios; Bae, Hyun-Jin

    2016-01-01

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs) and present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph IFU data of 6 local (z<0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence that connect the extreme kinematics of the ionized gas with the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that from 30% up to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially i...

  11. The Prevalence of Ionized Gas Outflows in Type 2 AGNs II. 3-D Biconical Outflow Models

    CERN Document Server

    Bae, Hyun-Jin

    2016-01-01

    We present 3-D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3-D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclination increases, while velocity (i.e., velocity shift with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O III] line profiles, e.g., a narrow core and a broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O III] velocity-velo...

  12. The small observed scale of AGN--driven outflows, and inside--out disc quenching

    CERN Document Server

    Zubovas, Kastytis

    2016-01-01

    Observations of massive outflows with detectable central AGN typically find them within radii $\\lesssim 10$ kpc. We show that this apparent size restriction is a natural result of AGN driving if this process injects total energy only of order the gas binding energy to the outflow, and the AGN varies over time (`flickers') as suggested in recent work. After the end of all AGN activity the outflow continues to expand to larger radii, powered by the thermal expansion of the remnant shocked AGN wind. We suggest that on average, outflows should be detected further from the nucleus in more massive galaxies. In massive gas--rich galaxies these could be several tens of kpc in radius. We also consider the effect that pressure of such outflows has on a galaxy disc. In moderately gas--rich discs, with gas-to-baryon fraction $< 0.2$, the outflow may induce star formation significant enough to be distinguished from quiescent by an apparently different normalisation of the Kennicutt-Schmidt law. The star formation enhan...

  13. Radiation Hydrodynamic Simulations of Line-Driven Disk Winds for Ultra Fast Outflows

    OpenAIRE

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2015-01-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate origin of the ultra fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (~30 Schwarzschild radii). A wide range of black hole masses ($M_{\\rm BH}$) and Eddington ratios ($\\varepsilon$) was investigated to study conditions...

  14. The connection between AGN-driven dusty outflows and the surrounding environment

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.

    2016-04-01

    Significant reservoirs of cool gas are observed in the circumgalactic medium (CGM) surrounding galaxies. The CGM is also found to contain substantial amounts of metals and dust, which require some transport mechanism. We consider AGN (active galactic nucleus) feedback-driven outflows based on radiation pressure on dust. Dusty gas is ejected when the central luminosity exceeds the effective Eddington luminosity for dust. We obtain that a higher dust-to-gas ratio leads to a lower critical luminosity, implying that the more dusty gas is more easily expelled. Dusty outflows can reach large radii with a range of velocities (depending on the outflowing shell configuration and the ambient density distribution) and may account for the observed CGM gas. In our picture, dust is required in order to drive AGN feedback, and the preferential expulsion of dusty gas in the outflows may naturally explain the presence of dust in the CGM. On the other hand, the most powerful AGN outflow events can potentially drive gas out of the local galaxy group. We further discuss the effects of radiation pressure of the central AGN on satellite galaxies. AGN radiative feedback may therefore have a significant impact on the evolution of the whole surrounding environment.

  15. Neutrino oscillation above a black hole accretion disk

    International Nuclear Information System (INIS)

    We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere

  16. Neutrino oscillation above a black hole accretion disk

    Energy Technology Data Exchange (ETDEWEB)

    Malkus, A.; Kneller, J. P.; McLaughlin, G. C. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Surman, R. [Department of Physics and Astronomy, Union College, Schenectady, NY 12308 (United States)

    2015-05-15

    We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere.

  17. Alfvenic Heating of Protostellar Accretion Disks

    OpenAIRE

    Vasconcelos, M. J.; Jatenco-Pereira, V.; R. Opher

    1999-01-01

    We investigate the effects of heating generated by damping of Alfven waves on protostellar accretion disks. Two mechanisms of damping are investigated, nonlinear and turbulent, which were previously studied in stellar winds (Jatenco-Pereira & Opher 1989a, b). For the nominal values studied, f=delta v/v_{A}=0.002 and F=varpi/Omega_{i}=0.1, where delta v, v_{A} and varpi are the amplitude, velocity and average frequency of the Alfven wave, respectively, and Omega_{i} is the ion cyclotron freque...

  18. Stability properties of an isothermal accretion disk

    International Nuclear Information System (INIS)

    A local stability analysis of an isothermal, transonic accretion disk around a non-rotating black hole is used to infer the time-dependent behaviour of linear perturbations. The three modes in the problem are one viscous Lightman-Eardley mode, which is always stable, and two acoustic modes, which are always overstable. If the growth rate is required to be greater than the escape rate, then the acoustic modes become stable in the outer region, and unstable in the innermost region, if the viscosity parameter α is greater than 0.5. (orig.)

  19. Normal Modes of Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Rodriguez, Manuel; /Stanford U., Appl. Phys. Dept. /Costa Rica U.; Silbergleit, Alexander S.; /Stanford U., HEPL; Wagoner, Robert V.; /Stanford U., Phys. Dept.

    2006-11-07

    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.

  20. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios;

    2007-01-01

    We present a scaling law that predicts the values of the stresses obtained in numerical simulations of saturated MRI-driven turbulence in non-stratified shearing boxes. It relates the turbulent stresses to the strength of the vertical magnetic field, the sound speed, the vertical size of the box...... threaded by a significant vertical magnetic field and the turbulent magnetic energy must be in near equipartition with the thermal energy. This result has important implications for the spectra of accretion disks and their stability....

  1. Ultra-fast outflows (aka UFOs) in AGNs and their relevance for feedback

    Science.gov (United States)

    Cappi, Massimo; Tombesi, F.; Giustini, M.; Dadina, M.; Braito, V.; Kaastra, J.; Reeves, J.; Chartas, G.; Gaspari, M.; Vignali, C.; Gofford, J.; Lanzuisi, G.

    2012-09-01

    During the last decade, several observational evidences have been accumulated for the existence of massive, high velocity winds/outflows (aka UFOs) in nearby AGNs and, possibly, distant quasars. I will review here such evidences, present some of the latest results in this field, and discuss the relevance of UFOs for both understanding the physics of accretion/ejection flows on supermassive black holes, and for quantifying the amount of AGN feedback.

  2. Probing the gaseous halo of galaxies through non-thermal emission from AGN-driven outflows

    CERN Document Server

    Wang, Xiawei

    2015-01-01

    Feedback from outflows driven by active galactic nuclei (AGN) can affect the distribution and properties of the gaseous halos of galaxies. We study the hydrodynamics and non-thermal emission from the forward outflow shock produced by an AGN-driven outflow. We consider a few possible profiles for the halo gas density, self-consistently constrained by the halo mass, redshift and the disk baryonic concentration of the galaxy. We show that the outflow velocity levels off at $\\sim 10^3\\,\\rm km\\, s^{-1}$ within the scale of the galaxy disk. Typically, the outflow can reach the virial radius around the time when the AGN shuts off. We show that the outflows are energy-driven, consistently with observations. The outflow shock lights up the halos of massive galaxies across a broad wavelength range. For Milky Way (MW) mass halos, radio observations by The Jansky Very Large Array (JVLA) and The Square Kilometer Array (SKA) and infrared/optical observations by The James Webb Space Telescope (JWST) and Hubble Space Telesco...

  3. Quenching the X-ray spectrum of hot halos with AGN outflows and turbulence

    Science.gov (United States)

    Gaspari, M.

    2016-06-01

    I highlight recent advancements in the astrophysics of AGN outflow feedback and diffuse hot gas. Thanks to XMM RGS resolution, we know that the X-ray cores of clusters, groups, and massive galaxies have a strong deficit of soft X-ray emission compared with the classic cooling flow prediction: dL_{x}/dT ∝ (T/T_{hot})^{2±1}. Using 3D hydrodynamic simulations, I show that such deficit arises from the tight self-regulation between thermal instability condensation and AGN outflow feedback. Multiphase filaments condense out of the hot plasma, they rain onto the central SMBH, and boost the AGN outflows via chaotic cold accretion. The sub-relativistic outflows thermalize in the core via shocks and turbulence, releasing more heat in the inner cooler phase, thus inducing the observed soft X-ray decline. I discuss how we can leverage XMM capabilities in the next decade by probing turbulence, conduction, AGN accretion and outflows via the information contained in X-ray spectra and surface brightness. I focus on the importance of selecting a few objects with Ms exposure and how we can unveil multiphase halos through the synergy between simulations and multiwavelength observations.

  4. Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows

    Science.gov (United States)

    Hopkins, Philip F.; Torrey, Paul; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman

    2016-05-01

    We study the interaction of feedback from active galactic nuclei (AGN) and a multiphase interstellar medium (ISM), in simulations including explicit stellar feedback, multiphase cooling, accretion-disc winds, and Compton heating. We examine radii ˜0.1-100 pc around a black hole (BH), where the accretion rate on to the BH is determined and where AGN-powered winds and radiation couple to the ISM. We conclude: (1) the BH accretion rate is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates ˜0.03-1 M⊙ yr-1, sufficient to power luminous AGN. (2) The gas disc in the galactic nucleus undergoes an initial burst of star formation followed by several million years where stellar feedback suppresses the star formation rate (SFR). (3) AGN winds injected at small radii with momentum fluxes ˜LAGN/c couple efficiently to the ISM and have dramatic effects on ISM properties within ˜100 pc. AGN winds suppress the nuclear SFR by factors ˜10-30 and BH accretion rate by factors ˜3-30. They increase the outflow rate from the nucleus by factors ˜10, consistent with observational evidence for galaxy-scale AGN-driven outflows. (4) With AGN feedback, the predicted column density distribution to the BH is consistent with observations. Absent AGN feedback, the BH is isotropically obscured and there are not enough optically thin sightlines to explain type-I AGN. A `torus-like' geometry arises self-consistently as AGN feedback evacuates gas in polar regions.

  5. Cosmological accretion disks via external radiation drag

    Science.gov (United States)

    Fukue, Jun; Umemura, Masayuki

    1994-02-01

    Accretion disks as well as disk accretion driven by external radiation drag are presented under a steady approximation in the cases of the point-mass potential and of the dark-matter potential. We assume that the external drag force can be expressed as -beta V, where beta is a constant coefficient and V the velocity vector. When the gravitational potential is given by a central point-mass M, we find, in a cold regime where the pressure force is neglected, steady solutions such that the infalling velocity Vr is expressed as Vr = -beta r far from the center and as Vr = 2 beta r near the center, where r is the distance from the center, while the rotation velocity Vphi is constant far from the center and almost Keplerian (i.e., Vphi = square root of (GM/r)) near the center. In a warm regime, where the effect of the gas pressure is taken into account, a transonic solution is found, where the flow accretes supersonically far from the center, passes a sonic point, and eventually becomes subsonic, but rotating in a nearly Keplerian orbit. When the dark matter exerts a gravitational force, which is assumed to be -r((omegaDM)2) (omegaDM = const.), we find steady analytical solutions in the cold regime such that Vr = -(beta/2)r and Vphi = r(square root of (((omegaDM)2) - ((beta2)/4))). The effect of the gas pressure is also discussed. Such accretion disks, where the angular momentum is removed via an external radiative drag proportional to the velocity (beta disk), are possible in the post-recombination epoch during the early universe. Shortly after the cosmological recombination era, when the radiation density of the cosmic background radiation (CBR) was sufficiently high, the gas could lose its angular momentum efficiently through Compton drag with the CBR and, consequently, form cosmological accretion disks which evolve into primordial active galactic nuclei (proto-quasars). In a dark matter-dominated universe, the disk gas would initially accrete in the dark

  6. The Search for Molecular Outflows in Local Volume AGNs with Herschel-PACS

    Science.gov (United States)

    Stone, M.; Veilleux, S.; Meléndez, M.; Sturm, E.; Graciá-Carpio, J.; González-Alfonso, E.

    2016-08-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 μm) outflows in a sample of 52 Local Volume (d\\lt 50 Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGNs) with Herschel-PACS. We combine the results from our analysis of the BAT AGNs with the published Herschel/PACS data of 43 nearby (z\\lt 0.3) galaxy mergers, mostly ultra-luminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGNs have, on average, ∼ 10{--}100 times lower AGN luminosities, star formation rates, and stellar masses than those of the ULIRG and QSO samples. OH 119 μm is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e., OH absorption profiles with median velocities more blueshifted than ‑50 km s‑1 and/or blueshifted wings with 84% velocities less than ‑300 km s‑1) is seen in only four BAT AGNs (NGC 7479 is the most convincing case). Evidence for molecular inflows (i.e., OH absorption profiles with median velocities more redshifted than 50 km s‑1) is seen in seven objects, although an inverted P-Cygni profile is detected unambiguously in only one object (Circinus). Our data show that both the starburst and AGN contribute to driving OH outflows, but the fastest OH winds require AGNs with quasar-like luminosities. We also confirm that the total absorption strength of OH 119 μm is a good proxy for dust optical depth as it correlates strongly with the 9.7 μm silicate absorption feature, a measure of obscuration originating in both the nuclear torus and host galaxy disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Diskoseismology - Signatures of black hole accretion disks

    Science.gov (United States)

    Nowak, Michael; Wagoner, Robert V.

    1992-01-01

    General relativity requires the existence of a spectrum of oscillations which are trapped near the inner edge of accretion disks around black holes. We have developed a general formalism for analyzing the normal modes of such acoustic perturbations of arbitrary thin disk models, approximating the dominant relativistic effects via a modified Newtonian potential (these modes do not exist in Newtonian gravity). The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall in to two main classes, which are analogous to the p-modes and g-modes in the sun. In this work, we compute the eigenfunctions and eigenfrequencies of isothermal disks. The (relatively small) rates of growth or damping of these oscillations due to gravitational radiation and parameterized models of viscosity are also computed.

  8. Accretion disk structure in SS Cygni

    Science.gov (United States)

    Hessman, F. V.

    1987-02-01

    High-resolution coude observations of nonaxisymmetric line emission from the dwarf nova SS Cygni are presented. By subtracting the constant line component, the asymmetric line emission responsible for the observed phase shift between the absorption and emission line radial velocity curves can be isolated. The extra emission is a large fraction of the total line emission and extends to large velocities (of about 1500 km/sec). The phase stability of the emission demands a large-scale structure which is fixed in the frame of the binary. A magnetic origin of the excitation cannot be ruled out but is implausible. A simple explanation is that the accretion stream from the companion star is able to spill over the edge of the disk, introducing emission at noncircular velocities and most likely disturbing the upper layers of the accretion disk.

  9. Embedded, Accreting Disks in Massive Star Formation

    CERN Document Server

    Kratter, Kaitlin M; Krumholz, Mark R

    2007-01-01

    Recent advances in our understanding of massive star formation have made clear the important role of protostellar disks in mediating accretion. Here we describe a simple, semi-analytic model for young, deeply embedded, massive accretion disks. Our approach enables us to sample a wide parameter space of stellar mass and environmental variables, providing a means to make predictions for a variety of sources that next generation telescopes like ALMA and the EVLA will observe. Moreover we include, at least approximately, multiple mechanisms for angular momentum transport, a comprehensive model for disk heating and cooling, and a realistic estimate for the angular momentum in the gas reservoir. We make predictions for the typical sizes, masses, and temperatures of the disks, and describe the role of gravitational instabilities in determining the binarity fraction and upper mass cut-off.

  10. Earth, Moon, Sun, and CV Accretion Disks

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting Cataclysmic Variable (CV) Dwarf Novae systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar and black hole systems. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our a...

  11. Structures of magnetized thin accretion disks

    Institute of Scientific and Technical Information of China (English)

    李晓卿; 季海生

    2002-01-01

    We investigate the magnetohydrodynamic (MHD) process in thin accretion disks. Therelevant momentum as well as magnetic reduction equations in the thin disk approximation areincluded. On the basis of these equations, we examine numerically the stationary structures, includingdistributions of the surface mass density, temperature and flow velocities of a disk around a youngstellar object (YSO). The numerical results are as follows: (i) There should be an upper limit to themagnitude of magnetic field, such an upper limit corresponds to the equipartition field. For relevantmagnitude of magnetic field of the disk's interior the disk remains approximately Keplerian. (ii) Thedistribution of effective temperature T(r) is a smoothly decreasing function of radius with power 1 corresponding to the observed radiation flux density, provided that the magnetic fieldindex γ= -1/2,is suitably chosen.

  12. Accretion disks in luminous young stellar objects

    CERN Document Server

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  13. Do Radio Jets Contribute to Driving Ionized Gas Outflows in Moderate Luminosity Type 2 AGN?

    Science.gov (United States)

    Fowler, Julia; Sajina, Anna; Lacy, Mark

    2016-01-01

    This poster examines the role of AGN-driven feedback in low to intermediate power radio galaxies. We begin with [OIII] measurements of ionized gas outflows in 29 moderate AGN-luminosity z~0.3-0.7 dust-obscured Type 2 AGN. We aim to examine the relative role of the AGN itself, of star-formation and of nascent radio jets in driving these outflows. The strength of the AGN and star formation are based on the [OIII] luminosities, and the far-IR luminosities respectively. For the radio jets, we present multi-frequency radio (X, S, and L-bands) JVLA imaging of our sample, which allows us both to constrain the overall radio power, but also look for signatures of young radio sources, including Giga-hertz Peaked Spectrum (GPS) sources, as well as small-scale jets. While radio jet-driven outflows are well known for powerful radio-loud galaxies, this study allows us to constrain the degree to which this mechanism is significant at more modest radio luminosities of L5GHz~10^22-25 W/Hz.

  14. Super-spinning compact objects generated by thick accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zilong; Bambi, Cosimo, E-mail: zilongli@fudan.edu.cn, E-mail: bambi@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China)

    2013-03-01

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a{sub *}| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a{sub *} for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a{sub *}|∼<1.3, which seems to be quite independent of the exact nature of these objects. Such a bound is only slightly weaker than |a{sub *}|∼<1.2 found in previous work for thin disks.

  15. Super-spinning compact objects generated by thick accretion disks

    International Nuclear Information System (INIS)

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a*| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a* for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a*|∼*|∼<1.2 found in previous work for thin disks

  16. Quantifying AGN-Driven Metal-Enhanced Outflows in Chemodynamical Simulations

    CERN Document Server

    Taylor, Philip

    2015-01-01

    We show the effects of AGN-driven outflows on the ejection of heavy elements using our cosmological simulations, where super-massive black holes originate from the first stars. In the most massive galaxy, we have identified two strong outflows unambiguously driven by AGN feedback. These outflows have a speed greater than $\\sim 8000$ km\\,s$^{-1}$ near the AGN, and travel out to a half Mpc with $\\sim 3000$ km\\,s$^{-1}$. These outflows remove the remaining gas ($\\sim 3$ per cent of baryons) and significant amounts of metals ($\\sim 2$ per cent of total produced metals) from the host galaxy, chemically enriching the circumgalactic medium (CGM) and the intergalactic medium (IGM). 17.6 per cent of metals from this galaxy, and 18.4 per cent of total produced metals in the simulation, end up in the CGM and IGM, respectively. The metallicities of the CGM and IGM are higher with AGN feedback, while the mass--metallicity relation of galaxies is not affected very much. We also find `selective' mass-loss where iron is more...

  17. Search for Molecular Outflows in Local Volume AGN with Herschel-PACS

    CERN Document Server

    Stone, M; Melendez, M; Sturm, E; Gracia-Carpio, J; Gonzalez-Alfonso, E

    2016-01-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 $\\mu$m) outflows in a sample of 52 Local Volume ($d < 50$ Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGN) with \\emph{Herschel}-PACS. We combine the results from our analysis of the BAT AGN with the published \\emph{Herschel}/PACS data of 43 nearby ($z<0.3$) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGN have, on average, $\\sim 10-100$ times lower AGN luminosities, star formation rates (SFRs), and stellar masses than those of the ULIRG and QSO sample. OH 119 $\\mu$m is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e. OH absorption profiles with median velocities more blueshifted than $-$50 km s$^{-1}$ and/or blueshifted wings with 84-percentile velocities less than $-$300 km s$^{-1}$) is seen in only four BAT AGN (NGC~7479 is the most convincing case). Evidence for molecular inflows (i.e. OH absorption profiles...

  18. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  19. The connection between AGN-driven dusty outflows and the surrounding environment

    CERN Document Server

    Ishibashi, W

    2016-01-01

    Significant reservoirs of cool gas are observed in the circumgalactic medium (CGM) surrounding galaxies. The CGM is also found to contain substantial amounts of metals and dust, which require some transport mechanism. We consider AGN (active galactic nucleus) feedback-driven outflows based on radiation pressure on dust. Dusty gas is ejected when the central luminosity exceeds the effective Eddington luminosity for dust. We obtain that a higher dust-to-gas ratio leads to a lower critical luminosity, implying that the more dusty gas is more easily expelled. Dusty outflows can reach large radii with a range of velocities (depending on the outflowing shell configuration and the ambient density distribution) and may account for the observed CGM gas. In our picture, dust is required in order to drive AGN feedback, and the preferential expulsion of dusty gas in the outflows may naturally explain the presence of dust in the CGM. On the other hand, the most powerful AGN outflow events can potentially drive gas out of ...

  20. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    Science.gov (United States)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  1. Deceleration Effect of Magnetic Field on Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong

    2000-01-01

    The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time for both the angular velocities of BH horizon and accreting particles at the inner edge of an accretion disk are reduced in the BZ process, behaving with non-monotonous evolution characteristics. This result implies that the magnetic field near the BH horizon has & deceleration effect not only on the spinning BH but also on the surrounding accretion disk.

  2. Evidence of the Link between Broad Emission Line Regions and Accretion Disks in Active Galactic Nuclei

    Institute of Scientific and Technical Information of China (English)

    Yun Xu; Xin-Wu Cao

    2007-01-01

    There is observational evidence that broad-line regions (BLRs) exist in most active galactic nuclei (AGNs), but their origin is still unclear. One scenario is that the BLRs originate from winds accelerated from the hot coronae of the disks, and the winds are suppressed when the black hole is accreting at low rates. This model predicts a relation between (m) ((m) = (M)/(M)Edd) and the FWHM of broad emission lines. We estimate the central black hole masses for a sample of bright AGNs by using their broad Hβ line-widths and optical luminosities. The dimensionless accretion rates (m) = (M)/(M)Edd are derived from the optical continuum luminosities by using two different models: using an empirical relation between the bolometric luminosity Lbol and the optical luminosity ((m) = Lbol/LEdd, a fixed radiative efficiency is adopted); and calculating the optical spectra of accretion disks as a function of (m). We find a significant correlation between the derived (m) and the observed line width of Hβ,FWHM∝ (m)-0.37, which almost overlaps the disk-corona model calculations, if the viscosity α≈ 0.1 - 0.2 is adopted. Our results provide strong evidence for the physical link between the BLRs and accretion disks in AGNs.

  3. Variabilities of Gamma-ray Bursts from Black Hole Hyper-accretion Disks

    CERN Document Server

    Lin, Da-Bin; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lv, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-01-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) displays significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disk, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  4. Tidal Disruption Flares: The Accretion Disk Phase

    CERN Document Server

    Armijo, Matias Montesinos

    2011-01-01

    The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically the hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of main results derived from our simulations is that black body fits of X-ray data tend to overestimate the true mean disk temperature. The temperature derived from black body fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous timescale, which fixes also the raising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution o...

  5. Nucleosynthesis in Gamma Ray Burst Accretion Disks

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason

    2003-01-01

    We follow the nuclear reactions that occur in the accretion disks of stellar mass black holes that are accreting at a very high rate, 0.01 to 1 solar masses per second, as is realized in many current models for gamma-ray bursts (GRBs). The degree of neutronization in the disk is a sensitive function of the accretion rate, black hole mass, Kerr parameter, and disk viscosity. For high accretion rates and low viscosity, material arriving at the black hole will consist predominantly of neutrons. This degree of neutronization will have important implications for the dynamics of the GRB producing jet and perhaps for the synthesis of the r-process. For lower accretion rates and high viscosity, as might be appropriate for the outer disk in the collapsar model, neutron-proton equality persists allowing the possible synthesis of 56Ni in the disk wind. 56Ni must be present to make any optically bright Type Ib supernova, and in particular those associated with GRBs.

  6. Local Magnetohydrodynamical Models of Layered Accretion Disks

    CERN Document Server

    Fleming, T; Fleming, Timothy; Stone, James M.

    2003-01-01

    Using numerical MHD simulations, we have studied the evolution of the magnetorotational instability in stratified accretion disks in which the ionization fraction (and therefore resistivity) varies substantially with height. This model is appropriate to dense, cold disks around protostars or dwarf nova systems which are ionized by external irradiation of cosmic rays or high-energy photons. We find the growth and saturation of the MRI occurs only in the upper layers of the disk where the magnetic Reynolds number exceeds a critical value; in the midplane the disk remains queiscent. The vertical Poynting flux into the "dead", central zone is small, however velocity fluctuations in the dead zone driven by the turbulence in the active layers generate a significant Reynolds stress in the midplane. When normalized by the thermal pressure, the Reynolds stress in the midplane never drops below about 10% of the value of the Maxwell stress in the active layers, even though the Maxwell stress in the dead zone may be orde...

  7. Sporadically Torqued Accretion Disks Around Black Holes

    CERN Document Server

    Garofalo, D; Garofalo, David; Reynolds, Christopher S.

    2005-01-01

    The assumption that black hole accretion disks possess an untorqued inner boundary, the so-called zero torque boundary condition, has been employed by models of black hole disks for many years. However, recent theoretical and observational work suggests that magnetic forces may appreciably torque the inner disk. This raises the question of the effect that a time-changing magnetic torque may have on the evolution of such a disk. In particular, we explore the suggestion that the ``Deep Minimum State'' of the Seyfert galaxy MCG--6-30-15 can be identified as a sporadic inner disk torquing event. This suggestion is motivated by detailed analyses of changes in the profile of the broad fluorescence iron line in XMM-Newton spectra. We find that the response of such a disk to a torquing event has two phases; an initial damming of the accretion flow together with a partial draining of the disk interior to the torque location, followed by a replenishment of the inner disk as the system achieves a new (torqued) steady-st...

  8. Accretion disk radiation dynamics and the cosmic battery

    International Nuclear Information System (INIS)

    We investigate the dynamics of radiation in the surface layers of an optically thick astrophysical accretion disk around a Kerr black hole. The source of the radiation is the surface of the accretion disk itself, and not a central object as in previous studies of the Poynting-Robertson effect. We generate numerical sky maps from photon trajectories that originate on the surface of the disk as seen from the inner edge of the disk at the position of the innermost stable circular orbit. We investigate several accretion disk morphologies with a Shakura-Sunyaev surface temperature distribution. Finally, we calculate the electromotive source of the Cosmic Battery mechanism around the inner edge of the accretion disk and obtain characteristic timescales for the generation of astrophysical magnetic fields.

  9. TLUSTY: Stellar Atmospheres, Accretion Disks, and Spectroscopic Diagnostics

    Science.gov (United States)

    Hubeny, Ivan; Lanz, Thierry

    2011-09-01

    TLUSTY is a user-oriented package written in FORTRAN77 for modeling stellar atmospheres and accretion disks and wide range of spectroscopic diagnostics. In the program's maximum configuration, the user may start from scratch and calculate a model atmosphere of a chosen degree of complexity, and end with a synthetic spectrum in a wavelength region of interest for an arbitrary stellar rotation and an arbitrary instrumental profile. The user may also model the vertical structure of annuli of an accretion disk.

  10. Simulations of accretion disks in pseudo-complex General Relativity

    Science.gov (United States)

    Hess, P. O.; Algalán B., M.; Schönenbach, T.; Greiner, W.

    2015-11-01

    After a summary on pseudo-complex General Relativity (pc-GR), circular orbits and stable orbits in general are discussed, including predictions compared to observations. Using a modified version of a model for accretions disks, presented by Page and Thorne in 1974, we apply the raytracing technique in order to simulate the appearance of an accretion disk as it should be observed in a detector. In pc-GR we predict a dark ring near a very massive, rapidly rotating object.

  11. X-ray evidence for ultra-fast outflows in local AGNs

    OpenAIRE

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-01-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in >40% of the sources. Their outflow velocities are in the range 0.03-0.3c, with a mean value of ~0.14c. The ionization is high, in the ra...

  12. Cold-gas outflows in typical low-redshift galaxies are driven by stars formation, not AGN

    CERN Document Server

    Sarzi, Marc; Nedelchev, Boris; Tiffany, Joshua; Shabala, Stanislav S; Deller, Adam T; Middleberg, Enno

    2015-01-01

    Energetic feedback from active galactic nuclei (AGN) is an important ingredient for regulating the star-formation history of galaxies in models of galaxy formation, which makes it important to study how AGN feedback actually occurs in practice. In order to catch AGNs in the act of quenching star formation we have used the interstellar NaD absorption lines to look for cold-gas outflows in a sample of 456 nearby galaxies for which we could unambigously ascertain the presence of radio AGN activity, thanks to radio imaging at milli-arcsecond scales. While compact radio emission indicating a radio AGN was found in 103 galaxies (23% of the sample), and 23 objects (5%) exhibited NaD absorption-line kinematics suggestive of cold-gas outflows, not one object showed evidence of a radio AGN and of a cold-gas outflow simultaneously. Radio AGN activity was found predominantly in early-type galaxies, while cold-gas outflows were mainly seen in spiral galaxies with central star-formation or composite star-formation/AGN acti...

  13. The rotation of accretion-disks and the power spectra of X-rays 'flickering'

    International Nuclear Information System (INIS)

    The X-ray producing, inner region of the accretion disk in Active Galactic Nuclei (AGN) is likely to be non-stationary and non-axisymmetric. This non-stationarity and non-axisymmetry in disk surface brightness may be modeled by considering the pre-sense of many 'hot spots' on a steady, axisymmetric disk. As long as a 'spot' can survive for a few orbital periods, its orbital frequency can be introduced into the light curve either by relativistic orbital motion or by eclipsing of the spot by the disk. These rotational effects vary with the local properties of the spot population. Depending on the radial variation of spot brightness, lifetime and number density, the observed variability power spectrum may differ from that due to the intrinsic variability of spots alone, within the orbital frequency range in which these spots occur. In this paper, we explore the relation between properties assumed for the spot population and the resulting predictions for the observed variability. The implications of our results for the 'flickering' of X-ray sources powered by accretion disks (both AGN and galactic sources) are also discussed. (author). 24 refs, 6 figs

  14. AGN and stellar feedback in star-forming galaxies at redshift 2 : outflows, mass-loading and quenching

    Science.gov (United States)

    Roos, O.

    2016-06-01

    Galactic-scale outflows are ubiquitous in observations of star-forming galaxies, up to high redshift. Such galactic outflows are mainly generated by internal sources of feedback: young stars, supernovae and active galactic nuclei (AGNs). Still, the physical origins of such outflows are not well understood, and their main driver is still debated. Up to now, most simulations take into account AGN feedback or stellar feedback but not both, because both phenomena happen on very different spatial and time scales. Most of them also still fail to reproduce all observed parameters from first principles. In this poster, we present the POGO project: Physical Origins of Galactic Outflows. With this suite of 23 simulations, we model AGN and stellar feedback simultaneously based on physical assumptions for the first time at very high resolution (6 to 1.5 pc), and investigate their impact on the outflow parameters of the host-galaxy. Here, we show that AGN and stellar feedback couple non-linearly, and that the mass-loading of the resulting outflow highly depends on the mass of the host, all the more because the coupling can either be positive (small masses) or negative (intermediate masses). Nevertheless, the main driver of the outflow remains the AGN at all masses.

  15. The origin of ultra-fast outflows in AGN: Monte-Carlo simulations of the wind in PDS 456

    OpenAIRE

    Hagino, Kouichi; Odaka, Hirokazu; Done, Chris; Gandhi, Poshak; Watanabe, Shin; Sako, Masao; Takahashi, Tadayuki

    2014-01-01

    Ultra-fast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback onto the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionised that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore condi...

  16. Are broad optical balmer lines from central accretion disk in PG 1613+658?

    CERN Document Server

    Zhang, XueGuang

    2014-01-01

    In this letter, we report positive correlations between broad line width and broad line flux for the broad balmer lines of the long-term observed AGN PG 1613+658. Rather than the expected negative correlations under the widely accepted virialization assumption for AGN BLRs, the positive correlations indicate much different BLR structures of PG 1613+658 from the commonly considered BLR structures which are dominated by the equilibrium between radiation pressure and gas pressure. Therefore, accretion disk origin is preferred for the observed broad single-peaked optical balmer lines of PG 1613+658, because of the mainly gravity dominated disk-like BLRs with radial structures having few effects from radiation pressure.

  17. Nustar and Suzaku X-Ray Spectroscopy Of Ngc 4151: Evidence For Reflection From The Inner Accretion Disk

    DEFF Research Database (Denmark)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.;

    2015-01-01

    profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the......We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by...... applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity...

  18. Magnetic Instability in Accretion Disks with Anomalous Viscosity

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ai-Ping; LI Xiao-Qing

    2004-01-01

    @@ Using the new model of anomalous viscosity, we investigate the magnetic instability in the accretion disks and give the dispersion formula. On the basis of the dispersion relation obtained, it is numerically shown that the instability condition of viscous accretion disk is well consistent with that of the ideal accretion disk, namely there would be magneto-rotational instability in the presence of a vertical weak magnetic field. For a given distance R from the centre of the disk, the growth rate in the anomalous case deviates from the ideal case more greatly when the vertical magnetic field is smaller. The large viscosity limits to the instability. In the two cases, the distributions of growth rate with wave number k approach each other when the magnetic field increases. It greatly represses the effect of viscosity.

  19. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    Indian Academy of Sciences (India)

    Prasad Subramanian; B. S. Pujari; Peter A. Becker

    2004-03-01

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

  20. Photon Bubbles and the Vertical Structure of Accretion Disks

    CERN Document Server

    Begelman, M C

    2006-01-01

    We consider the effects of "photon bubble" shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability. They increase the rate at which radiation escapes from the disk, and may allow disks to exceed the Eddington limit by a substantial factor. We first generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low optical depth tend to fill in the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities of 10 to >100 times the Eddington limit (L_E), depending on the mass of the central ...

  1. Suzaku Discovery of Ultra-fast Outflows in Radio-loud AGN

    Science.gov (United States)

    Sambruna, Rita M.; Tombesi, F.; Reeves, J.; Braito, V.; Gofford, J.; Cappi, M.

    2010-02-01

    We present the results of an analysis of the 3.5--10.5 keV spectra of five bright Broad-Line Radio Galaxies (BLRGs) using proprietary and archival Suzaku observations. In three sources -- 3C 111, 3C 120, and 3C 390.3 -- we find evidence, for the first time in a radio-loud AGN, for absorption features at observed energies 7 keV and 8--9 keV, with high significance according to both the F-test and extensive Monte Carlo simulations (99% or larger). In the remaining two BLRGs, 3C 382 and 3C 445, there is no evidence for such absorption features in the XIS spectra. If interpreted as due to Fe XXV and/or Fe XXVI K-shell resonance lines, the absorption features in 3C 111, 3C 120, and 3C 390.3 imply an origin from an ionized gas outflowing with velocities in the range v 0.04-0.15c, reminiscent of Ultra-Fast Outflows (UFOs) previously observed in radio-quiet Seyfert galaxies. A fit with specific photoionization models gives ionization parameters log ξ 4--5.6 erg s-1 cm and column densities of NH 1022-23 cm-2, similar to the values observed in Seyferts. Based on light travel time arguments, we estimate that the UFOs in the three BLRGs are located within 20--500 gravitational radii from the central black hole, and thus most likely are connected to disk winds/outflows. Our estimates show that the UFOs mass outflow rate is comparable to the accretion rate and their kinetic energy a significant fraction of the AGN bolometric luminosity, making these outflows significant for the global energetic of these systems, in particular for mechanisms of jet formation.

