WorldWideScience

Sample records for ageing human brain

  1. Alzheimer's disease is not "brain aging": neuropathological, genetic, and epidemiological human studies.

    Science.gov (United States)

    Nelson, Peter T; Head, Elizabeth; Schmitt, Frederick A; Davis, Paulina R; Neltner, Janna H; Jicha, Gregory A; Abner, Erin L; Smith, Charles D; Van Eldik, Linda J; Kryscio, Richard J; Scheff, Stephen W

    2011-05-01

    Human studies are reviewed concerning whether "aging"-related mechanisms contribute to Alzheimer's disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes involved in APP-related mechanisms, there is no firm connection between genes implicated in human "accelerated aging" diseases (progerias) and AD. The epidemiology of AD in advanced age is highly relevant but deceptively challenging to address given the low autopsy rates in most countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain diseases other than AD afflict older human brains and contribute to cognitive impairment. Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both high-morbidity brain diseases that appear to peak in incidence later than AD chronologically. Because of these common brain diseases of extreme old age, the epidemiology differs between clinical "dementia" and the subset of dementia cases with AD pathology. Additional aging-associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to AD and these hypotheses are discussed. Criteria are proposed to define an "aging-linked" disease, and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging. PMID:21516511

  2. Study of cerebral metabolism of glucose in normal human brain correlated with age

    International Nuclear Information System (INIS)

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and

  3. Studying variability in human brain aging in a population-based German cohort – Rationale and design of 1000BRAINS

    Directory of Open Access Journals (Sweden)

    Svenja eCaspers

    2014-07-01

    Full Text Available The ongoing 1000 brains study (1000BRAINS is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions & language; examination of motor skills; ratings of personality, life quality, mood & daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla of the brain. The latter includes (i 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fibre tracking and for diffusion kurtosis imaging; (iii resting-state and task-based functional MRI; and (iv fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  4. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    Science.gov (United States)

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates. PMID:25071558

  5. Cognition and brain functional aging

    Directory of Open Access Journals (Sweden)

    Hui-jie LI

    2014-03-01

    Full Text Available China has the largest population of elderly adults. Meanwhile, it is one of the countries showing fastest aging speed in the world. Aging processing is always companied with a series of brain structural and functional changes, which result in the decline of processing speed, working memory, long-term memory and executive function, etc. The studies based on functional magnetic resonance imaging (fMRI found certain aging effects on brain function activation, spontaneous activity and functional connectivity in old people. However, few studies have explored the brain functional curve during the aging process while most previous studies explored the differences in the brain function between young people and old people. Delineation of the human brain functional aging curve will promote the understanding of brain aging mechanisms and support the normal aging monitoring and early detection of abnormal aging changes. doi: 10.3969/j.issn.1672-6731.2014.03.005

  6. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain

    Directory of Open Access Journals (Sweden)

    Sanberg Paul R

    2008-02-01

    Full Text Available Abstract Background Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation. Results We determined that human umbilical cord blood mononuclear cells (UCBMC given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis. Conclusion The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain.

  7. Positron emission tomography studies in the normal and abnormal ageing of human brain

    International Nuclear Information System (INIS)

    Until recently, the investigation of the neurophysiological correlates of normal and abnormal ageing of the human brain was limited by methodological constraints, as the technics available provided only a few parameters (e.g. electroencephalograms, cerebral blood flow) monitored in superficial brain structures in a grossly regional and poorly quantitative way. Lately several non invasive techniques have been developed which allow to investigate in vivo both quantitatively and on local basis a number of previously inaccessible important aspects of brain function. Among these techniques, such as single photon emission tomography imaging of computerized electric events, nuclear magnetic resonance, positron emission tomography stands out as the most powerful and promising method since it allows the in vivo measurement of biochemical and pharmacological parameters

  8. Age-related degeneration of the fornix in the human brain: a diffusion tensor imaging study.

    Science.gov (United States)

    Jang, Sung Ho; Cho, Sang-Hyun; Chang, Min Cheol

    2011-02-01

    As a part of the Papez circuit, the fornix carries information on episodic memory. Several diffusion tensor imaging (DTI) studies have reported on changes in the fornix that occur with aging; however, these studies have been controversial. Using DTI, we attempted to investigate age-related changes of the fornix in the human brain. Sixty subjects (30 males, 30 females; mean age, 49.2 years; range, 20-78 years) were recruited. We categorized subjects into three groups, including young (20-39 years), middle-aged (40-59 years), and older (60-79 years) adults. DTIs were acquired using a sensitivity-encoding head coil on a 1.5 T. We divided the whole fornix into three parts (column, body, and crus) and constructed tractography for each part. We measured fractional anisotropy (FA), apparent diffusion coefficient (ADC), and tract number for each part of the fornix. In all three parts of the fornix, the FA value and tract number decreased, whereas ADC value increased with aging. In addition, a linear regression model was fitted to all three DTI parameters in each part of the fornix. Degenerative change of the fornix in the human brain appears to have occurred at a near constant rate from the 20s to the30s throughout the lifespan. PMID:21062216

  9. Physiological neuronal decline in healthy aging human brain - An in vivo study with MRI and short echo-time whole-brain (1)H MR spectroscopic imaging.

    Science.gov (United States)

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich

    2016-08-15

    Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. PMID:27164326

  10. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  11. The Process of Human Aging and Involution Changes in the Brain

    OpenAIRE

    Łęt, Paweł; Szabela, Anna Polak; Porzych, Katarzyna

    2013-01-01

    The aging process and systemic changes occurring in it have an impact on the brain. Commonly observed symptoms of an old age such as cognitive impairment and slowness of movement are the illustration of the changes in the brain. These changes are for brain structure, quantities of neurotransmitters and hormonal activity. We can partially modify the time and the dynamics of the development of evolutional changes through an appropriate preventive action.

  12. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  13. Aging and Functional Brain Networks

    OpenAIRE

    Tomasi, Dardo; Volkow, Nora D.

    2011-01-01

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the “default-mode” network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis we evaluated resting-state datasets corresponding to 913 hea...

  14. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  15. Neurogenesis in the aging brain

    Directory of Open Access Journals (Sweden)

    Veronica Galvan

    2007-01-01

    Full Text Available Veronica Galvan, Kunlin JinBuck Institute for Age Research, 8001 Redwood Blvd. Novato, CA, USAAbstract: Neurogenesis, or the birth of new neural cells, was thought to occur only in the developing nervous system and a fixed neuronal population in the adult brain was believed to be necessary to maintain the functional stability of adult brain circuitry. However, recent studies have demonstrated that neurogenesis does indeed continue into and throughout adult life in discrete regions of the central nervous systems (CNS of all mammals, including humans. Although neurogenesis may contribute to the ability of the adult brain to function normally and be induced in response to cerebral diseases for self-repair, this nevertheless declines with advancing age. Understanding the basic biology of neural stem cells and the molecular and cellular regulation mechanisms of neurogenesis in young and aged brain will allow us to modulate cell replacement processes in the adult brain for the maintenance of healthy brain tissues and for repair of disease states in the elderly.Keywords: neurogenesis, aging, brain, neural stem cells, subgranular zone, subventricular zone

  16. Ischemia Alters the Expression of Connexins in the Aged Human Brain

    OpenAIRE

    Taizen Nakase; Tetsuya Maeda; Yasuji Yoshida; Ken Nagata

    2009-01-01

    Although the function of astrocytic gap junctions under ischemia is still under debate, increased expression of connexin 43 (Cx43) has been observed in ischemic brain lesions, suggesting that astrocytic gap junctions could provide neuronal protection against ischemic insult. Moreover, different connexin subtypes may play different roles in pathological conditions. We used immunohistochemical analysis to investigate alterations in the expression of connexin subtypes in human stroke brains. Sev...

  17. Dissociable circuits for visual shape learning in the young and aging human brain

    OpenAIRE

    Mayhew, Stephen D.; Kourtzi, Zoe

    2013-01-01

    Recognizing objects in cluttered scenes is vital for successful interactions in our complex environments. Learning is known to play a key role in facilitating performance in a wide range of perceptual skills not only in young but also older adults. However, the neural mechanisms that support our ability to improve visual form recognition with training in older age remain largely unknown. Here, we combine behavioral and fMRI measurements to identify the brain circuits involved in the learning ...

  18. Ischemia Alters the Expression of Connexins in the Aged Human Brain

    Directory of Open Access Journals (Sweden)

    Taizen Nakase

    2009-01-01

    Full Text Available Although the function of astrocytic gap junctions under ischemia is still under debate, increased expression of connexin 43 (Cx43 has been observed in ischemic brain lesions, suggesting that astrocytic gap junctions could provide neuronal protection against ischemic insult. Moreover, different connexin subtypes may play different roles in pathological conditions. We used immunohistochemical analysis to investigate alterations in the expression of connexin subtypes in human stroke brains. Seven samples, sectioned after brain embolic stroke, were used for the analysis. Data, evaluated semiquantitatively by computer-assisted densitometry, was compared between the intact hemisphere and ischemic lesions. The results showed that the coexpression of Cx32 and Cx45 with neuronal markers was significantly increased in ischemic lesions. Cx43 expression was significantly increased in the colocalization with astrocytes and relatively increased in the colocalization with neuronal marker in ischemic lesions. Therefore, Cx32, Cx43, and Cx45 may respond differently to ischemic insult in terms of neuroprotection.

  19. Brain trace elements and aging

    International Nuclear Information System (INIS)

    Degenerative mechanisms involved in the aging process of the brain are to a certain extent counteracted by repair mechanisms. In both degenerative and recovery processes, trace elements are involved. The present study focused on the role of two minor (i.e., K and Ca) and six trace elements (i.e., Mn, Fe, Cu, Zn, Se and Rb) in the aging process. The elements were determined by PIXE in cerebral cortex and white matter, basal ganglia, brainstem and cerebellar cortex of 18 postmortem human brains, from persons without a history of neurologic or psychiatric disease who deceased between the age of 7 and 79. This age range allowed us to study the relationship between elemental concentrations and age. The most prominent findings were a concentration decrease for K and Rb and a concentration increase for the elements Ca, Fe, Zn and Se. The study supports recent findings that Ca and Fe are involved in brain degenerative processes initiated by oxygen free radicals, whereas Zn and Se are involved in immunological reactions counteracting the aging process

  20. Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural changes

    OpenAIRE

    Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F.; Westlye, Lars T.; Fjell, Anders M.; Walhovd, Kristine B; Hu, Xiaoping; Herndon, James G; Preuss, Todd M.; Rilling, James K.

    2013-01-01

    Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but ...

  1. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    DEFF Research Database (Denmark)

    Olesen, R H; Hyde, T M; Kleinman, J E;

    2016-01-01

    participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African...... available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn(2+) affect modulation of intracellular signaling. The ZNT and ZIP proteins...... expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing...

  2. Aging in the canine and feline brain.

    Science.gov (United States)

    Vite, Charles H; Head, Elizabeth

    2014-11-01

    Aging dogs and cats show neurodegenerative features that are similar to human aging and Alzheimer disease. Neuropathologic changes with age may be linked to signs of cognitive dysfunction both in the laboratory and in a clinic setting. Less is known about cat brain aging and cognition and this represents an area for further study. Neurodegenerative diseases such as lysosomal storage diseases in dogs and cats also show similar features of human aging, suggesting some common underlying pathogenic mechanisms and also suggesting pathways that can be modified to promote healthy brain aging. PMID:25441628

  3. Aging and functional brain networks

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi D.; Tomasi, D.; Volkow, N.D.

    2011-07-11

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

  4. Age-related white matter degradation rule of normal human brain: the evidence from diffusion tensor magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiang; Li Baoqing; Shan Baoci

    2014-01-01

    Background Diffusion tensor imaging can evaluate white matter function in human brain.Fractional anisotropy is the most important parameter.This study aimed to find regional reduction of fractional anisotropy (FA) with aging in the whole brain and the changing rules of anisotropy with aging.Methods Fifty volunteers from 20 to 75 years old were divided into five consecutive age groups; a young group and four senior groups.FA values were calculated with diffusion tensor imaging (DTI) studio software.The difference of FA between the young group and the four senior groups were analyzed by analysis of voxel-level height threshold in Statistic Parametric Mapping (SPM),and the regions with decreased FA were obtained.The FA values of these regions were then extracted using an in-house developed program,and a multiple linear regression model was built to assess the influence of age and sex on the FA values of these regions.Results Eight regions,including frontal lobe,postcentral gyrus,optic radiation,hippocampus,cerebella hemisphere,corona radiate,corpus callosum and internal capsule,were found to have decreased FA.There was a strong negative correlation between age and the FA in the frontal lobe,postcentral gyrus,optic radiation,hippocampus,and cerebella hemisphere,while a weaker negative correlation in the corona radiate,corpus callosum,and internal capsule was found.The FA reduction in the frontal lobe,postcentral gyrus,optic radiation,hippocampus and cerebella hemisphere were found earlier than in the corona radiate,corpus callosum and internal capsule.There was no correlation between sex and FA in these regions.Conclusions The FA in the subcortical white matter area reduces earlier than that in deep white matter.The areas with decreased FA continuously enlarge with aqing.The FAs in these regions have a strong negative correlation with age.

  5. Brain aging and therapeutic interventions

    DEFF Research Database (Denmark)

    This book brings together most up-to-date information on different aspects of brain aging and on the strategies for intervention and therapy of age-related brain disorders. It includes 18 chapters by leading researchers, and each chapter is a comprehensive and critical review of the topic...

  6. Training the brain to overcome the effect of aging on the human eye

    OpenAIRE

    Polat, Uri; Schor, Clifton; Tong, Jian-Liang; Zomet, Ativ; Lev, Maria; Yehezkel, Oren; Sterkin, Anna; Levi, Dennis M.

    2012-01-01

    Presbyopia, from the Greek for aging eye, is, like death and taxes, inevitable. Presbyopia causes near vision to degrade with age, affecting virtually everyone over the age of 50. Presbyopia has multiple negative effects on the quality of vision and the quality of life, due to limitations on daily activities – in particular, reading. In addition presbyopia results in reduced near visual acuity, reduced contrast sensitivity, and slower processing speed. Currently available solutions, such as o...

  7. Effect of age on neocortical brain cells in 90+ year old human females--a cell counting study

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Jacobsen, Jette Stub; Pakkenberg, Bente

    2013-01-01

    An increasing number of people are living past the age of 100 years, but little is known about what differentiates centenarians from the rest of the population. In this study, brains from female subjects in 3 different age groups, 65-75 years (n = 8), 76-85 years (n = 8), and 94-105 years (n = 7)...

  8. Aging of the cingulum in the human brain: Preliminary study of a diffusion tensor imaging study.

    Science.gov (United States)

    Jang, Sung Ho; Kwon, Yong Hyun; Lee, Mi Young; Kim, Jae-Ryong; Seo, Jeong Pyo

    2016-01-01

    The cingulum, a major structure of the limbic system, is closely associated with memory function. In the current study, we investigated aging of the cingulum according to the location of the cingulum in each part of the cingulum after dividing the cingulum into five parts in normal subjects, using DTT parameters (fractional anisotropy (FA) and fiber number (FN)). Ninety healthy subjects (males: 44, females: 46, mean age: 49.0 years; range: 20-78 years) were enrolled in this study. Subjects were categorized according to six groups by age intervals of 10 years; each age group consisted of 15 subjects. The cingulum was divided into five parts (anterior, anterior superior, posterior superior cingulum, posterior, and inferior cingulum). The FA and FN of each part were measured. The FA value indicates the degree of directionality and integrity of white matter microstructures such as axons, myelin, and microtubules, and the FN reflects the total number of fibers in a neural tract. Age-related decline in the FA value may indicate demyelination, and a decline in the number of myelinated fibers of a neural tract can also lead to a decline of the FN. Significant differences in the FA value of the anterior cingulum and anterior superior cingulum, and the FN of the inferior cingulum were observed between age groups (AVOVA, pLSD post hoc test, p<0.05). Aging of the cingulum began at both ends of the cingulum in the 20s or 30s, and progressed steadily at a near continuous rate over the lifespan and a significant degenerative aging effect at both ends of the cingulum occurred into the 60s, compared with the 20s or 30s. PMID:26598020

  9. EFFECTS OF AGE, DIETARY AND BEHAVIORAL ENRICHMENT ON BRAIN MITOCHONDRIA IN A CANINE MODEL OF HUMAN AGING

    OpenAIRE

    Head, E; Nukala, V. N.; Fenoglio, K.A.; Muggenburg, B. A.; Cotman, C W; Sullivan, P. G.

    2009-01-01

    Dogs develop cognitive decline and a progressive accumulation of oxidative damage. In a previous longitudinal study, we demonstrated that aged dogs treated with either an antioxidant diet or with behavioral enrichment show cognitive improvement. The antioxidant diet included cellular antioxidants (Vitamins E, C, fruits and vegetables) and mitochondrial co-factors (lipoic acid and carnitine). Behavioral enrichment consisted of physical exercise, social enrichment and cognitive training. We hyp...

  10. Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2 and dopamine transporter (DAT densities in aged human brain.

    Directory of Open Access Journals (Sweden)

    Jianjun Sun

    Full Text Available The dopamine D(1, D(2, D(3 receptors, vesicular monoamine transporter type-2 (VMAT2, and dopamine transporter (DAT densities were measured in 11 aged human brains (aged 77-107.8, mean: 91 years by quantitative autoradiography. The density of D(1 receptors, VMAT2, and DAT was measured using [(3H]SCH23390, [(3H]dihydrotetrabenazine, and [(3H]WIN35428, respectively. The density of D(2 and D(3 receptors was calculated using the D(3-preferring radioligand, [(3H]WC-10 and the D(2-preferring radioligand [(3H]raclopride using a mathematical model developed previously by our group. Dopamine D(1, D(2, and D(3 receptors are extensively distributed throughout striatum; the highest density of D(3 receptors occurred in the nucleus accumbens (NAc. The density of the DAT is 10-20-fold lower than that of VMAT2 in striatal regions. Dopamine D(3 receptor density exceeded D(2 receptor densities in extrastriatal regions, and thalamus contained a high level of D(3 receptors with negligible D(2 receptors. The density of dopamine D(1 linearly correlated with D(3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D(3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D(1 and D(2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D(3 and D(2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D(2 or D(3 receptors.

  11. Neurogenesis in the aging brain

    OpenAIRE

    Veronica Galvan; Kunlin Jin

    2007-01-01

    Veronica Galvan, Kunlin JinBuck Institute for Age Research, 8001 Redwood Blvd. Novato, CA, USAAbstract: Neurogenesis, or the birth of new neural cells, was thought to occur only in the developing nervous system and a fixed neuronal population in the adult brain was believed to be necessary to maintain the functional stability of adult brain circuitry. However, recent studies have demonstrated that neurogenesis does indeed continue into and throughout adult life in discrete regions of the cent...

  12. Oxidative stress during aging and in Alzheimer's disease : a comparative study of oxidative damage and antioxidant enzymatic activities in mouse models and human brain tissue

    OpenAIRE

    Schüssel, Katrin

    2005-01-01

    The hypothesis that oxidative stress plays a role in the pathogenesis of Alzheimer’s disease (AD) was tested by studying oxidative damage, acitvities of antioxidant enzymes and levels of reactive oxygen species (ROS) in several models. To this end, mouse models transgenic for mutant presenilin (PS1M146L) as well as mutant amyloid precursor protein (APP) and human post mortem brain tissue from sporadic AD patients and age-matched controls were studied. Aging leads to an upregulation of antioxi...

  13. Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly.

    Science.gov (United States)

    Domínguez, Mayelín; de Oliveira, Eliandre; Odena, María Antonia; Portero, Manuel; Pamplona, Reinald; Ferrer, Isidro

    2016-06-01

    Protein lipoxidation was assessed in the parietal cortex (PC), frontal cortex (FC), and cingulate gyrus (CG) in middle-aged and old-aged individuals with no clinical manifestations of cognitive impairment, in order to increase understanding of regional brain vulnerability to oxidative damage during aging. Twenty-five lipoxidized proteins were identified in all the three regions although with regional specificities, by using redox proteomics to detect target proteins of neuroketals (NKT) adduction. The number of cases with NKT-adducted proteins was higher in old-aged individuals but most oxidized proteins were already present in middle-aged individuals. Differences in vulnerability to oxidation were dependent on the sub-cellular localization, secondary structure, and external exposition of certain amino acids. Lipoxidized proteins included those involved in energy metabolism, cytoskeleton, proteostasis, neurotransmission and O2/CO2, and heme metabolism. Total NKT and soluble oligomer levels were estimated employing slot-blot, and these were compared between age groups. Oligomers increased with age in PC and FC; NKT significantly increased with age in FC, whereas total NKT and oligomer levels were not modified in CG, thus highlighting differences in brain regional vulnerability with age. Oligomers significantly correlated with NKT levels in the three cortical regions, suggesting that protein NKT adduction parallels soluble oligomer formation. PMID:26968793

  14. Nutrients, Microglia Aging, and Brain Aging

    OpenAIRE

    Zhou Wu; Janchun Yu; Aiqin Zhu; Hiroshi Nakanishi

    2016-01-01

    As the life expectancy continues to increase, the cognitive decline associated with Alzheimer’s disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and ...

  15. Age, sex and NK1 receptors in the human brain -- a positron emission tomography study with [¹¹C]GR205171.

    Science.gov (United States)

    Engman, Jonas; Åhs, Fredrik; Furmark, Tomas; Linnman, Clas; Pissiota, Anna; Appel, Lieuwe; Frans, Örjan; Långström, Bengt; Fredrikson, Mats

    2012-08-01

    The substance P/neurokinin 1 (SP/NK1) system has been implicated in the processing of negative affect. Its role seems complex and findings from animal studies have not been easily translated to humans. Brain imaging studies on NK1 receptor distribution in humans have revealed an abundance of receptors in cortical, striatal and subcortical areas, including the amygdala. A reduction in NK1 receptors with increasing age has been reported in frontal, temporal, and parietal cortices, as well as in hippocampal areas. Also, a previous study suggests sex differences in cortical and subcortical areas, with women displaying fewer NK1 receptors. The present PET study explored NK1 receptor availability in men (n=9) and women (n=9) matched for age varying between 20 and 50years using the highly specific NK1 receptor antagonist [¹¹C]GR205171 and a reference tissue model with cerebellum as the reference region. Age by sex interactions in the amygdala and the temporal cortex reflected a lower NK1 receptor availability with increasing age in men, but not in women. A general age-related decline in NK1 receptor availability was evident in the frontal, temporal, and occipital cortices, as well as in the brainstem, caudate nucleus, and thalamus. Women had lower NK1 receptor availability in the thalamus. The observed pattern of NK1 receptor distribution in the brain might have functional significance for brain-related disorders showing age- and sex-related differences in prevalence. PMID:22225860

  16. Human brain imaging

    International Nuclear Information System (INIS)

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  17. Brain plasticity, memory, and aging: a discussion

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, E.L.; Rosenzweig, M.R.

    1977-12-01

    It is generally assumed that memory faculties decline with age. A discussion of the relationship of memory and aging and the possibility of retarding the potential decline is hampered by the fact that no satisfactory explanation of memory is available in either molecular or anatomical terms. However, this lack of description of memory does not mean that there is a lack of suggested mechanisms for long-term memory storage. Present theories of memory usually include first, neurophysiological or electrical events, followed by a series of chemical events which ultimately lead to long-lasting anatomical changes in the brain. Evidence is increasing for the biochemical and anatomical plasticity of the nervous system and its importance in the normal functioning of the brain. Modification of this plasticity may be an important factor in senescence. This discussion reports experiments which indicate that protein synthesis and anatomical changes may be involved in long-term memory storage. Environmental influences can produce quantitative differences in brain anatomy and in behavior. In experimental animals, enriched environments lead to more complex anatomical patterns than do colony or impoverished environments. This raises fundamental questions about the adequacy of the isolated animal which is frequently being used as a model for aging research. A more important applied question is the role of social and intellectual stimulation in influencing aging of the human brain.

  18. The age dependence of T2 relaxation times of N-acetyl aspartate, creatine and choline in the human brain at 3 and 4T.

    Science.gov (United States)

    Jiru, F; Skoch, A; Wagnerova, D; Dezortova, M; Viskova, J; Profant, O; Syka, J; Hajek, M

    2016-03-01

    Knowledge of the T2 age dependence is of importance for MRS clinical studies involving subject groups with a wide age range. A number of studies have focused on the age dependence of T2 values in the human brain, with rather conflicting results. The aim of this study was to analyze the age dependence of T2 values of N-acetyl aspartate (NAA), creatine (Cr) and choline (Cho) in the human brain using data acquired at 3T and 4T and to assess the influence of the macromolecule (MM) baseline handling on the obtained results. Two distinct groups of young and elderly controls have been measured at 3T (TE = 30-540 ms, 9 young and 11 elderly subjects) and 4T (TE = 10-180 ms, 18 young and 14 elderly subjects) using single-voxel spectroscopy. In addition, MM spectra were measured from two subjects using the inversion-recovery technique at 4T. All spectra were processed with LCModel using basis sets with different MM signals (measured or simulated) and also with MM signals included for a different TE range. Individual estimated T2 values were statistically analyzed using the R programming language for the age dependence of T2 values as well as the influence of the MM baseline handling. A significant decrease of T2 values of NAA and Cr in elderly subjects compared with young subjects was confirmed. The same trend was observed for Cho. Significantly higher T2 values calculated using the measured MM baseline for all studied metabolites at 4T were observed for both young and elderly subjects. To conclude, while the handling of MM and lipid signals may have a significant effect on estimated T2 values, we confirmed the age dependence of T2 values of NAA and Cr and the same trend for Cho in the human brain. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26752593

  19. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    Science.gov (United States)

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. PMID:26827656

  20. Label-Free Quantitative LC–MS Proteomics of Alzheimer’s Disease and Normally Aged Human Brains

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Victor P.; Petyuk, Vladislav A.; Brewer, Heather M.; Karpievitch, Yuliya V.; Xie, Fang; Clarke, Jennifer; Camp, David; Smith, Richard D.; Lieberman, Andrew P.; Albin, Roger L.; Nawaz, Zafar; El Hokayem, Jimmy; Myers, Amanda J.

    2012-06-01

    Quantitative proteomics analysis of cortical samples of 10 Alzheimer’s disease (AD) brains versus 10 normally aged brains was performed by following the accurate mass and time tag (AMT) approach with the high resolution LTQ Orbitrap mass spectrometer. More than 1400 proteins were identified and quantitated. A conservative approach of selecting only the consensus results of four normalization methods was suggested and used. A total of 197 proteins were shown to be significantly differentially abundant (p-values <0.05, corrected for multiplicity of testing) in AD versus control brain samples. Thirty-seven of these proteins were reported as differentially abundant or modified in AD in previous proteomics and transcriptomics publications. The rest to the best of our knowledge are new. Mapping of the discovered proteins with bioinformatic tools revealed significant enrichment with differentially abundant proteins of pathways and processes known to be important in AD, including signal transduction, regulation of protein phosphorylation, immune response, cytoskeleton organization, lipid metabolism, energy production, and cell death.

  1. Prolonged rote learning produces delayed memory facilitation and metabolic changes in the hippocampus of the ageing human brain.

    LENUS (Irish Health Repository)

    Roche, Richard Ap

    2009-01-01

    BACKGROUND: Repeated rehearsal is one method by which verbal material may be transferred from short- to long-term memory. We hypothesised that extended engagement of memory structures through prolonged rehearsal would result in enhanced efficacy of recall and also of brain structures implicated in new learning. Twenty-four normal participants aged 55-70 (mean = 60.1) engaged in six weeks of rote learning, during which they learned 500 words per week every week (prose, poetry etc.). An extensive battery of memory tests was administered on three occasions, each six weeks apart. In addition, proton magnetic resonance spectroscopy (1H-MRS) was used to measure metabolite levels in seven voxels of interest (VOIs) (including hippocampus) before and after learning. RESULTS: Results indicate a facilitation of new learning that was evident six weeks after rote learning ceased. This facilitation occurred for verbal\\/episodic material only, and was mirrored by a metabolic change in left posterior hippocampus, specifically an increase in NAA\\/(Cr+Cho) ratio. CONCLUSION: Results suggest that repeated activation of memory structures facilitates anamnesis and may promote neuronal plasticity in the ageing brain, and that compliance is a key factor in such facilitation as the effect was confined to those who engaged fully with the training.

  2. Prolonged rote learning produces delayed memory facilitation and metabolic changes in the hippocampus of the ageing human brain

    Directory of Open Access Journals (Sweden)

    Prendergast Julie

    2009-11-01

    Full Text Available Abstract Background Repeated rehearsal is one method by which verbal material may be transferred from short- to long-term memory. We hypothesised that extended engagement of memory structures through prolonged rehearsal would result in enhanced efficacy of recall and also of brain structures implicated in new learning. Twenty-four normal participants aged 55-70 (mean = 60.1 engaged in six weeks of rote learning, during which they learned 500 words per week every week (prose, poetry etc.. An extensive battery of memory tests was administered on three occasions, each six weeks apart. In addition, proton magnetic resonance spectroscopy (1H-MRS was used to measure metabolite levels in seven voxels of interest (VOIs (including hippocampus before and after learning. Results Results indicate a facilitation of new learning that was evident six weeks after rote learning ceased. This facilitation occurred for verbal/episodic material only, and was mirrored by a metabolic change in left posterior hippocampus, specifically an increase in NAA/(Cr+Cho ratio. Conclusion Results suggest that repeated activation of memory structures facilitates anamnesis and may promote neuronal plasticity in the ageing brain, and that compliance is a key factor in such facilitation as the effect was confined to those who engaged fully with the training.

  3. Specialization of Functions in the Human Brain

    OpenAIRE

    Parvizi, Josef

    2013-01-01

    The brain has fascinated us for ages. Some of the first serious discussions about the human brain started in ancient Egypt where the king of Alexandria allowed live dissections of criminals for the study of human anatomy [1]. Those who performed the dissections opened up the skull bone and saw the brain live. When they cut through the brain, they discovered large spaces inside it. These spaces were connected to each other like chambers in a house. They were also filled with a unique looking, ...

  4. Biodemography of human ageing

    DEFF Research Database (Denmark)

    Vaupel, James W

    2010-01-01

    Human senescence has been delayed by a decade. This finding, documented in 1994 and bolstered since, is a fundamental discovery about the biology of human ageing, and one with profound implications for individuals, society and the economy. Remarkably, the rate of deterioration with age seems to be...

  5. Age-related decline in dopamine transporter in human brain using PET with a new radioligand [18F]FE-PE2I

    International Nuclear Information System (INIS)

    Dopamine transporter (DAT) density is considered as a marker of pre-synaptic function. Numerous neuroimaging studies have consistently demonstrated an age-related decrease in DAT density in normal human brain. However, the precise degree of the regional decline is not yet clear. The purpose of this study was to evaluate the effect of the normal aging process on DAT densities in human-specific brain regions including the substantia nigra and thalamus using positron emission tomography (PET) with [18F]FE-PE2I, a new PET radioligand with high affinity and selectivity for DAT. Thirty-six healthy volunteers ranging in age from 22 to 80 years were scanned with PET employing [18F]FE-PE2I for measuring DAT densities. Region of interest (ROI)-based analysis was used, and ROIs were manually defined for the caudate, putamen, substantia nigra, thalamus, and cerebellar cortex. DAT binding was quantified using a simplified reference tissue model, and the cerebellum was used as reference region. Estimations of binding potential in the caudate, putamen, substantia nigra, and thalamus were individually regressed according to age using simple regression analysis. Estimates of DAT loss per decade were obtained using the values from the regression slopes. There were 7.6, 7.7, and 3.4% per-decade declines in DAT in the caudate, putamen, and substantia nigra, respectively. By contrast, there was no age-related decline of DAT in the thalamus. [18F]FE-PE2I allowed reliable quantification of DAT, not only in the caudate and putamen but also in the substantia nigra. From the results, we demonstrated the age-related decline in the caudate and putamen as reported in previous studies, and additionally for those in the substantia nigra for the first time. (author)

  6. Intrinsic Brain Connectivity Related to Age in Young and Middle Aged Adults

    OpenAIRE

    Hampson, Michelle; Tokoglu, Fuyuze; Shen, Xilin; Scheinost, Dustin; Papademetris, Xenophon; Constable, R. Todd

    2012-01-01

    Age-related variations in resting state connectivity of the human brain were examined from young adulthood through middle age. A voxel-based network measure, degree, was used to assess age-related differences in tissue connectivity throughout the brain. Increases in connectivity with age were found in paralimbic cortical and subcortical regions. Decreases in connectivity were found in cortical regions, including visual areas and the default mode network. These findings differ from those of re...

  7. Aging. Aging-induced type I interferon signaling at the choroid plexus negatively affects brain function

    Science.gov (United States)

    Baruch, Kuti; Deczkowska, Aleksandra; David, Eyal; Castellano, Joseph M.; Miller, Omer; Kertser, Alexander; Berkutzki, Tamara; Barnett-Itzhaki, Zohar; Bezalel, Dana; Wyss-Coray, Tony; Amit, Ido; Schwartz, Michal

    2016-01-01

    Age-associated cognitive decline is affected by factors produced inside and outside the brain. We found in aged mice and humans, that the choroid plexus (CP), an epithelial interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent expression profile, often associated with anti-viral responses. This signature was induced by brain-derived signals present in the cerebrospinal fluid of aged mice. Blocking IFN-I signaling within the brain of cognitively-impaired aged mice, using IFN-I receptor neutralizing antibody, led to partial restoration of cognitive function and hippocampal neurogenesis, and reestablished IFN-II-dependent CP activity, lost in aging. Our data identify an aging-induced IFN-I signature at the CP, and demonstrate its negative influence on brain function, thereby suggesting a potential target for therapeutic intervention for age-related cognitive decline. PMID:25147279

  8. Genes and human brain evolution

    OpenAIRE

    Geschwind, Daniel H.; Konopka, Genevieve

    2012-01-01

    Several genes were duplicated during human evolution. It seems that one such duplication gave rise to a gene that may have helped to make human brains bigger and more adaptable than those of our ancestors.

  9. NIH Conference. Brain imaging: aging and dementia

    International Nuclear Information System (INIS)

    The brain imaging techniques of positron emission tomography using [18F]-fluoro-2-deoxy-D-glucose, and computed tomography, together with neuropsychological tests, were used to examine overall brain function and anatomy in three study populations: healthy men at different ages, patients with presumptive Alzheimer's disease, and adults with Down's syndrome. Brain glucose use did not differ with age, whereas an age-related decrement in gray matter volume was found on computed tomographic assessment in healthy subjects. Memory deficits were found to precede significant reductions in brain glucose utilization in mild to moderate Alzheimer's dementia. Furthermore, differences between language and visuoconstructive impairments in patients with mild to moderate Alzheimer's disease were related to hemispheric asymmetry of brain metabolism. Brain glucose utilization was found to be significantly elevated in young adults with Down's syndrome, compared with controls. The importance of establishing strict criteria for selecting control subjects and patients is explained in relation to the findings

  10. The Effects of Physical Activity, Education, and Body Mass Index on the Aging Brain

    OpenAIRE

    Ho, April J.; Raji, Cyrus A.; Becker, James T.; Lopez, Oscar L.; Kuller, Lewis H.; Hua, Xue; Dinov, Ivo D.; Stein, Jason L; Rosano, Caterina; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Normal human aging is accompanied by progressive brain tissue loss and cognitive decline; however, several factors are thought to influence brain aging. We applied tensor-based morphometry to high-resolution brain MRI scans to determine whether educational level or physical activity was associated with brain tissue volumes in the elderly, particularly in regions susceptible to age-related atrophy. We mapped the 3D profile of brain volume differences in 226 healthy elderly subjects (130F/96M; ...

  11. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  12. NMDA receptor function, memory, and brain aging

    OpenAIRE

    Newcomer, John W.; Farber, Nuri B.; Olney, John W.

    2000-01-01

    An increasing level of N-methyl-D-aspartate (NMDA) receptor hypofunction within the brain is associated with memory and learning impairments, with psychosis, and ultimately with excitotoxic brain injury. As the brain ages, the NMDA receptor system becomes progressively hypofunctional, contributing to decreases in memory and learning performance. In those individuals destined to develop Alzheimer's disease, other abnormalities (eg, amyloidopathy and oxidative stress) interact to increase the N...

  13. Development of cortical shape in the human brain from 6 to 24months of age via a novel measure of shape complexity.

    Science.gov (United States)

    Kim, Sun Hyung; Lyu, Ilwoo; Fonov, Vladimir S; Vachet, Clement; Hazlett, Heather C; Smith, Rachel G; Piven, Joseph; Dager, Stephen R; Mckinstry, Robert C; Pruett, John R; Evans, Alan C; Collins, D Louis; Botteron, Kelly N; Schultz, Robert T; Gerig, Guido; Styner, Martin A

    2016-07-15

    The quantification of local surface morphology in the human cortex is important for examining population differences as well as developmental changes in neurodegenerative or neurodevelopmental disorders. We propose a novel cortical shape measure, referred to as the 'shape complexity index' (SCI), that represents localized shape complexity as the difference between the observed distributions of local surface topology, as quantified by the shape index (SI) measure, to its best fitting simple topological model within a given neighborhood. We apply a relatively small, adaptive geodesic kernel to calculate the SCI. Due to the small size of the kernel, the proposed SCI measure captures fine differences of cortical shape. With this novel cortical feature, we aim to capture comparatively small local surface changes that capture a) the widening versus deepening of sulcal and gyral regions, as well as b) the emergence and development of secondary and tertiary sulci. Current cortical shape measures, such as the gyrification index (GI) or intrinsic curvature measures, investigate the cortical surface at a different scale and are less well suited to capture these particular cortical surface changes. In our experiments, the proposed SCI demonstrates higher complexity in the gyral/sulcal wall regions, lower complexity in wider gyral ridges and lowest complexity in wider sulcal fundus regions. In early postnatal brain development, our experiments show that SCI reveals a pattern of increased cortical shape complexity with age, as well as sexual dimorphisms in the insula, middle cingulate, parieto-occipital sulcal and Broca's regions. Overall, sex differences were greatest at 6months of age and were reduced at 24months, with the difference pattern switching from higher complexity in males at 6months to higher complexity in females at 24months. This is the first study of longitudinal, cortical complexity maturation and sex differences, in the early postnatal period from 6 to 24months

  14. Aging and Gene Expression in the Primate Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.; Paabo, Svante; Eisen, Michael B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  15. Aging and gene expression in the primate brain.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  16. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.; Pakkenberg, B.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... males, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  17. Antioxidants in the Canine Model of Human Aging

    OpenAIRE

    Dowling, Amy L. S.; Head, Elizabeth

    2011-01-01

    Oxidative damage can lead to neuronal dysfunction in the brain due to modifications to proteins, lipids and DNA/RNA. In both human and canine brain, oxidative damage progressively increases with age. In the Alzheimer’s disease (AD) brain, oxidative damage is further exacerbated, possibly due to increased deposition of beta-amyloid (Aβ) peptide in senile plaques. These observations have led to the hypothesis that antioxidants may be beneficial for brain aging and AD. Aged dogs naturally develo...

  18. Human Brain and Its Size

    Institute of Scientific and Technical Information of China (English)

    邹国如

    2006-01-01

    @@ Two studies suggest that the human brain continues to change through the process of evolution.The findings conflict with a common belief that the brain has evolved about as much as it ever will.Scientists say modern humans developed about two hundred thousand years ago.Bruce Lahn of the Howard Hughes Medical Institute and the University of Chicago led the studies.The findings appeared in Science magazine.

