WorldWideScience

Sample records for aftershocks

  1. Engineering Applications Using Probabilistic Aftershock Hazard Analyses: Aftershock Hazard Map and Load Combination of Aftershocks and Tsunamis

    Directory of Open Access Journals (Sweden)

    Byunghyun Choi

    2017-12-01

    Full Text Available After the Tohoku earthquake in 2011, we observed that aftershocks tended to occur in a wide region after such a large earthquake. These aftershocks resulted in secondary damage or delayed rescue and recovery activities. In addition, it has been reported that there are regions where the intensity of the vibrations owing to the aftershocks was much stronger than those associated with the main shock. Therefore, it is necessary to consider the seismic risk associated with aftershocks. We used the data regarding aftershocks that was obtained from the Tohoku earthquake and various other historically large earthquakes. We investigated the spatial and temporal distribution of the aftershocks using the Gutenberg–Richter law and the modified Omori law. Subsequently, we previously proposed a probabilistic aftershock occurrence model that is expected to be useful to develop plans for recovery activities after future large earthquakes. In this study, the probabilistic aftershock hazard analysis is used to create aftershock hazard maps. We propose a hazard map focusing on the probability of aftershocks on the scale of the main shock for use with a recovery activity plan. Following the lessons learned from the 2011 Tohoku earthquake, we focus on the simultaneous occurrence of tsunamis and aftershocks just after a great subduction earthquake. The probabilistic aftershock hazard analysis is used to derive load combination equations of the load and resistance factor design. This design is intended to simultaneously consider tsunamis and aftershocks for tsunami-resistant designs of tsunami evacuation buildings.

  2. Larger aftershocks happen farther away: nonseparability of magnitude and spatial distributions of aftershocks

    Science.gov (United States)

    Van Der Elst, Nicholas; Shaw, Bruce E.

    2015-01-01

    Aftershocks may be driven by stress concentrations left by the main shock rupture or by elastic stress transfer to adjacent fault sections or strands. Aftershocks that occur within the initial rupture may be limited in size, because the scale of the stress concentrations should be smaller than the primary rupture itself. On the other hand, aftershocks that occur on adjacent fault segments outside the primary rupture may have no such size limitation. Here we use high-precision double-difference relocated earthquake catalogs to demonstrate that larger aftershocks occur farther away than smaller aftershocks, when measured from the centroid of early aftershock activity—a proxy for the initial rupture. Aftershocks as large as or larger than the initiating event nucleate almost exclusively in the outer regions of the aftershock zone. This observation is interpreted as a signature of elastic rebound in the earthquake catalog and can be used to improve forecasting of large aftershocks.

  3. Temporal characteristics of some aftershock sequences in Bulgaria

    Directory of Open Access Journals (Sweden)

    D. Solakov

    1999-06-01

    Full Text Available We apply statistical analysis to study the temporal distribution of aftershocks in aftershock sequences of five earthquakes which occurred in Bulgaria. We use the maximum likelihood method to estimate the parameters of the modified Omori formula for aftershock sequences which is directly based on a time series. We find that: the maximum likelihood estimates of the parameter p show a regional variation, with lower values of the decay rate in North Bulgaria; the modified Omori formula provides an appropriate representation of temporal variation of the aftershock activity in North Bulgaria; the aftershock sequences in South Bulgaria are best modeled by the combination of an ordinary aftershock sequence with secondary aftershock activity. A plot of the cumulative number of events versus the frequency-linearized time t clearly demonstrates a transition from aftershock to foreshock activity prior to the second 1986 Strazhitsa (North Bulgaria earthquake.

  4. Quantitative Mapping of Precursory Seismic Quiescence Before Large Aftershocks

    Science.gov (United States)

    Neukomm, S.; Wiemer, S.; Giardini, D.

    2002-12-01

    A relative decrease of aftershock activity before the occurrence of large aftershocks to M6+ mainshocks is one of only few earthquake precursors accepted for the IASPEI preliminary list of significant earthquake precursors. If one considers earthquake rate to be dependent on stressing rate, aftershocks sequences offer in fact an ideal environment to detect precursory quiescence before large earthquakes: The numerous aftershocks allow a much higher spatial and temporal resolution of transients in seismicity than possible with the average background rate of micro-earthquakes. Past studies of precursory quiescence before larger aftershocks, however, have largely been based on bulk value. The aim of this study is to map the temporal and spatial variability of activity rate within several rich aftershock sequences, and, possibly, exploit the results for improving real time probabilistic aftershock hazard assessment. We introduce a new algorithm based on fitting the modified Omori law to the aftershock sequences. At arbitrarily chosen grid points, the Omori parameters of the sub-samples containing all aftershock within 5 or 10 km of the node are estimated at time t. We calculate the number of aftershocks N +/- dN in the time interval t + dt using the relevant four Omori parameters (p, c and k) parameters and their corresponding standard deviations estimated using a bootstrap analysis. The difference between the forecasted and the observed number of aftershocks, normalized by the standard deviation of the forecast, is our estimator of rate change. The algorithm is tested on synthetic aftershock sequences containing artificial quiescences in order to calibrate the free parameters for optimal detection of precursory quiescence. We then perform our spatial and temporal mapping for several prominent Californian and Japanese aftershock sequences (Landers, Hector Mine, Northridge, Loma Prieta, Kobe, Western Tottori and Hokkaido). Preliminary results suggest that we cannot

  5. Mainshock-Aftershocks Clustering Detection in Volcanic Regions

    Science.gov (United States)

    Garza Giron, R.; Brodsky, E. E.; Prejean, S. G.

    2017-12-01

    Crustal earthquakes tend to break their general Poissonean process behavior by gathering into two main kinds of seismic bursts: swarms and mainshock-aftershocks sequences. The former is commonly related to volcanic or geothermal processes whereas the latter is a characteristic feature of tectonically driven seismicity. We explore the mainshock-aftershock clustering behavior of different active volcanic regions in Japan and its comparison to non-volcanic regions. We find that aftershock production in volcanoes shows mainshock-aftershocks clustering similar to what is observed in non-volcanic areas. The ratio of volanic areas that cluster in mainshock-aftershocks sequences vs the areas that do not is comparable to the ratio of non-volcanic regions that show clustering vs the ones that do not. Furthermore, the level of production of aftershocks for most volcanic areas where clustering is present seems to be of the same order of magnitude, or slightly higher, as the median of the non-volcanic regions. An interesting example of highly aftershock-productive volcanoes emerges from the 2000 Miyakejima dike intrusion. A big seismic cluster started to build up rapidly in the south-west flank of Miyakejima to later propagate to the north-west towards the Kozushima and Niijima volcanoes. In Miyakejima the seismicity showed a swarm-like signature with a constant earthquake rate, whereas Kozushima and Niijima both had expressions of highly productive mainshock-aftershocks sequences. These findings are surprising given the alternative mechanisms available in volcanic systems for releasing deviatoric strain. We speculate that aftershock behavior might hold a relationship with the rheological properties of the rocks of each system and with the capacity of a system to accumulate or release the internal pressures caused by magmatic or hydrothermal systems.

  6. Accounting for orphaned aftershocks in the earthquake background rate

    Science.gov (United States)

    Van Der Elst, Nicholas

    2017-01-01

    Aftershocks often occur within cascades of triggered seismicity in which each generation of aftershocks triggers an additional generation, and so on. The rate of earthquakes in any particular generation follows Omori's law, going approximately as 1/t. This function decays rapidly, but is heavy-tailed, and aftershock sequences may persist for long times at a rate that is difficult to discriminate from background. It is likely that some apparently spontaneous earthquakes in the observational catalogue are orphaned aftershocks of long-past main shocks. To assess the relative proportion of orphaned aftershocks in the apparent background rate, I develop an extension of the ETAS model that explicitly includes the expected contribution of orphaned aftershocks to the apparent background rate. Applying this model to California, I find that the apparent background rate can be almost entirely attributed to orphaned aftershocks, depending on the assumed duration of an aftershock sequence. This implies an earthquake cascade with a branching ratio (the average number of directly triggered aftershocks per main shock) of nearly unity. In physical terms, this implies that very few earthquakes are completely isolated from the perturbing effects of other earthquakes within the fault system. Accounting for orphaned aftershocks in the ETAS model gives more accurate estimates of the true background rate, and more realistic expectations for long-term seismicity patterns.

  7. Towards a Logical Distinction Between Swarms and Aftershock Sequences

    Science.gov (United States)

    Gardine, M.; Burris, L.; McNutt, S.

    2007-12-01

    The distinction between swarms and aftershock sequences has, up to this point, been fairly arbitrary and non- uniform. Typically 0.5 to 1 order of magnitude difference between the mainshock and largest aftershock has been a traditional choice, but there are many exceptions. Seismologists have generally assumed that the mainshock carries most of the energy, but this is only true if it is sufficiently large compared to the size and numbers of aftershocks. Here we present a systematic division based on energy of the aftershock sequence compared to the energy of the largest event of the sequence. It is possible to calculate the amount of aftershock energy assumed to be in the sequence using the b-value of the frequency-magnitude relation with a fixed choice of magnitude separation (M-mainshock minus M-largest aftershock). Assuming that the energy of an aftershock sequence is less than the energy of the mainshock, the b-value at which the aftershock energy exceeds that of the mainshock energy determines the boundary between aftershock sequences and swarms. The amount of energy for various choices of b-value is also calculated using different values of magnitude separation. When the minimum b-value at which the sequence energy exceeds that of the largest event/mainshock is plotted against the magnitude separation, a linear trend emerges. Values plotting above this line represent swarms and values plotting below it represent aftershock sequences. This scheme has the advantage that it represents a physical quantity - energy - rather than only statistical features of earthquake distributions. As such it may be useful to help distinguish swarms from mainshock/aftershock sequences and to better determine the underlying causes of earthquake swarms.

  8. Scale-free networks of earthquakes and aftershocks

    International Nuclear Information System (INIS)

    Baiesi, Marco; Paczuski, Maya

    2004-01-01

    We propose a metric to quantify correlations between earthquakes. The metric consists of a product involving the time interval and spatial distance between two events, as well as the magnitude of the first one. According to this metric, events typically are strongly correlated to only one or a few preceding ones. Thus a classification of events as foreshocks, main shocks, or aftershocks emerges automatically without imposing predetermined space-time windows. In the simplest network construction, each earthquake receives an incoming link from its most correlated predecessor. The number of aftershocks for any event, identified by its outgoing links, is found to be scale free with exponent γ=2.0(1). The original Omori law with p=1 emerges as a robust feature of seismicity, holding up to years even for aftershock sequences initiated by intermediate magnitude events. The broad distribution of distances between earthquakes and their linked aftershocks suggests that aftershock collection with fixed space windows is not appropriate

  9. Aftershock Energy Distribution by Statistical Mechanics Approach

    Science.gov (United States)

    Daminelli, R.; Marcellini, A.

    2015-12-01

    The aim of our work is to research the most probable distribution of the energy of aftershocks. We started by applying one of the fundamental principles of statistical mechanics that, in case of aftershock sequences, it could be expressed as: the greater the number of different ways in which the energy of aftershocks can be arranged among the energy cells in phase space the more probable the distribution. We assume that each cell in phase space has the same possibility to be occupied, and that more than one cell in the phase space can have the same energy. Seeing that seismic energy is proportional to products of different parameters, a number of different combinations of parameters can produce different energies (e.g., different combination of stress drop and fault area can release the same seismic energy). Let us assume that there are gi cells in the aftershock phase space characterised by the same energy released ɛi. Therefore we can assume that the Maxwell-Boltzmann statistics can be applied to aftershock sequences with the proviso that the judgment on the validity of this hypothesis is the agreement with the data. The aftershock energy distribution can therefore be written as follow: n(ɛ)=Ag(ɛ)exp(-βɛ)where n(ɛ) is the number of aftershocks with energy, ɛ, A and β are constants. Considering the above hypothesis, we can assume g(ɛ) is proportional to ɛ. We selected and analysed different aftershock sequences (data extracted from Earthquake Catalogs of SCEC, of INGV-CNT and other institutions) with a minimum magnitude retained ML=2 (in some cases ML=2.6) and a time window of 35 days. The results of our model are in agreement with the data, except in the very low energy band, where our model resulted in a moderate overestimation.

  10. Statistical properties of mine tremor aftershocks

    CSIR Research Space (South Africa)

    Kgarume, TE

    2010-02-01

    Full Text Available Mine tremors and their aftershocks pose a risk to mine workers in the deep gold mines of South Africa. The statistical properties of mine-tremor aftershocks were investigated as part of an endeavour to assess the hazard and manage the risk. Data...

  11. How informative are slip models for aftershock forecasting?

    Science.gov (United States)

    Bach, Christoph; Hainzl, Sebastian

    2013-04-01

    Coulomb stress changes (ΔCFS) have been recognized as a major trigger mechanism for earthquakes, in particular aftershock distributions and the spatial patterns of ΔCFS are often found to be correlated. However, the Coulomb stress calculations are based on slip inversions and the receiver fault mechanisms which both contain large uncertainties. In particular, slip inversions are usually non-unique and often differ strongly for the same earthquakes. Here we want to address the information content of those inversions with respect to aftershock forecasting. Therefore we compare the slip models to randomized fractal slip models which are only constrained by fault information and moment magnitude. The uncertainty of the aftershock mechanisms is considered by using many receiver fault orientations, and by calculating ΔCFS at several depth layers. The stress change is then converted into an aftershock probability map utilizing a clock advance model. To estimate the information content of the slip models, we use an Epidemic Type Aftershock Sequence (ETAS) model approach introduced by Bach and Hainzl (2012), where the spatial probability density of direct aftershocks is related to the ΔCFS calculations. Besides the directly triggered aftershocks, this approach also takes secondary aftershock triggering into account. We quantify our results by calculating the information gain of the randomized slip models relative to the corresponding published slip model. As case studies, we investigate the aftershock sequences of several well-known main shocks such as 1992 Landers, 1999 Hector Mine, 2004 Parkfield, 2002 Denali. First results show a huge difference in the information content of slip models. For some of the cases up to 90% of the random slip models are found to perform better than the originally published model, for some other cases only few random models are found performing better than the published slip model.

  12. Aftershock Characteristics as a Means of Discriminating Explosions from Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2009-05-20

    The behavior of aftershock sequences around the Nevada Test Site in the southern Great Basin is characterized as a potential discriminant between explosions and earthquakes. The aftershock model designed by Reasenberg and Jones (1989, 1994) allows for a probabilistic statement of earthquake-like aftershock behavior at any time after the mainshock. We use this model to define two types of aftershock discriminants. The first defines M{sub X}, or the minimum magnitude of an aftershock expected within a given duration after the mainshock with probability X. Of the 67 earthquakes with M > 4 in the study region, 63 of them produce an aftershock greater than M{sub 99} within the first seven days after a mainshock. This is contrasted with only six of 93 explosions with M > 4 that produce an aftershock greater than M{sub 99} for the same period. If the aftershock magnitude threshold is lowered and the M{sub 90} criteria is used, then no explosions produce an aftershock greater than M{sub 90} for durations that end more than 17 days after the mainshock. The other discriminant defines N{sub X}, or the minimum cumulative number of aftershocks expected for given time after the mainshock with probability X. Similar to the aftershock magnitude discriminant, five earthquakes do not produce more aftershocks than N{sub 99} within 7 days after the mainshock. However, within the same period all but one explosion produce less aftershocks then N{sub 99}. One explosion is added if the duration is shortened to two days after than mainshock. The cumulative number aftershock discriminant is more reliable, especially at short durations, but requires a low magnitude of completeness for the given earthquake catalog. These results at NTS are quite promising and should be evaluated at other nuclear test sites to understand the effects of differences in the geologic setting and nuclear testing practices on its performance.

  13. Extreme value statistics and thermodynamics of earthquakes: aftershock sequences

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available The Gutenberg-Richter magnitude-frequency law takes into account the minimum detectable magnitude, and treats aftershocks as if they were independent and identically distributed random events. A new magnitude-frequency relation is proposed which takes into account the magnitude of the main shock, and the degree to which aftershocks depend on the main shock makes them appear clustered. In certain cases, there can be two branches in the order-statistics of aftershock sequences: for energies below threshold, the Pareto law applies and the asymptotic distribution of magnitude is the double-exponential distribution, while energies above threshold follow a one-parameter beta distribution, whose exponent is the cluster dimension, and the asymptotic Gompertz distribution predicts a maximum magnitude. The 1957 Aleutian Islands aftershock sequence exemplifies such dual behavior. A thermodynamics of aftershocks is constructed on the analogy between the non-conservation of the number of aftershocks and that of the particle number in degenerate gases.

  14. Deterministic properties of mine tremor aftershocks

    CSIR Research Space (South Africa)

    Kgarume, TE

    2010-10-01

    Full Text Available -values with n-2 degrees of freedom 5th International Seminar on Deep and High Stress Mining, 6-8 October 2010, Santiago CHILE Comparison of aftershock productivity, CLR 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Log(time), s N....0 ≤ MM ≤ 4.0 Proportion of aftershocks (%) Proportion of aftershocks (%) 3 × BG 52.1 46.2 10 × BG 41.5 41.6 5th International Seminar on Deep and High Stress Mining, 6-8 October 2010, Santiago CHILE 5 Conclusions Previous studies have indicated...

  15. Aftershocks of 26th January 2001 Bhuj earthquake and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Aftershocks of 26th January 2001 Bhuj earthquake and seismotectonics of the Kutch region. K S Misra∗, R Bhutani and R Sonp. Geological Survey of India, Alandi Road, Pune - 6, India. ∗email: gsi−pune@vsnl.com. The 26th January 2001 Bhuj earthquake was followed by intense aftershock activity. Aftershock data from ...

  16. The Use of Explosion Aftershock Probabilities for Planning and Deployment of Seismic Aftershock Monitoring System for an On-site Inspection

    Science.gov (United States)

    Labak, P.; Ford, S. R.; Sweeney, J. J.; Smith, A. T.; Spivak, A.

    2011-12-01

    One of four elements of CTBT verification regime is On-site inspection (OSI). Since the sole purpose of an OSI shall be to clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out, inspection activities can be conducted and techniques used in order to collect facts to support findings provided in inspection reports. Passive seismological monitoring, realized by the seismic aftershock monitoring (SAMS) is one of the treaty allowed techniques during an OSI. Effective planning and deployment of SAMS during the early stages of an OSI is required due to the nature of possible events recorded and due to the treaty related constrains on size of inspection area, size of inspection team and length of an inspection. A method, which may help in planning the SAMS deployment is presented. An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using a simple aftershock rate model (Ford and Walter, 2010). The model is developed with data from the Nevada Test Site and Semipalatinsk Test Site, which we take to represent soft- and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help to plan the SAMS deployment for an OSI by giving a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment combined with an estimate of the background seismicity in the IA and an empirically-derived map of threshold magnitude for the SAMS network could aid the OSI team in reporting. We tested the hard-rock model to a scenario similar to the 2008 Integrated Field Exercise 2008 deployment in Kazakhstan and produce an estimate of possible recorded aftershock activity.

  17. Mine aftershocks and implications for seismic hazard assessment

    CSIR Research Space (South Africa)

    Kgarume, T

    2010-11-01

    Full Text Available A methodology of assessing the seismic hazard associated with aftershocks is developed by performing statistical and deterministic analysis of seismic data from two South African deep-level gold mines. A method employing stacking of aftershocks...

  18. How variable is the number of triggered aftershocks?

    Science.gov (United States)

    Marsan, D.; Helmstetter, A.

    2017-07-01

    Aftershock activity depends at first order on the main shock magnitude but also shows important fluctuations between shocks of equal magnitude. We here investigate these fluctuations, by quantifying them and by relating them to the main shock stress drop and other variables, for southern California earthquakes. A method is proposed in order to only count directly triggered aftershocks, rather than secondary aftershocks (i.e., triggered by previous aftershocks), and to only quantify fluctuations going beyond the natural Poisson variability. Testing of the method subjected to various model errors allows to quantify its robustness. It is found that these fluctuations follow a distribution that is well fitted by a lognormal distribution, with a coefficient of variation of about 1.0 to 1.1. A simple model is proposed to relate this observed dependence to main shock stress drop variability.

  19. Assessment of Quantitative Aftershock Productivity Potential in Mining-Induced Seismicity

    Science.gov (United States)

    Kozłowska, Maria; Orlecka-Sikora, Beata

    2017-03-01

    Strong mining-induced earthquakes exhibit various aftershock patterns. The aftershock productivity is governed by the geomechanical properties of rock in the seismogenic zone, mining-induced stress and coseismic stress changes related to the main shock's magnitude, source geometry and focal mechanism. In order to assess the quantitative aftershock productivity potential in the mining environment we apply a forecast model based on natural seismicity properties, namely constant tectonic loading and the Gutenberg-Richter frequency-magnitude distribution. Although previous studies proved that mining-induced seismicity does not obey the simple power law, here we apply it as an approximation of seismicity distribution to resolve the number of aftershocks, not considering their magnitudes. The model used forecasts the aftershock productivity based on the background seismicity level estimated from an average seismic moment released per earthquake and static stress changes caused by a main shock. Thus it accounts only for aftershocks directly triggered by coseismic process. In this study we use data from three different mines, Mponeng (South Africa), Rudna and Bobrek (Poland), representing different geology, exploitation methods and aftershock patterns. Each studied case is treated with individual parameterization adjusted to the data specifics. We propose the modification of the original model, i.e. including the non-uniformity of M 0, resulting from spatial correlation of mining-induced seismicity with exploitation. The results show that, even when simplified seismicity distribution parameters are applied, the modified model predicts the number of aftershocks for each analyzed case well and accounts for variations between these values. Such results are thus another example showing that coseismic processes of mining-induced seismicity reflect features of natural seismicity and that similar models can be applied to study the aftershock rate in both the natural and the

  20. Long Aftershock Sequences within Continents and Implications for Earthquake Hazard Assessment

    Science.gov (United States)

    Stein, S. A.; Liu, M.

    2014-12-01

    Recent seismicity in the Tangshan region in North China has prompted concern about a repetition of the 1976 M7.8 earthquake that destroyed the city, killing more than 242,000 people. However, the decay of seismicity there implies that the recent earthquakes are probably aftershocks of the 1976 event. This 37-year sequence is an example of the phenomenon that aftershock sequences within continents are often significantly longer than the typical 10 years at plate boundaries. The long sequence of aftershocks in continents is consistent with a simple friction-based model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Hence the slowly-deforming continents tend to have aftershock sequences significantly longer than at rapidly-loaded plate boundaries. This effect has two consequences for hazard assessment. First, within the heavily populated continents that are typically within plate interiors, assessments of earthquake hazards rely significantly on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. This assumption would lead to overestimation of the hazard in presently active areas and underestimation elsewhere, if some of these small events are aftershocks. Second, successful attempts to remove aftershocks from catalogs used for hazard assessment would underestimate the hazard, because much of the hazard is due to the aftershocks, and the declustering algorithms implicitly assume short aftershock sequences and thus do not remove long-duration ones.

  1. Nonlinear Viscoelastic Rheology and the Occurrence of Aftershocks

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2017-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. There are compelling evidences that the lower continental crust and upper mantle are governed by various solid state creep mechanisms. Among those mechanisms a power-law viscous flow was suggested to explain the postseismic surface deformation after large earthquakes. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle controls the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle, which were estimated

  2. Depth dependent stress revealed by aftershocks

    Science.gov (United States)

    Narteau, C.; Shebalin, P.

    2017-12-01

    Aftershocks occur in response to perturbations of the state of stress induced either by earthquakes or human activities. Along major strike-slip fault segments of the San Andreas fault system, the time-delay before the onset of the power-law aftershock decay rate (the c-value) varies by three orders of magnitude in the first twenty kilometers below the surface. Despite the influence of the lithostatic stress, there is no continuous change in c-value with respect to depth. Instead, two decay phases are separated by an abrupt increase at an intermediate depth range of 2 to 5 km. This transitional regime is the only one observed in fluid-injection-induced seismic areas. This provides strong evidence for the role of fluid and a porosity reduction mechanism at depth of few kilometers in active fault zones. Aftershock statistics can then be used to predict the evolution the differential shear stress with depth until the brittle-ductile transition is reached.

  3. An Explosion Aftershock Model with Application to On-Site Inspection

    Science.gov (United States)

    Ford, Sean R.; Labak, Peter

    2016-01-01

    An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using an aftershock rate model. The model is developed with data from the Nevada National Security Site, formerly known as the Nevada Test Site, and the Semipalatinsk Test Site, which we take to represent soft-rock and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help inform the Seismic Aftershock Monitoring System (SAMS) deployment in a potential Comprehensive Test Ban Treaty On-Site Inspection (OSI), by giving the OSI team a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment, combined with an estimate of the background seismicity in the IA and an empirically derived map of threshold magnitude for the SAMS network, could aid the OSI team in reporting. We apply the hard-rock model to a M5 event and combine it with the very sensitive detection threshold for OSI sensors to show that tens of events per day are expected up to a month after an explosion measured several kilometers away.

  4. Aftershocks and triggered events of the Great 1906 California earthquake

    Science.gov (United States)

    Meltzner, A.J.; Wald, D.J.

    2003-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults in the world, yet little is known about the aftershocks following the most recent great event on the San Andreas, the Mw 7.8 San Francisco earthquake on 18 April 1906. We conducted a study to locate and to estimate magnitudes for the largest aftershocks and triggered events of this earthquake. We examined existing catalogs and historical documents for the period April 1906 to December 1907, compiling data on the first 20 months of the aftershock sequence. We grouped felt reports temporally and assigned modified Mercalli intensities for the larger events based on the descriptions judged to be the most reliable. For onshore and near-shore events, a grid-search algorithm (derived from empirical analysis of modern earthquakes) was used to find the epicentral location and magnitude most consistent with the assigned intensities. For one event identified as far offshore, the event's intensity distribution was compared with those of modern events, in order to contrain the event's location and magnitude. The largest aftershock within the study period, an M ???6.7 event, occurred ???100 km west of Eureka on 23 April 1906. Although not within our study period, another M ???6.7 aftershock occurred near Cape Mendocino on 28 October 1909. Other significant aftershocks included an M ???5.6 event near San Juan Bautista on 17 May 1906 and an M ???6.3 event near Shelter Cove on 11 August 1907. An M ???4.9 aftershock occurred on the creeping segment of the San Andreas fault (southeast of the mainshock rupture) on 6 July 1906. The 1906 San Francisco earthquake also triggered events in southern California (including separate events in or near the Imperial Valley, the Pomona Valley, and Santa Monica Bay), in western Nevada, in southern central Oregon, and in western Arizona, all within 2 days of the mainshock. Of these trigerred events, the largest were an M ???6.1 earthquake near Brawley

  5. Foreshocks and aftershocks of the Great 1857 California earthquake

    Science.gov (United States)

    Meltzner, A.J.; Wald, D.J.

    1999-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults anywhere in the world, yet we know little about many aspects of its behavior before, during, and after large earthquakes. We conducted a study to locate and to estimate magnitudes for the largest foreshocks and aftershocks of the 1857 M 7.9 Fort Tejon earthquake on the central and southern segments of the fault. We began by searching archived first-hand accounts from 1857 through 1862, by grouping felt reports temporally, and by assigning modified Mercalli intensities to each site. We then used a modified form of the grid-search algorithm of Bakum and Wentworth, derived from empirical analysis of modern earthquakes, to find the location and magnitude most consistent with the assigned intensities for each of the largest events. The result confirms a conclusion of Sieh that at least two foreshocks ('dawn' and 'sunrise') located on or near the Parkfield segment of the San Andreas fault preceded the mainshock. We estimate their magnitudes to be M ~ 6.1 and M ~ 5.6, respectively. The aftershock rate was below average but within one standard deviation of the number of aftershocks expected based on statistics of modern southern California mainshock-aftershock sequences. The aftershocks included two significant events during the first eight days of the sequence, with magnitudes M ~ 6.25 and M ~ 6.7, near the southern half of the rupture; later aftershocks included a M ~ 6 event near San Bernardino in December 1858 and a M ~ 6.3 event near the Parkfield segment in April 1860. From earthquake logs at Fort Tejon, we conclude that the aftershock sequence lasted a minimum of 3.75 years.

  6. Aftershocks of the 13 May 1993 Shumagin Alaska earthquake

    Science.gov (United States)

    Lu, Zhong; Wyss, Max; Tytgat, Guy; McNutt, Steve; Stihler, Scott

    1994-01-01

    The 13 May 1993 Ms 6.9 Shumagin earthquake had an aftershock sequence of 247 earthquakes with magnitudes greater than or equal to 1.5 by 1 June 1993. Of these aftershocks, 79 were located by using S-P travel times at the only two stations within 570 km of the mainshock epicenter. The rupture area inferred from the aftershocks is about 600 km2 and we estimate for the mainshock a mean fault displacement of 1.0 m and a 28 bar stress drop. The magnitude-frequency plots give a b-value for the aftershock sequence of about 0.4, which is low compared to the background value of approximately 0.8. The decay of the aftershock sequence followed the modified Omori law with a p-value of 0.79, which is also lower than the typical values of about 1.1 observed in Alaska. Both of these facts can be interpreted as indicating relatively high ambient stress in the Shumagin seismic gap and the possibility that the 13 May earthquake was a foreshock to a larger gap-filling event to occur within the next few years.