  2. Gravitational Wave Heating of Stars and Accretion Disks

    CERN Document Server

    Li, Gongjie; Loeb, Abraham

    2012-01-01

    We investigate the electromagnetic (EM) counterpart of gravitational waves (GWs) emitted by a supermassive black hole binary (SMBHB) through the viscous dissipation of the GW energy in an accretion disk and stars surrounding the SMBHB. We account for the suppression of the heating rate if the forcing period is shorter than the turnover time of the largest turbulent eddies. We find that the viscous heating luminosity in 0.1 solar mass stars can be significantly higher than their intrinsic luminosity. The relative brightening is small for accretion disks.

  3. The origin of ultrafast outflows in AGN: Monte Carlo simulations of the wind in PDS 456

    Science.gov (United States)

    Hagino, Kouichi; Odaka, Hirokazu; Done, Chris; Gandhi, Poshak; Watanabe, Shin; Sako, Masao; Takahashi, Tadayuki

    2015-01-01

    Ultrafast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback on to the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionized that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3D Monte Carlo code for radiation transport. The code only handles highly ionized ions, but the data show the ionization state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass-loss rate in the wind is around 30 per cent of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass-loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows on to high-mass black holes, as observed.

  4. Evidence for ultra-fast outflows in radio-quiet AGNs: III - location and energetics

    OpenAIRE

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultra-fast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ~0.0003-0.03pc (~10^2-10^4 r_s) from the central black hole, consistent with what is exp...

  5. The existence of warm and optically thick dissipative coronae above accretion disks

    CERN Document Server

    Rozanska, A; Belmont, R; Czerny, B; Petrucci, P -O

    2015-01-01

    In the past years, several observations of AGN and X-ray binaries have suggested the existence of a warm T around 0.5-1 keV and optically thick, \\tau ~ 10-20, corona covering the inner parts of the accretion disk. These properties are directly derived from spectral fitting in UV to soft-X-rays using Comptonization models. However, whether such a medium can be both in radiative and hydrostatic equilibrium with an accretion disk is still uncertain. We investigate the properties of such warm, optically thick coronae and put constraints on their existence. We solve the radiative transfer equation for grey atmosphere analytically in a pure scattering medium, including local dissipation as an additional heating term in the warm corona. The temperature profile of the warm corona is calculated assuming it is cooled by Compton scattering, with the underlying dissipative disk providing photons to the corona. Our analytic calculations show that a dissipative thick, (\\tau_{cor} ~ 10-12) corona on the top of a standard ac...

  6. Structure and Spectroscopy of Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  7. Accretion Disks Phase Transitions 2-D or not 2-D?

    CERN Document Server

    Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.

    2000-01-01

    We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.

  8. 2-D MHD Configurations for Accretion Disks Around Magnetized Stars

    OpenAIRE

    Benini, Riccardo; Montani, Giovanni

    2009-01-01

    We discuss basic features of steady accretion disk morphology around magnetized compact astrophysical objects. A comparison between the standard model of accretion based on visco-resistive MHD and the plasma instabilities, like ballooning modes, triggered by very low value of resistivity, is proposed.

  9. On the disappearance of broad-line region in low-luminosity active galactic nuclei: the role of the outflows from advection dominated accretion flows

    CERN Document Server

    Cao, Xinwu

    2010-01-01

    The broad-line region (BLR) disappears in many low-luminosity AGNs, the reason of which is still controversial. The BLRs in AGNs are believed to be associated with the outflows from the accretion disks. Most of the low-luminosity AGNs (LLAGNs) contain advection dominated accretion flows (ADAFs), which are very hot and have a positive Bernoulli parameter. ADAFs are therefore associated with strong outflows. We estimate the cooling of the outflows from the ADAFs, and find that the gases in such hot outflows always cannot be cooled efficiently by bremsstrahlung radiation. The ADAF may co-exist with the standard disk, i.e., the inner ADAF connects to the outer thin accretion disk at radius R_tr, in the sources accreting at slightly lower than the critical rate. For the ADAFs with >0.001 L_edd, a secondary small inner cold disk is suggested to co-exist with the ADAF due to the condensation process. We estimate the Compton cooling of the outflow, of which the soft seed photons either come from the outer cold disk o...

  10. Simulating the Formation of Massive Protostars: I. Radiative Feedback and Accretion Disks

    CERN Document Server

    Klassen, Mikhail; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi

    2016-01-01

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M$_{\\odot}$. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2-10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M$_{\\odot}$ simulation, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively-driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the dis...

  11. Generation of magnetic field on the accretion disk around a proto-first-star

    International Nuclear Information System (INIS)

    The generation process of a magnetic field around a proto-first-star is studied. Utilizing the recent numerical results of proto-first-star formation based on radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that a magnetic field of ∼10–9 G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless an efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low-density regions is ∼10–14-10–13 G at n H = 103 cm–3, which could play an important role in the next generation star formation, as well as the seeds of the magnetic field in the present-day universe.

  12. Gravitational Instability in Neutrino Dominated Accretion Disks

    International Nuclear Information System (INIS)

    We revisit the vertical structure of neutrino-dominated accretion flows (NDAFs) in spherical coordinates under a boundary condition based on a mechanical equilibrium. The solutions show that the NDAF is significantly geometrically thick. The Toomre parameter is determined by the mass accretion rate and the viscosity parameter, which is defined as Q = cSΩ/πGΣ, where cS, Ω and Σ are the sound speed, angular velocity and surface density, respectively. According to the distribution of the Toomre parameter, the possible fragments of the disk may appear near the disk surface in the outer region. These possible outflows originating from the gravitational instability of the disk may account for the late-time flares in gamma-ray bursts. (geophysics, astronomy, and astrophysics)

  13. DIFFUSIVE PARTICLE ACCELERATION IN SHOCKED, VISCOUS ACCRETION DISKS: GREEN'S FUNCTION ENERGY DISTRIBUTION

    International Nuclear Information System (INIS)

    The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classical method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is ∼0.01 M-dot c2, and the outflowing relativistic particles have a mean energy ∼300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.

  14. Radiation magnetohydrodynamic simulations of the formation of hot accretion disk coronae

    International Nuclear Information System (INIS)

    A new mechanism to form a magnetic pressure supported, high temperature corona above the photosphere of an accretion disk is explored using three dimensional radiation magnetohydrodynamic (MHD) simulations. The thermal properties of the disk are calculated self-consistently by balancing radiative cooling through the surfaces of the disk with heating due to dissipation of turbulence driven by magneto-rotational instability (MRI). As has been noted in previous work, we find the dissipation rate per unit mass increases dramatically with height above the mid-plane, in stark contrast to the α-disk model which assumes this quantity is a constant. Thus, we find that in simulations with a low surface density (and therefore a shallow photosphere), the fraction of energy dissipated above the photosphere is significant (about 3.4% in our lowest surface density model), and this fraction increases as surface density decreases. When a significant fraction of the accretion energy is dissipated in the optically thin photosphere, the gas temperature increases substantially and a high temperature, magnetic pressure supported corona is formed. The volume-averaged temperature in the disk corona is more than 10 times larger than at the disk mid-plane. Moreover, gas temperature in the corona is strongly anti-correlated with gas density, which implies the corona formed by MRI turbulence is patchy. This mechanism to form an accretion disk corona may help explain the observed relation between the spectral index and luminosity from active galactic nucleus (AGNs), and the soft X-ray excess from some AGNs. It may also be relevant to spectral state changes in X-ray binaries.

  15. Magnetic fields in primordial accretion disks

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  16. Gemini GMOS and WHT SAURON integral-field spectrograph observations of the AGN-driven outflow in NGC 1266

    NARCIS (Netherlands)

    Davis, Timothy A.; Krajnovic, Davor; McDermid, Richard M.; Bureau, Martin; Sarzi, Marc; Nyland, Kristina; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2012-01-01

    We use the Spectrographic Areal Unit for Research on Optical Nebulae and Gemini Multi-Object Spectrograph integral-field spectrographs to observe the active galactic nucleus (AGN) powered outflow in NGC?1266. This unusual galaxy is relatively nearby (D = 30?Mpc), allowing us to investigate the proce

  17. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    Indian Academy of Sciences (India)

    G. B. Long; J. W. Ou; Y. G. Zheng

    2016-06-01

    In this paper, we employ a stochastic oscillating accretiondisk model for the power spectral index and variability of BL Lac objectS5 0716+714. In the model, we assume that there is a relativistic oscillationof thin accretion disks and it interacts with an external thermal baththrough a friction force and a random force. We simulate the light curveand the power spectrum density (PSD) at (i) over-damped, (ii) criticallydamped and (iii) under-damped cases, respectively. Our results show thatthe simulated PSD curves depend on the intrinsic property of the accretiondisk, and it could be produced in a wide interval ranging from 0.94 to2.05 by changing the friction coefficient in a stochastic oscillating accretiondisk model. We argue that accretion disk stochastic oscillating couldbe a possible interpretation for observed PSD variability.

  18. Conservative GRMHD Simulations of Moderately Thin, Tilted Accretion Disks

    CERN Document Server

    Teixeira, Danilo Morales; Zhuravlev, Viacheslav V; Ivanov, Pavel B

    2014-01-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for both prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. This result is consistent with our earlier work, although perhaps contrary to some common misconceptions. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bard...

  19. Vertical Structure of Magnetized Accretion Disks around Young Stars

    CERN Document Server

    Lizano, S; Boehler, Y; D'Alessio, P

    2015-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $\\lambda_{sys} = 4$ (strongly magnetized disks), and $\\lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7\\% of the visc...

  20. On the gravitational stability of gravito-turbulent accretion disks

    CERN Document Server

    Lin, Min-Kai

    2016-01-01

    Low mass, self-gravitating accretion disks admit quasi-steady, `gravito-turbulent' states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: 1) cooling, which reduces pressure support; and/or 2) viscosity, which reduces rotational support. We analyze the gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes wi...

  1. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as...... angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified...... significantly, their associated stresses oscillate around zero, rendering them an inefficient mechanism to transport significant angular momentum (inward). These findings are consistent with the results obtained in numerical simulations of MHD accretion disk boundary layers and challenge the standard assumption...

  2. Local Dynamical Instabilities in Magnetized, Radiation Pressure Supported Accretion Disks

    CERN Document Server

    Blaes, Omer M; Blaes, Omer; Socrates, Aristotle

    2000-01-01

    We present a general linear dispersion relation which describes the coupled behavior of magnetorotational, photon bubble, and convective instabilities in weakly magnetized, differentially rotating accretion disks. We presume the accretion disks to be geometrically thin and supported vertically by radiation pressure. We fully incorporate the effects of a nonzero radiative diffusion length on the linear modes. In an equilibrium with purely vertical magnetic field, the vertical magnetorotational modes are completely unaffected by compressibility, stratification, and radiative diffusion. However, in the presence of azimuthal fields, which are expected in differentially rotating flows, the growth rate of all magnetorotational modes can be reduced substantially below the orbital frequency. This occurs if diffusion destroys radiation sound waves on the length scale of the instability, and the magnetic energy density of the azimuthal component exceeds the non-radiative thermal energy density. While sluggish in this c...

  3. Wave Propagation in Accretion Disks with Self-Gravity

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Ci; YANG Lan-Tian; WU Shao-Ping; DING Shi-Xue

    2001-01-01

    We extend the research by Lubow and Pringle of axisymmetric waves in accretion disks to the case where self gravity of disks should be considered. We derive and analyse the dispersion relations with the effect of self-gravity. Results show that self-gravity extends the forbidden region of the wave propagation: for high frequency p-modes, self-gravity makes the wavelength shorter and the group velocity larger; for low frequency g-modes, the effect is opposite.

  4. Fossil magnetic field of accretion disks of young stars

    OpenAIRE

    Dudorov, A. E.; Khaibrakhmanov, S. A.

    2014-01-01

    We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative r...

  5. On oscillations in turbulent accretion disks: I. A general approach

    Czech Academy of Sciences Publication Activity Database

    Horák, Jiří

    Opava: Silesian University, 2014 - (Stuchlík, Z.), s. 53-60. (Publications of the Institute of Physics. 6). ISBN 9788075101242. ISSN 2336-5668. [RAGtime /10.-13./. Opava (CZ), 15.09.2008-17.09.2008] R&D Projects: GA ČR(CZ) GAP209/11/2004 Institutional support: RVO:67985815 Keywords : black hole physics * accretion disks * oscillations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  6. A New Approach to Evolution of Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong; LEI Wei-Hua; XIAO Kan

    2000-01-01

    Evolution of black hole (BH) accretion disks is investigated by a new approach, in which the evolution of the central BH can be derived in terms of BH spin directly, and the evolution characteristics of the concerning BH parameters are shown more easily and obviously. As an example, the unusual evolution characteristics of angular velocity of BH horizon and that of accreting particles at the inner edge of the disk are derived by considering the Blandford-Znajek process.

  7. The role of accretion disks in the formation of massive stars

    CERN Document Server

    Kuiper, Rolf; Beuther, Henrik; Henning, Thomas

    2010-01-01

    We present radiation hydrodynamics simulations of the collapse of massive pre-stellar cores. We treat frequency dependent radiative feedback from stellar evolution and accretion luminosity at a numerical resolution down to 1.27 AU. In the 2D approximation of axially symmetric simulations, it is possible for the first time to simulate the whole accretion phase of several 10^5 yr for the forming massive star and to perform a comprehensive scan of the parameter space. Our simulation series show evidently the necessity to incorporate the dust sublimation front to preserve the high shielding property of massive accretion disks. Our disk accretion models show a persistent high anisotropy of the corresponding thermal radiation field, yielding to the growth of the highest-mass stars ever formed in multi-dimensional radiation hydrodynamics simulations. Non-axially symmetric effects are not necessary to sustain accretion. The radiation pressure launches a stable bipolar outflow, which grows in angle with time as presum...

  8. Thin accretion disks in stationary axisymmetric wormhole spacetimes

    International Nuclear Information System (INIS)

    In this paper, we study the physical properties and the equilibrium thermal radiation emission characteristics of matter forming thin accretion disks in stationary axially symmetric wormhole spacetimes. The thin disk models are constructed by taking different values of the wormhole's angular velocity, and the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained. Comparing the mass accretion in a rotating wormhole geometry with the one of a Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for wormholes than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating wormholes provide a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Therefore specific signatures appear in the electromagnetic spectrum of thin disks around rotating wormholes, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  9. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    International Nuclear Information System (INIS)

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for both prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.

  10. Nucleosynthesis in the accretion disks of Type II collapsars

    CERN Document Server

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star and a mild supernova explosion is driven. However, this supernova ejecta lack momentum and falls back onto the neutron star which gets transformed to a stellar mass black hole. In order to study the hydrodynamics and nucleosynthesis of such an accretion disk formed from the fallback material of the supernova ejecta, we use the well established hydrodynamic models. In such a disk neutrino cooling becomes important in the inner disk where the temperature and density are higher. Higher the accretion rate (dot{M}), higher is the density and temperature in the disks. In this work we deal with accretion disks with relatively low accretion rates: 0.001 M_sun s^{-1} \\lesssim dot{M} \\lesssim 0.01 M_sun s^{-1} and hence these disks are predominantly advection dominated. We use He-rich and Si-rich abu...

  11. X-ray observations of powerful AGN outflows - implications for feedback

    CERN Document Server

    Pounds, Ken

    2013-01-01

    Highly ionised winds with velocities ~ 0.1-0.2c were first detected in X-ray spectra of non-BAL AGN a decade ago. Subsequent observations and archival searches have shown such winds to be a common feature of luminous AGN, increasing the belief that powerful ionised winds have a wider importance in galaxy feedback models. Paradoxically, for the best-quantified high velocity outflow (the luminous Seyfert PG1211+143) the wind appears too powerful to be compatible with the observed stellar bulge and black hole masses, suggesting the energy coupling of wind to bulge gas must be inefficient. A recent XMM-Newton observation of the narrow line Seyfert NGC 4051 offers an explanation of this apparent paradox, finding evidence for the fast ionised wind to lose most of its kinetic energy after shocking against the ISM. Importantly, the wind momentum is maintained through such a shock, supporting the view that a momentum-driven flow provides the critical link between black hole and stellar bulge masses implied by the obse...

  12. 3D Numerical Simulations of AGN Outflows in Clusters and Groups

    CERN Document Server

    Gaspari, M; Brighenti, F; D'Ercole, A

    2009-01-01

    We compute 3D gasdynamical models of jet outflows from the central AGN, that carry mass as well as energy to the hot gas in galaxy clusters and groups. These flows have many attractive attributes for solving the cooling flow problem: why the hot gas temperature and density profiles resemble cooling flows but show no spectral evidence of cooling to low temperatures. Subrelativistic jets, described by a few parameters, are assumed to be activated when gas flows toward or cools near a central SMBH. Using approximate models for a rich cluster (A1795), a poor cluster (2A 0336+096) and a group (NGC 5044), we show that mass-carrying jets with intermediate mechanical efficiencies ($\\sim10^{-3}$) can reduce for many Gyr the global cooling rate to or below the low values implied by X-spectra, while maintaining $T$ and $\\rho$ profiles similar to those observed, at least in clusters. Groups are much more sensitive to AGN heating and present extreme time variability in both profiles. Finally, the intermittency of the feed...

  13. Radiation Pressure Confinement -- III. The origin of the broad ionization distribution in AGN outflows

    CERN Document Server

    Stern, Jonathan; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-01-01

    The winds of ionized gas driven by Active Galactic Nuclei (AGN) can be studied through absorption features in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe^0+ to Fe^25+). The absorption measure distribution (AMD) is defined as the distribution of column density with ionization parameter |dN / dlog xi|. The AMD extends over a wide range of 0.1 < xi < 10^4 (cgs), and is remarkably similar in different objects. Power-law fits to the observed AMDs (|dN / dlog xi| ~ N_1 xi^a) yield N_1 = 3x10^21 cm^-2 +- 0.4 dex and a = 0 -- 0.4. What is the source of this broad ionization distribution, and what sets the small range of observed $N_1$ and $a$ values? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform pressure medium. However, it has already been shown that the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore ...

  14. The Central Engine Structure of 3C120: Evidence for a Retrograde Black Hole or a Refilling Accretion Disk

    OpenAIRE

    Cowperthwaite, Philip S.; Reynolds, Christopher S.

    2012-01-01

    The broad-line radio galaxy 3C120 is a powerful source of both X-ray and radio emission including superluminal jet outflows. We report on our reanalysis of 160 ks of Suzaku data taken in 2006, previously examined by Kataoka et al. (2007). Spectral fits to the XIS and HXD/PIN data over a range of 0.7-45 keV reveal a well-defined iron K line complex with a narrow Ka core and relativistically broadened features consistent with emission from the inner regions of the accretion disk. Furthermore, t...

  15. Diagnostics of AGN-driven Molecular Outflows in ULIRGs from Herschel-PACS Observations of OH at 119um

    CERN Document Server

    Spoon, H W W; Lebouteiller, V; Gonzalez-Alfonso, E; Bernard-Salas, J; Urrutia, T; Rigopoulou, D; Westmoquette, M S; Smith, H A; Afonso, J; Pearson, C; Cormier, D; Efstathiou, A; Borys, C; Verma, A; Etxaluze, M; Clements, D L

    2013-01-01

    We report on our observations of the 79 and 119um doublet transitions of OH for 24 local (z<0.262) ULIRGs observed with Herschel-PACS as part of the Herschel ULIRG Survey (HERUS). Some OH119 profiles display a clear P-Cygni shape and therefore imply outflowing OH gas, other profiles are predominantly in absorption or are completely in emission. We find that the relative strength of the OH emission component decreases as the silicate absorption increases. This locates the OH outflows inside the obscured nuclei. The maximum outflow velocities for our sources range from less than 100 to 2000 km/s, with 15/24 (10/24) sources showing OH absorption at velocities exceeding 700 km/s (1000 km/s). Three sources show maximum OH outflow velocities exceeding that of Mrk231. Since outflow velocities above 500-700 km/s are thought to require an active galactic nucleus (AGN) to drive them, about 2/3 of our ULIRG sample may host AGN-driven molecular outflows. This finding is supported by the correlation we find between the...

  16. Fast Ionized X-ray Absorbers in AGNs

    Science.gov (United States)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2015-07-01

    We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.

  17. Frequency spectrum of axisymmetric horizontal oscillations in accretion disks

    CERN Document Server

    Giussani, L; Mishra, B

    2015-01-01

    We present the spectrum of eigenfrequencies of axisymmetric acoustic-inertial oscillations of thin accretion disks for a Schwarzschild black hole modeled with a pseudo-potential. There are nine discrete frequencies, corresponding to trapped modes. Eigenmodes with nine or more radial nodes in the inner disk belong to the continuum, whose frequency range starts somewhat below the maximum value of the radial epicyclic frequency. The results are derived under the assumption that the oscillatory motion is parallel to the midplane of the disk.

  18. Eigenmodes of trapped horizontal oscillations in accretion disks

    CERN Document Server

    Khanna, S; Mishra, B; Kluzniak, W

    2014-01-01

    We present eigenfrequencies and eigenfunctions of trapped acoustic-inertial oscillations of thin accretion disks for a Schwarzschild black hole and a rapidly rotating Newtonian star (a Maclaurin spheroid). The results are derived in the formalism of Nowak and Wagoner (1991) with the assumption that the oscillatory motion is parallel to the midplane of the disk. The first four radial modes for each of five azimuthal modes $m = 0$ through $m = 4$ are presented. The frequencies and wavefunctions of the lowest modes may be accurately approximated by the Airy function.

  19. Neutrino-cooled Accretion Disks around Spinning Black Holes

    OpenAIRE

    Chen, Wen-Xin; Beloborodov, Andrei M.

    2006-01-01

    We calculate the structure of accretion disk around a spinning black hole for accretion rates 0.01 - 10 M_sun/s. The model is fully relativistic and treats accurately the disk microphysics including neutrino emissivity, opacity, electron degeneracy, and nuclear composition. We find that the accretion flow always regulates itself to a mildly degenerate state with the proton-to-nucleon ratio Y_e ~ 0.1 and becomes very neutron-rich. The disk has a well defined "ignition" radius where neutrino fl...

  20. Evolution of Pre-Main Sequence Accretion Disks

    Science.gov (United States)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  1. Self-gravity in neutrino-dominated accretion disks

    International Nuclear Information System (INIS)

    We present the effects of self-gravity on the vertical structure and neutrino luminosity of the neutrino-dominated accretion disks in cylindrical coordinates. It is found that significant changes of the structure appear in the outer region of the disk, especially for high accretion rates (e.g., ≳ 1 M☉ s–1), and thus cause the slight increase in the neutrino luminosity. Furthermore, the gravitational instability of the disk is reviewed by the vertical distribution of the Toomre parameter, which may account for the late-time flares in gamma-ray bursts and the extended emission in short-duration gamma-ray bursts.

  2. Simulating the Formation of Massive Protostars. I. Radiative Feedback and Accretion Disks

    Science.gov (United States)

    Klassen, Mikhail; Pudritz, Ralph E.; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi

    2016-05-01

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M ⊙. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2–10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M ⊙ simulations, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M ⊙ simulation shows a star with a mass of 5.48 M ⊙ and a disk of mass 3.3 M ⊙, while our 100 M ⊙ simulation forms a 28.8 M ⊙ mass star with a 15.8 M ⊙ disk over the course of 41.6 kyr, and our 200 M ⊙ simulation forms a 43.7 M ⊙ star with an 18 M ⊙ disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear to be limited by their own luminosities.

  3. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  4. Evolution of an Accretion Disk in Binary Black Hole Systems

    CERN Document Server

    Kimura, Shigeo S; Toma, Kenji

    2016-01-01

    We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...

  5. Thin accretion disks around cold Bose–Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Dănilă, Bogdan, E-mail: bogdan.danila22@gmail.com [Department of Physics, Babes-Bolyai University, Kogalniceanu Street, Cluj-Napoca (Romania); Harko, Tiberiu, E-mail: t.harko@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, WC1E 6BT, London (United Kingdom); Kovács, Zoltán, E-mail: kovacsz2013@yahoo.com [Max-Fiedler-Str. 7, 45128, Essen (Germany)

    2015-05-09

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars.

  6. Thin accretion disks around cold Bose-Einstein condensate stars

    International Nuclear Information System (INIS)

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  7. Thin accretion disks around cold Bose–Einstein condensate stars

    International Nuclear Information System (INIS)

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars

  8. Estimation of relativistic accretion disk parameters from iron line emission

    CERN Document Server

    Pariev, V I; Miller, W A; Pariev, Vladimir I.; Bromley, Benjamin C.; Miller, Warner A.

    2000-01-01

    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the emission. Here we present an analysis of the geometrical and kinematic properties of the disk based on the extreme frequency shifts of a line profile as determined by measurable flux in both the red and blue wings. The edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence provide a robust alternative to profile fitting of disk parameters. Our approach yields new, strong bounds on the inclination angle of the disk and the location of the emitting region. We apply our method to interpret observational data from MCG-6-30-15 and find that the commonly assumed inclination 30 deg for the accretion disk in MCG-6-30-15 is inconsistent with the position of the blue edge of the line at a 3 sigma level. A thick turbulent disk model or the presence of highly ionized iron may reconcile the bounds on inclination from the...

  9. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  10. ESTIMATION OF THE VISCOSITY PARAMETER IN ACCRETION DISKS OF BLAZARS

    International Nuclear Information System (INIS)

    For an optical monitoring blazar sample set whose typical minimum variability timescale is about 1 hr, we estimate a mean value of the viscosity parameter in their accretion disk. We assume that optical variability on timescales of hours is caused by local instabilities in the inner accretion disk. Comparing the observed variability timescales to the thermal timescales of α-disk models, we could obtain constraints on the viscosity parameter (α) and the intrinsic Eddington ratio (Lin/LEdd=m-dot), 0.104 ≤ α ≤ 0.337, and 0.0201 ≤ L in/LEdd ≤ 0.1646. These narrow ranges suggest that all these blazars are observed in a single state, and thus provide a new evidence for the unification of flat-spectrum radio quasars and BL Lacs into a single blazar population. The values of α we derive are consistent with the theoretical expectation α ∼ 0.1-0.3 of Narayan and Mcclintock for advection-dominated accretion flow and are also compatible with Pessah et al.'s predictions (α ≥ 0.1) by numerical simulations in which magnetohydrodynamic turbulence is driven by the saturated magnetorotational instability.

  11. Diskoseismology: Probing black holes and their accretion disks

    International Nuclear Information System (INIS)

    We review the relativistic results for diskoseismic modes of oscillation which are trapped within thin accretion disks by non-Newtonian gravitational properties of a black hole. Predicted frequencies are calculated for the potentially most observable modes, 'internal gravity' modes and 'corrugation' modes. The most definitive property of these two classes of modes is that the resulting eigenfrequencies depend almost entirely upon only the mass and angular momentum of the black hole. Such features may have been detected by RXTE in the power spectra of the luminosity modulations of the two galactic microquasars, GRS 1915+105 and GRO J1655-40. In the former system, we consider the possibility that this 67 Hz feature can be attributed to a g-mode in an accretion disk about a 10.6 M[odot] (nonrotating) to 36.3 M[odot] (maximally rotating) black hole. In the latter system, identification of the fundamental g-mode with the 300 Hz feature implies a black hole angular momentum approximately 93% of maximum

  12. Formation of black hole and accretion disk in collapsar

    CERN Document Server

    Sekiguchi, Yuichiro

    2010-01-01

    We present the first numerical result of full-GR simulations for the collapse of a rotating high-entropy stellar core to a BH and accretion disk. The simulations are performed taking into account the relevant microphysics such as nuclear-theory-based finite-temperature EOS, weak interaction processes, and neutrino cooling in a general relativistic leakage scheme. The initial core is modeled by a spherical configuration with a constant $Y_e = 0.5$ and s = 8 $k_B$, with rotational profiles added. In all models, collapse to a BH proceeds as follows: In the early phase, the core collapses and then experiences a gas-pressure-dominated bounce. Because the bounce is too weak to halt the collapse, a BH with the initial mass of $\\sim 6$--$7M_{\\odot}$ is eventually formed. Subsequent evolution depends sensitively on the amount of rotation. For the case that the rotation is not fast, a geometrically thin accretion disk is formed around the BH, and a standing shock wave is formed in the inner part of the disk. For the mo...

  13. Equilibrium configuration and stability of a stratus floating above accretion disks

    Science.gov (United States)

    Nakai, Takuya; Fukue, Jun

    2016-04-01

    We examine the equilibrium configurations of a stratus floating above an accretion disk, using the radiative force from the luminous disk just below the stratus. For various disk luminosities and optical depths of the stratus, the stratus can stably float on the outer disk, while a stable configuration does not exist on the inner disk. When the disk luminosity normalized by the Eddington luminosity is unity, and the stratus optical depth is around unity, the stable configuration disappears at r ≲ 50rg, rg being the Schwarzschild radius, and the stratus would be blown off as a cloudy wind, which consists of many strati with appropriate conditions. In the outer region of r ≳ 50rg, on the other hand, we find that the stable floating height is z ˜ 20rg, which is approximately two times larger than in the case of the particle. This difference is due to the anisotropic scattering effect; the stratus can get twice the momentum from radiation than it can in the particle case. The present results, that the radiation-driven cloudy wind can be easily blown off from the luminous disk, can explain observed outflows in broad absorption line quasars and ultra-fast outflow objects.

  14. Bipolar jets launched from magnetically diffusive accretion disks. I. Ejection efficiency vs field strength and diffusivity

    CERN Document Server

    Sheikhnezami, Somayeh; Porth, Oliver; Vaidya, Bhargav; Ghanbari, Jamshid

    2012-01-01

    We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO code we solve the time-dependent resistive MHD equations taking into account the disk and jet evolution simultaneously. The main question we address is which kind of disks do launch jets and which kind of disks do not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass loading and jet acceleration. We have applied a turbulent magnetic diffusivity based on \\alpha-prescription, but have also investigate examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical time scales corresponding to 900 orbital periods of the inner disk. As a general result we observe a continuous and robust outflow launched from the inner part of the disk, expanding into a collimated jet of super ...

  15. Effects of Black Hole Spin on the Limit-Cycle Behaviour of Accretion Disks

    Indian Academy of Sciences (India)

    Li Xue; Ju-Fu Lu

    2011-03-01

    We present a spatially 1.5-dimensional, time-dependent numerical study of accretion disks around Kerr black holes. Our study focuses on the limit-cycle behavior of thermally unstable accretion disks. We find that maximal luminosity may be a more appropriate probe of black hole spin than the cycle duration and influence radius.

  16. Nucleosynthesis in Advective Accretion Disks Around Galactic and Extra-Galactic Black Holes

    CERN Document Server

    Mukhopadhyay, B

    1998-01-01

    We compute the nucleosynthesis of materials inside advective disks around black holes. We show that composition of incoming matter can change significantly depending on the accretion rate and accretion disks. These works are improvements on the earlier works in thick accretion disks of Chakrabarti, Jin & Arnett (1987) in presence of advection in the flow.

  17. Accretion disk dynamics in X-ray binaries

    Science.gov (United States)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  18. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  19. DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU

    International Nuclear Information System (INIS)

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ≅ 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ≅ 4-5.6 erg s-1 cm and column densities of N H ≅ 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ∼0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  20. On the Structure of Advective Accretion Disks At High Luminosity

    CERN Document Server

    Artemova, I V; Igumenshchev, I V; Novikov, I D; Artemova, Ioulia V.; Bisnovatyi-Kogan, Gennadi S.; Igumenshchev, Igor V.; Novikov, Igor D.

    2001-01-01

    Global solutions of optically thick advective accretion disks around blackholes are constructed. The solutions are obtained by solving numerically a setof ordinary differential equations corresponding to a steady axisymmetricgeometrically thin disk. We pay special attention to consistently satisfy theregularity conditions at singular points of the equations. For this reason weanalytically expand a solution at the singular point, and use coefficients ofthe expansion in our iterative numerical procedure. We obtain consistenttransonic solutions in a wide range of values of the viscosity parameter alphaand mass acretion rate. We compare two different form of viscosity: one takesthe shear stress to be proportional to the pressure, while the other uses theangular velocity gradient-dependent stress. We find that there are two singular points in solutions corresponding to thepressure-proportional shear stress. The inner singular point locates close tothe last stable orbit around black hole. This point changes its typ...

  1. Characteristic QSO Accretion Disk Temperatures from Spectroscopic Continuum Variability

    CERN Document Server

    Pereyra, N A; Turnshek, D A; Hillier, D J; Wilhite, B C; Kron, R G; Schneider, D P; Brinkmann, J; Pereyra, Nicolas A.; Berk, Daniel E. Vanden; Turnshek, David A.; Wilhite, Brian C.; Kron, Richard G.; Schneider, Donald P.; Brinkmann, Jonathan

    2006-01-01

    Using Sloan Digital Sky Survey (SDSS) quasar spectra taken at multiple epochs, we find that the composite flux density differences in the rest frame wavelength range 1300-6000 AA can be fit by a standard thermal accretion disk model where the accretion rate has changed from one epoch to the next (without considering additional continuum emission components). The fit to the composite residual has two free parameters: a normalizing constant and the average characteristic temperature $\\bar{T}^*$. In turn the characteristic temperature is dependent on the ratio of the mass accretion rate to the square of the black hole mass. We therefore conclude that most of the UV/optical variability may be due to processes involving the disk, and thus that a significant fraction of the UV/optical spectrum may come directly from the disk.

  2. Connections Between Local and Global Turbulence in Accretion Disks

    CERN Document Server

    Sorathia, Kareem A; Armitage, Philip J

    2010-01-01

    We analyze a suite of global magnetohydrodynamic (MHD) accretion disk simulations in order to determine whether scaling laws for turbulence driven by the magnetorotational instability, discovered via local shearing box studies, are globally robust. The simulations model geometrically-thin disks with zero net magnetic flux and no explicit resistivity or viscosity. We show that the local Maxwell stress is correlated with the self-generated local vertical magnetic field in a manner that is similar to that found in local simulations. Moreover, local patches of vertical field are strong enough to stimulate and control the strength of angular momentum transport across much of the disk. We demonstrate the importance of magnetic linkages (through the low-density corona) between different regions of the disk in determining the local field, and suggest a new convergence requirement for global simulations -- the vertical extent of the corona must be fully captured and resolved. Finally, we examine the temporal convergen...

  3. Resistivity-driven State Changes in Vertically Stratified Accretion Disks

    CERN Document Server

    Simon, Jacob B; Beckwith, Kris

    2010-01-01

    We investigate the effect of shear viscosity and Ohmic resistivity on the magnetorotational instability (MRI) in vertically stratified accretion disks through a series of local simulations computed with the Athena code. First, we use a series of unstratified shearing box simulations to calibrate the effects of physical dissipation as a function of resolution and background field strength; we find that the effect of the magnetic Prandtl number, Pm = viscosity/resistivity, on the turbulence is captured by ~32 grid zones per disk scale height, H. In agreement with previous results, our stratified disk calculations are characterized by a subthermal, predominately toroidal magnetic field that produces MRI-driven turbulence for |z| < 2 H. Above |z| = 2 H, magnetic pressure dominates and the field is buoyantly unstable. In addition to the turbulent fields, mean radial and toroidal fields are generated near the mid-plane and subsequently rise through the disk. The polarity of the mean field switches on a roughly 1...

  4. Instability of an accretion disk with a magnetically driven wind

    Science.gov (United States)

    Cao, X.; Spruit, H. C.

    2002-04-01

    We present a linear analysis of the stability of accretion disks in which angular momentum is removed by the magnetic torque exerted by a centrifugally driven wind. The effects of the dependence of the wind torque on field strength and inclination, the sub-Keplerian rotation due to magnetic forces, and the compression of the disk by the field are included. A WKB dispersion relation is derived for the stability problem. We find that the disk is always unstable if the wind torque is strong. The growth time scale of the instability can be as short as the orbital time scale. The instability is mainly the result of the sensitivity of the mass flux to changes in the inclination of the field at the disk surface. Magnetic diffusion in the disk stabilizes if the wind torque is small.