  19. Brain natriuretic peptide is a potent vasodilator in aged human microcirculation and shows a blunted response in heart failure patients

    DEFF Research Database (Denmark)

    Edvinsson, Marie-Louise; Uddman, Erik; Edvinsson, Lars; Andersson, Sven E

    2014-01-01

    BACKGROUND: Brain natriuretic peptide (BNP) is normally present in low levels in the circulation, but it is elevated in parallel with the degree of congestion in heart failure subjects (CHF). BNP has natriuretic effects and is a potent vasodilator. It is suggested that BNP could be a therapeutic...... vasodilator responses to ACh and to local heating were only somewhat attenuated in CHF patients. Thus, dilator capacity and nitric oxide signalling were not affected to the same extent as BNP-mediated dilation, indicating a specific downregulation of the latter response. CONCLUSIONS: The findings show for the...

  20. Evolution of the aging brain transcriptome and synaptic regulation.

    Directory of Open Access Journals (Sweden)

    Patrick M Loerch

    Full Text Available Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4. However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

  1. Cognitive functioning of the aging brain

    OpenAIRE

    Tam, Man-kin, Helena; 譚敏堅

    2013-01-01

    This thesis contains two studies which examined the cognitive functioning of the aging brain. Specifically, age-related changes in processing speed and its remediation via cognitive training were studied. In study 1, younger adults (n = 34) and older adults (n = 39) were recruited to investigate the age-related differences in the relationships between processing speed and general cognitive status (GCS). Their performance in GCS (as measured by The Montreal Cognitive Assessment, Hong Kong Vers...

  2. Metabolic drift in the aging brain.

    Science.gov (United States)

    Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary

    2016-05-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841

  3. Nutrition, brain aging, and neurodegeneration

    Science.gov (United States)

    The onset of age-related neurodegenerative diseases superimposed on a declining nervous system could enhance the motor and cognitive behavioral deficits that normally occur in senescence. It is likely that, in cases of severe deficits in memory or motor function, hospitalization and/or custodial car...

  4. Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue.

    Directory of Open Access Journals (Sweden)

    Erika Freemantle

    Full Text Available UNLABELLED: Fatty acids (FA play an integral role in brain function and alterations have been implicated in a variety of complex neurological disorders. Several recent genomic studies have highlighted genetic variability in the fatty acid desaturase (FADS1/2/3 gene cluster as an important contributor to FA alterations in serum lipids as well as measures of FA desaturase index estimated by ratios of relevant FAs. The contribution to alterations of FAs within the brain by local synthesis is still a matter of debate. Thus, the impact of genetic variants in FADS genes on gene expression and brain FA levels is an important avenue to investigate. METHODS: Analyses were performed on brain tissue from prefrontal cortex Brodmann area 47 (BA47 of 61 male subjects of French Canadian ancestry ranging in age from young adulthood to middle age (18-58 years old, with the exception of one teenager (15 years old. Haplotype tagging SNPs were selected using the publicly available HapMap genotyping dataset in conjunction with Haploview. DNA sequencing was performed by the Sanger method and gene expression was measured by quantitative real-time PCR. FAs in brain tissue were analysed by gas chromatography. Variants in the FADS1 gene region were sequenced and analyzed for their influence on both FADS gene expression and FAs in brain tissue. RESULTS: Our results suggest an association of the minor haplotype with alteration in estimated fatty acid desaturase activity. Analysis of the impact of DNA variants on expression and alternative transcripts of FADS1 and FADS2, however, showed no differences. Furthermore, there was a significant interaction between haplotype and age on certain brain FA levels. DISCUSSION: This study suggests that genetic variability in the FADS genes cluster, previously shown to be implicated in alterations in peripheral FA levels, may also affect FA composition in brain tissue, but not likely by local synthesis.

  5. Brain natriuretic peptide is a potent vasodilator in aged human microcirculation and shows a blunted response in heart failure patients

    Science.gov (United States)

    Edvinsson, Marie-Louise; Uddman, Erik; Edvinsson, Lars; Andersson, Sven E.

    2014-01-01

    Background Brain natriuretic peptide (BNP) is normally present in low levels in the circulation, but it is elevated in parallel with the degree of congestion in heart failure subjects (CHF). BNP has natriuretic effects and is a potent vasodilator. It is suggested that BNP could be a therapeutic alternative in CHF. However, we postulated that the high levels of circulating BNP in CHF may downregulate the response of microvascular natriuretic receptors. This was tested by comparing 15 CHF patients (BNP > 3000 ng/L) with 10 matched, healthy controls. Methods Cutaneous microvascular blood flow in the forearm was measured by laser Doppler Flowmetry. Local heating (+44°C, 10 min) was used to evoke a maximum local dilator response. Results Non-invasive iontophoretic administration of either BNP or acetylcholine (ACh), a known endothelium-dependent dilator, elicited an increase in local flow. The nitric oxide synthase inhibitor, l-N-Arginine- methyl-ester (L-NAME), blocked the BNP response (in controls). Interestingly, responses to BNP in CHF patients were reduced to about one third of those seen in healthy controls (increase in flow: 251% in CHF vs. 908% in controls; P < 0.001). In contrast, the vasodilator responses to ACh and to local heating were only somewhat attenuated in CHF patients. Thus, dilator capacity and nitric oxide signalling were not affected to the same extent as BNP-mediated dilation, indicating a specific downregulation of the latter response. Conclusions The findings show for the first time that microvascular responses to BNP are markedly reduced in CHF patients. This is consistent with the hypothesis of BNP receptor function is downregulated in CHF. PMID:24748882

  6. Brain computed tomography findings of aged schizophrenics

    International Nuclear Information System (INIS)

    Brain CT was performed in a total of 30 aged schizophrenic patients, consisting of 20 with no history of psychosurgery (lobotomy) and the other 10 lobotomized patients. The CT findings were compared with those from healthy aged persons. The group of schizophrenic patients had marked atrophy of the frontal lobe and dilatated Sylvian fissure as compared with the control group. There was no significant difference in ventricular factors between the two groups. These findings may have implications for the different mechanisms of the occurrence of atrophied brain surface and enlarged ventricle. The cerebral cortex involved in the occurrence of schizophrenia may be affected by aging-related cerebral atrophy, in addition to the morphological changes due to schizophrenia. Thus, schizophrenic cerebral atrophy was more noticeable than physiological aging-related atrophy. However, enlargement of the ventricle in the schizophrenic group progressed with aging in the same manner as that in the normal group. In comparing schizophrenic patients with or without a history of lobotomy, atrophy of the brain surface and enlargement of the ventricle were more marked in the lobotomized patients than the non-lobotomized patients. This confirmed that lobotomy, as well as surgical scar, is involved in the morphology of schizophrenic brain. (N.K.)

  7. Intrinsic brain connectivity related to age in young and middle aged adults.

    Directory of Open Access Journals (Sweden)

    Michelle Hampson

    Full Text Available Age-related variations in resting state connectivity of the human brain were examined from young adulthood through middle age. A voxel-based network measure, degree, was used to assess age-related differences in tissue connectivity throughout the brain. Increases in connectivity with age were found in paralimbic cortical and subcortical regions. Decreases in connectivity were found in cortical regions, including visual areas and the default mode network. These findings differ from those of recent developmental studies examining earlier growth trajectories, and are consistent with known changes in cognitive function and emotional processing during mature aging. The results support and extend previous findings that relied on a priori definitions of regions of interest for their analyses. This approach of applying a voxel-based measure to examine the functional connectivity of individual tissue elements over time, without the need for a priori region of interest definitions, provides an important new tool in brain science.

  8. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident. PMID:27432348

  9. Methylomic trajectories across human fetal brain development.

    Science.gov (United States)

    Spiers, Helen; Hannon, Eilis; Schalkwyk, Leonard C; Smith, Rebecca; Wong, Chloe C Y; O'Donovan, Michael C; Bray, Nicholas J; Mill, Jonathan

    2015-03-01

    Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ∼ 400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity. PMID:25650246

  10. Sirtuins: from Metabolic Regulation to Brain Aging

    Directory of Open Access Journals (Sweden)

    Wenzhen eDuan

    2013-07-01

    Full Text Available Brain aging is characterized by progressive loss of neurophysiological functions that is often accompanied by age-associated neurodegeneration. Calorie restriction has been linked to extension of lifespan and reduction of the risk of neurodegenerative diseases in experimental model systems. Several signaling pathways have been indicated to underlie the beneficial effects of calorie restriction, among which the sirtuin family has been suggested to play a central role. In mammals, it has been established that sirtuins regulate physiological responses to metabolism and stress, two key factors that affect the process of aging. Sirtuins represent a promising new class of conserved deacetylases that play an important role in regulating metabolism and aging. This review focuses on current understanding of the relation between metabolic pathways involving sirtuins and the brain aging process, with focus on SIRT1 and SIRT3. Identification of therapeutic agents capable of modulating the expression and/or activity of sirtuins is expected to provide promising strategies for ameliorating neurodegeneration. Future investigations regarding the concerted interplay of the different sirtuins will help us understand more about the aging process, and potentially lead to the development of therapeutic approaches for the treatment of age-related neurodegenerative diseases and promotion of successful aging.

  11. The Age of Human Cerebral Cortex Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  12. A brain network processing the age of faces.

    Directory of Open Access Journals (Sweden)

    György A Homola

    Full Text Available Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and fMRI, we segregate two areas extending beyond the previously established face-sensitive core network, centered on the inferior temporal sulci and angular gyri bilaterally, both of which process changes of facial age. By means of probabilistic tractography, we compare their patterns of functional activation and structural connectivity. The ventral portion of Wernicke's understudied perpendicular association fasciculus is shown to interconnect the two areas, and activation within these clusters is related to the probability of fiber connectivity between them. In addition, post-hoc age-rating competence is found to be associated with high response magnitudes in the left angular gyrus. Our results provide the first evidence that facial age has a distinct representation pattern in the posterior human brain. We propose that particular face-sensitive nodes interact with additional object-unselective quantification modules to obtain individual estimates of facial age. This brain network processing the age of faces differs from the cortical areas that have previously been linked to less developmental but instantly changeable face aspects. Our probabilistic method of associating activations with connectivity patterns reveals an exemplary link that can be used to further study, assess and quantify structure-function relationships.

  13. Gene expression changes in aging Zebrafish (Danio rerio) brains are sexually dimorphic

    OpenAIRE

    Arslan-Ergul, Ayca; Adams, Michelle M

    2014-01-01

    Background Brain aging is a multi-factorial process due to both genetic and environmental factors. The zebrafish has recently become a popular model organism for examining aging and age-related diseases because as in humans they age gradually and exhibit cognitive decline. Few studies have examined the biological changes in the aging brain that may contribute to these declines and none have examined them within individuals with respect to gender. Our aim was to identify the main genetic pathw...

  14. Skin mirrors human aging.

    Science.gov (United States)

    Nikolakis, Georgios; Makrantonaki, Evgenia; Zouboulis, Christos C

    2013-12-01

    Abstract Aged skin exhibits disturbed lipid barrier, angiogenesis, production of sweat, immune functions, and calcitriol synthesis as well as the tendency towards development of certain benign or malignant diseases. These complex biological processes comprise endogenous and exogenous factors. Ethnicity also markedly influences the phenotype of skin aging. The theories of cellular senescence, telomere shortening and decreased proliferative capacity, mitochondrial DNA single mutations, the inflammation theory, and the free radical theory try to explain the biological background of the global aging process, which is mirrored in the skin. The development of advanced glycation end-products and the declining hormonal levels are major factors influencing intrinsic aging. Chronic photodamage of the skin is the prime factor leading to extrinsic skin aging. The deterioration of important skin functions, due to intrinsic and extrinsic aging, leads to clinical manifestations, which mirror several internal age-associated diseases such as diabetes, arterial hypertension and malignancies. PMID:25436743

  15. NREM sleep oscillations and brain plasticity in aging

    OpenAIRE

    Stuart eFogel; Nicolas eMartin; Marjolaine eLafortune; Marc eBarakat; Karen eDebas; Samuel eLaventure; Véronique eLatreille; Jean-François eGagnon; Julien eDoyon; Julie eCarrier

    2012-01-01

    The human electroencephalogram (EEG) during non-rapid eye movement sleep (NREM) is characterized mainly by high-amplitude (> 75 µV), slow-frequency (< 4 Hz) waves (slow waves; SW) and sleep spindles (~11-15 Hz; > 0.25 s). These NREM oscillations play a crucial role in brain plasticity, and importantly, NREM sleep oscillations change considerably with aging. This review discusses the association between NREM sleep oscillations and cerebral plasticity as well as the functional imp...

  16. Male brain ages faster: the age and gender dependence of subcortical volumes.

    Science.gov (United States)

    Király, András; Szabó, Nikoletta; Tóth, Eszter; Csete, Gergő; Faragó, Péter; Kocsis, Krisztián; Must, Anita; Vécsei, László; Kincses, Zsigmond Tamás

    2016-09-01

    Effects of gender on grey matter (GM) volume differences in subcortical structures of the human brain have consistently been reported. Recent research evidence suggests that both gender and brain size influences volume distribution in subcortical areas independently. The goal of this study was to determine the effects of the interplay between brain size, gender and age contributing to volume differences of subcortical GM in the human brain. High-resolution T1-weighted images were acquired from 53 healthy males and 50 age-matched healthy females. Total GM volume was determined using voxel-based morphometry. We used model-based subcortical segmentation analysis to measure the volume of subcortical nuclei. Main effects of gender, brain volume and aging on subcortical structures were examined using multivariate analysis of variance. No significant difference was found in total brain volume between the two genders after correcting for total intracranial volume. Our analysis revealed significantly larger hippocampus volume for females. Additionally, GM volumes of the caudate nucleus, putamen and thalamus displayed a significant age-related decrease in males as compared to females. In contrast to this only the thalamic volume loss proved significant for females. Strikingly, GM volume decreases faster in males than in females emphasizing the interplay between aging and gender on subcortical structures. These findings might have important implications for the interpretation of the effects of unalterable factors (i.e. gender and age) in cross-sectional structural MRI studies. Furthermore, the volume distribution and changes of subcortical structures have been consistently related to several neuropsychiatric disorders (e.g. Parkinson's disease, attention deficit hyperactivity disorder, etc.). Understanding these changes might yield further insight in the course and prognosis of these disorders. PMID:26572143

  17. Age-dependent complex noise fluctuations in the brain

    International Nuclear Information System (INIS)

    We investigated the parameters of colored noise in EEG data of 17 722 professional drivers aged 18–70. The whole study is based upon experiments showing that biological neural networks may operate in the vicinity of the critical point and that the balance between excitation and inhibition in the human brain is important for the transfer of information. This paper is devoted to the study of EEG power spectrum which can be described best by a power function with 1/fλ distribution and colored noise corresponding to the critical point in the EEG signal has the value of λ = 1 (purple noise). The slow accumulation of energy and its quick release is a universal property of the 1/f distribution. The physiological mechanism causing energy dissipation in the brain seems to depend on the number and strength of the connections between clusters of neurons. With ageing, the number of connections between the neurons decreases. Learning ability and intellectual performance also decrease. Therefore, age-related changes in the λ coefficient can be anticipated. We found that absolute values of λ coefficients decrease significantly with increasing age. Deviations from this rule are related to age-dependent slowing of the dominant frequency in the alpha band. Age-dependent change in the parameter and colored noise may be indicative of age-related changes in the self-organization of brain activity. Results obtained include (i) the age-dependent decrease of the absolute values of the average λ coefficient with the regression coefficient 0.005 1/year, (ii) distribution of λ value changes related to EEG frequency bands and to localization of electrodes on the scalp, and (iii) relation of age-dependent changes of colored noise and EEG energy in separate frequency bands. (paper)

  18. Predicting healthy older adult's brain age based on structural connectivity networks using artificial neural networks.

    Science.gov (United States)

    Lin, Lan; Jin, Cong; Fu, Zhenrong; Zhang, Baiwen; Bin, Guangyu; Wu, Shuicai

    2016-03-01

    Brain ageing is followed by changes of the connectivity of white matter (WM) and changes of the grey matter (GM) concentration. Neurodegenerative disease is more vulnerable to an accelerated brain ageing, which is associated with prospective cognitive decline and disease severity. Accurate detection of accelerated ageing based on brain network analysis has a great potential for early interventions designed to hinder atypical brain changes. To capture the brain ageing, we proposed a novel computational approach for modeling the 112 normal older subjects (aged 50-79 years) brain age by connectivity analyses of networks of the brain. Our proposed method applied principal component analysis (PCA) to reduce the redundancy in network topological parameters. Back propagation artificial neural network (BPANN) improved by hybrid genetic algorithm (GA) and Levenberg-Marquardt (LM) algorithm is established to model the relation among principal components (PCs) and brain age. The predicted brain age is strongly correlated with chronological age (r=0.8). The model has mean absolute error (MAE) of 4.29 years. Therefore, we believe the method can provide a possible way to quantitatively describe the typical and atypical network organization of human brain and serve as a biomarker for presymptomatic detection of neurodegenerative diseases in the future. PMID:26718834

  19. Neural network plasticity in the human brain

    OpenAIRE

    Rizk, Sviatlana

    2013-01-01

    The human brain is highly organized within networks. Functionally related neural-assemblies communicate by oscillating synchronously. Intrinsic brain activity contains information on healthy and damaged brain functioning. This thesis investigated the relationship between functional networks and behavior. Furthermore, we assessed functional network plasticity after brain damage and as a result of brain stimulation. In different groups of patients we observed reduced functional connectivity bet...

  20. Human Brain Reacts to Transcranial Extraocular Light

    OpenAIRE

    Sun, Lihua; Peräkylä, Jari; Kovalainen, Anselmi; Ogawa, Keith H.; Karhunen, Pekka J.; Hartikainen, Kaisa M.

    2016-01-01

    Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear can...

  1. NSAIDs may protect against age-related brain atrophy

    Directory of Open Access Journals (Sweden)

    Barbara B Bendlin

    2010-09-01

    Full Text Available The use of non-steroidal anti-inflammatory drugs (NSAIDs in humans is associated with brain differences including decreased number of activated microglia. In animals, NSAIDs are associated with reduced microglia, decreased amyloid burden, and neuronal preservation. Several studies suggest NSAIDs protect brain regions affected in the earliest stages of AD, including hippocampal and parahippocampal regions. In this cross-sectional study, we examined the protective effect of NSAID use on gray matter volume in a group of middle-aged and older NSAID users (n = 25 compared to non-user controls (n = 50. All participants underwent neuropsychological testing and T1-weighted magnetic resonance imaging. Non-user controls showed smaller volume in portions of the left hippocampus compared to NSAID users. Age-related loss of volume differed between groups, with controls showing greater medial temporal lobe volume loss with age compared to NSAID users. These results should be considered preliminary, but support previous reports that NSAIDs may modulate age-related loss of brain volume.

  2. Brain mechanisms underlying human communication

    Directory of Open Access Journals (Sweden)

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  3. Want to Keep an Aging Brain Sharp? Try the Stairs

    Science.gov (United States)

    ... to Keep an Aging Brain Sharp? Try the Stairs Fitness is key, researchers say, and education can ... brain may want to switch from elevators to stairs, new research suggests. Fitness seemed key to sharper ...

  4. The Effect of Aging on Resting-State Brain Function: An fMRI Study

    Directory of Open Access Journals (Sweden)

    A. H. Batouli

    2009-11-01

    Full Text Available Background/Objective: Healthy aging may be accompanied by some types of cognitive impairment; moreover, normal aging may cause natural atrophy in the healthy human brain. The hypothesis of the healthy aging brain is the structural changes together with the functional impairment happening. The brain struggles to over-compensate for those functional age-related impairments to continue as a healthy brain in its functions. Our goal in this study was to evaluate the effects of aging on the resting-state activation network of the brain using the multi-session probabilistic independent component analysis algorithm (PICA. "nPatients and Methods: We compared the resting-state brain activities between two groups of healthy aged and young subjects, so we examined 30 right-handed subjects and finally 12 healthy aging and 11 controls were enrolled in the study. "nResults: Our results showed that during the resting-state, older brains benefit from larger areas of activation, while in young competent brains, higher activation occurs in terms of greater intensity. These results were obtained in prefrontal areas as regions with regard to memory function as well as the posterior cingulate cortex (PCC as parts of the default mode network. Meanwhile, we reached the same results after normalization of activation size with total brain volume. "nConclusion: The difference in activation patterns between the two groups shows the brain's endeavor to compensate the functional impairment.

  5. Brain Plasticity and Motor Practice in Cognitive Aging

    Directory of Open Access Journals (Sweden)

    Liuyang eCai

    2014-03-01

    Full Text Available For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.

  6. Brain plasticity and motor practice in cognitive aging

    Science.gov (United States)

    Cai, Liuyang; Chan, John S. Y.; Yan, Jin H.; Peng, Kaiping

    2014-01-01

    For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population. PMID:24653695

  7. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug

    OpenAIRE

    Marschallinger, J.; I. Schäffner; B. Klein(Ghent University, Ghent, Belgium); R. Gelfert; F.J. Rivera; S. Illes; L. Grassner; Janssen, M.; P. Rotheneichner; C. Schmuckermair; R. Coras; M. Boccazzi; M. Chishty; F.B. Lagler; M. Renic

    2015-01-01

    As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood–brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) ...

  8. The Influence of the Brain on Overpopulation, Ageing and Dependency.

    Science.gov (United States)

    Cape, Ronald D. T.

    1989-01-01

    With time, an increasing number in the world population is becoming old, and changes in the aging brain mean that a significant proportion of the aged are likely to be dependent on others. The devotion of resources to research into the aging brain could bring benefits far outweighing the investment. (Author/CW)

  9. Towards multimodal atlases of the human brain

    OpenAIRE

    Toga, Arthur W.; Thompson, Paul M.; Mori, Susumu; Amunts, Katrin; Zilles, Karl

    2006-01-01

    Atlases of the human brain have an important impact on neuroscience. The emergence of ever more sophisticated imaging techniques, brain mapping methods and analytical strategies has the potential to revolutionize the concept of the brain atlas. Atlases can now combine data describing multiple aspects of brain structure or function at different scales from different subjects, yielding a truly integrative and comprehensive description of this organ. These integrative approaches have provided si...

  10. Social support, stress and the aging brain.

    Science.gov (United States)

    Sherman, Stephanie M; Cheng, Yen-Pi; Fingerman, Karen L; Schnyer, David M

    2016-07-01

    Social support benefits health and well-being in older individuals, however the mechanism remains poorly understood. One proposal, the stress-buffering hypothesis states social support 'buffers' the effects of stress on health. Alternatively, the main effect hypothesis suggests social support independently promotes health. We examined the combined association of social support and stress on the aging brain. Forty healthy older adults completed stress questionnaires, a social network interview and structural MRI to investigate the amygdala-medial prefrontal cortex circuitry, which is implicated in social and emotional processing and negatively affected by stress. Social support was positively correlated with right medial prefrontal cortical thickness while amygdala volume was negatively associated with social support and positively related to stress. We examined whether the association between social support and amygdala volume varied across stress level. Stress and social support uniquely contribute to amygdala volume, which is consistent with the health benefits of social support being independent of stress. PMID:26060327

  11. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    OpenAIRE

    Koscik, Timothy R.; Tranel, Daniel

    2012-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the the...

  12. Effects of smoking on brain aging, 1

    International Nuclear Information System (INIS)

    The chronic effects of smoking on regional cerebral blood flow (CBF), and on serum lipids and lipoprotein levels in neurologically normal subjects from 25 to 85 years old were studied. CBF was studied by the 133-Xenon inhalation method and gray matter flow was calculated following the method of Obrist et al. A hundred and twentyfive subjects who had no abnormalities in neurological examinations nor in CT scan, were divided into two groups smokers (48) and non-smokers (77). Those who had a smoking index (Number of cigarettes/day) x (years of smoking history)>200 were designated as smokers. The mean smoking index of smokers was 697. sixty-five of the 77 subjects in the non-smoking group had never smoked, and the mean smoking index of non-smokers was 16. Increased reduction of CBF with advancing age was clearly observed. In the male, CBF was significantly lower in smokers than in non-smokers (mean CBF 15% lower in smokers, p<0.001). Compared to non-smokers, CBF in smokers was found to be significantly lower than the expected age matched value. Serum high density lipoprotein cholesterol values in smokers were significantly lower, and total cholesterol levels significantly higher than in non-smokers. We concluded that smoking chronically reduced CBF. Age dependent decrease of CBF was deteriorated by chronic smoking. Then, chronic smoking was suggested to be a risk factor for brain aging. Decrease of CBF in smokers was probably due to advanced atherosclerosis which produces vascular narrowing and raised resistance in cerebral blood vessels. (author)

  13. Multiple Brain Markers are Linked to Age-Related Variation in Cognition.

    Science.gov (United States)

    Hedden, Trey; Schultz, Aaron P; Rieckmann, Anna; Mormino, Elizabeth C; Johnson, Keith A; Sperling, Reisa A; Buckner, Randy L

    2016-04-01

    Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65-90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70-80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health. PMID:25316342

  14. NREM sleep oscillations and brain plasticity in aging

    Directory of Open Access Journals (Sweden)

    Stuart eFogel

    2012-12-01

    Full Text Available The human electroencephalogram (EEG during non-rapid eye movement sleep (NREM is characterized mainly by high-amplitude (> 75 µV, slow-frequency (< 4 Hz waves (slow waves; SW and sleep spindles (~11-15 Hz; > 0.25 s. These NREM oscillations play a crucial role in brain plasticity, and importantly, NREM sleep oscillations change considerably with aging. This review discusses the association between NREM sleep oscillations and cerebral plasticity as well as the functional impact of age-related changes on NREM sleep oscillations. We propose that age-related reduction in sleep-dependent memory consolidation may be due in part to changes in NREM sleep oscillations.

  15. The human parental brain: In vivo neuroimaging

    OpenAIRE

    Swain, James E.

    2010-01-01

    Interacting parenting thoughts and behaviors, supported by key brain circuits, critically shape human infants’ current and future behavior. Indeed, the parent–infant relationship provides infants with their first social environment, forming templates for what they can expect from others, how to interact with them and ultimately how they go on to themselves to be parents. This review concentrates on magnetic resonance imaging experiments of the human parent brain, which link brain physiology w...

  16. Modeling human brain development with cerebral organoids

    OpenAIRE

    Muzio, Luca; Consalez, G. Giacomo

    2013-01-01

    The recent discovery of a new three-dimensional culture system for the derivation of cerebral organoids from human induced pluripotent stem cells provides developmental neurobiologists with the first example of a three-dimensional framework for the study of human brain development. This innovative approach permits the in vitro assembly of a human embryonic brain rudiment that recapitulates the developing human cerebrum. Organoids contain progenitor populations that develop to yield mature cor...

  17. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). PMID:24033426

  18. The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier?

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity.Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements.In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved.This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system.

  19. Successful brain aging: plasticity, environmental enrichment, and lifestyle

    OpenAIRE

    Mora, Francisco

    2013-01-01

    Aging is a physiological process that can develop without the appearance of concurrent diseases. However, very frequently, older people suffer from memory loss and an accelerated cognitive decline. Studies of the neurobiology of aging are beginning to decipher the mechanisms underlying not only the physiology of aging of the brain but also the mechanisms that make people more vulnerable to cognitive dysfunction and neurodegenerative diseases. Today we know that the aging brain retains a consi...

  20. Neuroimaging studies of the aging HIV-1-infected brain

    OpenAIRE

    Holt, John L.; Kraft-Terry, Stephanie D.; Chang, Linda

    2012-01-01

    Highly active antiretroviral therapy (HAART) has increased life expectancy among HIV-infected individuals, and by 2015, at least half of all HIV-infected individuals will be over 50 years of age. Neurodegenerative processes associated with aging may be facilitated by HIV-1 infection, resulting in premature brain aging. This review will highlight brain abnormalities in HIV patients in the setting of aging, focusing on recent neuroimaging studies of the structural, physiological, functional and...

  1. Male microchimerism in the human female brain.

    Directory of Open Access Journals (Sweden)

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  2. Male Microchimerism in the Human Female Brain

    OpenAIRE

    Chan, William F. N.; Gurnot, Cécile; Montine, Thomas J.; Sonnen, Joshua A.; Guthrie, Katherine A.; Nelson, J. Lee

    2012-01-01

    In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus). Targeting the Y-chromosome-specific DYS14 gene, we...

  3. Mechanisms of Brain Aging Regulation by Insulin: Implications for Neurodegeneration in Late-Onset Alzheimer's Disease

    OpenAIRE

    Schuh, Artur F.; Rieder, Carlos M.; Rizzi, Liara; Chaves, Márcia; Roriz-Cruz, Matheus

    2011-01-01

    Insulin and IGF seem to be important players in modulating brain aging. Neurons share more similarities with islet cells than any other human cell type. Insulin and insulin receptors are diffusely found in the brain, especially so in the hippocampus. Caloric restriction decreases insulin resistance, and it is the only proven mechanism to expand lifespan. Conversely, insulin resistance increases with age, obesity, and sedentarism, all of which have been shown to be risk factors for late-onset ...

  4. Age Sensitivity of Behavioral Tests and Brain Substrates of Normal Aging in Mice

    Directory of Open Access Journals (Sweden)

    John A. Kennard

    2011-05-01

    Full Text Available Knowledge of age sensitivity, the capacity of a behavioral test to reliably detect age-related changes, has utility in the design of experiments to elucidate processes of normal aging. We review the application of these tests in studies of normal aging and compare and contrast the age sensitivity of the Barnes maze, eyeblink classical conditioning, fear conditioning, Morris water maze and rotorod. These tests have all been implemented to assess normal age-related changes in learning and memory in rodents, which generalize in many cases to age-related changes in learning and memory in all mammals, including humans. Behavioral assessments are a valuable means to measure functional outcomes of neuroscientific studies of aging. Highlighted in this review are the attributes and limitations of these measures in mice in the context of age sensitivity and processes of brain aging. Attributes of these tests include reliability and validity as assessments of learning and memory, well-defined neural substrates, and sensitivity to neural and pharmacological manipulations and disruptions. These tests engage the hippocampus and/or the cerebellum, two structures centrally involved in learning and memory that undergo functional and anatomical changes in normal aging. A test that is less well represented in studies of normal aging, the context pre-exposure facilitation effect (CPFE in fear conditioning, is described as a method to increase sensitivity of contextual fear conditioning to changes in the hippocampus. Recommendations for increasing the age sensitivity of all measures of normal aging in mice are included, as well as a discussion of the potential of the under-studied CPFE to advance understanding of subtle hippocampus-mediated phenomena.

  5. Novel microRNAs differentially expressed during aging in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Sachi Inukai

    Full Text Available MicroRNAs (miRNAs are endogenous small RNA molecules that regulate gene expression post-transcriptionally. Work in Caenorhabditis elegans has shown that specific miRNAs function in lifespan regulation and in a variety of age-associated pathways, but the roles of miRNAs in the aging of vertebrates are not well understood. We examined the expression of small RNAs in whole brains of young and old mice by deep sequencing and report here on the expression of 558 known miRNAs and identification of 41 novel miRNAs. Of these miRNAs, 75 known and 18 novel miRNAs exhibit greater than 2.0-fold expression changes. The majority of expressed miRNAs in our study decline in relative abundance in the aged brain, in agreement with trends observed in other miRNA studies in aging tissues and organisms. Target prediction analysis suggests that many of our novel aging-associated miRNAs target genes in the insulin signaling pathway, a central node of aging-associated genetic networks. These novel miRNAs may thereby regulate aging-related functions in the brain. Since many mouse miRNAs are conserved in humans, the aging-affected brain miRNAs we report here may represent novel regulatory genes that also function during aging in the human brain.

  6. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population. PMID:26184082

  7. In Vivo Microdialysis Reveals Age-Dependent Decrease of Brain Interstitial Fluid Tau Levels in P301S Human Tau Transgenic Mice

    OpenAIRE

    Yamada, Kaoru; Cirrito, John R.; Stewart, Floy R; Jiang, Hong; Finn, Mary Beth; Holmes, Brandon B.; Binder, Lester I.; Mandelkow, Eva-Maria; Diamond, Marc I.; Lee, Virginia M.-Y.; Holtzman, David M.

    2011-01-01

    Although tau is a cytoplasmic protein, it is also found in brain extracellular fluids, e.g., CSF. Recent findings suggest that aggregated tau can be transferred between cells and extracellular tau aggregates might mediate spread of tau pathology. Despite these data, details of whether tau is normally released into the brain interstitial fluid (ISF), its concentration in ISF in relation to CSF, and whether ISF tau is influenced by its aggregation are unknown. To address these issues, we develo...

  8. Neuronal nicotinic receptor subtypes in normal ageing, Alzheimer's disease and schizophrenia : Influences of neuropathological mechanisms as studied in human autopsy brain and transgenic mice

    OpenAIRE

    Marutle, Amelia

    2002-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are transmitter-gated ion channel receptors which are widely distributed in the brain. They mediate the effects of several neurotransmitters including ACh, DA, 5-HT and NA and are important for many normal physiological functions in the brain and are also implicated in a number of CNS disorders, such as AD, PD, schizophrenia, Tourette's syndrome and familial epilepsy. The overall aim of this thesis was to characterise chang...

  9. Age and Haplotype Variations within FADS1 Interact and Associate with Alterations in Fatty Acid Composition in Human Male Cortical Brain Tissue

    OpenAIRE

    Freemantle, Erika; Lalovic, Aleksandra; Mechawar, Naguib; Turecki, Gustavo

    2012-01-01

    Fatty acids (FA) play an integral role in brain function and alterations have been implicated in a variety of complex neurological disorders. Several recent genomic studies have highlighted genetic variability in the fatty acid desaturase (FADS1/2/3) gene cluster as an important contributor to FA alterations in serum lipids as well as measures of FA desaturase index estimated by ratios of relevant FAs. The contribution to alterations of FAs within the brain by local synthesis is still a matte...

  10. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  11. Lactate fuels the human brain during exercise

    DEFF Research Database (Denmark)

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up...... suggests that lactate may partially replace glucose as a substrate for oxidation. Thus, the notion of the human brain as an obligatory glucose consumer is not without exceptions....... blockade but not with beta(1)-adrenergic blockade alone. Also, CMR decreases in response to epinephrine, suggesting that a beta(2)-adrenergic receptor mechanism enhances glucose and perhaps lactate transport across the blood-brain barrier. The pattern of CMR decrease under various forms of brain activation...

  12. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    Science.gov (United States)

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-01-01

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too. PMID:22947971

  13. A longitudinal study of brain volume changes in normal aging

    International Nuclear Information System (INIS)

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy

  14. A longitudinal study of brain volume changes in normal aging

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Hidemasa, E-mail: takaoh-tky@umin.ac.jp [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Hayashi, Naoto [Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2012-10-15

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy.

  15. Brain cholesterol in normal and pathological aging

    Directory of Open Access Journals (Sweden)

    Vanmierlo Tim

    2011-07-01

    Full Text Available Aberrations in cerebral cholesterol homeostasis can lead to severe neurological diseases. Recent findings strengthen the link between brain cholesterol metabolism and factors involved in synaptic plasticity, a process essential for learning and memory functions, as well as regeneration, which are affected in Alzheimer’s Disease (AD. Cholesterol homeostasis within the brain is independent of that in the rest of the body and needs to be strictly regulated for optimal brain functioning. In contrast with what was initially assumed brain cholesterol homeostasis can be modulated by extra-cerebral factors. We have found that enhancement of the cholesterol-turnover in the brain by administration of the synthetic activator of liver x receptos (LXRs, T0901317, leads to restoration of memory functions in an AD mouse-model.Memory in C57Bl6NCrl mice was not further improved by the same treatment. Moreover, it was found that in contrast with cholesterol, the structurally very similar dietary derived plant sterols can enter the brain. Plant sterols may be natural activators of LXRs. Evidence is provided suggesting that brassicasterol may be a novel additional biomarker in cerebrospinal fluid of AD patients. Insight into the regulation of cerebral cholesterol homeostasis will provide possibilities to modulate the key steps involved and may lead to the development of therapies for the prevention as well as treatment of neurodegenerative diseases such as AD.

  16. Brain mitochondrial dysfunction in aging, neurodegeneration and Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Ana Navarro

    2010-09-01

    Full Text Available Brain senescence and neurodegeneration occur with a mitochondrial dysfunction characterized by impaired electron transfer and by oxidative damage. Brain mitochondria of old animals show decreased rates of electron transfer in complexes I and IV, decreased membrane potential, increased content of the oxidation products of phospholipids and proteins and increased size and fragility. This impairment, with complex I inactivation and oxidative damage, is named “complex I syndrome” and is recognized as characteristic of mammalian brain aging and of neurodegenerative diseases. Mitochondrial dysfunction is more marked in brain areas as rat hippocampus and frontal cortex, in human cortex in Parkinson’s disease and dementia with Lewy bodies, and in substantia nigra in Parkinson’s disease. The molecular mechanisms involved in complex I inactivation include the synergistic inactivations produced by ONOO- mediated reactions, by reactions with free radical intermediates of lipid peroxidation and by amine-aldehyde adduction reactions. The accumulation of oxidation products prompts the idea of antioxidant therapies. High doses of vitamin E produce a significant protection of complex I activity and mitochondrial function in rats and mice, and with improvement of neurological functions and increased median life span in mice. Mitochondria-targeted antioxidants, as the Skulachev cations covalently attached to vitamin E, ubiquinone and PBN and the SS tetrapeptides, are negatively charged and accumulate in mitochondria where they exert their antioxidant effects. Activation of the cellular mechanisms that regulate mitochondrial biogenesis is another potential therapeutic strategy, since the process generates organelles devoid of oxidation products and with full enzymatic activity and capacity for ATP production.

  17. Blood-borne revitalization of the aged brain

    Science.gov (United States)

    Castellano, Joseph M.; Kirby, Elizabeth D.; Wyss-Coray, Tony

    2016-01-01

    In the modern medical era, more diverse and effective treatment options have translated into increased life expectancy. With this increased lifespan comes increased age-associated disease and the dire need to understand the underlying causes so that therapies can be designed to mitigate the burden to health and the economy. Aging exacts a seemingly inevitable, multi-system deterioration of function that acts as a risk factor for a variety of age-related disorders, including those that devastate organs of limited regenerative potential such as the brain. Rather than studying the brain and mechanisms that govern its aging in isolation from other organ systems, an emerging approach is to understand the relatively unappreciated communication existing between the brain and the systemic environment. Revisiting classical methods of experimental physiology in animal models has uncovered surprising regenerative activity within young blood with translational implications for aging liver, muscle, brain and other organs. Surprisingly, soluble factors present in young or aged blood are sufficient to improve or impair cognitive function, respectively, suggesting an aging continuum of brain-relevant systemic factors. The age-associated plasma chemokine CCL11 has been shown to impair young brain function while GDF11 has been reported to increase the generation of neurons in aged mice. However, the identities of specific factors mediating memory-enhancing effects of young blood and their mechanisms of action remain enigmatic. Here we review recent brain rejuvenation studies in the broader context of systemic rejuvenation research. We discuss putative mechanisms for blood-borne brain rejuvenation while suggesting promising avenues for future research and development of therapies. PMID:26237737

  18. Blood-Borne Revitalization of the Aged Brain.

    Science.gov (United States)

    Castellano, Joseph M; Kirby, Elizabeth D; Wyss-Coray, Tony

    2015-10-01

    In the modern medical era, more diverse and effective treatment options have translated to increased life expectancy. With this increased life span comes increased age-associated disease and the dire need to understand underlying causes so that therapies can be designed to mitigate the burden to health and the economy. Aging exacts a seemingly inevitable multisystem deterioration of function that acts as a risk factor for a variety of age-related disorders, including those that devastate organs of limited regenerative potential, such as the brain. Rather than studying the brain and mechanisms that govern its aging in isolation from other organ systems, an emerging approach is to understand the relatively unappreciated communication that exists between the brain and systemic environment. Revisiting classical methods of experimental physiology in animal models has uncovered surprising regenerative activity in young blood with translational implications for the aging liver, muscle, brain, and other organs. Soluble factors present in young or aged blood are sufficient to improve or impair cognitive function, respectively, suggesting an aging continuum of brain-relevant systemic factors. The age-associated plasma chemokine CCL11 has been shown to impair young brain function while GDF11 has been reported to increase the generation of neurons in aged mice. However, the identities of specific factors mediating memory-enhancing effects of young blood and their mechanisms of action are enigmatic. Here we review brain rejuvenation studies in the broader context of systemic rejuvenation research. We discuss putative mechanisms for blood-borne brain rejuvenation and suggest promising avenues for future research and development of therapies. PMID:26237737

  19. Accelerated brain aging in schizophrenia : A longitudinal pattern recognition study

    NARCIS (Netherlands)

    Schnack, Hugo G.; Van Haren, Neeltje E M; Nieuwenhuis, Mireille; Pol, Hilleke E Hulshoff; Cahn, Wiepke; Kahn, René S.