  7. Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks

    Science.gov (United States)

    Polet, J.; Thio, H. K.; Kremer, M.

    2009-12-01

    The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting “strike” of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure

  8. International Aftershock Forecasting: Lessons from the Gorkha Earthquake

    Science.gov (United States)

    Michael, A. J.; Blanpied, M. L.; Brady, S. R.; van der Elst, N.; Hardebeck, J.; Mayberry, G. C.; Page, M. T.; Smoczyk, G. M.; Wein, A. M.

    2015-12-01

    Following the M7.8 Gorhka, Nepal, earthquake of April 25, 2015 the USGS issued a series of aftershock forecasts. The initial impetus for these forecasts was a request from the USAID Office of US Foreign Disaster Assistance to support their Disaster Assistance Response Team (DART) which coordinated US Government disaster response, including search and rescue, with the Government of Nepal. Because of the possible utility of the forecasts to people in the region and other response teams, the USGS released these forecasts publicly through the USGS Earthquake Program web site. The initial forecast used the Reasenberg and Jones (Science, 1989) model with generic parameters developed for active deep continental regions based on the Garcia et al. (BSSA, 2012) tectonic regionalization. These were then updated to reflect a lower productivity and higher decay rate based on the observed aftershocks, although relying on teleseismic observations, with a high magnitude-of-completeness, limited the amount of data. After the 12 May M7.3 aftershock, the forecasts used an Epidemic Type Aftershock Sequence model to better characterize the multiple sources of earthquake clustering. This model provided better estimates of aftershock uncertainty. These forecast messages were crafted based on lessons learned from the Christchurch earthquake along with input from the U.S. Embassy staff in Kathmandu. Challenges included how to balance simple messaging with forecasts over a variety of time periods (week, month, and year), whether to characterize probabilities with words such as those suggested by the IPCC (IPCC, 2010), how to word the messages in a way that would translate accurately into Nepali and not alarm the public, and how to present the probabilities of unlikely but possible large and potentially damaging aftershocks, such as the M7.3 event, which had an estimated probability of only 1-in-200 for the week in which it occurred.

  9. Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2016-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and

  10. On certain aftershock and foreshock parameters in the area of Greece

    Directory of Open Access Journals (Sweden)

    B. C. PAPAZACHOS

    1974-06-01

    Full Text Available Published information (l2 on the aftershocks and foreshocks of many principal shallow earthquakes occurred in the area of Greece between 1911 and 1973 constitutes a more or less homogeneous and complete sample of data in respect to some properties of these seismic sequences. These data have been used to determine certain parameters of these sequences. The value of the decay parameter p, in the time distribution law of aftershocks, is independent of the magnitude range and varies between 0.7 and 1.9 in this area. The smallest value was found for the aftershock sequence of an earthquake believed to be associated with the Kremasta artificial lake, while the largest value was found for the aftershock sequence of an earthquake occurred in the volcanic part of the Hellenic arc. The probability, N, that the largest aftershock will occur Tl days after the main shock or later is given by a relation of the form N = c — k log Tl. Representative values of the parameter b, in the frequency-magnitude relation, have been found for the foreshocks as well as for the aftershocks of the same main shocks, by a proper grouping of the data. This value is equal to 0.67 for foresliocks and equal to 0.92 for the corresponding aftershocks. The difference in magnitude between the main shock and the largest aftershock is almost independent of the magnitude of the main shock. The relation M0 — = 1.1 holds on an average.

  11. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  12. Loading rates in California inferred from aftershocks

    Directory of Open Access Journals (Sweden)

    C. Narteau

    2008-03-01

    Full Text Available We estimate the loading rate in southern California and the change in stress induced by a transient slip event across the San Andreas fault (SAF system in central California, using a model of static fatigue. We analyze temporal properties of aftershocks in order to determine the time delay before the onset of the power law aftershock decay rate. In creep-slip and stick-slip zones, we show that the rate of change of this delay is related to seismic and aseismic deformation across the SAF system. Furthermore, we show that this rate of change is proportional to the deficit of slip rate along the SAF. This new relationship between geodetic and seismological data is in good agreement with predictions from a Limited Power Law model in which the evolution of the duration of a linear aftershock decay rate over short time results from variations in the load of the brittle upper crust.

  13. Long-Delayed Aftershocks in New Zealand and the 2016 M7.8 Kaikoura Earthquake

    Science.gov (United States)

    Shebalin, P.; Baranov, S.

    2017-10-01

    We study aftershock sequences of six major earthquakes in New Zealand, including the 2016 M7.8 Kaikaoura and 2016 M7.1 North Island earthquakes. For Kaikaoura earthquake, we assess the expected number of long-delayed large aftershocks of M5+ and M5.5+ in two periods, 0.5 and 3 years after the main shocks, using 75 days of available data. We compare results with obtained for other sequences using same 75-days period. We estimate the errors by considering a set of magnitude thresholds and corresponding periods of data completeness and consistency. To avoid overestimation of the expected rates of large aftershocks, we presume a break of slope of the magnitude-frequency relation in the aftershock sequences, and compare two models, with and without the break of slope. Comparing estimations to the actual number of long-delayed large aftershocks, we observe, in general, a significant underestimation of their expected number. We can suppose that the long-delayed aftershocks may reflect larger-scale processes, including interaction of faults, that complement an isolated relaxation process. In the spirit of this hypothesis, we search for symptoms of the capacity of the aftershock zone to generate large events months after the major earthquake. We adapt an algorithm EAST, studying statistics of early aftershocks, to the case of secondary aftershocks within aftershock sequences of major earthquakes. In retrospective application to the considered cases, the algorithm demonstrates an ability to detect in advance long-delayed aftershocks both in time and space domains. Application of the EAST algorithm to the 2016 M7.8 Kaikoura earthquake zone indicates that the most likely area for a delayed aftershock of M5.5+ or M6+ is at the northern end of the zone in Cook Strait.

  14. Study On Aftershock Triggering In Consideration Of Tectonic Stress Field

    Science.gov (United States)

    Hu, C.; Cai, Y.

    2007-12-01

    : The occurrence of earthquake is related to the strength of rock and tectonic stress field. The seismic risk factor (SRF),D=\\left|{τn }\\right|/(μσn ) is proposed to describe the dangerous status of aftershock triggering in this paper. Dearthquakes, velocity field from GPS as well as geological survey. As one order of approximation, the magnitudes of the regional tectonic stress field can be estimated by the Coulomb failure criterion. Finite element method (FEM) and the concept of the factor D are used to study the aftershock triggering of the 1976 Tangshan Ms=7.8 earthquake. The results show that: (1) Most of the aftershocks triggered by the Tangshan earthquake occurred in the two-leaf-shaped regions of D≥ 1 near the north-east end of the main-shock fault. The largest leaf is about 100km long and 40km wide. (2) The areas of aftershock triggering predicted by the seismic risk factorD and Δ CFS (the changes in the Coulomb failure stress) are almost the same near the fault. The difference between them is that the aftershock area predicted by Δ CFS≥ 0 is too large and the area predicted by the factor D≥ 1 is limited. The areas of aftershock triggering predicted by Δ CFS≥ 0.04 MPa are nearly the same as those of D≥ 1 obtained by the study. (3) Sometimes Δ CFS =0.01MPa is taken as a low threshold of aftershock triggering. However, Δ CFS≥ 0 only means the probability increase of the earthquake triggering, not means the earthquake will occur. The earthquake occurrence is not only related to Δ CFS, but also to the tectonic stress field before the main-shock.

  15. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    Science.gov (United States)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  16. Dynamic Aftershock Triggering Correlated with Cyclic Loading in the Slip Direction

    Science.gov (United States)

    Hardebeck, J.

    2014-12-01

    Dynamic stress changes have been shown to contribute to aftershock triggering, but the physical triggering mechanisms are not fully understood. Some proposed mechanisms are based on dynamic stress loading of the target fault in a direction that encourages earthquake slip (e.g. dynamic Coulomb stress triggering), while other mechanisms are based on fault weakening due to shaking. If dynamic stress loading in the fault slip direction plays a role in aftershock triggering, we would expect to see a relationship between the dynamic stress orientations and the aftershock focal mechanisms. Alternatively, if dynamic stress change triggering functions only through a fault weakening mechanism that is independent of the slip direction of the target fault, no such relationship is expected. I study aftershock sequences of 4 M≥6.7 mainshocks in southern California, and find a small but significant relationship between modeled dynamic stress direction and aftershock focal mechanisms. The mainshock dynamic stress changes have two observed impacts: changing the focal mechanisms in a given location to favor those aligned with the dynamic stress change, and changing the spatial distribution of seismicity to favor locations where the dynamic stress change aligns with the background stress. The aftershock focal mechanisms are significantly more aligned with the dynamic stress changes than the preshock mechanisms for only the first 0.5-1 year following most mainshocks, although for at least 10 years following Hector Mine. Dynamic stress effects on focal mechanisms are best observed at long periods (30-60 sec). Dynamic stress effects are only observed when using metrics based on repeated stress cycling in the same direction, for example considering the dominant stress orientation over the full time series, and not for the peak dynamic stress. These results imply that dynamic aftershock triggering operates at least in part through cyclic loading in the direction of fault slip, although

  17. Aftershocks to Philippine quake found within nearby megathrust fault

    Science.gov (United States)

    Schultz, Colin

    2013-02-01

    On 31 August 2012 a magnitude 7.6 earthquake ruptured deep beneath the sea floor of the Philippine Trench, a powerful intraplate earthquake centered seaward of the plate boundary. In the wake of the main shock, sensors detected a flurry of aftershocks, counting 110 in total. Drawing on seismic wave observations and rupture mechanisms calculated for the aftershocks, Ye et al. found that many were located near the epicenter of the main intraplate quake but at shallower depth; all involved normal faulting. Some shallow thrusting aftershocks were located farther to the west, centered within the potentially dangerous megathrust fault formed by the subduction of the Philippine Sea plate beneath the Philippine microplate, the piece of crust housing the Philippine Islands.

  18. IDENTIFICATION OF EARTHQUAKE AFTERSHOCK AND SWARM SEQUENCES IN THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    N. A. Radziminovich

    2013-01-01

    Full Text Available The catalog of earthquakes (КR³6.6 which occurred in the Baikal rift zone (BRZ was declastered, and the results are presented in the article. Aftershocks of seismic events (КR³12.5 were determined by the software developed by V.B. Smirnov (Lomonosov Moscow State University with application of the algorithm co-authored by G.M. Molchan and O.E. Dmitrieva. To ensure proper control of the software application, aftershocks were also selected manually. The results of declustering show that aftershocks of the earthquakes (КR³12.5 account for about 25 per cent of all seismic events in the regional catalog. Aftershocks accompanied 90 per cent of all the earthquakes considered as main shocks. Besides, earthquake swarms, including events with КR³11, were identified. The results of this study show that, in the BRZ, the swarms and strong events with aftershocks are not spatially separated, and this conclusion differs from the views of the previous studies that reviewed data from a shorter observation period. Moreover, it is noted that the swarms may consist of several main shocks accompanied by aftershocks. The data accumulated over the last fifty years of instrumental observations support the conclusion made earlier that the swarms in BRZ occur mainly in the north-eastward direction from Lake Baikal and also confirm the trend of a small number of aftershocks accompanying earthquakes in the south-western part of the Baikal rift zone.

  19. Aftershocks illuminate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    Science.gov (United States)

    Horton, J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  20. Foreshocks and aftershocks in the Olami-Feder-Christensen model

    International Nuclear Information System (INIS)

    Hergarten, Stefan; Neugebauer, Horst J.

    2002-01-01

    With the help of numerical simulations we show that the established Olami-Feder-Christensen earthquake model exhibits sequences of foreshocks and aftershocks; this behavior has not been recognized in previous studies. Our results are consistent with Omori's empirical law, but the exponents predicted by the model are lower than observed in nature. The occurrence of foreshocks and aftershocks can be attributed to the nonconservative character of the Olami-Feder-Christensen model

  1. Probabilistic aftershock hazard analysis, two case studies in West and Northwest Iran

    Science.gov (United States)

    Ommi, S.; Zafarani, H.

    2018-01-01

    Aftershock hazard maps contain the essential information for search and rescue process, and re-occupation after a main-shock. Accordingly, the main purposes of this article are to study the aftershock decay parameters and to estimate the expected high-frequency ground motions (i.e., Peak Ground Acceleration (PGA)) for recent large earthquakes in the Iranian plateau. For this aim, the Ahar-Varzaghan doublet earthquake (August 11, 2012; M N =6.5, M N =6.3), and the Ilam (Murmuri) earthquake (August 18, 2014 ; M N =6.2) have been selected. The earthquake catalogue has been collected based on the Gardner and Knopoff (Bull Seismol Soc Am 64(5), 1363-1367, 1974) temporal and spatial windowing technique. The magnitude of completeness and the seismicity parameters ( a, b) and the modified Omori law parameters ( P, K, C) have been determined for these two earthquakes in the 14, 30, and 60 days after the mainshocks. Also, the temporal changes of parameters (a, b, P, K, C) have been studied. The aftershock hazard maps for the probability of exceedance (33%) have been computed in the time periods of 14, 30, and 60 days after the Ahar-Varzaghan and Ilam (Murmuri) earthquakes. For calculating the expected PGA of aftershocks, the regional and global ground motion prediction equations have been utilized. Amplification factor based on the site classes has also been implied in the calculation of PGA. These aftershock hazard maps show an agreement between the PGAs of large aftershocks and the forecasted PGAs. Also, the significant role of b parameter in the Ilam (Murmuri) probabilistic aftershock hazard maps has been investigated.

  2. Utility of temporary aftershock warning system in the immediate aftermath of large damaging earthquakes

    International Nuclear Information System (INIS)

    Harben, P.E.; Jarpe, S.P.; Hunter, S.; Johnston, C.A.

    1993-01-01

    An aftershock warning system (AWS) is a real-time warning system that is deployed immediately after a large damaging earthquake in the epicentral region of the main shock. The primary purpose of such a system is to warn rescue teams and workers within damaged structures of imminent destructive shaking. The authors have examined the utility of such a system (1) by evaluating historical data, and (2) by developing and testing a prototype system during the 1992 Landers, California, aftershock sequence. Analyzing historical data is important in determining when and where damaging aftershocks are likely to occur and the probable usefulness of an AWS in a particular region. As part of this study, they analyzed the spatial and temporal distribution of large (magnitude >5.0) aftershocks from earthquakes with magnitudes >6.0 that took place between 1942 and 1991 in California and Nevada. They found that one-quarter of these large aftershocks occurred from 2 days-2 months after the main event, nearly one-half occurred within the first two days of the main event, and greater than one-half occurred within 20 km of the main shock's epicenter. They also reviewed a case study of the 1985 Mexico City earthquake, which showed that an AWS could have given Mexico City a warning of ∼60 sec before the magnitude 7.6 aftershock that occurred 36 hr. after the main event. They deployed a four-station prototype AWS near Landers after a magnitude 7.4 earthquake occurred on June 28, 1992. The aftershock data, collected from July 3-10, showed that the aftershocks in the vicinity of the four stations varied in magnitude from 3.0-4.4. Using a two-station detection criterion to minimize false alarms, this AWS reliably discriminated between smaller and larger aftershocks within 3 sec of the origin time of the events. This prototype could have provided 6 sec of warning to Palm Springs and 20 sec of warning to San Bernardino of aftershocks occurring in the main-shock epicentral region

  3. Characterization of Aftershock Sequences from Large Strike-Slip Earthquakes Along Geometrically Complex Faults

    Science.gov (United States)

    Sexton, E.; Thomas, A.; Delbridge, B. G.

    2017-12-01

    Large earthquakes often exhibit complex slip distributions and occur along non-planar fault geometries, resulting in variable stress changes throughout the region of the fault hosting aftershocks. To better discern the role of geometric discontinuities on aftershock sequences, we compare areas of enhanced and reduced Coulomb failure stress and mean stress for systematic differences in the time dependence and productivity of these aftershock sequences. In strike-slip faults, releasing structures, including stepovers and bends, experience an increase in both Coulomb failure stress and mean stress during an earthquake, promoting fluid diffusion into the region and further failure. Conversely, Coulomb failure stress and mean stress decrease in restraining bends and stepovers in strike-slip faults, and fluids diffuse away from these areas, discouraging failure. We examine spatial differences in seismicity patterns along structurally complex strike-slip faults which have hosted large earthquakes, such as the 1992 Mw 7.3 Landers, the 2010 Mw 7.2 El-Mayor Cucapah, the 2014 Mw 6.0 South Napa, and the 2016 Mw 7.0 Kumamoto events. We characterize the behavior of these aftershock sequences with the Epidemic Type Aftershock-Sequence Model (ETAS). In this statistical model, the total occurrence rate of aftershocks induced by an earthquake is λ(t) = λ_0 + \\sum_{i:t_i

  4. Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile

    Science.gov (United States)

    Lancieri, M.; Madariaga, R.; Bonilla, F.

    2012-04-01

    We study the scaling of spectral properties of a set of 68 aftershocks of the 2007 November 14 Tocopilla (M 7.8) earthquake in northern Chile. These are all subduction events with similar reverse faulting focal mechanism that were recorded by a homogenous network of continuously recording strong motion instruments. The seismic moment and the corner frequency are obtained assuming that the aftershocks satisfy an inverse omega-square spectral decay; radiated energy is computed integrating the square velocity spectrum corrected for attenuation at high frequencies and for the finite bandwidth effect. Using a graphical approach, we test the scaling of seismic spectrum, and the scale invariance of the apparent stress drop with the earthquake size. To test whether the Tocopilla aftershocks scale with a single parameter, we introduce a non-dimensional number, ?, that should be constant if earthquakes are self-similar. For the Tocopilla aftershocks, Cr varies by a factor of 2. More interestingly, Cr for the aftershocks is close to 2, the value that is expected for events that are approximately modelled by a circular crack. Thus, in spite of obvious differences in waveforms, the aftershocks of the Tocopilla earthquake are self-similar. The main shock is different because its records contain large near-field waves. Finally, we investigate the scaling of energy release rate, Gc, with the slip. We estimated Gc from our previous estimates of the source parameters, assuming a simple circular crack model. We find that Gc values scale with the slip, and are in good agreement with those found by Abercrombie and Rice for the Northridge aftershocks.

  5. Aftershock communication during the Canterbury Earthquakes, New Zealand: implications for response and recovery in the built environment

    Science.gov (United States)

    Julia Becker,; Wein, Anne; Sally Potter,; Emma Doyle,; Ratliff, Jamie L.

    2015-01-01

    On 4 September 2010, a Mw7.1 earthquake occurred in Canterbury, New Zealand. Following the initial earthquake, an aftershock sequence was initiated, with the most significant aftershock being a Mw6.3 earthquake occurring on 22 February 2011. This aftershock caused severe damage to the city of Christchurch and building failures that killed 185 people. During the aftershock sequence it became evident that effective communication of aftershock information (e.g., history and forecasts) was imperative to assist with decision making during the response and recovery phases of the disaster, as well as preparedness for future aftershock events. As a consequence, a joint JCDR-USGS research project was initiated to investigate: • How aftershock information was communicated to organisations and to the public; • How people interpreted that information; • What people did in response to receiving that information; • What information people did and did not need; and • What decision-making challenges were encountered relating to aftershocks. Research was conducted by undertaking focus group meetings and interviews with a range of information providers and users, including scientists and science advisors, emergency managers and responders, engineers, communication officers, businesses, critical infrastructure operators, elected officials, and the public. The interviews and focus group meetings were recorded and transcribed, and key themes were identified. This paper focuses on the aftershock information needs for decision-making about the built environment post-earthquake, including those involved in response (e.g., for building assessment and management), recovery/reduction (e.g., the development of new building standards), and readiness (e.g. between aftershocks). The research has found that the communication of aftershock information varies with time, is contextual, and is affected by interactions among roles, by other information, and by decision objectives. A number

  6. Statistical Features of the 2010 Beni-Ilmane, Algeria, Aftershock Sequence

    Science.gov (United States)

    Hamdache, M.; Peláez, J. A.; Gospodinov, D.; Henares, J.

    2018-03-01

    The aftershock sequence of the 2010 Beni-Ilmane ( M W 5.5) earthquake is studied in depth to analyze the spatial and temporal variability of seismicity parameters of the relationships modeling the sequence. The b value of the frequency-magnitude distribution is examined rigorously. A threshold magnitude of completeness equal to 2.1, using the maximum curvature procedure or the changing point algorithm, and a b value equal to 0.96 ± 0.03 have been obtained for the entire sequence. Two clusters have been identified and characterized by their faulting type, exhibiting b values equal to 0.99 ± 0.05 and 1.04 ± 0.05. Additionally, the temporal decay of the aftershock sequence was examined using a stochastic point process. The analysis was done through the restricted epidemic-type aftershock sequence (RETAS) stochastic model, which allows the possibility to recognize the prevailing clustering pattern of the relaxation process in the examined area. The analysis selected the epidemic-type aftershock sequence (ETAS) model to offer the most appropriate description of the temporal distribution, which presumes that all events in the sequence can cause secondary aftershocks. Finally, the fractal dimensions are estimated using the integral correlation. The obtained D 2 values are 2.15 ± 0.01, 2.23 ± 0.01 and 2.17 ± 0.02 for the entire sequence, and for the first and second cluster, respectively. An analysis of the temporal evolution of the fractal dimensions D -2, D 0, D 2 and the spectral slope has been also performed to derive and characterize the different clusters included in the sequence.

  7. Spatio-temporal evolution of the 2011 Prague, Oklahoma aftershock sequence revealed using subspace detection and relocation

    Science.gov (United States)

    McMahon, Nicole D; Aster, Richard C.; Yeck, William; McNamara, Daniel E.; Benz, Harley M.

    2017-01-01

    The 6 November 2011 Mw 5.7 earthquake near Prague, Oklahoma is the second largest earthquake ever recorded in the state. A Mw 4.8 foreshock and the Mw 5.7 mainshock triggered a prolific aftershock sequence. Utilizing a subspace detection method, we increase by fivefold the number of precisely located events between 4 November and 5 December 2011. We find that while most aftershock energy is released in the crystalline basement, a significant number of the events occur in the overlying Arbuckle Group, indicating that active Meeker-Prague faulting extends into the sedimentary zone of wastewater disposal. Although the number of aftershocks in the Arbuckle Group is large, comprising ~40% of the aftershock catalog, the moment contribution of Arbuckle Group earthquakes is much less than 1% of the total aftershock moment budget. Aftershock locations are sparse in patches that experienced large slip during the mainshock.

  8. Aftershocks : Economic Crisis and Institutional Choice

    NARCIS (Netherlands)

    Hemerijck, Anton; Knapen, Ben; Doorne, van Ellen

    2009-01-01

    Aftershocks werd geschreven op het hoogtepunt van de grootste economische crisis sinds de grote depressie. Hoewel het voorbarig zou zijn aan te nemen dat de gevolgen van de crisis al in volle omvang duidelijk zijn, is het overduidelijk dat zij ingrijpende effecten zal hebben op politiek, economisch

  9. Properties of foreshocks and aftershocks of the nonconservative self-organized critical Olami-Feder-Christensen model

    International Nuclear Information System (INIS)

    Helmstetter, Agnes; Hergarten, Stefan; Sornette, Didier

    2004-01-01

    Following Hergarten and Neugebauer [Phys. Rev. Lett. 88, 238501, 2002] who discovered aftershocks and foreshocks in the Olami-Feder-Christensen (OFC) discrete block-spring earthquake model, we investigate to what degree the simple toppling mechanism of this model is sufficient to account for the clustering of real seismicity in time and space. We find that synthetic catalogs generated by the OFC model share many properties of real seismicity at a qualitative level: Omori's law (aftershocks) and inverse Omori's law (foreshocks), increase of the number of aftershocks and of the aftershock zone size with the mainshock magnitude. There are, however, significant quantitative differences. The number of aftershocks per mainshock in the OFC model is smaller than in real seismicity, especially for large mainshocks. We find that foreshocks in the OFC catalogs can be in large part described by a simple model of triggered seismicity, such as the epidemic-type aftershock sequence (ETAS) model. But the properties of foreshocks in the OFC model depend on the mainshock magnitude, in qualitative agreement with the critical earthquake model and in disagreement with real seismicity and with the ETAS model

  10. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response

  11. The passive seismic aftershock Monitoring system: testing program and preliminary results

    International Nuclear Information System (INIS)

    Mokhtari, M.

    2005-01-01

    The paper is dedicated to testing program (phase of the passive seismic aftershock monitoring system with RefTek equipment (Refraction Technology, Inc., USA) for On-Site Inspection purposes that was carried out near Vienna International Centre in 2000. Equipment and applied software are described. Testing results were analyzed; in particular, least needs in maintenance personnel during operation. Development perspectives of passive seismic aftershock monitoring system for On-Site Inspection have been discussed. (author)

  12. Simulating Aftershocks for an On Site Inspection (OSI) Exercise

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, J. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ford, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    The experience of IFE14 emphasizes the need for a better way to simulate aftershocks during an OSI exercise. The obvious approach is to develop a digital model of aftershocks that can be used either for a real field exercise or for a computer simulation that can be done in an office, for training for example. However, this approach involves consideration of several aspects, such as how and when to introduce waveforms in a way that maximizes the realism of the data and that will be convincing to a savvy, experienced seismic analyst. The purpose of this report is to outline a plan for how this approach can be implemented.

  13. High-Resolution Uitra Low Power, Intergrated Aftershock and Microzonation System

    Science.gov (United States)

    Passmore, P.; Zimakov, L. G.

    2012-12-01

    Rapid Aftershock Mobilization plays an essential role in the understanding of both focal mechanism and rupture propagation caused by strong earthquakes. A quick assessment of the data provides a unique opportunity to study the dynamics of the entire earthquake process in-situ. Aftershock study also provides practical information for local authorities regarding the post earthquake activity, which is very important in order to conduct the necessary actions for public safety in the area affected by the strong earthquake. Refraction Technology, Inc. has developed a self-contained, fully integrated Aftershock System, model 160-03, providing the customer simple and quick deployment during aftershock emergency mobilization and microzonation studies. The 160-03 has no external cables or peripheral equipment for command/control and operation in the field. The 160-03 contains three major components integrated in one case: a) 24-bit resolution state-of-the art low power ADC with CPU and Lid interconnect boards; b) power source; and c) three component 2 Hz sensors (two horizontals and one vertical), and built-in ±4g accelerometer. Optionally, the 1 Hz sensors can be built-in the 160-03 system at the customer's request. The self-contained rechargeable battery pack provides power autonomy up to 7 days during data acquisition at 200 sps on continuous three weak motion and triggered three strong motion recording channels. For longer power autonomy, the 160-03 Aftershock System battery pack can be charged from an external source (solar power system). The data in the field is recorded to a built-in swappable USB flash drive. The 160-03 configuration is fixed based on a configuration file stored on the system, so no external command/control interface is required for parameter setup in the field. For visual control of the system performance in the field, the 160-03 has a built-in LED display which indicates the systems recording status as well as a hot swappable USB drive and battery

  14. Characteristics of Gyeongju earthquake, moment magnitude 5.5 and relative relocations of aftershocks

    Science.gov (United States)

    Cho, ChangSoo; Son, Minkyung

    2017-04-01

    There is low seismicity in the korea peninsula. According historical record in the historic book, There were several strong earthquake in the korea peninsula. Especially in Gyeongju of capital city of the Silla dynasty, few strong earthquakes caused the fatalities of several hundreds people 1,300 years ago and damaged the houses and make the wall of castles collapsed. Moderate strong earthquake of moment magnitude 5.5 hit the city in September 12, 2016. Over 1000 aftershocks were detected. The numbers of occurrences of aftershock over time follows omori's law well. The distribution of relative locations of 561 events using clustering aftershocks by cross-correlation between P and S waveform of the events showed the strike NNE 25 30 o and dip 68 74o of fault plane to cause the earthquake matched with the fault plane solution of moment tensor inversion well. The depth of range of the events is from 11km to 16km. The width of distribution of event locations is about 5km length. The direction of maximum horizontal stress by inversion of stress for the moment solutions of main event and large aftershocks is similar to the known maximum horizontal stress direction of the korea peninsula. The relation curves between moment magnitude and local magnitude of aftershocks shows that the moment magnitude increases slightly more for events of size less than 2.0

  15. Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake

    Science.gov (United States)

    Li, Chenyu; Peng, Zhigang; Yao, Dongdong; Guo, Hao; Zhan, Zhongwen; Zhang, Haijiang

    2018-05-01

    The 2015 Mw7.5 Hindu Kush earthquake occurred at a depth of 213 km beneath the Hindu Kush region of Afghanistan. While many early aftershocks were missing from the global earthquake catalogues, this sequence was recorded continuously by eight broad-band stations within 500 km. Here we use a waveform matching technique to systematically detect earthquakes around the main shock. More than 3000 events are detected within 35 d after the main shock, as compared with 42 listed in the Advanced National Seismic System catalogue (or 196 in the International Seismological Centre catalogue). The aftershock sequence generally follows the Omori's law with a decay constant p = 0.92. We also apply the recently developed double-pair double-difference technique to relocate all detected aftershocks. Most of them are located to the west of the hypocentre of the main shock, consistent with the westward propagation of the main-shock rupture. The aftershocks outline a nearly vertical southward dipping plane, which matches well with one of the nodal planes of the main shock. We conclude that the aftershock sequence of this intermediate-depth earthquake shares many similarities with those for shallow earthquakes and infer that there are some common mechanisms responsible for shallow and intermediate-depth earthquakes.