  5. Nonlinear dynamics of accretion disks with stochastic viscosity

    International Nuclear Information System (INIS)

    We present a nonlinear numerical model for a geometrically thin accretion disk with the addition of stochastic nonlinear fluctuations in the viscous parameter. These numerical realizations attempt to study the stochastic effects on the disk angular momentum transport. We show that this simple model is capable of reproducing several observed phenomenologies of accretion-driven systems. The most notable of these is the observed linear rms-flux relationship in the disk luminosity. This feature is not formally captured by the linearized disk equations used in previous work. A Fourier analysis of the dissipation and mass accretion rates across disk radii show coherence for frequencies below the local viscous frequency. This is consistent with the coherence behavior observed in astrophysical sources such as Cygnus X-1.

  6. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    CERN Document Server

    Dexter, Jason

    2011-01-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 degrees, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth, and exhibit unique features such as broad "blue wings." Coupled with precession,...

  7. Non-critical solution of a magnetic accretion disk

    International Nuclear Information System (INIS)

    An accretion disk consisting of a perfectly conductive plasma is investigated on the assumption that the disk is geometrically thin, axially symmetric and steady. It is found that the solution can exist only in a super-Alfvenic region and does not necessarily approach to the Alfven critical point. The accretion flow is stopped at an inner boundary owing to the centrifugal force, and the amplification of toroidal magnetic fields gives rise to the swelling of the disk. Therefore, it is necessary to take account of either the magnetic interaction with a central star or the resistive process decreasing the magnetic fields near the inner boundary in order to obtain the steady disk. (author)

  8. MHD Simulations of Global Accretion Disks with Vertical Magnetic Fields

    CERN Document Server

    Suzuki, Takeru K

    2013-01-01

    (Abridged) We report results of three dimensional MHD simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines, in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ~0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields sh...

  9. Characterizing the mean-field dynamo in turbulent accretion disks

    CERN Document Server

    Gressel, Oliver

    2015-01-01

    The formation and evolution of a wide class of astrophysical objects is governed by turbulent, magnetized accretion disks. Understanding their secular dynamics is of primary importance. Apart from enabling mass accretion via the transport of angular momentum, the turbulence affects the long-term evolution of the embedded magnetic flux, which in turn regulates the efficiency of the transport. In this paper, we take a comprehensive next step towards an effective mean-field model for turbulent astrophysical disks by systematically studying the key properties of magnetorotational turbulence in vertically-stratified, isothermal shearing boxes. This allows us to infer emergent properties of the ensuing chaotic flow as a function of the shear parameter as well as the amount of net-vertical flux. Using the test-field method, we furthermore characterize the mean-field dynamo coefficients that describe the long-term evolution of large-scale fields. We simultaneously infer the vertical shape and the spectral scale depen...

  10. The Photoionized Accretion Disk in Her X-1

    Science.gov (United States)

    Ji, L.; Schulz, N.; Nowak, M.; Marshall, H. L.; Kallman, T.

    2009-08-01

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 Å (~1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) × 1023 cm-2. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  11. THE PHOTOIONIZED ACCRETION DISK IN HER X-1

    International Nuclear Information System (INIS)

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 A (∼1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) x 1023 cm-2. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  12. Evolution and precession of accretion disk in tidal disruption events

    Science.gov (United States)

    Shen, R.-F.; Matzner, C. D.

    2012-12-01

    In a supermassive black hole (BH) tidal disruption event (TDE), the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t-5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t-5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t-8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH's frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  13. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.

    2012-12-01

    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  14. ESTIMATION OF RELATIVISTIC ACCRETION DISK PARAMETERS FROM IRON LINE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    V. PARIEV; B. BROMLEY; W. MILLER

    2001-03-01

    The observed iron K{alpha} fluorescence lines in Seyfert I galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the emission. Here we present an analysis of the geometrical and kinematic properties of the disk based on the extreme frequency shifts of a line profile as determined by measurable flux in both the red and blue wings. The edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence provide a robust alternative to profile fitting of disk parameters. Our approach yields new, strong bounds on the inclination angle of the disk and the location of the emitting region. We apply our method to interpret observational data from MCG-6-30-15 and find that the commonly assumed inclination 30{degree} for the accretion disk in MCG-6-30-15 is inconsistent with the position of the blue edge of the line at a 3{sigma} level. A thick turbulent disk model or the presence of highly ionized iron may reconcile the bounds on inclination from the line edges with the full line profile fits based on simple, geometrically thin disk models. The bounds on the innermost radius of disk emission indicate that the black hole in MCG-6-30-15 is rotating faster than 30% of theoretical maximum. When applied to data from NGC 4151, our method gives bounds on the inclination angle of the X-ray emitting inner disk of 50 {+-} 10{degree}, consistent with the presence of an ionization cone grazing the disk as proposed by Pedlar et al. (1993). The frequency extrema analysis also provides limits to the innermost disk radius in another Seyfert 1 galaxy, NGC 3516, and is suggestive of a thick disk model.

  15. Asymmetric evolution of magnetic reconnection in collisionless accretion disk

    International Nuclear Information System (INIS)

    An evolution of a magnetic reconnection in a collisionless accretion disk is investigated using a 2.5 dimensional hybrid code simulation. In astrophysical disks, magnetorotational instability (MRI) is considered to play an important role by generating turbulence in the disk and contributes to an effective angular momentum transport through a turbulent viscosity. Magnetic reconnection, on the other hand, also plays an important role on the evolution of the disk through a dissipation of a magnetic field enhanced by a dynamo effect of MRI. In this study, we developed a hybrid code to calculate an evolution of a differentially rotating system. With this code, we first confirmed a linear growth of MRI. We also investigated a behavior of a particular structure of a current sheet, which would exist in the turbulence in the disk. From the calculation of the magnetic reconnection, we found an asymmetric structure in the out-of-plane magnetic field during the evolution of reconnection, which can be understood by a coupling of the Hall effect and the differential rotation. We also found a migration of X-point whose direction is determined only by an initial sign of J0×Ω0, where J0 is the initial current density in the neutral sheet and Ω0 is the rotational vector of the background Keplerian rotation. Associated with the migration of X-point, we also found a significant enhancement of the perpendicular magnetic field compared to an ordinary MRI. MRI-Magnetic reconnection coupling and the resulting magnetic field enhancement can be an effective process to sustain a strong turbulence in the accretion disk and to a transport of angular momentum

  16. On the Gravitational Stability of Gravito-turbulent Accretion Disks

    Science.gov (United States)

    Lin, Min-Kai; Kratter, Kaitlin M.

    2016-06-01

    Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.

  17. The origin of ultra-fast outflows in AGN: Monte-Carlo simulations of the wind in PDS 456

    CERN Document Server

    Hagino, Kouichi; Done, Chris; Gandhi, Poshak; Watanabe, Shin; Sako, Masao; Takahashi, Tadayuki

    2014-01-01

    Ultra-fast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback onto the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionised that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3-D Monte-Carlo code for radiation transport. The code only handles highly ionised ions, but the data show the ionisation state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass loss rate in the wind is around 30% of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contributio...

  18. Non-LTE effects on the strength of the Lyman edge in quasar accretion disks

    Science.gov (United States)

    Stoerzer, H.; Hauschildt, P. H.; Allard, F.

    1994-01-01

    We have calculated UV/EUV (300 A which is less than or equal to lambda which is less than or equal to 1500 A) continuous energy distributions of accretion disks in the centers of active galactic nuclei (AGNs) for disk luminosities in the range 0.1 L(sub Edd) less than or equal to L(sub acc) less than 1.0 L(sub Edd) and central masses ranging from 10(exp 8) solar mass to 10(exp 9) solar mass. The vertical gas pressure structure of the disk and the disk height are obtained analytically; the temperature stratification and the resulting continuum radiation fields are calculated numerically. We have included non-Local Thermodynamic Equilibrium (LTE) effects of both the ionization equilibrium and the level populations of hydrogen and helium. We show that these non-LTE effects reduce the strength of the Lyman edge when comapred to the LTE case. In non-LTE we find that the edge can be weakly in emission or absorption for disks seen face-on, depending on the disk parameters.

  19. Self-shadowing Effects of Slim Accretion Disks in Active Galactic Nuclei: Diverse Appearance of the Broad-line Region

    CERN Document Server

    Wang, J -M; Du, P; Ho, L C

    2014-01-01

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR), from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components...

  20. DIAGNOSTICS OF AGN-DRIVEN MOLECULAR OUTFLOWS IN ULIRGs FROM HERSCHEL-PACS OBSERVATIONS OF OH AT 119 μm

    Energy Technology Data Exchange (ETDEWEB)

    Spoon, H. W. W.; Lebouteiller, V. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); González-Alfonso, E. [Departamento de Física y Matemáticas, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Bernard-Salas, J. [Department of Physical Sciences, Milton Keynes MK7 6AA (United Kingdom); Urrutia, T. [Leibniz Institut für Astrophysik, Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Rigopoulou, D.; Verma, A. [Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Westmoquette, M. S. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Afonso, J. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Pearson, C. [RAL Space, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Cormier, D. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Borys, C. [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Etxaluze, M. [Departamento de Astrofísica. Centro de Astrobiología. CSIC-INTA. Torrejón de Ardoz, E-28850 Madrid (Spain); Clements, D. L., E-mail: spoon@isc.astro.cornell.edu [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2013-10-01

    We report on our observations of the 79 and 119 μm doublet transitions of OH for 24 local (z < 0.262) ULIRGs observed with Herschel-PACS as part of the Herschel ULIRG Survey (HERUS). Some OH 119 μm profiles display a clear P-Cygni shape and therefore imply outflowing OH gas, while other profiles are predominantly in absorption or are completely in emission. We find that the relative strength of the OH emission component decreases as the silicate absorption increases. This result locates the OH outflows inside the obscured nuclei. The maximum outflow velocities for our sources range from less than 100 to ∼2000 km s{sup –1}, with 15/24 (10/24) sources showing OH absorption at velocities exceeding 700 km s{sup –1} (1000 km s{sup –1}). Three sources show maximum OH outflow velocities exceeding that of Mrk231. Since outflow velocities above 500-700 km s{sup –1} are thought to require an active galactic nucleus (AGN) to drive them, about two-thirds of our ULIRG sample may host AGN-driven molecular outflows. This finding is supported by the correlation we find between the maximum OH outflow velocity and the IR-derived bolometric AGN luminosity. No such correlation is found with the IR-derived star formation rate. The highest outflow velocities are found among sources that are still deeply embedded. We speculate that the molecular outflows in these sources may be in an early phase of disrupting the nuclear dust veil before these sources evolve into less-obscured AGNs. Four of our sources show high-velocity wings in their [C II] fine-structure line profiles, implying neutral gas outflow masses of at least (2-4.5) × 10{sup 8} M{sub ☉}.

  1. The Accretion Disk Wind in the Black Hole GRS 1915+105

    CERN Document Server

    Miller, J M; Fabian, A C; Gallo, E; Kaastra, J; Kallman, T; King, A L; Proga, D; Reynolds, C S; Zoghbi, A

    2016-01-01

    We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blue-shift of v = 0.03c. Broadened re-emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r ~ 10^(2-4) GM/c^2. Wind density values of n ~ 10^(13-16) cm^-3 are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to B ~ 10^(3-4) Gauss ...

  2. Searching for AGN Outflows: Spatially Resolved Chandra HETG Spectroscopy of the NLR Ionization Cone in NGC 1068

    CERN Document Server

    Evans, Daniel A; Marshall, Herman L; Nowak, Mike A; Bianchi, Stefano; Guainazzi, Matteo; Longinotti, Anna Lia; Dewey, Dan; Schulz, Norbert S; Noble, Mike S; Houck, John; Canizares, Claude R

    2009-01-01

    We present initial results from a new 440-ks Chandra HETG GTO observation of the canonical Seyfert 2 galaxy NGC 1068. The proximity of NGC 1068, together with Chandra's superb spatial and spectral resolution, allow an unprecedented view of its nucleus and circumnuclear NLR. We perform the first spatially resolved high-resolution X-ray spectroscopy of the `ionization cone' in any AGN, and use the sensitive line diagnostics offered by the HETG to measure the ionization state, density, and temperature at discrete points along the ionized NLR. We argue that the NLR takes the form of outflowing photoionized gas, rather than gas that has been collisionally ionized by the small-scale radio jet in NGC 1068. We investigate evidence for any velocity gradients in the outflow, and describe our next steps in modeling the spatially resolved spectra as a function of distance from the nucleus.

  3. The Wide-angle Outflow of the Lensed z = 1.51 AGN HS 0810+2554

    Science.gov (United States)

    Chartas, G.; Cappi, M.; Hamann, F.; Eracleous, M.; Strickland, S.; Giustini, M.; Misawa, T.

    2016-06-01

    We present results from X-ray observations of the gravitationally lensed z = 1.51 active galactic nucleus (AGN) HS 0810+2554 performed with the Chandra X-ray Observatory and XMM-Newton. Blueshifted absorption lines are detected in both observations at rest-frame energies ranging between ˜1 and 12 keV at ≳99% confidence. The inferred velocities of the outflowing components range between ˜0.1c and ˜0.4c. A strong emission line at ˜6.8 keV that is accompanied by a significant absorption line at ˜7.8 keV is also detected in the Chandra observation. The presence of these lines is a characteristic feature of a P-Cygni profile supporting the presence of an expanding, outflowing, highly ionized iron absorber in this quasar. Modeling of the P-Cygni profile constrains the covering factor of the wind to be ≳0.6, assuming disk shielding. A disk-reflection component is detected in the XMM-Newton observation accompanied by blueshifted absorption lines. The XMM-Newton observation constrains the inclination angle to be detection of an ultrafast and wide-angle wind in an AGN with intrinsic narrow absorption lines (NALs) would suggest that quasar winds may couple efficiently with the intergalactic medium and provide significant feedback if ubiquitous in all NAL and broad absorption line (BAL) quasars. We estimate the mass-outflow rate of the absorbers to lie in the range of 1.5–3.4 M ⊙ yr‑1 for the two observations. We find that the fraction of kinetic to electromagnetic luminosity released by HS 0810+2554 is large (ɛ k = 9{}-6+8), which suggests that magnetic driving is likely a significant contributor to the acceleration of this outflow.

  4. Accretion Disks around Young Stars: An Observational Perspective

    Science.gov (United States)

    Ménard, F.; Bertout, C.

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today

  5. Accretion disks and dynamos: toward a unified mean field theory

    International Nuclear Information System (INIS)

    Conversion of gravitational energy into radiation near stars and compact objects in accretion disks and the origin of large-scale magnetic fields in astrophysical rotators have often been distinct topics of active research in astrophysics. In semi-analytic work on both problems it has been useful to presume large-scale symmetries, which necessarily results in mean field theories; magnetohydrodynamic turbulence makes the underlying systems locally asymmetric and highly nonlinear. Synergy between theory and simulations should aim for the development of practical, semi-analytic mean field models that capture the essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion disk theory have exemplified such ongoing pursuits. Twenty-first century MFD theory has more nonlinear predictive power compared to 20th century MFD theory, whereas alpha-viscosity accretion theory is still in a 20th century state. In fact, insights from MFD theory are applicable to accretion theory and the two are really artificially separated pieces of what should ultimately be a single coupled theory. I discuss pieces of progress that provide clues toward a unified theory. A key concept is that large-scale magnetic fields can be sustained via local or global magnetic helicity fluxes or via relaxation of small-scale magnetic fluctuations, without appealing to the traditional kinetic helicity driver of 20th century textbooks. These concepts may help explain the formation of large-scale fields that supply non-local angular momentum transport via coronae and jets in a unified theory of accretion and dynamos. In diagnosing the role of helicities and helicity fluxes in disk simulations, it is important to study each disk hemisphere separately to avoid being potentially misled by the cancelation that occurs as a result of reflection asymmetry. The fraction of helical field energy in disks is expected to be small compared to the total field in

  6. Turbulence in Global Simulations of Magnetized Thin Accretion Disks

    CERN Document Server

    Beckwith, Kris; Simon, Jacob B

    2011-01-01

    We use a global magnetohydrodynamic simulation of a geometrically thin accretion disk to investigate the locality and detailed structure of turbulence driven by the magnetorotational instability (MRI). The model disk has an aspect ratio $H / R \\simeq 0.07$, and is computed using a higher-order Godunov MHD scheme with accurate fluxes. We focus the analysis on late times after the system has lost direct memory of its initial magnetic flux state. The disk enters a saturated turbulent state in which the fastest growing modes of the MRI are well-resolved, with a relatively high efficiency of angular momentum transport $ > \\approx 2.5 \\times 10^{-2}$. The accretion stress peaks at the disk midplane, above and below which exists a moderately magnetized corona with patches of superthermal field. By analyzing the spatial and temporal correlations of the turbulent fields, we find that the spatial structure of the magnetic and kinetic energy is moderately well-localized (with correlation lengths along the major axis of ...

  7. The growth of supermassive black holes fed by accretion disks

    CERN Document Server

    Armijo, M A Montesinos

    2010-01-01

    Supermassive black holes are probably present in the centre of the majority of the galaxies. There is a consensus that these exotic objects are formed by the growth of seeds either by accreting mass from a circumnuclear disk and/or by coalescences during merger episodes. The mass fraction of the disk captured by the central object and the related timescale are still open questions, as well as how these quantities depend on parameters like the initial mass of the disk or the seed or on the angular momentum transport mechanism. This paper is addressed to these particular aspects of the accretion disk evolution and of the growth of seeds. The time-dependent hydrodynamic equations were solved numerically for an axi-symmetric disk in which the gravitational potential includes contributions both from the central object and from the disk itself. The numerical code is based on a Eulerian formalism, using a finite difference method of second-order, according to the Van Leer upwind algorithm on a staggered mesh. The pr...

  8. Saturation of the MRI in Strongly Radiation Dominated Accretion Disks

    CERN Document Server

    Jiang, Yan-Fei; Davis, Shane W

    2013-01-01

    The saturation level of the magneto-rotational instability (MRI) in a strongly radiation dominated accretion disk is studied using a new Godunov radiation MHD code in the unstratified shearing box approximation. Since vertical gravity is neglected in this work, our focus is on how the MRI saturates in the optically thick mid-plane of the disk. We confirm that turbulence generated by the MRI is very compressible in the radiation dominated regime, as found by previous calculations using the flux-limited diffusion approximation. We also find little difference in the saturation properties in calculations that use a larger horizontal domain (up to four times the vertical scale height in the radial direction). However, in strongly radiation pressure dominated disks (one in which the radiation energy density reaches 1% of the rest mass energy density of the gas), we find Maxwell stress from the MRI turbulence is larger than the value produced when radiation pressure is replaced with the same amount of gas pressure. ...

  9. The intrinsic quasar luminosity function: Accounting for accretion disk anisotropy

    International Nuclear Information System (INIS)

    Quasar luminosity functions are a fundamental probe of the growth and evolution of supermassive black holes. Measuring the intrinsic luminosity function is difficult in practice, due to a multitude of observational and systematic effects. As sample sizes increase and measurement errors drop, characterizing the systematic effects is becoming more important. It is well known that the continuum emission from the accretion disk of quasars is anisotropic—in part due to its disk-like structure—but current luminosity function calculations effectively assume isotropy over the range of unobscured lines of sight. Here, we provide the first steps in characterizing the effect of random quasar orientations and simple models of anisotropy on observed luminosity functions. We find that the effect of orientation is not insignificant and exceeds other potential corrections such as those from gravitational lensing of foreground structures. We argue that current observational constraints may overestimate the intrinsic luminosity function by as much as a factor of ∼2 on the bright end. This has implications for models of quasars and their role in the universe, such as quasars' contribution to cosmological backgrounds.

  10. On the Flaring of Jet-sustaining Accretion Disks

    CERN Document Server

    Namouni, Fathi

    2009-01-01

    Jet systems with two unequal components interact with their parent accretion disks through the asymmetric removal of linear momentum from the star-disk system. We show that as a result of this interaction, the disk's state of least energy is not made up of orbits that lie in a plane containing the star's equator as in a disk without a jet. The disk's profile has the shape of a sombrero curved in the direction of acceleration. For this novel state of minimum energy, we derive the temperature profile of thin disks. The flaring geometry caused by the sombrero profile increases the disk temperature especially in its outer regions. The jet-induced acceleration disturbs the vertical equilibrium of the disk leading to mass loss in the form of a secondary wind emanating from the upper face of the disk. Jet time variability causes the disk to radially expand or contract depending on whether the induced acceleration increases or decreases. Jet time variability also excites vertical motion and eccentric distortions in t...

  11. Energy Extraction from a Relativistic Accretion Disk by Reflection Effect

    Science.gov (United States)

    Hadrava, P.; Bao, G.; Østgaard, E.

    1997-05-01

    Reprocessing of the light radiated from a companion star by the inner part of an accretion disk around a Schwarzschild black hole is modeled. Because of the aberration between the local static frame and the comoving frame of the disk, the infalling photons are seen by the disk to come mainly from the direction of the vertex of orbital motion, and the reradiated light is beamed into the direction of the disk's velocity. As in the case of inverse Compton scattering, the frequency of the reflected photons can be increased and the energy (and angular momentum) from the disk can be extracted. The efficiency of this process is dependent on the geometry of the system. The infalling flux can be amplified by a factor of order unity in the vicinity of the marginally stable orbit. Despite the fact that the loss of energy is negligible for realistic intensities of the infalling flux, the effect is interesting in principle, and it can play a role in the modeling of observable effects in accreting systems like low-mass X-ray binaries, as well as active galactic nuclei.

  12. Oscillations of the Inner Regions of Viscous Accretion Disks

    CERN Document Server

    Chan, Chi-kwan

    2008-01-01

    Although quasi-periodic oscillations (QPOs) have been discovered in different X-ray sources, their origin is still a matter of debate. Analytical studies of hydrodynamic accretion disks have shown three types of trapped global modes with properties that appear to agree with the observations. However, these studies take only linear effects into account and do not address the issues of mode excitation and decay. Moreover, observations suggest that resonances between modes play a crucial role. A systematic, numerical study of this problem is therefore needed. In this paper, we use a pseudo-spectral algorithm to perform a parameter study of the inner regions of hydrodynamic disks. By assuming alpha-viscosity, we show that steady state solutions rarely exist. The inner edges of the disks oscillate and excite axisymmetric waves. In addition, the flows inside the inner edges are sometimes unstable to non-axisymmetric perturbations. One-armed, or even two-armed, spirals are developed, which provides a plausible expla...

  13. Evolution of Accretion Disks in Tidal Disruption Events

    CERN Document Server

    Shen, Rong-Feng

    2013-01-01

    In a stellar tidal disruption event (TDE), an accretion disk forms as the stellar debris returns and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. An outer spreading disk is a source of matter for re-accretion at rates which can exceed the later stellar fall-back rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history, or, at longer wavelengths, by its own emission. Moreover, as an angular momentum reservoir, it can broadcast its existence by affecting the disk precession rate. Because these features depend on the disk's internal viscosity and the nature of wind produced in its early, advection-dominated phase, they are useful probes of transient disk physics. To model the evolution of TDE disk size and accretion rate, we account for the possibility of thermal instability for accretion rates...

  14. Effects of local dissipation profiles on magnetized accretion disk spectra

    CERN Document Server

    Tao, Ted

    2013-01-01

    We present spectral calculations of non-LTE accretion disk models appropriate for high luminosity stellar mass black hole X-ray binary systems. We first use a dissipation profile based on scaling the results of shearing box simulations of Hirose et al. (2009) to a range of annuli parameters. We simultaneously scale the effective temperature, orbital frequency and surface density with luminosity and radius according to the standard \\alpha-model (Shakura & Sunyaev, 1973). This naturally brings increased dissipation to the disk surface layers (around the photospheres) at small radii and high luminosities. We find that the local spectrum transitions directly from a modified black body to a saturated Compton scattering spectrum as we increase the effective temperature and orbital frequency while decreasing midplane surface density. Next, we construct annuli models based on the parameters of a L/L_Edd=0.8 disk orbiting a 6.62 solar mass black hole using two modified dissipation profiles that explicitly put more...

  15. OBSERVATIONAL SIGNATURES OF TILTED BLACK HOLE ACCRETION DISKS FROM SIMULATIONS

    International Nuclear Information System (INIS)

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 deg., in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad 'blue wings'. Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear 'signature' of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  16. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    Science.gov (United States)

    Dexter, Jason; Fragile, P. Chris

    2011-03-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15°, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad "blue wings." Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear "signature" of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  17. Evolution of Thick Accretion Disks Produced by Tidal Disruption Events

    CERN Document Server

    Ulmer, A

    1997-01-01

    Geometrically thick disks may form after tidal disruption events, and rapid accretion may lead to short flares followed by long-term, lower-level emission. Using a novel accretion disk code which relies primarily on global conservation laws and the assumption that viscosity is everywhere positive, a broad range of physically allowed evolutionary sequences of thick disks is investigated. The main result is that accretion in the thick disk phase can consume only a fraction of the initial disk material before the disk cools and becomes thin. This fraction is ~0.5-0.9 for disruptions around 10^6 to 10^7 M_ødot black holes and is sensitive to the mean angular momentum of the disk. The residual material will accrete in some form of thin disk over a longer period of time. The initial thick disk phase may reduce the dimming timescale of the disk by a factor of ~2 from estimates based on thin disks alone. Assuming an 0.5 M_ødot initial thick disk, even if the thin disks become advection dominated, the black hole mas...

  18. Bypass to Turbulence in Hydrodynamic Accretion Disks: An Eigenvalue Analysis

    CERN Document Server

    Mukhopadhyay, B; Narayan, R; Mukhopadhyay, Banibrata; Afshordi, Niayesh; Narayan, Ramesh

    2004-01-01

    Cold accretion disks such as those in star-forming systems, quiescent cataclysmic variables, and some active galactic nuclei, are expected to have neutral gas which does not couple well to magnetic fields. The turbulent viscosity in such disks must be hydrodynamic in origin, not magnetohydrodynamic. We investigate the growth of hydrodynamic perturbations in a linear shear flow sandwiched between two parallel walls. The unperturbed flow is similar to plane Couette flow but with a Coriolis force included. Although there are no exponentially growing eigenmodes in this system, nevertheless, because of the non-normal nature of the eigenmodes, it is possible to have a large transient growth in the energy of perturbations. For a constant angular momentum disk, we find that the perturbation with maximum growth has a wave-vector in the vertical direction. The energy grows by more than a factor of 100 for a Reynolds number R=300 and more than a factor of 1000 for R=1000. Turbulence can be easily excited in such a disk,...

  19. ACCRETION DISKS WITH A LARGE SCALE MAGNETIC FIELD AROUND BLACK HOLES

    Directory of Open Access Journals (Sweden)

    Gennady Bisnovatyi-Kogan

    2013-12-01

    Full Text Available We consider accretion disks around black holes at high luminosity, and the problem of the formation of a large-scale magnetic field in such disks, taking into account the non-uniform vertical structure of the disk. The structure of advective accretion disks is investigated, and conditions for the formation of optically thin regions in central parts of the accretion disk are found. The high electrical conductivity of the outer layers of the disk prevents outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. The problem of jet collimation by magneto-torsion oscillations is investigated.

  20. Evidence for ultra-fast outflows in radio-quiet AGNs: II - detailed photo-ionization modeling of Fe K-shell absorption lines

    OpenAIRE

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G.G.C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blueshifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and direct...

  1. Emission-Line Profiles of Accretion Disks with a Non-Axisymmetric Pattern

    OpenAIRE

    SANBUICHI, Kiyotaka; FUKUE, Jun; Kojima, Yasufumi

    1994-01-01

    In several cases, accretion disks may have non-axisymmetric patterns, such as one-armed oscillations and spiral shock waves. In such cases the line emissivity may also become non-axisymmetric. We examined the emission-line profiles for geometrically thin/thick, (non-) relativistic accretion disks while taking acount of the non-axisymmetric emissivity. The emission-line profiles were calculated numerically using a code based on the ray-tracing method. The emission-line profiles are usually ...

  2. Numerical Simulations of Naturally Tilted, Retrogradely Precessing, Nodal Superhumping Accretion Disks

    OpenAIRE

    Montgomery, M. M.

    2012-01-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generates these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt n...

  3. Circular geodesics and accretion disk in the spacetime of a black hole including global monopole

    International Nuclear Information System (INIS)

    We study circular time-like geodesics in the spacetime of a black hole including global monopole. We show that when the range of parameter changed the properties of the circular geodesics and the radiation of accretion disks are different. It follows that the properties of the accretion disk around black hole including global monopole can be different from that of a disk around Schwarzschild black hole

  4. Effects of Accretion Disks on Spins and Eccentricities of Binaries, and Implications for Gravitational Waves

    Science.gov (United States)

    Baker, John

    2012-01-01

    Effects of accretion disks on spins and eccentricities of binaries, and implications for gravitational waves. John Baker Space-based gravitational wave observations will allow exquisitely precise measurements of massive black hole binary properties. Through several recently suggested processes, these properties may depend on interactions with accretion disks through the merger process. I will discuss ways that accretion may influence those binary properties which may be probed by gravitational-wave observations.

  5. Probing the Accretion Disk and Central Engine Structure of the NGC 4258 with Suzaku and XMM-Newton Observations

    Science.gov (United States)

    Reynolds, Christopher S.; Nowak, Michael A.; Markoff, Sera; Tueller, Jack; Wilms, Joern; Young, Andrew

    2009-01-01

    We present an X-ray study of the low-luminosity active galactic nucleus (AGN) in NGC 4258 using data from Suzaku, XMM-Newton, and the Swift/Burst Alert Telescope survey. We find that signatures of X-ray reprocessing by cold gas are very weak in the spectrum of this Seyfert-2 galaxy; a weak, narrow fluorescent K(alpha) emission line of cod iron is robustly detected in both the Suzaku and XMM-Newton spectra but at a level much below that of most other Seyfert-2 galaxies. We conclude that the circumnuclear environment of this AGN is very "clean" and lacks the Compton-thick obscuring torus of unified Seyfert schemes. From the narrowness of the iron line, together with evidence of line flux variability between the Suzaku and XMM-Newton observations, we constrain the line emitting region to be between 3 x 10(exp 3)r(sub g) and 4 x 10(exp 4)r(sub g), from the black hole. We show that the observed properties of the iron line can be explained if the line originates from the surface layers of a warped accretion disk. In particular, we present explicit calculations of the expected iron line from a disk warped by Lens-Thirring precession from a misaligned central black hole. Finally, the Suzaku data reveal clear evidence of large amplitude 2-10 keV variability on timescales of 50 ksec and smaller amplitude flares on timescales as short as 5-10 ksec. If associated with accretion disk processes, such rapid variability requires an origin in the innermost regions of the disk (r approx. equals 10(r(sub g) or less). Analysis of the difference spectrum between a high- and low-flux states suggests that the variable component of the X-ray emission is steeper and more absorbed than the average AGN emission, suggesting that the primary X-ray source and absorbing screen have a spatial structure on comparable scales. We note the remarkable similarity between the circumnuclear environment of NGC 4258 and another well studied low-luminosity AGN, M81*.

  6. IP Pegasi Investigation of the accretion disk structure. Searching evidences for spiral shocks in the quiescent accretion disk

    CERN Document Server

    Neustroev, V V; Barwig, H; Bobinger, A; Mantel, K H; Simic, D; Wolf, S

    2002-01-01

    We present the results of spectral investigations of the cataclysmic variable IP Peg in quiescence. Optical spectra obtained on the 6-m telescope at the Special Astrophysical Observatory (Russia), and on the 3.5-m telescope at the German-Spanish Astronomical Center (Calar Alto, Spain), have been analysed by means of Doppler tomography and Phase Modelling Technique. From this analysis we conclude that the quiescent accretion disk of IP Peg has a complex structure. There are also explicit indications of spiral shocks. The Doppler maps and the variations of the peak separation of the emission lines confirm this interpretation. We have detected that all the emission lines show a rather considerable asymmetry of their wings varying with time. The wing asymmetry shows quasi-periodic modulations with a period much shorter than the orbital one. This indicates the presence of an emission source in the binary rotating asynchronously with the binary system. We also have found that the brightness of the bright spot chang...

  7. Magnified Views of the Ultrafast Outflow of the z = 1.51 AGN HS 0810+2554

    CERN Document Server

    Chartas, G; Eracleous, M; Misawa, T; Cappi, M; Giustini, M; Charlton, J C; Marvin, M

    2014-01-01

    We present results from an observation of the gravitationally lensed z=1.51 narrow absorption line AGN HS 0810+2554 performed with the Chandra X-ray Observatory. The factor of ~100 lensing magnification of HS 0810+2554 makes this source exceptionally bright. Absorption lines are detected at rest-frame energies of ~ 7.7 keV and ~11.0 keV at >97% significance. By interpreting these lines to arise from highly ionized iron the implied outflow velocities of the X-ray absorbing gas corresponding to these lines are 0.13c and 0.41c, respectively. The presence of these relativistic outflows and the absence of any significant low-energy X-ray absorption suggest that a shielding gas is not required for the generation of the relativistic X-ray absorbing winds in HS 0810+2554. UV spectroscopic observations with VLT/UVES indicate that the UV absorbing material is outflowing at v_UV ~0.065c. Our analysis indicates that the fraction of the total bolometric energy released by HS 0810+2554 into the IGM in the form of kinetic e...

  8. Evolution of accretion disks in tidal disruption events

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Rong-Feng [Current address: Racah Institute of Physics, Hebrew University of Jerusalem, Israel. (Israel); Matzner, Christopher D., E-mail: rf.shen@mail.huji.ac.il, E-mail: matzner@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, M5S 3H4 (Canada)

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  9. Evolution of accretion disks in tidal disruption events

    International Nuclear Information System (INIS)

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  10. Evolution of Accretion Disks in Tidal Disruption Events

    Science.gov (United States)

    Shen, Rong-Feng; Matzner, Christopher D.

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  11. Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields

    International Nuclear Information System (INIS)

    We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ∼0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ∼m 0 – m –1, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.

  12. On the X-ray low- and high-velocity outflows in AGNs

    OpenAIRE

    Ramirez, J. M.; Tombesi, F.

    2011-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity, for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v~100-1000 km/s, and on comparable but less stringent grounds the ultra-fast outflows (UFOs), v~0.03-0.3c. If comparable with the escape velocity of the system; the first is naturally ...

  13. Time dependent models of accretion disks with nuclear burning following the tidal disruption of a white dwarf by a neutron star

    CERN Document Server

    Margalit, Ben

    2016-01-01

    We construct time-dependent one-dimensional (vertically averaged) models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disk midplane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disk dynamics. A model for disk outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the midplane to a fixed value $\\lesssim 0$. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disk outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disk evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD disks does not exhibit this behavior, which instead depends sensitively on factors con...

  14. Probing the accretion disk and central engine structure of NGC4258 with Suzaku and XMM-Newton observations

    CERN Document Server

    Reynolds, Christopher S; Markoff, Sera; Tueller, Jack; Wilms, Joern; Young, Andrew J

    2008-01-01

    [abridged] We present an X-ray study of the low-luminosity active galactic nucleus (AGN) in NGC4258 using data from Suzaku, XMM-Newton, and the Swift/BAT survey. We find that signatures of X-ray reprocessing by cold gas are very weak in the spectrum of this Seyfert-2 galaxy; a weak, narrow fluorescent-Kalpha emission line of cold iron is robustly detected in both the Suzaku and XMM-Newton spectra but at a level much below that of most other Seyfert-2 galaxies. We conclude that the circumnuclear environment of this AGN is very "clean" and lacks the Compton-thick obscuring torus of unified Seyfert schemes. From the narrowness of the iron line, together with evidence for line flux variability between the Suzaku and XMM-Newton observations, we constrain the line emitting region to be between $3\\times 10^3r_g$ and $4\\times 10^4r_g$ from the black hole. We show that the observed properties of the iron line can be explained if the line originates from the surface layers of a warped accretion disk. In particular, we ...