    2016-01-01

    OBJECTIVE: Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used

  20. A Healthy Heart May Protect an Aging Brain

    Science.gov (United States)

    ... news/fullstory_157798.html A Healthy Heart May Protect an Aging Brain Study found seniors who met ... of nutritious foods from all the food groups. Limit salt, sugar, saturated fat and trans fat. Lose ...

  1. Relation of Age at Insult to Outcome of Brain Injury

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-05-01

    Full Text Available Cognitive and behavioral outcomes for children who sustain early brain insult (EBI were evaluated in relation to age at insult in a study at Royal Children’s Hospital, Victoria, Australia.

  2. Age-dependent expression of VEGFR2 in deep brain arteries in small vessel disease, CADASIL, and healthy brains.

    Science.gov (United States)

    Ahmed-Jushuf, Fiyyaz; Jiwa, Nadim S; Arwani, Anum S; Foot, Peter; Bridges, Leslie R; Kalaria, Raj N; Esiri, Margaret M; Hainsworth, Atticus H

    2016-06-01

    Vascular myocytes are central to brain aging. Small vessel disease (SVD; arteriolosclerosis) is a widespread cause of lacunar stroke and vascular dementia and is characterized by fibrosis and depletion of vascular myocytes in small penetrating arteries. Vascular endothelial growth factor (VEGF) is associated with brain aging, and Immunolabeling for vascular endothelial growth factor receptor 2 (VEGFR2) is a potent determinant of cell fate. Here, we tested whether VEGFR2 in vascular myocytes is associated with older age and SVD in human brain. Immunolabeling for VEGFR2 in deep gray matter was assessed in older people with or without moderate-severe SVD or in younger people without brain pathology or with a monogenic form of SVD (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy). All cases were without Alzheimer's disease pathology. Myocyte VEGFR2 was associated with increasing age (p = 0.0026) but not with SVD pathology or with sclerotic index or blood vessel density. We conclude that VEGFR2 is consistently expressed in small artery myocytes of older people and may mediate effects of VEGF on brain vascular aging. PMID:27143427

  3. Human brain mapping: Experimental and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J. [Los Alamos National Lab., NM (US); Sanders, J. [Albuquerque VA Medical Center, NM (US); Belliveau, J. [Massachusetts General Hospital, Boston, MA (US)

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  4. Statistical Approaches for the Study of Cognitive and Brain Aging

    Science.gov (United States)

    Chen, Huaihou; Zhao, Bingxin; Cao, Guanqun; Proges, Eric C.; O'Shea, Andrew; Woods, Adam J.; Cohen, Ronald A.

    2016-01-01

    Neuroimaging studies of cognitive and brain aging often yield massive datasets that create many analytic and statistical challenges. In this paper, we discuss and address several limitations in the existing work. (1) Linear models are often used to model the age effects on neuroimaging markers, which may be inadequate in capturing the potential nonlinear age effects. (2) Marginal correlations are often used in brain network analysis, which are not efficient in characterizing a complex brain network. (3) Due to the challenge of high-dimensionality, only a small subset of the regional neuroimaging markers is considered in a prediction model, which could miss important regional markers. To overcome those obstacles, we introduce several advanced statistical methods for analyzing data from cognitive and brain aging studies. Specifically, we introduce semiparametric models for modeling age effects, graphical models for brain network analysis, and penalized regression methods for selecting the most important markers in predicting cognitive outcomes. We illustrate these methods using the healthy aging data from the Active Brain Study. PMID:27486400

  5. Multiple aldehyde reductases of human brain.

    Science.gov (United States)

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-01-01

    Human brain contains four forms of aldehyde reducing enzymes. One major activity, designated AR3, has properties indicating its identity with the NADPH-dependent aldehyde reductase, EC 1.1.1.2. The other major form of human brain enzyme, AR1, which is also NADPH-dependent, reduces both aldehyde and ketone-containing substrates, including vitamin K3 (menadione) and daunorubicin, a cancer chemotherapeutic agent. This enzyme is very sensitive to inhibition by the flavonoids quercitrin and quercetine, and may be analogous to a daunorubicin reductase previously described in liver of other species. One minor form of human brain aldehyde reductase, AR2, demonstrates substrate specificity and inhibitor sensitivity which suggest its similarity to aldose reductases found in lens and other tissues of many species. This enzyme, which can also use NADH as cofactor to some extent, is the most active in reducing the aldehyde derivatives of the biogenic amines. The fourth human brain enzyme ("SSA reductase") differs from the other forms in its ability to use NADH as well as or better than NADPH as cofactor, and in its molecular weight, which is nearly twice that of the other forms. It is quite specific for succinic semialdehyde (SSA) as substrate, and was found to be significantly inhibited only by quercetine and quercitrin. AR3 can also reduce SSA, and both enzymes may contribute to the production of gamma-hydroxybutyric acid in vivo. These results indicate that the human brain aldehyde reductases can play relatively specific physiologic roles. PMID:7424738

  6. Imaging the Addicted Human Brain

    OpenAIRE

    Fowler, Joanna S.; Volkow, Nora D.; Kassed, Cheryl A; Chang, Linda

    2007-01-01

    Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and deepened our knowledge of the neurobiological bases of drug abuse and addiction, and they address po...

  7. Human Nerual Stem Cells for Brain Repair

    OpenAIRE

    Kim, Seung U.; Lee, Hong J.; In H Park; Chu, Kon; Lee, Soon T.; Kim, Manho; Roh, Jae K.; Kim, Seung K.; Wang, Kyu C.

    2008-01-01

    Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases including Parkinson disease, Huntington disease, amyotrophic lateral sclerosis (ALS), Alzheimer disease, multiple sclerosis (MS), stroke, spinal cord injury and brain cancer. In recent years, neurons and glial cells have successfully been generated from neural stem cells, a...

  8. Mapping human brain activity in vivo.

    OpenAIRE

    Mazziotta, J.C.

    1994-01-01

    A wide range of structural and functional techniques now exists to map the human brain in health and disease. These approaches span the gamut from external tomographic imaging devices (positron-emission tomography, single photon-emission computed tomography, magnetic resonance imaging, computed tomography), to surface detectors (electroencephalography, magnetoencephalography, transcranial magnetic stimulation), to measurements made directly on the brain's surface or beneath it (intrinsic sign...

  9. Learning and memory in the human brain

    OpenAIRE

    Petersson, Karl Magnus

    2005-01-01

    The first chapter of the thesis 'Learning and Memory in the Human Brain' provides a brief review of the brain as well as cognition from the point of view of information processing in physical systems. We include a brief outline of information processing as conceived of within the classical framework of cognitive science. We show how this perspective can be understood in terms of information processing in a certain class of dynamical systems and we indicate how this view of c...

  10. Structural Brain Correlates of Human Sleep Oscillations

    OpenAIRE

    Saletin, Jared M.; van der Helm, Els; Walker, Matthew P.

    2013-01-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Grey matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their propose...

  11. Ageing and diabetes: implications for brain function

    NARCIS (Netherlands)

    Gispen, W.H.; Biessels, G.J.; Heide, L.P. van der; Kamal, A.; Bleys, R.L.A.W.

    2002-01-01

    Diabetes mellitus is associated with moderate cognitive deficits and neurophysiological and structural changes in the brain, a condition that may be referred to as diabetic encephalopathy. Diabetes increases the risk of dementia, particularly in the elderly. The emerging view is that the diabetic br

  12. Brain Damage in School Age Children.

    Science.gov (United States)

    Haywood, H. Carl, Ed.

    The product of a professional workshop, 10 papers discuss brain damage. An introduction to clinical neuropsychology is presented by H. Carl Haywood. A section on neurological foundations includes papers on the organization of the central nervous system by Jack T. Tapp and Lance L. Simpson, on epilepsy by Angela T. Folsom, and on organic language…

  13. Computed tomography studies of human brain movements

    International Nuclear Information System (INIS)

    Rhythmic brain movements have been revealed by sets of sequential computed tomography scans of human brains (seen retrospectively to be normal). These scans have shown that both (unenhanced) brain parenchymal density and the shapes of the elements of the supratentorial ventricular/cisternal system are subject to wave motions having similar periods - ranging from 26 s through 56 s, 77-96 s, 109 s and 224 s to 224 X 2 s (or even longer), with good correlation between peak values. These motions, as well as phase variations between the waves, suggest a peristaltic movement of cerebrospinal fluid through the ventricular/cisternal system with progressive axial damping

  14. The role of the brain in female reproductive aging

    OpenAIRE

    Downs, Jodi L.; Wise, Phyllis M.

    2008-01-01

    In middle-aged women, follicular depletion is a critical factor mediating the menopausal transition; however, all levels of the hypothalamic-pituitary-gonadal (HPG) axis contribute to the age-related decline in reproductive function. To help elucidate the complex interactions between the ovary and brain during middle-age that lead to the onset of the menopause, we utilize animal models which share striking similarities in reproductive physiology. Our results show that during middle-age, prior...

  15. A New Glucocorticoid Hypothesis of Brain Aging: Implications for Alzheimer’s Disease

    OpenAIRE

    Landfield, Philip W; Blalock, Eric M.; Chen, Kuey-Chu; Porter, Nada M.

    2007-01-01

    The original glucocorticoid (GC) hypothesis of brain aging and Alzheimer’s disease proposed that chronic exposure to GCs promotes hippocampal aging and AD. This proposition arose from a study correlating increasing plasma corticosterone with hippocampal astrocyte reactivity in aging rats. Numerous subsequent studies have found evidence consistent with this hypothesis, in animal models and in humans. However, several results emerged that were inconsistent with the hypothesis, highlighting the ...

  16. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study

    DEFF Research Database (Denmark)

    Madsen, Karine; Haahr, Mette T; Marner, Lisbeth;

    2011-01-01

    study aimed to investigate sex and age effects on 5-HT(4) receptor-binding potentials in striatum, the limbic system, and neocortex. Positron-emission tomographic scans were conducted using the radioligand [(11)C]SB207145 in a cohort of 30 healthy subjects (mean age 44 years; range 20 to 86 years; 14...... limbic system. The lower limbic 5-HT(4) receptor binding in women supports a role for 5-HT(4) receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT(4) receptor binding with aging...

  17. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2016-06-01

    Full Text Available Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition’s impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition – from entire diets to specific nutrients – affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns, along with (ii modern indices of brain health derived from high-resolution magnetic resonance imaging. By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging.

  18. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging

    Science.gov (United States)

    Zamroziewicz, Marta K.; Barbey, Aron K.

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition—from entire diets to specific nutrients—affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging.

  19. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M. [University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Brain Research Imaging Centre (BRIC), Edinburgh (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom); Poole, Ian [Toshiba Medical Visualisation Systems Europe, Ltd., Edinburgh (United Kingdom); Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D. [University of Aberdeen, Aberdeen Biomedical Imaging Centre, Aberdeen (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom)

    2012-07-15

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged {>=}60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged {>=}60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  20. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    International Nuclear Information System (INIS)

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged ≥60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged ≥60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  1. Influence of Age on Brain Edema Formation, Secondary Brain Damage and Inflammatory Response after Brain Trauma in Mice

    Science.gov (United States)

    Timaru-Kast, Ralph; Luh, Clara; Gotthardt, Philipp; Huang, Changsheng; Schäfer, Michael K.; Engelhard, Kristin; Thal, Serge C.

    2012-01-01

    After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation

  2. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  3. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study

    DEFF Research Database (Denmark)

    Madsen, Karine; Haahr, Mette T; Marner, Lisbeth; Keller, Sune H; Baaré, William F; Svarer, Claus; Hasselbalch, Steen G; Knudsen, Gitte M

    2011-01-01

    Experimental studies indicate that the 5-HT(4) receptor activation influence cognitive function, affective symptoms, and the development of Alzheimer's disease (AD). The prevalence of AD increases with aging, and women have a higher predisposition to both AD and affective disorders than men. This...... study aimed to investigate sex and age effects on 5-HT(4) receptor-binding potentials in striatum, the limbic system, and neocortex. Positron-emission tomographic scans were conducted using the radioligand [(11)C]SB207145 in a cohort of 30 healthy subjects (mean age 44 years; range 20 to 86 years; 14...... limbic system. The lower limbic 5-HT(4) receptor binding in women supports a role for 5-HT(4) receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT(4) receptor binding with aging...

  4. Problems in CT diagnosis of the aging brain

    International Nuclear Information System (INIS)

    The different methods of measuring the intracranial CSF spaces on CT images are described. The values obtained are demonstrated to separate the normal aging brain from the brain in senile dementia of Alzheimer's type. The CT criteria for the diagnosis of multiinfarctdementia are shown. The significance of CT studies in senile depression is discussed. The problem of vascular encephalopathy (leukoaraiosis) in normal aging of the brain and in dementia is considered in particular, and even the occurrence of intracranial space-occupying lesions and normal pressure hydrocephalus, as treatable causes of dementia and depression, are mentioned. The data and results of my own CT research on normal brain aging, dementia and depression are presented with reference to the literature. (orig.)

  5. Maintaining Brain Health by Monitoring Inflammatory Processes: a Mechanism to Promote Successful Aging

    OpenAIRE

    Rosano, Caterina; Marsland, Anna L.; Gianaros, Peter J.

    2011-01-01

    Maintaining brain health promotes successful aging. The main determinants of brain health are the preservation of cognitive function and remaining free from structural and metabolic abnormalities, including loss of neuronal synapses, atrophy, small vessel disease and focal amyloid deposits visible by neuroimaging. Promising studies indicate that these determinants are to some extent modifiable, even among adults seventy years and older. Converging animal and human evidence further suggests th...

  6. Determinants of iron accumulation in the normal aging brain.

    Science.gov (United States)

    Pirpamer, Lukas; Hofer, Edith; Gesierich, Benno; De Guio, François; Freudenberger, Paul; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Duchesnay, Edouard; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2016-07-01

    In a recent postmortem study, R2* relaxometry in gray matter (GM) of the brain has been validated as a noninvasive measure for iron content in brain tissue. Iron accumulation in the normal aging brain is a common finding and relates to brain maturation and degeneration. The goal of this study was to assess the determinants of iron accumulation during brain aging. The study cohort consisted of 314 healthy community-dwelling participants of the Austrian Stroke Prevention Study. Their age ranged from 38-82 years. Quantitative magnetic resonance imaging was performed on 3T and included R2* mapping, based on a 3D multi-echo gradient echo sequence. The median of R2* values was measured in all GM regions, which were segmented automatically using FreeSurfer. We investigated 25 possible determinants for cerebral iron deposition. These included demographics, brain volume, lifestyle factors, cerebrovascular risk factors, serum levels of iron, and single nucleotide polymorphisms related to iron regulating genes (rs1800562, rs3811647, rs1799945, and rs1049296). The body mass index (BMI) was significantly related to R2* in 15/32 analyzed brain regions with the strongest correlations found in the amygdala (p = 0.0091), medial temporal lobe (p = 0.0002), and hippocampus (p ≤ 0.0001). Further associations to R2* values were found in deep GM for age and smoking. No significant associations were found for gender, GM volume, serum levels of iron, or iron-associated genetic polymorphisms. In conclusion, besides age, the BMI and smoking are the only significant determinants of brain iron accumulation in normally aging subjects. Smoking relates to iron deposition in the basal ganglia, whereas higher BMI is associated with iron content in the neocortex following an Alzheimer-like distribution. PMID:27255824

  7. The human brain. Prenatal development and structure

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  8. A longitudinal study of structural brain network changes with normal aging

    Directory of Open Access Journals (Sweden)

    Kai eWu

    2013-04-01

    Full Text Available The aim of this study was to investigate age-related changes in the topological organization of structural brain networks by applying a longitudinal design over 6 years. Structural brain networks were derived from measurements of regional gray matter volume and were constructed in age-specific groups from baseline and follow-up scans. The structural brain networks showed economical small-world properties, providing high global and local efficiency for parallel information processing at low connection costs. In the analysis of the global network properties, the local and global efficiency of the baseline scan were significantly lower compared to the follow-up scan. Moreover, the annual rate of changes in local and global efficiency showed a positive and negative quadratic correlation with the baseline age, respectively; both curvilinear correlations peaked at approximately the age of 50. In the analysis of the regional nodal properties, significant negative correlations between the annual rate of changes in nodal strength and the baseline age were found in the brain regions primarily involved in the visual and motor/ control systems, whereas significant positive quadratic correlations were found in the brain regions predominately associated with the default-mode, attention, and memory systems. The results of the longitudinal study are consistent with the findings of our previous cross-sectional study: the structural brain networks develop into a fast distribution from young to middle age (approximately 50 years old and eventually became a fast localization in the old age. Our findings elucidate the network topology of structural brain networks and its longitudinal changes, thus enhancing the understanding of the underlying physiology of normal aging in the human brain.

  9. Human intelligence and brain networks.

    Science.gov (United States)

    Colom, Roberto; Karama, Sherif; Jung, Rex E; Haier, Richard J

    2010-01-01

    Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other. PMID:21319494

  10. Brain energy metabolism and blood flow differences in healthy aging

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar; Vang, Kim; Rodell, Anders B; Jónsdottir, Kristjana Y; Møller, Arne; Ashkanian, Mahmoud; Vafaee, Manouchehr S; Iversen, Peter; Johannsen, Peter; Gjedde, Albert

    2012-01-01

    Cerebral metabolic rate of oxygen consumption (CMRO(2)), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO(2) during normal aging are still controversial, as some authors...

  11. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  12. Brain Mechanisms Underlying Human Communication

    OpenAIRE

    Noordzij, Matthijs L.; Newman-Norlund, Sarah E.; Jan Peter De Ruiter; Peter Hagoort; Levinson, Stephen C.; Ivan Toni

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behaviora...

  13. GENETICS OF HUMAN AGE RELATED DISORDERS.

    Science.gov (United States)

    Srivastava, I; Thukral, N; Hasija, Y

    2015-01-01

    Aging is an inevitable biological phenomenon. The incidence of age related disorders (ARDs) such as cardiovascular diseases, cancer, arthritis, dementia, osteoporosis, diabetes, neurodegenerative diseases increase rapidly with aging. ARDs are becoming a key social and economic trouble for the world's elderly population (above 60 years), which is expected to reach 2 billion by 2050. Advancement in understanding of genetic associations, particularly through genome wide association studies (GWAS), has revealed a substantial contribution of genes to human aging and ARDs. In this review, we have focused on the recent understanding of the extent to which genetic predisposition may influence the aging process. Further analysis of the genetic association studies through pathway analysis several genes associated with multiple ARDs have been highlighted such as apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), cadherin 13 (CDH13), CDK5 regulatory subunit associated protein 1 (CDKAL-1), methylenetetrahydrofolate reductase (MTHFR), disrupted in schizophrenia 1 (DISC1), nitric oxide synthase 3 (NOS3), paraoxonase 1 (PON1), indicating that these genes could play a pivotal role in ARD causation. These genes were found to be significantly enriched in Jak-STAT signalling pathway, asthma and allograft rejection. Further, interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), estrogen receptor1 (ESR1), transforming growth factor, beta 1(TGFB1) and calmodulin 1 (CALM1) were found to be highly interconnected in network analysis. We believe that extensive research on the presence of common genetic variants among various ARDs may facilitate scientists to understand the biology behind ARDs causation. PMID:26856084

  14. Model human heart or brain signals

    OpenAIRE

    Tuncay, Caglar

    2008-01-01

    A new model is suggested and used to mimic various spatial or temporal designs in biological or non biological formations where the focus is on the normal or irregular electrical signals coming from human heart (ECG) or brain (EEG). The electrical activities in several muscles (EMG) or neurons or other organs of human or various animals, such as lobster pyloric neuron, guinea pig inferior olivary neuron, sepia giant axon and mouse neocortical pyramidal neuron and some spatial formations are a...

  15. Berry Fruit Supplementation in the Aging Brain

    Science.gov (United States)

    The onset of age-related neurodegenerative diseases such as Alzheimer’s or Parkinson’s Disease, superimposed on a declining nervous system, could exacerbate the motor and cognitive behavioral deficits that normally occur in senescence. In cases of severe deficits in memory or motor function, hospit...

  16. Some enkephalin- or VIP-immunoreactive hippocampal pyramidal cells contain neurofibrillary tangles in the brains of aged humans and persons with Alzheimer's disease.

    Science.gov (United States)

    Kulmala, H K

    1985-01-01

    Neurofibrillary tangles are one of the histopathological neuronal abnormalities present in normal aging and especially in Alzheimer's Disease. We have utilized immunocytochemical staining for neuropeptides followed by Congo red with gallocyanin counterstaining and polarized illumination to determine whether enkephalin (Enk), somatostatin (Som), cholecystokinin (CCK), or vasoactive intestinal polypeptide (VIP) are contained in neurons afflicted with such tangles. A few Enk- or VIP-immunoreactive pyramidal cells in field hl and subiculum were found to contain tangles. Many such Enk- or VIP-immunoreactive neurons and cells containing Som- or CCK-like immunoreactivity did not contain such tangles. PMID:2410823

  17. Zika virus impairs growth in human neurospheres and brain organoids.

    Science.gov (United States)

    Garcez, Patricia P; Loiola, Erick Correia; Madeiro da Costa, Rodrigo; Higa, Luiza M; Trindade, Pablo; Delvecchio, Rodrigo; Nascimento, Juliana Minardi; Brindeiro, Rodrigo; Tanuri, Amilcar; Rehen, Stevens K

    2016-05-13

    Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased considerably in Brazil; however, causality between the viral epidemic and malformations in fetal brains needs further confirmation. We examined the effects of ZIKV infection in human neural stem cells growing as neurospheres and brain organoids. Using immunocytochemistry and electron microscopy, we showed that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and brain organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development. PMID:27064148

  18. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  19. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  20. Epilepsy: Extreme Events in the Human Brain

    Science.gov (United States)

    Lehnertz, Klaus

    The analysis of Xevents arising in dynamical systems with many degrees of freedom represents a challenge for many scientific fields. This is especially true for the open, dissipative, and adaptive system known as the human brain. Due to its complex structure, its immense functionality, and — as in the case of epilepsy — due to the coexistence of normal and abnormal functions, the brain can be regarded as one of the most complex and fascinating systems in nature. Data gathered so far show that the epileptic process exhibits a high spatial and temporal variability. Small, specific, regions of the brain are responsible for the generation of focal epileptic seizures, and the amount of time a patient spends actually having seizures is only a small fraction of his/her lifetime. In between these Xevents large parts of the brain exhibit normal functioning. Since the occurrence of seizures usually can not be explained by exogenous factors, and since the brain recovers its normal state after a seizure in the majority of cases, this might indicate that endogenous nonlinear (deterministic and/or stochastic) properties are involved in the control of these Xevents. In fact, converging evidence now indicates that (particularly) nonlinear approaches to the analysis of brain activity allow us to define precursors which, provided sufficient sensitivity and specificity can be obtained, might lead to the development of patient-specific seizure anticipation and seizure prevention strategies.

  1. In vivo calcium imaging of the aging and diseased brain

    International Nuclear Information System (INIS)

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  2. In vivo calcium imaging of the aging and diseased brain

    Energy Technology Data Exchange (ETDEWEB)

    Eichhoff, Gerhard; Busche, Marc A.; Garaschuk, Olga [Technical University of Munich, Institute of Neuroscience, Munich (Germany)

    2008-03-15

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  3. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  4. Human freedom and the brain.

    Science.gov (United States)

    Kornhuber, Hans Helmut

    2009-06-01

    Freedom of will does exist, it is self-leadership of man based on reason and ethos. Evidence comes from truth. Determinism cannot be proved since if you try, you mean to prove a truth; but there is no truth without freedom. By contrast for freedom there are many pieces of evidence e.g. science, arts, technology. Freedom utilizes creative abstract thinking with phantasy. Freedom is graded, limited, based on nature, but not developed without good will. We perceive reliably freedom by self-consciousness and in other persons as long as we are sober. Freedom needs intelligence, but is more, it is a creative and moral virtue. The basis for freedom is phylogenesis and culture, in the individual learning and experimenting. Factors in the becoming of freedom are not only genes and environment but also self-discipline. But the creativity of free will is dangerous. Man therefore needs morale. Drives and feelings become humanized, cultural interests are developed. There is a humane nobility from long good will. PMID:25384854

  5. Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners.

    Science.gov (United States)

    Luders, Eileen; Cherbuin, Nicolas; Gaser, Christian

    2016-07-01

    Normal aging is known to be accompanied by loss of brain substance. The present study was designed to examine whether the practice of meditation is associated with a reduced brain age. Specific focus was directed at age fifty and beyond, as mid-life is a time when aging processes are known to become more prominent. We applied a recently developed machine learning algorithm trained to identify anatomical correlates of age in the brain translating those into one single score: the BrainAGE index (in years). Using this validated approach based on high-dimensional pattern recognition, we re-analyzed a large sample of 50 long-term meditators and 50 control subjects estimating and comparing their brain ages. We observed that, at age fifty, brains of meditators were estimated to be 7.5years younger than those of controls. In addition, we examined if the brain age estimates change with increasing age. While brain age estimates varied only little in controls, significant changes were detected in meditators: for every additional year over fifty, meditators' brains were estimated to be an additional 1month and 22days younger than their chronological age. Altogether, these findings seem to suggest that meditation is beneficial for brain preservation, effectively protecting against age-related atrophy with a consistently slower rate of brain aging throughout life. PMID:27079530

  6. Aging Brain: Prevention of Oxidative Stress by Vitamin E and Exercise

    OpenAIRE

    Sambe Asha Devi

    2009-01-01

    With aging, the brain undergoes neuronal loss in many areas. Although the loss of cells in the cerebral cortex, in particular the frontal cortex, has been recognized with aging, the influence of synaptic losses has a larger impact on cognitive decline. Much of the recent research on animals, as well as humans, has been aimed at slowing the cognitive decline through enrichment, and it has been found that the key factors are antioxidants and exercise. Several reports support the concept that re...

  7. Plasticity and the Ageing Mind : An Exemplar of the Biocultural Orchestration of Brain and Behavior

    OpenAIRE

    Baltes, P.; Singer, T.

    2001-01-01

    Using research on the aging mind, support is offered for the concept of biocultural sciences. The biocultural sciences highlight the notion that human behavior is the joint and co-constructive expression of biological-genetic and cultural-societal processes and conditions. The genome determines the ontogeny of the brain, so does, however, the cultural-social environment and individual behavior. The study of the aging mind illustrates this principle of biocultural co-construction and the histo...

  8. Alcohol-related brain damage in humans.

    Directory of Open Access Journals (Sweden)

    Amaia M Erdozain

    Full Text Available Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann's area (BA 9 from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics.

  9. The challenges of human population ageing

    DEFF Research Database (Denmark)

    Sander, Miriam; Oxlund, Bjarke; Jespersen, Astrid;

    2015-01-01

    The 20th century saw an unprecedented increase in average human lifespan as well as a rapid decline in human fertility in many countries of the world. The accompanying worldwide change in demographics of human populations is linked to unanticipated and unprecedented economic, cultural, medical...... Copenhagen (UCPH) and the Center for Healthy Ageing at UCPH, which took place on 20-21 June 2014 in Copenhagen, Denmark. Questions discussed here include the following: what is driving age-structural change in human populations? how can we create 'age-friendly' societies and promote 'ageing...

  10. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  11. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  12. Glia and extracellular space in the aging brain

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva

    London : The Parthenon Publishing Group, 2003 - (Genazzani, A.), s. 3-11 ISBN 1-84214-168-6 R&D Projects: GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z5039906; CEZ:MSM 111300004 Keywords : Glia * extracellular space * aging brain Subject RIV: FH - Neurology

  13. Alpha oscillatory correlates of motor inhibition in the aged brain

    Directory of Open Access Journals (Sweden)

    Marlene eBoenstrup

    2015-10-01

    Full Text Available Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time - early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains.

  14. "Messing with the Mind”: Evolutionary Challenges to Human Brain Augmentation

    OpenAIRE

    ARTHUR SANIOTIS

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to underst...

  15. Sex beyond the genitalia: The human brain mosaic

    OpenAIRE

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains ("female brain" or "male brain"). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features ...

  16. Linking pathways in the developing and aging brain with neurodegeneration.

    Science.gov (United States)

    Kovacs, G G; Adle-Biassette, H; Milenkovic, I; Cipriani, S; van Scheppingen, J; Aronica, E

    2014-06-01

    The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development. PMID:24699227

  17. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  18. Physical biology of human brain development

    OpenAIRE

    Silvia eBudday; Paul eSteinmann; Ellen eKuhl

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal different...

  19. Mouse Genetic Models of Human Brain Disorders

    OpenAIRE

    Celeste eLeung; Zhengping eJia

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectua...

  20. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  1. Toward Developmental Connectomics of the Human Brain

    Science.gov (United States)

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  2. Towards Developmental Connectomics of the Human Brain

    Directory of Open Access Journals (Sweden)

    Miao eCao

    2016-03-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and

  3. Toward Developmental Connectomics of the Human Brain.

    Science.gov (United States)

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  4. Human brain networks function in connectome-specific harmonic waves

    OpenAIRE

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In...

  5. Ketones and brain development: Implications for correcting deteriorating brain glucose metabolism during aging

    Directory of Open Access Journals (Sweden)

    Nugent Scott

    2016-01-01

    Full Text Available Brain energy metabolism in Alzheimer’s disease (AD is characterized mainly by temporo-parietal glucose hypometabolism. This pattern has been widely viewed as a consequence of the disease, i.e. deteriorating neuronal function leading to lower demand for glucose. This review will address deteriorating glucose metabolism as a problem specific to glucose and one that precedes AD. Hence, ketones and medium chain fatty acids (MCFA could be an alternative source of energy for the aging brain that could compensate for low brain glucose uptake. MCFA in the form of dietary medium chain triglycerides (MCT have a long history in clinical nutrition and are widely regarded as safe by government regulatory agencies. The importance of ketones in meeting the high energy and anabolic requirements of the infant brain suggest they may be able to contribute in the same way in the aging brain. Clinical studies suggest that ketogenesis from MCT may be able to bypass the increasing risk of insufficient glucose uptake or metabolism in the aging brain sufficiently to have positive effects on cognition.

  6. Parameters of glucose metabolism and the aging brain

    DEFF Research Database (Denmark)

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild;

    2015-01-01

    MRI was used to detect macro-structural damage (atrophy, white matter hyper-intensities, infarcts and/or micro-bleeds) and magnetization transfer imaging (MTI) to detect loss of micro-structural homogeneity that remains otherwise invisible on conventional MRI. Macro-structurally, higher fasted glucose......Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean...... age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain...

  7. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    Science.gov (United States)

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women. PMID:27318135

  8. Neuroaxonal dystrophy in aging human sympathetic ganglia.

    OpenAIRE

    Schmidt, R.E.; Chae, H. Y.; Parvin, C. A.; Roth, K A

    1990-01-01

    Autonomic dysfunction is an increasingly recognized problem in aging animals and man. The pathologic changes that produce autonomic dysfunction in human aging are largely unknown; however, in experimental animal models specific pathologic changes have been found in selected sympathetic ganglia. To address whether similar neuropathologic changes occur in aging humans, the authors have examined paravertebral and prevertebral sympathetic ganglia from a series of 56 adult autopsied nondiabetic pa...

  9. The Speculative Neuroscience of the Future Human Brain

    Directory of Open Access Journals (Sweden)

    Robert A. Dielenberg

    2013-05-01

    Full Text Available The hallmark of our species is our ability to hybridize symbolic thinking with behavioral output. We began with the symmetrical hand axe around 1.7 mya and have progressed, slowly at first, then with greater rapidity, to producing increasingly more complex hybridized products. We now live in the age where our drive to hybridize has pushed us to the brink of a neuroscientific revolution, where for the first time we are in a position to willfully alter the brain and hence, our behavior and evolution. Nootropics, transcranial direct current stimulation (tDCS, transcranial magnetic stimulation (TMS, deep brain stimulation (DBS and invasive brain mind interface (BMI technology are allowing humans to treat previously inaccessible diseases as well as open up potential vistas for cognitive enhancement. In the future, the possibility exists for humans to hybridize with BMIs and mobile architectures. The notion of self is becoming increasingly extended. All of this to say: are we in control of our brains, or are they in control of us?

  10. Aging Brain: Prevention of Oxidative Stress by Vitamin E and Exercise

    Directory of Open Access Journals (Sweden)

    Sambe Asha Devi

    2009-01-01

    Full Text Available With aging, the brain undergoes neuronal loss in many areas. Although the loss of cells in the cerebral cortex, in particular the frontal cortex, has been recognized with aging, the influence of synaptic losses has a larger impact on cognitive decline. Much of the recent research on animals, as well as humans, has been aimed at slowing the cognitive decline through enrichment, and it has been found that the key factors are antioxidants and exercise. Several reports support the concept that regular supplementation of vitamin E and physical activity from as early as middle age can slow the cognitive decline observed during the later years. A few studies have also suggested that exercise is analogous to acetylcholine esterase inhibitors that are also used extensively to treat cognitive impairment and dementia in Alzheimer's disease. In addition, reports also support that vitamin E and exercise may act synergistically to overcome free radical injury and oxidative stress in the aging brain.

  11. Structural brain correlates of human sleep oscillations.

    Science.gov (United States)

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

  12. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age

    OpenAIRE

    Sutherland, Greg T.; Sheedy, Donna; Kril, Jillian J.

    2013-01-01

    The New South Wales Tissue Resource Centre (NSW TRC) at the University of Sydney, Australia is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency and alcoholic n...

  13. Indestructible plastic: the neuroscience of the new aging brain.

    Science.gov (United States)

    Holman, Constance; de Villers-Sidani, Etienne

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain's capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: cognitive neuroscience of the normal aging. This complex process, once considered inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of) cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static. PMID:24782746

  14. Visualization of monoamine oxidase in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  15. Tracking White Matter Fiber in Human Brain

    Institute of Scientific and Technical Information of China (English)

    KANGNing; ZHANGJun; EricSCarlson

    2004-01-01

    A new approach for noninvasively tracing brain white matter fiber tracts is presented using diffusion tensor magnetic resonance imaging (DT-MRI) data. This technique is based on successive anisotropic diffusion simulations over the human brain, which are utilized to construct three dimensional diffusion fronts. The fiber pathways are determined by evaluating the distance and orientation from fronts to their corresponding diffusion seeds. Real DT-MRI data are used to demonstrate the tracking scheme. It is shown that several major white matter fiber pathways can be reproduced noninvasively, with the tract branching being allowed. Since the diffusion simulation,which is a truly physical phenomenon reflecting the underlying architecture of cerebral tissues, makes full use of the entire diffusion tensor data, the proposed approach is expected to enhance robustness and reliability of the DT-MRI based fiber tracking techniques in white matter fiber reconstruction.

  16. Diffusion Based Modeling of Human Brain Response to External Stimuli

    CERN Document Server

    Namazi, Hamidreza

    2012-01-01

    Human brain response is the overall ability of the brain in analyzing internal and external stimuli in the form of transferred energy to the mind/brain phase-space and thus, making the proper decisions. During the last decade scientists discovered about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research there was less effort which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling of human EEG signal, as an alert state of overall human brain activity monitoring, due to receiving external stimuli, based on fractional diffusion equation. The results of this modeling show very good agreement with the real human EEG signal and thus, this model can be used as a strong representative of the human brain activity.

  17. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette;

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed in...... the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other...

  18. Age-dependent differences in brain tissue microstructure assessed with neurite orientation dispersion and density imaging.

    Science.gov (United States)

    Merluzzi, Andrew P; Dean, Douglas C; Adluru, Nagesh; Suryawanshi, Gaurav S; Okonkwo, Ozioma C; Oh, Jennifer M; Hermann, Bruce P; Sager, Mark A; Asthana, Sanjay; Zhang, Hui; Johnson, Sterling C; Alexander, Andrew L; Bendlin, Barbara B

    2016-07-01

    Human aging is accompanied by progressive changes in executive function and memory, but the biological mechanisms underlying these phenomena are not fully understood. Using neurite orientation dispersion and density imaging, we sought to examine the relationship between age, cellular microstructure, and neuropsychological scores in 116 late middle-aged, cognitively asymptomatic participants. Results revealed widespread increases in the volume fraction of isotropic diffusion and localized decreases in neurite density in frontal white matter regions with increasing age. In addition, several of these microstructural alterations were associated with poorer performance on tests of memory and executive function. These results suggest that neurite orientation dispersion and density imaging is capable of measuring age-related brain changes and the neural correlates of poorer performance on tests of cognitive functioning, largely in accordance with published histological findings and brain-imaging studies of people of this age range. Ultimately, this study sheds light on the processes underlying normal brain development in adulthood, knowledge that is critical for differentiating healthy aging from changes associated with dementia. PMID:27255817

  19. Monoamine re-uptake sites in the human brain evaluated in vivo by means of 11C-nomifensine and positron emission tomography: the effects of age and Parkinson's disease

    International Nuclear Information System (INIS)

    Six patients with Parkinson's disease, selected to cover a range of clinical features, and 7 healthy volunteers aged 24-81 years, were examined by positron emission tomography after i.v. injection of racemic 11C-nomifensine, a catecholamine re-uptake blocking drug. After injection the radiotracer, radioactivity was rapidly distributed to the brain. The highest accumulation of radioactivity was found in areas rich in dopamineric and noradrenergic innervation, such as the striatum and the thalamus. In regions with negible dopaminergic and noradrenergic innervation, such as the cerebellum, radioactivity was lower and evenly distributed. In all investigated brain regions a marked age-related decline in 11C-nomifensinederived radioactivity relative to the cerebellum was observed in the group of healthy volunteers. Parkinsonian patients did not show such a decline with age. In the group of parkinsonian patients with mainly unilateral involvement, the contralateral putamen exhibited the most pronounced decrease. Only the 3 parkinsonian patients aged 63 and younger showed markedly lower 11C-nomifensine binding in striatal areas than age-matched healthy volunteers. 11C-nomifensine seems to be a valuable tool for investigating noradrenergic and dopaminergic re-uptake sites in vivo. Further achievements will most likely be made when the active enantioimer becomes available. (author)

  20. Development of Spatial and Verbal Working Memory Capacity in the Human Brain

    Science.gov (United States)

    Thomason, Moriah E.; Race, Elizabeth; Burrows, Brittany; Whitfield-Gabrieli, Susan; Glover, Gary H.; Gabrieli, John D. E.