  16. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes

    Science.gov (United States)

    Wetzler, Nadav; Lay, Thorne; Brodsky, Emily E.; Kanamori, Hiroo

    2018-01-01

    Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event–relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time. PMID:29487902

  17. Tsunami waves generated by dynamically triggered aftershocks of the 2010 Haiti earthquake

    Science.gov (United States)

    Ten Brink, U. S.; Wei, Y.; Fan, W.; Miller, N. C.; Granja, J. L.

    2017-12-01

    Dynamically-triggered aftershocks, thought to be set off by the passage of surface waves, are currently not considered in tsunami warnings, yet may produce enough seafloor deformation to generate tsunamis on their own, as judged from new findings about the January 12, 2010 Haiti earthquake tsunami in the Caribbean Sea. This tsunami followed the Mw7.0 Haiti mainshock, which resulted from a complex rupture along the north shore of Tiburon Peninsula, not beneath the Caribbean Sea. The mainshock, moreover, had a mixed strike-slip and thrust focal mechanism. There were no recorded aftershocks in the Caribbean Sea, only small coastal landslides and rock falls on the south shore of Tiburon Peninsula. Nevertheless, a tsunami was recorded on deep-sea DART buoy 42407 south of the Dominican Republic and on the Santo Domingo tide gauge, and run-ups of ≤3 m were observed along a 90-km-long stretch of the SE Haiti coast. Three dynamically-triggered aftershocks south of Haiti have been recently identified within the coda of the mainshock (stacks, and back-projecting the arrivals to the vicinity of the main shock (50-300 km). Two of the aftershocks, coming 20-40 s and 40-60 s after the mainshock, plot along NW-SE-trending submarine ridges in the Caribbean Sea south of Haiti. The third event, 120-140 s was located along the steep eastern slope of Bahoruco Peninsula, which is delineated by a normal fault. Forward tsunami models show that the arrival times of the DART buoy and tide gauge times are best fit by the earliest of the three aftershocks, with a Caribbean source 60 km SW of the mainshock rupture zone. Preliminary inversion of the DART buoy time series for fault locations and orientations confirms the location of the first source, but requires an additional unidentified source closer to shore 40 km SW of the mainshock rupture zone. This overall agreement between earthquake and tsunami analyses suggests that land-based earthquake ruptures and/or non-thrust main shocks can

  18. Aftershocks of the 2010 Mw 7.4 Bonin Islands normal-faulting earthquake: Implication for deformation of the Pacific Plate

    Science.gov (United States)

    Obana, K.; Takahashi, T.; No, T.; Kaiho, Y.; Kodaira, S.; Yamashita, M.; Sato, T.; Noguchi, N.; Nakamura, T.

    2011-12-01

    A Mw 7.4 normal-faulting earthquake occurred 150 km east of Chichi-jima Island, Bonin Islands, Japan on December 21, 2010 (UTC). This is an earthquake occurred within the Pacific plate beneath the outer trench-slope region along the Izu-Ogasawara (Bonin) trench, where the Pacific plate subducts beneath the Philippine Sea plate. According to Japan Meteorological Agency (JMA), the associated tsunami was observed over a wide area along the Pacific coast of Japan. Normal faulting earthquakes in outer trench-slope region are a result of the bending of the incoming/subducting oceanic plates. The bending-related normal faults cutting the oceanic plate are likely associated with hydration of the oceanic plate prior to subduction [e.g., Ranero et al., 2003]. The normal faulting earthquakes can be a key to understand deformation and resulting hydration of the oceanic plate. That is also important for consideration of tsunami generation in shallow outer trench-slope region. Aftershock observation of the 2010 Bonin Islands earthquake were conducted by R/V Kairei of Japan Agency for Marine-Earth Science and Technology (JAMSTEC) using ocean bottom seismographs (OBSs). First OBS was deployed in the source area on December 25, 2010 and retrieved on January 7, 2011. Other 4 OBSs were deployed on January 6 and 7 and retrieved on March 11 and 12, 2011. Overall aftershocks distributed in a 130 km long area extended in a NW-SE direction although Izu-Bonin trench extends N-S direction in this area. Most of the aftershocks were located at depths shallower than 30 km, corresponding to the oceanic crust and the uppermost mantle of the Pacific plate. The aftershocks show a complicated distribution. In the central part of the aftershock area, aftershocks formed three subparallel lines with roughly 15 km intervals oriented NW-SE direction. In the southeastern part of the aftershock area away from the trench, the aftershocks distributed along ESE-WNW direction. We estimated aftershock

  19. Aftershocks of the India Republic Day Earthquake: the MAEC/ISTAR Temporary Seismograph Network

    Science.gov (United States)

    Bodin, P.; Horton, S.; Johnston, A.; Patterson, G.; Bollwerk, J.; Rydelek, P.; Steiner, G.; McGoldrick, C.; Budhbhatti, K. P.; Shah, R.; Macwan, N.

    2001-05-01

    The MW=7.7 Republic Day (26 January, 2001) earthquake on the Kachchh in western India initiated a strong sequence of small aftershocks. Seventeen days following the mainshock, we deployed a network of portable digital event recorders as a cooperative project of the Mid America Earthquake Center in the US and the Institute for Scientific and Technological Advanced Research. Our network consisted of 8 event-triggered Kinemetrics K2 seismographs with 6 data channels (3 accelerometer, 3 Mark L-28/3d seismometer) sampled at 200 Hz, and one continuously-recording Guralp CMG40TD broad-band seismometer sampled at 220 Hz. This network was in place for 18 days. Underlying our network deployment was the notion that because of its tectonic and geologic setting the Republic Day earthquake and its aftershocks might have source and/or propagation characteristics common to earthquakes in stable continental plate-interiors rather than those on plate boundaries or within continental mobile belts. Thus, our goals were to provide data that could be used to compare the Republic Day earthquake with other earthquakes. In particular, the objectives of our network deployment were: (1) to characterize the spatial distribution and occurrence rates of aftershocks, (2) to examine source characteristics of the aftershocks (stress-drops, focal mechanisms), (3) to study the effect of deep unconsolidated sediment on wave propagation, and (4) to determine if other faults (notably the Allah Bundh) were simultaneously active. Most of our sites were on Jurassic bedrock, and all were either free-field, or on the floor of light structures built on rock or with a thin soil cover. However, one of our stations was on a section of unconsolidated sediments hundreds of meters thick adjacent to a site that was subjected to shaking-induced sediment liquefaction during the mainshock. The largest aftershock reported by global networks was an MW=5.9 event on January 28, prior to our deployment. The largest

  20. Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences

    Science.gov (United States)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří; Běhounková, Marie

    2007-09-01

    Relocated Engdahl et al. (1998) global seismological data for 10 aftershock sequences were used to analyze the internal tectonic structure of the Central American subduction zone; the main shocks of several of these were the most destructive and often referenced earthquakes in the region (e.g., the 1970 Chiapas, 1983 Osa, 1992 Nicaragua, 1999 Quepos, 2001 El Salvador earthquakes). The spatial analysis of aftershock foci distribution was performed in a rotated Cartesian coordinate system (x, y, z) related to the Wadati-Benioff zone, and not in a standard coordinate system ($\\varphi$, λ, h are latitude, longitude, focal depth, respectively). Available fault plane solutions were also transformed into the plane approximating the Wadati-Benioff zone. The spatial distribution of earthquakes in each aftershock sequence was modeled as either a plane fit using a least squares approximation or a volume fit with a minimum thickness rectangular box. The analysis points to a quasi-planar distribution of earthquake foci in all aftershock sequences, manifesting the appurtenance of aftershocks to fracture zones. Geometrical parameters of fracture zones (strike, dip, and dimensions) hosting individual sequences were calculated and compared with the seafloor morphology of the Cocos Plate. The smooth character of the seafloor correlates with the aftershock fracture zones oriented parallel to the trench and commonly subparallel to the subducting slab, whereas subduction of the Cocos Ridge and seamounts around the Quepos Plateau coincides with steeply dipping fracture zones. Transformed focal mechanisms are almost exclusively (>90%) of normal character.

  1. Aftershock Duration of the 1976 Ms 7.8 Tangshan Earthquake: Implication for the Seismic Hazard Model with a Sensitivity Analysis

    Science.gov (United States)

    Zhong, Q.; Shi, B.

    2011-12-01

    The disaster of the Ms 7.8 earthquake occurred in Tangshan, China, on July 28th 1976 caused at least 240,000 deaths. The mainshock was followed by two largest aftershocks, the Ms 7.1 occurred after 15 hr later of the mainshock, and the Ms 6.9 occurred on 15 November. The aftershock sequence is lasting to date, making the regional seismic activity rate around the Tangshan main fault much higher than that of before the main event. If these aftershocks are involved in the local main event catalog for the PSHA calculation purpose, the resultant seismic hazard calculation will be overestimated in this region and underestimated in other place. However, it is always difficult to accurately determine the time duration of aftershock sequences and identifies the aftershocks from main event catalog for seismologist. In this study, by using theoretical inference and empirical relation given by Dieterich, we intended to derive the plausible time length of aftershock sequences of the Ms 7.8 Tangshan earthquake. The aftershock duration from log-log regression approach gives us about 120 years according to the empirical Omori's relation. Based on Dietrich approach, it has been claimed that the aftershock duration is a function of remote shear stressing rate, normal stress acting on the fault plane, and fault frictional constitutive parameters. In general, shear stressing rate could be estimated in three ways: 1. Shear stressing rate could be written as a function of static stress drop and a mean earthquake recurrence time. In this case, the time length of aftershock sequences is about 70-100 years. However, since the recurrence time inherits a great deal of uncertainty. 2. Ziv and Rubin derived a general function between shear stressing rate, fault slip speed and fault width with a consideration that aftershock duration does not scale with mainshock magnitude. Therefore, from Ziv's consideration, the aftershock duration is about 80 years. 3. Shear stressing rate is also can be

  2. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks

    Science.gov (United States)

    Mignan, Arnaud

    2018-03-01

    The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.

  3. What Is Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering Mechanisms from 105 Mainshock-Aftershock Pairs

    Science.gov (United States)

    Meade, Brendan J.; DeVries, Phoebe M. R.; Faller, Jeremy; Viegas, Fernanda; Wattenberg, Martin

    2017-11-01

    Aftershocks may be triggered by the stresses generated by preceding mainshocks. The temporal frequency and maximum size of aftershocks are well described by the empirical Omori and Bath laws, but spatial patterns are more difficult to forecast. Coulomb failure stress is perhaps the most common criterion invoked to explain spatial distributions of aftershocks. Here we consider the spatial relationship between patterns of aftershocks and a comprehensive list of 38 static elastic scalar metrics of stress (including stress tensor invariants, maximum shear stress, and Coulomb failure stress) from 213 coseismic slip distributions worldwide. The rates of true-positive and false-positive classification of regions with and without aftershocks are assessed with receiver operating characteristic analysis. We infer that the stress metrics that are most consistent with observed aftershock locations are maximum shear stress and the magnitude of the second and third invariants of the stress tensor. These metrics are significantly better than random assignment at a significance level of 0.005 in over 80% of the slip distributions. In contrast, the widely used Coulomb failure stress criterion is distinguishable from random assignment in only 51-64% of the slip distributions. These results suggest that a number of alternative scalar metrics are better predictors of aftershock locations than classic Coulomb failure stress change.

  4. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    Science.gov (United States)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5°S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the

  5. Automatic analysis of the 2015 Gorkha earthquake aftershock sequence.

    Science.gov (United States)

    Baillard, C.; Lyon-Caen, H.; Bollinger, L.; Rietbrock, A.; Letort, J.; Adhikari, L. B.

    2016-12-01

    The Mw 7.8 Gorkha earthquake, that partially ruptured the Main Himalayan Thrust North of Kathmandu on the 25th April 2015, was the largest and most catastrophic earthquake striking Nepal since the great M8.4 1934 earthquake. This mainshock was followed by multiple aftershocks, among them, two notable events that occurred on the 12th May with magnitudes of 7.3 Mw and 6.3 Mw. Due to these recent events it became essential for the authorities and for the scientific community to better evaluate the seismic risk in the region through a detailed analysis of the earthquake catalog, amongst others, the spatio-temporal distribution of the Gorkha aftershock sequence. Here we complement this first study by doing a microseismic study using seismic data coming from the eastern part of the Nepalese Seismological Center network associated to one broadband station in Everest. Our primary goal is to deliver an accurate catalog of the aftershock sequence. Due to the exceptional number of events detected we performed an automatic picking/locating procedure which can be splitted in 4 steps: 1) Coarse picking of the onsets using a classical STA/LTA picker, 2) phase association of picked onsets to detect and declare seismic events, 3) Kurtosis pick refinement around theoretical arrival times to increase picking and location accuracy and, 4) local magnitude calculation based amplitude of waveforms. This procedure is time efficient ( 1 sec/event), reduces considerably the location uncertainties ( 2 to 5 km errors) and increases the number of events detected compared to manual processing. Indeed, the automatic detection rate is 10 times higher than the manual detection rate. By comparing to the USGS catalog we were able to give a new attenuation law to compute local magnitudes in the region. A detailed analysis of the seismicity shows a clear migration toward the east of the region and a sudden decrease of seismicity 100 km east of Kathmandu which may reveal the presence of a tectonic

  6. Some statistical features of the aftershock temporal behavior after the M7.4 Izmit earthquake of august 17, 1999 in Turkey

    Science.gov (United States)

    Gospodinov, D.; Fajtin, H.; Rangelov, B.; Marekova, E.

    2009-04-01

    An earthquake of magnitude Mw=7.4 struck 8 km. southeast of Izmit, Turkey at 3:02 AM local time on August 17, 1999. The earthquake occurred on one of the world's longest and best studied strike-slip (horizontal motion) faults - the east-west trending North Anatolian fault. Seismologists are not able to predict the timing and sizes of individual aftershocks but stochastic modeling allows determinationof probabilities for aftershocks and larger mainshocks duringintervals following the mainshock. The most widely applied stochastic model to depict aftershocks temporal distribution is the non- homogenous Poisson process with a decaying intensity, which follows the Modified Omori Formula (MOF) (Utsu, 1961). A more complex model, considering the triggering potential of each aftershock was developed by Ogata (1988) and it was named Epidemic Type Aftershock Sequence (ETAS) model. Gospodinov and Rotondi (2006) elaborated a Restricted Epidemic Type Aftershock Sequence (RETAS) model. The latter follows the general idea that only aftershocks stronger than some cut-off magnitude possess the capability to induce secondary aftershock activity. In this work we shall consider the Restricted Epidemic Type Aftershock Sequence (RETAS) model, for which the conditional intensity function turns out to be ‘ K0eα(Mi-M0)- λ (t|Ht) = + (t- ti + c)p ti model versions between the MOF and the ETAS model on the basis of the Akaike Information Criterion AIC (Akaike, 1974) AIC = - 2max log L+ 2k (2) where k is the number of parameters used in the model and logL is the logarithm of the likelihood function. Then for the model providing the best fit, we choose the one with the smallest AIC value. The purpose of this paper is to verify versions of the RETAS model (including the MOF and the ETAS model) for the analysis of the aftershock sequence after the Mw=7.4 Izmit earthquake. The obtained results revealed that the best fit model is ETAS, for which the triggering magnitude coincides with the

  7. Constraining the magnitude of the largest event in a foreshock-main shock-aftershock sequence

    Science.gov (United States)

    Shcherbakov, Robert; Zhuang, Jiancang; Ogata, Yosihiko

    2018-01-01

    Extreme value statistics and Bayesian methods are used to constrain the magnitudes of the largest expected earthquakes in a sequence governed by the parametric time-dependent occurrence rate and frequency-magnitude statistics. The Bayesian predictive distribution for the magnitude of the largest event in a sequence is derived. Two types of sequences are considered, that is, the classical aftershock sequences generated by large main shocks and the aftershocks generated by large foreshocks preceding a main shock. For the former sequences, the early aftershocks during a training time interval are used to constrain the magnitude of the future extreme event during the forecasting time interval. For the latter sequences, the earthquakes preceding the main shock are used to constrain the magnitudes of the subsequent extreme events including the main shock. The analysis is applied retrospectively to past prominent earthquake sequences.

  8. Characterizing Aftershock Sequences of the Recent Strong Earthquakes in Central Italy

    Science.gov (United States)

    Kossobokov, Vladimir G.; Nekrasova, Anastasia K.

    2017-10-01

    The recent strong earthquakes in Central Italy allow for a comparative analysis of their aftershocks from the viewpoint of the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. In particular, we consider aftershocks as a sequence of avalanches in self-organized system of blocks-and-faults of the Earth lithosphere, each aftershock series characterized with the distribution of the USLE control parameter, η. We found the existence, in a long-term, of different, intermittent levels of rather steady seismic activity characterized with a near constant value of η, which switch, in mid-term, at times of transition associated with catastrophic events. On such a transition, seismic activity may follow different scenarios with inter-event time scaling of different kind, including constant, logarithmic, power law, exponential rise/decay or a mixture of those as observed in the case of the ongoing one associated with the three strong earthquakes in 2016. Evidently, our results do not support the presence of universality of seismic energy release, while providing constraints on modelling seismic sequences for earthquake physicists and supplying decision makers with information for improving local seismic hazard assessments.

  9. Remote detection of weak aftershocks of the DPRK underground explosions using waveform cross correlation

    Science.gov (United States)

    Le Bras, R.; Rozhkov, M.; Bobrov, D.; Kitov, I. O.; Sanina, I.

    2017-12-01

    Association of weak seismic signals generated by low-magnitude aftershocks of the DPRK underground tests into event hypotheses represent a challenge for routine automatic and interactive processing at the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization, due to the relatively low station density of the International Monitoring System (IMS) seismic network. Since 2011, as an alternative, the IDC has been testing various prototype techniques of signal detection and event creation based on waveform cross correlation. Using signals measured by seismic stations of the IMS from DPRK explosions as waveform templates, the IDC detected several small (estimated mb between 2.2 and 3.6) seismic events after two DPRK tests conducted on September 9, 2016 and September 3, 2017. The obtained detections were associated with reliable event hypothesis and then used to locate these events relative to the epicenters of the DPRK explosions. We observe high similarity of the detected signals with the corresponding waveform templates. The newly found signals also correlate well between themselves. In addition, the values of the signal-to-noise ratios (SNR) estimated using the traces of cross correlation coefficients, increase with template length (from 5 s to 150 s), providing strong evidence in favour of their spatial closeness, which allows interpreting them as explosion aftershocks. We estimated the relative magnitudes of all aftershocks using the ratio of RMS amplitudes of the master and slave signal in the cross correlation windows characterized by the highest SNR. Additional waveform data from regional non-IMS stations MDJ and SEHB provide independent validation of these aftershock hypotheses. Since waveform templates from any single master event may be sub-efficient at some stations, we have also developed a method of joint usage of the DPRK and the biggest aftershocks templates to build more robust event hypotheses.

  10. Constraints on Dynamic Triggering from very Short term Microearthquake Aftershocks at Parkfield

    Science.gov (United States)

    Ampuero, J.; Rubin, A.

    2004-12-01

    The study of microearthquakes helps bridge the gap between laboratory experiments and data from large earthquakes, the two disparate scales that have contributed so far to our understanding of earthquake physics. Although they are frequent, microearthquakes are difficult to analyse. Applying high precision relocation techniques, Rubin and Gillard (2000) observed a pronounced asymmetry in the spatial distribution of the earliest and nearest aftershocks of microearthquakes along the San Andreas fault (they occur more often to the NW of the mainshock). It was suggested that this could be related to the velocity contrast across the fault. Preferred directivity of dynamic rupture pulses running along a bimaterial interface (to the SE in the case of the SAF) is expected on theoretical grounds. Our numerical simulations of crack-like rupture on such interfaces show a pronounced asymmetry of the stress histories beyond the rupture ends, and suggest two possible mechanisms for the observed asymmetry: First, that it results from an asymmmetry in the static stress field following arrest of the mainshock (closer to failure to the NW), or second, that it is due to a short-duration tensile pulse that propagates to the SE, which could reduce the number of aftershocks to the SE by dynamic triggering of any nucleation site close enough to failure to have otherwise produced an aftershock. To distinguish betwen these mechanisms we need observations of dynamic triggering in microseismicity. For small events triggered at a distance of some mainshock radii, triggering time scales are so short that seismograms of both events overlap. To detect the occurrence of compound events and very short term aftershocks in the HRSN Parkfield archived waveforms we have developed an automated search algorithm based on empirical Green's function (EGF) deconvolution. Optimal EGFs are first selected by the coherency of the cross-component convolution with respect to the target event. Then Landweber

  11. Long aftershock sequences in North China and Central US: implications for hazard assessment in mid-continents

    Science.gov (United States)

    Liu, Mian; Luo, Gang; Wang, Hui; Stein, Seth

    2014-02-01

    Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread concerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M ~ 7.0 events in 1811-1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occurrences are critical to improve hazard assessments.

  12. A high-resolution aftershock seismicity image of the 2002 Sultandaği-Çay earthquake (Mw = 6.2), Turkey

    Science.gov (United States)

    Ergin, Mehmet; Aktar, Mustafa; Özalaybey, Serdar; Tapirdamaz, Mustafa C.; Selvi, Oguz; Tarancioglu, Adil

    2009-10-01

    A moderate-size earthquake (Mw = 6.2) occurred on 3 February 2002 (07:11:28 GMT) in the Sultandağı-Çay region of southwest Turkey. The mainshock was followed by a strong aftershock of Mw = 6.0 just 2 h after the mainshock, at 09:26:49 GMT. A temporary seismic network of 27 vertical component seismometers was installed to monitor aftershock activity. One thousand sixty nine aftershocks (0.2 AAG). The westernmost end of the aftershock activity corresponds to a structurally complex zone distinct from the main rupture. It is characterized by both ENE-WSW- and NNE-SSW-trending oblique-slip normal faulting mechanisms, the latter being associated with the NNE-SSW-trending Karamık Graben. The intersection of these two grabens, AAG and Karamık Graben, provides abundant faults available for failure in this region. The occurrence pattern of large events in recent years indicates a possible migration of earthquakes from east to west. Thus, we conclude that this has an important implication for earthquake hazard for the city of Afyon, which lies along the same fault line and only 20 km west of the termination point of the aftershock zone.

  13. Aftershock activity of Bhuj earthquake of January 26th, 2001

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2001-01-26

    Jan 26, 2001 ... The epicenter of the mainshock falls on the southern edge of ... Daily frequency of aftershocks (ML ≥ 1) from February 5th to February 27th, 2001. local network around the .... Financial support to carry out the study became.

  14. Report on correlation between radon outgassing and aftershocks activity along the Bam Fault in Kerman province of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Nabipour, Jamshid Soltani [Bio-Nuclear and Medical Radiation Engineering Department, Parand Branch, Islamic Azad University, Parand (Iran, Islamic Republic of); Khorshidi, Abdollah, E-mail: abkhorshidi@yahoo.com [Cellular and Molecular Gerash Research Center, Gerash University of Medical Sciences (Iran, Islamic Republic of)

    2017-09-01

    After the Earthquake in Bam in December 26, 2003, a team was dispatched to this area to monitor the relationship between Variation in the Radon ({sup 222}Rn) concentration and the magnitude of aftershocks. Meteorological parameters such as air pressure, temperature and humidity were measured. Radon concentration at depth of 90 cm of soil was also measured using AlphaGuard (Model 2000PRO) in 10 minutes periods. The measurement site was near the fault location and the radon concentration was systemically measured for a period of three months. A correlation between radon concentration and the available aftershocks data is discussed. More than 150 small to moderate aftershocks with a magnitude ranging from M=2.1 to 6.5 in scale of Richter occurred in the region during the period of this study at the various distances (below 20 km of epicenter) from the radon monitoring sites. When the magnitude of aftershocks increased, variations of radon concentration could be observed more clearly. (author)

  15. Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models

    International Nuclear Information System (INIS)

    Helmstetter, A.; Sornette, D.

    2002-01-01

    The epidemic-type aftershock sequence (ETAS) model is a simple stochastic process modeling seismicity, based on the two best-established empirical laws, the Omori law (power-law decay ∼1/t 1+θ of seismicity after an earthquake) and Gutenberg-Richter law (power-law distribution of earthquake energies). In order to describe also the space distribution of seismicity, we use in addition a power-law distribution ∼1/r 1+μ of distances between triggered and triggering earthquakes. The ETAS model has been studied for the last two decades to model real seismicity catalogs and to obtain short-term probabilistic forecasts. Here, we present a mapping between the ETAS model and a class of CTRW (continuous time random walk) models, based on the identification of their corresponding master equations. This mapping allows us to use the wealth of results previously obtained on anomalous diffusion of CTRW. After translating into the relevant variable for the ETAS model, we provide a classification of the different regimes of diffusion of seismic activity triggered by a mainshock. Specifically, we derive the relation between the average distance between aftershocks and the mainshock as a function of the time from the mainshock and of the joint probability distribution of the times and locations of the aftershocks. The different regimes are fully characterized by the two exponents θ and μ. Our predictions are checked by careful numerical simulations. We stress the distinction between the 'bare' Omori law describing the seismic rate activated directly by a mainshock and the 'renormalized' Omori law taking into account all possible cascades from mainshocks to aftershocks of aftershock of aftershock, and so on. In particular, we predict that seismic diffusion or subdiffusion occurs and should be observable only when the observed Omori exponent is less than 1, because this signals the operation of the renormalization of the bare Omori law, also at the origin of seismic diffusion in

  16. Testing the Predictive Power of Coulomb Stress on Aftershock Sequences

    Science.gov (United States)

    Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.

    2009-12-01

    Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.

  17. Complex faulting associated with the 22 December 2003 Mw 6.5 San Simeon California, earthquake, aftershocks and postseismic surface deformation

    Science.gov (United States)

    McLaren, Marcia K.; Hardebeck, Jeanne L.; Van Der Elst, Nicholas; Unruh, Jeffrey R.; Bawden, Gerald W.; Blair, James Luke

    2008-01-01

    We use data from two seismic networks and satellite interferometric synthetic aperture radar (InSAR) imagery to characterize the 22 December 2003 Mw 6.5 San Simeon earthquake sequence. Absolute locations for the mainshock and nearly 10,000 aftershocks were determined using a new three-dimensional (3D) seismic velocity model; relative locations were obtained using double difference. The mainshock location found using the 3D velocity model is 35.704° N, 121.096° W at a depth of 9.7±0.7 km. The aftershocks concentrate at the northwest and southeast parts of the aftershock zone, between the mapped traces of the Oceanic and Nacimiento fault zones. The northwest end of the mainshock rupture, as defined by the aftershocks, projects from the mainshock hypocenter to the surface a few kilometers west of the mapped trace of the Oceanic fault, near the Santa Lucia Range front and the >5 mm postseismic InSAR imagery contour. The Oceanic fault in this area, as mapped by Hall (1991), is therefore probably a second-order synthetic thrust or reverse fault that splays upward from the main seismogenic fault at depth. The southeast end of the rupture projects closer to the mapped Oceanic fault trace, suggesting much of the slip was along this fault, or at a minimum is accommodating much of the postseismic deformation. InSAR imagery shows ∼72 mm of postseismic uplift in the vicinity of maximum coseismic slip in the central section of the rupture, and ∼48 and ∼45 mm at the northwest and southeast end of the aftershock zone, respectively. From these observations, we model a ∼30-km-long northwest-trending northeast-dipping mainshock rupture surface—called the mainthrust—which is likely the Oceanic fault at depth, a ∼10-km-long southwest-dipping backthrust parallel to the mainthrust near the hypocenter, several smaller southwest-dipping structures in the southeast, and perhaps additional northeast-dipping or subvertical structures southeast of the mainshock plane

  18. Seismic Parameters of Mining-Induced Aftershock Sequences for Re-entry Protocol Development

    Science.gov (United States)

    Vallejos, Javier A.; Estay, Rodrigo A.