  15. The Suzaku view of highly-ionised outflows in AGN: II -- Location, energetics and scalings with Bolometric Luminosity

    CERN Document Server

    Gofford, J; McLaughlin, D E; Braito, V; Turner, T J; Tombesi, F; Cappi, M

    2015-01-01

    Ongoing studies with XMM-Newton have shown that powerful accretion disc winds, as revealed through highly-ionised Fe\\,K-shell absorption at E>=6.7 keV, are present in a significant fraction of Active Galactic Nuclei (AGN) in the local Universe (Tombesi et al. 2010). In Gofford et al. (2013) we analysed a sample of 51 Suzaku-observed AGN and independently detected Fe K absorption in ~40% of the sample, and we measured the properties of the absorbing gas. In this work we build upon these results to consider the properties of the associated wind. On average, the fast winds (v_out>0.01c) are located ~10^{15-18} cm (typically ~10^{2-4} r_s) from their black hole, their mass outflow rates are of the order ~0.01-1 Msun/yr or ~(0.01-1) M_edd and kinetic power is constrained to ~10^{43-45} erg/s, equivalent to ~(0.1-10%) L_edd. We find a fundamental correlation between the source bolometric luminosity and the wind velocity, with v_out \\propto L_bol^{\\alpha} and \\alpha=0.4^{+0.3}_{-0.2}$ (90% confidence), which indica...

  16. The Suzaku view of highly-ionised outflows in AGN: I - Statistical detection and global absorber properties

    CERN Document Server

    Gofford, Jason; Tombesi, Francesco; Braito, Valentina; Turner, T Jane; Miller, Lance; Cappi, Massimo

    2012-01-01

    We present the results of a new spectroscopic study of Fe K-band absorption in Active Galactic Nuclei (AGN). Using data obtained from the Suzaku public archive we have performed a statistically driven blind search for Fe XXV Hea and/or Fe XXVI Lyb absorption lines in a large sample of 51 type 1.0-1.9 AGN. Through extensive Monte Carlo simulations we find statistically significant absorption is detected at E>6.7 keV in 20/51 sources at the P(MC)>95% level, which corresponds to ~40% of the total sample. In all cases, individual absorption lines are detected independently and simultaneously amongst the two (or three) available XIS detectors which confirms the robustness of the line detections. The most frequently observed outflow phenomenology consists of two discrete absorption troughs corresponding to Fe XXV Hea and Fe XXVI Lyb at a common velocity shift. From xstar fitting the mean column density and ionisation parameter for the Fe K absorption components are log(NH/cm^{-2})~23 and log(xi/erg cm s^{-1})~4.5, ...

  17. The Hot and Energetic Universe: Astrophysics of feedback in local AGN

    CERN Document Server

    Cappi, M; Behar, E; Bianchi, S; Braito, V; Costantini, E; Dadina, M; Feruglio, C; Fiore, F; Gallagher, S; Gandhi, P; Grosso, N; Kaastra, J; King, A; Lobban, A; Maiolino, R; Piconcelli, E; Ponti, G; Porquet, D; Pounds, K; Proga, D; Ranalli, P; Reeves, J; Risaliti, G; Hidalgo, P Rodriguez; Rovilos, E; Sim, S; Stewart, G; Tombesi, F; Tsuru, T G; Vaughan, S; Wang, D; Worrall, D

    2013-01-01

    Understanding the astrophysics of feedback in active galactic nuclei (AGN) is key to understanding the growth and co-evolution of supermassive black holes and galaxies. AGN-driven winds/outflows are potentially the most effective way of transporting energy and momentum from the nuclear scales to the host galaxy, quenching star formation by sweeping away the gas reservoir. Key questions in this field are: 1) how do accretion disks around black holes launch winds/outflows, and how much energy do these carry? 2) How are the energy and metals accelerated in winds/outflows transferred and deposited into the circumgalactic medium? X-ray observations are a unique way to address these questions because they probe the phase of the outflows which carries most of the kinetic energy. We show how a high throughput, high spectral resolution instrument like the X-ray Integral Field Unit (X-IFU) on Athena+ will allow us to address these questions by determining the physical parameters (ionization state, density, temperature,...

  18. Ejection of the inner accretion disk in GRS 1915+105: The magnetic rubber-band effect

    Science.gov (United States)

    Nandi, A.; Chakrabarti, S. K.; Vadawale, S. V.; Rao, A. R.

    2001-12-01

    We examine theoretically the behaviour of the inner accretion disk in GRS 1915+105 when soft X-ray dips are present in the X-ray light curve. We assume the presence of a radial shock in the accretion disk, as in some of the Two Component Advective Flow (TCAF) solutions. We discuss the behaviour of the flux tubes inside a TCAF (which we name Magnetized TCAF or MTCAF model for brevity) and compare various competing forces on the flux tubes. In this MTCAF model, we find that the magnetic tension is the strongest force in a hot plasma of temperature >~ 1010 K and as a result, magnetic flux tubes entering in this region collapse catastrophically, thereby occasionally evacuating the inner disk. We postulate that this magnetic ``rubber-band'' effect induced evacuated disk matter produces the blobby components of outflows and IR/radio jets. We derive the size of the post-shock region by equating the time scale of the Quasi-Periodic Oscillations to the infall time of accreting matter in the post-shock region and found the shock location to be ~ 45-66 rg. We calculate the transition radius rtr, where the Keplerian disk deviates into a sub-Keplerian flow, to be ~ 320 rg. Based on the derived X-ray spectral parameters, we calculate the mass of this region to be ~ 1018g. We conclude that during the X-ray dips the matter in the post-shock region, which manifests itself as the thermal-Compton component in the X-ray spectrum, is ejected, along with some sub-Keplerian matter in the pre-shock region.

  19. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    International Nuclear Information System (INIS)

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  20. Strong Field Effects on Emission Line Profiles: Kerr Black Holes and Warped Accretion Disks

    Science.gov (United States)

    Wang, Yan; Li, Xiang-Dong

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  1. On the X-ray low- and high-velocity outflows in AGNs

    CERN Document Server

    Ramirez, J M

    2011-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity, for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v~100-1000 km/s, and on comparable but less stringent grounds the ultra-fast outflows (UFOs), v~0.03-0.3c. If comparable with the escape velocity of the system; the first is naturally located at distances of the dusty torus, ~ 1 pc, and the second at sub-parsec scales, ~ 0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the center of galaxies, the feedback process and its impact on the evolution of the host galaxy.

  2. Giant outflows in z~2 radio galaxies: The smoking gun of AGN feedback in the early universe

    CERN Document Server

    Nesvadba, N P H

    2009-01-01

    AGN feedback is now a major component of models of galaxy evolution. Using near-infrared imaging spectroscopy on the VLT we identify kpc-sized outflows of few x 10^10 M_s of ionized gas in powerful radio galaxies at z~2-3. Velocity fields are consistent with bipolar outflows, with total velocity offsets of ~1000 km s-1. FWHMs ~1000 km s-1 suggest strong turbulence. IRAM follow-up observations of parts of the sample suggest a remarkable deficit in cold molecular relative to ionized gas, which may imply that significant fractions of the interstellar medium of these galaxies are participating in the winds. Kinetic energies of the gas correspond to ~0.2% of the rest-mass equivalent of the mass of the supermassive black hole, roughly in agreement with model predictions. We also report the detection of a massive reservoir of few x 10^10 M_s of cold molecular gas in the halo of the z=2.6 radio galaxy TXS0828+193 with the IRAM Plateau de Bure Interferometer. The gas is at a distance of ~90 kpc from the radio galaxy, ...

  3. The Wide-Angle Outflow of the Lensed z = 1.51 AGN HS 0810+2554

    CERN Document Server

    Chartas, G; Hamann, F; Eracleous, M; Strickland, S; Giustini, M; Misawa, T

    2016-01-01

    We present results from X-ray observations of the gravitationally lensed z = 1.51 AGN HS 0810+2554 performed with the Chandra X-ray Observatory and XMM-Newton. Blueshifted absorption lines are detected in both observations at rest-frame energies ranging between ~1-12 keV at > 99% confidence. The inferred velocities of the outflowing components range between ~0.1c and ~0.4c. A strong emission line at ~6.8 keV accompanied by a significant absorption line at ~7.8 keV is also detected in the Chandra observation. The presence of these lines is a characteristic feature of a P-Cygni profile supporting the presence of an expanding outflowing highly ionized iron absorber in this quasar. Modeling of the P-Cygni profile constrains the covering factor of the wind to be > 0.6, assuming disk shielding. A disk-reflection component is detected in the XMM-Newton observation accompanied by blueshifted absorption lines. The XMM-Newton observation constrains the inclination angle to be < 45 degrees at 90% confidence, assuming...

  4. Mass flow rates in and outflow rates from AGN accretion discs

    OpenAIRE

    Blank, Marvin; Duschl, Wolfgang J.

    2012-01-01

    We derive analytical expressions for the mass flow rates in and from accretion discs, taking into account the Eddington limit. This allows us to connect the basic properties of outflows with those of the accretion flow. As an example, we derive the radial surface density distribution in the accretion disc of Mrk 231.

  5. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    Science.gov (United States)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  6. Quasi-periodic oscillations as global hydrodynamic modes in the boundary layers of viscous accretion disks

    CERN Document Server

    Erkut, M Hakan; Alpar, M Ali

    2008-01-01

    The observational characteristics of quasi-periodic oscillations (QPOs) from accreting neutron stars strongly indicate the oscillatory modes in the innermost regions of accretion disks as a likely source of the QPOs. The inner regions of accretion disks around neutron stars can harbor very high frequency modes related to the radial epicyclic frequency $\\kappa $. The degeneracy of $\\kappa $ with the orbital frequency $\\Omega $ is removed in a non-Keplerian boundary or transition zone near the magnetopause between the disk and the compact object. We show, by analyzing the global hydrodynamic modes of long wavelength in the boundary layers of viscous accretion disks, that the fastest growing mode frequencies are associated with frequency bands around $\\kappa $ and $\\kappa \\pm \\Omega $. The maximum growth rates are achieved near the radius where the orbital frequency $\\Omega $ is maximum. The global hydrodynamic parameters such as the surface density profile and the radial drift velocity determine which modes of ...

  7. A truncated accretion disk in the galactic black hole candidate source H1743-322

    Institute of Scientific and Technical Information of China (English)

    Kandulapati Sriram; Vivek Kumar Agrawal; Arikkala Raghurama Rao

    2009-01-01

    To investigate the geometry of the accretion disk in the source H1743-322, we have carded out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO fre-quency) confirm the idea of a truncated accretion disk in this source. Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc..

  8. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in...... the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability...... (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics...

  9. Black hole accretion disks in brane gravity via a confining potential

    Energy Technology Data Exchange (ETDEWEB)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.i, E-mail: m.heydarifard@mail.sbu.ac.i [Department of Physics, University of Qom, PO Box 37185-359, Qom (Iran, Islamic Republic of)

    2010-12-07

    Accretion disks are among the most luminous and ubiquitous sources in astrophysics and they have drawn a good deal of attention from the observational and theoretical communities. In this paper, we study the process of matter forming thin accretion disks around black hole solutions in the context of the brane-world scenario where our universe is a three-brane embedded in an m-dimensional bulk and localization of matter on the brane is achieved by means of a confining potential. The physical properties of thin accretion disks including the time averaged energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and the results are compared with the DMPR, CFM and BMD brane black holes and the standard general relativistic Schwarzschild solution.

  10. Optical Microlensing and Accretion Disk Structure in the Lensed Quasar SDSS 1520+530

    Science.gov (United States)

    Manickam, Vigneshwar; Grinaski, Ian; MacLeod, Chelsea; Morgan, Christopher W.; Harris, Hugh C.; Kennington, James

    2015-01-01

    We analyze uncorrelated variability in seven seasons of SDSS r-band monitoring data from the doubly-imaged gravitationally lensed quasar SBS 1520+530 to yield a measurement of the size of the near-UV continuum emission region in this quasar. Photometry in the SBS 1520+530 system is complicated significantly by the proximity of a very bright star whose diffraction spike blends with the the lens, so we employed a mirror-flip subtraction technique to correct for this contamination. We conclude by testing our accretion disk measurement against the Quasar Accretion Disk Size - Black Hole Mass Relation.

  11. Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals.

    Science.gov (United States)

    Yunes, Nicolás; Kocsis, Bence; Loeb, Abraham; Haiman, Zoltán

    2011-10-21

    We study the effects of a thin gaseous accretion disk on the inspiral of a stellar-mass black hole into a supermassive black hole. We construct a phenomenological angular momentum transport equation that reproduces known disk effects. Disk torques modify the gravitational wave phase evolution to detectable levels with LISA for reasonable disk parameters. The Fourier transform of disk-modified waveforms acquires a correction with a different frequency trend than post-Newtonian vacuum terms. Such inspirals could be used to detect accretion disks with LISA and to probe their physical parameters. PMID:22107500

  12. Coronae as Consequence of Large Scale Magnetic Fields in Turbulent Accretion Disks

    DEFF Research Database (Denmark)

    G. Blackman, Eric; Pessah, Martin Elias

    2009-01-01

    Non-thermal X-ray emission in compact accretion engines can be interpreted to result from magnetic dissipation in an optically thin magnetized corona above an optically thick accretion disk. If coronal magnetic field originates in the disk and the disk is turbulent, then only magnetic structures...... emission. Our results suggest that a significant fraction of the magnetic energy in accretion disks resides in large scale fields, which in turn provides circumstantial evidence for significant non-local transport phenomena and the need for large scale magnetic field generation. For the example of Seyfert...

  13. Infrared Interferometry and AGNs: Parsec-scale Disks and Dusty Outflows

    CERN Document Server

    Burtscher, Leonard; Jaffe, Walter; Kishimoto, Makoto; Lopez-Gonzaga, Noel; Meisenheimer, Klaus; Tristram, Konrad R W

    2016-01-01

    The "torus" is the central element of the most popular theory unifying various classes of AGNs, but it is usually described as "putative" because it has not been imaged yet. Since it is too small to be resolved with single-dish telescopes, one can only make indirect assumptions about its structure using models. Using infrared interferometry, however, we were able to resolve the circum-nuclear dust distributions for several nearby AGNs and achieved constraints on some further two dozen sources. We discovered circum-nuclear dust on parsec scales in all sources and, in two nearby sources, were able to dissect this dust into two distinct components. The compact component, a very thin disk, appears to be connected to the maser disk and the extended one, which is responsible for most of the mid-IR flux, is oriented perpendicularly to the circum-nuclear gas disks. What may come as a surprise when having in mind the standard unification cartoon actually connects well to observations on larger scales. Optically thin d...

  14. Hot accretion disks with pairs: Effects of magnetic field and thermal cyclocsynchrotron radiation

    Science.gov (United States)

    Kusunose, Masaaki; Zdziarski, Andrzej A.

    1994-01-01

    We show the effects of thermal cyclosynchrotron radiation and magnetic viscosity on the structure of hot, two-temperature accretion disks. Magnetic field, B, is assumed to be randomly oriented and the ratio of magnetic pressure to either gas pressure, alpha = P(sub mag)/P(sub gas), or the sum of the gas and radiation pressures, alpha = (P(sub mag)/P(sub gas) + P(sub rad)), is fixed. We find those effects do not change the qualitative properties of the disks, i.e., there are still two critical accretion rates related to production of e(sup +/-) pairs, (M dot)((sup U)(sub cr)) and (M dot)((sup L)(sub cr)), that affect the number of local and global disk solutions, as recently found by Bjoernsson and Svensson for the case with B = 0. However, a critical value of the alpha-viscosity parameter above which those critical accretion rates disappear becomes smaller than alpha(sub cr) = 1 found in the case of B = 0, for P(sub mag) = alpha(P(sub gas) + P(sub rad)). If P(sub mag) = alpha P(sub gas), on the other hand, alpha(sub cr) is still about unity. Moreover, when Comptonized cyclosynchrotron radiation dominates Comptonized bremsstrahlung, radiation from the disk obeys a power law with the energy spectral index of approximately 0.5, in a qualitative agreement with X-ray observations of active galactic nuclei (AGNS) and Galactic black hole candidates. We also extend the hot disk solutions for P(sub mag) = alpha(P(sub gas) + P(sub rad)) to the effectively optically thick region, where they merge with the standard cold disk solutions. We find that the mapping method by Bjoernsson and Svensson gives a good approximation to the disk structure in the hot region and show where it breaks in the transition region. Finally, we find a region in the disk parameter space with no solutions due to the inability of Coulomb heating to supply enough energy to electrons.

  15. Stratified Magnetically-Driven Accretion-Disk Winds and Their Relations to Jets

    OpenAIRE

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2013-01-01

    We explore the poloidal structure of two-dimensional (2D) MHD winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly-ionized ultra-fast outflows (UFOs) in AGN, in a single unifying approach. We present the density $n(r,\\theta)$, ionization parameter $\\xi(r,\\theta)$, and velocity structure $v(r,\\theta)$ of such ionized winds for typical values of their fluid-to-magnetic flux ratio, $F$, and specific angular momentum, $H$, for which wind solutions be...

  16. The Orientation of Accretion Disks Relative to Dust Disks in Radio Galaxies

    CERN Document Server

    Schmitt, H R

    2002-01-01

    We study the orientation of accretion disks, traced by the position angle of the jet, relative to the dust disk major axis in a sample of 20 nearby Radio Galaxies. We find that the observed distribution of angles between the jet and dust disk major axis is consistent with jets homogeneously distributed over a polar cap of 77 degrees.

  17. Strong field effects on emission line profiles: Kerr black holes and warped accretion disks

    CERN Document Server

    Wang, Yan

    2011-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, ...

  18. High-Frequency QPOs and Overstable Oscillations of Black-Hole Accretion Disks

    Czech Academy of Sciences Publication Activity Database

    Lai, D.; Fu, W.; Tsang, D.; Horák, Jiří; Yu, C.

    Cambridge Universrity Press: Cambridge, 2013, s. 57-61. (IAU Symposium Proceedings Series. IAU S290). ISBN 9781107033795. ISSN 1743-9213. [Symposium of the International Astronomical Union /290./. Beijing (CN), 20.08.2012-24.08.2012] Institutional support: RVO:67985815 Keywords : accretion disks * hydrodynamics * black hole physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  19. On transfer of mass and angular momentum from accretion disk onto black hole

    Czech Academy of Sciences Publication Activity Database

    Hamerský, Jaroslav; Karas, Vladimír

    Praha: Matfyzpress, 2012 - (Šafránková, J.; Pavlů, J.), s. 111-115. (Part III - Physics). ISBN 978-80-7378-226-9. [Annual Conference of Doctoral Students - WDS 2012 /21./. Praha (CZ), 29.05.2012-01.06.2012] Institutional support: RVO:67985815 Keywords : accretion disk * relativity * MHD Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. Accretion disk/corona emission from a radio-loud narrow line Seyfert 1 galaxy PKS 0558-504

    CERN Document Server

    Ghosh, R; Raychaudhuri, B

    2015-01-01

    Approximately 10-20% of Active Galactic Nuclei are known to eject powerful jets from the innermost regions. There is very little observational evidence if the jets are powered by spinning black holes and if the accretion disks extend to the innermost regions in radio-loud AGN. Here we study the soft X-ray excess, the hard X-ray spectrum and the optical/UV emission from the radio-loud narrow-line Seyfert 1 galaxy PKS 0558-504 using Suzaku and Swift observations. The broadband X-ray continuum of PKS 0558- 504 consists of a soft X-ray excess emission below 2 keV that is well described by a blackbody (kTe ~ 0.13 keV) and high energy emission that is well described by a thermal Comptonisation (compps) model with kTe ~ 250 keV, optical depth {\\tau} ~ 0.05 (spherical corona) or kTe ~ 90 keV, {\\tau} ~ 0.5 (slab corona). The Comptonising corona in PKS 0558-504 is likely hotter than in radio-quiet Seyferts such as IC 4329A and Swift J2127.4+5654. The observed soft X-ray excess can be modelled as blurred reflection from...

  1. Testing the AGN paradigm; Proceedings of the 2nd Annual Topical Astrophysics Conference, Univ. of Maryland, College Park, Oct. 14-16, 1991

    Science.gov (United States)

    Holt, Stephen S. (Editor); Neff, Susan G. (Editor); Urry, C. M. (Editor)

    1992-01-01

    The present volume on testing the AGN paradigm discusses black holes, accretion disks, high-energy continuum jets, AGN geometry, and the broad-line region. Attention is given to the search for black holes in galaxy nuclei, the structure of M32 at red wavelengths, testing the AGN paradigm for the Milky Way, and relativistic fluid flows in the magnetized Schwarzschild spacetime. Topics addressed include orbital models for the periodic X-ray flares of NGC 6814, observational evidence for thin AGN disks, X-ray Fe line studies, and the role of the UV bump in line emission. Also discussed are signatures of black hole accretion disks, rapid variability in AGN and accretion disk hot spots, relativistic jets in AGN, and the radiation field in astrophysical jets.

  2. Evidence for Wide-Spread AGN Driven Outflows in the Most Massive z~1-2 Star Forming Galaxies

    CERN Document Server

    Genzel, R; Rosario, D; Lang, P; Lutz, D; Wisnioski, E; Wuyts, E; Wuyts, S; Bandara, K; Bender, R; Berta, S; Kurk, J; Mendel, T; Tacconi, L J; Wilman, D; Beifiori, A; Brammer, G; Burkert, A; Buschkamp, P; Chan, J; Carollo, C M; Davies, R; Eisenhauer, F; Fabricius, M; Fossati, M; Kriek, M; Kulkarni, S; Lilly, S J; Mancini, C; Momcheva, I; Naab, T; Nelson, E J; Renzini, A; Saglia, R; Sharples, R M; Sternberg, A; Tacchella, S; van Dokkum, P

    2014-01-01

    In this paper we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M*/Msun) >= 10.9) z~1-3 star-forming galaxies (Forster Schreiber et al.), by increasing the sample size by a factor of six (to 44 galaxies above log(M*/Msun) >= 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS^3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Ha, [NII], and [SII] lines ~ 450-5300 km/s), with large [NII]/Ha ratios, above log(M*/Msun) ~ 10.9, with 66+/-15% of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z~1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGN), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as lar...

  3. The structure and X-ray radiation spectra of illuminated accretion disks in AGN. III

    Czech Academy of Sciences Publication Activity Database

    Goosmann, R. W.; Czerny, B.; Mouchet, M.; Ponti, G.; Dovčiak, Michal; Karas, Vladimír; Rózanska, A.; Dumont, A. M.

    2006-01-01

    Roč. 454, č. 3 (2006), s. 741-752. ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LC06014; GA ČR(CZ) GA202/06/0041; GA ČR GP205/05/P525 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.971, year: 2006

  4. H2O megamasers : Accretion disks, jet interaction, outflows or massive star formation?

    NARCIS (Netherlands)

    Henkel, C; Braatz, JA; Tarchi, A; Peck, AB; Nagar, NM; Greenhill, LJ; Hagiwara, Y

    2005-01-01

    The 25 years following the serendipitous discovery of megamasers have seen tremendous progress in the study of luminous extragalactic H2O emission. Single-dish monitoring and high-resolution interferometry have been used to identify sites of massive star formation, to study the interaction of nuclea

  5. Stratified magnetically driven accretion-disk winds and their relations to jets

    International Nuclear Information System (INIS)

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  6. Stratified magnetically driven accretion-disk winds and their relations to jets

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Keigo [University of Maryland, Baltimore County (UMBC/CRESST), Baltimore, MD 21250 (United States); Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Behar, Ehud [Department of Physics, Technion, Haifa 32000 (Israel); Contopoulos, Ioannis, E-mail: fukumukx@jmu.edu [Research Center for Astronomy, Academy of Athens, Athens 11527 (Greece)

    2014-01-10

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  7. Stratified Magnetically Driven Accretion-disk Winds and Their Relations to Jets

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2014-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  8. Stratified Magnetically Driven Accretion-Disk Winds and Their Relations To Jets

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2013-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, theta), ionization parameter xi(r, theta), and velocity structure v(r, theta) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfv´en surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, xi, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  9. THE CENTRAL ENGINE STRUCTURE OF 3C120: EVIDENCE FOR A RETROGRADE BLACK HOLE OR A REFILLING ACCRETION DISK

    International Nuclear Information System (INIS)

    The broad-line radio galaxy 3C120 is a powerful source of both X-ray and radio emission including superluminal jet outflows. We report on our reanalysis of 160 ks of Suzaku data taken in 2006, previously examined by Kataoka et al. Spectral fits to the X-ray Imaging Spectrometer and Hard X-ray Detector/positive intrinsic negative data over a range of 0.7-45 keV reveal a well-defined iron K line complex with a narrow Kα core and relativistically broadened features consistent with emission from the inner regions of the accretion disk. Furthermore, the inner region of the disk appears to be truncated, with an inner radius of rin = 11.7+3.5–5.2 rg . If we assume that fluorescent iron line features terminate at the inner-most stable circular orbit (ISCO), then we measure a black hole spin of a-hat 0.8) can be ruled out at the 99% confidence level. Alternatively, the disk may be truncated well outside of the ISCO of a rapid prograde hole. The most compelling scenario is the possibility that the inner regions of the disk were destroyed/ejected by catastrophic instabilities just prior to the time these observations were made.

  10. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    CERN Document Server

    Riols, A; Cossu, C; Lesur, G; Ogilvie, G I; Longaretti, P-Y

    2016-01-01

    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo process involving the magnetorotational instability (MRI). High-resolution simulations exhibit a tendency towards statistical self-organization of MRI dynamo turbulence into large-scale cyclic dynamics. Understanding the physical origin of these structures, and whether they can be sustained and transport angular momentum efficiently in astrophysical conditions, represents a significant theoretical challenge. The discovery of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has notably served to highlight the role of turbulent magnetic diffusion in the seeming decay of the dynamics at low magnetic Prandtl number Pm (magnetic diffusivity larger than viscosity), a common regime in accretion disks. The connection between these simple structures and the statistical organization reported in turbulent simulations remained elusive, though. Here, we report the n...

  11. Tomographic simulations of accretion disks in Cataclysmic Variables - flickering and wind

    CERN Document Server

    Ribeiro, F M A; Ribeiro, Fabiola Mariana A.; Diaz, Marcos P.

    2006-01-01

    Cataclysmic Variables (CVs) are close binary systems where mass is transferred from a red dwarf star to a white dwarf star via an accretion disk. The flickering is observed as stochastic variations in the emitted radiation both in the continuum and in the emission line profiles. The main goal of our simulations is to compare synthetic Doppler maps with observed ones, aiming to constrain the flickering properties and wind parameters. A code was developed which generates synthetic emission line profiles of a geometrically thin and optically thick accretion disk. The simulation allows us to include flares in a particular disk region. The emission line flares may be integrated over arbitrary ``exposure'' times, producing the synthetic line profiles. Flickering Doppler maps are created using such synthetic time series. The presence of a wind inside the Roche lobe was also implemented. Radiative transfer effects in the lines where taken into account in order to reproduce the single peaked line profiles frequently s...

  12. General-relativistic magnetohydrodynamics simulations of black hole accretion disks: Dynamics and radiative properties

    Science.gov (United States)

    Shiokawa, Hotaka

    The goal of the series of studies in this thesis is to understand the black hole accretion process and predict its observational properties. The highly non-linear process involves a turbulent magnetized plasma in a general relativistic regime, thus making it hard to study analytically. We use numerical simulations, specifically general relativistic magnetohydrodynamics (GRMHD), to construct a realistic dynamical and radiation model of accretion disks. Our simulations are for black holes in low luminous regimes that probably possesses a hot and thick accretion disk. Flows in this regime are called radiatively inefficient accretion flows (RIAF). The most plausible mechanism for transporting angular momentum is turbulence induced by magnetorotational instability (MRI). The RIAF model has been used to model the supermassive black hole at the center of our Milky Way galaxy, Sagittarius A* (Sgr A*). Owing to its proximity, rich observational data of Sgr A* is available to compare with the simulation results. We focus mainly on four topics. First, we analyse numerical convergence of 3D GRMHD global disk simulations. Convergence is one of the essential factors in deciding quantitative outcomes of the simulations. We analyzed dimensionless shell-averaged quantities such as plasma beta, the azimuthal correlation length (angle) of fluid variables, and spectra of the source for four different resolutions. We found that all the variables converged with the highest resolution (384x384x256 in radial, poloidal, and azimuthal directions) except the magnetic field correlation length. It probably requires another factor of 2 in resolution to achieve convergence. Second, we studied the effect of equation of state on dynamics of GRMHD simulation and radiative transfer. Temperature of RIAF gas is high, and all the electrons are relativistic, but not the ions. In addition, the dynamical time scale of the accretion disk is shorter than the collisional time scale of electrons and ions

  13. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    CERN Document Server

    Jiang, Yan-Fei; Stone, James

    2016-01-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be much larger than the electron scattering opacity primarily due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity "bump" on the thermal stability and vertical structure of radiation pressure dominated accretion disks, utilizing three dimensional radiation magneto-hydrodynamic simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a $5\\times 10^8$ solar mass black hole with $\\sim 3\\%$ of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than $10$ thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as ...

  14. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    CERN Document Server

    Hogg, J Drew

    2015-01-01

    The broad-band variability of many accreting systems displays characteristic structure; log-normal flux distributions, RMS-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically-thin ($h/r\\approx0.1$) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially-coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear RMS-flux relations, and radial coher...

  15. Global Simulations of Accretion Disks I: Convergence and Comparisons with Local Models

    CERN Document Server

    Sorathia, Kareem A; Stone, James M; Beckwith, Kris

    2011-01-01

    Grid-based magnetohydrodynamic (MHD) simulations have proven invaluable for the study of astrophysical accretion disks. However, the fact that angular momentum transport in disks is mediated by MHD turbulence (with structure down to very small scales) raises the concern that the properties of the modeled accretion disks are affected by the finite numerical resolution of the simulation. By implementing an orbital advection algorithm into the Athena code in cylindrical geometry, we have performed a set of global (but unstratified) Newtonian disk simulations extending up to resolutions previously unattained. We study the convergence of these models as a function of spatial resolution and initial magnetic field geometry. The usual viscosity parameter ($\\alpha$) or the ratio of thermal-to-magnetic pressure ($\\beta$) are found to be poor diagnostics of convergence, whereas the average tilt angle of the magnetic field in the $(r,\\phi)$-plane is a very good diagnostic of convergence. We suggest that this is related t...

  16. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres

    Science.gov (United States)

    Garcia, Javier; Kallman, Timothy R.

    2009-01-01

    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  17. Line shifts in accretion disks - the case of Fe K$\\alpha$

    CERN Document Server

    Jovanović, P; Borka, D; Popović, L Č

    2016-01-01

    Here we present a short overview and main results of our investigations of several effects which can induce shifts in the broad Fe K$\\alpha$ line emitted from relativistic accretion disks around single and binary supermassive black holes. We used numerical simulations based on ray-tracing method in the Kerr metric to study the role of classical Doppler shift, special relativistic transverse Doppler shift and Doppler beaming, general relativistic gravitational redshift, and perturbations of the disk emissivity in the formation of the observed Fe K$\\alpha$ line profiles. Besides, we also investigated whether the observed line profiles from the binary systems of supermassive black holes could be affected by the Doppler shifts due to dynamics of such systems. The presented results demonstrate that all these effects could have a significant influence on the observed profiles of the broad Fe K$\\alpha$ line emitted from relativistic accretion disks around single and binary supermassive black holes.

  18. X-ray transient AGN and galaxies

    OpenAIRE

    Grupe, D.

    2001-01-01

    X-ray transience is the most extreme form of variability observed in AGN or normal in-active galaxies. While factors of 2-3 on timescales of days to years are quite commen among AGN, X-ray transients appear only once and vanish from the X-ray sky years later. The ROSAT All-Sky Survey was the tool to discover these sources. X-ray transience in AGN or galaxies can be caused by dramatic changes in the accretion rate of the central black hole or by changes of the properties of the accretion disk.

  19. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    OpenAIRE

    Feldmeier, Achim; Shlosman, Isaac

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow type...

  20. On the Relative Surface Density Change of Thermally Unstable Accretion Disks

    OpenAIRE

    Wu, Xue-Bing

    1997-01-01

    The relations among the relative changes of surface density, temperature, disk height and vertical integrated pressure in three kinds of thermally unstable accretion disks were quantitatively investigated by assuming local perturbations. The surface density change was found to be very small in the long perturbation wavelength case but can not be ignored in the short wavelength case. It becomes significant in an optically thin, radiative cooling dominated disk when the perturbation wavelength ...

  1. Hydrodynamic stability in accretion disks under the combined influence of shear and density stratification

    OpenAIRE

    Rüdiger, G.; Arlt, R.; Shalybkov, D.

    2002-01-01

    The hydrodynamic stability of accretion disks is considered. The particular question is whether the combined action of a (stable) vertical density stratification and a (stable) radial differential rotation gives rise to a new instability for nonaxisymmetric modes of disturbances. The existence of such an instability is not suggested by the well-known Solberg-Hoiland criterion. It is also not suggested by a local analysis for disturbances in general stratifications of entropy and angular momen...

  2. Novel mechanism for vorticity generation in black-hole accretion disks

    CERN Document Server

    Bhattacharjee, Chinmoy; Mahajan, Swadesh M

    2015-01-01

    Vorticity generation in accretion disks around Schwarzschild and Kerr black holes is investigated in the context of magnetofluid dynamics derived for both General Relativity (GR), and modified gravity formulations. In both cases, the Kerr geometry leads to a "stronger" generation of vorticity than its Schwarzschild counterpart. Of the two principal sources, the relativistic drive peaks near the innermost stable circular orbit (isco), whereas the baroclinic drive dominates at larger distances. Consequences of this new relativistic vorticity source are discussed in several astrophysical settings.

  3. The SINS/zC-SINF survey of z~2 galaxy kinematics: Evidence for powerful AGN-driven nuclear outflows in massive star-forming galaxies

    CERN Document Server

    Schreiber, N M Förster; Newman, S F; Kurk, J D; Lutz, D; Tacconi, L J; Wuyts, S; Bandara, K; Burkert, A; Buschkamp, P; Carollo, C M; Cresci, G; Daddi, E; Davies, R; Eisenhauer, F; Hicks, E K S; Lang, P; Lilly, S J; Mainieri, V; Mancini, C; Naab, T; Peng, Y; Renzini, A; Rosario, D; Griffin, K Shapiro; Shapley, A E; Sternberg, A; Tacchella, S; Vergani, D; Wisnioski, E; Wuyts, E; Zamorani, G

    2013-01-01

    We report the detection of ubiquitous powerful nuclear outflows in massive (> 10^11 Msun) z~2 star-forming galaxies (SFGs), which are plausibly driven by an Active Galactic Nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics (AO) assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Halpha and forbidden [NII] and [SII] line emission, with typical velocity FWHM ~ 1500 km/s, [NII]/Halpha ratio ~ 0.6, and intrinsic extent of 2 - 3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~ 60 Msun/yr and mass loading of ~ 3. At larger radii, a weaker broad component is detecte...

  4. Evidence for ultra-fast outflows in radio-quiet AGNs: II - detailed photo-ionization modeling of Fe K-shell absorption lines

    CERN Document Server

    Tombesi, F; Reeves, J N; Palumbo, G G C; Braito, V; Dadina, M

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blueshifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\sim100,000km/s (\\sim0.3c), with a peak and mean value of \\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6erg s^{-1} cm, with a mean value of log\\xi 4.2 erg s^{-1} cm. The associated column densities are also large, in the range N_H\\sim10^{22}-10^{24...