    2009-01-01

    A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between children (ages 7-12 years) and adults (ages 20-29 years) performing tests of verbal and spatial WM with varying amounts (loads)…

  1. Physical biology of human brain development

    Directory of Open Access Journals (Sweden)

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  2. The proteome of human brain microdialysate

    Directory of Open Access Journals (Sweden)

    Feldmann Robert E

    2003-12-01

    Full Text Available Abstract Background Cerebral microdialysis has been established as a monitoring tool in neurocritically ill patients suffering from severe stroke. The technique allows to sample small molecules in the brain tissue for subsequent biochemical analysis. In this study, we investigated the proteomic profile of human cerebral microdialysate and if the identified proteins might be useful predictors for disease characteristics in stroke for tissue at risk in the contralateral hemisphere. We analysed cerebral protein expression in microdialysate from three stroke patients sampled from the hemisphere contralateral to the lesion. Using a proteomic approach based on two-dimensional gel electrophoresis and subsequent mass spectrometry, we created a protein map for the global protein expression pattern of human microdialyste. Results We found an average of 158 ± 24 (N = 18 protein spots in the human cerebral microdialysate and could identify 95 spots, representing 27 individual proteins. Most of these have been detected in human cerebrospinal fluid before, but 10 additional proteins mainly of cerebral intracellular origin were identified exclusively in the microdialysate. Conclusions The 10 proteins found exclusively in human cerebral microdialysate, but not in cerebrospinal fluid, indicate the possibility to monitor the progression of the disease towards deterioration. The correlation of protein composition in the human cerebral microdialysate with the patients' clinical condition and results of cerebral imaging may be a useful approach to future applications for neurological stroke diagnosis, prognosis, and treatment.

  3. Neural Plastic Effects of Cognitive Training on Aging Brain

    OpenAIRE

    Leung, Natalie T. Y.; Tam, Helena M. K.; Leung W. Chu; Kwok, Timothy C. Y.; Felix Chan; Lam, Linda C. W.; Jean Woo; Lee, Tatia M. C.

    2015-01-01

    Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cogni...

  4. Lucid dreaming: an age-dependent brain dissociation.

    Science.gov (United States)

    Voss, Ursula; Frenzel, Clemens; Koppehele-Gossel, Judith; Hobson, Allan

    2012-12-01

    The current study focused on the distribution of lucid dreams in school children and young adults. The survey was conducted on a large sample of students aged 6-19 years. Questions distinguished between past and current experience with lucid dreams. Results suggest that lucid dreaming is quite pronounced in young children, its incidence rate drops at about age 16 years. Increased lucidity was found in those attending higher level compared with lower level schools. Taking methodological issues into account, we feel confident to propose a link between the natural occurrence of lucid dreaming and brain maturation. PMID:22639960

  5. Increased self-diffusion of brain water in normal aging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Henriksen, O

    1994-01-01

    With magnetic resonance (MR) imaging, brain water self-diffusion was measured in 17 healthy volunteers 22-76 (mean, 44.6) years old. The calculated values for the apparent diffusion coefficients (ADCs) ranged from 0.58 x 10(-9) to 1.23 x 10(-9) m2/sec in cerebral white matter. A significant...... increase in the extracellular volume due to age-dependent neuronal degeneration or to changes in myelination. These findings have implications for future clinical investigations with diffusion MR imaging techniques in patients with neurologic diseases, and stress the importance of having an age...

  6. The Human Brain in Numbers: A Linearly Scaled-up Primate Brain

    OpenAIRE

    Suzana Herculano-Houzel

    2009-01-01

    The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10× more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a nove...

  7. The gender difference in the brain FDG distribution with aging

    International Nuclear Information System (INIS)

    The purpose of this study is to examine the change in brain fluorodeoxyglucose (FDG) distribution with aging. Subjects were 85 men and 116 women who had no mental abnormality and no evidence of cancer in the whole body FDG-positron emission tomography (PET) study for cancer checkup. The brain data were extracted from whole body data, and stratified according to the age: 30-39 (M: 10, F: 18), 40-49 (M: 11, F: 14), 50-59 (M: 10, F: 27), 60-64 (M: 11, F: 13), 65-69 (M: 11, F: 11), 70-74 (M: 11, F: 10), 75-79 (M: 13, F: 11), over 80 (M: 8, F: 12) years. Forties or more male and female stratified age groups were compared with each gender 30's age data using Statistical Parametric Mapping (SPM)2. In the man, the FDG activity of the bilateral temporal and frontal lobes decreased and the decreased domains were expanded with aging. But in the females, the decreased domains were complicated in 40-69 years old. Dynamic changes of sex hormones in the individual female menopause may affect the complicated results in the females. Further studies are needed to confirm it. (author)

  8. Human brain : biochemical lateralization in normal subjects.

    Directory of Open Access Journals (Sweden)

    Jayasundar R

    2002-07-01

    Full Text Available Chemical asymmetries in normal human brain were studied using the non-invasive technique of volume localized proton magnetic resonance spectroscopy (MRS. The technique of STEAM was used to acquire water-suppressed proton spectra from 8 ml voxels placed in bilaterally symmetrical positions in the two hemispheres of the brain. One hundred and sixty eight right-handed male volunteers were studied for six different regions in the brain (n=28, for each region. Parietal, occipital, temporal, frontal, thalamus and cerebellum regions were studied. The focus was on metabolites such as N-acetyl aspartate (NAA, creatine/phosphocreatine (Cr/PCr and choline (Cho containing compounds. Ratios of the peak areas were calculated for them. Quantitation of the metabolites were carried for data on 18 volunteers. Significant interhemispheric differences in the distribution of metabolites were observed for all the regions studied. There were statistically significant differences on right and left side for the metabolite ratios in all the regions studied. The study has shown the existence of significant lateralization in the distribution of proton MR visible metabolites for all the regions studied.

  9. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  10. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging.

    Science.gov (United States)

    Maimaiti, Shaniya; Anderson, Katie L; DeMoll, Chris; Brewer, Lawrence D; Rauh, Benjamin A; Gant, John C; Blalock, Eric M; Porter, Nada M; Thibault, Olivier

    2016-01-01

    Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP. PMID:25659889

  11. Auditory event-related brain potentials for an early discrimination between normal and pathological brain aging

    Institute of Scientific and Technical Information of China (English)

    Juliana Dushanova; Mario Christov

    2013-01-01

    The brain as a system with gradually decreasing resources maximizes its chances by reorganizing neural networks to ensure efficient performance. Auditory event-related potentials were recorded in 28 healthy volunteers comprising 14 young and 14 elderly subjects in auditory discrimination motor task (low frequency tone – right hand movement and high frequency tone – left hand movement). The amplitudes of the sensory event-related potential components (N1, P2) were more pronounced with increasing age for either tone and this effect for P2 amplitude was more pronounced in the frontal region. The latency relationship of N1 between the groups was tone-dependent, while that of P2 was tone-independent with a prominent delay in the elderly group over all brain regions. The amplitudes of the cognitive components (N2, P3) diminished with increasing age and the hemispheric asymmetry of N2 (but not for P3) reduced with increasing age. Prolonged N2 latency with increasing age was widespread for either tone while between-group difference in P3 latency was tone-dependent. High frequency tone stimulation and movement requirements lead to P3 delay in the elderly group. The amplitude difference of the sensory components between the age groups could be due to a general greater alertness, less expressed habituation, or decline in the ability to retreat attentional resources from the stimuli in the elderly group. With aging, a neural circuit reorganization of the brain activity affects the cognitive processes. The approach used in this study is useful for an early discrimination between normal and pathological brain aging for early treatment of cognitive alterations and dementia.

  12. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    Science.gov (United States)

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. PMID:27221544

  13. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  14. Model human heart or brain signals

    CERN Document Server

    Tuncay, Caglar

    2008-01-01

    A new model is suggested and used to mimic various spatial or temporal designs in biological or non biological formations where the focus is on the normal or irregular electrical signals coming from human heart (ECG) or brain (EEG). The electrical activities in several muscles (EMG) or neurons or other organs of human or various animals, such as lobster pyloric neuron, guinea pig inferior olivary neuron, sepia giant axon and mouse neocortical pyramidal neuron and some spatial formations are also considered (in Appendix). In the biological applications, several elements (cells or tissues) in an organ are taken as various entries in a representative lattice (mesh) where the entries are connected to each other in terms of some molecular diffusions or electrical potential differences. The biological elements evolve in time (with the given tissue or organ) in terms of the mentioned connections (interactions) besides some individual feedings. The anatomical diversity of the species (or organs) is handled in terms o...

  15. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    Renaud Lambiotte

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  16. Indestructible plastic: The neuroscience of the new aging brain

    Directory of Open Access Journals (Sweden)

    Constance eHolman

    2014-04-01

    Full Text Available In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain’s capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: the cognitive neuroscience of the normal aging. This complex process, once dubbed as inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static.

  17. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. PMID:27489306

  18. Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice.

    Directory of Open Access Journals (Sweden)

    Caitlin S Latimer

    Full Text Available Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.

  19. [Neuroethics: Ethical Endowments of Human Brain].

    Science.gov (United States)

    López Moratalla, Natalia

    2015-01-01

    The neurobiological processes underlying moral judgement have been the focus of Neuroethics. Neurosciences demonstrate which cerebral areas are active and inactive whilst people decide how to act when facing a moral dilemma; in this way we know the correlation between determined cerebral areas and our human acts. We can explain how the ″ethical endowments″ of each person, common to all human beings, is ″embedded″ in the dynamic of cerebral flows. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion related areas of the brain contribute to moral judgement. The outcome of man's natural inclinations is on one hand linked to instinctive systems of animal survival and to basic emotions, and on the other, to the life of each individual human uninhibited by automatism of the biological laws, because he is governed by the laws of freedom. The capacity to formulate an ethical judgement is an innate asset of the human mind. PMID:26546796

  20. Brain FDG PET study of normal aging in Japanese: effect of atrophy correction

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the effects of atrophy correction on the results of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) in the context of normal aging. Before the human study was performed, a Hoffman 3D brain phantom experiment was carried out in order to validate a newly developed correction method for partial volume effects (PVEs). Brain FDG PET was then performed in 139 healthy Japanese volunteers (71 men, 68 women; age 24-81 years). PET images were corrected for PVEs using grey matter volume, which was segmented from co-registered magnetic resonance images and convoluted with the spatial resolution of the PET scanner. We investigated the correlation between advancing age and relative regional FDG activity, which was normalised to the global activity before and after PVE correction using Statistical Parametric Mapping 99. The PET image, when corrected for PVEs, provided more homogeneous tracer distribution in the whole phantom than in the original PET image. The human PET study of both sexes revealed significant negative correlations between age and relative FDG activity in the bilateral perisylvian and medial frontal areas before PVE correction. However, these negative correlations were largely resolved after PVE correction. Correction for PVEs was effective in our FDG PET study. The reduction in FDG uptake with advancing age that was detected by FDG PET without PVE correction could be accounted for largely by an age-related cerebral volume loss in the bilateral perisylvian and medial frontal areas. (orig.)

  1. Topological organization of the human brain functional connectome across the lifespan

    Directory of Open Access Journals (Sweden)

    Miao Cao

    2014-01-01

    Full Text Available Human brain function undergoes complex transformations across the lifespan. We employed resting-state functional MRI and graph-theory approaches to systematically chart the lifespan trajectory of the topological organization of human whole-brain functional networks in 126 healthy individuals ranging in age from 7 to 85 years. Brain networks were constructed by computing Pearson's correlations in blood-oxygenation-level-dependent temporal fluctuations among 1024 parcellation units followed by graph-based network analyses. We observed that the human brain functional connectome exhibited highly preserved non-random modular and rich club organization over the entire age range studied. Further quantitative analyses revealed linear decreases in modularity and inverted-U shaped trajectories of local efficiency and rich club architecture. Regionally heterogeneous age effects were mainly located in several hubs (e.g., default network, dorsal attention regions. Finally, we observed inverse trajectories of long- and short-distance functional connections, indicating that the reorganization of connectivity concentrates and distributes the brain's functional networks. Our results demonstrate topological changes in the whole-brain functional connectome across nearly the entire human lifespan, providing insights into the neural substrates underlying individual variations in behavior and cognition. These results have important implications for disease connectomics because they provide a baseline for evaluating network impairments in age-related neuropsychiatric disorders.

  2. 定量研究人脑结构DTI T2-weighted trace图与年龄的关系%Quantitative study of DTI T2-weighted trace parameter map in healthy human brain and its relation to aging

    Institute of Scientific and Technical Information of China (English)

    李翠宁; 刘怀军; 耿左军; 贾林燚; 池琛; 崔彩霞; 宋鹏; 刘瑞春

    2012-01-01

    Objective To quantitatively analysis the DTI T2-weighted trace (T2-WT) parameter map in different age of healthy human brain and its relation to age. Methods Data were acquired in fifty-eight healthy right-handed volunteers (22-76 years) . 28 subjects in middle-old age group ( > 40years) and 30 subjects in young group (≤40years) . All subjects underwent diffusion tensor imaging ( DTI) and conventional MRI with a GE 3.0T magnetic resonance system. Three DTI parameters T2-WT, fractional anisotropy ( FA ) and mean diffusivity ( MD ) were acquired from the MR work station. ROIs were determined at FA and MD maps. The ten structures T2-WT values were measured in the two groups. Quantitative analyzed the the T2-WT maps and its relation to age. Results In the young group, the value of T2-WT had a left-right asymmetries in pons, cerebral peduncle, anterior internal capsual, centrum seimioval and lenticular nucleus, left > right, P = 0.000 ~ 0. 024. Whereas in the middle-old age group, T2-WT values were lower than the young group except the lateral cerebral ventricle, and had a left superior only in centrum semioval ( P= 0.042 ). Significant negative correlation with age were found in pons, cerebral peduncle, three parts of the internal capsule and lenticular nucleus (P =0. 000 ~0. 038) . Conclusion T2-WT parameter map is more symmetry in middle-old age group. In pons, cerebral peduncle, three parts of internal capsule and lenticular nucleus,T2-WT values have significant negative correlations with age.%目的 定量研究不同年龄健康人脑结构扩散张量成像(DTI)的T2-WT参数图的特点及其与年龄的关系.方法 健康右利手志愿者58人,年龄22~76岁,按年龄分为青年(≤40岁)组30人,中老年(>40岁)组28人,采集人脑常规MRI及DTI图像,经后处理得到DTI的三种参数图:T2-WT、分数各向异性(FA)及平均扩散系数(MD)图,使用FA图及MD图设置兴趣区,测量人脑10个部位的参数值,定量分析不同年龄组T2

  3. Left Brain to Right Brain: Notes from the Human Laboratory.

    Science.gov (United States)

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  4. MR-visible water content in human brain: a proton MRS study

    DEFF Research Database (Denmark)

    Christiansen, P; Toft, P B; Gideon, P; Danielsen, E R; Ring, P; Henriksen, O

    1994-01-01

    In vivo measurement of metabolite concentrations in the human brain by means of proton-MRS contributes significantly to the clinical evaluation of patients with diseases of the brain. The fully relaxed water signal has been proposed as an internal standard for calibration of the MRS measurements....... The major drawbacks are the necessity to make the assumptions that the water concentrations in the brain and that all tissue water is MR-visible. A number of in vivo measurements were carried out to estimate the concentration of MR-visible water in the brain of healthy volunteers divided into four age...

  5. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian;

    2010-01-01

    priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally...... require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter......-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the...

  6. Human aging alters the neural computation and representation of space.

    Science.gov (United States)

    Schuck, Nicolas W; Doeller, Christian F; Polk, Thad A; Lindenberger, Ulman; Li, Shu-Chen

    2015-08-15

    The hippocampus and striatum are core neural circuits involved in spatial learning and memory. Although both neural systems support spatial navigation, experimental and theoretical evidence indicate that they play different roles. In particular, whereas hippocampal place cells generate allocentric neural representations of space that are sensitive to geometric information, striatum-dependent learning is influenced by local landmarks. How human aging affects these different neural representations, however, is still not well understood. In this paper, we combined virtual reality, computational modeling, and neuroimaging to investigate the effects of age upon the neural computation and representation of space in humans. We manipulated the geometry and local landmarks of a virtual environment and examined the effects on memory performance and brain activity during spatial learning. In younger adults, both behavior and brain activity in the medial-temporal lobe were consistent with predictions of a computational model of hippocampus-dependent boundary processing. In contrast, older adults' behavior and medial-temporal lobe activity were primarily influenced by local cue information, and spatial learning was more associated with activity in the caudate nucleus rather than the hippocampus. Together these results point to altered spatial representations and information processing in the hippocampal-striatal circuitry with advancing adult age, which may contribute to spatial learning and memory deficits associated with normal and pathological aging. PMID:26003855

  7. Advanced BrainAGE in older adults with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Katja eFranke

    2013-12-01

    Full Text Available Aging alters brain structure and function and diabetes mellitus (DM may accelerate this process. This study investigated the effects of type 2 DM on individual brain aging as well as the relationships between individual brain aging, risk factors and functional measures. To differentiate a pattern of brain atrophy that deviates from normal brain aging, we used the novel BrainAGE approach, which determines the complex multidimensional aging pattern within the whole brain by applying established kernel regression methods to anatomical brain MRIs. The Brain Age Gap Estimation (i.e., BrainAGE score was then calculated as the difference between chronological age and estimated brain age. 185 subjects (98 with type 2 DM completed an MRI at 3T, laboratory and clinical assessments. Twenty-five subjects (12 with type 2 DM also completed a follow-up visit after 3.8 ± 1.5 years. The estimated brain age of DM subjects was 4.6 ± 7.2 years greater than their chronological age (p = 0.0001, whereas within the control group, estimated brain age was similar to chronological age. As compared to baseline, the average BrainAGE scores of DM subjects increased by 0.2 years per follow-up year (p = 0.034, whereas the BrainAGE scores of controls did not change between baseline and follow-up. At baseline, across all subjects, higher BrainAGE scores were associated with greater smoking and alcohol consumption, higher tumor necrosis factor (TNFα levels, lower verbal fluency scores and more severe depression. Within the DM group, higher BrainAGE scores were associated with longer diabetes duration (r = 0.31, p = 0.019 and increased fasting blood glucose levels (r = 0.34, p = 0.025. In conclusion, type 2 DM is independently associated with structural changes in the brain that reflect advanced aging. The BrainAGE approach may thus serve as a clinically relevant biomarker for the detection of abnormal patterns of brain aging associated with type 2 DM.

  8. The Complex Functioning of the Human Brain: The Two Hemispheres

    OpenAIRE

    Iulia Cristina Timofti

    2010-01-01

    The present study reveals just a glimpse of the possible functions and reactions that the human brain can have. I considered as good examples different situations characteristic both of a normal person and a split-brain one. These situations prove that the brain, although divided in two, works as a unit, as an amazing computer that has data processing as a main goal.

  9. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Science.gov (United States)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  10. Brain-Computer Interfaces and Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney; Nijholt, Anton; Tan, Desney S.; Nijholt, Anton

    2010-01-01

    Advances in cognitive neuroscience and brain imaging technologies have started to provide us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that can monitor some of the physical processes that occur within the brain that correspo

  11. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  12. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  13. "Messing with the Mind: Evolutionary Challenges to Human Brain Augmentation

    Directory of Open Access Journals (Sweden)

    ARTHUR eSANIOTIS

    2014-09-01

    Full Text Available The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce augmented brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties.

  14. "Messing with the mind": evolutionary challenges to human brain augmentation.

    Science.gov (United States)

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce "augmented" brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties. PMID:25324734

  15. Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development.

    Science.gov (United States)

    Brenna, J Thomas; Carlson, Susan E

    2014-12-01

    Humans evolved a uniquely large brain among terrestrial mammals. Brain and nervous tissue is rich in the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). Docosahexaenoic acid is required for lower and high order functions in humans because of understood and emerging molecular mechanisms. Among brain components that depend on dietary components, DHA is limiting because its synthesis from terrestrial plant food precursors is low but its utilization when consumed in diet is very efficient. Negligible DHA is found in terrestrial plants, but in contrast, DHA is plentiful at the shoreline where it is made by single-celled organisms and plants, and in the seas supports development of very large marine mammal brains. Modern human brains accumulate DHA up to age 18, most aggressively from about half-way through gestation to about two years of age. Studies in modern humans and non-human primates show that modern infants consuming infant formulas that include only DHA precursors have lower DHA levels than for those with a source of preformed DHA. Functional measures show that infants consuming preformed DHA have improved visual and cognitive function. Dietary preformed DHA in the breast milk of modern mothers supports many-fold greater breast milk DHA than is found in the breast milk of vegans, a phenomenon linked to consumption of shore-based foods. Most current evidence suggests that the DHA-rich human brain required an ample and sustained source of dietary DHA to reach its full potential. PMID:24780861

  16. Changes in intracellular calcium in brain cells of aged rats

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Yunpeng Cao

    2008-01-01

    BACKGROUND: Studies have shown that voltage-dependent calcium influx, and enhancement of certain calcium-dependent processes in neurons, is related to aging. OBJECTIVE: To observe changes in intracellular calcium ([Ca2+]i) in neurons of aged rats, and to compare with young rats. DESIGN, TIME AND SETTING: A randomized control experiment of neurophysiology was performed at the Central Laboratory of School of Pharmaceutical Science, China Medical University from June to August 2004. MATERIALS: Ten male, healthy, Wistar rats, 19 months old, were selected for the aged group. Ten male, 3-month-old, Wistar rats were selected for the young control group. Fura-2/AM was provided by the Institute of Pharmaceutical Research of Chinese Academy of Medical Sciences, and the F-2000 fluorospectrophotometer was a product of Hitachi, Japan. METHODS: Fluorescence Fura-2 spectrophotometer was used to measure [Ca2+]i in acutely dissociated brain cells of aged and young rats. The concentration of extracellular potassium was controlled by adding different volumes of chloridated potassium solution of high concentration. MAIN OUTCOME MEASURES: [Ca2+]i in neurons of young and aged rats in the presence of 1 mmol/L extracellular calcium concentration and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium. Absolute increase of [Ca2+]i in neurons of young and aged rats when extraceUular potassium was 5,10,20, 40 mmol/L. RESULTS: In the presence of 1 mmol/L extracellular Ca2+ and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium, [Ca2+]i in the neurons of aged rats was significantly less than that in young rats (P 0.05). CONCLUSION: The overload of [Ca2+]i in neurons of aged rats is greater than that of young rats under the same circumstances.

  17. Gut Microbiota: A Modulator of Brain Plasticity and Cognitive Function in Ageing

    Science.gov (United States)

    Leung, Katherine; Thuret, Sandrine

    2015-01-01

    Gut microbiota have recently been a topic of great interest in the field of microbiology, particularly their role in normal physiology and its influence on human health in disease. A large body of research has supported the presence of a pathway of communication between the gut and the brain, modulated by gut microbiota, giving rise to the term “microbiota-gut-brain” axis. It is now thought that, through this pathway, microbiota can affect behaviour and modulate brain plasticity and cognitive function in ageing. This review summarizes the evidence supporting the existence of such a connection and possible mechanisms of action whereby microbiota can influence the function of the central nervous system. Since normalisation of gut flora has been shown to prevent changes in behaviour, we further postulate on possible therapeutic targets to intervene with cognitive decline in ageing. The research poses various limitations, for example uncertainty about how this data translates to broad human populations. Nonetheless, the microbiota-gut-brain axis is an exciting field worthy of further investigation, particularly with regards to its implications on the ageing population.

  18. Gut Microbiota: A Modulator of Brain Plasticity and Cognitive Function in Ageing

    Directory of Open Access Journals (Sweden)

    Katherine Leung

    2015-09-01

    Full Text Available Gut microbiota have recently been a topic of great interest in the field of microbiology, particularly their role in normal physiology and its influence on human health in disease. A large body of research has supported the presence of a pathway of communication between the gut and the brain, modulated by gut microbiota, giving rise to the term “microbiota-gut-brain” axis. It is now thought that, through this pathway, microbiota can affect behaviour and modulate brain plasticity and cognitive function in ageing. This review summarizes the evidence supporting the existence of such a connection and possible mechanisms of action whereby microbiota can influence the function of the central nervous system. Since normalisation of gut flora has been shown to prevent changes in behaviour, we further postulate on possible therapeutic targets to intervene with cognitive decline in ageing. The research poses various limitations, for example uncertainty about how this data translates to broad human populations. Nonetheless, the microbiota-gut-brain axis is an exciting field worthy of further investigation, particularly with regards to its implications on the ageing population.

  19. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  20. Neuronal connectivity, regional differentiation, and brain damage in humans.

    OpenAIRE

    Zaidel, Dahlia W.

    1999-01-01

    When circumscribed brain regions are damaged in humans, highly specific iimpairments in language, memory, problem solving, and cognition are observed. Neurosurgery such as "split brain" or hemispherectomy, for example has shown that encompassing regions, the left and right cerebral hemispheres each control human behavior in unique ways. Observations stretching over 100 years of patients with unilateral focal brain damage have revealed, withouth the theoretical benefits of "cognitive neurosci...

  1. The Gestational Age Pattern of Human Mortality

    DEFF Research Database (Denmark)

    Schöley, Jonas; Vaupel, James W.; Jacobsen, Rune;

    2016-01-01

    a "birth hump" peaking week 38. The absolute rate of decline slows down over age. The observed gestational age pattern of the force of mortality is consistent with three hypotheses concerning the causes for ontogenescense: 1) Adaptation: as the organism growths it becomes more resilient towards...... processes I fit a three component mortality model against the observed force of mortality. The model describes the data with high accuracy, suggesting that the phenomenon of ontogenescense in humans is fully explained by the three hypotheses....

  2. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the possibil

  3. Imaging neuroreceptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human brain in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, and glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On 25 May 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 N-methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine-2 receptors than in serotonin-2 receptors. Preliminary studies of patients with neuropsychiatric disorders suggest that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits a quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. (author)

  4. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  5. White matter lesions of the aging brain visualized on MRI

    International Nuclear Information System (INIS)

    The purpose of this report is to study the relationship between the severity of the white matter lesions (WMLs) and aging. We reviewed 215 subjects (11-88 years of age) referred for MR imaging performed between June 1988 and August 1989 on a 0.5T superconducting MR imager. The spin echo technique of image acquisition was used, with TR 1800 ms and TE 120 ms. All subjects were free from neurological abnormalities. The patterns of MR imaging of the incidental WMLs were divided into four grades; grades 0-3 (grade 0, no lesions; grade 1, lesions confined to one lobe; grade 2, lesions beyond one lobe; grade 3, confluent periventricular lesions). We investigated the relationships among the prevalence of WMLs, the grading of WMLs, age, and hypertension. Furthermore, we analyzed the grading of WMLs in relation to the degree of brain atrophy (bicaudate index) and the prevalence of basal ganglionic lesions. The mean age of grade 0 (n=90), grade 1 (n=36), grade 2 (n=58) and grade 3 (n=31) was 43.4±13.2, 57.3±7.3, 63.5±10.8 and 71.6±8.5. The statistical difference of age between grade 0 and 1 (p160 mmHg) showed higher grading of WMLs than other subjects. There was a statistical difference in the bicaudate index between grade 0 and 2 (p<0.001), and grade 0 and 3 (p<0.001). Of the 89 subjects of grade 2 or 3, 47 (53%) had basal ganglionic and/or thalamic lesions. It was confirmed that WMLs of neurologically healthy subjects significantly correlated with aging. In addition, hypertension accelerated WMLs. (author)

  6. The brain functional networks associated to human and animal suffering differ among omnivores, vegetarians and vegans

    OpenAIRE

    Filippi, Massimo; Riccitelli, Gianna; Falini, Andrea; Di Salle, Francesco; Vuilleumier, Patrik; Comi, Giancarlo; Rocca, M. A.

    2010-01-01

    Empathy and affective appraisals for conspecifics are among the hallmarks of social interaction. Using functional MRI, we hypothesized that vegetarians and vegans, who made their feeding choice for ethical reasons, might show brain responses to conditions of suffering involving humans or animals different from omnivores. We recruited 20 omnivore subjects, 19 vegetarians, and 21 vegans. The groups were matched for sex and age. Brain activation was investigated using fMRI and an event-related d...

  7. MODERN STEREOLOGICAL EVALUATION IN THE AGING HUMAN SUBSTANTIA NIGRA

    Directory of Open Access Journals (Sweden)

    Shuang Y Ma

    2011-05-01

    Full Text Available Quantitative estimation of neuronal numbers in the human substantia nigra (SN can be achieved by a conventional single section (SS count or by the more modern stereological disector (DS count. However, counting results from SS counts are potentially biased and might not accurately reflect the total neuronal number in the SN or the changes in the total number of neurons occurring during aging or with neurodegenerative disease. Potential sources of bias include the lack of linearity between cell number per area of section and cell number per volume; the variation in the counting level and orientation of tissue sections; and shrinkage of tissue. Modern stereological DS counting overcomes these problems and has played a crucial role in many recent studies in neuropathology, neuroanatomy, neuropharmacology and neurogenetics. Over the past decades, four stereology based counting methods including physical DS, physical fractionator, optical DS and optical fractionator, have been established for quantitative measurement. Recently, stereological estimates have revealed a linear reduction rate of total nigral neuronal numbers with age of about 10% per decade. These findings suggest that the surviving nigral neurons undergo a degenerative change leading to neuronal dysfunction with aging. Furthermore, as an advanced quantitative tool, modern stereological evaluation may provide new insights into the aging of the human SN thereby enabling us to better understand the pathophysiological processes in aging brain.

  8. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs?

    Science.gov (United States)

    Dukic-Stefanovic, S; Schinzel, R; Riederer, P; Münch, G

    2001-01-01

    In Alzheimer's disease, age-related cellular changes such as compromised energy production and increased radical formation are worsened by the presence of AGEs as additional, AD specific stress factors. Intracellular AGEs (most likely derived from methylglyoxal) crosslink cytoskeletal proteins and render them insoluble. These aggregates inhibit cellular functions including transport processes and contribute to neuronal dysfunction and death. Extracellular AGEs, which accumulate in ageing tissue (but most prominently on long-lived protein deposits like the senile plaques) exert chronic oxidative stress on neurons. In addition, they activate glial cells to produce free radicals (superoxide and NO) and neurotoxic cytokines such as TNF-alpha. Drugs, which inhibit the formation of AGEs by specific chemical mechanisms (AGE-inhibitors), including aminoguanidine, carnosine, tenilsetam, OPB-9195 and pyridoxamine, attenuate the development of (AGE-mediated) diabetic complications. Assuming that 'carbonyl stress' contributes significantly to the progression of Alzheimer's disease, AGE-inhibitors might also become interesting novel therapeutic drugs for treatment of AD. PMID:11708614

  9. Analysis of brain CT on 120 patients of human cysticercosis

    International Nuclear Information System (INIS)

    A study on brain CT was made in 120 patients of human cysticercosis, which is a rare disease in Japan and clinical symptoms and laboratory data for the diagnosis were also discussed. From the point of therapeutic view, we proposed a new differentiation on brain CT of human cysticercosis, which is divided into two groups according to the alve or dead parasite. Furthermore, we proposed a new type named multiple large and small cysts type on brain CT. The idea of diagnostic standard was made integrating brain CT image, clinical symptoms and labolatory data. (author)

  10. Analysis of brain CT on 120 patients of human cysticercosis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; To, R.; Ri, T.; Ra, S. (Jiamusi Medical Coll. (China)); Inomata, Taiten; Ogawa, Yasuhiro; Maeda, Tomoo

    1990-08-01

    A study on brain CT was made in 120 patients of human cysticercosis, which is a rare disease in Japan and clinical symptoms and laboratory data for the diagnosis were also discussed. From the point of therapeutic view, we proposed a new differentiation on brain CT of human cysticercosis, which is divided into two groups according to the alve or dead parasite. Furthermore, we proposed a new type named multiple large and small cysts type on brain CT. The idea of diagnostic standard was made integrating brain CT image, clinical symptoms and labolatory data. (author).

  11. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  12. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    Science.gov (United States)

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  13. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  14. Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [{sup 11}C]ABP688 PET

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Jonathan M.; Porras-Betancourt, Manuel; Massarweh, Gassan; Soucy, Jean-Paul; Kobayashi, Eliane [McGill University, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec (Canada); Rousset, Olivier G. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Rowley, Jared [McGill University, Translational Neuroimaging Laboratory, McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal (Canada); Reader, Andrew J. [McGill University, PET Unit, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal (Canada); King' s College London, St. Thomas' Hospital, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Labbe, Aurelie [McGill University, Department of Epidemiology, Biostatistics and Occupational health, Montreal (Canada); Douglas Mental Health University Institute / Douglas Institut Universitaire en Sante Mentale, Department of Psychiatry, Montreal (Canada); Rosa-Neto, Pedro [McGill University, Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec (Canada); McGill University, Translational Neuroimaging Laboratory, McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal (Canada)

    2016-01-15

    Metabotropic glutamate receptor type 5 (mGluR5) is a G protein-coupled receptor that has been implicated in several psychiatric and neurological diseases. The radiopharmaceutical [{sup 11}C]ABP688 allows for in vivo quantification of mGluR5 availability using positron emission tomography (PET). In this study, we aimed to detail the regional distribution of [{sup 11}C]ABP688 binding potential (BP{sub ND}) and the existence of age/sex effects in healthy individuals. Thirty-one healthy individuals aged 20 to 77 years (men, n = 18, 45.3 ± 18.2 years; females, n = 13, 41.5 ± 19.6 years) underwent imaging with [{sup 11}C]ABP688 using the high-resolution research tomograph (HRRT). We developed an advanced partial volume correction (PVC) method using surface-based analysis in order to accurately estimate the regional variation of radioactivity. BP{sub ND} was calculated using the simplified reference tissue model, with the cerebellum as the reference region. Surface-based and volume-based analyses were performed for 39 cortical and subcortical regions of interest per hemisphere. We found the highest [{sup 11}C]ABP688 BP{sub ND} in the lateral prefrontal and anterior cingulate cortices. The lowest [{sup 11}C]ABP688 BP{sub ND} was observed in the pre- and post-central gyri as well as the occipital lobes and the thalami. No sex effect was observed. Associations between age and [{sup 11}C]ABP688 BP{sub ND} without PVC were observed in the right amygdala and left putamen, but were not significant after multiple comparisons correction. The present results highlight complexities underlying brain adaptations during the aging process, and support the notion that certain aspects of neurotransmission remain stable during the adult life span. (orig.)

  15. Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [11C]ABP688 PET

    International Nuclear Information System (INIS)

    Metabotropic glutamate receptor type 5 (mGluR5) is a G protein-coupled receptor that has been implicated in several psychiatric and neurological diseases. The radiopharmaceutical [11C]ABP688 allows for in vivo quantification of mGluR5 availability using positron emission tomography (PET). In this study, we aimed to detail the regional distribution of [11C]ABP688 binding potential (BPND) and the existence of age/sex effects in healthy individuals. Thirty-one healthy individuals aged 20 to 77 years (men, n = 18, 45.3 ± 18.2 years; females, n = 13, 41.5 ± 19.6 years) underwent imaging with [11C]ABP688 using the high-resolution research tomograph (HRRT). We developed an advanced partial volume correction (PVC) method using surface-based analysis in order to accurately estimate the regional variation of radioactivity. BPND was calculated using the simplified reference tissue model, with the cerebellum as the reference region. Surface-based and volume-based analyses were performed for 39 cortical and subcortical regions of interest per hemisphere. We found the highest [11C]ABP688 BPND in the lateral prefrontal and anterior cingulate cortices. The lowest [11C]ABP688 BPND was observed in the pre- and post-central gyri as well as the occipital lobes and the thalami. No sex effect was observed. Associations between age and [11C]ABP688 BPND without PVC were observed in the right amygdala and left putamen, but were not significant after multiple comparisons correction. The present results highlight complexities underlying brain adaptations during the aging process, and support the notion that certain aspects of neurotransmission remain stable during the adult life span. (orig.)

  16. Two action systems in the human brain.

    Science.gov (United States)

    Binkofski, Ferdinand; Buxbaum, Laurel J

    2013-11-01

    The distinction between dorsal and ventral visual processing streams, first proposed by Ungerleider and Mishkin (1982) and later refined by Milner and Goodale (1995) has been elaborated substantially in recent years, spurred by two developments. The first was proposed in large part by Rizzolatti and Matelli (2003) and is a more detailed description of the multiple neural circuits connecting the frontal, temporal, and parietal cortices. Secondly, there are a number of behavioral observations that the classic "two visual systems" hypothesis is unable to accommodate without additional assumptions. The notion that the Dorsal stream is specialized for "where" or "how" actions and the Ventral stream for "What" knowledge cannot account for two prominent disorders of action, limb apraxia and optic ataxia, that represent a double dissociation in terms of the types of actions that are preserved and impaired. A growing body of evidence, instead, suggests that there are at least two distinct Dorsal routes in the human brain, referred to as the "Grasp" and "Use" systems. Both of these may be differentiated from the Ventral route in terms of neuroanatomic localization, representational specificity, and time course of information processing. PMID:22889467

  17. Brain Prostheses as a Dynamic System (Immortalizing the Human Brain?)

    CERN Document Server

    Astakhov, Vadim

    2007-01-01

    Interest in development of brain prostheses, which might be proposed to recover mental functions lost due to neuron-degenerative disease or trauma, requires new methods in molecular engineering and nanotechnology to build artificial brain tissues. We develop a Dynamic Core model to analyze complexity of damaged biological neural network as well as transition and recovery of the system functionality due to changes in the system environment. We provide a method to model complexity of physical systems which might be proposed as an artificial tissue or prosthesis. Delocalization of Dynamic Core model is developed to analyze migration of mental functions in dynamic bio-systems which undergo architecture transition induced by trauma. Term Dynamic Core is used to define a set of causally related functions and Delocalization is used to describe the process of migration. Information geometry and topological formalisms are proposed to analyze information processes. A holographic model is proposed to construct dynamic e...

  18. Aging and iron accumulation in the monkey brain

    International Nuclear Information System (INIS)

    Iron is deposited in the mammalian brain with a characteristic distribution, its amount increasing with aging. The relative abundance of iron in the globus pallidus, substantia nigra and putamen is thought to be responsible for the hypointensity of these nuclei on T2-weighted MR images, due to magnetic susceptibility effects. However, no quantitative correlation between iron content and hypointensity has been made to confirm this hypothesis. Two young (1-year-old) and two older (18-year-old) rhesus monkeys were studied with MR imaging at different field strengths (0.5, 1.5, 2.0 T). MR signal intensities from different anatomic structures were measured on T2-weighted coronal images (2,6000/80 [repetition time msec/echo time msec]). At completion of the MR studies, the monkeys were killed, coronal brain sections were stained for iron (Perls method), and optical densities of anatomic structures were measured. A quantitative correlation between the iron content and the signal intensity decrease was found on T2-weighted images in both deep and superficial cerebral structures. The detectability of magnetic susceptibility effects in a single structure is determined by the amount of iron present, with the threshold being inversely correlated to the strength of the magnetic field

  19. Chronic vitamin C deficiency does not accelerate oxidative stress in ageing brains of guinea pigs

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille; Andersen, Stine Hasselholt; Miyashita, Namiyo;

    2012-01-01

      Increased oxidative stress in the brain has consistently been implied in ageing and in several degenerative brain disorders. Acting as a pivotal antioxidant in the brain, vitamin C is preferentially retained during deficiency and may play an essential role in neuroprotection during ageing. Thus......, a lack of vitamin C could be associated with an increase in redox imbalance in the ageing brain. The present study compared oxidative stress of ageing to that of a long-term non-scorbutic vitamin C deficiency in guinea pigs. Adults (3-9 months old) were compared to old (36-42 months old) animals...... during a six-month dietary intervention by assessing vitamin C transport and redox homeostasis in the brain. In contrast to our hypothesis, chronic vitamin C deficiency did not affect the measured markers of oxidative stress in the brains of adult and aged animals. However, aged animals generally showed...