    2018-03-01

    A common characteristic of deep mines in hard rock is induced seismicity. This results from stress changes and rock failure around mining excavations. Following large seismic events, there is an increase in the levels of seismicity, which gradually decay with time. Restricting access to areas of a mine for enough time to allow this decay of seismic events is the main approach in re-entry strategies. The statistical properties of aftershock sequences can be studied with three scaling relations: (1) Gutenberg-Richter frequency magnitude, (2) the modified Omori's law (MOL) for the temporal decay, and (3) Båth's law for the magnitude of the largest aftershock. In this paper, these three scaling relations, in addition to the stochastic Reasenberg-Jones model are applied to study the characteristic parameters of 11 large magnitude mining-induced aftershock sequences in four mines in Ontario, Canada. To provide guidelines for re-entry protocol development, the dependence of the scaling relation parameters on the magnitude of the main event are studied. Some relations between the parameters and the magnitude of the main event are found. Using these relationships and the scaling relations, a space-time-magnitude re-entry protocol is developed. These findings provide a first approximation to concise and well-justified guidelines for re-entry protocol development applicable to the range of mining conditions found in Ontario, Canada.

  19. 2014 mainshock-aftershock activity versus earthquake swarms in West\

    Czech Academy of Sciences Publication Activity Database

    Jakoubková, Hana; Horálek, Josef; Fischer, T.

    2018-01-01

    Roč. 175, č. 1 (2018), s. 109-131 ISSN 0033-4553 R&D Projects: GA ČR GAP210/12/2336; GA MŠk(CZ) LM2015079 Institutional support: RVO:67985530 Keywords : West Bohemia/Vogtland * earthquake swarms * mainshock-aftershock sequence * total seismic moment * statistical characteristics of earthquake activities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016

  20. Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model

    Science.gov (United States)

    Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel

    2017-11-01

    The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.

  1. An Autonomous System for Grouping Events in a Developing Aftershock Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dodge, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-03-22

    We describe a prototype detection framework that automatically clusters events in real time from a rapidly unfolding aftershock sequence. We use the fact that many aftershocks are repetitive, producing similar waveforms. By clustering events based on correlation measures of waveform similarity, the number of independent event instances that must be examined in detail by analysts may be reduced. Our system processes array data and acquires waveform templates with a short-term average (STA)/long-term average (LTA) detector operating on a beam directed at the P phases of the aftershock sequence. The templates are used to create correlation-type (subspace) detectors that sweep the subsequent data stream for occurrences of the same waveform pattern. Events are clustered by association with a particular detector. Hundreds of subspace detectors can run in this framework a hundred times faster than in real time. Nonetheless, to check the growth in the number of detectors, the framework pauses periodically and reclusters detections to reduce the number of event groups. These groups define new subspace detectors that replace the older generation of detectors. Because low-magnitude occurrences of a particular signal template may be missed by the STA/LTA detector, we advocate restarting the framework from the beginning of the sequence periodically to reprocess the entire data stream with the existing detectors. We tested the framework on 10 days of data from the Nevada Seismic Array (NVAR) covering the 2003 San Simeon earthquake. One hundred eighty-four automatically generated detectors produced 676 detections resulting in a potential reduction in analyst workload of up to 73%.

  2. Aftershocks: an attempted analysis of their frequency and severity in view of risk assessment

    International Nuclear Information System (INIS)

    Mohammadioun, G.

    1985-08-01

    A catalogue comprising some 30.000 strong and moderate-sized earthquakes with their associated aftershocks, collected worldwide, has been established for the purpose of studying time and magnitude distributions with engineering applications in mind. An attempt is made to model this data base using, notably, Poisson and Weibull relations. Preliminary results include regional variations in a coefficient evaluated by means of the magnitude law and the computed probability of occurrence of an aftershock of given magnitude within a given time after the main shock. A relationship is likewise shown to exist between maximum-density magnitudes and the maximum-density time intervals separating individual events. 13 refs., 3 figs

  3. Including foreshocks and aftershocks in time-independent probabilistic seismic hazard analyses

    Science.gov (United States)

    Boyd, Oliver S.

    2012-01-01

    Time‐independent probabilistic seismic‐hazard analysis treats each source as being temporally and spatially independent; hence foreshocks and aftershocks, which are both spatially and temporally dependent on the mainshock, are removed from earthquake catalogs. Yet, intuitively, these earthquakes should be considered part of the seismic hazard, capable of producing damaging ground motions. In this study, I consider the mainshock and its dependents as a time‐independent cluster, each cluster being temporally and spatially independent from any other. The cluster has a recurrence time of the mainshock; and, by considering the earthquakes in the cluster as a union of events, dependent events have an opportunity to contribute to seismic ground motions and hazard. Based on the methods of the U.S. Geological Survey for a high‐hazard site, the inclusion of dependent events causes ground motions that are exceeded at probability levels of engineering interest to increase by about 10% but could be as high as 20% if variations in aftershock productivity can be accounted for reliably.

  4. Distribution and migration of aftershocks of the 2010 Mw 7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate

    Science.gov (United States)

    Obana, Koichiro; Takahashi, Tsutomu; No, Tetsuo; Kaiho, Yuka; Kodaira, Shuichi; Yamashita, Mikiya; Sato, Takeshi; Nakamura, Takeshi

    2014-04-01

    describe the aftershocks of a Mw 7.4 intraplate normal-faulting earthquake that occurred 150 km east Ogasawara (Bonin) Islands, Japan, on 21 December 2010. It occurred beneath the outer trench slope of the Izu-Ogasawara trench, where the Pacific plate subducts beneath the Philippine Sea plate. Aftershock observations using ocean bottom seismographs (OBSs) began soon after the earthquake and multichannel seismic reflection surveys were conducted across the aftershock area. Aftershocks were distributed in a NW-SE belt 140 km long, oblique to the N-S trench axis. They formed three subparallel lineations along a fracture zone in the Pacific plate. The OBS observations combined with data from stations on Chichi-jima and Haha-jima Islands revealed a migration of the aftershock activity. The first hour, which likely outlines the main shock rupture, was limited to an 80 km long area in the central part of the subsequent aftershock area. The first hour activity occurred mainly around, and appears to have been influenced by, nearby large seamounts and oceanic plateau, such as the Ogasawara Plateau and the Uyeda Ridge. Over the following days, the aftershocks expanded beyond or into these seamounts and plateau. The aftershock distribution and migration suggest that crustal heterogeneities related to a fracture zone and large seamounts and oceanic plateau in the incoming Pacific plate affected the rupture of the main shock. Such preexisting structures may influence intraplate normal-faulting earthquakes in other regions of plate flexure prior to subduction.

  5. Aftershocks and triggering processes in rock fracture

    Science.gov (United States)

    Davidsen, J.; Kwiatek, G.; Goebel, T.; Stanchits, S. A.; Dresen, G.

    2017-12-01

    One of the hallmarks of our understanding of seismicity in nature is the importance of triggering processes, which makes the forecasting of seismic activity feasible. These triggering processes by which one earthquake induces (dynamic or static) stress changes leading to potentially multiple other earthquakes are at the core relaxation processes. A specic example of triggering are aftershocks following a large earthquake, which have been observed to follow certain empirical relationships such as the Omori-Utsu relation. Such an empirical relation should arise from the underlying microscopic dynamics of the involved physical processes but the exact connection remains to be established. Simple explanations have been proposed but their general applicability is unclear. Many explanations involve the picture of an earthquake as a purely frictional sliding event. Here, we present experimental evidence that these empirical relationships are not limited to frictional processes but also arise in fracture zone formation and are mostly related to compaction-type events. Our analysis is based on tri-axial compression experiments under constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. More importantly, we show that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections while such triggering is basically absent if no signicant imperfections are present. We also show that spatial localization and an increase in activity rates close to failure do not necessarily imply triggering behavior associated with aftershocks. Only if a macroscopic crack is formed and its propagation remains subcritical do we observe significant triggering.

  6. Aftershock stress analysis of the April 2015 Mw 7.8 Gorkha earthquake from the NAMASTE project

    Science.gov (United States)

    Pant, M.; Velasco, A. A.; Karplus, M. S.; Patlan, E.; Ghosh, A.; Nabelek, J.; Kuna, V. M.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.

    2016-12-01

    Continental collision between the Indian plate and the Eurasian plate, converging at 45 mm/yr, has uplifted the northern part of Nepal forming the Himalaya. Because of this convergence, the region has experienced large, devastating earthquakes, including the 1934 Mw 8.4 Nepal-Bihar earthquake and two recent earthquakes on April 25, 2015 Mw 7.8 (Gorkha earthquake) and May 12, 2015 Mw 7.2. These quakes killed thousands of people and caused billion dollars of property loss. Despite some recent geologic and geophysical studies of this area, many tectonic questions remain unanswered. Shortly after the Gorkha earthquake, we deployed a seismic network, NAMASTE (Nepal Array Measuring Aftershock Seismicity Trailing Earthquake), to study the aftershocks of these two large events. Our network included 45 different seismic stations (16 short period, 25 broadband, and 4 strong motion sensors) that spanned the Gorkha rupture area. The deployment extends from south of the Main Frontal Thrust (MFT) to the Main Central Thrust region (MCT), and it to recorded aftershocks for more than ten months from June 2015 to May 2016. We are leveraging high-precision earthquake locations by measuring and picking P-wave first-motion arrival polarity to develop a catalog of focal mechanisms for the larger aftershocks. We will use this catalog to correlate the seismicity and stress related of the Indo-Eurasian plate margin, hoping to address questions regarding the complex fault geometries and future earthquake hazards at this plate margin.

  7. Aftershock distribution as a constraint on the geodetic model of coseismic slip for the 2004 Parkfield earthquake

    Science.gov (United States)

    Bennington, Ninfa; Thurber, Clifford; Feigl, Kurt; ,

    2011-01-01

    Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.

  8. Aftershocks following crash of currency exchange rate: The case of RUB/USD in 2014

    Science.gov (United States)

    Usmanova, Vasilya; Lysogorskiy, Yury V.; Abe, Sumiyoshi

    2018-02-01

    The dynamical behavior of the currency exchange rate after its large-scale catastrophe is discussed through a case study of the rate of Russian rubles to US dollars after its crash in 2014. It is shown that, similarly to the case of the stock market crash, the relaxation is characterized by a power law, which is in analogy with the Omori-Utsu law for earthquake aftershocks. The waiting-time distribution is found to also obey a power law. Furthermore, the event-event correlation is discussed, and the aging phenomenon and scaling property are observed. Comments are made on (non-)Markovianity of the aftershock process and on a possible relevance of glassy dynamics to the market system after the crash.

  9. Variation of b and p values from aftershocks sequences along the Mexican subduction zone and their relation to plate characteristics

    Science.gov (United States)

    Ávila-Barrientos, L.; Zúñiga, F. R.; Rodríguez-Pérez, Q.; Guzmán-Speziale, M.

    2015-11-01

    Aftershock sequences along the Mexican subduction margin (between coordinates 110ºW and 91ºW) were analyzed by means of the p value from the Omori-Utsu relation and the b value from the Gutenberg-Richter relation. We focused on recent medium to large (Mw > 5.6) events considered susceptible of generating aftershock sequences suitable for analysis. The main goal was to try to find a possible correlation between aftershock parameters and plate characteristics, such as displacement rate, age and segmentation. The subduction regime of Mexico is one of the most active regions of the world with a high frequency of occurrence of medium to large events and plate characteristics change along the subduction margin. Previous studies have observed differences in seismic source characteristics at the subduction regime, which may indicate a difference in rheology and possible segmentation. The results of the analysis of the aftershock sequences indicate a slight tendency for p values to decrease from west to east with increasing of plate age although a statistical significance is undermined by the small number of aftershocks in the sequences, a particular feature distinctive of the region as compared to other world subduction regimes. The b values show an opposite, increasing trend towards the east even though the statistical significance is not enough to warrant the validation of such a trend. A linear regression between both parameters provides additional support for the inverse relation. Moreover, we calculated the seismic coupling coefficient, showing a direct relation with the p and b values. While we cannot undoubtedly confirm the hypothesis that aftershock generation depends on certain tectonic characteristics (age, thickness, temperature), our results do not reject it thus encouraging further study into this question.

  10. Transient poroelastic stress coupling between the 2015 M7.8 Gorkha, Nepal earthquake and its M7.3 aftershock

    Science.gov (United States)

    Tung, S.; Masterlark, T.; Dovovan, T.

    2018-05-01

    The large M7.3 aftershock occurred 17 days after the 2015 M7.8 Gorkha earthquake. We investigate if this sequence is mechanically favored by the mainshock via time-dependent fluid migration and pore pressure recovery. This study uses finite element models of fully-coupled poroelastic coseismic and postseismic behavior to simulate the evolving stress and pore-pressure fields. Using simulations of a reasonable permeability, the hypocenter was destabilized by an additional 0.15 MPa of Coulomb failure stress change (ΔCFS) and 0.17 MPa of pore pressure (Δp), the latter of which induced lateral and upward diffusive fluid flow (up to 2.76 mm/day) in the aftershock region. The M7.3 location is predicted next to a local maximum of Δp and a zone of positive ΔCFS northeast of Kathmandu. About 60% of the aftershocks occurred within zones having either Δp > 0 or ΔCFS > 0. Particularly in the eastern flank of the epicentral area, 83% of the aftershocks experienced postseismic fluid pressurization and 88% of them broke out with positive pore pressure, which are discernibly more than those with positive ΔCFS (71%). The transient scalar field of fluid pressurization provides a good proxy to predict aftershock-prone areas in space and time, because it does not require extraction of an assumed vector field from transient stress tensor fields as is the case for ΔCFS calculations. A bulk permeability of 8.32 × 10-18 m2 is resolved to match the transient response and the timing of the M7.3 rupture which occurred at the peak of the ΔCFS time-series. This estimate is consistent with the existing power-law permeability-versus-depth models, suggesting an intermediately-fractured upper crust coherent with the local geology of the central Himalayas. The contribution of poroelastic triggering is verified against different poroelastic moduli and surface flow-pressure boundaries, suggesting that a poroelastic component is essential to account for the time interval separating the

  11. Fault structure in the Nepal Himalaya as illuminated by aftershocks of the 2015 Mw 7.8 Gorkha earthquake recorded by the local NAMASTE network

    Science.gov (United States)

    Ghosh, A.; Mendoza, M.; LI, B.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2017-12-01

    Geometry of the Main Himalayan Thrust (MHT), that accommodates majority of the plate motion between Indian and Eurasian plate, is being debated for a long time. Different models have been proposed; some of them are significantly different from others. Obtaining a well constrained geometry of the MHT is challenging mainly because of the lack of high quality data, inherent low resolution and non-uniqueness of the models. We used a dense local seismic network - NAMASTE - to record and analyze a prolific aftershock sequence following the 2015 Mw 7.8 Gorkha earthquake, and determine geometry of the MHT constrained by precisely located well-constrained aftershocks. We detected and located more than 15,000 aftershocks of the Gorkha earthquake using Hypoinverse and then relatively relocated using HypoDD algorithm. We selected about 7,000 earthquakes that are particularly well constrained to analyze the geometry of the megathrust. They illuminate fault structure in this part of the Himalaya with unprecedented detail. The MHT shows two subhorizontal planes connected by a duplex structure. The duplex structure is characterized by multiple steeply dipping planes. In addition, we used four large-aperture continental-scale seismic arrays at teleseismic distances to backproject high-frequency seismic radiation. Moreover, we combined all arrays to significantly increase the resolution and detectability. We imaged rupture propagation of the mainshock showing complexity near the end of the rupture that might help arresting of the rupture to the east. Furthermore, we continuously scanned teleseismic data for two weeks starting from immediately after the mainshock to detect and locate aftershock activity only using the arrays. Spatial pattern of the aftershocks was similar to the existing global catalog using conventional seismic network and technique. However, we detected more than twice as many aftershocks using the array technique compared to the global catalog including many

  12. Statistical analysis of seismicity and hazard estimation for Italy (mixed approach). Statistical parameters of main shocks and aftershocks in the Italian region

    International Nuclear Information System (INIS)

    Molchan, G.M.; Kronrod, T.L.; Dmitrieva, O.E.

    1995-03-01

    The catalog of earthquakes of Italy (1900-1993) is analyzed in the present work. The following problems have been considered: 1) a choice of the operating magnitude, 2) an analysis of data completeness, and 3) a grouping (in time and in space). The catalog has been separated into main shocks and aftershocks. Statistical estimations of seismicity parameters (a,b) are performed for the seismogenetic zones defined by GNDT. The non-standard elements of the analysis performed are: (a) statistical estimation and comparison of seismicity parameters under the condition of arbitrary data grouping in magnitude, time and space; (b) use of a not conventional statistical method for the aftershock identification; the method is based on the idea of optimizing two kinds of errors in the aftershock identification process; (c) use of the aftershock zones to reveal seismically- interrelated seismogenic zones. This procedure contributes to the stability of the estimation of the ''b-value'' Refs, 25 figs, tabs

  13. Aftershock Forecasting: Recent Developments and Lessons from the 2016 M5.8 Pawnee, Oklahoma, Earthquake

    Science.gov (United States)

    Michael, A. J.; Field, E. H.; Hardebeck, J.; Llenos, A. L.; Milner, K. R.; Page, M. T.; Perry, S. C.; van der Elst, N.; Wein, A. M.

    2016-12-01

    After the Mw 5.8 Pawnee, Oklahoma, earthquake of September 3, 2016 the USGS issued a series of aftershock forecasts for the next month and year. These forecasts were aimed at the emergency response community, those making decisions about well operations in the affected region, and the general public. The forecasts were generated manually using methods planned for automatically released Operational Aftershock Forecasts. The underlying method is from Reasenberg and Jones (Science, 1989) with improvements recently published in Page et al. (BSSA, 2016), implemented in a JAVA Graphical User Interface and presented in a template that is under development. The methodological improvements include initial models based on the tectonic regime as defined by Garcia et al. (BSSA, 2012) and the inclusion of both uncertainty in the clustering parameters and natural random variability. We did not utilize the time-dependent magnitude of completeness model from Page et al. because it applies only to teleseismic events recorded by NEIC. The parameters for Garcia's Generic Active Continental Region underestimated the modified-Omori decay parameter and underestimated the aftershock rate by a factor of 2. And the sequence following the Mw 5.7 Prague, Oklahoma, earthquake of November 6, 2011 was about 3 to 4 times more productive than the Pawnee sequence. The high productivity for these potentially induced sequences is consistent with an increase in productivity in Oklahoma since 2009 (Llenos and Michael, BSSA, 2013) and makes a general tectonic model inapplicable to sequences in this region. Soon after the mainshock occurred, the forecasts relied on the sequence specific parameters. After one month, the Omori decay parameter p is less than one, implying a very long-lived sequence. However, the decay parameter is known to be biased low at early times due to secondary aftershock triggering, and the p-value determined early in the sequence may be inaccurate for long-term forecasting.

  14. Anomalous stress diffusion, Omori's law and Continuous Time Random Walk in the 2010 Efpalion aftershock sequence (Corinth rift, Greece)

    Science.gov (United States)

    Michas, Georgios; Vallianatos, Filippos; Karakostas, Vassilios; Papadimitriou, Eleftheria; Sammonds, Peter

    2014-05-01

    Efpalion aftershock sequence occurred in January 2010, when an M=5.5 earthquake was followed four days later by another strong event (M=5.4) and numerous aftershocks (Karakostas et al., 2012). This activity interrupted a 15 years period of low to moderate earthquake occurrence in Corinth rift, where the last major event was the 1995 Aigion earthquake (M=6.2). Coulomb stress analysis performed in previous studies (Karakostas et al., 2012; Sokos et al., 2012; Ganas et al., 2013) indicated that the second major event and most of the aftershocks were triggered due to stress transfer. The aftershocks production rate decays as a power-law with time according to the modified Omori law (Utsu et al., 1995) with an exponent larger than one for the first four days, while after the occurrence of the second strong event the exponent turns to unity. We consider the earthquake sequence as a point process in time and space and study its spatiotemporal evolution considering a Continuous Time Random Walk (CTRW) model with a joint probability density function of inter-event times and jumps between the successive earthquakes (Metzler and Klafter, 2000). Jump length distribution exhibits finite variance, whereas inter-event times scale as a q-generalized gamma distribution (Michas et al., 2013) with a long power-law tail. These properties are indicative of a subdiffusive process in terms of CTRW. Additionally, the mean square displacement of aftershocks is constant with time after the occurrence of the first event, while it changes to a power-law with exponent close to 0.15 after the second major event, illustrating a slow diffusive process. During the first four days aftershocks cluster around the epicentral area of the second major event, while after that and taking as a reference the second event, the aftershock zone is migrating slowly with time to the west near the epicentral area of the first event. This process is much slower from what would be expected from normal diffusion, a

  15. A change in fault-plane orientation between foreshocks and aftershocks of the Galway Lake earthquake, ML = 5.2, 1975, Mojave desert, California

    Science.gov (United States)

    Fuis, G.S.; Lindh, A.G.

    1979-01-01

    A marked change is observed in P/SV amplitude ratios, measured at station TPC, from foreshocks to aftershocks of the Galway Lake earthquake. This change is interpreted to be the result of a change in fault-plane orientation occurring between foreshocks and aftershocks. The Galway Lake earthquake, ML= 5.2, occurred on June 1, 1975. The first-motion fault-plane solutions for the main shock and most foreshocks and aftershocks indicate chiefly right-lateral strike-slip on NNW-striking planes that dip steeply, 70-90??, to the WSW. The main event was preceded by nine located foreshocks, ranging in magnitude from 1.9 to 3.4, over a period of 12 weeks, starting on March 9, 1975. All of the foreshocks form a tight cluster approximately 1 km in diameter. This cluster includes the main shock. Aftershocks are distributed over a 6-km-long fault zone, but only those that occurred inside the foreshock cluster are used in this study. Seismograms recorded at TPC (?? = 61 km), PEC (?? = 93 km), and CSP (?? = 83 km) are the data used here. The seismograms recorded at TPC show very consistent P/SV amplitude ratios for foreshocks. For aftershocks the P/SV ratios are scattered, but generally quite different from foreshock ratios. Most of the scatter for the aftershocks is confined to the two days following the main shock. Thereafter, however, the P/SV ratios are consistently half as large as for foreshocks. More subtle (and questionable) changes in the P/SV ratios are observed at PEC and CSP. Using theoretical P/SV amplitude ratios, one can reproduce the observations at TPC, PEC and CSP by invoking a 5-12?? counterclockwise change in fault strike between foreshocks and aftershocks. This interpretation is not unique, but it fits the data better than invoking, for example, changes in dip or slip angle. First-motion data cannot resolve this small change, but they permit it. Attenuation changes would appear to be ruled out by the fact that changes in the amplitude ratios, PTPC/PPEC and ptpc

  16. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  17. An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series

    Directory of Open Access Journals (Sweden)

    Stavros-Richard G. Christopoulos

    2017-01-01

    Full Text Available Recently, the study of the coherent noise model has led to a simple (binary prediction algorithm for the forthcoming earthquake magnitude in aftershock sequences. This algorithm is based on the concept of natural time and exploits the complexity exhibited by the coherent noise model. Here, using the relocated catalogue from Southern California Seismic Network for 1981 to June 2011, we evaluate the application of this algorithm for the aftershocks of strong earthquakes of magnitude M≥6. The study is also extended by using the Global Centroid Moment Tensor Project catalogue to the case of the six strongest earthquakes in the Earth during the last almost forty years. The predictor time series exhibits the ubiquitous 1/f noise behavior.

  18. Distribution of the largest aftershocks in branching models of triggered seismicity: Theory of the universal Baath law

    International Nuclear Information System (INIS)

    Saichev, A.; Sornette, D.

    2005-01-01

    Using the epidemic-type aftershock sequence (ETAS) branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal behavior known as Baath's law. Our theory shows that Baath's law holds only sufficiently close to the critical regime of the ETAS branching process. Allowing for error bars ±0.1 for Baath's constant value around 1.2, our exact analytical treatment of Baath's law provides new constraints on the productivity exponent α and the branching ratio n: 0.9 < or approx. α≤1 and 0.8 < or approx. n≤1. We propose a method for measuring α based on the predicted renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also introduce the 'second Baath law for foreshocks': the probability that a main earthquake turns out to be the foreshock does not depend on its magnitude ρ

  19. Spatiotemporal Analysis of the Foreshock-Mainshock-Aftershock Sequence of the 6 July 2017 M5.8 Lincoln, Montana Earthquake

    Science.gov (United States)

    McMahon, N. D.; Stickney, M.; Aster, R. C.; Yeck, W.; Martens, H. R.; Benz, H.

    2017-12-01

    On 6 July 2017, a Mw 5.8 earthquake occurred 11 km southeast of Lincoln, Montana. The event was widely-felt from Edmonton, Alberta, Canada (750 km north), Seattle, Washington (800 km west), the Idaho/Utah and Idaho/Nevada borders (550 km south), and Rapid City, South Dakota (750 km east). This is the largest earthquake to occur in the state since the 1959 M 7.3 Hebgen Lake event 250 km to the southeast. In the three weeks following the 6 July 2017 Mw 5.8 main shock, the U.S. Geological Survey and Montana Bureau of Mines and Geology located more than 300 aftershocks. Preliminary observations show most of these aftershocks form a short NNE zone that suggests that the main shock may have slipped on a NNE left-lateral fault. A smaller number of aftershocks extend along a longer WNW-trending zone. These faults are part of the Lewis and Clark line, a prominent zone of Middle Proterozoic to Holocene age strike-slip, dip slip, and oblique slip faulting trending 400 km east-southeast from northern Idaho to east of Helena, Montana, and terminating southeast of this earthquake. We use identified aftershock waveforms as templates to examine the data from 1 June 2017 through 27 July 2017 with cross-correlation techniques on nearby permanent and temporary seismic stations deployed shortly after the mainshock to identify foreshocks and additional small aftershocks. Locating these events allows us to study subsurface geology, map fault structures, and provide insight on the spatial and temporal evolution of the earthquake sequence, which may continue to produce aftershocks for years. Other notable earthquakes in the region include a damaging M 6.6 earthquake 100 km to the south in June 1925, M 6.2 and M 6.0 earthquakes near Helena, Montana in October 1935 that caused significant damage and four fatalities, and a M 5.6 earthquake 170 km to the south in July 2005 that caused minor damage in Dillon and the surrounding region. We hope this work not only allows us to map the involved

  20. Full Aftershock Sequence of the M w 6.9 2003 Boumerdes Earthquake, Algeria: Space-Time Distribution, Local Tomography and Seismotectonic Implications

    Science.gov (United States)

    Kherroubi, Abdelaziz; Yelles-Chaouche, Abdelkrim; Koulakov, Ivan; Déverchère, Jacques; Beldjoudi, Hamoud; Haned, Abderrahmane; Semmane, Fethi; Aidi, Chafik

    2017-07-01

    We present a detailed analysis of the aftershocks of the May 21, 2003 Boumerdes earthquake ( M w = 6.9) recorded by 35 seismological stations and 2 OBS deployed in the epicentral area. This network recorded the aftershock activity for about 1 year and resulted in locating about 2500 events. The five main aftershocks (4.7 stress change is predicted to increase. At the SW tip of the rupture, short-lived clusters locate at intersections of faults near the contact between the inner (Kabylia) and outer (Tell) zones. The tomographic inversion depicts high-velocity P- and S-wave anomalies coinciding with Miocene magmatic intrusive bodies in the upper crust, partially hidden by surrounding basins. The area of the main shock is associated with a large low-velocity body subdivided into sub-domains, including Neogene basins on land and offshore. Our results support a rupture model strongly controlled by geological inhomogeneities and extending as ramp-flat-ramp systems upward, favoring heterogeneous slip and segmentation in the fault plane with strong afterslip toward the surface. The diffuse aftershock activity in the footwall evidences an inherited discontinuity at mid-crustal depth that we interpret as the contact of Kabylian and African (Tethyan) continental crusts that were stacked during the Upper Miocene collision.

  1. Observation of aftershocks of the 2003 Tokachi-Oki earthquake for estimation of local site effects

    Science.gov (United States)

    Yamanaka, Hiroaki; Motoki, Kentaro; Etoh, Kiminobu; Murayama, Masanari; Komaba, Nobuhiko

    2004-03-01

    Observation of aftershocks of the 2003 Tokachi-Oki earthquake was conducted in the southern part of the Tokachi basin in Hokkaido, Japan for estimation of local site effects. We installed accelerographs at 12 sites in Chokubetsu, Toyokoro, and Taiki areas, where large strong motion records were obtained during the main shock at stations of the K-NET and KiK-net. The stations of the aftershock observation are situated with different geological conditions and some of the sites were installed on Pleistocene layers as reference sites. The site amplifications are investigated using spectral ratio of S-waves from the aftershocks. The S-wave amplification factor is dominant at a period of about 1 second at the site near the KiK-net site in Toyokoro. This amplification fits well with calculated 1D amplification of S-wave in alluvial layers with a thickness of 50 meters. In addition to the site effects, we detected nonlinear amplification of the soft soils only during the main shock. The site effects at the strong motion site of the K-NET at Chokubetsu have a dominate peak at a period of 0.4 seconds. This amplification is due to soft soils having a thickness of about 13 meters. Contrary to the results at the two areas, site effects are not significantly different at the stations in the Taiki area, because of similarity on surface geological conditions.