  5. FORMATION OF BLACK HOLE AND ACCRETION DISK IN A MASSIVE HIGH-ENTROPY STELLAR CORE COLLAPSE

    International Nuclear Information System (INIS)

    We present the first numerical result of fully general relativistic axisymmetric simulations for the collapse of a rotating high-entropy stellar core to a black hole and an accretion disk. The simulations are performed taking into account the relevant microphysics. We adopt as initial conditions a spherical core with constant electron fraction (Ye = 0.5) and entropy per baryon s = 8 kB , and angular velocity is superimposed. In the early phase, the core collapses in a homologous manner. Then it experiences a weak bounce due to the gas pressure of free nucleons. Because the bounce is weak, the core eventually collapses to a black hole. Subsequent evolution depends on initial angular velocity. When the rotation is not fast, a geometrically thin (but optically thick) accretion disk is formed, and shock waves are formed in the inner part of the disk. For the moderately rotating case, the thin accretion disk eventually expands to become a geometrically thick torus after sufficient accumulation of the thermal energy is generated at the shocks. Furthermore, convection occurs inside the torus. Neutrino luminosities vary violently with time because of the convective motion. For the rapidly rotating case, by contrast, a geometrically thick torus is formed soon after the black hole formation, and the convective activity is weak due to the presence of an epicyclic mode.

  6. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.

    Science.gov (United States)

    Neilsen, Joseph; Lee, Julia C

    2009-03-26

    Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet. PMID:19325629

  7. Modelling the orientation of accretion disks in quasars using H-alpha emission

    CERN Document Server

    Down, E J; Sivia, D S; Baker, J C

    2009-01-01

    Infrared spectroscopy of the H-alpha emission lines of a sub-sample of 19 high-redshift (0.8 < z < 2.3) Molonglo quasars, selected at 408 MHz, is presented. These emission lines are fitted with composite models of broad and narrow emission, which include combinations of classical broad-line regions of fast-moving gas clouds lying outside the quasar nucleus, and/or a theoretical model of emission from an optically-thick, flattened, rotating accretion disk. All bar one of the nineteen sources are found to have emission consistent with the presence of an optically-emitting accretion disk, with the exception appearing to display complex emission including at least three broad components. Ten of the quasars have strong Bayesian evidence for broad-line emission arising from an accretion disk together with a standard broad-line region, selected in preference to a model with two simple broad lines. Thus the best explanation for the complexity required to fit the broad H-alpha lines in this sample is optical emi...

  8. Angular Momentum Transport in Accretion Disk Boundary Layers Around Weakly Magnetized Stars

    Directory of Open Access Journals (Sweden)

    Pessah Martin E.

    2013-04-01

    Full Text Available The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves in configurations that are stable to the standard MRI. Employing the shearing-sheet framework, we show that transient amplification of shearing MHD waves can generate magnetic energy without leading to a substantial generation of hydromagnetic stresses. While these results are in agreement with numerical simulations, they emphasize the need to better understand the mechanism for angular momentum transport in the inner disk regions on more solid grounds.

  9. Detection of spiral structure of the quiescent accretion disk of IP Pegasi

    CERN Document Server

    Neustroev, V V; Barwig, H; Bobinger, A; Mantel, K H; Simic, D; Wolf, S

    2001-01-01

    We present the results of the spectral investigations of IP Peg in quiescence. Optical spectra obtained on 6-m telescope at the Special Astrophysical Observatory (Russia), and on the 3.5-m telescope at the German-Spanish Astronomical Center (Calar Alto, Spain), have been analysed by means of Doppler tomography and phase modeling technique. This analysis has allowed us to make conclusions, that the quiescent accretion disk of IP Peg has a complicated structure. Equally with the bright spot originated in the region of interaction between the stream and the disk's particles, there are also explicit indications of the spiral shocks. We also have found that the brightness of the bright spot considerably oscillates during orbital period. The spot becomes brightest at an inferior conjunction. On the contrary, the spot is almost not visible when it is located on a distant half of the accretion disk. Apparently, it is connected to an eclipse of the bright spot by an outer edge of the accretion disk.

  10. Dynamics of accretion disks in a constant curvature f(R)-gravity

    Science.gov (United States)

    Alipour, N.; Khesali, A. R.; Nozari, K.

    2016-07-01

    So far the basic physical properties of matter forming a thin accretion disc in the static and spherically symmetric space-time metric of the vacuum f(R) modified gravity models (Pun et al. in Phys. Rev. D 78:024043, 2008) and building radiative models of thin accretion disks for both Schwarzschild and Kerr black holes in f(R) gravity (Perez et al. in Astron. Astrophys. 551:4, 2013) were addressed properly. Also von Zeipel surfaces and convective instabilities in f(R)-Schwarzschild(Kerr) background have been investigated recently (Alipour et al. in Mon. Not. R. Astron. Soc. 454:1992, 2015). In this streamline, here we study the effects of radial and angular pressure gradients on thick accretion disks in Schwarzschild geometries in a constant curvature f(R) modified gravity. Since thick accretion disks have high accretion rate, we study configuration and structure of thick disks by focusing on the effect of pressure gradient on formation of the disks. We clarify our study by assuming two types of equation of state: polytropic and Clapeyron equation of states.

  11. Occurrence of instability through the protostellar accretion disks by landing of low-mass condensations

    CERN Document Server

    Elyasi, Mahjubeh

    2016-01-01

    Low-mass condensations (LMCs) are observed inside the envelope of the collapsing molecular cloud cores. In this research, we investigate the effects of landing LMCs for occurrence of instability through the protostellar accretion disks. We consider some regions of the disk where duration of infalling and landing of the LMCs are shorter than the orbital period. In this way, we can consider the landing LMCs as density bumps and grooves in the azimuthal direction of an initial thin axisymmetric steady state self-gravitating protostellar accretion disk (nearly Keplerian). Using the linear effects of the bump quantities, we obtain a characteristic equation for growth/decay rate of bumps; we numerically solve it to find occurrence of instability. We also evaluate the minimum-growth-time-scale (MGTS) and the enhanced mass accretion rate. The results show that infalling and landing of the LMCs in the inner regions of the protostellar accretion disks can cause faster unstable modes and less enhanced accretion rates re...

  12. On the possible turbulence mechanism in accretion disks in nonmagnetic binary stars

    International Nuclear Information System (INIS)

    One of the major challenges in modern astrophysics is the unexplained turbulence of gas-dynamic (nonmagnetic) accretion disks. Since they are stable, such disks should not theoretically be turbulent, but observations show they are. The search for instabilities that can develop into turbulence is one of the most intriguing problems in modern astrophysics. In 2004, we pointed to the formation of the so-called 'precessional' density wave in accretion disks of binary stars, which produces additional density and velocity gradients in the disk. A linear hydrodynamics stability analysis of an accretion disk in a binary shows that the presence in the disk of a precessional wave produced by the tidal influence of the second binary component gives rise to the instability of radial modes, whose characteristic growth times are about one tenth or one hundredth of the binary's orbital period. The immediate reason for the instability is the radial velocity gradient in the precessional wave, the destabilizing perturbations being those in which the radial velocity variation on the wavelength scale is near or greater than the speed of sound. Unstable perturbations occur in the interior of the disk and make the gas turbulent as they propagate outward. The characteristic turbulence parameters are in agreement with observations (the Shakura–Sunyaev parameter (α≲0.01). (physics of our days)

  13. A NEW ACCRETION DISK AROUND THE MISSING LINK BINARY SYSTEM PSR J1023+0038

    International Nuclear Information System (INIS)

    PSR J1023+0038 is an exceptional system for understanding how slowly rotating neutron stars are spun up to millisecond rotational periods through accretion from a companion star. Observed as a radio pulsar from 2007-2013, optical data showed that the system had an accretion disk in 2000/2001. Starting at the end of 2013 June, the radio pulsar has become undetectable, suggesting a return to the previous accretion-disk state, where the system more closely resembles an X-ray binary. In this Letter we report the first targeted X-ray observations ever performed of the active phase and complement them with UV/optical and radio observations collected in 2013 October. We find strong evidence that indeed an accretion disk has recently formed in the system and we report the detection of fast X-ray changes spanning about two orders of magnitude in luminosity. No radio pulsations are seen during low flux states in the X-ray light curve or at any other times

  14. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    Science.gov (United States)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-07-01

    The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin (h/r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.

  15. FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. I. ULTRAVIOLET AND X-RAY ABSORBERS

    International Nuclear Information System (INIS)

    We present an investigation into the impact of feedback from outflowing UV and X-ray absorbers in nearby (z out) and kinetic luminosity (LKE) for each AGN, summed over all of its absorbers. These calculations make use of values (or limits) for the radial locations of the absorbers determined from variability, excited-state absorption, and other considerations. From a sample of 10 Seyfert 1 galaxies with detailed photoionization models for their absorbers, we find that 7 have sufficient constraints on the absorber locations to determine M-dotout and LKE. For the low-luminosity AGN NGC 4395, these values are low, although we do not have sufficient constraints on the X-ray absorbers to make definitive conclusions. At least five of the six Seyfert 1s with moderate bolometric luminosities (Lbol = 1043 – 1045 erg s–1) have mass outflow rates that are 10-1000 times the mass accretion rates needed to generate their observed luminosities, indicating that most of the mass outflow originates from outside the inner accretion disk. Three of these (NGC 4051, NGC 3516, and NGC 3783) have LKE in the range 0.5%-5% Lbol, which is the range typically required by feedback models for efficient self-regulation of black hole and galactic bulge growth. At least two of the other three (NGC 5548, NGC 4151, and NGC 7469) have LKE ∼> 0.1%Lbol, although these values may increase if radial locations can be determined for more of the absorbers. We conclude that the outflowing UV and X-ray absorbers in moderate-luminosity AGNs have the potential to deliver significant feedback to their environments.

  16. Stratified Magnetically-Driven Accretion-Disk Winds and Their Relations to Jets

    CERN Document Server

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2013-01-01

    We explore the poloidal structure of two-dimensional (2D) MHD winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly-ionized ultra-fast outflows (UFOs) in AGN, in a single unifying approach. We present the density $n(r,\\theta)$, ionization parameter $\\xi(r,\\theta)$, and velocity structure $v(r,\\theta)$ of such ionized winds for typical values of their fluid-to-magnetic flux ratio, $F$, and specific angular momentum, $H$, for which wind solutions become super-\\Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller $H$ show a poloidal geometry of narrower opening angles with their \\Alfven\\ surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes ...

  17. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    Science.gov (United States)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  18. Magnetic propeller outflows

    OpenAIRE

    Lovelace, R. V. E.; Romanova, M. M.; Bisnovatyi-Kogan, G. S.

    1998-01-01

    A model is developed for magnetic `propeller'-driven outflows which cause a rapidly rotating magnetized star accreting from a disk to spin-down. Energy and angular momentum lost by the star goes into expelling most of the accreting disk matter. The theory gives an expression for the effective Alfven radius $R_A$ (where the inflowing matter is effectively stopped) which depends on the mass accretion rate, the star's mass and magnetic moment, and the star's rotation rate. The model points to a ...

  19. Time Series Analysis of the UV Flickering in AGN

    Science.gov (United States)

    Robinson, Edward L.

    2003-01-01

    Goals of the Research: Many active galactic nuclei (AGN) exhibit large-amplitude luminosity fluctuations on short timescales. The fluctuations lead to a profound conclusion: The size of the emitting region is remarkably small. This observational fact is one of the pillars supporting the AGN paradigm: Prodigious amounts of gravitational potential energy are liberated in an accretion disk around a supermassive black hole. The goals of the research were to extract from the IUE Archive the very best observational characterizations of AGN flickering, and to use these to test and develop models for AGN variability.

  20. Constraints on black hole spins with a general relativistic accretion disk corona model

    Science.gov (United States)

    You, Bei; Cao, Xin-Wu; Yuan, Ye-Fei

    2016-04-01

    The peaks in the spectra of the accretion disks surrounding massive black holes in quasars are in the far-UV or soft X-ray band, which are usually not observed. However, in the disk corona model, soft photons from the disk are Comptonized to high energy in the hot corona, and the hard X-ray spectra (luminosity and spectral shape) contain information on the incident spectra from the disk. The values of black hole spin parameter a* are inferred from the spectral fitting, which are spread over a large range, ˜ -0.94 to 0.998. We find that the inclination angles and mass accretion rates are well determined by the spectral fitting, but the results are sensitive to the accuracy of black hole mass estimates. No tight constraints on the black hole spins are achieved, if the uncertainties in black hole mass measurements are a factor of four, which are typical for the single-epoch reverberation mapping method. Recently, the accuracy of black hole mass measurement has been significantly improved to 0.2 - 0.4 dex with the velocity resolved reverberation mapping method. The black hole spin can be well constrained if the mass measurement accuracy is ≲ 50%. In the accretion disk corona scenario, a fraction of power dissipated in the disk is transported into the corona, and therefore the accretion disk is thinner than a bare disk for the same mass accretion rate, because the radiation pressure in the disk is reduced. We find that the thin disk approximation, H/R ≲ 0.1, is still valid if 0.3 < ṁ < 0.5, provided half of the dissipated power is radiated in the corona above the disk.

  1. Modelling Accretion Disk and Stellar Wind Interactions: the Case of Sgr A*

    OpenAIRE

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2016-01-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geome...

  2. Nonlinear calculations of the time evolution of black hole accretion disks

    Science.gov (United States)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  3. Annihilation luminosity of a neutrino-cooled accretion disk in a gamma-ray burst

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We discuss how the annihilation luminosity of a neutrino-cooled accretion disk in a gamma-ray burst, Lνν, is determined by the disk’s fundamental parameters, namely, the mass of the central black hole M, the mass accretion rate M, and the viscosity parameter α. It is shown that Lνν depends mainly on M in evidence, and decreases with increasing M, but is almost independent of α. This result argues additionally that the central black hole in a gamma-ray burst must be with a stellar mass.

  4. Accretion disks around neutron and strange stars in $\\mathcal{R}^2$ gravity

    CERN Document Server

    Staykov, Kalin V; Yazadjiev, Stoytcho S

    2016-01-01

    We study the electromagnetic spectrum of accretion disks around neutron and strange stars in $\\mathcal{R}^2$ gravity. Both static and rapidly rotating models are investigated. The results are compared with the General Relativistic results. We found difference between the results in both theories of about 50\\% for the electromagnetic flux and about 20\\% in the luminosity for models with equal mass and angular velocity in both theories. The observed differences are much lower for models rotating with Kelperian velocity and with equal masses.

  5. Ionized outflows in luminous type 2 AGNs at z < 0.6: no evidence for significant impact on the host galaxies

    Science.gov (United States)

    Villar-Martín, M.; Arribas, S.; Emonts, B.; Humphrey, A.; Tadhunter, C.; Bessiere, P.; Cabrera Lavers, A.; Ramos Almeida, C.

    2016-07-01

    We investigate the presence of extended ionized outflows in 18 luminous type 2 AGNs (11 quasars and 7 high-luminosity Seyfert 2s) at 0.3 feedback phenomenon are important since the mass Mo (through the density), mass injection dot{M}_o and energy injection dot{E}_o rates of the outflows become highly uncertain. One conclusion seems unavoidable: Mo, dot{M}_o and dot{E}_o are modest or low compared with previous estimations. We obtain typically Mo ≲ (0.4-22) × 106 M⊙ (median 1.1 × 106 M⊙) assuming n = 1000 cm-3. These are ˜102-104 times lower than values reported in the literature. Even under the most favourable assumptions, we obtain dot{M}_o≲ 10 M⊙ yr-1 in general, 100-1000 times lower than claimed in related studies. Although the uncertainties are large, it is probable that these are lower than typical star-forming rates. In conclusion, no evidence is found supporting that typical outflows can affect the interstellar medium of the host galaxies across spatial scales ≳ 1-2 kpc.

  6. Extracting Information from AGN Variability

    CERN Document Server

    Kasliwal, Vishal P; Richards, Gordon T

    2016-01-01

    AGN exhibit rapid, high amplitude stochastic flux variability across the entire electromagnetic spectrum on timescales ranging from hours to years. The cause of this variability is poorly understood. We present a new method for using variability to (1) measure the time-scales on which flux perturbations evolve and (2) characterize the driving flux perturbations. We model the observed light curve of an AGN as a linear differential equation driven by stochastic impulses. Physically, the impulses could be local `hot-spots' in the accretion disk---the linear differential equation then governs how the hot spots evolve and dissipate. The impulse-response function of the accretion disk material is given by the Green's function of the linear differential equation. The timescales on which the hot-spots radiate energy is characterized by the powerspectrum of the driving stochastic impulses. We analyze the light curve of the \\Kepler AGN Zw 229-15 and find that the observed variability behavior can be modeled as a damped...

  7. AGN models: problems and modifications

    International Nuclear Information System (INIS)

    This workshop comes at a crucial time in the study of AGN. On one hand there is better understanding of line and continuum emissing processes, with the hope of improving the modeling of the BLR. On the other hand, the newly reported line variability observations may force us to completely change our view of the BLR size and density, maybe even to abandon the idea of photoionization as the sole energy input source to the line emitting region. This review discusses several new developments related to the ionizing source and the inner structure of AGN. The following topics are addressed: The ''FeII problem''; the energy budget and the shape of the EUV continuum; evidences for massive accretion disks; angle dependent photoionization models; the L/M relationship in AGN. (author)

  8. Time-dependent X-ray emission from unstable accretion disks around black holes

    Science.gov (United States)

    Mineshige, Shin; Kim, Soon-Wook; Wheeler, J. Craig

    1990-01-01

    The spectral evolution of accretion disks in X-ray binaries containing black holes is studied, based on the disk instability model. The thermal transition of the outer portions of the disk controls the mass flow rate into the inner portions of the disk, thus modulating the soft X-ray flux which is thought to arise from the inner disk. Calculated soft X-ray spectra are consistent with the observations of the X-ray transient A0620 - 00 and especially ASM 2000 + 25, the soft X-ray spectra of which are well fitted by blackbody radiation with a fixed inner edge of the disk, Rin, and with monotonically decreasing temperature at Rin with time. Since the gas pressure is always dominant over the radiation pressure during the decay in these models, a two-temperature region is difficult to create. Instead, it is suggested that hard X-rays are generated in a hot (kT greater than 10 keV) accretion disk corona above the cool (kT less than 1 keV) disk.

  9. V3885 SAGITTARIUS: A COMPARISON WITH A RANGE OF STANDARD MODEL ACCRETION DISKS

    International Nuclear Information System (INIS)

    A χ-tilde2 analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7 M sun, and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg., is a literature consensus, and is subsequently supported by χ-tilde2 analysis. The mass transfer rate is the remaining parameter to set the accretion disk T eff profile, and the Hipparcos parallax constrains that parameter to M-dot=(5.0±2.0) x 10-9 M odot yr-1 by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57, 000 ± 5000 K WD. The model thus provides realistic constraints on M-dot and T eff for a large M-dot system above the period gap.

  10. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    International Nuclear Information System (INIS)

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  11. Line Emission from an Accretion Disk around a Black hole Effects of Disk Structure

    CERN Document Server

    Pariev, V I; Pariev, Vladimir I.; Bromley, Benjamin C.

    1998-01-01

    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. These lines serve as powerful probes for examining the structure of inner regions of accretion disks. Previous studies of line emission have considered geometrically thin disks only, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to consider effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov and Thorne (1973) solution, and find that within this framework, turbulent broadening is the dominant new effect. The most prominent change in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. The effect is most pronounced when the inclination angle is large, and when the accretion rate is high. Thus, the effects discussed here may be important for future detailed model...

  12. Line emission from an accretion disk around black hole effects of the disk structure

    CERN Document Server

    Pariev, V I; Bromley, Benjamin C.; Pariev, Vladimir I.

    1998-01-01

    The observed iron K-alpha fluorescence lines in Seyfert galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. Previous studies of line emission have considered only geometrically thin disks, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to include effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov-Thorne solution, and find that within this framework, turbulent broadening is the most significant effect. The most prominent changes in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. We show that at the present level of signal-to-noise in X-ray spectra, proper treatment of the actual structure of the accretion disk can change estimates of the inclination angle of the disk. Thus these effects will be important for future detailed modeling of high quality observational d...

  13. Numerical Simulations of Naturally Tilted, Retrogradely Precessing, Nodal Superhumping Accretion Disks

    CERN Document Server

    Montgomery, M M

    2012-01-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generates these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic Cataclysmic Variables (CVs) using 3D Smoothed Particle Hydrodynamics (SPH). Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths...

  14. Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Pino, Jesse [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2014-07-10

    This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.

  15. LARGE-SCALE AZIMUTHAL STRUCTURES OF TURBULENCE IN ACCRETION DISKS: DYNAMO TRIGGERED VARIABILITY OF ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Flock, M.; Dzyurkevich, N.; Klahr, H.; Turner, N.; Henning, Th. [Max Planck Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany)

    2012-01-10

    We investigate the significance of large-scale azimuthal, magnetic, and velocity modes for the magnetorotational instability (MRI) turbulence in accretion disks. We perform three-dimensional global ideal MHD simulations of global stratified protoplanetary disk models. Our domains span azimuthal angles of {pi}/4, {pi}/2, {pi}, and 2{pi}. We observe up to 100% stronger magnetic fields and stronger turbulence for the restricted azimuthal domain models {pi}/2 and {pi}/4 compared to the full 2{pi} model. We show that for those models the Maxwell stress is larger due to strong axisymmetric magnetic fields generated by the {alpha}{Omega} dynamo. Large radial extended axisymmetric toroidal fields trigger temporal magnification of accretion stress. All models display a positive dynamo-{alpha} in the northern hemisphere (upper disk). The parity is distinct in each model and changes on timescales of 40 local orbits. In model 2{pi}, the toroidal field is mostly antisymmetric with respect to the midplane. The eddies of the MRI turbulence are highly anisotropic. The major wavelengths of the turbulent velocity and magnetic fields are between one and two disk scale heights. At the midplane, we find magnetic tilt angles around 8 Degree-Sign -9 Degree-Sign increasing up to 12 Degree-Sign -13 Degree-Sign in the corona. We conclude that an azimuthal extent of {pi} is sufficient to reproduce most turbulent properties in three-dimensional global stratified simulations of magnetized accretion disks.

  16. Towards Bayesian Machine Learning for Estimating Parameters of Accretion Disk Models for SPH Simulations

    Science.gov (United States)

    Goel, Amit; Montgomery, Michele; Wiegand, Paul

    2016-01-01

    Accretion disks are ubiquitous in Active Galactic Nuclei, in protostellar systems forming protoplanets, and in close binary star systems such as X-ray binaries, Cataclysmic Variables, and Algols, for example. Observations such as disk tilt are found in all of these different accreting system types, suggesting a common physics must be present. To understand the common connections between these different system types, which can help us understand their unique evolutions, we need to better understand the physics of accretion. For example, viscosity is typically a constant value in the disk of a system that is in a specific state such as a quiescent state. However, viscosity can't be constant throughout the disk, especially at the boundaries. To learn more about viscosity and other common parameters in these disk, we use Bayesian Inference and Markov Chain Monte Carlo techniques to make predictions of events to come in the numerical simulations of these accreting disks. In this work, we present our techniques and initial findings.

  17. Accretion disk signatures in Type I X-ray Bursts: prospects for future missions

    CERN Document Server

    Keek, L; Ballantyne, D R

    2016-01-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will give insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, NICER, Athena, and LOFT. Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and through-put of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes $\\ge 10^{-7.5}$ erg cm$^{-2}$ s$^{-1}$, and also effectively constrain ...

  18. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dexter, Jason, E-mail: jruan@astro.washington.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  19. Ultraviolet spectrophotometry of 2A 1822-371 - A bulge on the accretion disk

    Science.gov (United States)

    Mason, K. O.; Cordova, F. A.

    1982-01-01

    It is suggested that the 5.57-hour modulation of the X-ray source 2A 1822-371 is caused by the combined effects of (1) an occultation of the emitting region by a companion star, and (2) a bulge on the accretion disk surrounding the X-ray source. It is speculated that the changing aspect of the X-ray-heated inner face of the bulge with orbital phase may also contribute to the modulation at UV and optical wavelengths. The bulge's position angle suggests it to have been the result of turbulence caused by the impact of a gas stream transferring matter from the companion, and 2A 1822-371 is held to provide the most direct indication extant of such a structure in an accretion disk. It is speculated that comparison of high-time resolution UV observations with optical and X-ray light curves will allow further deductions as to the size, structure and location of the far-UV emitting region.

  20. Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets

    International Nuclear Information System (INIS)

    This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.

  1. V3885 Sagittarius: A Comparison With a Range of Standard Model Accretion Disks

    Science.gov (United States)

    Linnell, Albert P.; Godon, Patrick; Hubeny, Ivan; Sion, Edward M; Szkody, Paula; Barrett, Paul E.

    2009-01-01

    A chi-squared analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7M(solar mass), and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg, is a literature consensus, and is subsequently supported by chi-squared analysis. The mass transfer rate is the remaining parameter to set the accretion disk T(sub eff) profile, and the Hipparcos parallax constrains that parameter to mas transfer = (5.0 +/- 2.0) x 10(exp -9) M(solar mass)/yr by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57,000 +/- 5000 K WD. The model thus provides realistic constraints on mass transfer and T(sub eff) for a large mass transfer system above the period gap.

  2. Hydrodynamic Models of Line-Driven Accretion Disk Winds II Adiabatic Winds from Nonisothermal Disks

    CERN Document Server

    Pereyra, N A; Blondin, J M; Pereyra, Nicolas Antonio; Kallman, Timothy R.; Blondin, John M.

    2000-01-01

    We present here numerical hydrodynamic simulations of line-driven accretion disk winds in cataclysmic variable systems. We calculate wind mass-loss rate, terminal velocities, and line profiles for CIV (1550 A) for various viewing angles. The models are 2.5-dimensional, include an energy balance condition, and calculate the radiation field as a function of position near an optically thick accretion disk. The model results show that centrifugal forces produce collisions of streamlines in the disk wind which in turn generate an enhanced density region, underlining the necessity of two dimensional calculations where these forces may be represented. For disk luminosity Ldisk = Lsun, white dwarf mass Mwd = 0.6 Msun, and white dwarf radii Rwd = 0.01 Rsun, we obtain a wind mass-loss rate of dMwind/dt = 8.0E-12 Msun/yr, and a terminal velocity of ~3000 km/s. The line profiles we obtain are consistent with observations in their general form, in particular in the maximum absorption at roughly half the terminal velocity ...

  3. Origin of nonlinearity and plausible turbulence by hydromagnetic transient growth in accretion disks: faster growth rate than magnetorotational instability

    CERN Document Server

    Nath, Sujit Kumar

    2015-01-01

    We investigate the evolution of hydromagnetic perturbations in a small section of accretion disks. It is known that molecular viscosity is negligible in accretion disks. Hence, it has been argued that a mechanism, known as Magnetorotational Instability (MRI), is responsible for transporting matter in the presence of weak magnetic field. However, there are some shortcomings, which question effectiveness of MRI. Now the question arises, whether other hydromagnetic effects, e.g. transient growth (TG), can play important role to bring nonlinearity in the system, even at weak magnetic fields. Otherwise, whether MRI or TG, which is primarily responsible to reveal nonlinearity to make the flow turbulent? Our results prove explicitly that the flows with high Reynolds number (Re ), which is the case of realistic astrophysical accretion disks, exhibit nonlinearity by TG of perturbation modes faster than that by modes producing MRI. For a fixed wave vector, MRI dominates over transient effects, only at low Re , lower th...

  4. Emergence of nonlinearity and plausible turbulence in accretion disks via hydromagnetic transient growth faster than magnetorotational instability

    CERN Document Server

    Nath, Sujit K

    2016-01-01

    We investigate the evolution of hydromagnetic perturbations in a small section of accretion disks. It is known that molecular viscosity is negligible in accretion disks. Hence, it has been argued that Magnetorotational Instability (MRI) is responsible for transporting matter in the presence of weak magnetic field. However, there are some shortcomings, which question effectiveness of MRI. Now the question arises, whether other hydromagnetic effects, e.g. transient growth (TG), can play an important role to bring nonlinearity in the system, even at weak magnetic fields. Otherwise, whether MRI or TG, which is primarily responsible to reveal nonlinearity to make the flow turbulent? Our results prove explicitly that the flows with high Reynolds number (Re), which is the case of realistic astrophysical accretion disks, exhibit nonlinearity by best TG of perturbation modes faster than that by best modes producing MRI. For a fixed wavevector, MRI dominates over transient effects, only at low Re, lower than its value ...

  5. Studies of Thermally Unstable Accretion Disks around Black Holes with Adaptive Pseudospectral Domain Decomposition Method. II. Limit-Cycle Behavior in accretion disks around Kerr black holes

    CERN Document Server

    Xue, Li; Abramowicz, Marek A; Lu, Ju-Fu

    2011-01-01

    For the first time ever, we derive equations governing the time-evolution of fully relativistic slim accretion disks in the Kerr metric, and numerically construct their detailed non-stationary models. We discuss applications of these general results to a possible limit-cycle behavior of thermally unstable disks. Our equations and numerical method are applicable in a wide class of possible viscosity prescriptions, but in this paper we use a diffusive form of the "standard alpha prescription" that assumes the viscous torque is proportional to the total pressure. In this particular case, we find that the parameters which dominate the limit-cycle properties are the mass-supply rate and the value of the alpha-viscosity parameter. Although the duration of the cycle (or the outburst) does not exhibit any clear dependence on the black hole spin, the maximal outburst luminosity (in the Eddington units) is positively correlated with the spin value. We suggest a simple method for a rough estimate of the black hole spin ...

  6. Ionized outflows in luminous type 2 AGNs at z < 0.6: no evidence for significant impact on the host galaxies

    Science.gov (United States)

    Villar-Martín, M.; Arribas, S.; Emonts, B.; Humphrey, A.; Tadhunter, C.; Bessiere, P.; Cabrera Lavers, A.; Ramos Almeida, C.

    2016-04-01

    We investigate the presence of extended ionized outflows in 18 luminous type 2 AGNs (11 quasars and 7 high luminosity Seyfert 2s) at 0.3outflows Ro ≳ several × 100 pc and upper limits Ro ≲ 1-2 kpc. Our results are inconsistent with related studies which suggest that large scale (Ro ˜several-15 kpc) are ubiquitous in QSO2. We study the possible causes of discrepancy and propose that seeing smearing is the cause of the large inferred sizes. The implications in our understanding of the feedback phenomenon are important since the mass Mo (through the density), mass injection M⊙o and energy injection Ėo rates of the outflows become highly uncertain. One conclusion seems unavoidable: Mo, M⊙o and Ėo are modest or low compared with previous estimations. We obtain typically M⊙o ≲ (0.4-22)×106 M⊙ (median 1.1×106 M⊙) assuming n =1000 cm-3. These are ˜102-104 times lower than values reported in the literature. Even under the most favorable assumptions, we obtain M⊙o ≲ 10 M⊙ yr-1 in general, 100-1000 times lower than claimed in related studies. Although the uncertainties are large, it is probable that these are lower than typical star forming rates. In conclusion, no evidence is found supporting that typical outflows can affect the interstellar medium of the host galaxies accross spatial scales ≳ 1-2 kpc.

  7. A Unified View of X-ray Absorbers in AGNs and XRBs with MHD Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Behar, Ehud; Contopoulos, John

    2016-01-01

    The presence of UV and X-ray absorbers (aka. warm absorbers or WAs) has been long known for decades from extensive spectroscopic studies across diverse AGN populations such as nearby Seyfert galaxies and distant quasars. Furthermore, another class of seemingly distinct type of absorbers, ultra-fast outflows or UFOs, is becoming increasingly known today. Nonetheless, a physical identification of such absorbers, such as geometrical property and physical conditions, is very elusive to date despite the recent state-of-the-art observations. We develop a coherent scenario in which the detected absorbers are driven primarily (if not exclusively) by the action of global magnetic fields originating from a black hole accretion disk. In the context of MHD disk-wind of density profile of n~1/r, it is found that the properties of the observed WAs/UFOs are successfully described assuming a characteristic SED. As a case study, we analyze PG1211+143 and GRO J1655-40 to demonstrate that our wind model can systematically unify apparently diverse absorbers in both AGNs and XRBs in terms of explaining their global behavior as well as individual spectral lines.

  8. Nucleosynthesis in Outflows from the Inner Regions of Collapsars

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason; Thompson, Todd

    2004-01-01

    We consider nucleosynthesis in outflows originating from the inner regions of viscous accretion disks formed after the collapse of a rotating massive star. We show that wind-like outflows driven by viscous and neutrino heating can efficiently synthesize Fe-group elements moving at near-relativistic velocities. The mass of 56Ni synthesized and the asymptotic velocities attained in our calculations are in accord with those inferred from observations of SN1998bw and SN2003dh. These steady wind-like outflows are generally proton rich, characterized by only modest entropies, and consequently synthesize essentially nothing heavier than the Fe-group elements. We also discuss bubble-like outflows resulting from rapid energy deposition in localized regions near or in the accretion disk. These intermittent ejecta emerge with low electron fraction and are a promising site for the synthesis of the A=130 r-process peak elements.

  9. VADER: A Flexible, Robust, Open-Source Code for Simulating Viscous Thin Accretion Disks

    CERN Document Server

    Krumholz, Mark R

    2014-01-01

    The evolution of thin axisymmetric viscous accretion disks is a classic problem in astrophysics. While such models provide only approximations to the true processes of instability-driven mass and angular momentum transport, their simplicity makes them invaluable tools for both semi-analytic modeling and simulations of long-term evolution where two- or three-dimensional calculations are too computationally costly. Despite the utility of these models, there is no publicly-available framework for simulating them. Here we describe a highly flexible, general numerical method for simulating viscous thin disks with arbitrary rotation curves, viscosities, boundary conditions, grid spacings, equations of state, and rates of gain or loss of mass (e.g., through winds) and energy (e.g., through radiation). Our method is based on a conservative, finite-volume, second-order accurate discretization of the equations, which we solve using an unconditionally-stable implicit scheme. We implement Anderson acceleration to speed c...

  10. Global transient dynamics of three-dimensional hydrodynamical disturbances in a thin viscous accretion disk

    CERN Document Server

    Rebusco, Paola; Kluzniak, Wlodek; Regev, Oded

    2009-01-01

    Thin viscous Keplerian accretion disks are considered asymptotically stable, even though they can show significant dynamic activity on short timescales. In this paper the dynamics of non-axisymmetric hydrodynamical disturbances of disks are investigated analytically building upon the steady state three-dimensional structure and evolution of axisymmetric perturbations explored in previous work. Assuming a polytropic equation of state solutions are found by means of an asymptotic expansion in the small parameter measuring the ratio of the disk thickness to characteristic radius. In-depth analysis shows that every perturbation that disturbs the radial velocity induces significant transient growth in the (acoustic) energy of the evolving disturbance. This effect is most evident in the density and vertical velocity. The transient growth observed is tied to the non-separable nature of the solutions where, in particular, pattern evolution is controlled by a similarity variable composed of the radial coordinate and t...

  11. Interaction of the magnetorotational instability with hydrodynamic turbulence in accretion disks

    CERN Document Server

    Workman, Jared C

    2008-01-01

    Accretion disks in which angular momentum transport is dominated by the magnetorotational instability (MRI) can also possess additional, purely hydrodynamic, drivers of turbulence. Even when the hydrodynamic processes, on their own, generate negligible levels of transport, they may still affect the evolution of the disk via their influence on the MRI. Here, we study the interaction between the MRI and hydrodynamic turbulence using local MRI simulations that include hydrodynamic forcing. As expected, we find that hydrodynamic forcing is generally negligible if it yields a saturated kinetic energy density that is small compared to the value generated by the MRI. For stronger hydrodynamic forcing levels, we find that hydrodynamic turbulence modifies transport, with the effect varying depending upon the spatial scale of hydrodynamic driving. Large scale forcing boosts transport by an amount that is approximately linear in the forcing strength, and leaves the character of the MRI (for example the ratio between Max...