  20. Brain volumetric and microstructural correlates of executive and motor performance in aged rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Aadhavi eSridharan

    2012-11-01

    Full Text Available The aged rhesus macaque exhibits brain atrophy and behavioral deficits similar to normal aging in humans. Here we studied the association between cognitive and motor performance and anatomic and microstructural brain integrity measured with 3T magnetic resonance imaging in aged monkeys. About half of these animals were maintained on moderate calorie restriction, the only intervention shown to delay the aging process in lower animals. T1-weighted anatomic and diffusion tensor images were used to obtain gray matter volume, and fractional anisotropy and mean diffusivity, respectively. We tested the extent to which brain health indexed by gray matter volume, fractional anisotropy, and mean diffusivity were related to executive and motor function, and determined the effect of the dietary intervention on this relationship. We hypothesized that fewer errors on the executive function test and faster motor times would be correlated with higher volume, higher fractional anisotropy, and lower mean diffusivity in frontal areas that mediate executive function, and in motor, premotor, subcortical, and cerebellar areas underlying goal-directed motor behaviors. Higher error percentage on a cognitive conceptual shift task was significantly associated with lower gray matter volume in frontal and parietal cortices, and lower fractional anisotropy in major association fiber bundles. Similarly, slower performance time on the motor task was significantly correlated with lower volumetric measures in cortical, subcortical, and cerebellar areas and decreased fractional anisotropy in several major association fiber bundles. Notably, performance during the acquisition phase of the hardest level of the motor task was significantly associated with anterior mesial temporal lobe volume. Finally, these brain-behavior correlations for the motor task were attenuated in calorie restricted animals compared to controls, indicating a potential protective effect of the dietary

  1. Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Yiting Zhang

    Full Text Available Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methionine synthase (MS in brain development and function, but vitamin B12 status in the brain across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl exists in multiple forms, including methylcobalamin (MeCbl and adenosylcobalamin (AdoCbl, serving as cofactors for MS and methylmalonylCoA mutase, respectively. We measured levels of five Cbl species in postmortem human frontal cortex of 43 control subjects, from 19 weeks of fetal development through 80 years of age, and 12 autistic and 9 schizophrenic subjects. Total Cbl was significantly lower in older control subjects (> 60 yrs of age, primarily reflecting a >10-fold age-dependent decline in the level of MeCbl. Levels of inactive cyanocobalamin (CNCbl were remarkably higher in fetal brain samples. In both autistic and schizophrenic subjects MeCbl and AdoCbl levels were more than 3-fold lower than age-matched controls. In autistic subjects lower MeCbl was associated with decreased MS activity and elevated levels of its substrate homocysteine (HCY. Low levels of the antioxidant glutathione (GSH have been linked to both autism and schizophrenia, and both total Cbl and MeCbl levels were decreased in glutamate-cysteine ligase modulatory subunit knockout (GCLM-KO mice, which exhibit low GSH levels. Thus our findings reveal a previously unrecognized decrease in brain vitamin B12 status across the lifespan that may reflect an adaptation to increasing antioxidant demand, while accelerated deficits due to GSH deficiency may contribute to neurodevelopmental and neuropsychiatric disorders.

  2. Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia.

    Science.gov (United States)

    Zhang, Yiting; Hodgson, Nathaniel W; Trivedi, Malav S; Abdolmaleky, Hamid M; Fournier, Margot; Cuenod, Michel; Do, Kim Quang; Deth, Richard C

    2016-01-01

    Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methionine synthase (MS) in brain development and function, but vitamin B12 status in the brain across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl) exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively. We measured levels of five Cbl species in postmortem human frontal cortex of 43 control subjects, from 19 weeks of fetal development through 80 years of age, and 12 autistic and 9 schizophrenic subjects. Total Cbl was significantly lower in older control subjects (> 60 yrs of age), primarily reflecting a >10-fold age-dependent decline in the level of MeCbl. Levels of inactive cyanocobalamin (CNCbl) were remarkably higher in fetal brain samples. In both autistic and schizophrenic subjects MeCbl and AdoCbl levels were more than 3-fold lower than age-matched controls. In autistic subjects lower MeCbl was associated with decreased MS activity and elevated levels of its substrate homocysteine (HCY). Low levels of the antioxidant glutathione (GSH) have been linked to both autism and schizophrenia, and both total Cbl and MeCbl levels were decreased in glutamate-cysteine ligase modulatory subunit knockout (GCLM-KO) mice, which exhibit low GSH levels. Thus our findings reveal a previously unrecognized decrease in brain vitamin B12 status across the lifespan that may reflect an adaptation to increasing antioxidant demand, while accelerated deficits due to GSH deficiency may contribute to neurodevelopmental and neuropsychiatric disorders. PMID:26799654

  3. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    Science.gov (United States)

    Bourre, J M

    2004-01-01

    Among various organs, in the brain, the fatty acids most extensively studied are omega-3 fatty acids. Alpha-linolenic acid (18:3omega3) deficiency alters the structure and function of membranes and induces minor cerebral dysfunctions, as demonstrated in animal models and subsequently in human infants. Even though the brain is materially an organ like any other, that is to say elaborated from substances present in the diet (sometimes exclusively), for long it was not accepted that food can have an influence on brain structure, and thus on its function. Lipids, and especially omega-3 fatty acids, provided the first coherent experimental demonstration of the effect of diet (nutrients) on the structure and function of the brain. In fact the brain, after adipose tissue, is the organ richest in lipids, whose only role is to participate in membrane structure. First it was shown that the differentiation and functioning of cultured brain cells requires not only alpha-linolenic acid (the major component of the omega-3, omega3 family), but also the very long omega-3 and omega-6 carbon chains (1). It was then demonstrated that alpha-linolenic acid deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (2). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioural upset (3). Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Recent

  4. New Heuristics for Interfacing Human Motor System using Brain Waves

    Directory of Open Access Journals (Sweden)

    Mohammed El-Dosuky

    2012-09-01

    Full Text Available There are many new forms of interfacing human users to machines. We persevere here electric-mechanical form of interaction between human and machine. The emergence of brain-computer interface allows mind-to-movement systems. The story of the Pied Piper inspired us to devise some new heuristics for interfacing human motor system using brain waves, by combining head helmet and LumbarMotionMonitor. For the simulation we use java GridGain. Brain responses of classified subjects during training indicates that Probe can be the best stimulus to rely on in distinguishing between knowledgeable and not knowledgeable

  5. New Heuristics for Interfacing Human Motor System using Brain Waves

    OpenAIRE

    Mohammed El-Dosuky; Ahmed El-Bassiouny; Taher Hamza; Magdy Rashad

    2012-01-01

    There are many new forms of interfacing human users to machines. We persevere here electric-mechanical form of interaction between human and machine. The emergence of brain-computer interface allows mind-to-movement systems. The story of the Pied Piper inspired us to devise some new heuristics for interfacing human motor system using brain waves, by combining head helmet and LumbarMotionMonitor. For the simulation we use java GridGain. Brain responses of classified subjects during training in...

  6. The Gestational Age Pattern of Human Mortality

    DEFF Research Database (Denmark)

    Schöley, Jonas

    I present a lifetable by gestational age from week 23 until week 100 after the last menstrual period of the mother. The lifetable shows the pre-natal, peri-natal and post-natal mortality levels for US fetus/infants conceived in the year 2009. The observed age pattern of the force of mortality is ...... mortality are correct. Additionally, I conclude that the phenomenon of "ontogenesis" -- the decreasing force of mortality from birth until onset of maturity observed in many species -- is, for modern humans, explained by adaptation and mortality selection alone....

  7. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P.; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from...

  8. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P.; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magn...

  9. Canonical Genetic Signatures of the Adult Human Brain

    OpenAIRE

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Anil G. Jegga; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L; Menche, Jörge; Szafer, Aaron; Collman, Forrest

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological ann...

  10. Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide

    International Nuclear Information System (INIS)

    In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measured by autoradiography

  11. Moment-to-moment brain signal variability: A next frontier in human brain mapping?

    OpenAIRE

    Garrett, D.; Samanez-Larkin, G.; MacDonald, S; Lindenberger, U; McIntosh, A.; Grady, C.

    2013-01-01

    Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human life-span development, cognitive performance, and various clinical conditions. As a result, brai...

  12. Neuroglobin and Cytoglobin expression in the human brain

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Hay-Schmidt, Anders

    2013-01-01

    Neuroglobin and Cytoglobin are new members of the heme-globin family. Both globins are primarily expressed in neurons of the brain and retina. Neuroglobin and Cytoglobin have been suggested as novel therapeutic targets in various neurodegenerative diseases based on their oxygen binding and cell...... protecting properties. However, findings in Neuroglobin-deficient mice question the endogenous neuroprotective properties. The expression pattern of Neuroglobin and Cytoglobin in the rodent brain is also in contradiction to a major role of neuronal protection. In a recent study, Neuroglobin was ubiquitously...... expressed and up-regulated following stroke in the human brain. The present study aimed at confirming our previous observations in rodents using two post-mortem human brains. The anatomical localization of Neuroglobin and Cytoglobin in the human brain is much like what has been described for the rodent...

  13. Towards Developmental Connectomics of the Human Brain

    OpenAIRE

    Miao eCao; Hao eHuang; Yun ePeng; Qi eDong; Yong eHe

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders...

  14. Age- and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — Differences in various mitochondrial bioenergetics parameters in different brain regions in different age groups. This dataset is associated with the following...

  15. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigat

  16. An anatomically comprehensive atlas of the adult human brain transcriptome

    NARCIS (Netherlands)

    Hawrylycz, M.J.; Beckmann, C.F.; et al., et al.

    2012-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising

  17. Age changes in human bone: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, W.D.

    1977-12-03

    The human skeleton steadily changes structure and mass during life because of a variety of internal and external factors. Extracellular substance and bone cells get old, characteristic structural remodeling occurs with age and these age-related changes are important in the discrimination between pathological and physiological changes. Perhaps 20 percent of the bone mass is lost between the fourth and the ninth decades, osteoblasts function less efficiently and gradual loss of bone substance is enhanced by delayed mineralization of an increased surface area of thin and relatively less active osteoid seams. After the fifth decade, osteoclasia and the number of Howship's lacunae increase, and with age, the number of large osteolytic osteocytes increases as the number of small osteocytes declines and empty osteocyte lacunae become more common. The result is greater liability to fracture and diminished healing or replacement of injured bone.

  18. Phenylethylamine N-methylation by human brain preparations

    International Nuclear Information System (INIS)

    Alterations in the brain metabolism of biogenic amines has been postulated to play a role in the pathophysiology of several psychiatric disorders. There is some evidence suggesting schizogenic properties for some abnormal neuroamine methylated derivatives. The authors now report that postmortem human brain preparations, obtained from the putamen and thalamus, convert phenylethylamine (PEA) to its behaviorally active derivative N-methyl PEA, a reaction which is carried out by the 100,000 xg supernatant (in presence of 1 x 10 -5M pargyline) and enhanced by the addition of NADPH. PEA N-methylation occurred in schizophrenics as well as in sex and age matched controls. The formation of increased amounts of (3H-) or (14C-) N-methyl PEA when incubating either cold amine and 3H-SAM or 1-14C PEA and cold SAM, respectively, indicates that SAM is a methyl group donor in this reaction. They will discuss the physiological and pharmacological implications of these results

  19. Artificial Brain Based on Credible Neural Circuits in a Human Brain

    CERN Document Server

    Burger, John Robert

    2010-01-01

    Neurons are individually translated into simple gates to plan a brain with human psychology and intelligence. State machines, assumed previously learned in subconscious associative memory are shown to enable equation solving and rudimentary thinking using nanoprocessing within short term memory.

  20. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas

    OpenAIRE

    Kester, Monique H. A.; Martínez de Mena, Raquel; Obregón, María Jesús; Hume, Robert; Morreale de Escobar, Gabriella

    2004-01-01

    Thyroid hormones are required for human brain development, but data on local regulation are limited. We describe the ontogenic changes in T(4), T(3), and rT(3) and in the activities of the types I, II, and III iodothyronine deiodinases (D1, D2, and D3) in different brain regions in normal fetuses (13-20 wk postmenstrual age) and premature infants (24-42 wk postmenstrual age). D1 activity was undetectable. The developmental changes in the concentrations of the iodothyronines and D2 and D3 acti...

  1. Brain Food for Alzheimer-Free Ageing: Focus on Herbal Medicines.

    Science.gov (United States)

    Hügel, Helmut M

    2015-01-01

    Healthy brain aging and the problems of dementia and Alzheimer's disease (AD) are a global concern. Beyond 60 years of age, most, if not everyone, will experience a decline in cognitive skills, memory capacity and changes in brain structure. Longevity eventually leads to an accumulation of amyloid plaques and/or tau tangles, including some vascular dementia damage. Therefore, lifestyle choices are paramount to leading either a brain-derived or a brain-deprived life. The focus of this review is to critically examine the evidence, impact, influence and mechanisms of natural products as chemopreventive agents which induce therapeutic outcomes that modulate the aggregation process of beta-amyloid (Aβ), providing measureable cognitive benefits in the aging process. Plants can be considered as chemical factories that manufacture huge numbers of diverse bioactive substances, many of which have the potential to provide substantial neuroprotective benefits. Medicinal herbs and health food supplements have been widely used in Asia since over 2,000 years. The phytochemicals utilized in traditional Chinese medicine have demonstrated safety profiles for human consumption. Many herbs with anti-amyloidogenic activity, including those containing polyphenolic constituents such as green tea, turmeric, Salvia miltiorrhiza, and Panax ginseng, are presented. Also covered in this review are extracts from kitchen spices including cinnamon, ginger, rosemary, sage, salvia herbs, Chinese celery and many others some of which are commonly used in herbal combinations and represent highly promising therapeutic natural compounds against AD. A number of clinical trials conducted on herbs to counter dementia and AD are discussed. PMID:26092628

  2. Decoding the visual and subjective contents of the human brain

    OpenAIRE

    Kamitani, Yukiyasu; Tong, Frank

    2005-01-01

    The potential for human neuroimaging to read-out the detailed contents of a person’s mental state has yet to be fully explored. We investigated whether the perception of edge orientation, a fundamental visual feature, can be decoded from human brain activity measured with functional magnetic resonance imaging (fMRI). Using statistical algorithms to classify brain states, we found that ensemble fMRI signals in early visual areas could reliably predict on individual trials which of eight stimul...

  3. Optogenetic control of human neurons in organotypic brain cultures

    DEFF Research Database (Denmark)

    Andersson, My; Avaliani, Natalia; Svensson, Andreas;

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof......-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies....

  4. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K;

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...... amounts of GFA, up to 85 times the concentration in parietal grey substance of normal human brain. GFA was not found in neurinomas, meningiomas, adenomas of the hypophysis, or in a single case of metastasis of adenocarcinoma. Non-glial tumours of craniopharyngioma and haemangioblastoma were infiltrated by...

  5. Optogenetic control of human neurons in organotypic brain cultures.

    Science.gov (United States)

    Andersson, My; Avaliani, Natalia; Svensson, Andreas; Wickham, Jenny; Pinborg, Lars H; Jespersen, Bo; Christiansen, Søren H; Bengzon, Johan; Woldbye, David P D; Kokaia, Merab

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies. PMID:27098488

  6. A cross-laboratory comparison of expression profiling data from normal human postmortem brain

    OpenAIRE

    Mistry, Meeta; Pavlidis, Paul

    2010-01-01

    Expression profiling of post-mortem human brain tissue has been widely used to study molecular changes associated with neuropsychiatric diseases as well as normal processes such as aging. Changes in expression associated with factors such as age, gender or postmortem interval are often more pronounced than changes associated with disease. Therefore in addition to being of interest in their own right, careful consideration of these effects are important in the interpretation of disease studies...

  7. Caloric restriction: beneficial effects on brain aging and Alzheimer's disease.

    Science.gov (United States)

    Van Cauwenberghe, Caroline; Vandendriessche, Charysse; Libert, Claude; Vandenbroucke, Roosmarijn E

    2016-08-01

    Dietary interventions such as caloric restriction (CR) extend lifespan and health span. Recent data from animal and human studies indicate that CR slows down the aging process, benefits general health, and improves memory performance. Caloric restriction also retards and slows down the progression of different age-related diseases, such as Alzheimer's disease. However, the specific molecular basis of these effects remains unclear. A better understanding of the pathways underlying these effects could pave the way to novel preventive or therapeutic strategies. In this review, we will discuss the mechanisms and effects of CR on aging and Alzheimer's disease. A potential alternative to CR as a lifestyle modification is the use of CR mimetics. These compounds mimic the biochemical and functional effects of CR without the need to reduce energy intake. We discuss the effect of two of the most investigated mimetics, resveratrol and rapamycin, on aging and their potential as Alzheimer's disease therapeutics. However, additional research will be needed to determine the safety, efficacy, and usability of CR and its mimetics before a general recommendation can be proposed to implement them. PMID:27240590

  8. Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells

    OpenAIRE

    Dirks, Peter B.

    2007-01-01

    Conceptual and technical advances in neural stem cell biology are being applied to the study of human brain tumours. These studies suggest that human brain tumours are organized as a hierarchy and are maintained by a small number of tumour cells that have stem cell properties. Most of the bulk population of human brain tumours comprise cells that have lost the ability to initiate and maintain tumour growth. Although the cell of origin for human brain tumours is uncertain, recent evidence poin...

  9. Functional network organization of the human brain

    OpenAIRE

    Power, Jonathan D.; Cohen, Alexander L.; Nelson, Steven M.; Wig, Gagan S.; Barnes, Kelly Anne; Church, Jessica A.; Vogel, Alecia C.; Laumann, Timothy O.; Miezin, Fran M.; Schlaggar, Bradley L.; Petersen, Steven E.

    2011-01-01

    Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional br...

  10. Methylomic trajectories across human fetal brain development

    OpenAIRE

    Spiers, Helen; Hannon, Eilis; Schalkwyk, Leonard C; Smith, Rebecca; Wong, Chloe C. Y.; Michael C. O’Donovan; Bray, Nicholas J.; Mill, Jonathan

    2015-01-01

    Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited...

  11. Human face processing is tuned to sexual age preferences.

    Science.gov (United States)

    Ponseti, J; Granert, O; van Eimeren, T; Jansen, O; Wolff, S; Beier, K; Deuschl, G; Bosinski, H; Siebner, H

    2014-05-01

    Human faces can motivate nurturing behaviour or sexual behaviour when adults see a child or an adult face, respectively. This suggests that face processing is tuned to detecting age cues of sexual maturity to stimulate the appropriate reproductive behaviour: either caretaking or mating. In paedophilia, sexual attraction is directed to sexually immature children. Therefore, we hypothesized that brain networks that normally are tuned to mature faces of the preferred gender show an abnormal tuning to sexual immature faces in paedophilia. Here, we use functional magnetic resonance imaging (fMRI) to test directly for the existence of a network which is tuned to face cues of sexual maturity. During fMRI, participants sexually attracted to either adults or children were exposed to various face images. In individuals attracted to adults, adult faces activated several brain regions significantly more than child faces. These brain regions comprised areas known to be implicated in face processing, and sexual processing, including occipital areas, the ventrolateral prefrontal cortex and, subcortically, the putamen and nucleus caudatus. The same regions were activated in paedophiles, but with a reversed preferential response pattern. PMID:24850896

  12. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    Science.gov (United States)

    ... factors for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... risk factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  13. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution

    OpenAIRE

    Stout, Dietrich; Toth, Nicholas; Schick, Kathy; Chaminade, Thierry

    2008-01-01

    Archaeological and palaeontological evidence from the Early Stone Age (ESA) documents parallel trends of brain expansion and technological elaboration in human evolution over a period of more than 2 Myr. However, the relationship between these defining trends remains controversial and poorly understood. Here, we present results from a positron emission tomography study of functional brain activation during experimental ESA (Oldowan and Acheulean) toolmaking by expert subjects. Together with a...

  14. Estimating Neural Signal Dynamics in the Human Brain

    Directory of Open Access Journals (Sweden)

    Christopher W Tyler

    2011-06-01

    Full Text Available Although brain imaging methods are highly effective for localizing the effects of neural activation throughout the human brain in terms of the blood oxygenation level dependent (BOLD response, there is currently no way to estimate the underlying neural signal dynamics in generating the BOLD response in each local activation region (except for processes slower than the BOLD time course. Knowledge of the neural signal is critical information if spatial mapping is to progress to the analysis of dynamic information flow through the cortical networks as the brain performs its tasks. We introduce an analytic approach that provides a new level of conceptualization and specificity in the study of brain processing by noninvasive methods. This technique allows us to use brain imaging methods to determine the dynamics of local neural population responses to their native temporal resolution throughout the human brain, with relatively narrow confidence intervals on many response properties. The ability to characterize local neural dynamics in the human brain represents a significant enhancement of brain imaging capabilities, with potential application from general cognitive studies to assessment of neuropathologies.

  15. Distribution of PSA-NCAM in normal, Alzheimer's and Parkinson's disease human brain.

    Science.gov (United States)

    Murray, Helen C; Low, Victoria F; Swanson, Molly E V; Dieriks, Birger V; Turner, Clinton; Faull, Richard L M; Curtis, Maurice A

    2016-08-25

    Polysialated neural cell adhesion molecule (PSA-NCAM) is a membrane bound glycoprotein widely expressed during nervous system development. While commonly described in the neurogenic niches of the adult human brain, there is limited evidence of its distribution in other brain regions. PSA-NCAM is an important regulator of cell-cell interactions and facilitates cell migration and plasticity. Recent evidence suggests these functions may be altered in neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD). This study provides a detailed description of the PSA-NCAM distribution throughout the human brain and quantitatively compares the staining load in cortical regions and sub-cortical structures between the control, AD and PD brain. Our results provide evidence of widespread, yet specific, PSA-NCAM expression throughout the human brain including regions devoid of PSA-NCAM in the rodent brain such as the caudate nucleus (CN) and cerebellum (CB). We also detected a significant reduction in PSA-NCAM load in the entorhinal cortex (EC) of cases that was inversely correlated with hyperphosphorylated tau load. These results demonstrate that PSA-NCAM-mediated structural plasticity may not be limited to neurogenic niches and is conserved in the aged brain. We also provide evidence that PSA-NCAM is reduced in the EC, a region severely affected by AD pathology. PMID:27282086

  16. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease

    Directory of Open Access Journals (Sweden)

    Bruce Crosson

    2015-05-01

    Full Text Available The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS or transcranial direct current stimulation (tDCS in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered.

  17. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  18. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  19. Human lens colouration, age and cataract

    International Nuclear Information System (INIS)

    Full text: The human lens biosynthesises UV filter compounds which effectively remove light in the 300-400nm band. These chemicals are present either as an aid to visual acuity, or to filter out damaging UV radiation. The primate UV filters are 3-hydroxykynurenine analogues derived from the metabolism of tryptophan. We have recently demonstrated that these endogenous UV filters are not innocuous, but are in fact capable of binding to proteins, including the crystalline proteins which make up the bulk of the lens. Thus, over time, the levels of protein - bound UV filters increase and this results in the human lens becoming progressively more yellow as we age. This colouration affects our colour vision and it may also be responsible for the brown colour of lenses which is the hallmark of age-related nuclear cataract. An understanding of the intrinsic instability of the endogenous UV filters, combined with changes in the internal transport of these and other small molecular weight compounds including antioxidants, such as glutathione, is allowing us to gain an insight into the processes responsible for the development of age-related cataract: the major cause of world blindness

  20. Relationships between choline acetyl-transferase and muscarinic binding in aging rodent brain and in Alzheimers disease

    International Nuclear Information System (INIS)

    This paper examines how the relation between ChAT and muscarinic binding might be affected by aging in mouse and rat brains. Preliminary data are presented regarding this relation in postmortem cerebral cortex samples from human subjects who died with Alzheimer's disease (AD) and from age-matched controls. The effect of acetyl coenzme A (1- C 14-acetyl coenzyme A concentration on enzyme activity was determined by varying the concentration of the coenzyme in the assay medium. Assays of muscarinic binding were performed on tissue sonicates diluted with Tris-HC1 buffer using tritium-quinuclidinyl benzilate tritium-QNB as the ligand. For brain regions obtained from rats, significance of age differences were assessed by one-way analysis of variance and Bonferroni t statistics. Differences in ChAT activity and binding site density from human postmortem samples between diagnostic groups were assessed separately by region using an analysis of covariance

  1. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Annika [Turku University Hospital, Department of Pediatrics, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Parkkola, Riitta [University of Turku and Turku University Hospital, Department of Radiology and Turku PET Center, PO Box 52, Turku (Finland); Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena [University of Turku and Turku University Hospital, Department of Pediatrics, Turku (Finland); Munck, Petriina [Turku University Hospital, Department of Pediatrics, Turku (Finland); University of Turku, Department of Psychology, Turku (Finland); Haataja, Leena [University of Turku and Turku University Hospital, Department of Pediatric Neurology, Turku (Finland)

    2011-08-15

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  2. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    International Nuclear Information System (INIS)

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  3. Chronological ageing of human hair keratin fibres.

    Science.gov (United States)

    Thibaut, S; de Becker, E; Bernard, B A; Huart, M; Fiat, F; Baghdadli, N; Luengo, G S; Leroy, F; Angevin, P; Kermoal, A M; Muller, S; Peron, M; Provot, G; Kravtchenko, S; Saint-Léger, D; Desbois, G; Gauchet, L; Nowbuth, K; Galliano, A; Kempf, J Y; Silberzan, I

    2010-12-01

    Examination of very long hair (length > 2.4 m) using a large range of evaluation methods including physical, chemical, biochemical and microscopic techniques has enabled to attain a detailed understanding of natural ageing of human hair keratin fibres. Scrutinizing hair that has undergone little or no oxidative aggression--because of the absence of action of chemical agents such as bleaching or dyeing--from the root to the tip shows the deterioration process, which gradually takes place from the outside to the inside of the hair shaft: first, a progressive abrasion of the cuticle, whilst the cortex structure remains unaltered, is evidenced along a length of roughly 1 m onwards together with constant shine, hydrophobicity and friction characteristics. Further along the fibre, a significant damage to cuticle scales occurs, which correlates well with ceramides and 18-Methyl Eicosanoic Acid (18-MEA) decline, and progressive decrease in keratin-associated protein content. Most physical descriptors of mechanical and optical properties decay significantly. This detailed description of natural ageing of human hair fibres by a fine analysis of hair components and physical parameters in relationship with cosmetic characteristics provides a time-dependent 'damage scale' of human hair, which may help in designing new targeted hair care formulations. PMID:20384898

  4. Human capital in European peripheral regions: Brain - Drain and Brain - Gain : policies on brain drain

    NARCIS (Netherlands)

    CSTM,

    2004-01-01

    Policies on brain drain Many policies are related to the problem of brain drain and brain gain. For instance, every policy that makes a region more attractive to live in, will make a region a more attractive place for the highly educated to settle. In theory this can be everything ranging from infra

  5. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  6. Cortical complexity as a measure of age-related brain atrophy.

    Science.gov (United States)

    Madan, Christopher R; Kensinger, Elizabeth A

    2016-07-01

    The structure of the human brain changes in a variety of ways as we age. While a sizeable literature has examined age-related differences in cortical thickness, and to a lesser degree, gyrification, here we examined differences in cortical complexity, as indexed by fractal dimensionality in a sample of over 400 individuals across the adult lifespan. While prior studies have shown differences in fractal dimensionality between patient populations and age-matched, healthy controls, it is unclear how well this measure would relate to age-related cortical atrophy. Initially computing a single measure for the entire cortical ribbon, i.e., unparcellated gray matter, we found fractal dimensionality to be more sensitive to age-related differences than either cortical thickness or gyrification index. We additionally observed regional differences in age-related atrophy between the three measures, suggesting that they may index distinct differences in cortical structure. We also provide a freely available MATLAB toolbox for calculating fractal dimensionality. PMID:27103141

  7. Effects of tetrahydroxystilbene - glucoside on Animal Models of Dementia or Brain Aging

    Institute of Scientific and Technical Information of China (English)

    LinLi; JinChu; LiLiu; LingZhao; LanZhang

    2004-01-01

    Aim: To investigate the effects of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside(TSG) from a Chinese Medicinal Herb polygonum multiflorum on dementia or brain aging. Methods. The brain aging model of mice was developed by s. c. injection of D-galactose (50mg/kg/day) for 60 days. The Alzheimer disease (AD) model of mice

  8. A new antigen retrieval technique for human brain tissue.

    Directory of Open Access Journals (Sweden)

    Raúl Alelú-Paz

    Full Text Available Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times.

  9. Brain Tocopherols Related to Alzheimer Disease Neuropathology in Humans

    OpenAIRE

    Morris, Martha Clare; Schneider, Julie A.; LI Hong; Tangney, Christy C; Nag, Sukrit; Bennett, David A.; Honer, William G.; Barnes, Lisa

    2014-01-01

    Randomized trials of α-tocopherol supplements on cognitive decline are negative whereas studies of dietary tocopherols show benefit. We investigated these inconsistencies by analyzing the relations of α- and γ-tocopherol brain concentrations to Alzheimer disease (AD) neuropathology among 115 deceased participants of the prospective Rush Memory and Aging Project. Associations of amyloid load and neurofibrillary tangle severity with brain tocopherol concentrations were examined in separate adju...

  10. Trace element concentration differences in regions of human brain by INAA

    International Nuclear Information System (INIS)

    Studies have shown that there is a potential relationship between the levels of trace elements in cerebral tissues and neurological disorders. However, there are few publications available on the elemental composition of these tissues as well as for different regions of the brain. The aim of this study was to investigate trace element differences in various regions of the human brain from an elderly population of normal individuals. Brain samples from 31 individuals of both genders, aged 51-95 years were provided by the Brain Bank of the Brazilian Aging Study Group of the Sao Paulo University, Medical School. The tissues from the regions of the hippocampus, cerebellum and frontal, parietal, temporal, occipital cortex were dissected using a titanium knife, ground, freeze-dried and then analyzed by instrumental neutron activation analysis (INAA). Samples and element standards were irradiated with a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. One-way ANOVA test (p < 0.05) was used to compare the results which showed significant differences for several elements among the brain regions. Most of our brain analysis results agreed with the literature data. The results were also submitted for brain region classification by cluster analysis. (author)

  11. TV, Brain Waves and Human Behavior

    Science.gov (United States)

    Science News, 1978

    1978-01-01

    Describes the procedure to test the hypothesis that subjects' brain waves in response to a television flicker (distraction) would be smaller in amplitude during television programs of high, in contrast to low, interest. Results from 12 viewers support the hypothesis. (CP)

  12. Brain Na+, K+-ATPase Activity In Aging and Disease

    Science.gov (United States)

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    , enzyme changes in diverse neurological diseases as well as during aging, have been summarized. Issues refer mainly to Na+, K+-ATPase studies in ischemia, brain injury, depression and mood disorders, mania, stress, Alzheimer´s disease, learning and memory, and neuronal hyperexcitability and epilepsy. PMID:25018677

  13. Evolution of the human brain: when bigger is better.

    Directory of Open Access Journals (Sweden)

    Michel A. Hofman

    2014-03-01

    Full Text Available Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the brain and its underlying neuronal network. The object of this review is to present current perspectives on primate brain evolution, especially in humans, and to examine some hypothetical organizing principles that underlie the brain’s complex organization. Some of the design principles and operational modes that underlie the information processing capacity of the cerebral cortex in primates will be explored. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains, then otherwise would have been possible. In view of the central importance placed on brain evolution in explaining the success of our own species, one may wonder whether there are physical limits that constrain its processing power and evolutionary potential. It will be argued that at a brain size of about 3500 cm3, corresponding to a brain volume two to three times that of modern man, the brain seems to reach its maximum processing capacity. The larger the brain grows beyond this critical size, the less efficient it will become, thus limiting any improvement in cognitive power.

  14. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  15. BRAIN FUEL METABOLISM, AGING AND ALZHEIMER’S DISEASE

    OpenAIRE

    Cunnane, SC; NUGENT, S; Roy, M.; Courchesne-Loyer, A; Croteau, E; Tremblay, S.; Castellano, A.; Pifferi, F.; Bocti, C; Paquet, N; Begdouri, H; Bentourkia, M; Turcotte, E; M. Allard; Barberger-Gateau, P

    2010-01-01

    Lower brain glucose metabolism is present before the onset of clinically-measurable cognitive decline in two groups of people at risk of Alzheimer’s disease (AD) - carriers of apoE4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and contribute to the neuropathological cascade leading cognitive decline in AD. The reason for brain hypometabolism is unclear but may in...

  16. Shortcomings of the Human Brain and Remedial Action by Religion

    Science.gov (United States)

    Reich, K. Helmut

    2010-01-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial…

  17. Sibling rivalry among paralogs promotes evolution of the human brain

    OpenAIRE

    Tyler-Smith, Chris; Xue, Yali

    2012-01-01

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functional-relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution.

  18. Sibling rivalry among paralogs promotes evolution of the human brain.

    Science.gov (United States)

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution. PMID:22579279

  19. Predicting human age using regional morphometry and inter-regional morphological similarity

    Science.gov (United States)

    Wang, Xun-Heng; Li, Lihua

    2016-03-01

    The goal of this study is predicting human age using neuro-metrics derived from structural MRI, as well as investigating the relationships between age and predictive neuro-metrics. To this end, a cohort of healthy subjects were recruited from 1000 Functional Connectomes Project. The ages of the participations were ranging from 7 to 83 (36.17+/-20.46). The structural MRI for each subject was preprocessed using FreeSurfer, resulting in regional cortical thickness, mean curvature, regional volume and regional surface area for 148 anatomical parcellations. The individual age was predicted from the combination of regional and inter-regional neuro-metrics. The prediction accuracy is r = 0.835, p brain was around 40 years old based on regional cortical thickness. In conclusion, structural MRI could be potential biomarkers for the aging in human brain. The human age could be successfully predicted from the combination of regional morphometry and inter-regional morphological similarity. The inter-regional measures could be beneficial to investigating human brain connectome.

  20. Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Stanley I Rapoport

    Full Text Available Phosphoinositides, lipid-signaling molecules, participate in diverse brain processes within a wide metabolic cascade.Gene transcriptional networks coordinately regulate the phosphoinositide cascade during human brain Development and Aging.We used the public BrainCloud database for human dorsolateral prefrontal cortex to examine age-related expression levels of 49 phosphoinositide metabolic genes during Development (0 to 20+ years and Aging (21+ years.We identified three groups of partially overlapping genes in each of the two intervals, with similar intergroup correlations despite marked phenotypic differences between Aging and Development. In each interval, ITPKB, PLCD1, PIK3R3, ISYNA1, IMPA2, INPPL1, PI4KB, and AKT1 are in Group 1, PIK3CB, PTEN, PIK3CA, and IMPA1 in Group 2, and SACM1L, PI3KR4, INPP5A, SYNJ1, and PLCB1 in Group 3. Ten of the genes change expression nonlinearly during Development, suggesting involvement in rapidly changing neuronal, glial and myelination events. Correlated transcription for some gene pairs likely is facilitated by colocalization on the same chromosome band.Stable coordinated gene transcriptional networks regulate brain phosphoinositide metabolic pathways during human Development and Aging.

  1. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    Science.gov (United States)

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  2. CT ASSESSMENT OF BRAIN VENTRICULAR SIZE BASED ON AGE AND SEX: A STUDY OF 112 CASES

    Directory of Open Access Journals (Sweden)

    Vinoo

    2013-12-01

    Full Text Available CT being the primary modality of choice in many centers for the diagnosis of brain pathology, normal brain ventricular size measurem ents is an important parameter for the diagnosis of conditions like hydrocephalus, age related atrophic changes and also other brain pathologies producing ventriculomegaly. It is also important for knowing the normal upper and lower limits of the brain ven tricular system in the different age groups, and in both sexes so as to diagnose brain pathology.The ventricular system of the brain undergoes changes with aging and varies with gender.Our study consists of 48 female, and 64 male patients. Apart from the v entricular measurements, two ratios and two indices were also calculated – which included the right and left Evan’s ratio, CM index, and ventricular size inde

  3. Magnetoencephalography in studies of human cognitive brain function.

    Science.gov (United States)

    Näätänen, R; Ilmoniemi, R J; Alho, K

    1994-09-01

    Magnetoencephalography provides a new dimension to the functional imaging of the brain. The cerebral magnetic fields recorded noninvasively enable the accurate determination of locations of cerebral activity with an uncompromized time resolution. The first whole-scalp sensor arrays have just recently come into operation, and significant advances are to be expected in both neurophysiological and cognitive studies, as well as in clinical practice. However, although the accuracy of locating isolated sources of brain activity has improved, identification of multiple simultaneous sources can still be a problem. Therefore, attempts are being made to combine magnetoencephalography with other brain-imaging methods to improve spatial localization of multiple sources and, simultaneously, to achieve a more complete characterization of different aspects of brain activity during cognitive processing. Owing to its good time resolution and considerably better spatial accuracy than that provided by EEG, magnetoencephalography holds great promise as a tool for revealing information-processing sequences of the human brain. PMID:7529443

  4. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  5. The bilingual brain: Flexibility and control in the human cortex

    Science.gov (United States)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  6. Decade of the Brain 1990--2000: Maximizing human potential

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  7. Expectation modulates neural representations of valence throughout the human brain.

    Science.gov (United States)

    Ramayya, Ashwin G; Pedisich, Isaac; Kahana, Michael J

    2015-07-15

    The brain's sensitivity to unexpected gains or losses plays an important role in our ability to learn new behaviors (Rescorla and Wagner, 1972; Sutton and Barto, 1990). Recent work suggests that gains and losses are ubiquitously encoded throughout the human brain (Vickery et al., 2011), however, the extent to which reward expectation modulates these valence representations is not known. To address this question, we analyzed recordings from 4306 intracranially implanted electrodes in 39 neurosurgical patients as they performed a two-alternative probability learning task. Using high-frequency activity (HFA, 70-200 Hz) as an indicator of local firing rates, we found that expectation modulated reward-related neural activity in widespread brain regions, including regions that receive sparse inputs from midbrain dopaminergic neurons. The strength of unexpected gain signals predicted subjects' abilities to encode stimulus-reward associations. Thus, neural signals that are functionally related to learning are widely distributed throughout the human brain. PMID:25937489

  8. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Science.gov (United States)

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. PMID:26364584

  9. Addiction Circuitry in the Human Brain*

    OpenAIRE

    Volkow, Nora D.; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo

    2011-01-01

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person’s risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circ...