  2. A Bayesian theory for seismic foreshocks and aftershocks

    International Nuclear Information System (INIS)

    Apostol, B.-F.

    2006-01-01

    Statistical distributions in time, magnitude and energy are derived for seismic foreshocks and aftershocks accompanying a main seismic shock, as based on the Bayesian theory of probabilities and on a model introduced recently for the accumulation of energy in a seismic focus. Omori's law is obtained as a self-replication of a generating distribution, the self-consistency of the process requiring an exponential law for this generating distribution. The two distributions are interrelated by Euler's transform, which provides also a generalized form of Omori's law. The regime of the accompanying seismic events is characterized as fully as possible, including the time dependence of the magnitude and the rate of released energy. (author)

  3. Predictability in the Epidemic-Type Aftershock Sequence model of interacting triggered seismicity

    Science.gov (United States)

    Helmstetter, AgnèS.; Sornette, Didier

    2003-10-01

    As part of an effort to develop a systematic methodology for earthquake forecasting, we use a simple model of seismicity on the basis of interacting events which may trigger a cascade of earthquakes, known as the Epidemic-Type Aftershock Sequence model (ETAS). The ETAS model is constructed on a bare (unrenormalized) Omori law, the Gutenberg-Richter law, and the idea that large events trigger more numerous aftershocks. For simplicity, we do not use the information on the spatial location of earthquakes and work only in the time domain. We demonstrate the essential role played by the cascade of triggered seismicity in controlling the rate of aftershock decay as well as the overall level of seismicity in the presence of a constant external seismicity source. We offer an analytical approach to account for the yet unobserved triggered seismicity adapted to the problem of forecasting future seismic rates at varying horizons from the present. Tests presented on synthetic catalogs validate strongly the importance of taking into account all the cascades of still unobserved triggered events in order to predict correctly the future level of seismicity beyond a few minutes. We find a strong predictability if one accepts to predict only a small fraction of the large-magnitude targets. Specifically, we find a prediction gain (defined as the ratio of the fraction of predicted events over the fraction of time in alarms) equal to 21 for a fraction of alarm of 1%, a target magnitude M ≥ 6, an update time of 0.5 days between two predictions, and for realistic parameters of the ETAS model. However, the probability gains degrade fast when one attempts to predict a larger fraction of the targets. This is because a significant fraction of events remain uncorrelated from past seismicity. This delineates the fundamental limits underlying forecasting skills, stemming from an intrinsic stochastic component in these interacting triggered seismicity models. Quantitatively, the fundamental

  4. Investigation of the 27 February 2010 Mw 8.8 Chilean earthquake integrating aftershock analysis, back-projection imaging and cGPS results

    Science.gov (United States)

    Clévédé, E.; Satriano, C.; Bukchin, B.; Lancieri, M.; Fuenzalida, A.; Vilotte, J.; Lyon-Caen, H.; Vigny, C.; Socquet, A.; Aranda, C.; Campos, J. A.; Scientific Team of the Lia Montessus de Ballore (Cnrs-Insu, U. Chile)

    2010-12-01

    The Mw 8.8 earthquake in central Chile ruptured more than 400 km along the subduction bound between the Nazca and the South American plates. The aftershock distribution clearly shows that this earthquake filled a well-known seismic gap, corresponding to rupture extension of the 1835 earthquake. The triggered post-seismic activity extends farther north of the gap, partially overlapping the 1985 and the 1960 Valparaiso earthquakes. However, the analysis of continuous GPS (cGPS) recordings, and back projection imaging of teleseismic body wave energy, indicate that the rupture stopped south of Valparaiso, around -33.5 degrees of latitude. An important question is how far the rupture actually extended to the north and the potential relation between the northernmost aftershock activity and remaining asperities within the ruptured zone of the previous Valparaiso earthquakes. The extension of the rupture offshore, towards west, also deserves further investigation. The aftershock distribution and the back propagation analysis support the hypothesis that, in the northern part, the rupture may have reached the surface at the trench. In this work, we performed a CMT and depth location study for more than 10 of the immediate largest aftershocks using teleseismic surface wave analysis constrained by P-wave polarity. In parallel, a detailed analysis of aftershocks in the northern part of the rupture, between 2010-03-11 and 2010-05-13, have been performed using the data from the station of the Chilean Servicio Sismológico Nacional (SSN), and of the post-seismic network, deployed by the French CNRS-INSU, GFZ, IRIS, and Caltech. We accurately hand-picked 153 larger events, which have been located using a non-linear probabilistic code, with improved depth location. Focal mechanisms have been computed for the larger events. Those results have been integrated with the analysis of cGPS and teleseismic back projection, and the overall kinematic of the Maule earthquake is discussed as

  5. The Mw6.5 17 November 2015 Lefkada (Greece) Earthquake: Structural Interpretation by Means of the Aftershock Analysis

    Science.gov (United States)

    Papadimitriou, E.; Karakostas, V.; Mesimeri, M.; Chouliaras, G.; Kourouklas, Ch.

    2017-10-01

    The 2015 Mw6.5 Lefkada main shock occurred at the south western part of Lefkada Island (Greece), less than 2 years after the occurrence of a doublet along the western part of the nearby Kefalonia Island, Paliki peninsula (on 25/01/2014, with Mw6.1 and 03/02/2014 with Mw6.0) and 12 years after the 2003 Mw6.2 main shock that struck the northwestern part of Lefkada Island. The four failed dextral strike slip fault segments belong to the Kefalonia transform fault zone (KTFZ), the major active boundary that bounds from the west the area of central Ionian Islands, namely Lefkada and Kefalonia. It is associated with several known historical earthquakes and is considered the most hazardous area in the Greek territory. The KTFZ fault segments are characterized by high slip rates (of the order of tens of millimeters per year), with maximum earthquake magnitudes up to 6.7 for Lefkada and 7.2 for Kefalonia fault zone, respectively. The double difference location technique was employed for relocating the aftershocks revealing a seismogenic layer extending from 3 to 16 km depth and multiple activation on well-defined fault planes, with strikes that differ than the main rupture and dips either to east or to west. This implies that strain energy was not solely released on a main fault only, but on secondary and adjacent fault segments as well. The reliable definition of their geometry forms the basis for the structural interpretation of the local fault network. The aftershock spatial distribution indicates three main clusters of the seismic activity, along with activation of smaller faults to an extent of more than 50 km. A northeasterly striking cluster is observed to the north of the main shock epicenter, with a remarkable aftershock density. The central cluster is less dense than the previous one with an epicentral alignment in full accordance with the strike provided by the main shock centroid moment tensor solution, and is considered as the main rupture with a length of 17 km

  6. Seismic amplitude measurements suggest foreshocks have different focal mechanisms than aftershocks

    Science.gov (United States)

    Lindh, A.; Fuis, G.; Mantis, C.

    1978-01-01

    The ratio of the amplitudes of P and S waves from the foreshocks and aftershocks to three recent California earthquakes show a characteristic change at the time of the main events. As this ratio is extremely sensitive to small changes in the orientation of the fault plane, a small systematic change in stress or fault configuration in the source region may be inferred. These results suggest an approach to the recognition of foreshocks based on simple measurements of the amplitudes of seismic waves. Copyright ?? 1978 AAAS.

  7. Relationship between large slip area and static stress drop of aftershocks of inland earthquake :Example of the 2007 Noto Hanto earthquake

    Science.gov (United States)

    Urano, S.; Hiramatsu, Y.; Yamada, T.

    2013-12-01

    The 2007 Noto Hanto earthquake (MJMA 6.9; hereafter referred to the main shock) occurred at 0:41(UTC) on March 25, 2007 at a depth of 11km beneath the west coast of Noto Peninsula, central Japan. The dominant slip of the main shock was on a reverse fault with a right-lateral slip and the large slip area was distributed from hypocenter to the shallow part on the fault plane (Horikawa, 2008). The aftershocks are distributed not only in the small slip area but also in the large slip area (Hiramatsu et al., 2011). In this study, we estimate static stress drops of aftershocks on the fault plane of the main shock. We discuss the relationship between the static stress drops of the aftershocks and the large slip area of the main shock by investigating spatial pattern of the values of the static stress drops. We use the waveform data obtained by the group for the joint aftershock observations of the 2007 Noto Hanto Earthquake (Sakai et al., 2007). The sampling frequency of the waveform data is 100 Hz or 200 Hz. Focusing on similar aftershocks reported by Hiramatsu et al. (2011), we analyze static stress drops by using the method of empirical Green's function (EGF) (Hough, 1997) as follows. The smallest earthquake (MJMA≥2.0) of each group of similar earthquakes is set to the EGF earthquake, and the largest earthquake (MJMA≥2.5) is set to the target earthquake. We then deconvolve the waveform of an interested earthquake with that of the EGF earthquake at each station and obtain the spectral ratio of the sources that cancels the propagation effects (path and site effects). Following the procedure of Yamada et al. (2010), we finally estimate static stress drops for P- and S-waves from corner frequencies of the spectral ratio by using a model of Madariaga (1976). The estimated average value of static stress drop is 8.2×1.3 MPa (8.6×2.2 MPa for P-wave and 7.8×1.3 MPa for S-wave). These values are coincident approximately with the static stress drop of aftershocks of other

  8. The Hellenic Seismological Network Of Crete (HSNC): Validation and results of the 2013 aftershock sequences

    Science.gov (United States)

    Chatzopoulos, Georgios; Papadopoulos, Ilias; Vallianatos, Filippos

    2015-04-01

    The number and quality of seismological networks in Europe has increased in the past decades. Nevertheless, the need for localized networks monitoring areas of great seismic and scientific interest is constant. Hellenic Seismological Network of Crete (HSNC) covers this need for the vicinity of the South Aegean Sea and Crete Island. In the present work with the use of Z-map software (www.seismo.ethz.ch) the spatial variability of Magnitude of Completeness (Mc) is calculated from HSNC's manual analysis catalogue of events for the period 2011 until today, proving the good coverage of HSNC in the areas. Furthermore the 2013, South Aegean seismicity where two large shallow earthquakes occurred in the vicinity of Crete Island, is discussed. The first event takes place on 15th June 2013 in the front of the Hellenic Arc, south from central Crete, while the second one on 12th October, 2013 on the western part of Crete. The two main shocks and their aftershock sequences have been relocated with the use of hypoinverse earthquake location software and an appropriate crust model. The HSNC identified more than 500 and 300 aftershocks respectively followed after the main events. The detailed construction of aftershocks catalogue permits the applicability of modern theories based on complexity sciences as described recently in the frame of non extensive statistical physics. In addition site effects in the stations locations are presented using event and noise recordings. This work was implemented through the project IMPACT-ARC in the framework of action "ARCHIMEDES III-Support of Research Teams at TEI of Crete" (MIS380353) of the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds References A. Tzanis and F. Vallianatos, "Distributed power-law seismicity changes and crustal deformation in the EW Hellenic Arc", Natural Hazards and Earth Systems Sciences, 3, 179-195, 2003 F. Vallianatos, G

  9. Coherent Seismic Arrivals in the P Wave Coda of the 2012 Mw 7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock?

    Science.gov (United States)

    Fan, Wenyuan; Shearer, Peter M.

    2018-04-01

    Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ˜150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.

  10. Dynamic triggering of remote aftershocks of the M=6.6 July 20, 2017 Bodrum-Kos, Turkey, earthquake?

    Science.gov (United States)

    Stein, R. S.; Pollitz, F. F.; Sevilgen, V.

    2017-12-01

    The M=6.6 July 20, 2017 Bodrum-Kos, Turkey, earthquake occurred within Eurasian lithosphere in the back-arc region of the Hellenic trench. This large extensional event on a roughly E-W striking normal fault led to a band of regional aftershocks during the first 24 hours in the European Mediterranean Seismological Centre catalog, with M≤4.2. These events are listed as reviewed in the EMSC catalog, and some have since been re-examined by Aurelie Guilhem Trilla (CEA/DAM/ DIF, F 91297 Arpajon, France). The more distant aftershocks extend north-northwestward up to 500 km from the epicentral region. Because such remote triggering cannot be explained by the pattern of static stress change calculated for the M=6.6 mainshock, we explore how dynamic stresses imparted by the mainshock could have influenced the occurrence of these aftershocks. Measures of triggering potential include the peak dynamic stress, and the duration for which the dynamic stress exceeds a nominal threshold, e.g., 0.1 MPa. Point-source models of the mainshock suggest preferential dynamic stressing from the propagating Rayleigh wave along broad swaths trending north and south from the epicenter, reflecting the source radiation pattern. Finite-fault models are expected to modify the dynamic stressing pattern through directivity effects. In the absence of available finite-source models, we explore suites of such models involving unilateral rupture on either of the two nodal planes admitted by the mainshock focal mechanism solution.

  11. Shake Table Study on the Effect of Mainshock-Aftershock Sequences on Structures with SFSI

    Directory of Open Access Journals (Sweden)

    Xiaoyang Qin

    2017-01-01

    Full Text Available Observations from recent earthquakes have emphasised the need for a better understanding of the effects of structure-footing-soil interaction on the response of structures. In order to incorporate the influences of soil, a laminar box can be used to contain the soil during experiments. The laminar box simulates field boundary conditions by allowing the soil to shear during shake table tests. A holistic response of a structure and supporting soil can thus be obtained by placing a model structure on the surface of the soil in the laminar box. This work reveals the response of structure with SFSI under mainshock and aftershock earthquake sequences. A large (2 m by 2 m laminar box, capable of simulating the behaviour of both dry and saturated soils, was constructed. A model structure was placed on dry sand in the laminar box. The setup was excited by a sequence of earthquake excitations. The first excitation was used to obtain the response of the model on sand under the mainshock of an earthquake. The second and third excitations represented the first and second aftershocks, respectively.

  12. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence

    Science.gov (United States)

    Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.

    2017-11-01

    The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike

  13. Rapid Seismic Deployment for Capturing Aftershocks of the September 2017 Tehuantepec, Mexico (M=8.1) and Morelos-Puebla (M=7.1), Mexico Earthquakes

    Science.gov (United States)

    Velasco, A. A.; Karplus, M. S.; Dena, O.; Gonzalez-Huizar, H.; Husker, A. L.; Perez-Campos, X.; Calo, M.; Valdes, C. M.

    2017-12-01

    The September 7 Tehuantepec, Mexico (M=8.1) and the September 19 Morelos-Puebla, Mexico (M=7.1) earthquakes ruptured with extensional faulting within the Cocos Plate at 70-km and 50-km depth, as it subducts beneath the continental North American Plate. Both earthquakes caused significant damage and loss of life. These events were followed by a M=6.1 extensional earthquake at only 10-km depth in Oaxaca on September 23, 2017. While the Morelos-Puebla earthquake was likely too far away to be statically triggered by the Tehuantepec earthquake, initial Coulomb stress analyses show that the M=6.1 event may have been an aftershock of the Tehuantepec earthquake. Many questions remain about these earthquakes, including: Did the Cocos Plate earthquakes load the upper plate, and could they possibly trigger an equal or larger earthquake on the plate interface? Are these the result of plate bending? Do the aftershocks migrate to the locked zone in the subduction zone? Why did the intermediate depth earthquakes create so much damage? Are these earthquakes linked by dynamic stresses? Is it possible that a potential slow-slip event triggered both events? To address some of these questions, we deployed 10 broadband seismometers near the epicenter of the Tehuantepec, Mexico earthquake and 51 UTEP-owned nodes (5-Hz, 3-component geophones) to record aftershocks and augment networks deployed by the Universidad Nacional Autónoma de México (UNAM). The 10 broadband instruments will be deployed for 6 months, while the nodes were deployed 25 days. The relative ease-of-deployment and larger numbers of the nodes allowed us to deploy them quickly in the area near the M=6.1 Oaxaca earthquake, just a few days after that earthquake struck. We deployed them near the heavily-damaged cities of Juchitan, Ixtaltepec, and Ixtepec as well as in Tehuantepec and Salina Cruz, Oaxaca in order to test their capabilities for site characterization and aftershock studies. This is the first test of these

  14. Aftershocks, groundwater changes and postseismic ground displacements related to pore pressure gradients: Insights from the 2012 Emilia-Romagna earthquake

    Science.gov (United States)

    Albano, Matteo; Barba, Salvatore; Solaro, Giuseppe; Pepe, Antonio; Bignami, Christian; Moro, Marco; Saroli, Michele; Stramondo, Salvatore

    2017-07-01

    During the 2012 Emilia-Romagna (Italy) seismic sequence, several time-dependent phenomena occurred, such as changes in the groundwater regime and chemistry, liquefaction, and postseismic ground displacements. Because time-dependent phenomena require time-dependent physical mechanisms, we interpreted such events as the result of the poroelastic response of the crust after the main shock. In our study, we performed a two-dimensional poroelastic numerical analysis calibrated with Cosmo-SkyMed interferometric data and measured piezometric levels in water wells. The simulation results are consistent with the observed postseismic ground displacement and water level changes. The simulations show that crustal volumetric changes induced by poroelastic relaxation and the afterslip along the main shock fault are both required to reproduce the amplitude (approximately 4 cm) and temporal evolution of the observed postseismic uplift. Poroelastic relaxation also affects the aftershock distribution. In fact, the aftershocks are correlated with the postseismic Coulomb stress evolution. In particular, a considerably higher fraction of aftershocks occurs when the evolving poroelastic Coulomb stress is positive. These findings highlight the need to perform calculations that adequately consider the time-dependent poroelastic effect when modeling postseismic scenarios, especially for forecasting the temporal and spatial evolution of stresses after a large earthquake. Failing to do so results in an overestimation of the afterslip and an inaccurate definition of stress and strain in the postseismic phase.

  15. New insights on co- and post-seismic deformation and slip behavior associated with the Mw7.8 2016 Pedernales, Ecuador earthquake and its aftershock sequence

    Science.gov (United States)

    Soto-Cordero, L.; Nealy, J. L.; Meltzer, A.; Agurto-Detzel, H.; Alvarado, A. P.; Beck, S. L.; Benz, H.; Bergman, E. A.; Charvis, P.; Font, Y.; Hayes, G. P.; Hernandez, S.; Hoskins, M.; Leon Rios, S.; Lynner, C.; Regnier, M. M.; Rietbrock, A.; Stachnik, J. C.; Yeck, W. L.

    2017-12-01

    On April 16, 2016, a Mw7.8 earthquake, associated with oblique subduction of the Nazca Plate under South America, ruptured a segment approximately 130x100km in the region north of the intersection of the Carnegie ridge with the Ecuador subduction zone. The rupture coincides with the rupture area of the Mw7.8 1942 earthquake. To characterize the aftershock sequence, we analyze seismic data recorded by 30 stations from April 17, 2016 to May 8, 2017; 11 stations belong to Ecuador's national network and 19 are part of a PASSCAL temporary deployment. We apply a kurtosis detector to obtain automatic P- and S-wave picks. Earthquake locations, magnitudes, and regional moment tensors are obtained using the U.S. Geological Survey National Earthquake Information Center (NEIC) processing system. We also determine calibrated relocations using the Hypocentroidal Decomposition approach for a subset of events for which we combine phase readings from local and temporary PASSCAL stations with regional and teleseismic phase readings from the NEIC. In contrast with other earthquake relocation approaches, this method evaluates absolute location uncertainties for each event in the cluster, which allows us to more confidently assess the relationships between mainshock slip and aftershock activity. We find the aftershock sequence is characterized by a series of event clusters that predominantly surround the main rupture patches. However, the aftershocks extend beyond the mainshock rupture area, covering a region approximately 250x100km. Aftershocks north of the 2016 rupture fall in the rupture area of the Mw7.7 1958 earthquake. The southernmost region of elevated seismicity occurs south of a region of low coupling where the Carnegie ridge meets the subduction zone. The characterization of this sequence allows a detailed spatial and temporal analysis of the rupture processes, stress patterns and slip behavior during this earthquake sequence in Ecuador subduction zone.

  16. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    Science.gov (United States)

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  17. Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models.

    Science.gov (United States)

    Ebrahimian, Hossein; Jalayer, Fatemeh

    2017-08-29

    In the immediate aftermath of a strong earthquake and in the presence of an ongoing aftershock sequence, scientific advisories in terms of seismicity forecasts play quite a crucial role in emergency decision-making and risk mitigation. Epidemic Type Aftershock Sequence (ETAS) models are frequently used for forecasting the spatio-temporal evolution of seismicity in the short-term. We propose robust forecasting of seismicity based on ETAS model, by exploiting the link between Bayesian inference and Markov Chain Monte Carlo Simulation. The methodology considers the uncertainty not only in the model parameters, conditioned on the available catalogue of events occurred before the forecasting interval, but also the uncertainty in the sequence of events that are going to happen during the forecasting interval. We demonstrate the methodology by retrospective early forecasting of seismicity associated with the 2016 Amatrice seismic sequence activities in central Italy. We provide robust spatio-temporal short-term seismicity forecasts with various time intervals in the first few days elapsed after each of the three main events within the sequence, which can predict the seismicity within plus/minus two standard deviations from the mean estimate within the few hours elapsed after the main event.

  18. Near real-time aftershock hazard maps for earthquakes

    Science.gov (United States)

    McCloskey, J.; Nalbant, S. S.

    2009-04-01

    Stress interaction modelling is routinely used to explain the spatial relationships between earthquakes and their aftershocks. On 28 October 2008 a M6.4 earthquake occurred near the Pakistan-Afghanistan border killing several hundred and causing widespread devastation. A second M6.4 event occurred 12 hours later 20km to the south east. By making some well supported assumptions concerning the source event and the geometry of any likely triggered event it was possible to map those areas most likely to experience further activity. Using Google earth, it would further have been possible to identify particular settlements in the source area which were particularly at risk and to publish their locations globally within about 3 hours of the first earthquake. Such actions could have significantly focused the initial emergency response management. We argue for routine prospective testing of such forecasts and dialogue between social and physical scientists and emergency response professionals around the practical application of these techniques.

  19. Regional stressing rate appears to control duration and decay of off-fault aftershocks in the 2011 M=9.0 Tohoku-oki, Japan, earthquake

    Science.gov (United States)

    Toda, S.; Stein, R. S.

    2013-12-01

    The 11 March 2001 M=9.0 Tohoku-oki, Japan, earthquake brought the unprecedented broad increase in seismicity over inland Japan and far offshore. The seismicity rate increase was observed at distances of up to 425 km from the locus of high seismic slip on the megathrust, which roughly corresponds to the areas over 0.1 bar Coulomb stress increase (e.g., Toda et al., 2011). Such stress perturbation in the entire eastern Honshu island gives us a great opportunity to test one of the hypotheses in rate and state friction of Dieterich (1994): aftershock duration (ta) is inversely proportional to fault stressing rate. The Tohoku-oki mainshock indeed started a stopwatch simultaneously for all the off-fault and on-fault aftershocks in various tectonic situations. We have carefully examined the aftershock decays fitting the Omori-Utsu formula in several activated regions, including on the 2011 source fault, several inland areas of Tohoku (Akita, Iwaki, northern Sendai, and Fukushima), Tokyo metropolitan area, Choshi (east of Tokyo), Izu Peninsula, and areas along the most active Itoigawa-Shizuoka Tectonic Line (ISTL) central Honshu. Comparing the regional aftershock decays with the background rates of seismicity estimated from the JMA catalog from 2000 to 2010, we measured ta. One of the extreme short duration was measured at the Izu Peninsula where the heightened seismicity was rapidly toned down to the normal in one month. Overall seismicity in the Tohoku mainshock zone has been mostly closing to normal in 2 - 3 years. Both regions are characterized by high loading rate due to plate collision and subduction. Seismicity beneath Tokyo, also characterized by complex plate interfaces and brought average 1 bar closer to failure, has not followed the simple Omori decay but being settled a new higher rate after a rapid decay. In contrast to these highly deformed regions, current seismicity in slowly loading Tohoku inland regions are still much higher than background rate, which

  20. Foreshocks and Aftershocks Detected from Stick-slip Events on a 3 m Biaxial Apparatus and their Relationship to Quasistatic Nucleation and Wear Processes

    Science.gov (United States)

    Wu, S.; Mclaskey, G.

    2017-12-01

    We investigate foreshocks and aftershocks of dynamic stick-slip events generated on a newly constructed 3 m biaxial friction apparatus at Cornell University (attached figure). In a typical experiment, two rectangular granite blocks are squeezed together under 4 or 7 MPa of normal pressure ( 4 or 7 million N on a 1 m2 fault surface), and then shear stress is increased until the fault slips 10 - 400 microns in a dynamic rupture event similar to a M -2 to M -3 earthquake. Some ruptures nucleate near the north end of the fault, where the shear force is applied, other ruptures nucleate 2 m from the north end of the fault. The samples are instrumented with 16 piezoelectric sensors, 16 eddy current sensors, and 8 strain gage rosettes, evenly placed along the fault to measure vertical ground motion, local slip, and local stress, respectively. We studied sequences of tens of slip events and identified a total of 194 foreshocks and 66 aftershocks located within 6 s time windows around the stick-slip events and analyzed their timing and locations relative to the quasistatic nucleation process. We found that the locations of the foreshocks and aftershocks were distributed all along the length of the fault, with the majority located at the ends of the fault where local normal and shear stress is highest (caused by both edge effects and the finite stiffness of the steel frame surrounding the granite blocks). We also opened the laboratory fault and inspected the fault surface and found increased wear at the sample ends. To explore the foreshocks' and aftershocks' relationship to the nucleation and afterslip, we compared the occurrence of foreshocks to the local slip rate on the laboratory fault closest to each foreshock in space and time. We found that that majority of foreshocks were generated from local slip rates between 1 and 100 microns/s, though we were not able to resolve slip rate lower than about 1 micron/s. Our experiments provide insight into how foreshocks and

  1. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    Science.gov (United States)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  2. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    Science.gov (United States)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  3. Stress-based aftershock forecasts made within 24h post mainshock: Expected north San Francisco Bay area seismicity changes after the 2014M=6.0 West Napa earthquake

    Science.gov (United States)

    Parsons, Thomas E.; Segou, Margaret; Sevilgen, Volkan; Milner, Kevin; Field, Edward; Toda, Shinji; Stein, Ross S.

    2014-01-01

    We calculate stress changes resulting from the M= 6.0 West Napa earthquake on north San Francisco Bay area faults. The earthquake ruptured within a series of long faults that pose significant hazard to the Bay area, and we are thus concerned with potential increases in the probability of a large earthquake through stress transfer. We conduct this exercise as a prospective test because the skill of stress-based aftershock forecasting methodology is inconclusive. We apply three methods: (1) generalized mapping of regional Coulomb stress change, (2) stress changes resolved on Uniform California Earthquake Rupture Forecast faults, and (3) a mapped rate/state aftershock forecast. All calculations were completed within 24 h after the main shock and were made without benefit of known aftershocks, which will be used to evaluative the prospective forecast. All methods suggest that we should expect heightened seismicity on parts of the southern Rodgers Creek, northern Hayward, and Green Valley faults.

  4. Preliminary report on aftershock sequence for earthquake of January 31, 1986, near Painesville, Ohio (time period: 2/1/86-2/10/86)

    Science.gov (United States)

    Borcherdt, R.D.

    1986-01-01

    A ten-station array of broad-band digital instrumentation (GEOS) was deployed by the U. S. Geological Survey with partial support provided by Electric Power Research Institute to record the aftershock sequence of the moderate (mb ~ 4.9) earthquake that occurred on January 31, 1986 (16:46:43 UTC) near Painesville, Ohio. The occurrence of the event has raised questions concerning possible contributory factors to the occurrence of the event and questions concerning the character of earthquake-induced high-frequency ground motions in the area. To aid in the timely resolution of the implications of some of these questions, this preliminary report provides copies of the ground motion time-histories and corresponding spectra for the six identified aftershocks and two events, thought to be quarry blasts, recorded as of February 10, 1986. Recording station locations and epicenter locations based on two preliminary estimates of local seismic velocity structure are provided.

  5. Foreshock and aftershocks in simple earthquake models.

    Science.gov (United States)

    Kazemian, J; Tiampo, K F; Klein, W; Dominguez, R

    2015-02-27

    Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism.