  12. Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance

    CERN Document Server

    Johnson, Michael D; Shiokawa, Hotaka; Chael, Andrew A; Doeleman, Sheperd S

    2015-01-01

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. We demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the flow. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy using three-dimensional, general relativistic magnetohydrodynamic (GRMHD) simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT is capable of determining the direction and angular velocity of the emitting material near Sgr A*, even for highly-inclined flows, and they suggest that...

  13. Identifying Deficiencies of Standard Accretion Disk Theory: Lessons from a Mean-Field Approach

    CERN Document Server

    Hubbard, Alexander

    2008-01-01

    Turbulent viscosity is frequently used in accretion disk theory to replace the microphysical viscosity in order to accomodate the observational need for in- stabilities in disks that lead to enhanced transport. However, simply replacing the microphysical transport coefficient by a single turbulent transport coeffi- cient hides the fact that the procedure should formally arise as part of a closure in which the hydrodynamic or magnetohydrodynamic equations are averaged, and correlations of turbulent fluctuations are replaced by transport coefficients. Here we show how a mean field approach leads quite naturally two transport coefficients, not one, that govern mass and angular momentum transport. In particular, we highlight that the conventional approach suffers from a seemingly inconsistent neglect of turbulent diffusion in the surface density equation. We constrain these new transport coefficients for specific cases of inward, outward, and zero net mass transport. In addition, we find that one of the new trans...

  14. Hydrodynamic stability in accretion disks under the combined influence of shear and density stratification

    CERN Document Server

    Rüdiger, G; Shalybkov, D A

    2002-01-01

    The hydrodynamic stability of accretion disks is considered. The particular question is whether the combined action of a (stable) vertical density stratification and a (stable) radial differential rotation gives rise to a new instability for nonaxisymmetric modes of disturbances. The existence of such an instability is not suggested by the well-known Solberg-Hoiland criterion. It is also not suggested by a local analysis for disturbances in general stratifications of entropy and angular momentum which is presented in our Section 2 confirming the results of the Solberg-Hoiland criterion also for nonaxisymmetric modes within the frame of ideal hydrodynamics but only in the frame of a short-wave approximation for small m. As a necessary condition for stability we find that only conservative external forces are allowed to influence the stable disk. As magnetic forces are never conservative, linear disk instabilities should only exist in the magnetohydrodynamical regime which indeed contains the magnetorotational ...

  15. The Formation and Structure of a Strongly Magnetized Corona above Weakly Magnetized Accretion Disks

    CERN Document Server

    Miller, K A

    1999-01-01

    We use three-dimensional magnetohydrodynamical (MHD) simulations to study the formation of a corona above an initially weakly magnetized, isothermal accretion disk. We also describe a modification to time-explicit numerical algorithms for MHD which enables us to evolve highly stratified disks for many orbital times. We find that MHD turbulence driven by the magnetorotational instability (MRI) produces strong amplification of weak fields within two scale heights of the disk midplane in a few orbital times. About 25 % of the magnetic energy generated by the MRI within two scale heights escapes due to buoyancy, producing a strongly magnetized corona above the disk. Most of the buoyantly rising magnetic energy is dissipated between 3 and 5 scale heights, suggesting the corona will also be hot. The average vertical disk structure consists of a weakly magnetized turbulent core below a strongly magnetized corona which is stable to the MRI. The largescale field structure in both the disk and corona is toroidal. The f...

  16. A pure hydrodynamic instability in shear flows and its application to astrophysical accretion disks

    CERN Document Server

    Nath, Sujit Kumar

    2016-01-01

    We provide the possible resolution for the century old problem of hydrodynamic shear flows, which are apparently stable in linear analysis but shown to be turbulent in astrophysically observed data and experiments. This mismatch is noticed in a variety of systems, from laboratory to astrophysical flows. There are so many uncountable attempts made so far to resolve this mismatch, beginning with the early work of Kelvin, Rayleigh, and Reynolds towards the end of the nineteenth century. Here we show that the presence of stochastic noise, whose inevitable presence should not be neglected in the stability analysis of shear flows, leads to pure hydrodynamic linear instability therein. This explains the origin of turbulence, which has been observed/interpreted in astrophysical accretion disks, laboratory experiments and direct numerical simulations. This is, to the best of our knowledge, the first solution to the long standing problem of hydrodynamic instability of Rayleigh stable flows.

  17. Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis

    Science.gov (United States)

    Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.

    1993-01-01

    We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.

  18. Accretion disk dynamo as the trigger for X-ray binary state transitions

    CERN Document Server

    Begelman, Mitchell C; Reynolds, Christopher S

    2015-01-01

    Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in the presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a "dead zone" where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the sp...

  19. Ultraluminous X-ray sources as super-Eddington accretion disks

    CERN Document Server

    Fabrika, Sergei; Atapin, Kirill

    2016-01-01

    The origin of Ultraluminous X-ray sources (ULXs) in external galaxies whose X-ray luminosities exceed those of the brightest black holes in our Galaxy by hundreds and thousands of times is mysterious. The most popular models for the ULXs involve either intermediate mass black holes (IMBHs) or stellar-mass black holes accreting at super-Eddington rates. Here we review the ULX properties, their X-ray spectra indicate a presence of hot winds in their accretion disks supposing the supercritical accretion. However, the strongest evidences come from optical spectroscopy. The spectra of the ULX counterparts are very similar to that of SS 433, the only known supercritical accretor in our Galaxy.

  20. Global MHD Simulations of Accretion Disks in Cataclysmic Variables (CVs): I. The Importance of Spiral Shocks

    CERN Document Server

    Ju, Wenhua; Zhu, Zhaohuan

    2016-01-01

    We present results from the first global 3D MHD simulations of accretion disks in Cataclysmic Variable (CV) systems in order to investigate the relative importance of angular momentum transport via turbulence driven by the magnetorotational instability (MRI) compared to that driven by spiral shock waves. Remarkably, we find that even with vigorous MRI turbulence, spiral shocks are an important component to the overall angular momentum budget, at least when temperatures in the disk are high (so that Mach numbers are low). In order to understand the excitation, propagation, and damping of spiral density waves in our simulations more carefully, we perform a series of 2D global hydrodynamical simulations with various equation of states and both with and without mass inflow via the Lagrangian point (L1). Compared with previous similar studies, we find the following new results. 1) Linear wave dispersion relation fits the pitch angles of spiral density waves very well. 2) We demonstrate explicitly that mass accreti...

  1. Beltrami state in black-hole accretion disk: A magnetofluid approach

    CERN Document Server

    Bhattacharjee, Chinmoy; Stark, David J; Mahajan, S M

    2015-01-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a blackhole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall MHD system, we find that the space-time curvature can significantly alter the magnetic/velocity decay rate as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce a new oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  2. Photon-conserving Comptonization in simulations of accretion disks around black holes

    CERN Document Server

    Sadowski, Aleksander

    2015-01-01

    We introduce a new method for treating Comptonization in computational fluid dynamics. By construction, this method conserves the number of photons. Whereas the traditional "blackbody Comptonization" approach assumes that the radiation is locally a perfect blackbody and therefore uses a single parameter, the radiation temperature, to describe the radiation, the new "photon-conserving Comptonization" approach treats the photon gas as a Bose-Einstein fluid and keeps track of both the radiation temperature and the photon number density. We have implemented photon-conserving Comptonization in the general relativistic radiation magnetohydrodynamical code KORAL and we describe its impact on simulations of mildly super-critical black hole accretion disks. We find that blackbody Comptonization underestimates the gas and radiation temperature by up to a factor of two compared to photon-conserving Comptonization. This discrepancy could be serious when computing spectra. The photon-conserving simulation indicates that t...

  3. Beltrami state in black-hole accretion disk: A magnetofluid approach.

    Science.gov (United States)

    Bhattacharjee, Chinmoy; Das, Rupam; Stark, David J; Mahajan, S M

    2015-12-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a black hole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall magnetohydrodynamics (MHD) system, we find that the space-time curvature can significantly alter the magnetic (velocity) decay rates as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce an oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects. PMID:26764835

  4. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    CERN Document Server

    Mauche, C W; Mathiesen, B F; Jiménez-Garate, M A; Raymond, J C; Mauche, Christopher W.; Liedahl, Duane A.; Mathiesen, Benjamin F.; Jimenez-Garat, Mario A.; Raymond, John C.

    2004-01-01

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly alpha, He alpha, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Ly alpha and He alpha emission lines of H- and He-like C and O escaping the disk atmosphere.

  5. Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks

    CERN Document Server

    Hirabayashi, Kota

    2016-01-01

    A new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk is presented. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to a magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, to which we give a name "magneto-gradient driven instability", is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to...

  6. Local and global aspects of the linear MRI in accretion disks

    CERN Document Server

    Latter, Henrik N; Faure, Julien

    2015-01-01

    We revisit the linear MRI in a cylindrical model of an accretion disk and uncover a number of attractive results overlooked in previous treatments. In particular, we elucidate the connection between local axisymmetric modes and global modes, and show that a local channel flow corresponds to the evanescent part of a global mode. In addition, we find that the global problem reproduces the local dispersion relation without approximation, a result that helps explain the success the local analysis enjoys in predicting global growth rates. MRI channel flows are nonlinear solutions to the governing equations in the local shearing box. However, only a small subset of MRI modes share the same property in global disk models, providing further evidence that the prominence of channels in local boxes is artificial. Finally, we verify our results via direct numerical simulations with the Godunov code RAMSES.

  7. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    CERN Document Server

    Harko, Tiberiu; Mocanu, Gabriela

    2014-01-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise, which accounts for the general memory and retarded effects of the frictional force, and on the fluctuation-dissipation theorem. The presence of the memory effects influences the response of the disk to external random interactions, and modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The Power Spectral Distribution (PSD) of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the Intra...

  8. Fine-Tuning the Accretion Disk Clock in Hercules X-1

    Science.gov (United States)

    Still, M.; Boyd, P.

    2004-01-01

    RXTE ASM count rates from the X-ray pulsar Her X-1 began falling consistently during the late months of 2003. The source is undergoing another state transition similar to the anomalous low state of 1999. This new event has triggered observations from both space and ground-based observatories. In order to aid data interpretation and telescope scheduling, and to facilitate the phase-connection of cycles before and after the state transition, we have re-calculated the precession ephemeris using cycles over the last 3.5 years. We report that the source has displayed a different precession period since the last anomalous event. Additional archival data from CGRO suggests that each low state is accompanied by a change in precession period and that the subsequent period is correlated with accretion flux. Consequently our analysis reveals long-term accretion disk behaviour which is predicted by theoretical models of radiation-driven warping.

  9. Equilibrium disks, MRI mode excitation, and steady state turbulence in global accretion disk simulations

    CERN Document Server

    Parkin, E R

    2012-01-01

    Global three dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when non-linear motions - perhaps triggered by the onset of turbulence - upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with...

  10. Accretion Disk Model of Short-Timescale Intermittent Activity in Young Radio Sources

    CERN Document Server

    Czerny, Bozena; Janiuk, Agnieszka; Nikiel-Wroczynski, Blazej; Stawarz, Lukasz

    2009-01-01

    We associate the existence of short-lived compact radio sources with the intermittent activity of the central engine caused by a radiation pressure instability within an accretion disk. Such objects may constitute a numerous sub-class of Giga-Hertz Peaked Spectrum sources, in accordance with the population studies of radio-loud active galaxies, as well as detailed investigations of their radio morphologies. We perform the model computations assuming the viscosity parametrization as proportional to a geometrical mean of the total and gas pressure. The implied timescales are consistent with the observed ages of the sources. The duration of an active phase for a moderate accretion rate is short enough (< 10^3-10^4 years) that the ejecta are confined within the host galaxy and thus these sources cannot evolve into large size radio galaxies unless they are close to the Eddington limit.

  11. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

    International Nuclear Information System (INIS)

    X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

  12. Broad absorption line (BAL) quasars as a class of low luminosity AGNs

    OpenAIRE

    Kunert-Bajraszewska, M.; Ceglowski, M.; Roskowinski, C.; Gawronski, M.

    2015-01-01

    Broad absorption lines seen in some quasars prove the existence of ionized plasma outflows from the accretion disk. Outflows together with powerful jets are important feedback processes. Understanding physics behind BAL outflows might be a key to comprehend Galaxy Evolution as a whole. First radio-loud BAL quasar was discovered in 1997 and this discovery has opened new possibilities for studies of the BAL phenomena, this time on the basis of radio emission. However, information about the radi...

  13. ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC 1433

    CERN Document Server

    Combes, F; Casasola, V; Hunt, L; Krips, M; Baker, A J; Boone, F; Eckart, A; Marquez, I; Neri, R; Schinnerer, E; Tacconi, L J

    2013-01-01

    We report ALMA observations of CO(3-2) emission in the Seyfert 2 double-barred galaxy NGC1433, at the unprecedented spatial resolution of 0.5"=24 pc. Our aim is to probe AGN feeding and feedback phenomena through the morphology and dynamics of the gas inside the central kpc. The CO map, which covers the whole nuclear region (nuclear bar and ring), reveals a nuclear gaseous spiral structure, inside the nuclear ring encircling the nuclear stellar bar. This gaseous spiral is well correlated with the dusty spiral seen in Hubble Space Telescope images. The nuclear spiral winds up in a pseudo-ring at 200 pc radius, which might correspond to the inner ILR. Continuum emission is detected at 0.87 mm only at the very centre, and its origin is more likely thermal dust emission than non-thermal emission from the AGN. It might correspond to the molecular torus expected to exist in this Seyfert 2 galaxy. The HCN(4-3) and HCO+(4-3) lines were observed simultaneously, but only upper limits are derived, with a ratio to the CO...

  14. Non-thermal AGN models

    International Nuclear Information System (INIS)

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (α ≅ .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig

  15. Evolutionary processes in protoplanetary accretion disks: the propagation of axisymmetric shock waves

    Science.gov (United States)

    Willerding, Eugen

    1998-12-01

    In this paper we investigate both the global and the local hydrodynamics of axisymmetric accretion disks around young stellar objects under the simultaneous action of viscosity, self-gravity and pressure forces. For simplicity, we take for the global model a polytropic equation of state, make the infinitely thin disk approximation and characterize the surface density and temperature profiles in the disk as power laws in the radial distance r from the protostar. We solve the problem of the general density profile of a Keplerian disk showing that self-gravity could not be an important factor for the fast formation of the rocky cores of giant gaseous planets in our solar system. Under the hypothesis that the unperturbed rotation curve of the disk is nearly Keplerian throughout the radial extent, we can estimate with our polytropic model a lower limit for the resulting masses Md( r) of stable disks up to 100 AU. These masses are in the range of the so-called minimum mass solar nebular ( d/M s ≈ 0.01-0.02 ). By adopting a simplified viscosity model, where the height-integrated turbulent dynamical viscosity ν is a function of the surface density σ like η ∝ σΓ, we derive in the local shearing sheet model linearized evolution equations for small density perturbations describing both a diffusion process and the propagation of acoustic density waves. We solve a special initial value problem and calculate the appropriate Green's function. The analytical solutions so obtained describe in the case Γ Γc the density wave equation describes the propagation of an "overstable" ring-shaped acoustic density wavelet to the outer ranges of the accretion disk. Whereas the group velocity of the wave packet is subsonic, the phase velocities of individual wave crests in the wave packet are supersonic. The mode of maximum instability, the growth rate and the number of growing waves in the wavelet are controlled by Γ and α. Our present knowledge concerning turbulent viscosity in

  16. Thermodynamic model of MHD turbulence and some of its applications to accretion disks

    Science.gov (United States)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2008-06-01

    Within the framework of the main problem of cosmogony related to the reconstruction of the evolution of the protoplanetary gas-dust cloud that surrounded the proto-Sun at an early stage of its existence, we have derived a closed system of magnetohydrodynamic equations for the scale of mean motion in the approximation of single-fluid magnetohydrodynamics designed to model the shear and convective turbulent flows of electrically conducting media in the presence of a magnetic field. These equations are designed for schematized formulations and the numerical solution of special problems to interconsistently model intense turbulent flows of cosmic plasma in accretion disks and associated coronas, in which the magnetic field noticeably affects the dynamics of astrophysical processes. In developing the model of a conducting turbulized medium, apart from the conventional probability-theoretical averaging of the MHD equations, we systematically use the weighted Favre averaging. The latter allows us to considerably simplify the writing of the averaged equations of motion for a compressible fluid and the analysis of the mechanisms of macroscopic field amplification by turbulent flows. To clearly interpret the individual components of the plasma and field-energy balance, we derive various energy equations that allow us to trace the possible energy conversions from one form into another, in particular, to understand the transfer mechanisms of the gravitational and kinetic energies of the mean motion into magnetic energy. Special emphasis is placed on the method for obtaining the closure relations for the total (with allowance made for the magnetic field) kinetic turbulent stress tensor in an electrically conducting medium and the turbulent electromotive force (or the so-called magnetic Reynolds tensor). This method also makes it possible to analyze the constraints imposed on the turbulent transport coefficients by the entropy growth condition. As applied to the problem of

  17. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - III. Application to a hydrodynamical simulation

    Science.gov (United States)

    Sim, S. A.; Proga, D.; Miller, L.; Long, K. S.; Turner, T. J.

    2010-11-01

    We perform multidimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disc wind from an active galactic nucleus. The synthetic spectra confirm expectations from parametrized models that a disc wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disc plane but ultimately falls back. We also confirm that the strong Fe Kα line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disc wind somewhat more challenging and should be considered in future wind simulations.

  18. An Axisymmetric Hydrodynamical Model for the Torus Wind in AGN. 2; X-ray Excited Funnel Flow

    Science.gov (United States)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorption line spectra.

  19. A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks

    International Nuclear Information System (INIS)

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole

  20. A High-Frequency Doppler Feature in the Power Spectra of Simulated GRMHD Black Hole Accretion Disks

    CERN Document Server

    Wellons, Sarah; Psaltis, Dimitrios; Narayan, Ramesh; McClintock, Jeffrey E

    2013-01-01

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  1. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    CERN Document Server

    Ghosh, Arindam

    2016-01-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. By the time the flow reaches the inner edge, the variation in X-rays needs not reflect the true variation of the rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale also to spread around a mean value. In HMXBs, the size of the viscous Keplerian disk is smaller & thus such a spread could be lower as compared to the LMXBs. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a full knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales when there is an ellipticity in the orbit. We study a few compact binaries using long term RXTE/ASM(1.5-12 keV) & Swift/BAT(15-50keV) data to look for such effects & to infer what the...

  2. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    CERN Document Server

    Feldmeier, A; Feldmeier, Achim; Shlosman, Isaac

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow types result, depending on the location of perturbations. First, if the shallow solution is perturbed sufficiently far downstream, a single critical point forms in the flow, which is a barrier for Abbott waves, and the solution tends to the critical one. Second, if the shallow solution is perturbed upstream from this critical point, mass overloading results, and the critical point is shifted inwards. This wind exhibits a broad, stationary region of decelerating flow and its velocity law has kinks. Third, for perturbations eve...

  3. An ALMA Constraint on the GSC 6214-210 B Circum-Substellar Accretion Disk Mass

    CERN Document Server

    Bowler, Brendan P; Kraus, Adam L; Ireland, Michael J; Herczeg, Gregory; Ricci, Luca; Carpenter, John; Brown, Michael E

    2015-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of GSC 6214-210 A and B, a solar-mass member of the 5-10 Myr Upper Scorpius association with a 15 $\\pm$ 2 Mjup companion orbiting at $\\approx$330 AU (2.2"). Previous photometry and spectroscopy spanning 0.3-5 $\\mu$m revealed optical and thermal excess as well as strong H$\\alpha$ and Pa~$\\beta$ emission originating from a circum-substellar accretion disk around GSC 6214-210 B, making it the lowest mass companion with unambiguous evidence of a subdisk. Despite ALMA's unprecedented sensitivity and angular resolution, neither component was detected in our 880 $\\mu$m (341 GHz) continuum observations down to a 3-$\\sigma$ limit of 0.22 mJy/beam. The corresponding constraints on the dust mass and total mass are <0.15 Mearth and <0.05 Mjup, respectively, or <0.003% and <0.3% of the mass of GSC 6214-210 B itself assuming a 100:1 gas-to-dust ratio and characteristic dust temperature of 10-20 K. If the host star possesses a putative c...

  4. Hybrid viscosity and the magnetoviscous instability in hot, collisionless accretion disks

    CERN Document Server

    Subramanian, Prasad; Kafatos, Menas

    2008-01-01

    We aim to illustrate the role of hot protons in enhancing the magnetorotational instability (MRI) via the ``hybrid'' viscosity, which is due to the redirection of protons interacting with static magnetic field perturbations, and to establish that it is the only relevant mechanism in this situation. It has recently been shown by Balbus \\cite{PBM1} and Islam & Balbus \\cite{PBM11} using a fluid approach that viscous momentum transport is key to the development of the MRI in accretion disks for a wide range of parameters. However, their results do not apply in hot, advection-dominated disks, which are collisionless. We develop a fluid picture using the hybrid viscosity mechanism, that applies in the collisionless limit. We demonstrate that viscous effects arising from this mechanism can significantly enhance the growth of the MRI as long as the plasma $\\beta \\gapprox 80$. Our results facilitate for the first time a direct comparison between the MHD and quasi-kinetic treatments of the magnetoviscous instabilit...

  5. Dissipation and Vertical Energy Transport in Radiation-Dominated Accretion Disks

    CERN Document Server

    Blaes, Omer; Hirose, Shigenobu; Shabaltas, Natalia

    2011-01-01

    Standard models of radiation supported accretion disks generally assume that diffusive radiation flux is solely responsible for vertical heat transport. This requires that heat must be generated at a critical rate per unit volume if the disk is to be in hydrostatic and thermal equilibrium. This raises the question of how heat is generated and how energy is transported in MHD turbulence. By analysis of a number of radiation/MHD stratified shearing-box simulations, we show that the divergence of the diffusive radiation flux is indeed capped at the critical rate, but deep inside the disk, substantial vertical energy flux is also carried by advection of radiation. Work done by radiation pressure is a significant part of the energy budget, and much of this work is dissipated later through damping by radiative diffusion. We show how this damping can be measured in the simulations, and identify its physical origins. Radiative damping accounts for as much as tens of percent of the total dissipation, and is the only r...

  6. Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance

    Science.gov (United States)

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka; Chael, Andrew A.; Doeleman, Sheperd S.

    2015-11-01

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.

  7. The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared.

    Science.gov (United States)

    Kishimoto, Makoto; Antonucci, Robert; Blaes, Omer; Lawrence, Andy; Boisson, Catherine; Albrecht, Marcus; Leipski, Christian

    2008-07-24

    Quasars are thought to be powered by supermassive black holes accreting surrounding gas. Central to this picture is a putative accretion disk which is believed to be the source of the majority of the radiative output. It is well known, however, that the most extensively studied disk model-an optically thick disk which is heated locally by the dissipation of gravitational binding energy-is apparently contradicted by observations in a few major respects. In particular, the model predicts a specific blue spectral shape asymptotically from the visible to the near-infrared, but this is not generally seen in the visible wavelength region where the disk spectrum is observable. A crucial difficulty has been that, towards the infrared, the disk spectrum starts to be hidden under strong, hot dust emission from much larger but hitherto unresolved scales, and thus has essentially been impossible to observe. Here we report observations of polarized light interior to the dust-emitting region that enable us to uncover this near-infrared disk spectrum in several quasars. The revealed spectra show that the near-infrared disk spectrum is indeed as blue as predicted. This indicates that, at least for the outer near-infrared-emitting radii, the standard picture of the locally heated disk is approximately correct. PMID:18650919

  8. Anisotropy of X-ray bursts from neutron stars with concave accretion disks

    CERN Document Server

    He, Chong-Chong

    2015-01-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is not isotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk and vice versa cause the observed flux to depend on the inclination angle of the disk with respect to the line of sight. This is of special importance for the interpretation of Type I X-ray bursts, which are powered by the thermonuclear burning of matter accreted onto the neutron star. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star equation of state. Previous studies made predictions of the anisotropy factor for the total burst flux, assuming a geometrically flat disk. Recently, detailed observations of two exceptionally long bursts (so-called superbursts) allowed for the first time for the...

  9. Large Scale Azimuthal Structures Of Turbulence In Accretion Disks - Dynamo triggered variability of accretion

    CERN Document Server

    Flock, M; Klahr, H; Turner, N; Henning, Th

    2011-01-01

    We investigate the significance of large scale azimuthal, magnetic and velocity modes for the MRI turbulence in accretion disks. We perform 3D global ideal MHD simulations of global stratified proto-planetary disk models. Our domains span azimuthal angles of \\pi/4, \\pi/2, \\pi and 2\\pi. We observe up to 100% stronger magnetic fields and stronger turbulence for the restricted azimuthal domain models \\pi/2 and \\pi/4 compared to the full 2\\pi model. We show that for those models, the Maxwell Stress is larger due to strong axisymmetric magnetic fields, generated by the \\alpha \\Omega dynamo. Large radial extended axisymmetric toroidal fields trigger temporal magnification of accretion stress. All models display a positive dynamo-\\alpha in the northern hemisphere (upper disk). The parity is distinct in each model and changes on timescales of 40 local orbits. In model 2\\pi, the toroidal field is mostly antisymmetric in respect to the midplane. The eddies of the MRI turbulence are highly anisotropic. The major wavelen...

  10. Turbulence and Steady Flows in 3D Global Stratified MHD Simulations of Accretion Disks

    CERN Document Server

    Flock, M; Klahr, H; Turner, N J; Henning, Th

    2011-01-01

    We present full 2 Pi global 3-D stratified MHD simulations of accretion disks. We interpret our results in the context of proto-planetary disks. We investigate the turbulence driven by the magneto-rotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m=5. No clear meridional circulation appears in t...

  11. Modelling Accretion Disk and Stellar Wind Interactions: the Case of Sgr A*

    CERN Document Server

    Christie, I M; Mimica, P; Giannios, D

    2016-01-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in $\\sim10^{8}$ cm s$^{-1}$ range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericenter passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly ...

  12. Spinning Unmagnetized Plasma for Laboratory Studies of Astrophysical Accretion Disks & Dynamos

    Science.gov (United States)

    Collins, Cami

    2015-11-01

    A technique for creating a large, fast-flowing, unmagnetized plasma has been demonstrated experimentally. This marks an important first step towards laboratory studies of phenomenon such as magnetic field generation through self-excited dynamos, or the magnetorotational instability (MRI), the mechanism of interest for its role in the efficient outward transport of angular momentum in accretion disks. In the Plasma Couette Experiment (PCX), a sufficiently hot, steady-state plasma is confined in a cylindrical, axisymmetric multicusp magnetic field, with Tecritical ionization velocity limit reported to occur in partially ionized plasmas. PCX has achieved magnetic Reynolds numbers of Rm ~ 65 and magnetic Prandtl numbers of Pm ~ 0.2-10, which are approaching regimes shown to excite the MRI in a global Hall-MHD stability analysis. Ion-neutral collisions effectively add a body force that undesirably changes the flow profile shape. Recent upgrades have increased the ionization fraction with an additional 6 kW of microwave heating power and stronger magnets that reduce loss area and increase plasma volume by 150%. In addition, an alternative scheme using volume-applied JxB force will maintain the shear profile and destabilize the MRI at more easily achievable plasma parameters.

  13. Radial mixing in protoplanetary accretion disks VII. 2-dimensional transport of tracers

    CERN Document Server

    Wehrstedt, Michael

    2008-01-01

    The detection of significant concentrations of crystalline silicates in comets indicates an extensive radial mixing in the primordial solar nebula. In studying the radial transport of matter within protoplanetary disks by numerical model calculations it is essential to resolve the vertical disk structure since matter is mixed radially inward and outward by a complex 2-dimensional flow pattern that is superposed on the global inward directed accretion flow. A numerical model calculation for a protoplanetary accretion disks with radial and vertical mixing is performed in the 1+1-dimensional approximation. The global 2D velocity field of the disk is calculated from an analytical solution for the meridional flow pattern, that exhibits an inward drift in the upper layers and an outward drift in the midplane in most parts of the disk. The disk model is based on the $\\beta$-prescription of viscosity and considers vertical self-gravitation of the disk. The mixing processes are studied for the following species: amorp...

  14. Integrated accretion disk angular momentum removal and astrophysical jet acceleration mechanism

    Science.gov (United States)

    Bellan, Paul

    2015-11-01

    A model has been developed for how accretion disks discard angular momentum while powering astrophysical jets. The model depends on the extremely weak ionization of disks. This causes disk ions to be collisionally locked to adjacent disk neutrals so a clump of disk ions and neutrals has an effective cyclotron frequency αωci where α is the fractional ionization. When αωci is approximately twice the Kepler orbital frequency, conservation of canonical momentum shows that the clump spirals radially inwards producing a radially inward disk electric current as electrons cannot move radially in the disk. Upon reaching the jet radius, this current then flows axially away from the disk plane along the jet, producing a toroidal magnetic field that drives the jet. Electrons remain frozen to poloidal flux surfaces everywhere and electron motion on flux surfaces in the ideal MHD region outside the disk completes the current path. Angular momentum absorbed from accreting material in the disk by magnetic counter-torque -JrBz is transported by the electric circuit and ejected at near infinite radius in the disk plane. This is like an electric generator absorbing angular momentum and wired to a distant electric motor that emits angular momentum. Supported by USDOE/NSF Partnership in Plasma Science.

  15. 3D-MHD simulations of an accretion disk with star-disk boundary layer

    CERN Document Server

    Steinacker, A; Steinacker, Adriane; Papaloizou, John C.B.

    2002-01-01

    We present global 3D MHD simulations of geometrically thin but unstratified accretion disks in which a near Keplerian disk rotates between two bounding regions with initial rotation profiles that are stable to the MRI. The inner region models the boundary layer between the disk and an assumed more slowly rotating central, non magnetic star. We investigate the dynamical evolution of this system in response to initial vertical and toroidal fields imposed in a variety of domains contained within the near Keplerian disk. Cases with both non zero and zero net magnetic flux are considered and sustained dynamo activity found in runs for up to fifty orbital periods at the outer boundary of the near Keplerian disk. Simulations starting from fields with small radial scale and with zero net flux lead to the lowest levels of turbulence and smoothest variation of disk mean state variables. For our computational set up, average values of the Shakura & Sunyaev (1973) $\\alpha$ parameter in the Keplerian disk are typicall...

  16. Detailed Mid- and Far-Ultraviolet Model Spectra for Accretion Disks in Cataclysmic Binaries

    CERN Document Server

    Wade, R A; Wade, Richard A.; Hubeny, Ivan

    1998-01-01

    We present a large grid of computed far- and mid-ultraviolet spectra (850 Angstroms to 2000 Angstroms) of the integrated light from steady-state accretion disks in luminous cataclysmic variables. The spectra are tabulated at 0.25 Angstrom intervals with an adopted FWHM resolution of 1.0 Angstrom, so they are suitable for use with observed spectra from a variety of modern space-borne observatories. Twenty-six different combinations of white dwarf mass M(wd) and mass accretion rate dM/dt are considered, and spectra are presented for six different disk inclinations, i. The disk models are computed self-consistently in the plane-parallel approximation, assuming LTE and vertical hydrostatic equilibrium, by solving simultaneously the radiative transfer, hydrostatic equilibrium, and energy balance equations. Irradiation from external sources is neglected. Local spectra of disk annuli are computed taking into account line transitions from elements 1-28 (H through Ni). Limb darkening as well as Doppler broadening and ...

  17. Evidence for Large Temperature Fluctuations in Quasar Accretion Disks From Spectral Variability

    CERN Document Server

    Ruan, John J; Dexter, Jason; Agol, Eric

    2014-01-01

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk, and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in SDSS-I/II, we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well-fit by a power-law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of a inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide ...

  18. Rotating winds from accretion disks in cataclysmic variables eclipse modeling of V347 Puppis

    CERN Document Server

    Shlosman, I; Mauche, C W; Shlosman, Isaac; Vitello, Peter; Mauche, Christopher W

    1995-01-01

    We study the eclipsing nova-like variable V347 Pup by matching its UV emission line profiles in and out of eclipse to synthetic lines using a 3D kinematic and radiation transfer model. Our results support the accretion disk origin of winds in non-magnetic CVs as opposite to the WD origin. Our main point concerns the importance of rotation for the UV emission line shapes in such systems. In particular, we show that the narrowing of the UV emission lines in V347 Pup during eclipse can be easily explained by the eclipse of the innermost part of the wind by the secondary and the resulting reduction in the contribution of rotational broadening to the width of the lines. During the eclipse, the residual line flux is very sensitive to the maximal temperature of disk radiation. Good fits for reasonable mass-loss rates have been obtained for maximum disk temperatures of 50,000 degrees. This constraint was imposed either by leveling off the inner disk temperature profiles, in agreement with recent observations of some ...

  19. VERTICAL STRUCTURE AND CORONAL POWER OF ACCRETION DISKS POWERED BY MAGNETOROTATIONAL-INSTABILITY TURBULENCE

    International Nuclear Information System (INIS)

    In this paper, we consider two outstanding intertwined problems in modern high-energy astrophysics: (1) the vertical-thermal structure of an optically thick accretion disk heated by the dissipation of magnetohydrodynamic turbulence driven by the magnetorotational instability (MRI), and (2) determining the fraction of the accretion power released in the corona above the disk. For simplicity, we consider a gas-pressure-dominated disk and assume a constant opacity. We argue that the local turbulent dissipation rate due to the disruption of the MRI channel flows by secondary parasitic instabilities should be uniform across most of the disk, almost up to the disk photosphere. We then obtain a self-consistent analytical solution for the vertical thermal structure of the disk, governed by the balance between the heating by MRI turbulence and the cooling by radiative diffusion. Next, we argue that the coronal power fraction is determined by the competition between the Parker instability, viewed as a parasitic instability feeding off of MRI channel flows, and other parasitic instabilities. We show that the Parker instability inevitably becomes important near the disk surface, leading to a certain lower limit on the coronal power. While most of the analysis in this paper focuses on the case of a disk threaded by an externally imposed vertical magnetic field, we also discuss the zero net flux case, in which the magnetic field is produced by the MRI dynamo itself, and show that most of our arguments and conclusions should be valid in this case as well

  20. REVISITING PUTATIVE COOL ACCRETION DISKS IN ULTRALUMINOUS X-RAY SOURCES

    International Nuclear Information System (INIS)

    Soft, potentially thermal spectral components observed in some ultra-luminous X-ray sources (ULXs) can be fit with models for emission from cool, optically thick accretion disks. If that description is correct, the low temperatures that are observed imply accretion onto 'intermediate-mass' black holes. Subsequent work has found that these components may follow an inverse relationship between luminosity and temperature, implying a non-blackbody origin for this emission. We have re-analyzed numerous XMM-Newton spectra of extreme ULXs. Crucially, observations wherein the source fell on a chip gap were excluded owing to their uncertain flux calibration, and the neutral column density along the line of sight to a given source was jointly determined by multiple spectra. The luminosity of the soft component is found to be positively correlated with temperature, and to be broadly consistent with L∝T 4 in the measured band pass, as per blackbody emission from a standard thin disk. These results are nominally consistent with accretion onto black holes with masses above the range currently known in Galactic X-ray binaries, though there are important caveats. Emission from inhomogeneous or super-Eddington disks may also be consistent with the data

  1. High-Frequency QPOs and Overstable Oscillations of Black-Hole Accretion Disks

    CERN Document Server

    Lai, Dong; Tsang, David; Horak, Jiri; Yu, Cong

    2012-01-01

    The physical origin of high-frequency QPOs (HFQPOs) in black-hole X-ray binaries remains an enigma despite many years of detailed observational studies. Although there exists a number of models for HFQPOs, many of these are simply "notions" or "concepts" without actual calculation derived from fluid or disk physics. Future progress requires a combination of numerical simulations and semi-analytic studies to extract physical insights. We review recent works on global oscillation modes in black-hole accretion disks, and explain how, with the help of general relativistic effects, the energy stored in the disk differential rotation can be pumped into global spiral density modes in the disk, making these modes grow to large amplitudes under certain conditions ("corotational instability"). These modes are robust in the presence of disk magnetic fields and turbulence. The computed oscillation mode frequencies are largely consistent with the observed values for HFQPOs in BH X-ray binaries. The approximate 2:3 frequen...