  10. Aluminum accumulation in human brain tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, R.; Takeuchi, T.; Ohta, T. [Dept. of Psychiatry, Nagoya University School of Medicine, Nagoya, Aichi (Japan); Ektessabi, A.M. [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Hanaichi, T.; Ishihara, Y. [Hanaichi Ultrastructure Research Institute Co. Okazaki, Okazaki, Aichi (Japan); Fujita, Y. [Equipment Center for Research and Education, Nagoya, Aichi (Japan)

    1999-07-01

    Normal cell functions of the brain are often impaired by an excess accumulation of metal ions. There have been increasing efforts in recent years to measure and quantify excessive accumulations of biological constituent elements (such as Fe, Zn, Cu, and Ca), as well as the presence and distribution of contaminating elements (such as Al) in the brain tissues. Since Al might be associated with cases of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amiotrophic lateral screlosis (ALS), it is very important to measure and quantify Al levels using precise analytical techniques. The aim of this investigation is to measure the Al contents present in the temporal cortices for three cases. The specimens concerned were taken from unfixed autopsy brains, which have been preserved in a deep freezer at -80degC. A tandem type accelerator of 2 MeV energy was used to measure the concentrations of Al in these specimen tissues. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorber was removed. The results show that peak intensity depends on the site measured. In certain cases, however, an extremely high concentration of Al was observed in PIXE spectra, with an intensity higher than those of the other major elements present in the brain. Samples from the same subjects were also analyzed using EPMA-EDX. X-ray maps produced by EPMA-EDX showed the presence of extremely high concentrations of Al. The results yielded by PIXE analysis was in good qualitative agreement with those from EPMA-EDX. (author)

  11. An Embodied Brain Model of the Human Foetus

    OpenAIRE

    Yasunori Yamada; Hoshinori Kanazawa; Sho Iwasaki; Yuki Tsukahara; Osuke Iwata; Shigehito Yamada; Yasuo Kuniyoshi

    2016-01-01

    Cortical learning via sensorimotor experiences evoked by bodily movements begins as early as the foetal period. However, the learning mechanisms by which sensorimotor experiences guide cortical learning remain unknown owing to technical and ethical difficulties. To bridge this gap, we present an embodied brain model of a human foetus as a coupled brain-body-environment system by integrating anatomical/physiological data. Using this model, we show how intrauterine sensorimotor experiences rela...

  12. The intrinsic geometry of the human brain connectome

    OpenAIRE

    Ye, Allen Q.; Ajilore, Olusola A.; Conte, Giorgio; GadElkarim, Johnson; Thomas-Ramos, Galen; Zhan, Liang; Yang, Shaolin; Kumar, Anand; Magin, Richard L.; G. Forbes, Angus; Leow, Alex D.

    2015-01-01

    This paper describes novel methods for constructing the intrinsic geometry of the human brain connectome using dimensionality-reduction techniques. We posit that the high-dimensional, complex geometry that represents this intrinsic topology can be mathematically embedded into lower dimensions using coupling patterns encoded in the corresponding brain connectivity graphs. We tested both linear and nonlinear dimensionality-reduction techniques using the diffusion-weighted structural connectome ...

  13. Gene Expression Profiling in the Brains of Human Cocaine Abusers

    OpenAIRE

    Bannon, Michael J.; Kapatos, Gregory; ALBERTSON, DAWN N.

    2005-01-01

    Chronic cocaine abuse induces long-term neurochemical, structural and behavioural changes thought to result from altered gene expression within the nucleus accumbens and other brain regions playing a critical role in addiction. Recent methodological advances now allow the profiling of gene expression in human postmortem brain. In this article, we review studies in which we have used Affymetrix oligonucleotide microarrays to identify transcripts that are differentially expressed in the nucleus...

  14. Increased morphological asymmetry, evolvability and plasticity in human brain evolution

    OpenAIRE

    Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C.

    2013-01-01

    The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with spec...

  15. Endocannabinoids modulate human blood–brain barrier permeability in vitro

    OpenAIRE

    Hind, William H.; Tufarelli, Cristina; Neophytou, Maria; Anderson, Susan I; England, Timothy J.; O'Sullivan, Saoirse E

    2015-01-01

    Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was mo...

  16. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing. PMID:26966964

  17. AGE WISE HISTOMORPHOLOGICAL CHANGES IN HUMAN LIVER

    Directory of Open Access Journals (Sweden)

    Tribeni

    2015-11-01

    Full Text Available CONTEXT: Hepato cellular carcinoma (HCC results in between 2.5 lakhs to 1million deaths globally per annum. Liver transplantation nowadays is a well accepted treatment option for end-stage liver disease and acute liver failure. AIMS: Keeping this concept in view, a study was conducted in the Guwahati Zone of Northeast India, to compare the histomorphological features of the human liver in different age groups. SETTING AND DESIGN: Apparently healthy livers were obtained from 21 subjects on whom medicolegal post-mortems had been performed. Their ages varied from newborn to 90 years. Subjects were divided into 3 groups. 7 specimens were taken from each group. (1 Pediatric (2 Adult (3 Old age. METHODS AND MATERIALS: In all the above age groups, immediately after removal of the livers, they were washed in normal saline, dried with blotting paper and weighed in an electronic weighing machine. Sections of liver were fixed, processed, cut and stained with Harris Haematoxylin and Eosin stain. RESULTS: The liver loses weight from 50 years onwards. There appears to be racial and environmental differences in the change in liver weight in old age. Autopsy studies show a diminution of nearly 46% in liver weight between the 3rd and 10th decades of life. The liver decreases in size with age. The hepatocytes are radially disposed in the liver lobule. They are piled up, forming a layer one cell thick (except in young children in a fashion similar to the bricks of a wall. These plates are directed from the periphery of the lobule to its centre and anastomose freely forming a complex labyrinthine and sponge-like structure. CONCLUSIONS: From the findings in the present study it can be concluded that: 1. Nowadays, the measurement of liver volume has gained practical use in relation to liver transplantation. 2. We have compared the histomorphology of adult liver with a child. The findings in both the groups are very similar. This feature is important, since in

  18. Histologic assessment of the age of recent brain infarcts in man.

    Science.gov (United States)

    Chuaqui, R; Tapia, J

    1993-09-01

    In order to design a dating system based on the microscopic picture of brain infarcts of recent onset, we performed the histological examination of 31 infarcts covering the first 4 weeks of evolution in 30 autopsy cases. The date of the cerebral vascular accident was clinically established in every case. There were 13 men and 17 women with a mean age of 65 years. Hemorrhagic infarcts were found in 15 cases and anemic infarcts in 16 cases. Based on the histological features four periods were identified: the first period, from day 1 through day 4, was characterized by the predominance of eosinophilic neurons and necrotic oligodendrocytes; the second period, from day 5 through day 7, differed from the first by the appearance of macrophages and of newly formed blood vessels; the third period, from day 8 through day 14, showed neuronal ghosts, macrophages, astrocytic proliferation, gemistocytes, and absence of neutrophils; and in the fourth period, from day 15 through day 27, there were no eosinophilic neurons, and neither necrotic oligodendrocytes nor myelin in the central portion of the infarct were identified. By assessing the histological features and accurately correlating the findings with the corresponding clinical data, we have been able to describe four distinct microscopic patterns of the first month of evolution of brain infarcts. The present findings may be considered useful morphological clues to better characterize the early evolutional phase of brain infarcts in humans. PMID:8360701

  19. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  20. MR-visible water content in human brain: a proton MRS study

    DEFF Research Database (Denmark)

    Christiansen, P; Toft, P B; Gideon, P; Danielsen, E R; Ring, P; Henriksen, O

    1994-01-01

    In vivo measurement of metabolite concentrations in the human brain by means of proton-MRS contributes significantly to the clinical evaluation of patients with diseases of the brain. The fully relaxed water signal has been proposed as an internal standard for calibration of the MRS measurements...... groups: newborn (0-23 days), adolescents (10-15 yr), adults (22-28 yr), and elderly people (60-74 yr). The examinations were carried out using a Siemens Helicon SP 63/84 MR-scanner operating at 1.5 T. Except for the newborn, four regions were studied in each subject using stimulated echo (STEAM....... The major drawbacks are the necessity to make the assumptions that the water concentrations in the brain and that all tissue water is MR-visible. A number of in vivo measurements were carried out to estimate the concentration of MR-visible water in the brain of healthy volunteers divided into four age...

  1. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  2. Pain perception and its genesis in the human brain

    Institute of Scientific and Technical Information of China (English)

    Andrew CN CHEN

    2008-01-01

    In the past two decades, pain perception in the human brain has been studied with EEG/MEG brain topography and PET/ fMRI neuroimaging techniques. A host of cortical and subeortical loci can be activated by various nociceptive conditions. The activation in pain perception can be induced by physical (electrical, thermal, mechanical), chemical (capsacin, ascoric acid), psychological (anxiety, stress, nocebo) means, and pathological (e.g. migraine, neuropathic) diseases. This article deals mainly on the activation, but not modulation, of human pain in the brain. The brain areas identified are named pain representation, matrix, neuraxis, or signature. The sites are not uniformly isolated across various studies, but largely include a set of cores sites: thalamus and primary somatic area (SI), second somatic area (SII), insular cortex (IC), prefrontal cortex (PFC), cingnlate, and parietal cortices. Other areas less reported and considered important in pain perception include brainstem, hippocampus, amygdala and supplementary motor area (SMA). The issues of pain perception basically encompass both the site and the mode of brain function. Although the site issue is delineared to a large degree, the mode issue has been much less explored. From the temporal dynamics, IC can be considered as the initial stage in genesis of pain perception as conscious suffering, the unique aversion in the human brain.

  3. A navigational guidance system in the human brain.

    Science.gov (United States)

    Spiers, Hugo J; Maguire, Eleanor A

    2007-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one's current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional magnetic resonance imaging as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analyzed in combination with metric measures of proximity and direction to goal destinations that were derived from each individual subject's coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behavior in general. PMID:17492693

  4. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  5. Topographical Distribution of Arsenic, Manganese, and Selenium in the Normal Human Brain

    DEFF Research Database (Denmark)

    Larsen, Niels Agersnap; Pakkenberg, H.; Damsgaard, Else; Heydorn, Kaj

    1979-01-01

    The concentrations of arsenic, manganese and selenium per gram wet tissue weight were determined in samples from 24 areas of normal human brains from 5 persons with ages ranging from 15 to 81 years of age. The concentrations of the 3 elements were determined for each sample by means of neutron...... activation analysis with radiochemical separation. Distinct patterns of distribution were shown for each of the 3 elements. Variations between individuals were found for some but not all brain areas, resulting in coefficients of variation between individuals of about 30% for arsenic, 10% for manganese and 20......% for selenium. The results seem to indicate that arsenic is associated with the lipid phase, manganese with the dry matter and selenium with the aqueous phase of brain tissue....

  6. Decoding the visual and subjective contents of the human brain.

    Science.gov (United States)

    Kamitani, Yukiyasu; Tong, Frank

    2005-05-01

    The potential for human neuroimaging to read out the detailed contents of a person's mental state has yet to be fully explored. We investigated whether the perception of edge orientation, a fundamental visual feature, can be decoded from human brain activity measured with functional magnetic resonance imaging (fMRI). Using statistical algorithms to classify brain states, we found that ensemble fMRI signals in early visual areas could reliably predict on individual trials which of eight stimulus orientations the subject was seeing. Moreover, when subjects had to attend to one of two overlapping orthogonal gratings, feature-based attention strongly biased ensemble activity toward the attended orientation. These results demonstrate that fMRI activity patterns in early visual areas, including primary visual cortex (V1), contain detailed orientation information that can reliably predict subjective perception. Our approach provides a framework for the readout of fine-tuned representations in the human brain and their subjective contents. PMID:15852014

  7. New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain.

    Science.gov (United States)

    Chen, A C

    2001-10-01

    With the maturation of EEG/MEG brain mapping and PET/fMRI neuroimaging in the 1990s, greater understanding of pain processing in the brain now elucidates and may even challenge the classical theory of pain mechanisms. This review scans across the cultural diversity of pain expression and modulation in man. It outlines the difficulties in defining and studying human pain. It then focuses on methods of studying the brain in experimental and clinical pain, the cohesive results of brain mapping and neuroimaging of noxious perception, the implication of pain research in understanding human consciousness and the relevance to clinical care as well as to the basic science of human psychophysiology. Non-invasive brain studies in man start to unveil the age-old puzzles of pain-illusion, hypnosis and placebo in pain modulation. The neurophysiological and neurohemodynamic brain measures of experimental pain can now largely satisfy the psychophysiologist's dream, unimaginable only a few years ago, of modelling the body-brain, brain-mind, mind-matter duality in an inter-linking 3-P triad: physics (stimulus energy); physiology (brain activities); and psyche (perception). For neuropsychophysiology greater challenges lie ahead: (a) how to integrate a cohesive theory of human pain in the brain; (b) what levels of analyses are necessary and sufficient; (c) what constitutes the structural organisation of the pain matrix; (d) what are the modes of processing among and across the sites of these structures; and (e) how can neural computation of these processes in the brain be carried out? We may envision that modular identification and delineation of the arousal-attention, emotion-motivation and perception-cognition neural networks of pain processing in the brain will also lead to deeper understanding of the human mind. Two foreseeable impacts on clinical sciences and basic theories from brain mapping/neuroimaging are the plausible central origin in persistent pain and integration of

  8. Age-related changes in kynurenic acid production in rat brain

    DEFF Research Database (Denmark)

    Gramsbergen, J B; Schmidt, W; Turski, W A;

    1992-01-01

    months of age in all five brain regions examined. No changes were observed in the liver. The changes were particularly pronounced in the cortex and in the striatum where enzyme activity increased three-fold during the period studied. KYNA production from its bioprecursor L-kynurenine was also......-dependent increase of KYNA concentration in brain tissue, suggest an enhanced KYNA tone in the aged brain. Together with the reported decline in cerebral excitatory amino acid receptor densities with age, increased production of KYNA may play a role in cognitive and memory dysfunction in old animals....

  9. Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects

    OpenAIRE

    Katja Franke; Michael Ristow

    2014-01-01

    Aging alters brain structure and function. Personal health markers and modifiable lifestyle factors are related to individual brain aging as well as to the risk of developing Alzheimer’s disease (AD). This study uses a novel magnetic resonance imaging (MRI)-based biomarker to assess the effects of 17 health markers on individual brain aging in cognitively unimpaired elderly subjects. By employing kernel regression methods, the expression of normal brain-aging patterns forms the basis to estim...

  10. Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects

    OpenAIRE

    Franke, Katja; Ristow, Michael; Gaser, Christian

    2014-01-01

    Aging alters brain structure and function. Personal health markers and modifiable lifestyle factors are related to individual brain aging as well as to the risk of developing Alzheimer's disease (AD). This study used a novel magnetic resonance imaging (MRI)-based biomarker to assess the effects of 17 health markers on individual brain aging in cognitively unimpaired elderly subjects. By employing kernel regression methods, the expression of normal brain-aging patterns forms the basis to estim...

  11. Linking pathways in the developing and aging brain with neurodegeneration

    NARCIS (Netherlands)

    G.G. Kovacs; H. Adle-Biassett; I. Milenkovic; S. Cipriani; J. van Scheppingen; E. Aronica

    2014-01-01

    The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations

  12. Age-related changes in glutathione and glutathione-related enzymes in rat brain

    OpenAIRE

    Zhu, Yuangui; Carvey, Paul M.; Ling, Zaodung

    2006-01-01

    The most reliable and robust risk factor for some neurodegenerative diseases is aging. It has been proposed that processes of aging are associated with the generation of reactive oxygen species and a disturbance of glutathione homeostasis in the brain. Yet, aged animals have rarely been used to model the diseases that are considered to be age-related such as Parkinson's or Alzheimer's disease. This suggests that the results from these studies would be more valuable if aged animals were used. ...

  13. The role of calcium in human aging.

    Science.gov (United States)

    Beto, Judith A

    2015-01-01

    Calcium is an essential nutrient that is necessary for many functions in human health. Calcium is the most abundant mineral in the body with 99% found in teeth and bone. Only 1% is found in serum. The serum calcium level is tightly monitored to remain within normal range by a complex metabolic process. Calcium metabolism involves other nutrients including protein, vitamin D, and phosphorus. Bone formation and maintenance is a lifelong process. Early attention to strong bones in childhood and adulthood will provide more stable bone mass during the aging years. Research has shown that adequate calcium intake can reduce the risk of fractures, osteoporosis, and diabetes in some populations. The dietary requirements of calcium and other collaborative nutrients vary slightly around the world. Lactose intolerance due to lactase deficiency is a common cause of low calcium intake. Strategies will be discussed for addressing this potential barrier to adequate intake. The purpose of this narrative review is a) to examine the role of calcium in human health, b) to compare nutrient requirements for calcium across lifecycle groups and global populations, c) to review relationships between calcium intake, chronic disease risk, and fractures, and d) to discuss strategies to address diet deficiencies and lactose intolerance. PMID:25713787

  14. Magnetic resonance elastography in normal human brain: preliminary study

    International Nuclear Information System (INIS)

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  15. The brain-mind quiddity: ethical issues in the use of human brain tissue for therapeutic and scientific purposes.

    OpenAIRE

    Burd, L; Gregory, J.M.; Kerbeshian, J

    1998-01-01

    The use of human brain tissue in neuroscience research is increasing. Recent developments include transplanting neural tissue, growing or maintaining neural tissue in laboratories and using surgically removed tissue for experimentation. Also, it is likely that in the future there will be attempts at partial or complete brain transplants. A discussion of the ethical issues of using human brain tissue for research and brain transplantation has been organized around nine broadly defined topic ar...

  16. Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects

    Directory of Open Access Journals (Sweden)

    Katja eFranke

    2014-05-01

    Full Text Available Aging alters brain structure and function. Personal health markers and modifiable lifestyle factors are related to individual brain aging as well as to the risk of developing Alzheimer’s disease (AD. This study uses a novel magnetic resonance imaging (MRI-based biomarker to assess the effects of 17 health markers on individual brain aging in cognitively unimpaired elderly subjects. By employing kernel regression methods, the expression of normal brain-aging patterns forms the basis to estimate the brain age of a given new subject. If the estimated age is higher than the chronological age, a positive brain age gap estimation (BrainAGE score indicates accelerated atrophy and is considered a risk factor for developing AD. Within this cross-sectional, multi-center study 228 cognitively unimpaired elderly subjects (118 males completed an MRI at 1.5T, physiological and blood parameter assessments. The multivariate regression model combining all measured parameters was capable of explaining 39% of BrainAGE variance in males (p < 0.001 and 32% in females (p < 0.01. Furthermore, markers of the metabolic syndrome as well as markers of liver and kidney functions were profoundly related to BrainAGE scores in males (p < 0.05. In females, markers of liver and kidney functions as well as supply of vitamin B12 were significantly related to BrainAGE (p < 0.05. In conclusion, in cognitively unimpaired elderly subjects several clinical markers of poor health were associated with subtle structural changes in the brain that reflect accelerated aging, whereas protective effects on brain aging were observed for markers of good health. Additionally, the relations between individual brain aging and miscellaneous health markers show gender-specific patterns. The BrainAGE approach may thus serve as a clinically relevant biomarker for the detection of subtly abnormal patterns of brain aging probably preceding cognitive decline and development of AD.

  17. Diet and Age Interactions with Regards to Cholesterol Regulation and Brain Pathogenesis

    Directory of Open Access Journals (Sweden)

    Romina M. Uranga

    2010-01-01

    Full Text Available Cholesterol is an essential molecule for brain homeostasis; yet, hypercholesterolemia and its numerous complications are believed to play a role in promoting multiple aspects of brain pathogenesis. An ever increasing number of individuals in modern Western Society are regularly consuming diets high in fat which promote the development of hypercholesterolemia. Additionally, modern societies are becoming increasingly aged, causing a collision between increased hypercholesterolemia and increased aging, which will likely lead to the development of increased pathological conditions due to hypercholesterolemia, thereby promoting deleterious neurochemical and behavioral changes in the brain. Lastly, while beneficial in controlling cholesterol levels, the long-term use of statins itself may potentially promote adverse effects on brain homeostasis, although specifics on this remain largely unknown. This review will focus on linking the current understanding of diet-induced hypercholesterolemia (as well as statin use to the development of oxidative stress, neurochemical alterations, and cognitive disturbances in the aging brain.

  18. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  19. The modular and integrative functional architecture of the human brain.

    Science.gov (United States)

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions. PMID:26598686

  20. Addiction circuitry in the human brain (*).

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

    2011-09-27

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

  1. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.

    Science.gov (United States)

    Zeng, Jia; Konopka, Genevieve; Hunt, Brendan G; Preuss, Todd M; Geschwind, Dan; Yi, Soojin V

    2012-09-01

    DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits. PMID:22922032

  2. Isolation and characterization of human malignant glioma cells from histologically normal brain.

    Science.gov (United States)

    Silbergeld, D L; Chicoine, M R

    1997-03-01

    Brain invasion prevents complete surgical extirpation of malignant gliomas; however, invasive cells from distant, histologically normal brain previously have not been isolated, cultured, and characterized. To evaluate invasive human malignant glioma cells, the authors established cultures from gross tumor and histologically normal brain. Three men and one woman, with a mean age of 67 years, underwent two frontal and two temporal lobectomies for tumors, which yielded specimens of both gross tumor and histologically normal brain. Each specimen was acquired a minimum of 4 cm from the gross tumor. The specimens were split: a portion was sent for neuropathological evaluation (three glioblastomas multiforme and one oligodendroglioma) and a portion was used to establish cell lines. Morphologically, the specimens of gross tumor and histologically normal brain were identical in three of the four cell culture pairs. Histochemical staining characteristics were consistent both within each pair and when compared with the specimens sent for neuropathological evaluation. Cultures demonstrated anchorage-independent growth in soft agarose and neoplastic karyotypes. Growth rates in culture were greater for histologically normal brain than for gross tumor in three of the four culture pairs. Although the observed increases in growth rates of histologically normal brain cultures do not correlate with in vivo behavior, these findings corroborate the previously reported stem cell potential of invasive glioma cells. Using the radial dish assay, no significant differences in motility between cultures of gross tumor and histologically normal brain were found. In summary, tumor cells were cultured from histologically normal brain acquired from a distance greater than 4 cm from the gross tumor, indicating the relative insensitivity of standard histopathological identification of invasive glioma cells (and hence the inadequacy of frozen-section evaluation of resection margins). Cell lines

  3. A versatile new technique to clear mouse and human brain

    Science.gov (United States)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  4. Visual dictionaries as intermediate features in the human brain

    Directory of Open Access Journals (Sweden)

    Kandan eRamakrishnan

    2015-01-01

    Full Text Available The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2 and V3. However BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.

  5. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain

    Directory of Open Access Journals (Sweden)

    Tamara Simpson

    2015-01-01

    Full Text Available The detrimental effect of neuronal cell death due to oxidative stress and mitochondrial dysfunction has been implicated in age-related cognitive decline and neurodegenerative disorders such as Alzheimer’s disease. The Indian herb Bacopa monnieri is a dietary antioxidant, with animal and in vitro studies indicating several modes of action that may protect the brain against oxidative damage. In parallel, several studies using the CDRI08 extract have shown that extracts of Bacopa monnieri improve cognitive function in humans. The biological mechanisms of this cognitive enhancement are unknown. In this review we discuss the animal studies and in vivo evidence for Bacopa monnieri as a potential therapeutic antioxidant to reduce oxidative stress and improve cognitive function. We suggest that future studies incorporate neuroimaging particularly magnetic resonance spectroscopy into their randomized controlled trials to better understand whether changes in antioxidant status in vivo cause improvements in cognitive function.

  6. Unveiling the mystery of visual information processing in human brain

    CERN Document Server

    Diamant, Emanuel

    2008-01-01

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. ...

  7. Antigenic constituents of basic proteins from human brain

    Science.gov (United States)

    Rajam, P. C.; Bogoch, S.; Rushworth, Mary A.; Forrester, P. C.

    1966-01-01

    1. A minimum of three distinct basic proteins have been chromatographically separated from a neutral, low ionic strength extract of human grey matter, using a discontinuous eluant series. 2. These chromatographic subfractions have been characterized by gradient elution chromatography and each subfraction analysed for distinct antigenic characteristics. 3. Evidence was adduced for the presence of a minimum of three distinct basic protein antigens, all of which may be specific to human brain but not to human liver. None of them appear to be human serum proteins. ImagesFIG. 2FIG. 3 PMID:4958738

  8. Rock magnetism linked to human brain magnetite

    Science.gov (United States)

    Kirschvink, Joseph L.

    Magnetite has a long and distinguished career as one of the most important minerals in geophysics, as it is responsible for most of the remanent magnetization in marine sediments and the oceanic crust. It may come as a surprise to discover that it also ranks as the third or fourth most diverse mineral product formed biochemically by living organisms, and forms naturally in a variety of human tissues [Kirschvink et al., 1992].Magnetite was discovered in teeth of the Polyplacophora mollusks over 30 years ago, in magnetotactic bacteria nearly 20 years ago, in honey bees and homing pigeons nearly 15 years ago, but only recently in human tissue.

  9. Microglial cell dysregulation in brain aging and neurodegeneration

    OpenAIRE

    von Bernhardi, Rommy; Eugenín-von Bernhardi, Laura; Eugenín, Jaime

    2015-01-01

    Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of c...

  10. Effect of a water-maze procedure on the redox mechanisms in brain parts of aged rats

    Directory of Open Access Journals (Sweden)

    Natalia Andreevna Krivova

    2015-03-01

    Full Text Available The Morris water maze (MWM is a tool for assessment of age-related cognitive deficits. In our work, MWM was used for appraisal of cognitive deficits in 11-month-old rats and investigation of the effect exerted by training in the Morris water maze on the redox mechanisms in rat brain parts. Young adult (3-month-old and aged (11-month-old male rats were trained in the water maze. Intact animals of the corresponding age were used as the reference groups. The level of pro- and antioxidant capacity in brain tissue homogenates was assessed using the chemiluminescence method.Cognitive deficits were found in 11-month-old rats: at the first day of training they showed only 30% of successful MWM trials. However, at the last training day the percentage of successful trials was equal for young adult and aged animals. This indicates that cognitive deficits in aged rats can be reversed by MWM training. Therewith, the MWM spatial learning procedure itself produces changes in different processes of redox homeostasis in 11-month-old and 3-month-old rats as compared to intact animals. Young adult rats showed a decrease in prooxidant capacity in all brain parts, while 11-month-old rats demonstrated an increase in antioxidant capacity in the olfactory bulb, pons + medulla oblongata and frontal lobe cortex. Hence, the MWM procedure activates the mechanisms that restrict the oxidative stress in brain parts. The obtained results may be an argument for further development of the animal training procedures aimed to activate the mechanisms responsible for age-related cognitive deficits. This may be useful not only for the development of training procedures applicable to human patients with age-related cognitive impairments, but also for their rehabilitation.

  11. Age- and brain-region-specific effects of dietary vitamin K on myelin sulfatides

    OpenAIRE

    Crivello, Natalia A.; Casseus, Sherley L.; Peterson, James W.; Smith, Donald E.; Sarah L. Booth

    2010-01-01

    Dysregulation of myelin sulfatides is a risk factor for cognitive decline with age. Vitamin K is present in high concentrations in the brain and has been implicated in the regulation of sulfatide metabolism. Our objective was to investigate the age-related interrelation between dietary vitamin K and sulfatides in myelin fractions isolated from the brain regions of Fischer 344 male rats fed one of two dietary forms of vitamin K: phylloquinone or its hydrogenated form, dihydrophylloquinone for ...

  12. Age-Related Shifts in Brain Activity Dynamics during Task Switching

    OpenAIRE

    Jimura, Koji; Braver, Todd S.

    2009-01-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and ...

  13. Connectomics and new approaches for analyzing human brain functional connectivity

    OpenAIRE

    Craddock, R. Cameron; Tungaraza, Rosalia L; Milham, Michael P.

    2015-01-01

    Estimating the functional interactions between brain regions and mapping those connections to corresponding inter-individual differences in cognitive, behavioral and psychiatric domains are central pursuits for understanding the human connectome. The number and complexity of functional interactions within the connectome and the large amounts of data required to study them position functional connectivity research as a “big data” problem. Maximizing the degree to which knowledge about human br...

  14. Frequency representation within the human brain: Stability versus plasticity

    OpenAIRE

    Lim, Hubert H.; Minoo Lenarz; Gert Joseph; Thomas Lenarz

    2013-01-01

    A topographical representation for frequency has been identified throughout the auditory brain in animals but with limited evidence in humans. Using a midbrain implant, we identified an ordering of pitch percepts for electrical stimulation of sites across the human inferior colliculus (IC) that was consistent with the IC tonotopy shown in animals. Low pitches were perceived by the subject for stimulation of superficial IC sites while higher pitches were perceived for stimulation of deeper sit...

  15. Mapping Human Brain Function with MRI at 7 Tesla

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In the past decade, the most significant development in MRI is the introduction of fMRI, which permits the mapping of human brain function with exquisite details noninvasively. Functional mapping can be achieved by measuring changes in the blood oxygenation level (I.e. The BOLD contrast) or cerebral blood flow.

  16. Stem Cells Expand Insights into Human Brain Evolution.

    Science.gov (United States)

    Dyer, Michael A

    2016-04-01

    Substantial expansion in the number of cerebral cortex neurons is thought to underlie cognitive differences between humans and other primates, although the mechanisms underlying this expansion are unclear. Otani et al. (2016) utilize PSC-derived brain organoids to study how species-specific differences in cortical progenitor proliferation may underlie cortical evolution. PMID:27058930

  17. Proton NMR spectroscopy of human brain at 3 TESLA

    Czech Academy of Sciences Publication Activity Database

    Mlynárik, V.; Starčuk, Zenon; Starčuk jr., Zenon; Gruber, S.; Moser, E.

    Valtice : Masarykova Univerzita, 2002, s. 30. ISBN 80-210-2808-4. [NMR Valtice. Valtice (CZ), 08.04.2002-10.04.2002] Institutional research plan: CEZ:AV0Z2065902 Keywords : spectroscopy * human brain Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. Automatic segmentation of brain MRIs and mapping neuroanatomy across the human lifespan

    Science.gov (United States)

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Rueckert, Daniel; Aljabar, Paul; Hajnal, Joseph V.; Hammers, Alexander

    2009-02-01

    A robust model for the automatic segmentation of human brain images into anatomically defined regions across the human lifespan would be highly desirable, but such structural segmentations of brain MRI are challenging due to age-related changes. We have developed a new method, based on established algorithms for automatic segmentation of young adults' brains. We used prior information from 30 anatomical atlases, which had been manually segmented into 83 anatomical structures. Target MRIs came from 80 subjects (~12 individuals/decade) from 20 to 90 years, with equal numbers of men, women; data from two different scanners (1.5T, 3T), using the IXI database. Each of the adult atlases was registered to each target MR image. By using additional information from segmentation into tissue classes (GM, WM and CSF) to initialise the warping based on label consistency similarity before feeding this into the previous normalised mutual information non-rigid registration, the registration became robust enough to accommodate atrophy and ventricular enlargement with age. The final segmentation was obtained by combination of the 30 propagated atlases using decision fusion. Kernel smoothing was used for modelling the structural volume changes with aging. Example linear correlation coefficients with age were, for lateral ventricular volume, rmale=0.76, rfemale=0.58 and, for hippocampal volume, rmale=-0.6, rfemale=-0.4 (allρ<0.01).

  19. Age-related changes in regional cerebral blood flow and brain volume in healthy subjects

    International Nuclear Information System (INIS)

    Using the xenon-133 inhalation method, we studied the age-related decline in regional cerebral blood flow, calculated as the initial slope index (ISI), in neurologically normal subjects without any risk factors for cerebral arteriosclerosis (154 men and 123 women), ranging in age from 19 to 88 years. The decline in the ISI was rapid in younger age groups and gradual in older age groups. The ISI was higher in women than in men older than 40 years. Using computed tomography, we studied the age-related decline in brain volume index (BVI; 100% X brain volume/cranial cavity volume) in neurologically normal subjects without any risk factors for cerebral arteriosclerosis (92 men and 49 women), ranging in age from 37 to 86 years. The decline in the BVI was gradual in younger age groups and rapid in older age groups. The BVI was higher in women than in men older than 60 years

  20. Changing Balance of Spinal Cord Excitability and Nociceptive Brain Activity in Early Human Development.

    Science.gov (United States)

    Hartley, Caroline; Moultrie, Fiona; Gursul, Deniz; Hoskin, Amy; Adams, Eleri; Rogers, Richard; Slater, Rebeccah

    2016-08-01

    In adults, nociceptive reflexes and behavioral responses are modulated by a network of brain regions via descending projections to the spinal dorsal horn [1]. Coordinated responses to noxious inputs manifest from a balance of descending facilitation and inhibition. In contrast, young infants display exaggerated and uncoordinated limb reflexes [2]. Our understanding of nociceptive processing in the infant brain has been advanced by the use of electrophysiological and hemodynamic imaging [3-6]. From approximately 35 weeks' gestation, nociceptive-specific patterns of brain activity emerge [7], whereas prior to this, non-specific bursts of activity occur in response to noxious, tactile, visual, and auditory stimulation [7-10]. During the preterm period, refinement of spinal cord excitability is also observed: reflex duration shortens, response threshold increases, and improved discrimination between tactile and noxious events occurs [2, 11, 12]. However, the development of descending modulation in human infants remains relatively unexplored. In 40 infants aged 28-42 weeks' gestation, we examined the relationship between nociceptive brain activity and spinal reflex withdrawal activity in response to a clinically essential noxious procedure. Nociceptive-specific brain activity increases in magnitude with gestational age, whereas reflex withdrawal activity decreases in magnitude, duration, and latency across the same developmental period. By recording brain and spinal cord activity in the same infants, we demonstrate that the maturation of nociceptive brain activity is concomitant with the refinement of noxious-evoked limb reflexes. We postulate that, consistent with studies in animals, infant reflexes are influenced by the development of top-down inhibitory modulation from maturing subcortical and cortical brain networks. PMID:27374336

  1. Effects of aging on nitrergic system in human basal nuclei

    Directory of Open Access Journals (Sweden)

    Bruno Lopes dos Santos

    2014-10-01

    Full Text Available Nitric oxide (NO is a gaseous molecule that plays a role in a number of physiologic processes. The available evidence suggests that NO is a major neurotransmitter involved in motor control and emotion/behavior modulation. To investigate the distribution and morphology of the nitrergic system in human basal nuclei, we studied samples from the striatum, globus pallidus, subthalamic nucleus, substantia nigra and pedunculopontine nucleus of 20 human brains from subjects without neurologic/psychiatric diseases. The samples were stained for NADPH-diaphorase using histochemistry and for neuronal NO synthase using immunohistochemistry. We then analyzed the nitrergic neuronal density and its morphometric parameters. Our data demonstrated that: (I the most posterior regions of the striatum exhibit a higher neuronal density; (II the limbic cortex-associated areas of the striatum exhibit higher neuronal density than other functional subdivisions; (III approximately 90% of the neurons in the subthalamic nucleus express NO; (IV the pedunculopontine nucleus exhibits a massive nitrergic neuronal density; (V in the globus pallidus, there is a marked presence of NO neurons in the medial medullary lamina; and (VI nitrergic neurons were not detected in the substantia nigra. Aging did not change the neuronal density or the morphometric parameters of nitrergic neurons in the analyzed nuclei.

  2. Biological psychological and social determinants of old age: Bio-psycho-social aspects of human aging

    Directory of Open Access Journals (Sweden)

    Małgorzata Dziechciaż

    2014-11-01

    Full Text Available Biological psychological and social determinants of old age: Bio-psycho-social aspects of human aging. The aging of humans is a physiological and dynamic process ongoing with time. In accordance with most gerontologists’ assertions it starts in the fourth decade of life and leads to death. The process of human aging is complex and individualized, occurs in the biological, psychological and social sphere. Biological aging is characterized by progressive age-changes in metabolism and physicochemical properties of cells, leading to impaired self-regulation, regeneration, and to structural changes and functional tissues and organs. It is a natural and irreversible process which can run as successful aging, typical or pathological. Biological changes that occur with age in the human body affect mood, attitude to the environment, physical condition and social activity, and designate the place of seniors in the family and society. Psychical ageing refers to human awareness and his adaptability to the ageing process. Among adaptation attitudes we can differentiate: constructive, dependence, hostile towards others and towards self attitudes. With progressed age, difficulties with adjustment to the new situation are increasing, adverse changes in the cognitive and intellectual sphere take place, perception process involutes, perceived sensations and information received is lowered, and thinking processes change. Social ageing is limited to the role of an old person is culturally conditioned and may change as customs change. Social ageing refers to how a human being perceives the ageing process and how society sees it.

  3. The human brain response to dental pain relief.

    Science.gov (United States)

    Meier, M L; Widmayer, S; Abazi, J; Brügger, M; Lukic, N; Lüchinger, R; Ettlin, D A

    2015-05-01

    Local anesthesia has made dental treatment more comfortable since 1884, but little is known about associated brain mechanisms. Functional magnetic resonance imaging is a modern neuroimaging tool widely used for investigating human brain activity related to sensory perceptions, including pain. Most brain regions that respond to experimental noxious stimuli have recently been found to react not only to nociception alone, but also to visual, auditory, and other stimuli. Thus, presumed functional attributions have come under scrutiny regarding selective pain processing in the brain. Evidently, innovative approaches are warranted to identify cerebral regions that are nociceptive specific. In this study, we aimed at circumventing known methodological confounders by applying a novel paradigm in 14 volunteers: rather than varying the intensity and thus the salience of painful stimuli, we applied repetitive noxious dental stimuli at constant intensity to the left mandibular canine. During the functional magnetic resonance imaging paradigm, we suppressed the nociceptive barrage by a mental nerve block. Brain activity before and after injection of 4% articaine was compared intraindividually on a group level. Dental pain extinction was observed to correspond to activity reduction in a discrete region of the left posterior insular cortex. These results confirm previous reports demonstrating that direct electrical stimulation of this brain region-but not of others-evokes bodily pain sensations. Hence, our investigation adds further evidence to the notion that the posterior insula plays a unique role in nociceptive processing. PMID:25691071

  4. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  5. Age-specific MRI brain and head templates for healthy adults from twenty through eighty-nine years of age

    Directory of Open Access Journals (Sweden)

    Paul T Fillmore

    2015-04-01

    Full Text Available This study created and tested a database of adult, age-specific MRI brain and head templates. The participants included healthy adults from 20 through 89 years of age. The templates were done in 5-year, 10-year, and multi-year intervals from 20 through 89 years, and consist of average T1W for the head and brain, and segmenting priors for GM, WM, and CSF. It was found that age-appropriate templates provided less biased tissue classification estimates than age-inappropriate reference data and reference data based on young adult templates. This database is available for use by other investigators and clinicians for their MRI studies, as well as other types of neuroimaging and electrophysiological research (http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/.

  6. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides.

    Science.gov (United States)

    Sarbu, Mirela; Robu, Adrian C; Ghiulai, Roxana M; Vukelić, Željka; Clemmer, David E; Zamfir, Alina D

    2016-05-17

    The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series. PMID:27088833

  7. Exercise as an intervention for the age-related decline in brain metabolic support

    Directory of Open Access Journals (Sweden)

    Brenda J Anderson

    2010-08-01

    Full Text Available To identify interventions for brain aging, we must first identify the processes in which we hope to intervene. Brain aging is a period of decreasing functional capacity and increasing vulnerability, which reflect a reduction in morphological organization and perhaps degeneration. Since life is ultimately dependent upon the ability to maintain cellular organization through metabolism, this review explores evidence for a decline in neural metabolic support during aging, which includes a reduction in whole brain cerebral blood flow, and cellular metabolic capacity. Capillary density may also decrease with age, although the results are less clear. Exercise may be a highly effective intervention for brain aging, because it improves the cardiovascular system as a whole, and increases regional capillary density and neuronal metabolic capacity. Although the evidence is strongest for motor regions, more work may yield additional evidence for exercise-related improvement in metabolic support in non-motor regions. The protective effects of exercise may be specific to brain region and the type of insult. For example, exercise protects striatal cells from ischemia, but it produces mixed results after hippocampal seizures. Exercise can improve metabolic support and bioenergetic capacity in adult animals, but it remains to be determined whether it has similar effects in aging animals. What is clear is that exercise can influence the multiple levels of support necessary for maintaining optimal neuronal function, which is unique among proposed interventions for aging.