  6. 2014 Mainshock-Aftershock Activity Versus Earthquake Swarms in West Bohemia, Czech Republic

    Science.gov (United States)

    Jakoubková, Hana; Horálek, Josef; Fischer, Tomáš

    2018-01-01

    A singular sequence of three episodes of ML3.5, 4.4 and 3.6 mainshock-aftershock occurred in the West Bohemia/Vogtland earthquake-swarm region during 2014. We analysed this activity using the WEBNET data and compared it with the swarms of 1997, 2000, 2008 and 2011 from the perspective of cumulative seismic moment, statistical characteristics, space-time distribution of events, and prevailing focal mechanisms. For this purpose, we improved the scaling relation between seismic moment M0 and local magnitude ML by WEBNET. The total seismic moment released during 2014 episodes (M_{0tot}≈ 1.58× 10^{15} Nm) corresponded to a single ML4.6+ event and was comparable to M_{0tot} of the swarms of 2000, 2008 and 2011. We inferred that the ML4.8 earthquake is the maximum expected event in Nový Kostel (NK), the main focal zone. Despite the different character of the 2014 sequence and the earthquake swarms, the magnitude-frequency distributions (MFDs) show the b-values ≈ 1 and probability density functions (PDFs) of the interevent times indicate the similar event rate of the individual swarms and 2014 activity. Only the a-value (event-productivity) in the MFD of the 2014 sequence is significantly lower than those of the swarms. A notable finding is a significant acceleration of the seismic moment release in each subsequent activity starting from the 2000 swarm to the 2014 sequence, which may indicate an alteration from the swarm-like to the mainshocks-aftershock character of the seismicity. The three mainshocks are located on a newly activated fault segment/asperity (D in out notation) of the NK zone situated in the transition area among fault segments A, B, C, which hosted the 2000, 2008 and 2011 swarms. The segment D appears to be predisposed to an oblique-thrust faulting while strike-slip faulting is typical of segments A, B and C. In conclusion, we propose a basic segment scheme of the NK zone which should be improved gradually.

  7. Structural Constraints On The Spatial Distribution of Aftershocks

    Science.gov (United States)

    McCloskey, J.; Nalbant, S. S.; Steacy, S.; Nostro, C.; Scotti, O.; Baumont, D.

    Real-time, forward modelling of spatial distributions of potentially damaging after- shocks by calculating stress perturbations due to large earthquakes may produce so- cially useful, time- dependent hazard estimates in the foreseeable future. Such calcula- tions, however, rely on the resolution of a stress perturbation tensor (SPT) onto planes whose geometry is unknown and decisions as to the orientations of these planes have a first order effect on the geometry of the resulting hazard distributions. Commonly, these decisions are based on the assumption that structures optimally oriented for fail- ure in the regional stress field, exist everywhere and stress maps are produced by resolving onto these orientations. Here we investigate this proposition using a 3D cal- culation for the optimally oriented planes (OOPs) for the 1992 Landers earthquake (M = 7.3). We examine the encouraged mechanisms as a function of location and show that enhancement for failure exists over a much wider area than in the equivalent, and more usual, 2.5D calculations. Mechanisms predicted in these areas are not consistent with the local structural geology, however, and corresponding aftershocks are gener- ally not observed. We argue that best hazard estimates will result from geometrically restricted versions of the OOP concept in which observed structure constrains possible orientations for failure.

  8. Model-free aftershock forecasts constructed from similar sequences in the past

    Science.gov (United States)

    van der Elst, N.; Page, M. T.

    2017-12-01

    The basic premise behind aftershock forecasting is that sequences in the future will be similar to those in the past. Forecast models typically use empirically tuned parametric distributions to approximate past sequences, and project those distributions into the future to make a forecast. While parametric models do a good job of describing average outcomes, they are not explicitly designed to capture the full range of variability between sequences, and can suffer from over-tuning of the parameters. In particular, parametric forecasts may produce a high rate of "surprises" - sequences that land outside the forecast range. Here we present a non-parametric forecast method that cuts out the parametric "middleman" between training data and forecast. The method is based on finding past sequences that are similar to the target sequence, and evaluating their outcomes. We quantify similarity as the Poisson probability that the observed event count in a past sequence reflects the same underlying intensity as the observed event count in the target sequence. Event counts are defined in terms of differential magnitude relative to the mainshock. The forecast is then constructed from the distribution of past sequences outcomes, weighted by their similarity. We compare the similarity forecast with the Reasenberg and Jones (RJ95) method, for a set of 2807 global aftershock sequences of M≥6 mainshocks. We implement a sequence-specific RJ95 forecast using a global average prior and Bayesian updating, but do not propagate epistemic uncertainty. The RJ95 forecast is somewhat more precise than the similarity forecast: 90% of observed sequences fall within a factor of two of the median RJ95 forecast value, whereas the fraction is 85% for the similarity forecast. However, the surprise rate is much higher for the RJ95 forecast; 10% of observed sequences fall in the upper 2.5% of the (Poissonian) forecast range. The surprise rate is less than 3% for the similarity forecast. The similarity

  9. Foreshock and aftershock sequences of the Cremasta earthquake and their relation to the waterloading of the Cremasta artificial lake

    Directory of Open Access Journals (Sweden)

    B. PAPAZACHOS

    1968-06-01

    Full Text Available Investigation of the time and magnitude distribution
    of the fore- and aftershocks of the Cremasta lake earthquake which occurred
    on February 5, 1966 is made. The deformation characteristics and
    spatial distribution of these shocks is also studied. Strong evidence is presented
    that the foreshocks and the main shock have been triggered by the
    waterloading of the Cremasta artificial lake.

  10. Stress transferred by the 1995 Mw = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities

    Science.gov (United States)

    Toda, S.; Stein, R.S.; Reasenberg, P.A.; Dieterich, J.H.; Yoshida, A.

    1998-01-01

    The Kobe earthquake struck at the edge of the densely populated Osaka-Kyoto corridor in southwest Japan. We investigate how the earthquake transferred stress to nearby faults, altering their proximity to failure and thus changing earthquake probabilities. We find that relative to the pre-Kobe seismicity, Kobe aftershocks were concentrated in regions of calculated Coulomb stress increase and less common in regions of stress decrease. We quantify this relationship by forming the spatial correlation between the seismicity rate change and the Coulomb stress change. The correlation is significant for stress changes greater than 0.2-1.0 bars (0.02-0.1 MPa), and the nonlinear dependence of seismicity rate change on stress change is compatible with a state- and rate-dependent formulation for earthquake occurrence. We extend this analysis to future mainshocks by resolving the stress changes on major faults within 100 km of Kobe and calculating the change in probability caused by these stress changes. Transient effects of the stress changes are incorporated by the state-dependent constitutive relation, which amplifies the permanent stress changes during the aftershock period. Earthquake probability framed in this manner is highly time-dependent, much more so than is assumed in current practice. Because the probabilities depend on several poorly known parameters of the major faults, we estimate uncertainties of the probabilities by Monte Carlo simulation. This enables us to include uncertainties on the elapsed time since the last earthquake, the repeat time and its variability, and the period of aftershock decay. We estimate that a calculated 3-bar (0.3-MPa) stress increase on the eastern section of the Arima-Takatsuki Tectonic Line (ATTL) near Kyoto causes fivefold increase in the 30-year probability of a subsequent large earthquake near Kyoto; a 2-bar (0.2-MPa) stress decrease on the western section of the ATTL results in a reduction in probability by a factor of 140 to

  11. Imaging and Understanding Foreshock and Aftershock Behavior Around the 2014 Iquique, Northern Chile, Earthquake

    Science.gov (United States)

    Yang, H.; Meng, X.; Peng, Z.; Newman, A. V.; Hu, S.; Williamson, A.

    2014-12-01

    On April 1st, 2014, a moment magnitude (MW) 8.2 earthquake occurred offshore Iquique, Northern Chile. There were numerous smaller earthquakes preceding and following the mainshock, making it an ideal case to study the spatio-temporal relation among these events and their association with the mainshock. We applied a matched-filter technique to detect previously missing foreshocks and aftershocks of the 2014 Iquique earthquake. Using more than 900 template events recorded by 19 broadband seismic stations (network code CX) operated by the GEOFON Program of GFZ Potsdam, we found 4392 earthquakes between March 1st and April 3rd, 2014, including more than 30 earthquakes with magnitude larger than 4 that were previously missed in the catalog from the Chile National Seismological Center. Additionally, we found numerous small earthquakes with magnitudes between 1 and 2 preceding the largest foreshock, an MW 6.7 event occurring on March 16th, approximately 2 weeks before the Iquique mainshock. We observed that the foreshocks migrated northward at a speed of approximately 6 km/day. Using a finite fault slip model of the mainshock determined from teleseismic waveform inversion (Hayes, 2014), we calculated the Coulomb stress changes in the nearby regions of the mainshock. We found that there was ~200% increase in seismicity in the areas with increased Coulomb stress. Our next step is to evaluate the Coulomb stress changes associated with earlier foreshocks and their roles in triggering later foreshocks, and possibly the mainshock. For this, we plan to create a fault model of the temporal evolution of the Coulomb behavior along the interface with time, assuming Wells and Coppersmith (1994) type fault parameters. These results will be compared with double-difference relocations (using HypoDD), presenting a more accurate understanding of the spatial-temporal evolution of foreshocks and aftershocks of the 2014 Iquique earthquake.

  12. Aftershock Activity Triggered By the 2014 Earthquake (Mw=6.5), and Its Implications for the Future Seismic Risk in the Marmara Sea, Turkey

    Science.gov (United States)

    Polat, O.; Kilic, T.; Turkoglu, M.; Kaplan, M.; Kilicarslan, O.; Özer, Ç.; Gok, E.

    2014-12-01

    We have performed aftershocks analysis triggered by 24.05.2014 (Mw=6.5) Gokceada Island (GI) earthquake where occurred at the W of North Anatolian Fault zone. Mainshock was widely felt in Aegean and Marmara regions of Turkey. Major damage in 228 homes was reported. Other 49 residences suffered moderate or light damage. We have well located 699 events over 1041 by at least 5 stations for one month period after the mainshock. Double difference relocation algorithm allowed us to minimize rms values less than 0.39. Initial results show clear unilateral rupture towards Gallipoli Peninsula at the W of Marmara Sea region. Aftershocks show linearity with an extension of ~110 km length, ~25 km width. Largest aftershock (Mw=5.3) was at the NE end of activation zone. Depths are mainly confined from 5 to 25 km ranges. Two locking depths are detected beneath 8 km in Lemnos Basin and Saros Trough. We also constructed focal mechanisms from regional moment tensor solutions. Digital waveform data obtained from AFAD (Turkey) and HT-AUTH (Greece). Focal mechanisms reflect complex tectonic settings. Nevertheless numerous mechanisms show dominant dextral strike-slip motions aligned NE-SW direction with minor reverse component. State of stress before the mainshock was pure shear regime. But two principal stress axes are observed as oblique for the aftershocks showing ambiguity between compression and shear. It is likely that the mean stress regime has changed after the GI earthquake. If this is so, we may expect that the strike-slip component would slowly increase later in order to recover the conditions existing before. Coulomb stress values rise at the edges of the fault segment due to accumulation of slip. We observed strong spatial correlation between the static stress change after 2014 GI earthquake and the segment that ruptured during the 1912 Murefte-Ganos (Mw=7.4) earthquake. The analysis showed that the areas of positive static stress changes reach to seismic gap in the Marmara

  13. Kinect Technology Game Play to Mimic Quake Catcher Network (QCN) Sensor Deployment During a Rapid Aftershock Mobilization Program (RAMP)

    Science.gov (United States)

    Kilb, D. L.; Yang, A.; Rohrlick, D.; Cochran, E. S.; Lawrence, J.; Chung, A. I.; Neighbors, C.; Choo, Y.

    2011-12-01

    The Kinect technology allows for hands-free game play, greatly increasing the accessibility of gaming for those uncomfortable using controllers. How it works is the Kinect camera transmits invisible near-infrared light and measures its "time of flight" to reflect off an object, allowing it to distinguish objects within 1 centimeter in depth and 3 mm in height and width. The middleware can also respond to body gestures and voice commands. Here, we use the Kinect Windows SDK software to create a game that mimics how scientists deploy seismic instruments following a large earthquake. The educational goal of the game is to allow the players to explore 3D space as they learn about the Quake Catcher Network's (QCN) Rapid Aftershock Mobilization Program (RAMP). Many of the scenarios within the game are taken from factual RAMP experiences. To date, only the PC platform (or a Mac running PC emulator software) is available for use, but we hope to move to other platforms (e.g., Xbox 360, iPad, iPhone) as they become available. The game is written in programming language C# using Microsoft XNA and Visual Studio 2010, graphic shading is added using High Level Shader Language (HLSL), and rendering is produced using XNA's graphics libraries. Key elements of the game include selecting sensor locations, adequately installing the sensor, and monitoring the incoming data. During game play aftershocks can occur unexpectedly, as can other problems that require attention (e.g., power outages, equipment failure, and theft). The player accrues points for quickly deploying the first sensor (recording as many initial aftershocks as possible), correctly installing the sensors (orientation with respect to north, properly securing, and testing), distributing the sensors adequately in the region, and troubleshooting problems. One can also net points for efficient use of game play time. Setting up for game play in your local environment requires: (1) the Kinect hardware ( $145); (2) a computer

  14. Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake

    Science.gov (United States)

    Sumy, Danielle F.; Neighbors, Corrie J.; Cochran, Elizabeth S.; Keranen, Katie M.

    2017-01-01

    In November 2011, three Mw ≥ 4.8 earthquakes and thousands of aftershocks occurred along the structurally complex Wilzetta fault system near Prague, Oklahoma. Previous studies suggest that wastewater injection induced a Mw 4.8 foreshock, which subsequently triggered a Mw 5.7 mainshock. We examine source properties of aftershocks with a standard Brune-type spectral model and jointly solve for seismic moment (M0), corner frequency (f0), and kappa (κ) with an iterative Gauss-Newton global downhill optimization method. We examine 934 earthquakes with initial moment magnitudes (Mw) between 0.33 and 4.99 based on the pseudospectral acceleration and recover reasonable M0, f0, and κ for 87 earthquakes with Mw 1.83–3.51 determined by spectral fit. We use M0 and f0 to estimate the Brune-type stress drop, assuming a circular fault and shear-wave velocity at the hypocentral depth of the event. Our observations suggest that stress drops range between 0.005 and 4.8 MPa with a median of 0.2 MPa (0.03–26.4 MPa with a median of 1.1 MPa for Madariaga-type), which is significantly lower than typical eastern United States intraplate events (>10 MPa). We find that stress drops correlate weakly with hypocentral depth and magnitude. Additionally, we find the stress drops increase with time after the mainshock, although temporal variation in stress drop is difficult to separate from spatial heterogeneity and changing event locations. The overall low median stress drop suggests that the fault segments may have been primed to fail as a result of high pore fluid pressures, likely related to nearby wastewater injection.

  15. Aftershock Sequences and Seismic-Like Organization of Acoustic Events Produced by a Single Propagating Crack

    Science.gov (United States)

    Alizee, D.; Bonamy, D.

    2017-12-01

    In inhomogeneous brittle solids like rocks, concrete or ceramics, one usually distinguish nominally brittle fracture, driven by the propagation of a single crack from quasibrittle one, resulting from the accumulation of many microcracks. The latter goes along with intermittent sharp noise, as e.g. revealed by the acoustic emission observed in lab scale compressive fracture experiments or at geophysical scale in the seismic activity. In both cases, statistical analyses have revealed a complex time-energy organization into aftershock sequences obeying a range of robust empirical scaling laws (the Omori-Utsu, productivity and Bath's law) that help carry out seismic hazard analysis and damage mitigation. These laws are usually conjectured to emerge from the collective dynamics of microcrack nucleation. In the experiments presented at AGU, we will show that such a statistical organization is not specific to the quasi-brittle multicracking situations, but also rules the acoustic events produced by a single crack slowly driven in an artificial rock made of sintered polymer beads. This simpler situation has advantageous properties (statistical stationarity in particular) permitting us to uncover the origins of these seismic laws: Both productivity law and Bath's law result from the scale free statistics for event energy and Omori-Utsu law results from the scale-free statistics of inter-event time. This yields predictions on how the associated parameters are related, which were analytically derived. Surprisingly, the so-obtained relations are also compatible with observations on lab scale compressive fracture experiments, suggesting that, in these complex multicracking situations also, the organization into aftershock sequences and associated seismic laws are also ruled by the propagation of individual microcrack fronts, and not by the collective, stress-mediated, microcrack nucleation. Conversely, the relations are not fulfilled in seismology signals, suggesting that

  16. Foreshocks and aftershocks of strong earthquakes in the light of catastrophe theory

    International Nuclear Information System (INIS)

    Guglielmi, A V

    2015-01-01

    In this review, general ideas and specific results from catastrophe theory and the theory of critical phenomena are applied to the analysis of strong earthquakes. Aspects given particular attention are the sharp rise in the fluctuation level, the increased reactivity of dynamical systems in the near-threshold region, and other anomalous phenomena similar to critical opalescence. Given the lack of a sufficiently complete theory of earthquakes, this appears to be a valid approach to the analysis of observations. The study performed brought out some nontrivial properties of a strong-earthquake source that manifest themselves both before and after the main rupture discontinuity forms at the mainshock. In the course of the analysis of the foreshocks and aftershocks, such concepts as the round-the-world seismic echo, the cumulative effect of converging surface waves on the epicentral zone, and global seismicity modulation by Earth's free oscillations are introduced. Further research in this field is likely to be interesting and promising. (methodological notes)

  17. Foreshocks and aftershocks of strong earthquakes in the light of catastrophe theory

    Science.gov (United States)

    Guglielmi, A. V.

    2015-04-01

    In this review, general ideas and specific results from catastrophe theory and the theory of critical phenomena are applied to the analysis of strong earthquakes. Aspects given particular attention are the sharp rise in the fluctuation level, the increased reactivity of dynamical systems in the near-threshold region, and other anomalous phenomena similar to critical opalescence. Given the lack of a sufficiently complete theory of earthquakes, this appears to be a valid approach to the analysis of observations. The study performed brought out some nontrivial properties of a strong-earthquake source that manifest themselves both before and after the main rupture discontinuity forms at the mainshock. In the course of the analysis of the foreshocks and aftershocks, such concepts as the round-the-world seismic echo, the cumulative effect of converging surface waves on the epicentral zone, and global seismicity modulation by Earth's free oscillations are introduced. Further research in this field is likely to be interesting and promising.

  18. Location of early aftershocks of the 2004 Mid-Niigata Prefecture Earthquake (M = 6.8) in central Japan using seismogram envelopes as templates

    Science.gov (United States)

    Kosuga, M.

    2013-12-01

    The location of early aftershocks is very important to obtain information of mainshock fault, however, it is often difficult due to the long-lasting coda wave of mainshock and successive occurrence of afterrshocks. To overcome this difficulty, we developed a method of location using seismogram envelopes as templates, and applied the method to the early aftershock sequence of the 2004 Mid-Niigata Prefecture (Chuetsu) Earthquake (M = 6.8) in central Japan. The location method composes of three processes. The first process is the calculation of cross-correlation coefficients between a continuous (target) and template envelopes. We prepare envelopes by taking the logarithm of root-mean-squared amplitude of band-pass filtered seismograms. We perform the calculation by shifting the time window to obtain a set of cross-correlation values for each template. The second process is the event detection (selection of template) and magnitude estimate. We search for the events in descending order of cross-correlation in a time window excluding the dead times around the previously detected events. Magnitude is calculated by the amplitude ratio of target and template envelopes. The third process is the relative event location to the selected template. We applied this method to the Chuetsu earthquake, a large inland earthquake with extensive aftershock activity. The number of detected events depends on the number of templates, frequency range, and the threshold value of cross-correlation. We set the threshold as 0.5 by referring to the histogram of cross-correlation. During a period of one-hour from the mainshock, we could detect more events than the JMA catalog. The location of events is generally near the catalog location. Though we should improve the methods of relative location and magnitude estimate, we conclude that the proposed method works adequately even just after the mainshock of large inland earthquake. Acknowledgement: We thank JMA, NIED, and the University of Tokyo for

  19. Static stress drop of the largest recorded M 4.6 hydraulic fracturing induced earthquake and its aftershock pattern in the northern Montney Play, British Columbia, Canada

    Science.gov (United States)

    Wang, B.; Harrington, R. M.; Liu, Y.; Kao, H.

    2016-12-01

    The largest suspected fracking-induced earthquake to date occurred near Fort St. John, British Columbia on August 17, 2015, with a reported magnitude of Mw 4.6. Here we estimate the static stress released by the mainshock and the five cataloged aftershocks using new data from eight broadband seismometers installed approximately 50km from the hypocenter of the mainshock, at distances much closer than the Natural Resources Canada regional seismic stations. The estimated cross-correlation coefficient among the 5 cataloged earthquakes is 0.35 or greater. We will present seismic moment (M0) and spectral corner frequency (fc) values estimated using both individual earthquake spectra and spectral ratios to correct for travel-path attenuation and site effects. Static stress drop and scaled energy value calculations based on the estimated moment and corner frequency values will be presented, as well as focal mechanisms for the largest events with adequate station coverage. We will also use a multi-station matched-filter approach to detect additional uncataloged earthquakes on continuous waveforms for a period of two months after the mainshock. Using the results of the matched-filter approach, we will present the aftershock magnitude distribution and locations. The results of our detection and location calculations will be compared to reported fracking parameters, such as fluid injection pressure and duration, to determine their correlation with the spatial and temporal distribution of aftershocks. The objective of this study is to relate operational parameters to earthquake occurrence in order to help to develop procedures to understand the mechanisms responsible for fracking induced earthquakes, their relation to the maximum induced magnitude, and to reduce potential hazards of anthropogenically induced seismic activity.

  20. Aftershock identification problem via the nearest-neighbor analysis for marked point processes

    Science.gov (United States)

    Gabrielov, A.; Zaliapin, I.; Wong, H.; Keilis-Borok, V.

    2007-12-01

    The centennial observations on the world seismicity have revealed a wide variety of clustering phenomena that unfold in the space-time-energy domain and provide most reliable information about the earthquake dynamics. However, there is neither a unifying theory nor a convenient statistical apparatus that would naturally account for the different types of seismic clustering. In this talk we present a theoretical framework for nearest-neighbor analysis of marked processes and obtain new results on hierarchical approach to studying seismic clustering introduced by Baiesi and Paczuski (2004). Recall that under this approach one defines an asymmetric distance D in space-time-energy domain such that the nearest-neighbor spanning graph with respect to D becomes a time- oriented tree. We demonstrate how this approach can be used to detect earthquake clustering. We apply our analysis to the observed seismicity of California and synthetic catalogs from ETAS model and show that the earthquake clustering part is statistically different from the homogeneous part. This finding may serve as a basis for an objective aftershock identification procedure.

  1. Tuning critical failure with viscoelasticity: How aftershocks inhibit criticality in an analytical mean field model of fracture.

    Science.gov (United States)

    Baro Urbea, J.; Davidsen, J.

    2017-12-01

    The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible of deformation. Avalanche models involving critical failure have determined universality classes in different systems: from slip events in crystalline and amorphous materials to the jamming of granular media or the fracture of brittle materials. However, not all empirical failure processes exhibit the trademarks of critical failure. As an example, the statistical properties of ultrasonic acoustic events recorded during the failure of porous brittle materials are stationary, except for variations in the activity rate that can be interpreted in terms of aftershock and foreshock activity (J. Baró et al., PRL 2013).The rheological properties of materials introduce dissipation, usually reproduced in atomistic models as a hardening of the coarse-grained elements of the system. If the hardening is associated to a relaxation process the same mechanism is able to generate temporal correlations. We report the analytic solution of a mean field fracture model exemplifying how criticality and temporal correlations are tuned by transient hardening. We provide a physical meaning to the conceptual model by deriving the constitutive equation from the explicit representation of the transient hardening in terms of a generalized viscoelasticity model. The rate of 'aftershocks' is controlled by the temporal evolution of the viscoelastic creep. At the quasistatic limit, the moment release is invariant to rheology. Therefore, the lack of criticality is explained by the increase of the activity rate close to failure, i.e. 'foreshocks'. Finally, the avalanche propagation can be reinterpreted as a pure mathematical problem in terms of a stochastic counting process. The statistical properties depend only on the distance to a critical point, which is universal for any

  2. Energy-Based Seismic Risk Evaluation of Tall Reinforced Concrete Building in Vancouver, BC, Canada, under Mw9 Megathrust Subduction Earthquakes and Aftershocks

    Directory of Open Access Journals (Sweden)

    Solomon Tesfamariam

    2017-05-01

    Full Text Available This article presents a seismic performance evaluation framework for reinforced concrete (RC buildings, comprising shear walls and gravity frames. The evaluation is undertaken within a performance-based earthquake engineering framework by considering regional seismicity and site-specific ground motion selection. Different engineering demand parameters (EDPs, i.e., maximum interstory drift ratio (MaxISDR and energy-based damage index, are considered as performance indicators. Various prediction models of EDPs are developed by considering four ground motion intensity measures (IMs, i.e., spectral acceleration at the fundamental period, Arias intensity, cumulative absolute velocity (CAV, and significant duration of ground motion. For this study, a 15-story RC building, located in Vancouver, BC, Canada, is considered as a case study. By using 50 mainshock and 50 mainshock–aftershock (MS-AS earthquake records (2 horizontal components per record and bidirectional loading, non-linear dynamic analyses are performed. Subsequently, the calculated MaxISDRs and damage indices are correlated with suitable IMs using cloud analysis, and the most efficient IM-EDP prediction models are selected by comparing standard deviations (SDs of the regression errors. The MaxISDR of the shear walls is less than 1% for the mainshock and MS-AS records. The energy-based damage index shows sensitivity to delineate impact of earthquake types and aftershocks. The CAV is showed to be the most efficient IM for the energy-based damage index.

  3. Machine-Learning Inspired Seismic Phase Detection for Aftershocks of the 2008 MW7.9 Wenchuan Earthquake

    Science.gov (United States)

    Zhu, L.; Li, Z.; Li, C.; Wang, B.; Chen, Z.; McClellan, J. H.; Peng, Z.

    2017-12-01

    Spatial-temporal evolution of aftershocks is important for illumination of earthquake physics and for rapid response of devastative earthquakes. To improve aftershock catalogs of the 2008 MW7.9 Wenchuan earthquake in Sichuan, China, Alibaba cloud and China Earthquake Administration jointly launched a seismological contest in May 2017 [Fang et al., 2017]. This abstract describes how we handle this problem in this competition. We first used Short-Term Average/Long-Term Average (STA/LTA) and Kurtosis function to obtain over 55000 candidate phase picks (P or S). Based on Signal to Noise Ratio (SNR), about 40000 phases (P or S) are selected. So far, these 40000 phases have a hit rate of 40% among the manually picks. The causes include that 1) there exist false picks (neither P nor S); 2) some P and S arrivals are mis-labeled. To improve our results, we correlate the 40000 phases over continuous waveforms to obtain the phases missed by during the first pass. This results in 120,000 events. After constructing an affinity matrix based on the cross-correlation for newly detected phases, subspace clustering methods [Vidal 2011] are applied to group those phases into separated subspaces. Initial results show good agreement between empirical and clustered labels of P phases. Half of the empirical S phases are clustered into the P phase cluster. This may be a combined effect of 1) mislabeling isolated P phases to S phases and 2) clustering errors due to a small incomplete sample pool. Phases that were falsely detected in the initial results can be also teased out. To better characterize P and S phases, our next step is to apply subspace clustering methods directly to the waveforms, instead of using the cross-correlation coefficients of detected phases. After that, supervised learning, e.g., a convolutional neural network, can be employed to improve the pick accuracy. Updated results will be presented at the meeting.

  4. Identifying the dynamic characteristics of a dual core-wall and frame building in Chile using aftershocks of the 27 February 2010 (Mw=8.8) Maule, Chile, earthquake

    Science.gov (United States)

    Çelebi, Mehmet; Sereci, Mark; Boroschek, Ruben; Carreño, Rodrigo; Bonelli, Patricio

    2013-01-01

    Following the 27 February 2010 (Mw = 8.8) Offshore Maule, Chile earthquake, a temporary, 16-channel, real-time data streaming array was installed in a recently constructed building in Viña del Mar to capture its responses to aftershocks. The cast-in-place, reinforced concrete building is 16 stories high, with 3 additional basement levels, and has dual system comprising multiple structural walls and perimeter frames. This building was not damaged during the main-shock, but other buildings of similar design in Viña del Mar and other parts of Chile were damaged, although none collapsed. Dynamic characteristics of the building identified from the low-amplitude (PGA of about 2 Gal) response recordings of aftershocks are found to compare well with those determined from modal analyses using a design level FEM model. Distinct “major-axes” translational and torsional fundamental frequencies, as well as frequencies of secondary modes, are identified. Evidence of beating is consistently observed in the response data for each earthquake. Results do not match well with U.S. code formulas.

  5. Double-difference relocation of the 29 January 2011 ML 4.5 Oroszlány earthquake and its aftershocks and its relevance to the rheology of the lithosphere and geothermal prospectivity

    NARCIS (Netherlands)

    Békési, E.; Süle, B.; Lenkey, L.; Lenkey-Bőgér, Á.; Bondár, I.