  2. Characterising anomalous transport in accretion disks from X-ray observations

    CERN Document Server

    Greenhough, J; Chaty, S; Dendy, R O; Rowlands, G

    2002-01-01

    Whilst direct observations of internal transport in accretion disks are not yet possible, measurement of the energy emitted from accreting astrophysical systems can provide useful information on the physical mechanisms at work. Here we examine the unbroken multi-year time variation of the total X-ray flux from three sources: Cygnus X-1, the microquasar GRS1915+105, and for comparison the nonaccreting Crab nebula. To complement previous analyses, we demonstrate that the application of advanced statistical methods to these observational time-series reveals important contrasts in the nature and scaling properties of the transport processes operating within these sources. We find the Crab signal resembles Gaussian noise; the Cygnus X-1 signal is a leptokurtic random walk whose self-similar properties persist on timescales up to three years; and the GRS1915+105 signal is similar to that from Cygnus X-1, but with self-similarity extending possibly to only a few days. This evidence of self-similarity provides a robu...

  3. High-Density Effects in X-ray Reflection Models from Accretion Disks

    CERN Document Server

    García, Javier A; Kallman, Timothy R; Dauser, Thomas; Parker, Michael L; McClintock, Jeffrey E; Steiner, James F; Wilms, Jörn

    2016-01-01

    The current models for the X-ray reflected spectrum from accretion disks around compact objects are commonly calculated for a constant density along a few Thomson depths from in the direction normal to the irradiated surface. In this models an important simplification is adopted, that is that the ionization structure of the material is completely governed by the the ratio of the incident flux to the gas density (i.e., the ionization parameter $\\xi$. In this setup the value of the density is is typically fixed at $n=10^{15}$ cm$^{-3}$, as it is assumed that the ionization state of the gas is the same for equal values of $\\xi$. In this paper we explore the limitations of this assumption by computing the reflected spectra for various values of the gas density. We show that for large values ($n \\gtrsim 10^{17}$ cm$^{-3}$) the high-density effects become important, significantly modifying the reflected spectrum. The main observed effect is a large increase of thermal emission at soft energies (below $\\sim2$ keV), ...

  4. Stronger Reflection from Black Hole Accretion Disks in Soft X-ray States

    CERN Document Server

    Steiner, James F; Garcia, Javier A; McClintock, Jeffrey E

    2016-01-01

    We analyze 15,000 spectra of 29 stellar-mass black hole candidates collected over the 16-year mission lifetime of RXTE using a simple phenomenological model. As these black holes vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: The Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely the Compton power law. We find that reflection is several times more pronounced (~3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which ...

  5. The evolution of a supermassive retrograde binary embedded in an accretion disk

    CERN Document Server

    Ivanov, P B; Paardekooper, S -J; Polnarev, A G

    2016-01-01

    In this note we discuss the main results of a study of a massive binary with unequal mass ratio, q, embedded in an accretion disk, with its orbital rotation being opposed to that of the disk. When the mass ratio is sufficiently large, a gap opens in the disk, but the mechanism of gap formation is very different from the prograde case. Inward migration occurs on a timescale of t_ev ~ M_p/(dot M), where M_p is the mass of the less massive component (the perturber), and dot M is the accretion rate. When q<< 1, the accretion takes place mostly onto the more massive component, with the accretion rate onto the perturber being smaller than, or of order of, q^(1/3)M. However, this rate increases when supermassive binary black holes are considered and gravitational wave emission is important. We estimate a typical duration of time for which the accretion onto the perturber and gravitational waves could be detected.

  6. Numerical relativity simulations of thick accretion disks around tilted Kerr black holes

    CERN Document Server

    Mewes, Vassilios; Galeazzi, Filippo; Montero, Pedro J; Stergioulas, Nikolaos

    2015-01-01

    In this work we present 3D numerical relativity simulations of thick accretion disks around {\\it tilted} Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered ($0.044-0.16$) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of ...

  7. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    International Nuclear Information System (INIS)

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)

  8. THERMAL EQUILIBRIA OF OPTICALLY THIN, MAGNETICALLY SUPPORTED, TWO-TEMPERATURE, BLACK HOLE ACCRETION DISKS

    International Nuclear Information System (INIS)

    We obtained thermal equilibrium solutions for optically thin, two-temperature black hole accretion disks incorporating magnetic fields. The main objective of this study is to explain the bright/hard state observed during the bright/slow transition of galactic black hole candidates. We assume that the energy transfer from ions to electrons occurs via Coulomb collisions. Bremsstrahlung, synchrotron, and inverse Compton scattering are considered as the radiative cooling processes. In order to complete the set of basic equations, we specify the magnetic flux advection rate instead of β = pgas/pmag. We find magnetically supported (low-β), thermally stable solutions. In these solutions, the total amount of the heating via the dissipation of turbulent magnetic fields goes into electrons and balances the radiative cooling. The low-β solutions extend to high mass accretion rates (∼>α2M-dotEdd) and the electron temperature is moderately cool (Te ∼ 108-109.5 K). High luminosities (∼>0.1LEdd) and moderately high energy cutoffs in the X-ray spectrum (∼50-200 keV) observed in the bright/hard state can be explained by the low-β solutions.

  9. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    Science.gov (United States)

    Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela

    2014-05-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.

  10. Indirect imaging of an accretion disk rim in the long-period interacting binary W Crucis

    CERN Document Server

    Pavlovski, K; Mimica, P

    2006-01-01

    Light curves of the long-period Algols are known for their complex shape (asymmetry in the eclipse, light variations outside eclipse, changes from cycle-to-cycle), and their interpretation is not possible in the standard model of binary stars. Complex structures present in these active Algol systems could be studied with the eclipse-mapping method which was successfully applied to the new 7-color photometric observations in the Geneva system of W Cru, belonging to the isolated group of these active Algols. Several cycles of this long-period (198.5 days) eclipsing binary have been covered by observations. We have used a modified Rutten's approach to the eclipse-mapping. The optimization of the system's parameters and the recovery of the disk intensity distribution are performed using a genetic algorithm (GA). It is found that a hot component is hidden in the thick accretion disk which confirms previous findings. The mass of the component, M1 = 8.2 Ms indicates that it is a mid-B type star. The mass-losing comp...

  11. A Hot and Massive Accretion Disk around the High-Mass Protostar IRAS 20126+4104

    CERN Document Server

    Chen, Huei-Ru Vivien; Zhang, Qizhou; Sridharan, T K; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-01-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array that for the first time measure the disk density, temperature, and rotational velocity with sufficient resolution (0.37", equivalent to ~600 AU) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 AU region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3x10^4 Lsun, the optimized model gives a disk mass of ...

  12. Pseudo-Newtonian Potentials to Describe the Temporal Effects on Relativistic Accretion Disks around Rotating Black Holes and Neutron Stars

    OpenAIRE

    Mukhopadhyay, Banibrata; Misra, Ranjeev

    2002-01-01

    Two pseudo-Newtonian potentials, which approximate the angular and epicyclic frequencies of the relativistic accretion disk around rotating (and counter rotating) compact objects, are presented. One of them, the Logarithmically Modified Potential, is a better approximation for the frequencies while the other, the Second-order Expanded potential, also reproduces the specific energy for circular orbits in close agreement with the General Relativistic values. These potentials may be included in ...

  13. ANTI-CORRELATED TIME LAGS IN THE Z SOURCE GX 5-1: POSSIBLE EVIDENCE FOR A TRUNCATED ACCRETION DISK

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, K.; Choi, C. S. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Rao, A. R., E-mail: astrosriram@yahoo.co.in [Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2012-06-01

    We investigate the nature of the inner accretion disk in the neutron star source GX 5-1 by making a detailed study of time lags between X-rays of different energies. Using the cross-correlation analysis, we found anti-correlated hard and soft time lags of the order of a few tens to a few hundred seconds and the corresponding intensity states were mostly the horizontal branch (HB) and upper normal branch. The model independent and dependent spectral analysis showed that during these time lags the structure of the accretion disk significantly varied. Both eastern and western approaches were used to unfold the X-ray continuum and systematic changes were observed in soft and hard spectral components. These changes along with a systematic shift in the frequency of quasi-periodic oscillations (QPOs) made it substantially evident that the geometry of the accretion disk is truncated. Simultaneous energy spectral and power density spectral study shows that the production of the horizontal branch oscillations (HBOs) is closely related to the Comptonizing region rather than the disk component in the accretion disk. We found that as the HBO frequency decreases from the hard apex to upper HB, the disk temperature increases along with an increase in the coronal temperature, which is in sharp contrast with the changes found in black hole binaries where the decrease in the QPO frequency is accompanied by a decrease in the disk temperature and a simultaneous increase in the coronal temperature. We discuss the results in the context of re-condensation of coronal material in the inner region of the disk.

  14. Large-scale outflows in luminous QSOs revisited: The impact of beam smearing on AGN feedback efficiencies

    CERN Document Server

    Husemann, B; Bennert, V N; Manieri, V; Woo, J -H; Kakkad, D

    2015-01-01

    Enormous observational effort has been made to constrain the energetics of AGN feedback by mapping the kinematics of the ionized gas on kpc scale with integral-field spectroscopy. Here, we investigate how the observed kinematics and inferred energetics are affected by beam smearing of a bright unresolved NLR due to seeing effects. We analysed optical IFU spectroscopy of a sample of twelve luminous unobscured QSOs (0.4

  15. Angular Momentum Transport in Protoplanetary and Black Hole Accretion Disks: The Role of Parasitic Modes in the Saturation of MHD Turbulence

    DEFF Research Database (Denmark)

    Pessah, Martin Elias

    2010-01-01

    The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions i...

  16. Morphology of the Interaction Between the Stream and Cool Accretion Disk in a Semi-detached Binary Systems

    CERN Document Server

    Bisikalo, D V; Kaygorodov, P V; Kuznetsov, O A; 10.1134/1.1618992

    2012-01-01

    We analyze heating and cooling processes in accretion disks in binaries. For realistic parameters of the accretion disks in close binaries (with accretion rates from 1e-12 to 1e-7 Msun/year and \\alpha from 0.1 to 0.01), the gas temperature in the outer parts of the disk is from 1e4 to 1e6 K. Our previous gas-dynamical studies of mass transfer in close binaries indicate that, for hot disks (with temperatures for the outer parts of the disk of several hundred thousand K), the interaction between the stream from the inner Lagrange point and the disk is shockless. To study the morphology of the interaction between the stream and a cool accretion disk, we carried out three-dimensional modeling of the flow structure in a binary for the case when the gas temperature in the outer parts of the forming disk does not exceed 13600 K. The flow pattern indicates that the interaction is again shockless. The computations provide evidence that, as is the case for hot disks, the zone of enhanced energy release (the "hot line")...

  17. Anti-correlated time lags in the Z source GX 5-1: Possible evidence for a truncated accretion disk

    CERN Document Server

    Sriram, K; Rao, A R

    2012-01-01

    We investigate the nature of the inner accretion disk in the neutron star source GX 5-1 by making a detailed study of time lags between X-rays of different energies. Using the cross-correlation analysis, we found anti-correlated hard and soft time lags of the order of a few tens to a few hundred seconds and the corresponding intensity states were mostly the horizontal branch (HB) and upper normal branch (NB). The model independent and dependent spectral analysis showed that during these time lags the structure of accretion disk significantly varied. Both eastern and western approaches were used to unfold the X-ray continuum and systematic changes were observed in soft and hard spectral components. These changes along with a systematic shift in the frequency of quasi-periodic oscillations (QPOs) made it substantially evident that the geometry of the accretion disk is truncated. Simultaneous energy spectral and power density spectral study shows that the production of the horizontal branch oscillations (HBOs) a...

  18. The Mass-Luminosity Relation in AGN

    OpenAIRE

    Wandel, Amri

    1998-01-01

    Probably the most fundamental characteristic of the quasar-AGN power house, the mass of the central black hole, is the least well known. I review the three main classes of mass estimation methods---broad emission-line kinematics, X-ray variability and accretion-disk modeling, and the masses they give in terms of the Eddington ratio, $L/L_{\\rm Edd}$. The broad emission lines are probably the best probe of the central mass. They provide mass estimates that suggest a narrow spread for the Edding...

  19. Kinematics from spectral lines for AGN outflows based on time-independent radiation-driven wind theory

    CERN Document Server

    Ramírez, José M

    2011-01-01

    We build a bulk velocity-dependent photoionization model of the warm absorber of the Seyfert 1 galaxy NGC 3783. By adopting functional forms for velocity of the flow and its particle density with radius, appropriate for radiation driven winds, we compute the ionization, temperature, line Doppler shift, and line optical depths as a function of distance. By doing this we obtain detailed profiles for the entire absorption line spectrum. The model reproduces the observed relationship between the gas ionization and the velocity shift of the line centroids as well as the asymmetry of the absorption lines in the X-ray spectrum of NGC 3783. It is found that the distribution of asymmetry requires the presence of two outflows: a higher ionization component responsible for the blue wings of the high ionization lines and the red wings of the low ionization oxygen lines, and a lower ionization flow that makes up for the blue wings of the oxygen lines. Our model predicts a relationship between the X-rays and the UV absorbe...

  20. The Dance of Heating and Cooling in Galaxy Clusters: 3D Simulations of Self-Regulated AGN Outflows

    CERN Document Server

    Gaspari, M; Brighenti, F; D'Ercole, A

    2010-01-01

    It is now widely accepted that heating processes play a fundamental role in galaxy clusters, struggling in an intricate but fascinating `dance' with its antagonist, radiative cooling. Last generation observations, especially X-ray, are giving us tiny hints about the notes of this endless ballet. Cavities, shocks, turbulence and wide absorption-lines indicate the central active nucleus is injecting huge amount of energy in the intracluster medium. However, which is the real dominant engine of self-regulated heating? One of the model we propose are massive subrelativistic outflows, probably generated by a wind disc or just the result of the entrainment on kpc scale by the fast radio jet. Using a modified version of AMR code FLASH 3.2, we explored several feedback mechanisms which self-regulate the mechanical power. Two are the best schemes that answer our primary question, id est quenching cooling flow and at the same time preserving a cool core appearance for a long term evolution (7 Gyr): one more explosive (...

  1. THE STRUCTURE OF THE ACCRETION DISK IN THE LENSED QUASAR SBS 0909+532

    International Nuclear Information System (INIS)

    We derive the size and temperature profile of the accretion disk of the lensed quasar SBS 0909+532 by measuring the wavelength dependence (chromaticity) of the microlensing magnification produced by the stars in the lens galaxy. After correcting for extinction using the flux ratios of 14 emission lines, we observe a marked change in the B-A flux ratio with wavelength, varying from -0.67 ± 0.05 mag at (rest frame) ∼1460 A to -0.24 ± 0.07 mag at ∼6560 A. For λ ∼> 7000 A both effects, extinction and microlensing, look minimal. Simulations indicate that image B rather than A is strongly microlensed. If we model the change in disk size from 1460 A to 6560 A using a Gaussian source (I ∝ exp(-R 2/2r 2s)) with a disk size scaling with wavelength as rs ∝ λp, we find rs = 7+5-3 light-days at 1460 A and p = 0.9+0.6-0.3 for uniform priors on rs and p, and rs = 4+3-3 light-days and p = 1.0+0.6-0.4 for a logarithmic prior on rs . The disk temperature profile T ∝ R-1/p is consistent with thin disk theory (T ∝ R-3/4), given the uncertainties. The estimates of rs are also in agreement with the size inferred from thin disk theory using the estimated black hole mass (MBH ≅ 2 x 109 Msun) but not with the smaller size estimated from thin disk theory and the optical flux. We also use the flux ratios of the unmicrolensed emission lines to determine the extinction curve of the dust in the lens galaxy, finding that it is similar to that of the LMC2 Supershell.

  2. The Structure of the Accretion Disk in the Lensed Quasar SBS 0909+532

    Science.gov (United States)

    Mediavilla, E.; Muñoz, J. A.; Kochanek, C. S.; Guerras, E.; Acosta-Pulido, J.; Falco, E.; Motta, V.; Arribas, S.; Manchado, A.; Mosquera, A.

    2011-03-01

    We derive the size and temperature profile of the accretion disk of the lensed quasar SBS 0909+532 by measuring the wavelength dependence (chromaticity) of the microlensing magnification produced by the stars in the lens galaxy. After correcting for extinction using the flux ratios of 14 emission lines, we observe a marked change in the B-A flux ratio with wavelength, varying from -0.67 ± 0.05 mag at (rest frame) ~1460 Å to -0.24 ± 0.07 mag at ~6560 Å. For λ >~ 7000 Å both effects, extinction and microlensing, look minimal. Simulations indicate that image B rather than A is strongly microlensed. If we model the change in disk size from 1460 Å to 6560 Å using a Gaussian source (I vprop exp(-R 2/2r 2 s )) with a disk size scaling with wavelength as rs vprop λ p , we find rs = 7+5 -3 light-days at 1460 Å and p = 0.9+0.6 -0.3 for uniform priors on rs and p, and rs = 4+3 -3 light-days and p = 1.0+0.6 -0.4 for a logarithmic prior on rs . The disk temperature profile T vprop R -1/p is consistent with thin disk theory (T vprop R -3/4), given the uncertainties. The estimates of rs are also in agreement with the size inferred from thin disk theory using the estimated black hole mass (M BH ~= 2 × 109 M sun) but not with the smaller size estimated from thin disk theory and the optical flux. We also use the flux ratios of the unmicrolensed emission lines to determine the extinction curve of the dust in the lens galaxy, finding that it is similar to that of the LMC2 Supershell.

  3. Global MHD Simulations of Accretion Disks in Cataclysmic Variables. I. The Importance of Spiral Shocks

    Science.gov (United States)

    Ju, Wenhua; Stone, James M.; Zhu, Zhaohuan

    2016-06-01

    We present results from the first global 3D MHD simulations of accretion disks in cataclysmic variable (CV) systems in order to investigate the relative importance of angular momentum transport via turbulence driven by the magnetorotational instability (MRI) compared with that driven by spiral shock waves. Remarkably, we find that even with vigorous MRI turbulence, spiral shocks are an important component of the overall angular momentum budget, at least when temperatures in the disk are high (so that Mach numbers are low). In order to understand the excitation, propagation, and damping of spiral density waves in our simulations more carefully, we perform a series of 2D global hydrodynamical simulations with various equation of states, both with and without mass inflow via the Lagrangian point (L1). Compared with previous similar studies, we find the following new results. (1) The linear wave dispersion relation fits the pitch angles of spiral density waves very well. (2) We demonstrate explicitly that mass accretion is driven by the deposition of negative angular momentum carried by the waves when they dissipate in shocks. (3) Using Reynolds stress scaled by gas pressure to represent the effective angular momentum transport rate {α }{eff} is not accurate when mass accretion is driven by non-axisymmetric shocks. (4) Using the mass accretion rate measured in our simulations to directly measure α defined in standard thin-disk theory, we find 0.02≲ {α }{eff}≲ 0.05 for CV disks, consistent with observed values in quiescent states of dwarf novae. In this regime, the disk may be too cool and neutral for the MRI to operate and spiral shocks are a possible accretion mechanism. However, we caution that our simulations use unrealistically low Mach numbers in this regime and, therefore, future models with more realistic thermodynamics and non-ideal MHD are warranted.

  4. THE TORQUING OF CIRCUMNUCLEAR ACCRETION DISKS BY STARS AND THE EVOLUTION OF MASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales ∼> (M./Md )P(Rd ), where M. and Md are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius Rd. The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10°) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  5. RADIAL TRANSPORT OF LARGE-SCALE MAGNETIC FIELDS IN ACCRETION DISKS. II. RELAXATION TO STEADY STATES

    International Nuclear Information System (INIS)

    We study the time evolution of a large-scale magnetic flux threading an accretion disk. The induction equation of the mean poloidal field is solved under the standard viscous disk model. Magnetic flux evolution is controlled by two timescales: one is the timescale of the inward advection of the magnetic flux, τadv. This is induced by the dragging of the flux by the accreting gas. The other is the outward diffusion timescale of the magnetic flux τdif. We consider diffusion due to the Ohmic resistivity. These timescales can be significantly different from the disk viscous timescale τdisk. The behaviors of the magnetic flux evolution are quite different depending on the magnitude relationship of the timescales τadv, τdif, and τdisk. The most interesting phenomena occur when τadv << τdif, τdisk. In such a case, the magnetic flux distribution approaches a quasi-steady profile much faster than the viscous evolution of the gas disk, and the magnetic flux has also been tightly bundled to the inner part of the disk. In the inner part, although the poloidal magnetic field becomes much stronger than the interstellar magnetic field, the field strength is limited to the maximum value that is analytically given by our previous work. We also find a condition for the initial large magnetic flux, which is a fossil of the magnetic field dragging during the early phase of star formation that survives for a duration in which significant gas disk evolution proceeds

  6. Magnetic viscosity by localized shear flow instability in magnetized accretion disks

    International Nuclear Information System (INIS)

    Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at ωd = ± ωA, where ωd is the Doppler-shifted wave frequency, and ωA = k parallel vA is the Alfven frequency. The radial width of the unstable eigenfunction is Δx ∼ ωA/(Aky), where A is the Oort's constant, and ky is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of ky/kz. The maximum growth rate when ky/kz ∼ 0.1 is ∼ 0.2Ω for the Keplerian disk with local angular velocity Ω. It is found that the purely growing mode disappears when ky/kz > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity η depends on the instability-induced turbulent magnetic fields δB as η([δB2]), the marginal stability condition self-consistently determines the α parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter αB is between 0.001 and 1. The authors' three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the α parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller α in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop

  7. The Accretion Disk of the Lithium-Depleted Young Binary St 34

    Science.gov (United States)

    Hartmann, Lee; Calvet, Nuria; Watson, Dan M.; D'Alessio, P.; Furlan, E.; Sargent, B.; Forrest, W. J.; Uchida, K. I.; Green, J. D.; Sloan, G. C.; Chen, C. H.; Najita, J.; Kemper, F.; Herter, T. L.; Morris, P.; Barry, D. J.; Hall, P.

    2005-01-01

    We presented the infrared spectrum of the young binary system St 34 obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. The IRS spectrum clearly shows excess dust emission, consistent with the suggestion of White & Hillenbrand that St 34 is accreting from a circumbinary disk. The disk emission of St 34 is low in comparison with the levels observed in typical T Tauri stars; silicate features at 10 and 20 microns are much weaker than typically seen in T Tauri stars; and excess emission is nearly absent at the shortest wavelengths observed. These features of the infrared spectrum suggest substantial grain growth (to eliminate silicate features) and possible settling of dust to the disk midplane (to reduce the continuum excess emission levels), along with a relatively evacuated inner disk, as expected due to gravitational perturbations by the binary system. Although the position of St 34 in the H-R diagram suggests an age of 8f Myr, assuming that it lies at the distance of the Taurus-Auriga molecular clouds, White & Hillenbrand could not detect any Li I absorption, which would indicate a Li depletion age of roughly 25 Myr or more. We suggest that St 34 is closer than the Taurus clouds by about 30-40 pc and has an age roughly consistent with Li depletion models. Such an advanced age would make St 34 the oldest known low-mass pre-main-sequence object with a dusty accretion disk. The persistence of optically thick dust emission well outside the binary orbit may indicate a failure to make giant planets that could effectively remove dust particles.

  8. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    Science.gov (United States)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2011-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  9. WAVE-VORTEX MODE COUPLING IN ASTROPHYSICAL ACCRETION DISKS UNDER COMBINED RADIAL AND VERTICAL STRATIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, A. [Departement de Physique, Faculte des Sciences de Tunis, 1060 Tunis (Tunisia); Lehner, T. [LUTH, UMR 8102 CNRS, Observatoire de Paris-Meudon, 5 place de Janssen, F-92195 Meudon (France); Godeferd, F.; Cambon, C. [Laboratoire de Mecanique des Fluides et d' Acoustique, Ecole Centrale de Lyon, Universite de Lyon, UMR 5509, CNRS, INSA, UCB, F-69134 Ecully Cedex (France)

    2013-07-10

    We examine accretion disk flow under combined radial and vertical stratification utilizing a local Cartesian (or ''shearing box'') approximation. We investigate both axisymmetric and nonaxisymmetric disturbances with the Boussinesq approximation. Under axisymmetric disturbances, a new dispersion relation is derived. It reduces to the Solberg-Hoieland criterion in the case without vertical stratification. It shows that, asymptotically, stable radial and vertical stratification cannot induce any linear instability; Keplerian flow is accordingly stable. Previous investigations strongly suggest that the so-called bypass concept of turbulence (i.e., that fine-tuned disturbances of any inviscid smooth shear flow can reach arbitrarily large transient growth) can also be applied to Keplerian disks. We present an analysis of this process for three-dimensional plane-wave disturbances comoving with the shear flow of a general rotating shear flow under combined stable radial and vertical rotation. We demonstrate that large transient growth occurs for K{sub 2}/k{sub 1} >> 1 and k{sub 3} = 0 or k{sub 1} {approx} k{sub 3}, where k{sub 1}, K{sub 2}, and k{sub 3} are the azimuthal, radial, and vertical components of the initial wave vector, respectively. By using a generalized ''wave-vortex'' decomposition of the disturbance, we show that the large transient energy growth in a Keplerian disk is mainly generated by the transient dynamics of the vortex mode. The analysis of the power spectrum of total (kinetic+potential) energy in the azimuthal or vertical directions shows that the contribution coming from the vortex mode is dominant at large scales, while the contribution coming from the wave mode is important at small scales. These findings may be confirmed by appropriate numerical simulations in the high Reynolds number regime.

  10. Numerical relativity simulations of thick accretion disks around tilted Kerr black holes

    Science.gov (United States)

    Mewes, Vassilios; Font, José A.; Galeazzi, Filippo; Montero, Pedro J.; Stergioulas, Nikolaos

    2016-03-01

    In this paper we present 3D numerical relativity simulations of thick accretion disks around tilted Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered (0.044-0.16) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. Our lightest model, which is the most astrophysically favorable outcome of mergers of binary compact objects, is stable. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of black hole spin and disk angular momentum in the most massive model with constant specific angular momentum l . For the model with nonconstant l -profile we observe a long-lived m =1 nonaxisymmetric structure which shows strong oscillations of the tilt angle in the inner regions of the disk. This effect might be connected to the development of Kozai-Lidov oscillations. Our simulations also confirm earlier findings that the development of the PP instability causes the long-term emission of large amplitude gravitational waves, predominantly for the l =m =2 multipole mode. The imprint of the black hole (BH) precession on the gravitational waves from tilted BH-torus systems remains an interesting open issue that would require significantly longer simulations than those presented in this paper.

  11. A Hot and Massive Accretion Disk around the High-mass Protostar IRAS 20126+4104

    Science.gov (United States)

    Chen, Huei-Ru Vivien; Keto, Eric; Zhang, Qizhou; Sridharan, T. K.; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-06-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array, which, for the first time, measure the disk density, temperature, and rotational velocity with sufficient resolution (0.″37, equivalent to ∼600 au) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 au region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3 × 104 L ⊙, the optimized model gives a disk mass of 1.5 M ⊙ and a radius of 858 au rotating about a 12.0 M ⊙ protostar with a disk mass accretion rate of 3.9 × 10‑5 M ⊙ yr‑1. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.

  12. Structure analysis of solution to equations of quasi 3-D accretion disk model

    Institute of Scientific and Technical Information of China (English)

    WU; Mei

    2001-01-01

    [1]Frank, J., King, A., Raine, K., Accretion Power in Astrophysics, Cambridge: Cambridge University Press, 1992.[2]Lu Jufu, Abramowicz, M. A., Bimodel characteristic of accrection of black hole, Acta Astrophysica Sinica, 1988, 8(1): 1—13.[3]Shakura, N. I., Sunyaev, R. A., Black holes in binary systems: Observational appearance, A& A, 1973, 24: 337—355.[4]Spruit, H., Matsuda, T., Inoue, M. et al., Spiral shocks and accretion in discs, MNRAS, 1987, 229: 517—527.[5]Yang, R. X., Kafatos, M., Shock study in fully relativistic isothermal flows, 2, A& A, 1995, 295: 238—244.[6]Kafatos, M., Yang, R. X., Transonic inviscid disc flows in the schwarzschild metric-I, MNRAS, 1994, 268 (4): 925—937.[7]Fortner, B., Lamb, F. K., Miller, G. S., Origin of ‘normal-branch’ quasiperiodic oscillations in low-mass X-ray binary systems, Nature, 1989, 342 (14): 775—777.[8]Narayan, R., Kato, S., Honma, F., Global structure and dynamics of advection-dominated accretion flows around black holes, ApJ, 1997, 476: 49—60.[9]Chakrabarti, S., Titarchuk, L. G., Spectral properties of accretion disks around galactic and extragalactic black holes, ApJ, 1995, 455: 623—639.[10]Landu, L. D., Lifshitz, E. M., Fluid Mechanics, Bristol: f. W. Arrowsmith Ltd., 1959, 514—515.

  13. Self-shadowing effects of slim accretion disks in active galactic nuclei: the diverse appearance of the broad-line region

    International Nuclear Information System (INIS)

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.

  14. The Galactic Center - an AGN on a starvation diet

    CERN Document Server

    Biermann, P L; Biermann, Heino Falcke & Peter L.

    1993-01-01

    The Galactic Center shows evidence for the presence of three important AGN ingredients: a Black Hole ($M_\\bullet\\sim10^6M_\\odot$), an accretion disk ($10^{-8.5} - 10^{-7} M_\\odot/{\\rm yr}$) and a powerful jet (jet power $\\ge$ 10\\% disk luminosity). However, the degree of activity is very low and can barely account for the energetics of the whole central region. Neverthelss, in the very inner arsecond the central engine becomes dominant and provides an interesting laboratory for the physics of central engines (Black Holes) in galactic nuclei. We therefore give an overall picture of the central arcsecond where we link the radio emission and the heating of the ambient medium to a weakly accreting disk surrounding a massive Black Hole.

  15. Radiation Hydrodynamic Simulations of Line-Driven Disk Winds for Ultra Fast Outflows

    CERN Document Server

    Nomura, Mariko; Takahashi, Hiroyuki R; Wada, Keiichi; Yoshida, Tessei

    2015-01-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate origin of the ultra fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (~30 Schwarzschild radii). A wide range of black hole masses ($M_{\\rm BH}$) and Eddington ratios ($\\varepsilon$) was investigated to study conditions for causing the line-driven winds. For $M_{\\rm BH} = 10^6-10^9 M_\\odot$ and $\\varepsilon = 0.1-0.7$, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70-80 deg and with 10% of the light speed. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as the obscuration by the torus does not affect the observations of X-ray bands, the UFOs could be statistically observe...

  16. The Kepler Light Curves of KSwAGS AGN: A Unique Window into Accretion Physics

    OpenAIRE

    Smith, Krista Lynne; Mushotzky, Richard; Boyd, Padi; Edelson, Rick; Howell, Steve; Gelino, Dawn; Brown, Alex.

    2016-01-01

    The Kepler-Swift Active Galaxies Survey (KSwAGS) discovered ~160 AGN in the Kepler and K2 fields. The optical Kepler and K2 light curves of these AGN are by far the most precise and evenly-sampled ever obtained. There are unique challenges involved in adapting Kepler/K2 data for use with AGN since the Kepler pipeline removes stochasticity; however, once mitigated, these data provide an unprecedented glimpse of the accretion disk's variability. We have also conducted follow-up spectral obs...

  17. Magnetic viscosity by localized shear flow instability in magnetized accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, R.; Tajima, T.

    1995-01-01

    Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at {omega}{sub d} = {+-} {omega}{sub A}, where {omega}{sub d} is the Doppler-shifted wave frequency, and {omega}{sub A} = k{parallel}v{sub A} is the Alfven frequency. The radial width of the unstable eigenfunction is {Delta}x {approximately} {omega}{sub A}/(Ak{sub y}), where A is the Oort`s constant, and k{sub y} is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of k{sub y}/k{sub z}. The maximum growth rate when k{sub y}/k{sub z} {approximately} 0.1 is {approximately} 0.2{Omega} for the Keplerian disk with local angular velocity {Omega}. It is found that the purely growing mode disappears when k{sub y}/k{sub z} > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity {eta} depends on the instability-induced turbulent magnetic fields {delta}B as {eta}([{delta}B{sup 2}]), the marginal stability condition self-consistently determines the {alpha} parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter {alpha}{sub B} is between 0.001 and 1. The authors` three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the {alpha} parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller {alpha} in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop.

  18. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  19. High-Resolution X-Ray Spectroscopy of the Accretion Disk Corona Source 4U 1822-37

    CERN Document Server

    Cottam, J; Kahn, S M; Paerels, F B S; Liedahl, D A; Cottam, Jean; Sako, Masao; Kahn, Steven M.; Paerels, Frits; Liedahl, Duane A.

    2001-01-01

    We present a preliminary analysis of the X-ray spectrum of the accretion disk corona source, 4U 1822-37, obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. We detect discrete emission lines from photoionized iron, silicon, magnesium, neon, and oxygen, as well as a bright iron fluorescence line. Phase-resolved spectroscopy suggests that the recombination emission comes from an X-ray illuminated bulge located at the predicted point of impact between the disk and the accretion stream. The fluorescence emission originates in an extended region on the disk that is illuminated by light scattered from the corona.

  20. Polarization of Light from Warm Clouds above an Accretion Disk: Effects of Strong Gravity near a Black Hole

    Czech Academy of Sciences Publication Activity Database

    Horák, Jiří; Karas, Vladimír

    2006-01-01

    Roč. 58, č. 1 (2006), s. 203-209. ISSN 0004-6264 R&D Projects: GA MŠk(CZ) LC06014; GA ČR(CZ) GP205/06/P415; GA AV ČR IAA300030510; GA ČR GD205/03/H144 Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * black holes * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.106, year: 2006

  1. Mapping the dynamics of a giant Ly α halo at z = 4.1 with MUSE: the energetics of a large-scale AGN-driven outflow around a massive, high-redshift galaxy

    Science.gov (United States)

    Swinbank, A. M.; Vernet, J. D. R.; Smail, Ian; De Breuck, C.; Bacon, R.; Contini, T.; Richard, J.; Röttgering, H. J. A.; Urrutia, T.; Venemans, B.

    2015-05-01

    We present Multi Unit Spectroscopic Explorer (MUSE) integral field unit spectroscopic observations of the ˜150 kpc Lyα halo around the z = 4.1 radio galaxy TN J1338-1942. This 9-h observation maps the full two-dimensional kinematics of the Lyα emission across the halo, which shows a velocity gradient of Δv ˜ 700 km s-1 across 150 kpc in projection, and also identified two absorption systems associated with the Lyα emission from the radio galaxy. Both absorbers have high covering fractions (˜1) spanning the full ˜150 × 80 kpc2 extent of the halo. The stronger and more blueshifted absorber (Δv ˜ -1200 km s-1 from the systemic) has dynamics that mirror that of the underlying halo emission and we suggest that this high column material (n(H I) ˜ 1019.4 cm-2), which is also seen in C IV absorption, represents an outflowing shell that has been driven by the active galactic nuclei (AGN) or the star formation within the galaxy. The weaker (n(H I) ˜ 1014 cm-2) and less blueshifted (Δv ˜ -500 km s-1) absorber most likely represents material in the cavity between the outflowing shell and the Lyα halo. We estimate that the mass in the shell must be ˜1010 M⊙ - a significant fraction of the interstellar medium from a galaxy at z = 4. The large scales of these coherent structures illustrate the potentially powerful influence of AGN feedback on the distribution and energetics of material in their surroundings. Indeed, the discovery of high-velocity (˜1000 km s-1), group-halo-scale (i.e. >150 kpc) and mass-loaded winds in the vicinity of the central radio source is in agreement with the requirements of models that invoke AGN-driven outflows to regulate star formation and black hole growth in massive galaxies.