  8. Dietary Vitamin D Deficiency in Rats from Middle- to Old-age Leads to Elevated Tyrosine Nitration and Proteomics Changes in Levels of Key Proteins in Brain: Implications for Low Vitamin D-dependent Age-Related Cognitive Decline

    OpenAIRE

    Keeney, Jeriel T. R.; Förster, Sarah; Sultana, Rukhsana; Brewer, Lawrence D.; Caitlin S Latimer; Cai, Jian; Klein, Jon B.; Porter, Nada M.; Butterfield, D. Allan

    2013-01-01

    In addition to the well-known effects of vitamin D (VitD) in maintaining bone health, there is increasing appreciation that this vitamin may serve important roles in other organs and tissues, including the brain. Given that VitD deficiency is especially widespread among the elderly, it is important to understand how the range of serum VitD levels that mimic those found in humans (from low to high) affects the brain during aging from middle-age to old-age. To address this issue, twenty-seven m...

  9. Environmental influence in the brain, human welfare and mental health.

    Science.gov (United States)

    Tost, Heike; Champagne, Frances A; Meyer-Lindenberg, Andreas

    2015-10-01

    The developing human brain is shaped by environmental exposures--for better or worse. Many exposures relevant to mental health are genuinely social in nature or believed to have social subcomponents, even those related to more complex societal or area-level influences. The nature of how these social experiences are embedded into the environment may be crucial. Here we review select neuroscience evidence on the neural correlates of adverse and protective social exposures in their environmental context, focusing on human neuroimaging data and supporting cellular and molecular studies in laboratory animals. We also propose the inclusion of innovative methods in social neuroscience research that may provide new and ecologically more valid insight into the social-environmental risk architecture of the human brain. PMID:26404717

  10. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  11. Contribution of brain atrophy on CT and aging to intelligence level

    International Nuclear Information System (INIS)

    Decrased intellectual functions due to senility have been much discussed in connection with aging or brain atophy alternatively. But this change should be analysed under multifactorial basis. Furthermore, variations between individuals should be taken into account in dealing with an advanced age group. In these regards, the author performed multivariate analysis on intellectual changes, aging and brain arophy demonstrated on brain CT. Clonological study was also performed to reveal the individual variations. The objects were consisted of 72 people, including the patients of more than 65 years of age who were hospitalized to a geriatrics hospital because of senile dementia, and, as a control group residents in a home for the aged nearby the hospital. Average age was 75.4 years old. Intellectual level was measured through Hasegawa's dementia rating scale. Ventricular enlargement was measured on brain CT to determine the severity of brain atrophy. These two factors and age were processed with multivariate analysis. And clonological study was made to the deviation of intellectual level vs. the change of ventricular enlargement. As the result, firstly, this simple analysing model was able to reveal some aspcts of the deteriolating phenomena of intellectual leve through double factorial basis, i.e. brain atrophy on CT and age. Secondly, the group showing greater changes in the brain atrophy on CT, which included one case with rapid deteriolation in dementia scale of more than 10 points, was distributed mainly around full marks or zero point in dementia scale. This result postulates that the range of the dementia scale should be expanded upwrds as well as downwards for the better explanation of the relation between intellectual deteriolation and above mentioned two factors. (author)

  12. Chronological changes in microRNA expression in the developing human brain.

    Directory of Open Access Journals (Sweden)

    Michael P Moreau

    Full Text Available MicroRNAs (miRNAs are endogenously expressed noncoding RNA molecules that are believed to regulate multiple neurobiological processes. Expression studies have revealed distinct temporal expression patterns in the developing rodent and porcine brain, but comprehensive profiling in the developing human brain has not been previously reported.We performed microarray and TaqMan-based expression analysis of all annotated mature miRNAs (miRBase 10.0 as well as 373 novel, predicted miRNAs. Expression levels were measured in 48 post-mortem brain tissue samples, representing gestational ages 14-24 weeks, as well as early postnatal and adult time points.Expression levels of 312 miRNAs changed significantly between at least two of the broad age categories, defined as fetal, young, and adult.We have constructed a miRNA expression atlas of the developing human brain, and we propose a classification scheme to guide future studies of neurobiological function.

  13. Cell culture: Progenitor cells from human brain after death

    Science.gov (United States)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  14. Normal aging in rats and pathological aging in human Alzheimer's disease decrease FAAH activity: modulation by cannabinoid agonists.

    Science.gov (United States)

    Pascual, A C; Martín-Moreno, A M; Giusto, N M; de Ceballos, M L; Pasquaré, S J

    2014-12-01

    Anandamide is an endocannabinoid involved in several physiological functions including neuroprotection. Anandamide is synthesized on demand and its endogenous level is regulated through its degradation, where fatty acid amide hydrolase plays a major role. The aim of this study was to characterize anandamide breakdown in physiological and pathological aging and its regulation by CB1 and CB2 receptor agonists. Fatty acid amide hydrolase activity was analyzed in an independent cohort of human cortical membrane samples from control and Alzheimer's disease patients, and in membrane and synaptosomes from adult and aged rat cerebral cortex. Our results demonstrate that fatty acid amide hydrolase activity decreases in the frontal cortex from human patients with Alzheimer's disease and this effect is mimicked by Aβ(1-40) peptide. This activity increases and decreases in aged rat cerebrocortical membranes and synaptosomes, respectively. Also, while the presence of JWH-133, a CB2 selective agonist, slightly increases anandamide hydrolysis in human controls, it decreases this activity in adults and aged rat cerebrocortical membranes and synaptosomes. In the presence of WIN55,212-2, a mixed CB1/CB2 agonist, anandamide hydrolysis increases in Alzheimer's disease patients but decreases in human controls as well as in adult and aged rat cerebrocortical membranes and synaptosomes. Although a similar profile is observed in fatty acid amide hydrolase activity between aged rat synaptic endings and human Alzheimer's disease brains, it is differently modulated by CB1/CB2 agonists. This modulation leads to a reduced availability of anandamide in Alzheimer's disease and to an increased availability of this endocannabinoid in aging. PMID:25456842

  15. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap

    Directory of Open Access Journals (Sweden)

    Tytus Murphy

    2014-01-01

    Full Text Available Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake, intermittent fasting (IF, every-other-day feeding, and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer’s disease—with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function.

  16. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap

    Science.gov (United States)

    Dias, Gisele Pereira

    2014-01-01

    Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease—with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function. PMID:24900924

  17. Brain-Skin Connection: Stress, Inflammation and Skin Aging

    OpenAIRE

    Chen, Ying; Lyga, John

    2014-01-01

    The intricate relationship between stress and skin conditions has been documented since ancient times. Recent clinical observations also link psychological stress to the onset or aggravation of multiple skin diseases. However, the exact underlying mechanisms have only been studied and partially revealed in the past 20 years or so. In this review, the authors will discuss the recent discoveries in the field of “Brain-Skin Connection”, summarizing findings from the overlapping fields of psychol...

  18. Brain white matter development is associated with a human-specific haplotype increasing the synthesis of long chain fatty acids.

    Science.gov (United States)

    Peters, Bart D; Voineskos, Aristotle N; Szeszko, Philip R; Lett, Tristram A; DeRosse, Pamela; Guha, Saurav; Karlsgodt, Katherine H; Ikuta, Toshikazu; Felsky, Daniel; John, Majnu; Rotenberg, David J; Kennedy, James L; Lencz, Todd; Malhotra, Anil K

    2014-04-30

    The genetic and molecular pathways driving human brain white matter (WM) development are only beginning to be discovered. Long chain polyunsaturated fatty acids (LC-PUFAs) have been implicated in myelination in animal models and humans. The biosynthesis of LC-PUFAs is regulated by the fatty acid desaturase (FADS) genes, of which a human-specific haplotype is strongly associated with ω-3 and ω-6 LC-PUFA concentrations in blood. To investigate the relationship between LC-PUFA synthesis and human brain WM development, we examined whether this FADS haplotype is associated with age-related WM differences across the life span in healthy individuals 9-86 years of age (n = 207). Diffusion tensor imaging was performed to measure fractional anisotropy (FA), a putative measure of myelination, of the cerebral WM tracts. FADS haplotype status was determined with a single nucleotide polymorphism (rs174583) that tags this haplotype. Overall, normal age-related WM differences were observed, including higher FA values in early adulthood compared with childhood, followed by lower FA values across older age ranges. However, individuals homozygous for the minor allele (associated with lower LC-PUFA concentrations) did not display these normal age-related WM differences (significant age × genotype interactions, p(corrected) < 0.05). These findings suggest that LC-PUFAs are involved in human brain WM development from childhood into adulthood. This haplotype and LC-PUFAs may play a role in myelin-related disorders of neurodevelopmental origin. PMID:24790207

  19. Prevalence of incidental findings on magnetic resonance imaging: Cuban project to map the human brain

    International Nuclear Information System (INIS)

    To determine the prevalence of incidental findings in healthy subjects of the Cuban Human Brain Mapping Project sample, it was performed a retrospective descriptive study of the magnetic resonance imaging (MRI) obtained from 394 healthy subjects that make up the sample of the project, between 2006-2007, with an age range of 18 to 68 years (mean 33,12), of which 269 (68,27 %) are male and 125 (31,73 %) are women. It was shown that 40,36 % had one or more anomaly in the magnetic resonance imaging (MRI). In total, the number of incidental findings was 188, 23,6 % of which were brain findings and 24,11 % were non-brain findings, among the latter, were the sinusopathy with 20,81 % and maxillary polyps with 3,30 %. The most prevalent brain findings were: intrasellar arachnoidocele, 11,93 %, followed by the prominence of the pituitary gland, 5,84 %, ventricular asymmetry, 1,77 % and bone defects, 1,02 %. Other brain abnormalities found with very low prevalence had no pathological significance, except for two cases with brain tumor, which were immediately sent to a specialist. Incidental findings in MRI are common in the general population (40,36 %), being the sinusopathy, and intrasellar arachnoidocele the most common findings. Asymptomatic individuals who have any type of structural abnormality provide invaluable information on the prevalence of these abnormalities in a presumably healthy population, which may be used as references for epidemiological studies

  20. Large-Scale Networks in the Human Brain revealed by Functional Connectivity MRI

    OpenAIRE

    Krienen, Fenna Marie

    2013-01-01

    The human brain is composed of distributed networks that connect a disproportionately large neocortex to the brainstem, cerebellum and other subcortical structures. New methods for analyzing non-invasive imaging data have begun to reveal new insights into human brain organization. These methods permit characterization of functional interactions within and across brain networks, and allow us to appreciate points of departure between the human brain and non-human primates.

  1. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  2. Biochemical imaging of the human brain in development and disease

    International Nuclear Information System (INIS)

    The authors used positron emission tomography (PET) to image cerebral glucose metabolism in more than 140 children aged 5 days to 15 years. Twenty-nine children were studied during normal development and the remainder because of infantile spasm, seizure, Lennox-Gastaut syndrome, or cerebral palsy. This exhibit demonstrates the temporal course of normal function (metabolic) development of the brain, and compares the relative value of PET, MR imaging, and x-ray CT in abnormal cases

  3. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B;

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate......CBF from Day 0-3 to Day 4-7 (p = 0.050) and from Day 0-3 to Day 8-21 (p = 0.028). No correlation between rCBF and water content was found. Water content in ischemic brain tissue increased significantly between Day 4-7 after stroke. This should be considered when performing quantitative 1H-MRS using water...

  4. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  5. CONCENTRATION OF GLIAL FIBRILLARY ACIDIC PROTEIN INCREASES WITH AGE IN THE MOUSE AND RAT BRAIN

    Science.gov (United States)

    The role of aging in the expression of the astrocyte protein, glial fibrillary acidic protein (GFAP), was examined. n both mice and rats the concentration of GFAP increased throughout the brain as a function of aging. he largest increase (2-fold) was observed in striatum for both...

  6. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  7. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J;

    2009-01-01

    Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans....... Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular...

  8. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    Science.gov (United States)

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis. PMID:26318578

  9. Sex differences in metabolic aging of the brain: insights into female susceptibility to Alzheimer's disease.

    Science.gov (United States)

    Zhao, Liqin; Mao, Zisu; Woody, Sarah K; Brinton, Roberta D

    2016-06-01

    Despite recent advances in the understanding of clinical aspects of sex differences in Alzheimer's disease (AD), the underlying mechanisms, for instance, how sex modifies AD risk and why the female brain is more susceptible to AD, are not clear. The purpose of this study is to elucidate sex disparities in brain aging profiles focusing on 2 major areas-energy and amyloid metabolism-that are most significantly affected in preclinical development of AD. Total RNA isolated from hippocampal tissues of both female and male 129/C57BL/6 mice at ages of 6, 9, 12, or 15 months were comparatively analyzed by custom-designed Taqman low-density arrays for quantitative real-time polymerase chain reaction detection of a total of 182 genes involved in a broad spectrum of biological processes modulating energy production and amyloid homeostasis. Gene expression profiles revealed substantial differences in the trajectory of aging changes between female and male brains. In female brains, 44.2% of genes were significantly changed from 6 months to 9 months and two-thirds showed downregulation. In contrast, in male brains, only 5.4% of genes were significantly altered at this age transition. Subsequent changes in female brains were at a much smaller magnitude, including 10.9% from 9 months to 12 months and 6.1% from 12 months to 15 months. In male brains, most changes occurred from 12 months to 15 months and the majority were upregulated. Furthermore, gene network analysis revealed that clusterin appeared to serve as a link between the overall decreased bioenergetic metabolism and increased amyloid dyshomeostasis associated with the earliest transition in female brains. Together, results from this study indicate that: (1) female and male brains follow profoundly dissimilar trajectories as they age; (2) female brains undergo age-related changes much earlier than male brains; (3) early changes in female brains signal the onset of a hypometabolic phenotype at risk for AD. These

  10. Cognitive and brain function in adults with Type 1 diabetes mellitus : is there evidence of accelerated ageing?

    OpenAIRE

    Johnston, Harriet N.

    2013-01-01

    The physical complications of Type 1 diabetes mellitus (T1DM) have been understood as an accelerated ageing process (Morley, 2008). Do people with T1DM also experience accelerated cognitive and brain ageing? Using findings from research of the normal cognitive and brain ageing process and conceptualized in theories of the functional brain changes in cognitive ageing, a combination of cognitive testing and functional magnetic resonance imaging (fMRI) techniques were used to evaluate evidence o...

  11. Age-related decline in brain resources modulates genetic effects on cognitive functioning

    Directory of Open Access Journals (Sweden)

    Lars Bäckman

    2008-12-01

    Full Text Available Individual differences in cognitive performance increase from early to late adulthood, likely reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and anatomical brain resources in normal aging modulate the effects of common genetic variations on cognitive functioning. Our hypothesis is based on the assumption that the function relating brain resources to cognition is nonlinear, so that genetic differences exert increasingly large effects on cognition as resources recede from high to medium levels in the course of aging.Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008, who reported that the effects of the Catechol-O-Methyltransferase (COMT gene on cognitive performance are magnified in old age and interacted with the Brain-Derived Neurotrophic Factor (BDNF gene. We conclude that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to other polymorphisms are discussed.

  12. The maternal brain and its plasticity in humans.

    Science.gov (United States)

    Kim, Pilyoung; Strathearn, Lane; Swain, James E

    2016-01-01

    This article is part of a Special Issue "Parental Care". Early mother-infant relationships play important roles in infants' optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers' brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  13. Interactions between occlusion and human brain function activities.

    Science.gov (United States)

    Ohkubo, C; Morokuma, M; Yoneyama, Y; Matsuda, R; Lee, J S

    2013-02-01

    There are few review articles in the area of human research that focus on the interactions between occlusion and brain function. This systematic review discusses the effect of occlusion on the health of the entire body with a focus on brain function. Available relevant articles in English from 1999 to 2011 were assessed in an online database and as hard copies in libraries. The selected 19 articles were classified into the following five categories: chewing and tongue movements, clenching and grinding, occlusal splints and occlusal interference, prosthetic rehabilitation, and pain and stimulation. The relationships between the brain activity observed in the motor and sensory cortices and movements of the oral and maxillofacial area, such as those produced by gum chewing, tapping and clenching, were investigated. It was found that the sensorimotor cortex was also affected by the placement of the occlusal interference devices, splints and implant prostheses. Brain activity may change depending on the strength of the movements in the oral and maxillofacial area. Therefore, mastication and other movements stimulate the activity in the cerebral cortex and may be helpful in preventing degradation of a brain function. However, these findings must be verified by evidence gathered from more subjects. PMID:22624951

  14. Physical properties of aged and non-aged human bones

    International Nuclear Information System (INIS)

    The main purpose of the present research was to select physical methods to characterise the electronic and mechanical properties of human bones from XIII-XX centuries. The compared technologies were targeted to explore the bone material at macro, micro and nano scales. For this roentgenography, magnetic nuclear resonance, X-ray computer and ultrasound tomography, micro-hardness, atomic force microscope, X-ray diffraction and exoelectron spectroscopy (ES) were employed. The results demonstrate that the most sensitive technology to characterise of the bones is ES. (authors)

  15. Differences between chronological and brain age are related to education and self-reported physical activity.

    Science.gov (United States)

    Steffener, Jason; Habeck, Christian; O'Shea, Deirdre; Razlighi, Qolamreza; Bherer, Louis; Stern, Yaakov

    2016-04-01

    This study investigated the relationship between education and physical activity and the difference between a physiological prediction of age and chronological age (CA). Cortical and subcortical gray matter regional volumes were calculated from 331 healthy adults (range: 19-79 years). Multivariate analyses identified a covariance pattern of brain volumes best predicting CA (R(2) = 47%). Individual expression of this brain pattern served as a physiologic measure of brain age (BA). The difference between CA and BA was predicted by education and self-report measures of physical activity. Education and the daily number of flights of stairs climbed (FOSC) were the only 2 significant predictors of decreased BA. Effect sizes demonstrated that BA decreased by 0.95 years for each year of education and by 0.58 years for 1 additional FOSC daily. Effects of education and FOSC on regional brain volume were largely driven by temporal and subcortical volumes. These results demonstrate that higher levels of education and daily FOSC are related to larger brain volume than predicted by CA which supports the utility of regional gray matter volume as a biomarker of healthy brain aging. PMID:26973113

  16. Drug delivery to the human brain via the cerebrospinal fluid

    International Nuclear Information System (INIS)

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  17. Human plasma DNP level after severe brain injury

    Institute of Scientific and Technical Information of China (English)

    GAO Yi-lu; XIN Hui-ning; FENG Yi; FAN Ji-wei

    2006-01-01

    Objective: To determine the relationship between DNP level after human severe brain injury and hyponatremia as well as isorrhea.Methods: The peripheral venous plasma as control was collected from 8 volunteers. The peripheral venous plasma from 14 severe brain injury patients were collected in the 1, 3, 7 days after injury. Radioimmunoassay was used to detect the DNP concentration. Meanwhile, daily plasma and urine electrolytes, osmotic pressure as well as 24 h liquid intake and output volume were detected.Results: The normal adult human plasma DNP level was 62. 46 pg/ml ± 27. 56 pg/ml. In the experimental group, the plasma DNP levels were higher from day 1 today 3 in 8 of the 14 patients than those in the control group (P1 =0.05, P3 =0.03). Negative fluid balance occurred in 8 patients and hyponatremia in 7 patients. The increase of plasma DNP level was significantly correlated with the development of a negative fluid balance (r=-0.69,P<0.01) and hyponatremia (x2 =4.38, P<0.05).Conclusions: The increase of plasma DNP level is accompanied by the enhancement of natriuretic and diuretic responses in severe brain-injured patients, which is associated with the development of a negative fluid balance and hyponatremia after brain injury.

  18. Virtual model of the human brain for neurosurgical simulation.

    Science.gov (United States)

    De Paolis, Lucio T; De Mauro, Alessandro; Raczkowsky, Joerg; Aloisio, Giovanni

    2009-01-01

    The aim of this work is to develop a realistic virtual model of the human brain that could be used in a neurosurgical simulation for both educational and preoperative planning purposes. The goal of such a system would be to enhance the practice of surgery students, avoiding the use of animals, cadavers and plastic phantoms. A surgeon, before carrying out the real procedure, will, with this system, be able to rehearse by using a surgical simulator based on detailed virtual reality models of the human brain, reconstructed with real patient's medical images. In order to obtain a realistic and useful simulation we focused our research on the physical modelling of the brain as a deformable body and on the interactions with surgical instruments. The developed prototype is based on the mass-spring-damper model and, in order to obtain deformations similar to the real ones, a three tiered structure has been built. In this way, we have obtained local and realistic deformations using an ad-hoc point distribution in the volume where the contact between the brain surface and a surgical instrument takes place. PMID:19745425

  19. The Evolution of Brains from Early Mammals to Humans.

    Science.gov (United States)

    Kaas, Jon H

    2013-01-01

    The large size and complex organization of the human brain makes it unique among primate brains. In particular, the neocortex constitutes about 80% of the brain, and this cortex is subdivided into a large number of functionally specialized regions, the cortical areas. Such a brain mediates accomplishments and abilities unmatched by any other species. How did such a brain evolve? Answers come from comparative studies of the brains of present-day mammals and other vertebrates in conjunction with information about brain sizes and shapes from the fossil record, studies of brain development, and principles derived from studies of scaling and optimal design. Early mammals were small, with small brains, an emphasis on olfaction, and little neocortex. Neocortex was transformed from the single layer of output pyramidal neurons of the dorsal cortex of earlier ancestors to the six layers of all present-day mammals. This small cap of neocortex was divided into 20-25 cortical areas, including primary and some of the secondary sensory areas that characterize neocortex in nearly all mammals today. Early placental mammals had a corpus callosum connecting the neocortex of the two hemispheres, a primary motor area, M1, and perhaps one or more premotor areas. One line of evolution, Euarchontoglires, led to present-day primates, tree shrews, flying lemurs, rodents and rabbits. Early primates evolved from small-brained, nocturnal, insect-eating mammals with an expanded region of temporal visual cortex. These early nocturnal primates were adapted to the fine branch niche of the tropical rainforest by having an even more expanded visual system that mediated visually guided reaching and grasping of insects, small vertebrates, and fruits. Neocortex was greatly expanded, and included an array of cortical areas that characterize neocortex of all living primates. Specializations of the visual system included new visual areas that contributed to a dorsal stream of visuomotor processing in a

  20. Olfactory phenotypic expression unveils human aging

    Science.gov (United States)

    Mazzatenta, Andrea; Cellerino, Alessandro; Origlia, Nicola; Barloscio, Davide; Sartucci, Ferdinando; Giulio, Camillo Di; Domenici, Luciano

    2016-01-01

    The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years. A subjective testing procedure of constant stimuli was used, which was also compared to the ‘staircase’ method, with the calculation of the reliability. The n-butanol stimulus was used as an ascending series of nine molar concentrations that were monitored using an electronic nose. The data were analyzed using nonparametric statistics because of the multimodal distribution. We show that the age-related variations in the absolute olfactory threshold are not continuous; instead, there are multiple olfactory phenotypes. Three distinct age-related phenotypes were defined, termed as ‘juvenile’, ‘mature’ and ‘elder’. The frequency of these three phenotypes depends on age. Our data suggest that the sense of smell does not decrease linearly with aging. Our findings provide the basis for further understanding of olfactory loss as an anticipatory sign of aging and neurodegenerative processes. PMID:27027240

  1. A Novel Human Body Area Network for Brain Diseases Analysis.

    Science.gov (United States)

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system. PMID:27526187

  2. Functional imaging of the human brain using conventional MRI

    International Nuclear Information System (INIS)

    It was shown in 1991 by Belliveau and coworkers that the activation of the human brain can be visualized in a completely noninvasive way by MRI. First publications coming from the US claimed that very high magnetic field strength or echo planar imaging, both available only at a few research sites, would be necessary to do this job. Recently, it was demonstrated that functional imaging of the human brain can be done with high spatial resolution MRI using conventional FLASH-sequences with the commercial widely available 1,5 Tesla systems. First results have been reported for visual as well as primary motor cortex activation in healthy volunteers. The key to a successful application of the conventional technique lies in the design of extremely low bandwidth, long echo-time FLASH-sequences with high spatial resolution. (orig.)

  3. White matter hyperintensities and imaging patterns of brain ageing in the general population.

    Science.gov (United States)

    Habes, Mohamad; Erus, Guray; Toledo, Jon B; Zhang, Tianhao; Bryan, Nick; Launer, Lenore J; Rosseel, Yves; Janowitz, Deborah; Doshi, Jimit; Van der Auwera, Sandra; von Sarnowski, Bettina; Hegenscheid, Katrin; Hosten, Norbert; Homuth, Georg; Völzke, Henry; Schminke, Ulf; Hoffmann, Wolfgang; Grabe, Hans J; Davatzikos, Christos

    2016-04-01

    White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer's disease in a large populatison-based sample (n = 2367) encompassing a wide age range (20-90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer's disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly (P brain regions typically affected by ageing and Alzheimer's disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant (P learning memory test. No significant association was present with the APOE genotype. These results support the hypothesis that white matter hyperintensities contribute to patterns of brain atrophy found in beyond-normal brain ageing in the general population. White matter hyperintensities also contribute to brain atrophy patterns in regions related to Alzheimer's disease dementia, in agreement with their known additive role to the likelihood of dementia. Preventive strategies reducing the odds to develop cardiovascular disease and white matter hyperintensities could decrease the incidence or delay the onset of dementia. PMID:26912649

  4. Exercise enhances memory consolidation in the aging brain

    Directory of Open Access Journals (Sweden)

    Shikha eSnigdha

    2014-02-01

    Full Text Available Exercise has been shown to reduce age-related losses in cognitive function including learning and memory, but the mechanisms underlying this effect remain poorly understood. Memory formation occurs in stages that include an initial acquisition phase, an intermediate labile phase, and then a process of consolidation which leads to long term memory formation. An effective way to examine the mechanism by which exercise improves memory is to introduce the intervention (exercise, post-acquisition, making it possible to selectively examine memory storage and consolidation. Accordingly we evaluated the effects of post-trial exercise (10 minutes on a treadmill on memory consolidation in aged canines both right after, an hour after, and twenty-four hours after acute exercise training in concurrent discrimination, object location memory (OLM and novel object recognition (NOR tasks. Our study shows that post-trial exercise facilitates memory function by improving memory consolidation in aged animals in a time-dependent manner. The improvements were significant at twenty-four hour post exercise and not right after or one hour after exercise. Aged animals were also tested following chronic exercise (10 min/day for 14 consecutive days on OLM or till criterion were reached (for reversal learning task. We found improvements from a chronic exercise design in both the object location and reversal learning tasks. Our studies suggest that mechanisms to improve overall consolidation and cognitive function remain accessible even with progressing age and can be re-engaged by both acute and chronic exercise.

  5. Biological psychological and social determinants of old age: bio-psycho-social aspects of human aging.

    Science.gov (United States)

    Dziechciaż, Małgorzata; Filip, Rafał

    2014-01-01

    The aging of humans is a physiological and dynamic process ongoing with time. In accordance with most gerontologists' assertions it starts in the fourth decade of life and leads to death. The process of human aging is complex and individualized, occurs in the biological, psychological and social sphere. Biological aging is characterized by progressive age-changes in metabolism and physicochemical properties of cells, leading to impaired self-regulation, regeneration, and to structural changes and functional tissues and organs. It is a natural and irreversible process which can run as successful aging, typical or pathological. Biological changes that occur with age in the human body affect mood, attitude to the environment, physical condition and social activity, and designate the place of seniors in the family and society. Psychical ageing refers to human awareness and his adaptability to the ageing process. Among adaptation attitudes we can differentiate: constructive, dependence, hostile towards others and towards self attitudes. With progressed age, difficulties with adjustment to the new situation are increasing, adverse changes in the cognitive and intellectual sphere take place, perception process involutes, perceived sensations and information received is lowered, and thinking processes change. Social ageing is limited to the role of an old person is culturally conditioned and may change as customs change. Social ageing refers to how a human being perceives the ageing process and how society sees it. PMID:25528930

  6. Brain Infarction and Hemorrhage in Young and Middle-aged Adults

    OpenAIRE

    Lacy, Joseph R.; Filley, Christopher M.; Earnest, Michael P.; Graff-Radford, Neill R

    1984-01-01

    Of 131 young (17 to 44 years) and middle-aged (45 to 55 years) adults who had brain infarction or hemorrhage, the most common etiologic factors were rheumatic heart disease, migraine and oral contraceptive use among the younger group. In contrast, atherosclerotic, hypertensive and diabetes-associated cerebrovascular were the most common causes in the middle-aged group. Patients who have a stroke before age 45 should have prompt, complete laboratory and radiologic testing to define a possible ...

  7. Forecasting Age-Specific Brain Cancer Mortality Rates Using Functional Data Analysis Models

    OpenAIRE

    Pokhrel, Keshav P.; Tsokos, Chris P.

    2015-01-01

    Incidence and mortality rates are considered as a guideline for planning public health strategies and allocating resources. We apply functional data analysis techniques to model age-specific brain cancer mortality trend and forecast entire age-specific functions using exponential smoothing state-space models. The age-specific mortality curves are decomposed using principal component analysis and fit functional time series model with basis functions. Nonparametric smoothing methods are used to...

  8. “Messing with the mind”: evolutionary challenges to human brain augmentation

    OpenAIRE

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understa...

  9. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain.

    Science.gov (United States)

    Gualano, Bruno; Rawson, Eric S; Candow, Darren G; Chilibeck, Philip D

    2016-08-01

    This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline. PMID:27108136

  10. Two distinct forms of functional lateralization in the human brain

    OpenAIRE

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    This study alters our fundamental understanding of the functional interactions between the cerebral hemispheres of the human brain by establishing that the left and right hemispheres have qualitatively different biases in how they dynamically interact with one another. Left-hemisphere regions are biased to interact more strongly within the same hemisphere, whereas right-hemisphere regions interact more strongly with both hemispheres. These two different patterns of interaction are associated ...

  11. Dynamic Shimming of the Human Brain at 7 Tesla

    OpenAIRE

    Juchem, Christoph; Nixon, Terence W.; Diduch, Piotr; Rothman, Douglas L.; Starewicz, Piotr; de Graaf, Robin A.

    2010-01-01

    Dynamic shim updating (DSU) of the zero- to second-order spherical harmonic field terms has previously been shown to improve the magnetic field homogeneity in the human brain at 4 Tesla. The increased magnetic field inhomogeneity at 7 Tesla can benefit from inclusion of third-order shims during DSU. However, pulsed higher-order shims can generate a multitude of temporally varying magnetic fields arising from eddy-currents that can strongly degrade the magnetic field homogeneity.

  12. A Collaborative Brain-Computer Interface for Improving Human Performance

    OpenAIRE

    Wang, Yijun; Jung, Tzyy-Ping

    2011-01-01

    Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world prac...

  13. Quantization of continuous arm movements in humans with brain injury

    OpenAIRE

    Krebs, Hermano Igo; Aisen, Mindy L.; Volpe, Bruce T.; Hogan, Neville

    1999-01-01

    Segmentation of apparently continuous movement has been reported for over a century by human movement researchers, but the existence of primitive submovements has never been proved. In 20 patients recovering from a single cerebral vascular accident (stroke), we identified the apparent submovements that composed a continuous arm motion in an unloaded task. Kinematic analysis demonstrated a submovement speed profile that was invariant across patients with different brain lesions and provided ex...

  14. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    OpenAIRE

    Bimal Lakhani; Borich, Michael R.; Jackson, Jacob N.; Wadden, Katie P.; Sue Peters; Anica Villamayor; MacKay, Alex L.; Vavasour, Irene M.; Alexander Rauscher; Boyd, Lara A.

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent ch...

  15. Quantitative MRI of he human brain at 7 tesla

    OpenAIRE

    Polders, D.L.

    2012-01-01

    This thesis describes the implementation of quantitative MR methods in the human brain at 7 T. By highlighting the drawbacks and advantages of the increased field strength, the use of 7 T MRI for quantitative measurements in clinical research was demonstrated. Inhomogeneities in the transmitted RF field limit the feasibility of methods that rely on the application of homogeneous RF pulses. The increased SNR at this high field strength enables rapid acquisition of high quality imaging volumes ...

  16. Predicting errors from reconfiguration patterns in human brain networks

    OpenAIRE

    Ekman, Matthias; Derrfuss, Jan; Tittgemeyer, Marc; Fiebach, Christian J.

    2012-01-01

    Task preparation is a complex cognitive process that implements anticipatory adjustments to facilitate future task performance. Little is known about quantitative network parameters governing this process in humans. Using functional magnetic resonance imaging (fMRI) and functional connectivity measurements, we show that the large-scale topology of the brain network involved in task preparation shows a pattern of dynamic reconfigurations that guides optimal behavior. This network could be deco...

  17. Maintaining the Brain: Insight into Human Neurodegeneration From Drosophila Mutants

    OpenAIRE

    Lessing, Derek; Bonini, Nancy M.

    2009-01-01

    The fruit fly Drosophila melanogaster has brought significant advances to research in neurodegenerative disease, notably in the identification of genes that are required to maintain the structural integrity of the brain, defined by recessive mutations that cause adult-onset neurodegeneration. Here, we survey these genes in the fly and classify them according to five key cell biological processes. Over half of these genes have counterparts in mouse or human that are also associated with neurod...

  18. Human functional neuroimaging of brain changes associated with practice

    OpenAIRE

    GARAVAN, HUGH PATRICK

    2005-01-01

    PUBLISHED The discovery that experience-driven changes in the human brain can occur from a neural to a cortical level throughout the lifespan has stimulated a proliferation of research into how neural function changes in response to experience, enabled by neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging. Studies attempt to characterize these changes by examining how practice on a task affects the functional anatomy underlying performance. ...

  19. Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates.

    Directory of Open Access Journals (Sweden)

    Yaping Wang

    Full Text Available Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55 ∼ 90 years of age, multi-site, various diagnosis groups, OASIS dataset with over 400 subjects (18 ∼ 96 years of age, wide age range, various diagnosis groups, and NIH pediatrics dataset with 150 subjects (5 ∼ 18 years of age, multi-site, wide age range as a complementary age group to the adult dataset. The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness.

  20. NOX Activity in Brain Aging: Exacerbation by High Fat Diet

    OpenAIRE

    Bruce-Keller, Annadora J.; White, Christy L.; Gupta, Sunita; Knight, Alecia G.; Pistell, Paul J.; Ingram, Donald K.; Morrison, Christopher D.; Keller, Jeffrey N.

    2010-01-01

    This study describes how age and high fat diet affect the profile of NADPH oxidase (NOX). Specifically, NOX activity and subunit expression were evaluated in the frontal cerebral cortex of 7-, 16-, and 24-month old mice following a 4-month exposure to either Western diet (WD, 41% calories from fat) or very high fat lard diet (VHFD, 60% calories from fat). Data reveal a significant effect of age in on NOX activity, and show that NOX activity was only increased by VHFD, and only in 24-month old...

  1. Investigation of G72 (DAOA expression in the human brain

    Directory of Open Access Journals (Sweden)

    Hirsch Steven

    2008-12-01

    Full Text Available Abstract Background Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO, supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions. Methods The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth in silico analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability. Results Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala, spinal cord or testis. A detailed in silico analysis provides several lines of evidence that support the apparent low or absent expression of G72. Conclusion Our results suggest that native G72 protein is not normally present in the tissues that we analysed

  2. Imaging synaptic density in the living human brain.

    Science.gov (United States)

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. PMID:27440727

  3. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  4. Neuroendocrine modulation of the "menopause": insights into the aging brain.

    Science.gov (United States)

    Wise, P M

    1999-12-01

    The menopause marks the permanent end of fertility in women. It was once thought that this dramatic physiological change could be explained simply by the exhaustion of the reservoir of ovarian follicles. New data from studies performed in women and animal models make us reassess this assumption. An increasing body of evidence suggests that there are multiple pacemakers that contribute to the transition to irregular cycles, decreasing fertility, and the timing of the menopause. We will present evidence that lends credence to the possibility that a dampening and desynchronization of the precisely orchestrated neural signals lead to miscommunication between the brain and the pituitary-ovarian axis, and that this constellation of hypothalamic-pituitary-ovarian events leads to the deterioration of regular cyclicity and heralds menopausal transition. PMID:10600782

  5. Flexible Connectivity in the Aging Brain Revealed by Task Modulations

    NARCIS (Netherlands)

    Geerligs, Linda; Saliasi, Emi; Renken, Remco J.; Maurits, Natasha M.; Lorist, Monicque M.

    2014-01-01

    Recent studies have shown that aging has a large impact on connectivity within and between functional networks. An open question is whether elderly still have the flexibility to adapt functional network connectivity (FNC) to the demands of the task at hand. To study this, we collected fMRI data in y

  6. Combined age- and trauma-related proteomic changes in rat neocortex: a basis for brain vulnerability

    OpenAIRE

    Mehan, Neal D.; Strauss, Kenneth I

    2011-01-01

    This proteomic study investigates the widely observed clinical phenomenon, that after comparable brain injuries, geriatric patients fare worse and recover less cognitive and neurologic function than younger victims. Utilizing a rat traumatic brain injury model, sham surgery or a neocortical contusion was induced in 3 age groups. Geriatric (21 months) rats performed worse on behavioral measures than young adults (12–16 weeks) and juveniles (5– 6 weeks). Motor coordination and certain cognitive...

  7. Metabolism of choline in brain of the aged CBF-1 mouse

    International Nuclear Information System (INIS)

    In order to quantify the changes that occur in the cholinergic central nervous system with aging, we have compared acetylcholine (Ach) formation in brain cortex slice preparations from 2-year-old aged CBF-1 mouse brains and compared the findings with those in 2-4-month-old young adult mouse brain slices. Incorporation of exogenous radioactively labelled choline (31 nM [3H] choline) into acetyl choline in incubated brain slices was linear with time for 90 min. Percentage of total choline label distributed into Ach remained constant from 5 min after starting the incubation to 90 min. In contrast, distribution of label into intracellular free choline (Ch) and phosphorylcholine (Pch) changed continuously over this period suggesting that the Ch pool for Ach synthesis in brain cortex is different from that for Pch synthesis. Incorporation of radioactivity into Ach was not influenced by administration of 10 microM eserine, showing that the increment of radioactivity in Ach reflects rate of Ach formation, independently from degradation by acetylcholine esterases. Under our experimental conditions, slices from cortices of aged 24-month-old mouse brain showed a significantly greater (27%) incorporation of radioactivity into intracellular Ach than those from young, 2-4-month-old, brain cortices. Inhibitors of Ach release, 1 mM ATP or GABA, had no effect. Since concentration of radioactive precursor in the incubation medium was very low (31 nM), the Ch pool for Ach synthesis in slices was labelled without measurably changing the size of the endogenous pool. These data suggest a compensatory acceleration of Ach synthesis or else a smaller precursor pool specific for Ach synthesis into which labelled Ch migrated in aged brain

  8. Hot Topics in Research: Preventive Neuroradiology in Brain Aging and Cognitive Decline

    OpenAIRE

    Raji, Cyrus A.; Eyre, Harris; Wei, Sindy H.; Bredesen, Dale; Moylan, Steven; Law, Meng; Small, Gary; Thompson, Paul; Friedlander, Robert; Silverman, Dan H.; Baune, Bernhard T.; Hoang, Thu-Anh; Salamon, Noriko; Toga, Arthur; Vernooij, Meike W

    2015-01-01

    Preventive neuroradiology is a new concept supported by a growing literature. The main rationale of preventive neuroradiology is the application of multi-modal brain imaging towards early and subclinical detection of brain disease and subsequent preventive actions through identification of modifiable risk factors. An insightful example of this is in the area of age-related cognitive decline, mild cognitive impairment and dementia with potentially modifiable risk factors such as obesity, diet,...