    2017-01-01

    In the central part of Hungary, an earthquake with the local magnitude of 4.5 occurred near the town of Oroszlány, on 29 January 2011. The main shock and its more than 200 aftershocks were recorded by a significant number of three-component seismic stations, which enabled us to perform multiple

  6. Along-strike Variations in the Himalayas Illuminated by the Aftershock Sequence of the 2015 Mw 7.8 Gorkha Earthquake Using the NAMASTE Local Seismic Network

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2016-12-01

    As a result of the 2015 Mw 7.8 Gorkha earthquake, more than 8,000 people were killed from a combination of infrastructure failure and triggered landslides. This earthquake produced 4 m of peak co-seismic slip as the fault ruptured 130 km east under densely populated cities, such as Kathmandu. To understand earthquake dynamics in this part of the Himalayas and help mitigate similar future calamities by the next destructive event, it is imperative to study earthquake activities in detail and improve our understanding of the source and structural complexities. In response to the Gorkha event, multiple institutions developed and deployed a 10-month long dense seismic network called NAMASTE. It blanketed a 27,650 km2 area, mainly covering the rupture area of the Gorkha earthquake, in order to capture the dynamic sequence of aftershock behavior. The network consisted of a mix of 45 broadband, short-period, and strong motion sensors, with an average spacing of 20 km. From the first 6 months of data, starting approximately 1.5 after the mainshock, we develop a robust catalog containing over 3,000 precise earthquake locations, and local magnitudes that range between 0.3 and 4.9. The catalog has a magnitude of completeness of 1.5, and an overall low b-value of 0.78. Using the HypoDD algorithm, we relocate earthquake hypocenters with high precision, and thus illustrate the fault geometry down to depths of 25 km where we infer the location of the gently-dipping Main Frontal Thrust (MFT). Above the MFT, the aftershocks illuminate complex structure produced by relatively steeply dipping faults. Interestingly, we observe sharp along-strike change in the seismicity pattern. The eastern part of the aftershock area is significantly more active than the western part. The change in seismicity may reflect structural and/or frictional lateral heterogeneity in this part of the Himalayan fault system. Such along-strike variations play an important role in rupture complexities and

  7. Assessment of seismic hazard for NPP sites in France analysis of several aftershocks of November 8, 1983, Liege earthquake

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Mohammadioun, G.; Bresson, A.

    1984-03-01

    Current French practice for assessing seismic hazard on the sites of nuclear facilities is outlined. The procedure calls for as rich and varied an assortment of actual earthquake recordings as can be procured, including earthquakes in France itself and in nearby countries, recorded by the CEA/IPSN's own staff. Following the November 8, 1983, Liege earthquake, suitably equipped, temporary recording stations were set up in the epicentral area in order to record its aftershocks. Ground motion time histories and response spectra were computed for several of these, and a quality factor Q was derived from these data for the most superficial sedimentary layers of the area. The values obtained show reasonable agreement with ones found for similar materials in other regions

  8. Foreshocks and aftershocks locations of the 2014 Pisagua, N. Chile earthquake: history of a megathrust earthquake nucleation

    Science.gov (United States)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Tavera, Hernando; Ryder, Isabelle; Ruiz, Sergio; Thomas, Reece; De Angelis, Silvio; Bondoux, Francis

    2015-04-01

    The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap: a region of the South American subduction zone lying between Arica city and the Mejillones Peninsula. It is believed that this part of the subduction zone has not experienced a large earthquake since 1877. Thanks to the identification of this seismic gap, the north of Chile was well instrumented before the Pisagua earthquake, including the Integrated Plate boundary Observatory Chile (IPOC) network and the Chilean local network installed by the Centro Sismologico Nacional (CSN). These instruments were able to record the full foreshock and aftershock sequences, allowing a unique opportunity to study the nucleation process of large megathrust earthquakes. To improve azimuthal coverage of the Pisagua seismic sequence, after the earthquake, in collaboration with the Instituto Geofisico del Peru (IGP) we installed a temporary seismic network in south of Peru. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and they were operative from 1st May 2014. We also installed three stations on the slopes of the Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake. In this work we analysed the continuous seismic data recorded by CSN and IPOC networks from 1 March to 30 June to obtain the catalogue of the sequence, including foreshocks and aftershocks. Using an automatic algorithm based in STA/LTA we obtained the picks for P and S waves. Association in time and space defined the events and computed an initial location using Hypo71 and the 1D local velocity model. More than 11,000 events were identified with this method for the whole period, but we selected the best resolved events that include more than 7 observed arrivals with at least 2 S picks of them, to relocate these events using NonLinLoc software. For the main events of the sequence we carefully estimate event locations and we obtained

  9. Comparison of main-shock and aftershock fragility curves developed for New Zealand and US buildings

    Science.gov (United States)

    Uma, S.R.; Ryu, H.; Luco, N.; Liel, A.B.; Raghunandan, M.

    2011-01-01

    Seismic risk assessment involves the development of fragility functions to express the relationship between ground motion intensity and damage potential. In evaluating the risk associated with the building inventory in a region, it is essential to capture 'actual' characteristics of the buildings and group them so that 'generic building types' can be generated for further analysis of their damage potential. Variations in building characteristics across regions/countries largely influence the resulting fragility functions, such that building models are unsuitable to be adopted for risk assessment in any other region where a different set of building is present. In this paper, for a given building type (represented in terms of height and structural system), typical New Zealand and US building models are considered to illustrate the differences in structural model parameters and their effects on resulting fragility functions for a set of main-shocks and aftershocks. From this study, the general conclusion is that the methodology and assumptions used to derive basic capacity curve parameters have a considerable influence on fragility curves.

  10. Moment tensor analysis of the 3 September 2017 DPRK announced nuclear explosion and collapse aftershock

    Science.gov (United States)

    Ichinose, G. A.; Ford, S. R.; Chiang, A.; Walter, W. R.; Dreger, D. S.

    2017-12-01

    The Democratic People's Republic of Korea (DPRK) conducted its sixth announced nuclear test on 3 September 2017, 03:30:00 with a magnitude of 6.1 (IDC mb). At 03:38:27, there was an aftershock of magnitude 4.1 (IDC mb). Moment tensor analysis using regional long-period surface waves was performed to identify the source type of these two events. The first event was an explosive isotropic source with total seismic moment magnitude of Mw 5.34 (Mo=1.16e+17 Nm) with strong 66% isotropic component (eigenvalues: 1.30e+17, 0.75e+17, 0.44e+17 Nm). The second event was a closing crack source with an Mw 4.64 (Mo=1.04e+17 Nm) also with a strong 68% isotropic component (eigenvalues: -4.82e+16, -5.33e+16, -10.93e+16 Nm). We used the same stations within 360-1140 km for inversion of both events (stations: IC.MDJ, IC.BJT, IC.HIA) and predict the long-period displacements at KG.TJN and IU.INCN. We used a 1-D velocity model appropriate for active tectonic regions and band pass the data between periods of 20 and 100 sec. Waveform time-shifts were incorporated from previous event-station pairs to account for velocity model inadequacies. Both DPRK events source-types plot within the population of other NNSS nuclear and western US collapse events (Ford et al., 2009) on the fundamental lune (Tape and Tape, 2012). The DPRK collapse event is similar to the hole collapse 0h21m26s after the 5 September 1982 Atrisco shot at NNSS (Springer et al., 2002; DOE NV-209). The DPRK collapse could be explained by a complete or partial apical cavity collapse. The estimated collapse volume is 122000-277000 m3 and crack radius is 30-40 m given the seismic moment, elastic moduli for granite and a closing crack model (Mueller, 2001). In comparison to Denny and Johnson (1994) cavity-yield scaling in granite, the cavity radius ranges from 40 to 60 m given an explosion yield range of 140-400 kT. This collapse event is noteworthy because large aftershocks are rare in nuclear testing and even more rare are

  11. Long-term earthquake forecasts based on the epidemic-type aftershock sequence (ETAS model for short-term clustering

    Directory of Open Access Journals (Sweden)

    Jiancang Zhuang

    2012-07-01

    Full Text Available Based on the ETAS (epidemic-type aftershock sequence model, which is used for describing the features of short-term clustering of earthquake occurrence, this paper presents some theories and techniques related to evaluating the probability distribution of the maximum magnitude in a given space-time window, where the Gutenberg-Richter law for earthquake magnitude distribution cannot be directly applied. It is seen that the distribution of the maximum magnitude in a given space-time volume is determined in the longterm by the background seismicity rate and the magnitude distribution of the largest events in each earthquake cluster. The techniques introduced were applied to the seismicity in the Japan region in the period from 1926 to 2009. It was found that the regions most likely to have big earthquakes are along the Tohoku (northeastern Japan Arc and the Kuril Arc, both with much higher probabilities than the offshore Nankai and Tokai regions.

  12. 2011 Van earthquake (Mw=7.2) aftershocks using the source spectra an approach to real-time estimation of moment magnitude

    Science.gov (United States)

    Meral Ozel, N.; Kusmezer, A.

    2012-04-01

    The Converging Grid Search (CGS) algorithm was tested on broadband waveforms data from large aftershocks of the October 23, Van earthquake with the hypocentral distances within 0-300 km over a magnitude range of 4.0≤M≤5.6.Observed displacement spectra were virtually well adapted to the Brune's source model in the whole frequency range for many waveforms.The estimated Mw solutions were compared to global CMT catalogue solutions, and were seen to be in good agreement. To estimate Mw from a shear-wave displacement spectrum, an automatic routine named as CGS was applied to attempt to test and develop a method for stable moment magnitude estimation to be used as a real-time operation.The spectra were corrected for average an elastic attenuation and geometrical spreading factors and then were scaled to compute moment at the long period asymptote where the spectral plateau for 0 Hz is flat.For this aim, an automatic procedure was utilized: 1)calculating the displacement spectra for vertical components at a given station, 2)estimating corner frequency and seismic moment using CGS which is based on minimizing the differences between observed and synthetic source spectra, 3)calculating moment magnitude from seismic moment for each station separately, and then are averaged to give the mean values of each event. The best fitting iteration of these parameters was obtained after a few seconds. The noise spectrum was also computed to suggest a comparison between signals to noise ratio before performing the inversion.Weak events with low SNR were excluded from the computations. The method examined on the Van earthquake aftershock dataset proved that it is applicable to have stable and reliable estimates of magnitude for the routine processing within a few seconds from the initial P wave detection though the location estimation is necessary.This allows a fast determination of Mw magnitude and assist to measure physical quantities of the source available for the real time

  13. Assessment of teleseismically-determined source parameters for the April 25, 2015 MW 7.9 Gorkha, Nepal earthquake and the May 12, 2015 MW 7.2 aftershock

    Science.gov (United States)

    Lay, Thorne; Ye, Lingling; Koper, Keith D.; Kanamori, Hiroo

    2017-09-01

    On April 25, 2015 a major (MW 7.9) thrust earthquake ruptured the deeper portion of the seismogenic plate boundary beneath Nepal along which India is underthrusting Eurasia. An MW 7.2 aftershock on May 12, 2015 extended the eastern, down-dip edge of the rupture. These destructive events caused about 9000 fatalities and 23,000 injuries. The overall rupture zone is about 170 km long and 40-80 km wide. This region of the plate boundary previously experienced a large earthquake in 1833, and in 1934 a larger MS 8.0 event located to the east ruptured all the way to the surface. The Main Himalayan Thrust (MHT) on which slip occurred in 2015 has a very low dip angle of 6°, and the depth of the mainshock slip distribution is very shallow, extending from 7 to 18 km. The shallow dip and depth present challenges for resolving faulting characteristics using teleseismic data. We analyze global teleseismic signals for the mainshock and aftershock to estimate source parameters, evaluating the stability of various procedures used for remotely characterizing kinematics of such shallow faulting. Back-projection and finite-fault slip inversion are used to assess the spatio-temporal rupture history and evidence for frequency-dependent radiation along dip. Slip zone width constraints from near-field geodetic observations are imposed on the preferred models to overcome some limitations of purely teleseismic methods. Radiated energy, stress drop and moment rate functions are determined for both events.

  14. Estimation of site effects in Higashinada Ward, Kobe City using aftershock records of the 1995 Hyogo-Ken Nanbu Earthquake; Hyogoken nanbu jishin no yoshin kiroku wo mochiita Kobeshihigashinadaku no jiban zofuku tokusei no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, K.; Yamanaka, H.; Seo, K. [Tokyo Inst. of Tech. (Japan)

    1998-07-30

    Source spectra and site effects are separated using the aftershock records, and the characteristics of short period earthquake motion in Higashinada Ward, Kobe City including the area to the south of seismic intensity 7 area are investigated placing emphasis on how far the site effects can be explained by 1-D ground structure. The shape and amplitude of the site effect of KNN and KYC located outside the seismic intensity 7 area can be explained fairly well by 1-D multiple reflection theory of S wave. However, peaks near 3 to 4Hz of KNN and UOZ in seismic intensity 7 area can not be explained. This suggests that the site effects of seismic intensity 7 area obtained by the aftershock records might include 2-D effects of underground structure. Inversion is performed using site effects as the objective functions to determine S wave velocity structure and Qs in the sedimentary layer. S wave velocity structure shows no systematical difference from those of the past models. 22 refs., 13 figs., 2 tabs.

  15. The LVD signals during the early-mid stages of the L'Aquila seismic sequence and the radon signature of some aftershocks of moderate magnitude

    International Nuclear Information System (INIS)

    Cigolini, C.; Laiolo, M.; Coppola, D.

    2015-01-01

    The L'Aquila seismic swarm culminated with the mainshock of April 6, 2009 (M L = 5.9). Here, we report and analyze the Large Volume Detector (LVD, used in neutrinos research) low energy traces (∼0.8 MeV), collected during the early-mid stages of the seismic sequence, together with the data of a radon monitoring experiment. The peaks of LVD traces do not correlate with the evolution and magnitude of earthquakes, including major aftershocks. Conversely, our radon measurements obtained by utilizing three automatic stations deployed along the regional NW–SE faulting system, seem to be, in one case, more efficient. In fact, the timeseries collected on the NW–SE Paganica fracture recorded marked variations and peaks that occurred during and prior moderate aftershocks (with M L > 3). The Paganica monitoring station (PGN) seems to better responds to active seismicity due to the fact that the radon detector was placed directly within the bedrock of an active fault. It is suggested that future networks for radon monitoring of active seismicity should preferentially implement this setting. - Highlights: • The April 9, 2009 Aquila earthquake (ML 5.9) had a remarkable echo in the media. • We report LVD traces together with the data of a radon monitoring experiment. • Radon emissions were measured by 3 automatic stations along the main NW–SE fault. • The one that better responds to seismicity was placed in the fault's bedrock. • Future networks for earthquake radon monitoring should implement this setting

  16. Using structures of the August 24, 2016 Amatrice earthquake affected area as seismoscopes for assessing ground motion characteristics and parameters of the main shock and its largest aftershocks

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck Central Apennines (Italy) resulting in 299 fatalities, 388 injuries and about 3000 homeless in Amatrice wider area. Normal faulting surface ruptures along the western slope of Mt Vettore along with provided focal mechanisms demonstrated a NW-SE striking and SE dipping causative normal fault. The dominant building types in the affected area are unreinforced masonry (URM) and reinforced concrete (RC) buildings. Based on our macroseismic survey in the affected area immediately after the earthquake, RC buildings suffered non-structural damage including horizontal cracking of infill and internal partition walls, detachment of infill walls from the surrounding RC frame and detachment of large plaster pieces from infill walls as well as structural damage comprising soft story failure, symmetrical buckling of rods, compression damage at midheight of columns and bursting of over-stressed columns resulting in partial or total collapse. Damage in RC buildings was due to poor quality of concrete, inadequacy of reinforcement, inappropriate foundation close to the edge of slopes leading to differential settlements, poor workmanship and the destructive effect of vertical ground motions. Damage in URM buildings ranged from cracks and detachment of large plaster pieces from load-bearing walls to destruction due to poor workmanship with randomly placed materials bound by low-strength mortars, the effect of the vertical ground motion, inadequate repair and/or strengthening after previous earthquakes as well as inadequate interventions, additions and extensions to older URM buildings. During field surveying, the authors had the opportunity to observe damage induced not only by the main shock but also by its largest aftershocks (Mw 4.5-5.3) during the first three days of the aftershock sequence (August 24-26). Bearing in mind that: (a) soil conditions in foundations of the affected villages were more or less similar, (b) building damage

  17. Computational Software to Fit Seismic Data Using Epidemic-Type Aftershock Sequence Models and Modeling Performance Comparisons

    Science.gov (United States)

    Chu, A.

    2016-12-01

    Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work implements three of the homogeneous ETAS models described in Ogata (1998). With a model's log-likelihood function, my software finds the Maximum-Likelihood Estimates (MLEs) of the model's parameters to estimate the homogeneous background rate and the temporal and spatial parameters that govern triggering effects. EM-algorithm is employed for its advantages of stability and robustness (Veen and Schoenberg, 2008). My work also presents comparisons among the three models in robustness, convergence speed, and implementations from theory to computing practice. Up-to-date regional seismic data of seismic active areas such as Southern California and Japan are used to demonstrate the comparisons. Data analysis has been done using computer languages Java and R. Java has the advantages of being strong-typed and easiness of controlling memory resources, while R has the advantages of having numerous available functions in statistical computing. Comparisons are also made between the two programming languages in convergence and stability, computational speed, and easiness of implementation. Issues that may affect convergence such as spatial shapes are discussed.

  18. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions

    Science.gov (United States)

    Spudich, P.; Hellweg, M.; Lee, W.H.K.

    1996-01-01

    The Northridge earthquake caused 1.78 g acceleration in the east-west direction at a site in Tarzana, California, located about 6 km south of the mainshock epicenter. The accelerograph was located atop a hill about 15-m high, 500-m long, and 130-m wide, striking about N78??E. During the aftershock sequence, a temporary array of 21 three-component geophones was deployed in six radial lines centered on the accelerograph, with an average sensor spacing of 35 m. Station COO was located about 2 m from the accelerograph. We inverted aftershock spectra to obtain average relative site response at each station as a function of direction of ground motion. We identified a 3.2-Hz resonance that is a transverse oscillation of the hill (a directional topographic effect). The top/base amplification ratio at 3.2 Hz is about 4.5 for horizontal ground motions oriented approximately perpendicular to the long axis of the hill and about 2 for motions parallel to the hill. This resonance is seen most strongly within 50 m of COO. Other resonant frequencies were also observed. A strong lateral variation in attenuation, probably associated with a fault, caused substantially lower motion at frequencies above 6 Hz at the east end of the hill. There may be some additional scattered waves associated with the fault zone and seen at both the base and top of the hill, causing particle motions (not spectral ratios) at the top of the hill to be rotated about 20?? away from the direction transverse to the hill. The resonant frequency, but not the amplitude, of our observed topographic resonance agrees well with theory, even for such a low hill. Comparisons of our observations with theoretical results indicate that the 3D shape of the hill and its internal structure are important factors affecting its response. The strong transverse resonance of the hill does not account for the large east-west mainshock motions. Assuming linear soil response, mainshock east-west motions at the Tarzana accelerograph

  19. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    Science.gov (United States)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  20. Long-period Ground Motion Characteristics Inside and Outside of the Osaka Basin during the 2011 Great Tohoku Earthquake and Its Largest Aftershock

    Science.gov (United States)

    Sato, K.; Iwata, T.; Asano, K.; Kubo, H.; Aoi, S.

    2013-12-01

    The 2011 great Tohoku earthquake (Mw 9.0) occurred on March 11, 2011, and the largest aftershock (Mw 7.7) at the region adjacent to south boundary of the mainshock's source region. Long-period ground motions (1-10s) of large amplitude were observed in the Osaka sedimentary basin about 550-800km away from the source regions during both events. We studied propagation and site characteristics of these ground motions, and found some common features between these two events in the Osaka basin. (1) The amplitude of horizontal components of the ground motion at the site-specific period is amplified at each sedimentary station. The predominant period is around 7s in the bayside area where the largest pSv were observed. (2) The velocity Fourier spectra have their peak values around 7s at the bedrock sites surrounding the Osaka basin. (3) Two remarkable wave packets separated by 30s propagating from stations around the Nobi plain to the bedrock sites near the Osaka basin were seen in the pasted-up velocity waveforms from the source regions to the Osaka basin for both events (Sato et al., 2012). Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. Firstly, we simulate ground motions due to the largest aftershock using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). The reason we focus on the largest aftershock is that this event has a relatively small rupture area and simple rupture process compared to the mainshock. The source model is based on the model estimated by Kubo et al. (2013). The velocity structure model is a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012) and the layer of Vs 350m/s in this model is replaced with one of Vs 500m/s. The minimum effective period in this computation is 3s. Then, we compare synthetic waveforms with observed ones. At CHBH14, the nearest station to the source and 60km away from the

  1. Multi-Array Back-Projections of The 2015 Gorkha Earthquake With Physics-Based Aftershock Calibrations

    Science.gov (United States)

    Meng, L.; Zhang, A.; Yagi, Y.

    2015-12-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9,000 people is the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process is well imaged by the teleseismic MUSIC back-projections (BP). Here, we perform independent back-projections of high-frequency recordings (0.5-2 Hz) from the Australian seismic network (AU), the North America network (NA) and the European seismic network (EU), located in complementary orientations. Our results of all three arrays show unilateral linear rupture path to the east of the hypocenter. But the propagating directions and the inferred rupture speeds differ significantly among different arrays. To understand the spatial uncertainties of the BP analysis, we image four moderate-size (M5~6) aftershocks based on the timing correction derived from the alignment of the initial P-wave of the mainshock. We find that the apparent source locations inferred from BP are systematically biased along the source-array orientation, which can be explained by the uncertainty of the 3D velocity structure deviated from the 1D reference model (e.g. IASP91). We introduced a slowness error term in travel time as a first-order calibration that successfully mitigates the source location discrepancies of different arrays. The calibrated BP results of three arrays are mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s along the down-dip edge of the locked Himalaya thrust zone over ~ 150 km, in agreement with a narrow slip distribution inferred from finite source inversions.

  2. Chapter D. The Loma Prieta, California, Earthquake of October 17, 1989 - Aftershocks and Postseismic Effects

    Science.gov (United States)

    Reasenberg, Paul A.

    1997-01-01

    While the damaging effects of the earthquake represent a significant social setback and economic loss, the geophysical effects have produced a wealth of data that have provided important insights into the structure and mechanics of the San Andreas Fault system. Generally, the period after a large earthquake is vitally important to monitor. During this part of the seismic cycle, the primary fault and the surrounding faults, rock bodies, and crustal fluids rapidly readjust in response to the earthquake's sudden movement. Geophysical measurements made at this time can provide unique information about fundamental properties of the fault zone, including its state of stress and the geometry and frictional/rheological properties of the faults within it. Because postseismic readjustments are rapid compared with corresponding changes occurring in the preseismic period, the amount and rate of information that is available during the postseismic period is relatively high. From a geophysical viewpoint, the occurrence of the Loma Prieta earthquake in a section of the San Andreas fault zone that is surrounded by multiple and extensive geophysical monitoring networks has produced nothing less than a scientific bonanza. The reports assembled in this chapter collectively examine available geophysical observations made before and after the earthquake and model the earthquake's principal postseismic effects. The chapter covers four broad categories of postseismic effect: (1) aftershocks; (2) postseismic fault movements; (3) postseismic surface deformation; and (4) changes in electrical conductivity and crustal fluids.

  3. UNBIASED MOMENT-RATE SPECTRA AND ABSOLUTE SITE EFFECTS IN THE KACHCHH BASIN, INDIA, FROM THE ANALYSIS OF THE AFTERSHOCKS OF THE 2001 Mw 7.6 BHUJ EARTHQUAKE

    Energy Technology Data Exchange (ETDEWEB)

    Malagnini, L; Bodin, P; Mayeda, K; Akinci, A

    2005-05-04

    What can be learned about absolute site effects on ground motions and about earthquake source spectra from recordings at temporary seismic stations, none of which could be considered a 'reference' (hard rock) site, for which no geotechnical information is available, in a very poorly instrumented region? This challenge motivated our current study of aftershocks of the 2001 Mw 7.6 Bhuj earthquake, in Western India. Crustal attenuation and spreading relationships based on the same data used here were determined in an earlier study. In this paper we decouple the ambiguity between absolute source radiation and site effects by first computing robust estimates of moment-rate spectra of about 200 aftershocks in each of two depth ranges. Using these new estimates of sourcespectra, and our understanding of regional wave propagation, we extract the absolute site terms of the sites of the temporary deployment. Absolute site terms (one for each component of the ground motion, for each station) are computed in an average sense, via an L{sub 1}-norm minimization, and results for each site are averaged over wide ranges of azimuths and takeoff angles. The Bhuj deployment is characterized by a variable shallow geology, mostly of soft sedimentary units. Vertical site terms in the region were observed to be almost featureless and slightly < 1.0 within wide frequency ranges. As a result, H/V spectral ratios mimic the absolute behaviors of absolute horizontal site terms, and they generally overpredict them. On the contrary, with respect to the results for sedimentary rock sites (limestone, dolomite) obtained by Malagnini et al. (2004), H/V spectral ratios in their study did not have much in common with absolute horizontal site terms. Spectral ratios between the vector sum of the computed horizontal site terms for the temporary deployment with respect to the same quantity computed at the hardest rock station available, BAC1, are seriously biased by its non-flat, non

  4. Site Effects Study In Athens (greece) Using The 7th September 1999 Earthquake Aftershock Sequence

    Science.gov (United States)

    Serpetsidaki, A.; Sokos, E.

    On 7 September 1999 at 11:56:50 GMT, an earthquake of Mw=5.9 occurred at Athens capital of Greece. The epicenter was located in the Northwest area of Parnitha Moun- tain at 18km distance from the city centre. This earthquake was one of the most de- structive in Greece during the modern times. The intensity of the earthquake reached IX in the Northwest territories of the city and caused the death of 143 people and seri- ous structural damage in many buildings. On the 13th of September the Seismological Laboratory of Patras University, installed a seismic network of 30 stations in order to observe the evolution of the aftershock sequence. This temporary seismic network remained in the area of Attika for 50 days and recorded a significant part of the af- tershock sequence. In this paper we use the high quality recordings of this network to investigate the influence of the surface geology to the seismic motion, on sites within the epicentral area, which suffered the most during this earthquake. We applied the horizontal-to-vertical (H/V) spectral ratio method on noise and on earthquake records and the obtained results exhibit very good agreement. Finally we compare the results with the geological conditions of the study area and the damage distribution. Most of the obtained amplification levels were low with an exemption in the site of Ano Liosia were a significant amount of damage was observed and the results indicate that the earthquake motion was amplified four times. Based on the above we conclude that the damages in the city of Athens were due to source effects rather than site effects.

  5. The 2012 Emilia seismic sequence (Northern Italy): Imaging the thrust fault system by accurate aftershock location

    Science.gov (United States)

    Govoni, Aladino; Marchetti, Alessandro; De Gori, Pasquale; Di Bona, Massimo; Lucente, Francesco Pio; Improta, Luigi; Chiarabba, Claudio; Nardi, Anna; Margheriti, Lucia; Agostinetti, Nicola Piana; Di Giovambattista, Rita; Latorre, Diana; Anselmi, Mario; Ciaccio, Maria Grazia; Moretti, Milena; Castellano, Corrado; Piccinini, Davide

    2014-05-01

    Starting from late May 2012, the Emilia region (Northern Italy) was severely shaken by an intense seismic sequence, originated from a ML 5.9 earthquake on May 20th, at a hypocentral depth of 6.3 km, with thrust-type focal mechanism. In the following days, the seismic rate remained high, counting 50 ML ≥ 2.0 earthquakes a day, on average. Seismicity spreads along a 30 km east-west elongated area, in the Po river alluvial plain, in the nearby of the cities Ferrara and Modena. Nine days after the first shock, another destructive thrust-type earthquake (ML 5.8) hit the area to the west, causing further damage and fatalities. Aftershocks following this second destructive event extended along the same east-westerly trend for further 20 km to the west, thus illuminating an area of about 50 km in length, on the whole. After the first shock struck, on May 20th, a dense network of temporary seismic stations, in addition to the permanent ones, was deployed in the meizoseismal area, leading to a sensible improvement of the earthquake monitoring capability there. A combined dataset, including three-component seismic waveforms recorded by both permanent and temporary stations, has been analyzed in order to obtain an appropriate 1-D velocity model for earthquake location in the study area. Here we describe the main seismological characteristics of this seismic sequence and, relying on refined earthquakes location, we make inferences on the geometry of the thrust system responsible for the two strongest shocks.

  6. Comparison between low-cost and traditional MEMS accelerometers: a case study from the M7.1 Darfield, New Zealand, aftershock deployment

    Directory of Open Access Journals (Sweden)

    Angela Chung

    2011-06-01

    Full Text Available Recent advances in micro-electro-mechanical systems (MEMS sensing and distributed computing techniques have enabled the development of low-cost, rapidly deployed dense seismic networks. The Quake-Catcher Network (QCN uses triaxial MEMS accelerometers installed in homes and businesses to record moderate to large earthquakes. Real-time accelerations are monitored and information is transferred to a central server using open-source, distributed computing software installed on participating computers. Following the September 3, 2010, Mw 7.1 Darfield, New Zealand, earthquake, 192 QCN stations were installed in a dense array in the city of Christchurch and the surrounding region to record the on-going aftershock sequence. Here, we compare the ground motions recorded by QCN accelerometers with GeoNet strong-motion instruments to verify whether low-cost MEMS accelerometers can provide reliable ground-motion information in network-scale deployments. We find that observed PGA and PGV amplitudes and RMS scatter are comparable between the GeoNet and QCN observations. Closely spaced stations provide similar acceleration, velocity, and displacement time series and computed response spectra are also highly correlated, with correlation coefficients above 0.94.