  2. Connecting AGN Feedback, the Star-Forming Interstellar Medium, and Galaxy Formation

    Science.gov (United States)

    Hopkins, Philip

    historical sub- grid models. As a result, these models have already had a large impact on the field and motivated a new generation of 'sub-grid' models for cosmological simulations. With them, we are now for the first time able to study black hole feedback in a realistic galactic environment. We will combine these models with realistic treatments of AGN feedback via radiative heating, radiation pressure, and accretion-disk winds, to understand how physical AGN feedback mechanisms interact with galaxies. Our proposal focuses on building up theory over a range of scales, from sub-pc simulations of the obscuring torus region to fully cosmological simulations. This will allow us to follow a range of processes and develop an understanding of how the small-scale physics of AGN accretion impacts cosmological star formation (and to develop improved 'sub-grid' models for other studies). We will study the evolution of black hole accretion rates, generation of nuclear and galactic-scale winds, interaction of AGN-driven and stellar-driven galactic outflows, the effects of AGN feedback on star formation, and nature of black hole-host galaxy correlations. Our team has unique access to and is developing for three fundamentally distinct simulation codes, widely used in galaxy formation and cosmology. This gives us the ability to directly address and resolve long-standing uncertainties regarding the relative effects of physical, versus purely numerical, differences in various simulations, which have complicated interpretations of results in this field. Our focus on AGN feedback interacting with a realistic ISM is also motivated by rapidly mounting observations of multi-phase galactic outflows. We will make direct predictions for outflow properties in different ISM phases (molecular, atomic, ionized gas), especially relevant for recent multi-wavelength observations from HST COS, NuSTAR, Herschel, GALEX, XMM-Newton, and Chandra, and future observations with ALMA and JWST.

  3. Testing the "no-hair" property of black holes with X-ray observations of accretion disks

    CERN Document Server

    Moore, Christopher J

    2015-01-01

    Accretion disks around black holes radiate a significant fraction of the rest mass of the accreting material in the form of thermal radiation from within a few gravitational radii of the black hole ($ r \\lesssim 20 G M / c^{2}$). In addition, the accreting matter may also be illuminated by hard X-rays from the surrounding plasma which adds fluorescent transition lines to the emission. This radiation is emitted by matter moving along geodesics in the metric, therefore the strong Doppler and gravitational redshifts observed in the emission encode information about the strong gravitational field around the black hole. In this paper the possibility of using the X-ray emission as a strong field test of General Relativity is explored by calculating the spectra for both the transition line and thermal emission from a thin accretion disk in a series of parametrically deformed Kerr metrics. In addition the possibility of constraining a number of known black hole spacetimes in alternative theories of gravity is conside...

  4. Non-LTE, Relativistic Accretion Disk Fits to 3C~273 and the Origin of the Lyman Limit Spectral Break

    CERN Document Server

    Blaes, Omer M; Agol, E; Krolik, J H; Blaes, Omer; Hubeny, Ivan; Agol, Eric; Krolik, Julian H.

    2001-01-01

    We fit general relativistic, geometrically thin accretion disk models with non-LTE atmospheres to near simultaneous multiwavelength data of 3C~273, extending from the optical to the far ultraviolet. Our model fits show no flux discontinuity associated with a hydrogen Lyman edge, but they do exhibit a spectral break which qualitatively resembles that seen in the data. This break arises from relativistic smearing of Lyman emission edges which are produced locally at tens of gravitational radii in the disk. We discuss the possible effects of metal line blanketing on the model spectra, as well as the substantial Comptonization required to explain the observed soft X-ray excess. Our best fit accretion disk model underpredicts the near ultraviolet emission in this source, and also has an optical spectrum which is too red. We discuss some of the remaining physical uncertainties, and suggest in particular that an extension of our models to the slim disk regime and/or including nonzero magnetic torques across the inne...

  5. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    Science.gov (United States)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  6. Structure and evolution of irradiated accretion disks. I - Static thermal equilibrium structure. II - Dynamical evolution of a thermally unstable torus

    Science.gov (United States)

    Tuchman, Y.; Mineshige, S.; Wheeler, J. C.

    1990-01-01

    The thermal equilibrum structure and dynamical behavior of externally irradiated accretion disks are investigated. For radiative disks only the surface layer is heated, while for convective disks the heat penetrates deeply into the disk. For sufficiently strong radiation and given irradiation flux F(irr), the disk is completely stabilized against thermal instabilities of the sort invoked to explain dwarf novae. For moderately strong irradiation there is still an unstable branch in the thermal equilibrium curve. In typical soft X-ray transients, the disk is unstable against the dwarf-nova type instability. Fixed F(irr) on accretion disk annuli reduces the amplitude and the quiescent times and increases the outburst duration of the resultant light curves. Varying F(irr) in proportion to the mass accretion rate at the disks's inner edge results in light curves with a plateau in the decay from outbursts. In the case when irradiation is suddenly switched on, a temperature inversion results which leads to the formation of an accretion corona.

  7. A Her X-1 Turn-On Using the pulse profile to probe the outer edge of an accretion disk

    CERN Document Server

    Kuster, M; Staubert, R; Risse, P; Heindl, W A; Rothschild, R; Shakura, N I; Postnov, K A

    2002-01-01

    The X-ray binary pulsar Her X-1 shows a wide variety of long and short term variabilities in the X-ray light curve. The 35 d variability of the source is interpreted as the influence of a warped, inclined, and twisted accretion disk periodically covering the line of sight to the central neutron star. In 1997 September we observed the ``turn-on'' of a 35 d cycle with the Rossi X-ray Timing Explorer (RXTE). Spectral analysis reveals that during early phases of the turn-on the overall spectrum is composed of X-rays scattered into the line of sight plus heavily absorbed X-rays. This interpretation is consistent with the variation of the pulse profile observed at the same time. The overall shape of the pulse profile is not changing, but towards earlier phases of the turn-on the pulse signature is steadily ``washed out''. This behavior can be understood as an influence of scattering and absorption due to the presence of the accretion disk rim. Using a Monte Carlo code we simulate the influence of both processes on ...

  8. A NEW PARADIGM FOR GAMMA-RAY BURSTS: LONG-TERM ACCRETION RATE MODULATION BY AN EXTERNAL ACCRETION DISK

    International Nuclear Information System (INIS)

    We present a new way of looking at the very long-term evolution of gamma-ray bursts (GRBs) in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep 'breaks' in the long-term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an 'external disk' whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power-law decay to the GRB light curves. In this model, the different canonical power-law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power-law segment.

  9. Subparsec-scale dynamics of a dusty gas disk exposed to anisotropic AGN radiation with frequency-dependent radiative transfer

    CERN Document Server

    Namekata, Daisuke

    2016-01-01

    We explore the gas dynamics near the dust sublimation radius of active galactic nucleus (AGN). For the purpose, we perform axisymmetric radiation hydrodynamic simulations of a dusty gas disk of radius $\\approx 1\\,\\mathrm{pc}$ around a supermassive black hole of mass $10^{7}\\,\\mathrm{M_{\\odot}}$ taking into account (1) anisotropic radiation of accretion disk, (2) X-ray heating by corona, (3) radiative transfer of infrared (IR) photons reemitted by dust, (4) frequency dependency of direct and IR radiations, and (5) separate temperatures for gas and dust. As a result, we find that for Eddington ratio $\\approx 0.77$, a nearly neutral, dense ($\\approx 10^{6\\operatorname{-}8}\\;\\mathrm{cm^{-3}}$), geometrically-thin ($h/r<0.06$) disk forms with a high velocity ($\\approx 200 \\sim 3000\\;\\mathrm{km/s}$) dusty outflow launched from the disk surface. The disk temperature is determined by the balance between X-ray heating and various cooling, and the disk is almost supported by thermal pressure. Contrary to \\citet{krol...

  10. Signatures of AGN feedback

    Science.gov (United States)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  11. EVIDENCE FOR ULTRA-FAST OUTFLOWS IN RADIO-QUIET ACTIVE GALACTIC NUCLEI. II. DETAILED PHOTOIONIZATION MODELING OF Fe K-SHELL ABSORPTION LINES

    International Nuclear Information System (INIS)

    from AGNs and their study can provide important clues on the connection between accretion disks, winds, and jets.

  12. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-11-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can

  13. Revealing the location and structure of the accretion disk wind in PDS 456

    Energy Technology Data Exchange (ETDEWEB)

    Gofford, J.; Reeves, J. N.; Nardini, E.; Costa, M. T.; Matzeu, G. A. [Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, ST5 5BG (United Kingdom); Braito, V. [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46 I-23807 Merate (Italy); O' Brien, P. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Ward, M. [Department of Physics, University of Durham, South Road, Durham, DH1 3LE (United Kingdom); Turner, T. J. [Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Miller, L., E-mail: j.a.gofford@keele.ac.uk [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2014-03-20

    We present evidence for the rapid variability of the high-velocity iron K-shell absorption in the nearby (z = 0.184) quasar PDS 456. From a recent long Suzaku observation in 2013 (∼1 Ms effective duration), we find that the equivalent width of iron K absorption increases by a factor of ∼5 during the observation, increasing from <105 eV within the first 100 ks of the observation, toward a maximum depth of ∼500 eV near the end. The implied outflow velocity of ∼0.25 c is consistent with that claimed from earlier (2007, 2011) Suzaku observations. The absorption varies on timescales as short as ∼1 week. We show that this variability can be equally well attributed to either (1) an increase in column density, plausibly associated with a clumpy time-variable outflow, or (2) the decreasing ionization of a smooth homogeneous outflow which is in photo-ionization equilibrium with the local photon field. The variability allows a direct measure of absorber location, which is constrained to within r = 200-3500 r {sub g} of the black hole. Even in the most conservative case, the kinetic power of the outflow is ≳ 6% of the Eddington luminosity, with a mass outflow rate in excess of ∼40% of the Eddington accretion rate. The wind momentum rate is directly equivalent to the Eddington momentum rate which suggests that the flow may have been accelerated by continuum scattering during an episode of Eddington-limited accretion.

  14. ON THE DIVERSITY AND COMPLEXITY OF ABSORPTION LINE PROFILES PRODUCED BY OUTFLOWS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Understanding the origin of active galactic nucleus (AGN) absorption line profiles and their diversity could help to explain the physical structure of the accretion flow, and also to assess the impact of accretion on the evolution of the AGN host galaxies. Here, we present our first attempt to systematically address the issue of the origin of the complexities observed in absorption profiles. Using a simple method, we compute absorption line profiles against a continuum point source for several simulations of accretion disk winds. We investigate the geometrical, ionization, and dynamical effects on the absorption line shapes. We find that significant complexity and diversity of the absorption line profile shapes can be produced by the non-monotonic distribution of the wind velocity, density, and ionization state. Non-monotonic distributions of such quantities are present even in steady-state, smooth disk winds, and naturally lead to the formation of multiple and detached absorption troughs. These results demonstrate that the part of a wind where an absorption line is formed is not representative of the entire wind. Thus, the information contained in the absorption line is incomplete if not even insufficient to well estimate gross properties of the wind such as the total mass and energy fluxes. In addition, the highly dynamical nature of certain portions of disk winds can have important effects on the estimates of the wind properties. For example, the mass outflow rates can be off by up to two orders of magnitude with respect to estimates based on a spherically symmetric, homogeneous, constant velocity wind.

  15. Revealing the location and structure of the accretion disk-wind in PDS456

    CERN Document Server

    Gofford, J; Braito, V; Nardini, E; Costa, M T; Gatzeu, M A; O'Brien, P; Ward, M; Turner, T J; Miller, L

    2014-01-01

    We present evidence for the rapid variability of the high velocity iron K-shell absorption in the nearby ($z=0.184$) quasar PDS456. From a recent long Suzaku observation in 2013 ($\\sim1$Ms effective duration) we find that the the equivalent width of iron K absorption increases by a factor of $\\sim5$ during the observation, increasing from $<105$eV within the first 100ks of the observation, towards a maximum depth of $\\sim500$eV near the end. The implied outflow velocity of $\\sim0.25$c is consistent with that claimed from earlier (2007, 2011) Suzaku observations. The absorption varies on time-scales as short as $\\sim1$ week. We show that this variability can be equally well attributed to either (i) an increase in column density, plausibly associated with a clumpy time-variable outflow, or (ii) the decreasing ionization of a smooth homogeneous outflow which is in photo-ionization equilibrium with the local photon field. The variability allows a direct measure of absorber location, which is constrained to wit...

  16. Accretion disk dynamics: {\\alpha}-viscosity in self-similar self-gravitating models

    CERN Document Server

    Kubsch, Marcus; Duschl, W J

    2016-01-01

    Aims: We investigate the suitability of {\\alpha}-viscosity in self-similar models for self-gravitating disks with a focus on active galactic nuclei (AGN) disks. Methods: We use a self-similar approach to simplify the partial differential equations arising from the evolution equation, which are then solved using numerical standard procedures. Results: We find a self-similar solution for the dynamical evolution of self-gravitating {\\alpha}-disks and derive the significant quantities. In the Keplerian part of the disk our model is consistent with standard stationary {\\alpha}-disk theory, and self-consistent throughout the self-gravitating regime. Positive accretion rates throughout the disk demand a high degree of self-gravitation. Combined with the temporal decline of the accretion rate and its low amount, the model prohibits the growth of large central masses. Conclusions: {\\alpha}-viscosity cannot account for the evolution of the whole mass spectrum of super-massive black holes (SMBH) in AGN. However, conside...

  17. Accretion disk dynamics. α-viscosity in self-similar self-gravitating models

    Science.gov (United States)

    Kubsch, Marcus; Illenseer, Tobias F.; Duschl, Wolfgang J.

    2016-04-01

    Aims: We investigate the suitability of α-viscosity in self-similar models for self-gravitating disks with a focus on active galactic nuclei (AGN) disks. Methods: We use a self-similar approach to simplify the partial differential equations arising from the evolution equation, which are then solved using numerical standard procedures. Results: We find a self-similar solution for the dynamical evolution of self-gravitating α-disks and derive the significant quantities. In the Keplerian part of the disk our model is consistent with standard stationary α-disk theory, and self-consistent throughout the self-gravitating regime. Positive accretion rates throughout the disk demand a high degree of self-gravitation. Combined with the temporal decline of the accretion rate and its low amount, the model prohibits the growth of large central masses. Conclusions: α-viscosity cannot account for the evolution of the whole mass spectrum of super-massive black holes (SMBH) in AGN. However, considering the involved scales it seems suitable for modelling protoplanetary disks.

  18. Dynamical evolution of neutrino--cooled accretion disks: detailed microphysics, lepton-driven convection, and global energetics

    CERN Document Server

    Lee, W H; Page, D; Lee, William H.; Ramirez-Ruiz, Enrico; Page, Dany

    2005-01-01

    We present a detailed, two dimensional numerical study of the microphysical conditions and dynamical evolution of accretion disks around black holes when neutrino emission is the main source of cooling. Such structures are likely to form after the gravitational collapse of massive rotating stellar cores, or the coalescence of two compact objects in a binary (e.g., the Hulse--Taylor system). The physical composition is determined self consistently by considering two regimes: neutrino--opaque and neutrino--transparent, with a detailed equation of state which takes into account neutronization, nuclear statistical equilibrium of a gas of free nucleons and alpha particles, blackbody radiation and a relativistic Fermi gas of arbitrary degeneracy. Various neutrino emission processes are considered, with electron/positron capture onto free nucleons providing the dominant contribution to the cooling rate. We find that important temporal and spatial scales, related to the optically thin/optically thick transition are p...

  19. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Risaliti, G.; Harrison, F. A.;

    2014-01-01

    , partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We...... find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better)....... time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection...

  20. Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit

    CERN Document Server

    Aldi, G F

    2016-01-01

    The shape of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analytical calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.

  1. ASTRO-H White Paper - AGN Reflection

    CERN Document Server

    Reynolds, C; Awaki, H; Gallo, L; Gandhi, P; Haba, Y; Kawamuro, T; LaMassa, S; Lohfink, A; Ricci, C; Tazaki, F; Zoghbi, A

    2014-01-01

    X-ray observations provide a powerful tool to probe the central engines of active galactic nuclei (AGN). A hard X-ray continuum is produced from deep within the accretion flow onto the supermassive black hole, and all optically thick structures in the AGN (the dusty torus of AGN unification schemes, broad emission line clouds, and the black hole accretion disk) "light up" in response to irradiation by this continuum. This White Paper describes the prospects for probing AGN physics using observations of these X-ray reflection signatures. High-resolution SXS spectroscopy of the resulting fluorescent iron line in type-2 AGN will give us an unprecedented view of the obscuring torus, allowing us to assess its dynamics (through line broadening) and geometry (through the line profile as well as observations of the "Compton shoulder"). The broad-band view obtained by combining all of the ASTRO-H instruments will fully characterize the shape of the underlying continuum (which may be heavily absorbed) and reflection/sc...

  2. The optical light curves of XTE J2123--058 the mass of the binary components and the structure of the quiescent accretion disk

    CERN Document Server

    Shahbaz, T; Casares, J; Dubus, G; Charles, P A; Wagner, R M; Ryan, E

    2003-01-01

    We present optical photometry of XTE J2123-058 during its quiescent state taken in 1999 and 2000. The dominant feature of our R-band light curve is the ellipsoidal modulation of the secondary star, however, in order to fit this satisfactorily we require additional components which comprise an X-ray heated Roche-lobe filling secondary star, and an accretion disk bulge, i.e. where the gas stream impacts the accretion disk. The observed dip near phase 0.8 is interpreted as the eclipse of inner parts of the accretion disk by the bulge. This scenario is highly plausible given the high binary inclination. Our fits allow us to constrain the size of the quiescent accretion disk to lie in the range 0.26-0.56R_L1 (68% confidence). Using the distance of 9.6 kpc and the X-ray flux inferred from the heated hemisphere of the companion, we obtain an unabsorbed X-ray luminosity of 1.2x10^33 erg/s for XTE J2123-058 in quiescence. From the observed quiescent optical/IR colors we find that the power-law index (-1.4) for the spe...

  3. COUPLED HBO AND NBO VARIATIONS IN THE Z SOURCE GX 5-1: INNER ACCRETION DISK AS THE LOCATION OF QPOs

    International Nuclear Information System (INIS)

    The simultaneous and coupled evolution of horizontal branch oscillation (HBO) and normal branch oscillation (NBO) in Z-type sources suggests that the production of HBO is connected to NBO and is caused by changes in the physical/radiative properties of the inner accretion disk, although there is a lack of substantial spectral evidence to support this. In this Letter, we present the results of an analysis of an RXTE observation of the Z source GX 5-1, where the 6 Hz NBO is simultaneously detected along with an HBO at 51 Hz. The variations in the intensity and the associated power density spectrum indicate that the HBO and NBO are strongly coupled, originating from the same location in the inner accretion disk. The absence of HBO and NBO in the lower energy bands, an increase in the rms amplitude with energy, and a smooth transition among them suggest that they are produced in the hot inner regions of the accretion disk. Based on a spectral analysis, we found a signature of changing or physically modified inner disk front during the coupled HBO and NBO evolution. We explore the various models to explain the observed phenomenon and propose that the NBO is affiliated to the oscillations in the thick/puffed-up inner region of the accretion disk.

  4. Coupled HBO and NBO Variations in the Z Source GX 5-1: Inner Accretion Disk as the Location of QPOs

    Science.gov (United States)

    Sriram, K.; Rao, A. R.; Choi, C. S.

    2011-12-01

    The simultaneous and coupled evolution of horizontal branch oscillation (HBO) and normal branch oscillation (NBO) in Z-type sources suggests that the production of HBO is connected to NBO and is caused by changes in the physical/radiative properties of the inner accretion disk, although there is a lack of substantial spectral evidence to support this. In this Letter, we present the results of an analysis of an RXTE observation of the Z source GX 5-1, where the 6 Hz NBO is simultaneously detected along with an HBO at 51 Hz. The variations in the intensity and the associated power density spectrum indicate that the HBO and NBO are strongly coupled, originating from the same location in the inner accretion disk. The absence of HBO and NBO in the lower energy bands, an increase in the rms amplitude with energy, and a smooth transition among them suggest that they are produced in the hot inner regions of the accretion disk. Based on a spectral analysis, we found a signature of changing or physically modified inner disk front during the coupled HBO and NBO evolution. We explore the various models to explain the observed phenomenon and propose that the NBO is affiliated to the oscillations in the thick/puffed-up inner region of the accretion disk.

  5. COUPLED HBO AND NBO VARIATIONS IN THE Z SOURCE GX 5-1: INNER ACCRETION DISK AS THE LOCATION OF QPOs

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, K.; Choi, C. S. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Rao, A. R., E-mail: astrosriram@yahoo.co.in [Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2011-12-20

    The simultaneous and coupled evolution of horizontal branch oscillation (HBO) and normal branch oscillation (NBO) in Z-type sources suggests that the production of HBO is connected to NBO and is caused by changes in the physical/radiative properties of the inner accretion disk, although there is a lack of substantial spectral evidence to support this. In this Letter, we present the results of an analysis of an RXTE observation of the Z source GX 5-1, where the 6 Hz NBO is simultaneously detected along with an HBO at 51 Hz. The variations in the intensity and the associated power density spectrum indicate that the HBO and NBO are strongly coupled, originating from the same location in the inner accretion disk. The absence of HBO and NBO in the lower energy bands, an increase in the rms amplitude with energy, and a smooth transition among them suggest that they are produced in the hot inner regions of the accretion disk. Based on a spectral analysis, we found a signature of changing or physically modified inner disk front during the coupled HBO and NBO evolution. We explore the various models to explain the observed phenomenon and propose that the NBO is affiliated to the oscillations in the thick/puffed-up inner region of the accretion disk.

  6. High velocity outflows in quasars

    Directory of Open Access Journals (Sweden)

    Paola Rodríguez Hidalgo

    2007-01-01

    Full Text Available Active Galactic Nuclei (AGN are believed to be powered by accretion onto a Super- Massive Black Hole (SMBH. In order to have material falling into the SMBH, angular momentum conservation requires a counter- part for this accretion that is fueling the SMBH in the AGN. Outows might play an essential role in active galactic nuclei. They show common occurance, both in quasars (30%-40% in optically selected quasars and Seyfert galaxies (approx. 60%, but might be ubiquitous if they subtend a small angular distance in the sky. Moreover, they bring information from the AGN inner regions, which is not accesible through other ways. Although for more than a decade models have included material outowing from an accretion disk around a SMBH, surprisingly there is no consensus in our understanding of basic properties like the acceleration mechanism(s, launch radii, mass loss rates, terminal velocities, etc. We are involved in a program to derive basic dynamical char- acteristics for some well-studied individual ows, and, in particular, we are interested in High Velocity (HV outows since they will present unique challenges for the above mentioned theoretical models.

  7. The peculiar megamaser AGN NGC 1194: Comparison with the warped disk candidates NGC 1068 and NGC 4258

    Science.gov (United States)

    Fedorova , E.; Vasylenko, A.; Hnatyk, B. I.; Zhdanov, V. I.

    2016-02-01

    We analyze the X-ray properties of the Compton-thick Seyfert 1.9 radio quiet AGN in NGC 1194 using INTEGRAL (ISGRI), XMM-Newton (EPIC), Swift (BAT and XRT), and Suzaku (XIS) observations. There is a set of Fe-K lines in the NGC 1194 spectrum with complex relativistic profiles that can be considered as a sign of either a warped Bardeen-Petterson accretion disk or double black hole. We compare our results on NGC 1194 with two other megamaser warped disk candidates, NGC 1068 and NGC 4258, to trace out the other properties which can be typical for AGNs with warped accretion disks. To finally confirm or disprove the double black-hole hypotheses, further observations of the iron lines and their evolution of their shape with time are necessary. Based on obsrvations made with INTEGRAL, XMM-Newton, Swift, Suzaku.

  8. Flare-induced fountains and buried flares in AGN

    OpenAIRE

    Czerny, B.; Goosmann, R

    2004-01-01

    We discuss the local physical changes at the surface of an AGN accretion disk after the onset of a magnetic flare. The X-ray irradiation by a flare creates a hot spot at the disk surface where the plasma both heats up and expands in the vertical direction in order to regain the hydrostatic equilibrium. Assuming that the magnetic loop causing the flare is anchored deeply within the disk interior, we derive analytical estimates for the vertical dimension H_hot and the optical depth tau_es of th...

  9. The Radiative Efficiency of Accretion Flows in Individual AGN

    CERN Document Server

    Davis, Shane W

    2010-01-01

    The radiative efficiency of AGN is commonly estimated based on the total mass accreted and the total AGN light emitted per unit volume in the universe integrated over time (the Soltan argument). In individual AGN, thin accretion disk model spectral fits can be used to deduce the absolute accretion rate Mdot, if the black hole mass M is known. The radiative efficiency {\\eta} is then set by the ratio of the bolometric luminosity L_bol to Mdot c^2. We apply this method to determine {\\eta} in a sample of 80 PG quasars with well determined L_bol, where Mdot is set by thin accretion disk model fits to the optical luminosity density, and the M determination based on the bulge stellar velocity dispersion (13 objects) or the broad line region (BLR). For the BLR-based masses, we derive a mean log {\\eta} = -1.05 +/- 0.52 consistent with the Soltan argument based estimates. We find a strong correlation of {\\eta} with M, rising from {\\eta} ~ 0.03 at M = 10^7 M{\\odot} and L/L_Edd ~ 1 to {\\eta} ~ 0.4 at M = 10^9 M{\\odot} an...

  10. Evidence that most type 1 AGN are reddened by dust

    CERN Document Server

    Baron, Dalya; Poznanski, Dovi; Netzer, Hagai

    2016-01-01

    The typical optical-UV continuum slopes observed in many type 1 active galactic nuclei (AGN) are redder than expected from thin accretion disk models. A possible resolution to this conundrum is that many AGN are reddened by dust along the line of sight. To explore this possibility, we stack 5000 SDSS AGN with luminosity L ~ 10^45 erg/s and redshift z ~ 0.4 in bins of optical continuum slope alpha_opt and width of the broad Hbeta emission line. We measure the equivalent width (EW) of the NaID absorption feature in each stacked spectrum. We find a linear relation between alpha_opt and EW(NaID), such that EW(NaID) increases as alpha_opt becomes redder. In the bin with the smallest Hbeta width, objects with the bluest slopes that are similar to accretion disk predictions are found to have EW(NaID) = 0, supporting the line-of-sight dust hypothesis. This conclusion is also supported by the dependence of the Halpha/Hbeta line ratio on alpha_opt. The implied relationship between continuum slope and dust reddening is ...

  11. Perturbed disks get shocked. Binary black hole merger effects on accretion disks

    CERN Document Server

    Megevand, Miguel; Frank, Juhan; Hirschmann, Eric W; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2009-01-01

    The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In the present work we study the effect of both central mass reduction (due to the energy loss through gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational radiation). For the mass reduction case and recoil directed along the disk's angular momentum, oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung luminosities. On the other hand, when the recoil direction has a component orthogonal to the disk's angular momentum, the disk's dynamics are strongly impacted, giving rise to relativistic shocks. The shock heating leaves its signature in our proxies for radiation, the total internal energy and bremsstrahlung luminosity. Interestingly, for cases where the kick velocity is below the smallest orbital velocity in the disk (a likely scenario in real AGN), we observe a common, characteristic pattern in the internal energy of the dis...

  12. A global three-dimensional radiation magneto-hydrodynamic simulation of super-eddington accretion disks

    International Nuclear Information System (INIS)

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L Edd/c 2 and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L Edd. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  13. AGN-driven winds on all scales in Markarian 231: from hot nuclear ultra-fast up to kpc-extended molecular outflow

    CERN Document Server

    Feruglio, C; Carniani, S; Piconcelli, E; Zappacosta, L; Bongiorno, A; Cicone, C; Maiolino, R; Marconi, A; Menci, N; Puccetti, S; Veilleux, S

    2015-01-01

    We present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk231, obtained with IRAM/PdBI, and an analysis of archival Chandra and NuSTAR data. We constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The CO(2-1) outflow has a size of ~1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. Its maximum projected velocity is nearly constant out to ~1 kpc, thus implying that the density of the outflowing material must decrease from the nucleus outwards as ~ r^-2. This suggests that either a large part of the gas leaves the flow during its expansion, or that the bulk of the outflow has not yet reached ~1 kpc, implying a limit on its age of ~ 1 Myr. The mass and energy rates of the molecular outflow are dM/dt(OF)=[500-1000] Msun/yr and dE(kin,OF)/dt=[7-10] 10^43 erg/...

  14. Research on the Radiation of Active Galactic Nuclei Accretion Disk%活动星系核吸积盘辐射的研究

    Institute of Scientific and Technical Information of China (English)

    李刚; 刘兴俊; 伍林

    2013-01-01

    This paper considers effects of the accretion disks radiation with different mass accretion rate,different dimensionless rotate parameters a (central black hole is Kerr black hole),the constraints of the minimum stable orbit radius (produces a torque),the magnetic field existing on the surface of accretion disk (the coupling of jets radiation and the accretion disks radiation) based on the standard radiation accretion disk model.It can be concluded that black hole type,mass accretion rate,dimensionless black hole rotating parameters,the radio of jet radiation energy and accretion disk radiation energy,and radiation efficiency parameters have certain effect on accretion disks radiation through theory graphs.%在标准吸积盘辐射模型的基础上,考虑了不同的质量吸积率、不同的无量纲旋转参数a(中心黑洞为克尔黑洞)、最小稳定轨道半径处存在的约束(产生一个矩)和吸积盘表面磁场的存在(喷流辐射与吸积盘辐射之间存在一定的耦合)对吸积盘辐射的影响.结果表明,中心黑洞为正旋转的克尔黑洞比史瓦西黑洞辐射的峰值及峰值频率大,负旋转的克尔黑洞比史瓦西黑洞辐射的峰值及峰值频率小,质量吸积率越大峰值和峰值频率变大,无量纲黑洞旋转参数a越大峰值与峰值频率越大,喷流辐射能量和吸积盘辐射能量之比越大峰值和峰值频率越小,辐射效率越大峰值和峰值频率越大.

  15. The Exosat spectral survey of AGN

    Science.gov (United States)

    Turner, T. J.; Pounds, K. A.

    1989-01-01

    Results are presented from Exosat observations of 48 hard X-ray selected Seyfert-type active galactic nuclei (AGN). These include all 30 of the emission line AGN in the Piccinotti (1981) sample. Combining Exosat LE and ME data has yielded X-ray spectra over the broad energy range 0.1-10 keV. Spectra in the about 2-10 keV range are found to be well described by a simple power law, with a narrow distribution of spectral indices across the sample about a mean energy index alpha = 0.70. Exosat has also revealed a substantial number of sources with complex soft X-ray spectra. Evidence that soft emission components occur in many Seyferts, together with detection of rapid variability in the soft component, provides a quantitative support for an accretion disk model for AGN. Approximately half of the present sample of AGN show low-energy absorption attributable to substantial cold matter within the host galaxy. A few cases show evidence for column variability and reduced low-energy opacity (by photo-ionization). These results and the observed rarity of intrinsic absorption in the higher luminosity sources suggest the absorbing matter lies close to the central continuum source.

  16. Advection/Diffusion of Large-Scale B-Field in Accretion Disks

    CERN Document Server

    Lovelace, R V E; Bisnovatyi-Kogan, G S

    2009-01-01

    Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical ($z$) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-sca...

  17. Mapping the Dynamics of a Giant Ly-alpha Halo at z=4.1 with MUSE: The Energetics of a Large Scale AGN-Driven Outflow around a Massive, High-Redshift Galaxy

    CERN Document Server

    Swinbank, Mark; Smail, Ian; De Breuck, Carlos; Bacon, Roland; Contini, Thierry; Richard, Johan; Rottgering, Huub; Urritia, Tanya; Venemans, Bram

    2015-01-01

    We present deep MUSE integral-field unit (IFU) spectroscopic observations of the giant (~150 x 80 kpc) Ly-alpha halo around the z=4.1 radio galaxy TNJ J1338-1942. This 9-hr observation maps the two-dimensional kinematics of the Ly-alpha emission across the halo. We identify two HI absorbers which are seen against the Ly-alpha emission, both of which cover the full 150 x 80 kpc extent of the halo and so have covering fractions ~1. The stronger and more blue-shifted absorber (dv~1200 km/s) has dynamics that mirror that of the underlying halo emission and we suggest that this high column material (n(HI) ~ 10^19.4 /cm^2), which is also seen in CIV absorption, represents an out-flowing shell that has been driven by the AGN (or star formation) within the galaxy. The weaker (n(HI)~10^14 /cm^2) and less blue shifted (dv~500 km/s) absorber most likely represents material in the cavity between the out-flowing shell and the Ly-alpha halo. We estimate that the mass in the shell must be of order 10^10 Msol -- a significan...

  18. Advection/diffusion of large scale magnetic field in accretion disks

    Directory of Open Access Journals (Sweden)

    R. V. E. Lovelace

    2009-02-01

    Full Text Available Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1 a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI which gives a large viscosity enhancing accretion, and (2 a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z profiles of the stationary accretion flows (with radial and azimuthal components, and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr(z which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P=viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1 large-scale field does not diffuse away as suggested by earlier work.

  19. High-order Godunov schemes for global 3D MHD simulations of accretion disks. I. Testing the linear growth of the magneto-rotational instability

    Science.gov (United States)

    Flock, M.; Dzyurkevich, N.; Klahr, H.; Mignone, A.

    2010-06-01

    We assess the suitability of various numerical MHD algorithms for astrophysical accretion disk simulations with the PLUTO code. The well-studied linear growth of the magneto-rotational instability is used as the benchmark test for a comparison between the implementations within PLUTO and against the ZeusMP code. The results demonstrate the importance of using an upwind reconstruction of the electro-motive force (EMF) in the context of a constrained transport scheme, which is consistent with plane-parallel, grid-aligned flows. In contrast, constructing the EMF from the simple average of the Godunov fluxes leads to a numerical instability and the unphysical growth of the magnetic energy. We compare the results from 3D global calculations using different MHD methods against the analytical solution for the linear growth of the MRI, and discuss the effect of numerical dissipation. The comparison identifies a robust and accurate code configuration that is vital for realistic modeling of accretion disk processes.

  20. A high-order Godunov scheme for global 3D MHD accretion disks simulations. I. The linear growth regime of the magneto-rotational instability

    CERN Document Server

    Flock, M; Klahr, H; Mignone, A

    2009-01-01

    We employ the PLUTO code for computational astrophysics to assess and compare the validity of different numerical algorithms on simulations of the magneto-rotational instability in 3D accretion disks. In particular we stress on the importance of using a consistent upwind reconstruction of the electro-motive force (EMF) when using the constrained transport (CT) method to avoid the onset of numerical instabilities. We show that the electro-motive force (EMF) reconstruction in the classical constrained transport (CT) method for Godunov schemes drives a numerical instability. The well-studied linear growth of magneto-rotational instability (MRI) is used as a benchmark for an inter-code comparison of PLUTO and ZeusMP. We reproduce the analytical results for linear MRI growth in 3D global MHD simulations and present a robust and accurate Godunov code which can be used for 3D accretion disk simulations in curvilinear coordinate systems.