  9. Effects of Long-Term Mindfulness Meditation on Brain's White Matter Microstructure and its Aging

    OpenAIRE

    Davide eLaneri; Verena eSchuster; Bruno eDietsche; Andreas eJansen; Ulrich eOtt; Jens eSommer

    2016-01-01

    Although research on the effects of mindfulness meditation (MM) is increasing, still very little has been done to address its influence on the white matter (WM) of the brain. We hypothesized that the practice of MM might affect the WM microstructure adjacent to five brain regions of interest associated with mindfulness. Diffusion tensor imaging was employed on samples of meditators and non-meditators (n=64) in order to investigate the effects of MM on group difference and aging. Tract-Based S...

  10. Relevance Of Human Brain Banking In Neuroscience - A National Facility

    Directory of Open Access Journals (Sweden)

    Shankar S K

    1999-01-01

    Full Text Available The lack of animal models for many of the neurodegenerative and psychiatric disorders and the fact that animal models cannot substitute for human tissue led to the establishment of Brain Banks that collect, preserve and provide fresh human tissue for researchers. One such Bank has been set up at the National Institute of Mental Health and Neurosciences funded by Dept. of Biotechnology, Dept. of Science and Technology and ICMR. Brains and tissue fluids (serum and CSF are collected at autopsy following informed consent from close relatives. One half of the fresh brain from neurodegenerative and psychiatric disorders are frozen at -70′ C while the other half and brains from infective conditions are formalin fixed which can be used for pathomorphological studies. Only fresh frozen tissues that are tested and found negative for HIV and HbsAg are provided for research. The neural tissues as well as tissue fluids that are being supplied by the Brain Bank have supported a number of research projects in diverse fields of neurosciences. Many significant discoveries that have contributed towards understanding pathogenesis of disease, their genetic basis, and evolving prognostic and diagnostic markers for neurologic disease in the CSF have been made possible by the existence of such a facility. The continued functioning of such a facility requires the close co-operation of the clinical neuroscientists, pathologists and the other neuroscientists. Increased awareness and commitment amongst the scientific fraternity is necessary to keep alive the demand and ensure uninterrupted supply of fresh tissue for research. This will help usher in the era of molecular neurobiology with the fond hope that many more of the relentlessly progressive neurodegenerative disorders will eventually find a cause and cure.

  11. Association of Metabolic Dysregulation With Volumetric Brain Magnetic Resonance Imaging and Cognitive Markers of Subclinical Brain Aging in Middle-Aged Adults

    OpenAIRE

    Beiser, Alexa S; Au, Rhoda; Himali, Jayandra J.; Debette, Stephanie; DeCarli, Charles; Vasan, Ramachandran S.; Wolf, Philip A.; Seshadri, Sudha; Tan, Zaldy S.; Fox, Caroline

    2011-01-01

    Objective: Diabetic and prediabtic states, including insulin resistance, fasting hyperglycemia, and hyperinsulinemia, are associated with metabolic dysregulation. These components have been individually linked to increased risks of cognitive decline and Alzheimer’s disease. We aimed to comprehensively relate all of the components of metabolic dysregulation to cognitive function and brain magnetic resonance imaging (MRI) in middle-aged adults. Research Design and Methods: Framingham Offspring ...

  12. Genotype and ancestry modulate brain's DAT availability in healthy humans

    International Nuclear Information System (INIS)

    The dopamine transporter (DAT) is a principal regulator of dopaminergic neurotransmission and its gene (the SLC6A3) is a strong biological candidate gene for various behavioral- and neurological disorders. Intense investigation of the link between the SLC6A3 polymorphisms and behavioral phenotypes yielded inconsistent and even contradictory results. Reliance on objective brain phenotype measures, for example, those afforded by brain imaging, might critically improve detection of DAT genotype-phenotype association. Here, we tested the relationship between the DAT brain availability and the SLC6A3 genotypes using an aggregate sample of 95 healthy participants of several imaging studies. These studies employed positron emission tomography (PET) with [11C] cocaine wherein the DAT availability was estimated as Bmax/Kd; while the genotype values were obtained on two repeat polymorphisms - 3-UTR- and intron 8- VNTRs. The main findings are the following: (1) both polymorphisms analyzed as single genetic markers and in combination (haplotype) modulate DAT density in midbrain; (2) ethnic background and age influence the strength of these associations; and (3) age-related changes in DAT availability differ in the 3-UTR and intron8 - genotype groups.

  13. Genotype and ancestry modulate brain's DAT availability in healthy humans.

    Directory of Open Access Journals (Sweden)

    Elena Shumay

    Full Text Available The dopamine transporter (DAT is a principal regulator of dopaminergic neurotransmission and its gene (the SLC6A3 is a strong biological candidate gene for various behavioral- and neurological disorders. Intense investigation of the link between the SLC6A3 polymorphisms and behavioral phenotypes yielded inconsistent and even contradictory results. Reliance on objective brain phenotype measures, for example, those afforded by brain imaging, might critically improve detection of DAT genotype-phenotype association. Here, we tested the relationship between the DAT brain availability and the SLC6A3 genotypes using an aggregate sample of 95 healthy participants of several imaging studies. These studies employed positron emission tomography (PET with [¹¹C]cocaine wherein the DAT availability was estimated as Bmax/Kd; while the genotype values were obtained on two repeat polymorphisms--3-UTR- and intron 8--VNTRs. The main findings are the following: 1 both polymorphisms analyzed as single genetic markers and in combination (haplotype modulate DAT density in midbrain; 2 ethnic background and age influence the strength of these associations; and 3 age-related changes in DAT availability differ in the 3-UTR and intron 8--genotype groups.

  14. Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model.

    Science.gov (United States)

    Aydın, A Fatih; Çoban, Jale; Doğan-Ekici, Işın; Betül-Kalaz, Esra; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-04-01

    D-galactose (GAL) has been used as an animal model for brain aging and antiaging studies. GAL stimulates oxidative stress in several tissues including brain. Carnosine (CAR; β-alanil-L-histidine) and taurine (TAU; 2-aminoethanesulfonic acid) exhibit antioxidant properties. CAR and TAU have anti-aging and neuroprotective effects. We investigated the effect of CAR and TAU supplementations on oxidative stress and brain damage in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days per week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days per week) or TAU (2.5% w/w; in rat chow) for 2 months. Brain malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST) and acetylcholinesterase (AChE) activities were determined. Expressions of B cell lymphoma-2 (Bcl-2), Bax and caspase-3 were also evaluated in the brains by immunohistochemistry. GAL treatment increased brain MDA and PC levels and AChE activities. It decreased significantly brain GSH levels, SOD and GSH-Px but not GST activities. GAL treatment caused histopathological changes and increased apoptosis. CAR and TAU significantly reduced brain AChE activities, MDA and PC levels and elevated GSH levels in GAL-treated rats. CAR, but not TAU, significantly increased low activities of SOD and GSH-Px. Both CAR and TAU diminished apoptosis and ameliorated histopathological findings in the brain of GAL-treated rats. Our results indicate that CAR and TAU may be effective to prevent the development of oxidative stress, apoptosis and histopathological deterioration in the brain of GAL-treated rats. PMID:26518192

  15. The age pattern of human capital and regional productivity

    OpenAIRE

    Hirte, Georg; Brunow, Stephan

    2008-01-01

    We explore the impact of the age structure of human capital on average regional productivity by applying a spatial econometric analysis based on an augmented Lucas-type production function. We also apply a new definition of regional human capital focusing on its availability. The estimates provide evidence that there are age specific human capital effects in Germany and that a temporary increase in regional productivity could occur during the demographic transition. Furthermore, it becomes cl...

  16. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation

    OpenAIRE

    Lezi, E; Burns, Jeffrey M.; Swerdlow, Russell H.

    2014-01-01

    In aged mice we assessed how intensive exercise affects brain bioenergetics, inflammation, and neurogenesis-relevant parameters. After 8 weeks of a supra-lactate threshold treadmill exercise intervention, 21-month old C57BL/6 mice showed increased brain PGC-1α protein, mTOR and phospho-mTOR protein, citrate synthase mRNA, and mtDNA copy number. Hippocampal VEGF-A gene expression trended higher, and a positive correlation between VEGF-A and PRC mRNA levels was observed. Brain DCX, BDNF, TNF-α,...

  17. Measurement of brain atrophy of aging using x-ray computed tomography

    International Nuclear Information System (INIS)

    We measured brain volume of 1,045 subjects with no brain damage using x-ray computed tomography and investigated brain atrophy of aging. Severity of brain atrophy was estimated by brain atrophy index (BAI): BAI (%)=100 (%)x(cerebrospinal fluid space volume/cranial cavity volume). Atrophy of the brain began with statistical significance in the forties in both sexes. In males 40-49 years of age the mean BAI was 1.0% greater (p<0.001) and the S.D. of BAI was 1.1% greater (p<0.001) than those in their thirties. In females of 40-49 years the mean BAI was 0.5% greater (p<0.001) than that in their thirties, but there was no statistical significance between the two S.D.'s of both decades. The BAI increased exponentially with the increasing age from thirties in both sexes. Correlation coefficients were 0.702 (p< 0.001, n=471) in males and 0.721 (p<0.001, n=480) in females. From the regression coefficients it was calculated that the BAI was doubled in 19.4 years in males and 17.4 years in females after thirties. (author)

  18. Transolfactory neuroinvasion by viruses threatens the human brain.

    Science.gov (United States)

    Mori, I

    2015-12-01

    Viral neuroinvasion via the olfactory system has been investigated in a variety of virus-animal models by scientists in many fields including virologists, pathologists, and neurologists. In humans, herpes simplex virus type 1 (HSV-1), human herpesvirus 6 (HHV-6), Borna disease virus, rabies virus, and influenza A virus have been shown to take the olfactory route for neuroinvasion based on forensic and post-mortem specimens. This article briefly summarizes the anatomy, physiology, and immunology of the olfactory system and presents a battery of neurovirulent viruses that may threaten the human brain by invading through this peripheral pathway, especially focusing on two of the most intensively studied viruses--HSV-1 and influenza A virus. Viruses may insidiously invade the olfactory neural network not only to precipitate encephalitis/encephalopathy but also to promote the development of neurodegenerative and demyelinating disorders. Substantial information obtained by analyzing human specimens is required to argue for or against this hypothesis. PMID:26666182

  19. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Lauren P. Klosinski

    2015-12-01

    Full Text Available White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  20. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease.

    Science.gov (United States)

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-12-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical. PMID:26844268

  1. Practice-Oriented Retest Learning as the Basic Form of Cognitive Plasticity of the Aging Brain

    Directory of Open Access Journals (Sweden)

    Lixia Yang

    2011-01-01

    Full Text Available It has been well documented that aging is associated with declines in a variety of cognitive functions. A growing body of research shows that the age-related cognitive declines are reversible through cognitive training programs, suggesting maintained cognitive plasticity of the aging brain. Retest learning represents a basic form of cognitive plasticity. It has been consistently demonstrated for adults in young-old and old-old ages. Accumulated research indicates that retest learning is effective, robust, endurable and could occur at a more conceptual level beyond item-specific memorization. Recent studies also demonstrate promisingly broader transfer effects from retest practice of activities involving complex executive functioning to other untrained tasks. The results shed light on the development of self-guided mental exercise programs to improve cognitive performance and efficiency of the aging brain. The relevant studies were reviewed, and the findings were discussed in light of their limitations, implications, and future directions.

  2. Brain white matter structure and information processing speed in healthy older age.

    Science.gov (United States)

    Kuznetsova, Ksenia A; Maniega, Susana Muñoz; Ritchie, Stuart J; Cox, Simon R; Storkey, Amos J; Starr, John M; Wardlaw, Joanna M; Deary, Ian J; Bastin, Mark E

    2016-07-01

    Cognitive decline, especially the slowing of information processing speed, is associated with normal ageing. This decline may be due to brain cortico-cortical disconnection caused by age-related white matter deterioration. We present results from a large, narrow age range cohort of generally healthy, community-dwelling subjects in their seventies who also had their cognitive ability tested in youth (age 11 years). We investigate associations between older age brain white matter structure, several measures of information processing speed and childhood cognitive ability in 581 subjects. Analysis of diffusion tensor MRI data using Tract-based Spatial Statistics (TBSS) showed that all measures of information processing speed, as well as a general speed factor composed from these tests (g speed), were significantly associated with fractional anisotropy (FA) across the white matter skeleton rather than in specific tracts. Cognitive ability measured at age 11 years was not associated with older age white matter FA, except for the g speed-independent components of several individual processing speed tests. These results indicate that quicker and more efficient information processing requires global connectivity in older age, and that associations between white matter FA and information processing speed (both individual test scores and g speed), unlike some other aspects of later life brain structure, are generally not accounted for by cognitive ability measured in youth. PMID:26254904

  3. Exercise enhances memory consolidation in the aging brain

    OpenAIRE

    Shikha Snigdha; Christina de Rivera

    2014-01-01

    Exercise has been shown to reduce age-related losses in cognitive function including learning and memory, but the mechanisms underlying this effect remain poorly understood. Memory formation occurs in stages that include an initial acquisition phase, an intermediate labile phase, and then a process of consolidation which leads to long term memory formation. An effective way to examine the mechanism by which exercise improves memory is to introduce the intervention (exercise), post-acquisition...

  4. Selective Attention to Emotion in the Aging Brain

    OpenAIRE

    Samanez-Larkin, Gregory R.; Robertson, Elaine R.; Mikels, Joseph A.; Carstensen, Laura L.; Gotlib, Ian H.

    2009-01-01

    A growing body of research suggests that the ability to regulate emotion remains stable or improves across the adult life span. Socioemotional selectivity theory maintains that this pattern of findings reflects the prioritization of emotional goals. Given that goal-directed behavior requires attentional control, the present study was designed to investigate age differences in selective attention to emotional lexical stimuli under conditions of emotional interference. Both neural and behaviora...

  5. Indestructible plastic: the neuroscience of the new aging brain

    OpenAIRE

    Constance Holman; Etienne de Villers-Sidani

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain’s capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: the cognitive neuroscience of the normal aging. This complex process, once d...

  6. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  7. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    International Nuclear Information System (INIS)

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p -53) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease

  8. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  9. Brain stem global gene expression profiles in human spina bifida embryos

    Institute of Scientific and Technical Information of China (English)

    Hong Zhao; Xiang Li; Wan-I Lie; Quanren He; Ting Zhang; Xiaoying Zheng; Ran Zhou; Jun Xie

    2011-01-01

    Environmental and genetic factors influence the occurrence of neural tube defects, such as spina bifida.Specific disease expression patterns will help to elucidate the pathogenesis of disease.However, results obtained from animal models, which often exhibit organism specificity, do not fully explain the mechanisms of human spina bifida onset.In the present study, three embryos with a gestational age of approximately 17 weeks and a confirmed diagnosis of spina bifida, as well as 3 age-matched normal embryos, were obtained from abortions.Fetal brain stem tissues were dissected for RNA isolation, and microarray analyses were conducted to examine profiles of gene expression in brain stems of spina bifida and normal embryos using Affymetrix HG-U1 33A 2.0 GeneChip arrays.Of the 14 500 gene transcripts examined, a total of 182 genes exhibited at least 2.5-fold change in expression, including 140 upregulated and 42 downregulated genes.These genes were placed into 19 main functional categories according to the Gene Ontology Consortium database for biological functions.Of the 182 altered genes, approximately 50% were involved in cellular apoptosis, growth, adhesion, cell cycle, stress, DNA replication and repair, signal transduction, nervous system development, oxidoreduction, immune responses, and regulation of gene transcription.Gene expression in multiple biological pathways was altered in the brain stem of human spina bifida embryos.

  10. Family poverty affects the rate of human infant brain growth.

    Directory of Open Access Journals (Sweden)

    Jamie L Hanson

    Full Text Available Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77. In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES, with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  11. Canonical genetic signatures of the adult human brain.

    Science.gov (United States)

    Hawrylycz, Michael; Miller, Jeremy A; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L; Jegga, Anil G; Aronow, Bruce J; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F; Dierker, Donna L; Menche, Jörg; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R; Jones, Allan; Van Essen, David C; Koch, Christof; Lein, Ed

    2015-12-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  12. Specialisation in the human brain: the case of numbers

    Directory of Open Access Journals (Sweden)

    Roi Cohen Kadosh

    2011-07-01

    Full Text Available How numerical representation is encoded in the adult human brain is important for a basic understanding of human brain organization, its typical and atypical development, its evolutionary precursors, cognitive architectures, education and rehabilitation. Previous studies have shown that numerical processing activates the same intraparietal regions irrespective of the presentation format (e.g. symbolic digits or non-symbolic dot arrays. This has led to claims that there is a single format independent, numerical representation. In the current study we used a functional magnetic resonance adaptation paradigm, and effective connectivity analysis to re-examine whether numerical processing in the intraparietal sulci is dependent or independent on the format of the stimuli. We obtained two novel results. First, the whole brain analysis revealed that format change (e.g., from dots to digits, in the absence of a change in magnitude, activated the same intraparietal regions as magnitude change, but to a greater degree. Second, using dynamic causal modeling (DCM as a tool to disentangle neuronal specialization across regions that are commonly activated, we found that the connectivity between the left and right intraparietal sulci is format-dependent. Together, this line of results supports the idea that numerical representation is subserved by multiple mechanisms within the same parietal regions.

  13. Mass spectrometry quantification of clusterin in the human brain

    Directory of Open Access Journals (Sweden)

    Chen Junjun

    2012-08-01

    Full Text Available Abstract Background The multifunctional glycoprotein clusterin has been associated with late-onset Alzheimer’s disease (AD. Further investigation to define the role of clusterin in AD phenotypes would be aided by the development of techniques to quantify level, potential post-translational modifications, and isoforms of clusterin. We have developed a quantitative technique based on multiple reaction monitoring (MRM mass spectrometry to measure clusterin in human postmortem brain tissues. Results A stable isotope-labeled concatenated peptide (QconCAT bearing selected peptides from clusterin was expressed with an in vitro translation system and purified. This clusterin QconCAT was validated for use as an internal standard for clusterin quantification using MRM mass spectrometry. Measurements were performed on the human postmortem frontal and temporal cortex from control and severe AD cases. During brain tissues processing, 1% SDS was used in the homogenization buffer to preserve potential post-translational modifications of clusterin. However, MRM quantifications in the brain did not suggest phosphorylation of Thr393, Ser394, and Ser396 residues reported for clusterin in serum. MRM quantifications in the frontal cortex demonstrated significantly higher (P  Conclusions The proposed protocol is a universal quantitative technique to assess expression level of clusterin. It is expected that application of this protocol to quantification of various clusterin isoforms and potential post-translational modifications will be helpful in addressing the role of clusterin in AD.

  14. Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia

    OpenAIRE

    Zhang Y; Hodgson N.W.; Trivedi M.S.; Abdolmaleky H.M.; Fournier M.; Cuenod M.; Do K.Q.; Deth R.C.

    2016-01-01

    Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methionine synthase (MS) in brain development and function, but vitamin B12 status in the brain across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl) exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively. We measured levels of five Cbl species in postmortem human frontal...

  15. THE ANOREXIA OF AGING IN HUMANS

    Science.gov (United States)

    Energy intake is reduced in older individuals, with several lines of evidence suggesting that both physiological impairment of food intake regulation and non-physiological mechanisms are important. Non-physiological causes of the anorexia of aging include social (e.g. poverty, isolation), psycholog...

  16. Active ingredients against human epidermal aging.

    Science.gov (United States)

    Lorencini, Márcio; Brohem, Carla A; Dieamant, Gustavo C; Zanchin, Nilson I T; Maibach, Howard I

    2014-05-01

    The decisive role of the epidermis in maintaining body homeostasis prompted studies to evaluate the changes in epidermal structure and functionality over the lifetime. This development, along with the identification of molecular mechanisms of epidermal signaling, maintenance, and differentiation, points to a need for new therapeutic alternatives to treat and prevent skin aging. In addition to recovering age- and sun-compromised functions, proper treatment of the epidermis has important esthetic implications. This study reviews active ingredients capable of counteracting symptoms of epidermal aging, organized according to the regulation of specific age-affected epidermal functions: (1) several compounds, other than retinoids and derivatives, act on the proliferation and differentiation of keratinocytes, supporting the protective barrier against mechanical and chemical insults; (2) natural lipidic compounds, as well as glycerol and urea, are described as agents for maintaining water-ion balance; (3) regulation of immunological pathogen defense can be reinforced by natural extracts and compounds, such as resveratrol; and (4) antioxidant exogenous sources enriched with flavonoids and vitamin C, for example, improve solar radiation protection and epidermal antioxidant activity. The main objective is to provide a functional classification of active ingredients as regulatory elements of epidermal homeostasis, with potential cosmetic and/or dermatological applications. PMID:24675046

  17. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals

    Science.gov (United States)

    Pieramico, Valentina; Esposito, Roberto; Cesinaro, Stefano; Frazzini, Valerio; Sensi, Stefano L.

    2014-01-01

    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia. PMID:25228860

  18. The effect of aging on brain barriers and the consequences for Alzheimer's disease development.

    Science.gov (United States)

    Gorlé, Nina; Van Cauwenberghe, Caroline; Libert, Claude; Vandenbroucke, Roosmarijn E

    2016-08-01

    Life expectancy has increased in most developed countries, which has led to an increase in the proportion of elderly people in the world's population. However, this increase in life expectancy is not accompanied by a lengthening of the health span since aging is characterized with progressive deterioration in cellular and organ functions. The brain is particularly vulnerable to disease, and this is reflected in the onset of age-related neurodegenerative diseases such as Alzheimer's disease. Research shows that dysfunction of two barriers in the central nervous system (CNS), the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB), plays an important role in the progression of these neurodegenerative diseases. The BBB is formed by the endothelial cells of the blood capillaries, whereas the BCSFB is formed by the epithelial cells of the choroid plexus (CP), both of which are affected during aging. Here, we give an overview of how these barriers undergo changes during aging and in Alzheimer's disease, thereby disturbing brain homeostasis. Studying these changes is needed in order to gain a better understanding of the mechanisms of aging at the brain barriers, which might lead to the development of new therapies to lengthen the health span (including mental health) and reduce the chances of developing Alzheimer's disease. PMID:27143113

  19. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    Science.gov (United States)

    Pieramico, Valentina; Esposito, Roberto; Cesinaro, Stefano; Frazzini, Valerio; Sensi, Stefano L

    2014-01-01

    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia. PMID:25228860

  20. Felbamate increases [3H]glycine binding in rat brain and sections of human postmortem brain.

    Science.gov (United States)

    McCabe, R T; Sofia, R D; Layer, R T; Leiner, K A; Faull, R L; Narang, N; Wamsley, J K

    1998-08-01

    The anticonvulsant compound felbamate (2-phenyl-1,3-propanediol dicarbamate; FBM) appears to inhibit the function of the N-methyl-D-aspartate (NMDA) receptor complex through an interaction with the strychnine-insensitive glycine recognition site. Since we have demonstrated previously that FBM inhibits the binding of [3H]5, 7-dichlorokynurenic acid (DCKA), a competitive antagonist at the glycine site, we assessed the ability of FBM to modulate the binding of an agonist, [3H]glycine, to rat forebrain membranes and human brain sections. In contrast to its ability to inhibit [3H]5,7-DCKA binding, FBM increased [3H]glycine binding (20 nM; EC50 = 485 microM; Emax = 211% of control; nH = 1.8). FBM, but not carbamazepine, phenytoin, valproic acid or phenobarbital, also increased [3H]glycine binding (50 nM; EC50 = 142 microM; Emax = 157% of control; nH = 1.6) in human cortex sections. Autoradiographic analysis of human brain slices demonstrated that FBM produced the largest increases in [3H]glycine binding in the cortex, hippocampus and the parahippocampal gyrus. Because various ions can influence the binding of glycine-site ligands, we assessed their effects on FBM-modulation of [3H]glycine binding. FBM-enhanced [3H]glycine binding was attenuated by Zn++ and not inhibited by Mg++ in human brain. These results suggest that FBM increases [3H]glycine binding in a manner sensitive to ions which modulate the NMDA receptor. These data support the hypothesis that FBM produces anticonvulsant and neuroprotective effects by inhibiting NMDA receptor function, likely through an allosteric modulation of the glycine site. PMID:9694960

  1. EEG Resting-State Brain Topological Reorganization as a Function of Age

    Science.gov (United States)

    Petti, Manuela; Toppi, Jlenia; Mattia, Donatella; Astolfi, Laura

    2016-01-01

    Resting state connectivity has been increasingly studied to investigate the effects of aging on the brain. A reduced organization in the communication between brain areas was demonstrated by combining a variety of different imaging technologies (fMRI, EEG, and MEG) and graph theory. In this paper, we propose a methodology to get new insights into resting state connectivity and its variations with age, by combining advanced techniques of effective connectivity estimation, graph theoretical approach, and classification by SVM method. We analyzed high density EEG signals recorded at rest from 71 healthy subjects (age: 20–63 years). Weighted and directed connectivity was computed by means of Partial Directed Coherence based on a General Linear Kalman filter approach. To keep the information collected by the estimator, weighted and directed graph indices were extracted from the resulting networks. A relation between brain network properties and age of the subject was found, indicating a tendency of the network to randomly organize increasing with age. This result is also confirmed dividing the whole population into two subgroups according to the age (young and middle-aged adults): significant differences exist in terms of network organization measures. Classification of the subjects by means of such indices returns an accuracy greater than 80%. PMID:27006652

  2. Memory-related brain lateralisation in birds and humans.

    Science.gov (United States)

    Moorman, Sanne; Nicol, Alister U

    2015-03-01

    Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation. PMID:25036892

  3. Interventions to Slow Aging in Humans: Are We Ready?

    OpenAIRE

    Longo, Valter D.; Antebi, Adam; Bartke, Andrzej; Barzilai, Nir; Brown-Borg, Holly M.; Caruso, Calogero; Curiel, Tyler J.; de Cabo, Rafael; Franceschi, Claudio; Gems, David; Ingram, Donald K.; Johnson, Thomas E.; Kennedy, Brian K.; Kenyon, Cynthia; Klein, Samuel

    2015-01-01

    The workshop entitled ‘Interventions to Slow Aging in Humans: Are We Ready?’ was held in Erice, Italy, on October 8–13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and ol...

  4. Entropy theory of aging systems humans, corporations and the universe

    CERN Document Server

    Hershey, Daniel

    2009-01-01

    Entropy is a measure of order and disorder. If left alone, aging systems go spontaneously from youthful, low entropy and order to old, high entropy and disorder. This book presents the commonality of entropy principles which govern the birth, maturation, and senescent history of aging humans, corporations, and the universe. Mainly we introduce an entropy theory of aging, based on the non-equilibrium thermodynamic ideas of Ilya Prigogine, leading to the thermodynamic concepts of Excess Entropy (EE) and Excess Entropy Production (EEP). We describe the aging process in humans in terms of the EE a

  5. Klotho is a serum factor related to human aging

    Institute of Scientific and Technical Information of China (English)

    肖能明; 张焱明; 郑权; 顾军

    2004-01-01

    Background Does klotho (KL) protein exist in human serum, and is there any correlation between KL protein in serum with human aging? In order to answer those questions, we identified KL protein in human serum and established the correlation between KL protein in human serum and aging.Methods We prepared a polyclonal antibody against human KL protein that was able to recognize the C-terminal of human secreted KL protein. Western blot and enzyme-linked immunosorbent assay (ELISA) were used to identify KL protein in human serum.Results In Western blot, the antibody specifically recognized a 60-kD KL protein in both human and mice serum. The population aged from 0 to 91 years screened by ELISA revealed that the level of serum KL declined while age increased, though each individual level was variable and that the trend of decreasing in serum KL had no difference in sex.Conclusion Our data suggest that KL is a serum factor related to human aging.

  6. The Speculative Neuroscience of the Future Human Brain

    OpenAIRE

    Robert A. Dielenberg

    2013-01-01

    The hallmark of our species is our ability to hybridize symbolic thinking with behavioral output. We began with the symmetrical hand axe around 1.7 mya and have progressed, slowly at first, then with greater rapidity, to producing increasingly more complex hybridized products. We now live in the age where our drive to hybridize has pushed us to the brink of a neuroscientific revolution, where for the first time we are in a position to willfully alter the brain and hence, our behavior and evol...

  7. Human Brain Glycogen Metabolism During and After Hypoglycemia

    Science.gov (United States)

    Öz, Gülin; Kumar, Anjali; Rao, Jyothi P.; Kodl, Christopher T.; Chow, Lisa; Eberly, Lynn E.; Seaquist, Elizabeth R.

    2009-01-01

    OBJECTIVE We tested the hypotheses that human brain glycogen is mobilized during hypoglycemia and its content increases above normal levels (“supercompensates”) after hypoglycemia. RESEARCH DESIGN AND METHODS We utilized in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with intravenous infusions of [13C]glucose in healthy volunteers to measure brain glycogen metabolism during and after euglycemic and hypoglycemic clamps. RESULTS After an overnight intravenous infusion of 99% enriched [1-13C]glucose to prelabel glycogen, the rate of label wash-out from [1-13C]glycogen was higher (0.12 ± 0.05 vs. 0.03 ± 0.06 μmol · g−1 · h−1, means ± SD, P < 0.02, n = 5) during a 2-h hyperinsulinemic-hypoglycemic clamp (glucose concentration 57.2 ± 9.7 mg/dl) than during a hyperinsulinemic-euglycemic clamp (95.3 ± 3.3 mg/dl), indicating mobilization of glucose units from glycogen during moderate hypoglycemia. Five additional healthy volunteers received intravenous 25–50% enriched [1-13C]glucose over 22–54 h after undergoing hyperinsulinemic-euglycemic (glucose concentration 92.4 ± 2.3 mg/dl) and hyperinsulinemic-hypoglycemic (52.9 ± 4.8 mg/dl) clamps separated by at least 1 month. Levels of newly synthesized glycogen measured from 4 to 80 h were higher after hypoglycemia than after euglycemia (P ≤ 0.01 for each subject), indicating increased brain glycogen synthesis after moderate hypoglycemia. CONCLUSIONS These data indicate that brain glycogen supports energy metabolism when glucose supply from the blood is inadequate and that its levels rebound to levels higher than normal after a single episode of moderate hypoglycemia in humans. PMID:19502412

  8. Microtesla MRI of the human brain with simultaneous MEG

    CERN Document Server

    Zotev, V S; Matlashov, A N; Savukov, I M; Espy, M A; Mosher, J C; Gómez, J J; Kraus, R H

    2007-01-01

    Magnetic resonance imaging at ultra-low fields (ULF MRI) uses SQUIDs (superconducting quantum interference devices) to measure spin precession at a microtesla-range field after sample magnetization is enhanced by a stronger pre-polarizing field. Here, the first ULF images of the human head acquired at 46 microtesla measurement field with pre-polarization at 30 mT are reported. The imaging was performed with 3 mm x 3 mm x 6 mm resolution using the seven-channel SQUID system designed for both ULF MRI and magnetoencephalography (MEG). Auditory MEG signals were measured immediately after the imaging while the human subject remained inside the system. These results demonstrate that ULF MRI of the human brain is feasible and can be naturally combined with MEG.

  9. HEAT WAVES, AGING, AND HUMAN CARDIOVASCULAR HEALTH

    OpenAIRE

    Kenney, W. Larry; Craighead, Daniel H.; Alexander, Lacy M.

    2014-01-01

    This brief review is based on a President’s Lecture presented at the Annual Meeting of the American College of Sports Medicine in 2013. The purpose of this review is to assess the effects of climate change and consequent increases in environmental heat stress on the aging cardiovascular system. The earth’s average global temperature is slowly but consistently increasing, and along with mean temperature changes come increases in heat wave frequency and severity. Extreme passive thermal stress ...

  10. Human ocular aging and ambient temperature.

    OpenAIRE

    Weale, R A

    1981-01-01

    A survey of the literature on the incidence of the age of onset of presbyopia in various parts of the world reveals a great deal of variation. At first sight this appears to correlate with geographical latitude, but statistical and epidemiological evidence rules this out in favour of ambient temperature. Indirect evidence suggests that the crystalline lens is located sufficiently near to the surface of the body for this to be a likely explanation.

  11. Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity.

    Science.gov (United States)

    Suárez, Luz M; Muñoz, María-Dolores; Martín Del Río, Rafael; Solís, José M

    2016-05-01

    A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma). Moreover, using hippocampal slices we tested whether ageing affects synaptic function and plasticity. These parameters were also determined in aged rats fed with either taurine-devoid or taurine-supplemented diets. With age, we found heterogeneous changes in amino acid content depending on the amino acid type and the tissue. In the case of taurine, its content was reduced in the cerebellum of adult and aged rats, but it remained unchanged in the hippocampus, cortex, heart and liver. The synaptic response amplitude decreased in aged rats, although the late phase of long-term synaptic potentiation (late-LTP), a taurine-dependent process, was not altered. Our study highlights the stability of taurine content in the hippocampus during ageing regardless of whether taurine was present in the diet, which is consistent with the lack of changes detected in late-LTP. These results indicate that the beneficial effects of taurine supplementation might be independent of the replenishment of taurine stores. PMID:26803657

  12. Brain-Based Learning: The Neurological Findings About the Human Brain that Every Teacher Should Know to be Effective

    OpenAIRE

    Ronald Jean Degen

    2011-01-01

    The purpose of this paper is to present the main neurological findings about the human brain that provide the basis for brain-based learning, and that represent a narrow field of cognitive science as a whole. The findings that are described were made primarily by neuroscientists who studied the structure and functions of the nervous system with the purpose of correcting abnormalities. Only recently have neuroscientists begun studying the brain-based learning processes of normal students in de...

  13. The effect of somatic disorders on brain aging and dementia : Findings from population studies

    OpenAIRE

    Atti, Anna Rita

    2009-01-01

    This doctoral thesis investigates the effect of somatic disorders on dementia, Alzheimer s disease (AD) and brain aging in late-life. The data for the studies are provided by the Kungsholmen Project (Studies I and II) and the Faenza Project (Studies III and IV). The Kungsholmen Project is a population-based longitudinal study on aging and dementia carried out on 75+ years old people, living in Stockholm, Sweden. The Faenza Project is a cross-sectional population-based study ...

  14. AED Treatment Through Different Ages: As Our Brains Change, Should Our Drug Choices Also?

    OpenAIRE

    French, Jacqueline A.; Staley, Brigid A.

    2012-01-01

    Patient age can impact selection of the optimal antiepileptic drug for a number of reasons. Changes in brain physiology from neonate to elderly, as well as changes in underlying etiologies of epilepsy, could potentially affect the ability of different drugs to control seizures. Unfortunately, much of this is speculative, as good studies demonstrating differences in efficacy across age ranges do not exist. Beyond the issue of efficacy, certain drugs may be more or less appropriate at different...

  15. The effects of ecstasy (MDMA on brain serotonin transporters are dependent on age-of-first exposure in recreational users and animals.

    Directory of Open Access Journals (Sweden)

    Anne Klomp

    Full Text Available RATIONALE AND OBJECTIVE: Little is known on the effects of ecstasy (MDMA, a potent 5-HT-releaser and neurotoxin exposure on brain development in teenagers. The objective of this study was to investigate whether in humans, like previous observations made in animals, the effects of MDMA on the 5-HT system are dependent on age-of-first exposure. METHODS: 5-HT transporter (SERT densities in the frontal cortex and midbrain were assessed with [(123I]β-CIT single photon emission computed tomography in 33 users of ecstasy. Subjects were stratified for early-exposed users (age-at-first exposure 14-18 years; developing brain, and late-exposed users (age-at-first exposure 18-36 years; mature brain. In parallel, we investigated the effects of age experimentally with MDMA in early-exposed (adolescent rats and late-exposed (adult rats using the same radioligand. RESULTS: On average, five years after first exposure, we found a strong inverse relationship, wherein age-at-first exposure predicted 79% of the midbrain SERT variability in early (developing brain exposed ecstasy users, whereas this was only 0.3% in late (mature brain exposed users (p=0.007. No such effect was observed in the frontal cortex. In rats, a significant age-BY-treatment effect (p<0.01 was observed as well, however only in the frontal cortex. CONCLUSIONS: These age-related effects most likely reflect differences in the maturational stage of the 5-HT projection fields at age-at-first exposure and enhanced outgrowth of the 5-HT system due to 5-HT's neurotrophic effects. Ultimately, our findings stress the need for more knowledge on the effects of pharmacotherapies that alter brain 5-HT levels in the pediatric population.

  16. A current genetic and epigenetic view on human aging mechanisms.

    Science.gov (United States)

    Ostojić, Sala; Pereza, Nina; Kapović, Miljenko

    2009-06-01

    The process of aging is one of the most complex and intriguing biological phenomenons. Aging is a genetically regulated process in which the organism's maximum lifespan potential is pre-determined, while the rate of aging is influenced by environmental factors and lifestyle. Considering the complexity of mechanisms involved in the regulation of aging process, up to this date there isn't a major, unifying theory which could explain them. As genetic/epigenetic and environmental factors both inevitably influence the aging process, here we present a review on the genetic and epigenetic regulation of the most important molecular and cellular mechanisms involved in the process of aging. Based on the studies on oxidative stress, metabolism, genome stability, epigenetic modifications and cellular senescence in animal models and humans, we give an overview of key genetic and molecular pathways related to aging. As most of genetic manipulations which influence the aging process also affect reproduction, we discuss aging in humans as a post-reproductive genetically determined process. After the age of reproductive success, aging continously progresses which clinically coincides with the onset of most chronic diseases, cancers and dementions. As evolution shapes the genomes for reproductive success and not for post-reproductive survival, aging could be defined as a protective mechanism which ensures the preservation and progress of species through the modification, trasmission and improvement of genetic material. PMID:19662799

  17. Natural image classification driven by human brain activity

    Science.gov (United States)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  18. Why our brains cherish humanity: Mirror neurons and colamus humanitatem

    Directory of Open Access Journals (Sweden)

    John R. Skoyles

    2008-06-01

    Full Text Available Commonsense says we are isolated. After all, our bodies are physically separate. But Seneca’s colamus humanitatem, and John Donne’s observation that “no man is an island” suggests we are neither entirely isolated nor separate. A recent discovery in neuroscience—that of mirror neurons—argues that the brain and the mind is neither built nor functions remote from what happens in other individuals. What are mirror neurons? They are brain cells that process both what happens to or is done by an individual, and, as it were, its perceived “refl ection,” when that same thing happens or is done by another individual. Thus, mirror neurons are both activated when an individual does a particular action, and when that individual perceives that same action done by another. The discovery of mirror neurons suggests we need to radically revise our notions of human nature since they offer a means by which we may not be so separated as we think. Humans unlike other apes are adapted to mirror interact nonverbally when together. Notably, our faces have been evolved to display agile and nimble movements. While this is usually explained as enabling nonverbal communication, a better description would be nonverbal commune based upon mirror neurons. I argue we cherish humanity, colamus humanitatem, because mirror neurons and our adapted mirror interpersonal interface blur the physical boundaries that separate us.

  19. Multi-dimensional dynamics of human electromagnetic brain activity

    Directory of Open Access Journals (Sweden)

    Tetsuo eKida

    2016-01-01

    Full Text Available Magnetoencephalography (MEG and electroencephalography (EEG are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency, which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  20. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.