  7. Characteristics of coseismic water level changes at Tangshan well for the Wenchuan M S8.0 earthquake and its larger aftershocks

    Science.gov (United States)

    Yin, Baojun; Ma, Li; Chen, Huizhong; Huang, Jianping; Zhang, Chaojun; Wang, Wuxing

    2009-04-01

    Coseismic water level changes which may have been induced by the Wenchuan M S8.0 earthquake and its 15 larger aftershocks ( M S≥5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. M S magnitude has the strongest correlation with the coseismic water level changes comparing to M W and M L magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.

  8. Coulomb stress change sensitivity due to variability in mainshock source models and receiving fault parameters: A case study of the 2010-2011 Christchurch, New Zealand, earthquakes

    Science.gov (United States)

    Zhan, Zhongwen; Jin, Bikai; Wei, Shengji; Graves, Robert W.

    2011-01-01

    Strong aftershocks following major earthquakes present significant challenges for infrastructure recovery as well as for emergency rescue efforts. A tragic instance of this is the 22 February 2011 Mw 6.3 Christchurch aftershock in New Zealand, which caused more than 100 deaths while the 2010 Mw 7.1 Canterbury mainshock did not cause a single fatality (Figure 1). Therefore, substantial efforts have been directed toward understanding the generation mechanisms of aftershocks as well as mitigating hazards due to aftershocks. Among these efforts are the prediction of strong aftershocks, earthquake early warning, and aftershock probability assessment. Zhang et al. (1999) reported a successful case of strong aftershock prediction with precursory data such as changes in seismicity pattern, variation of b-value, and geomagnetic anomalies. However, official reports of such successful predictions in geophysical journals are extremely rare, implying that deterministic prediction of potentially damaging aftershocks is not necessarily more scientifically feasible than prediction of mainshocks.

  9. Aftershock

    DEFF Research Database (Denmark)

    Bennike, Rune Bolding

    2017-01-01

    ’ as a political environment rife with opportunity, bias, and unintended consequences. As scholars and interested observers of Nepal and the Himalaya, we need to pay close attention to this environment and its potentially unequal outcomes that reverberate past this present moment of taking stock....

  10. Seismic aftershock monitoring for on-site inspection purposes. Experience from Integrated Field Exercise 2008.

    Science.gov (United States)

    Labak, P.; Arndt, R.; Villagran, M.

    2009-04-01

    One of the sub-goals of the Integrated Field Experiment in 2008 (IFE08) in Kazakhstan was testing the prototype elements of the Seismic aftershock monitoring system (SAMS) for on-site inspection purposes. The task of the SAMS is to collect the facts, which should help to clarify nature of the triggering event. Therefore the SAMS has to be capable to detect and identify events as small as magnitude -2 in the inspection area size up to 1000 km2. Equipment for 30 mini-arrays and 10 3-component stations represented the field equipment of the SAMS. Each mini-array consisted of a central 3-component seismometer and 3 vertical seismometers at the distance about 100 m from the central seismometer. The mini-arrays covered approximately 80% of surrogate inspection area (IA) on the territory of former Semipalatinsk test site. Most of the stations were installed during the first four days of field operations by the seismic sub-team, which consisted of 10 seismologists. SAMS data center comprised 2 IBM Blade centers and 8 working places for data archiving, detection list production and event analysis. A prototype of SAMS software was tested. Average daily amount of collected raw data was 15-30 GB and increased according to the amount of stations entering operation. Routine manual data screening and data analyses were performed by 2-6 subteam members. Automatic screening was used for selected time intervals. Screening was performed using the Sonoview program in frequency domain and using the Geotool and Hypolines programs for screening in time domain. The screening results were merged into the master event list. The master event list served as a basis of detailed analysis of unclear events and events identified to be potentially in the IA. Detailed analysis of events to be potentially in the IA was performed by the Hypoline and Geotool programs. In addition, the Hyposimplex and Hypocenter programs were also used for localization of events. The results of analysis were integrated

  11. A Jurassic Shock-Aftershock Earthquake Sequence Recorded by Small Clastic Pipes and Dikes within Dune Cross-Strata, Zion National Park, Utah

    Science.gov (United States)

    Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.

    2012-12-01

    dune lee slope through a pipe, the erupted sand dried and was buried by climbing wind-ripple strata as the large dune continued to advance downwind. The mapped cluster recording eight distinct seismic events lies within thin-laminated sediment that was deposited by wind ripples during 1 m (~ 1 year) of southeastward dune migration. We conclude that the small pipes and dikes of our study sites are products of numerous >MM 5 earthquakes, some of which recurred at intervals of less than 2 months. We interpret one small cluster of pipes and dikes with well-defined upward terminations as a distinct shock-aftershock sequence. Because the largest modern earthquakes can produce surface liquefaction only up to about 175 km from their epicenters, the Jurassic epicenters must have been well within that distance. The tendency of modern plate boundaries to produce high-frequency aftershocks suggests that the epicenter for this Jurassic sequence lay to the southwest, within the plate boundary zone (not within continental rocks to the east). As eolian dunes steadily migrate over interdune surfaces underlain by water-saturated dune cross-strata, the thin, distinct laminae produced by the wind ripples that occupy dune toes can faithfully record high-frequency seismic events.

  12. Perbandingan Energi Gempa Bumi Utama dan Susulan (Studi Kasus : Gempa Subduksi Pulau Sumatera dan Jawa

    Directory of Open Access Journals (Sweden)

    Andrean V.H Simanjuntak

    2017-07-01

    Full Text Available Indonesia is located on the third meeting of the active tectonic world plates which are Eurasian Indian - Australia and the Pacific Plate. This condition makes Indonesia as a tectonically active area with seismicity level or pattern of high seismicity. Occurrence of devastating earthquake followed by aftershocks of earthquakes, often increase the level of social unrest. The purpose of this study is calculate the energy of devastating earthquakes and followed by aftershocks, so it can be compared to the amount of energy released by both of them. By obtaining these comparisons, the study is based on scientific studies can be used as a reference in providing information on the possible impact of an occurrence of the earthquake and its aftershocks. Empirical formula of Guttenberg- Richter was used to calculate the energy value, historical data with aftershock earthquakes was obtained from ISC (International Seismological Center for five major earthquakes are Bengkulu, Pangandaran, Simeulue, West Sumatra, and Tasikmalaya earthquake. Earthquake aftershocks taken within three months after a major earthquake. From analysis and energy calculations of earthquake aftershocks of a major earthquake with a magnitude of five large, energy-earthquake aftershocks ranging from 0.1% to 33%, with a random pattern. By comparing the energy aftershocks of earthquakes, the results are generally 10%, it is estimated that the earthquake with strike-slip mechanism having earthquake aftershocks with a total energy is less than 10%. While earthquakes with earthquake aftershocks have thrust mechanism with a total energy of more than 10%.

  13. Growth of a Structure Connecting the 2010 M 7.2 El Mayor - Cucapah Rupture with the Elsinore Faul

    Science.gov (United States)

    Donnellan, A.; Parker, J. W.

    2015-12-01

    The M 7.2 El Mayor - Cucapah earthquake occurred on 4 April 2010 in the northern part of Baja, Mexico. The rupture extended about 120 km from near the northern tip of the Gulf of California to the US - Mexican border south of the Elsinore fault zone. Most of the aftershocks occurred within days of the main event. On 14 June 2010 a M 5.7 late aftershock occurred 8 km southeast of Ocotillo, CA and is the largest aftershock in the sequence. The right-lateral event occurred in a cluster of aftershocks and was followed by its own aftershock sequence. UAVSAR data were collected for a swath covering the aftershock on 13 April, 2010 just after the El Mayor - Cucapah earthquake and before the earthquake on 21 October 2009. The line was reflown 1 July 2010 after the M 5.7 14 June 2010 aftershock. Data have been continued to be collected semi yearly to yearly since then. Repeat Pass Interferomety (RPI) products spanning the aftershock show the growth of a lineament that with an azimuth of 121.5° or a strike of -58.5°. The interferograms suggest that a stepover develops following the earthquake. The epicenter of the M 5.7 aftershock is proximal to the linear discontinuity in the postseismic interferogram and the mechanism of the event is consistent with slip on this stepover. Inversions for slip on the northeast linear structure that steps west of the mainshock rupture yield a moment magnitude ranging from 5.5 - 5.8, which is consistent with the magnitude of the aftershock. Slip occurs at a depth of 2-10 km on a steeply dipping fault.

  14. A rate-state model for aftershocks triggered by dislocation on a rectangular fault: a review and new insights

    Directory of Open Access Journals (Sweden)

    F. Catalli

    2006-06-01

    Full Text Available We compute the static displacement, stress, strain and the Coulomb failure stress produced in an elastic medium by a finite size rectangular fault after its dislocation with uniform stress drop but a non uniform dislocation on the source. The time-dependent rate of triggered earthquakes is estimated by a rate-state model applied to a uniformly distributed population of faults whose equilibrium is perturbated by a stress change caused only by the first dislocation. The rate of triggered events in our simulations is exponentially proportional to the shear stress change, but the time at which the maximum rate begins to decrease is variable from fractions of hour for positive stress changes of the order of some MPa, up to more than a year for smaller stress changes. As a consequence, the final number of triggered events is proportional to the shear stress change. The model predicts that the total number of events triggered on a plane containing the fault is proportional to the 2/3 power of the seismic moment. Indeed, the total number of aftershocks produced on the fault plane scales in magnitude, M, as 10M. Including the negative contribution of the stress drop inside the source, we observe that the number of events inhibited on the fault is, at long term, nearly identical to the number of those induced outside, representing a sort of conservative natural rule. Considering its behavior in time, our model does not completely match the popular Omori law; in fact it has been shown that the seismicity induced closely to the fault edges is intense but of short duration, while that expected at large distances (up to some tens times the fault dimensions exhibits a much slower decay.

  15. Improving back projection imaging with a novel physics-based aftershock calibration approach: A case study of the 2015 Gorkha earthquake

    Science.gov (United States)

    Meng, Lingsen; Zhang, Ailin; Yagi, Yuji

    2016-01-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9000 people was the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process was imaged by teleseismic back projections (BP) of seismograms recorded by three, large regional networks in Australia, North America, and Europe. The source images of all three arrays reveal a unilateral eastward rupture; however, the propagation directions and speeds differ significantly between the arrays. To understand the spatial uncertainties of the BP analyses, we analyze four moderate size aftershocks recorded by all three arrays exactly as had been conducted for the main shock. The apparent source locations inferred from BPs are systematically biased from the catalog locations, as a result of a slowness error caused by three-dimensional Earth structures. We introduce a physics-based slowness correction that successfully mitigates the source location discrepancies among the arrays. Our calibrated BPs are found to be mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s, localized in a relatively narrow and deep swath along the downdip edge of the locked Himalayan thrust zone. We find that the 2015 Gorkha earthquake was a localized rupture that failed to break the entire Himalayan décollement to the surface, which can be regarded as an intermediate event during the interseismic period of larger Himalayan ruptures that break the whole seismogenic zone width. Thus, our physics-based slowness correction is an important technical improvement of BP, mitigating spatial uncertainties and improving the robustness of single and multiarray studies.

  16. The 2010 M w 7.2 El Mayor-Cucapah Earthquake Sequence, Baja California, Mexico and Southernmost California, USA: Active Seismotectonics along the Mexican Pacific Margin

    Science.gov (United States)

    Hauksson, Egill; Stock, Joann; Hutton, Kate; Yang, Wenzheng; Vidal-Villegas, J. Antonio; Kanamori, Hiroo

    2011-08-01

    The El Mayor-Cucapah earthquake sequence started with a few foreshocks in March 2010, and a second sequence of 15 foreshocks of M > 2 (up to M4.4) that occurred during the 24 h preceding the mainshock. The foreshocks occurred along a north-south trend near the mainshock epicenter. The M w 7.2 mainshock on April 4 exhibited complex faulting, possibly starting with a ~M6 normal faulting event, followed ~15 s later by the main event, which included simultaneous normal and right-lateral strike-slip faulting. The aftershock zone extends for 120 km from the south end of the Elsinore fault zone north of the US-Mexico border almost to the northern tip of the Gulf of California. The waveform-relocated aftershocks form two abutting clusters, each about 50 km long, as well as a 10 km north-south aftershock zone just north of the epicenter of the mainshock. Even though the Baja California data are included, the magnitude of completeness and the hypocentral errors increase gradually with distance south of the international border. The spatial distribution of large aftershocks is asymmetric with five M5+ aftershocks located to the south of the mainshock, and only one M5.7 aftershock, but numerous smaller aftershocks to the north. Further, the northwest aftershock cluster exhibits complex faulting on both northwest and northeast planes. Thus, the aftershocks also express a complex pattern of stress release along strike. The overall rate of decay of the aftershocks is similar to the rate of decay of a generic California aftershock sequence. In addition, some triggered seismicity was recorded along the Elsinore and San Jacinto faults to the north, but significant northward migration of aftershocks has not occurred. The synthesis of the El Mayor-Cucapah sequence reveals transtensional regional tectonics, including the westward growth of the Mexicali Valley and the transfer of Pacific-North America plate motion from the Gulf of California in the south into the southernmost San

  17. Disturbances in equilibrium function after major earthquake.

    Science.gov (United States)

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi

    2012-01-01

    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  18. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    Science.gov (United States)

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the

  19. Comment on "Localized water reverberation phases and its impact on back-projection images" by Yue et al. [2017

    Science.gov (United States)

    Fan, W.; Shearer, P. M.

    2017-12-01

    Fan and Shearer [2016] analyzed the 2012 Mw 7.2 Sumatra earthquake and reported that the earthquake dynamically triggered early aftershock/aftershocks 150 km away from the mainshock and 50 s later. The early aftershock/aftershocks were detected with teleseismic P-wave back-projection, coincided with passing surface waves, and showed observable seismic waveforms in a wide frequency range (0.02—5 Hz). Recently, however, Yue et al. [2017] interpreted these coda arrivals as water reverberations from the mainshock, based mostly on EGF analysis of a nearby M6 earthquake and a water-phase synthetic test. Here, we show detailed back-projection and waveform analysis of three M6 earthquakes within 100km of the Mw 7.2 earthquake, including the EGF event analyzed in Yue et al. [2017]. In addition, we examine the waveforms of three M5.5 reverse faulting earthquakes close to our detected early aftershock landward of the trench. Our results show that the coda energy in question is more likely caused by a separate earthquake near the trench than by a mainshock water reverberation phase, thus supporting our earlier conclusion that the detected coherent radiators are likely to be dynamically triggered early aftershock/aftershocks.

  20. Introduction: Aftershocked

    DEFF Research Database (Denmark)

    Warner, Cameron; Hindman, Heather; Snellinger, Amanda

    2015-01-01

    an ongoing series of landslides, exacerbated by the monsoon. In the days and weeks following the initial earthquake, many experts on Nepal began to discuss the underlying issues that made these earthquakes as much a human-made disaster as a natural one. Our discussions evolved into a larger investigation...

  1. State-of-the-Art for Assessing Earthquake Hazards in the United States. Report 19. The Evidence for Reservoir-Induced Macroearthquakes.

    Science.gov (United States)

    1982-06-01

    Water Level ....... ..................... . 63 6 Regional and Aftershock b Values ... ............. . 98 7 Foreshock and Aftershock b Values...140 57 Relation between water elevation and number of shocks ........ .................... ... 141 58 Foreshock groups, Kremasta...relationship, (b) the relationship of the magnitude of the main shock and the largest aftershock, (c) the time distribution of the foreshocks and

  2. Using the 2011 Mw9.0 Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure

    Science.gov (United States)

    Toda, Shinji; Lin, Jian; Stein, Ross S.

    2011-01-01

    The 11 March 2011 Tohoku Earthquake provides an unprecedented test of the extent to which Coulomb stress transfer governs the triggering of aftershocks. During 11-31 March, there were 177 aftershocks with focal mechanisms, and so the Coulomb stress change imparted by the rupture can be resolved on the aftershock nodal planes to learn whether they were brought closer to failure. Numerous source models for the mainshock have been inverted from seismic, geodetic, and tsunami observations. Here, we show that, among six tested source models, there is a mean 47% gain in positively-stressed aftershock mechanisms over that for the background (1997-10 March 2011) earthquakes, which serve as the control group. An aftershock fault friction of 0.4 is found to fit the data better than 0.0 or 0.8, and among all the tested models, Wei and Sladen (2011) produced the largest gain, 63%. We also calculate that at least 5 of the seven large, exotic, or remote aftershocks were brought ≥0.3 bars closer to failure. With these tests as confirmation, we calculate that large sections of the Japan trench megathrust, the outer trench slope normal faults, the Kanto fragment beneath Tokyo, and the Itoigawa-Shizuoka Tectonic Line, were also brought ≥0.3 bars closer to failure.

  3. Evaluating spatial and temporal relationships between an earthquake cluster near Entiat, central Washington, and the large December 1872 Entiat earthquake

    Science.gov (United States)

    Brocher, Thomas M.; Blakely, Richard J.; Sherrod, Brian

    2017-01-01

    We investigate spatial and temporal relations between an ongoing and prolific seismicity cluster in central Washington, near Entiat, and the 14 December 1872 Entiat earthquake, the largest historic crustal earthquake in Washington. A fault scarp produced by the 1872 earthquake lies within the Entiat cluster; the locations and areas of both the cluster and the estimated 1872 rupture surface are comparable. Seismic intensities and the 1–2 m of coseismic displacement suggest a magnitude range between 6.5 and 7.0 for the 1872 earthquake. Aftershock forecast models for (1) the first several hours following the 1872 earthquake, (2) the largest felt earthquakes from 1900 to 1974, and (3) the seismicity within the Entiat cluster from 1976 through 2016 are also consistent with this magnitude range. Based on this aftershock modeling, most of the current seismicity in the Entiat cluster could represent aftershocks of the 1872 earthquake. Other earthquakes, especially those with long recurrence intervals, have long‐lived aftershock sequences, including the Mw">MwMw 7.5 1891 Nobi earthquake in Japan, with aftershocks continuing 100 yrs after the mainshock. Although we do not rule out ongoing tectonic deformation in this region, a long‐lived aftershock sequence can account for these observations.

  4. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin

    2017-01-01

    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  5. Self-organization of spatio-temporal earthquake clusters

    Directory of Open Access Journals (Sweden)

    S. Hainzl

    2000-01-01

    Full Text Available Cellular automaton versions of the Burridge-Knopoff model have been shown to reproduce the power law distribution of event sizes; that is, the Gutenberg-Richter law. However, they have failed to reproduce the occurrence of foreshock and aftershock sequences correlated with large earthquakes. We show that in the case of partial stress recovery due to transient creep occurring subsequently to earthquakes in the crust, such spring-block systems self-organize into a statistically stationary state characterized by a power law distribution of fracture sizes as well as by foreshocks and aftershocks accompanying large events. In particular, the increase of foreshock and the decrease of aftershock activity can be described by, aside from a prefactor, the same Omori law. The exponent of the Omori law depends on the relaxation time and on the spatial scale of transient creep. Further investigations concerning the number of aftershocks, the temporal variation of aftershock magnitudes, and the waiting time distribution support the conclusion that this model, even "more realistic" physics in missed, captures in some ways the origin of the size distribution as well as spatio-temporal clustering of earthquakes.

  6. Omori's law in the Internet traffic

    Science.gov (United States)

    Abe, S.; Suzuki, N.

    2003-03-01

    The Internet is a complex system, whose temporal behavior is highly nonstationary and exhibits sudden drastic changes regarded as main shocks or catastrophes. Here, analyzing a set of time series data of round-trip time measured in echo experiment with the Ping Command, the property of "aftershocks" (i.e., catastrophes of smaller scales) after a main shock is studied. It is found that the aftershocks obey Omori's law. Thus, the Internet shares with earthquakes and financial-market crashes a common scale-invariant feature in the temporal patterns of aftershocks.

  7. The Ahar-Varzaghan (Iran) double earthquakes (Mw 6.5 and 6.2) of August 11th, 2012: A seismotectonic interpretation from regional moment tensors and kinematic parameters

    DEFF Research Database (Denmark)

    Donner, Stefanie; Krüger, Frank; Ghods, Abdolreza

    2013-01-01

    and almost nothing is known about active structures so far. Here, GPS velocity records are directed to North-East, while the direction changes to direct North south of the NTF. On 11th of August 2012 the region was surprisingly struck by a shallow Mw 6.5 earthquake with pure right-lateral strike...... earthquakes with ML 2.0 were observed. In the eastern part of the earthquake sequence, along 3/4 of the rupture length, the aftershocks concentrated in a depth of about 14 km. In the western part they became shallower with about 7 km depth. On 7th of November a strong aftershock (Mw 5.4) occurred......) operated by the International Institute of Earthquake Engineering and Seismology (IIEES) in Tehran. For half of the studied aftershocks we obtain pure E-W / N-S oriented strike-slip mechanisms. The other half shows oblique thrust mechanisms with an orientation of NE-SW. The analysed aftershocks are located...

  8. Analysis of the 2012 Ahar-Varzeghan (Iran) seismic sequence: Insights from statistical and stress transfer modeling

    Science.gov (United States)

    Yazdi, Pouye; Santoyo, Miguel Angel; Gaspar-Escribano, Jorge M.

    2018-02-01

    The 2012 Ahar-Varzeghan (Northwestern Iran) earthquake doublet and its following seismic sequence are analyzed in this paper. First, it is examined the time-varying statistical characteristics of seismic activity since the occurrence of the doublet (two large events with Mw = 6.4 and 6.2) that initiated the sequence on 11 August 2012. A power law magnitude-frequency distribution (1.9 ≤ M ≤ 6.4) is obtained, with relatively low b-values for the complete series indicating the existence of relatively large magnitudes and high-stress level in the area. The Omori-Utsu model of the aftershock population decay with time shows a moderate decrease in activity rate. An epidemic-type aftershock sequence model that separates background seismicity from triggered aftershocks is then used to describe the temporal evolution of the seismicity during the period following the occurrence of the doublet. Results for the entire series (above cutoff magnitude Mc = 1.9) indicate a relatively low productivity related to the earthquake-earthquake triggering. Indeed, the majority of these events seems to be generated by underlying transient or aseismic processes, which might be added to the tectonic loading stress. The proportion of aftershock events significantly increases when the analysis is limited to larger events (M ≥ 3.0) suggesting that the triggered large aftershocks entail a substantial portion of the energy released. In order to analyze the spatial distribution of the sequence, new source models are proposed for the two main shocks. For the first shock, the coseismic slip distribution is constrained by the available data on surface ruptures. A Coulomb failure stress transfer model produced by the first event along optimally-oriented planes allows identifying the areas with positive stress loads where the rupture of the subsequent aftershocks may have occurred. The positive Δ CFS areas are compared for two depth intervals: 3-10 km and 15-22 km overlapping over 350 relocated

  9. Relationship of the 2004 Mid-Niigata prefecture earthquake with geological structure. Evaluation of earthquake source fault in active folding zone

    International Nuclear Information System (INIS)

    Aoyagi, Yasuhira; Abe, Shintaro

    2007-01-01

    We compile the important points to evaluate earthquake source fault in active folding zone through a temporary aftershock observation of the 2004 Mid-Niigata Prefecture earthquake. The aftershock distribution shows spindle shape whose middle part is wide and both ends are narrow in NNE-SSW trending. The range of seismic activity corresponds well to the distribution of fold axes in this area, whose middle part is anticlinorium (some anticlines) and both ends are single anticline. In the middle part, the west dipping aftershock plane including the mainshock (M6.8) is located under the Higashiyama anticline. Another west dipping aftershock plane including the largest aftershock (M6.5) is located under the Tamugiyama and Komatsugura anticlines, and the east margin of the aftershock distribution corresponds well with Suwa-toge flexure. Therefore the present fold structure should have been formed by an accumulation of the same faults movement. In other words, it is important to refer the fold axes distribution pattern, especially with flexure, for the evaluation of earthquake source fault. In addition, we performed FEM analyses to investigate the relation of fold structure to the thickness of the sedimentary layer and the dip angle of the fault. Reverse fault movement forms asymmetric fold above the fault, which steeper slope is formed just above the upper end of the fault. As the sedimentary layer became thicker, anticline axis moved to hanging wall side in the fold structure. As the dip angle became smaller, the wavelength of the fold became longer and the fold structure grew highly asymmetric. Thus the shape of the fold structure is useful as an index to estimate the blind thrust below it. (author)

  10. Rupture Speed and Dynamic Frictional Processes for the 1995 ML4.1 Shacheng, Hebei, China, Earthquake Sequence

    Science.gov (United States)

    Liu, B.; Shi, B.

    2010-12-01

    An earthquake with ML4.1 occurred at Shacheng, Hebei, China, on July 20, 1995, followed by 28 aftershocks with 0.9≤ML≤4.0 (Chen et al, 2005). According to ZÚÑIGA (1993), for the 1995 ML4.1 Shacheng earthquake sequence, the main shock is corresponding to undershoot, while aftershocks should match overshoot. With the suggestion that the dynamic rupture processes of the overshoot aftershocks could be related to the crack (sub-fault) extension inside the main fault. After main shock, the local stresses concentration inside the fault may play a dominant role in sustain the crack extending. Therefore, the main energy dissipation mechanism should be the aftershocks fracturing process associated with the crack extending. We derived minimum radiation energy criterion (MREC) following variational principle (Kanamori and Rivera, 2004)(ES/M0')min≧[3M0/(ɛπμR3)](v/β)3, where ES and M0' are radiated energy and seismic moment gained from observation, μ is the modulus of fault rigidity, ɛ is the parameter of ɛ=M0'/M0,M0 is seismic moment and R is rupture size on the fault, v and β are rupture speed and S-wave speed. From II and III crack extending model, we attempt to reconcile a uniform expression for calculate seismic radiation efficiency ηG, which can be used to restrict the upper limit efficiency and avoid the non-physics phenomenon that radiation efficiency is larger than 1. In ML 4.1 Shacheng earthquake sequence, the rupture speed of the main shock was about 0.86 of S-wave speed β according to MREC, closing to the Rayleigh wave speed, while the rupture speeds of the remained 28 aftershocks ranged from 0.05β to 0.55β. The rupture speed was 0.9β, and most of the aftershocks are no more than 0.35β using II and III crack extending model. In addition, the seismic radiation efficiencies for this earthquake sequence were: for the most aftershocks, the radiation efficiencies were less than 10%, inferring a low seismic efficiency, whereas the radiation efficiency

  11. Characterizing spatial heterogeneity based on the b-value and fractal analyses of the 2015 Nepal earthquake sequence

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Dimri, Vijay P.

    2018-01-01

    The nature of spatial distribution of heterogeneities in the source area of the 2015 Nepal earthquake is characterized based on the seismic b-value and fractal analysis of its aftershocks. The earthquake size distribution of aftershocks gives a b-value of 1.11 ± 0.08, possibly representing the highly heterogeneous and low stress state of the region. The aftershocks exhibit a fractal structure characterized by a spectrum of generalized dimensions, Dq varying from D2 = 1.66 to D22 = 0.11. The existence of a fractal structure suggests that the spatial distribution of aftershocks is not a random phenomenon, but it self-organizes into a critical state, exhibiting a scale-independent structure governed by a power-law scaling, where a small perturbation in stress is sufficient enough to trigger aftershocks. In order to obtain the bias in fractal dimensions resulting from finite data size, we compared the multifractal spectrum for the real data and random simulations. On comparison, we found that the lower limit of bias in D2 is 0.44. The similarity in their multifractal spectra suggests the lack of long-range correlation in the data, with an only weakly multifractal or a monofractal with a single correlation dimension D2 characterizing the data. The minimum number of events required for a multifractal process with an acceptable error is discussed. We also tested for a possible correlation between changes in D2 and energy released during the earthquakes. The values of D2 rise during the two largest earthquakes (M > 7.0) in the sequence. The b- and D2 values are related by D2 = 1.45 b that corresponds to the intermediate to large earthquakes. Our results provide useful constraints on the spatial distribution of b- and D2-values, which are useful for seismic hazard assessment in the aftershock area of a large earthquake.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    pp 1-15. Simultaneous inversion of the aftershock data of the 1993 Killari earthquake in Peninsular India and its seismotectonic implications · S Mukhopadhyay J R Kayal K N Khattri B K Pradhan · More Details Abstract Fulltext PDF. The aftershock sequence of the September 30th, 1993 Killari earthquake in the Latur district ...

  13. More major earthquakes at the Nepal Himalaya? - Study on Coulomb stress perspective

    Science.gov (United States)

    Som, S. K.; Sarkar, Subhrasuchi; Dasgupta, Soumitra

    2018-07-01

    On April 2015 a major earthquake of 7.9 Mw occurred in the Nepal Himalaya, followed by 553 earthquakes of local magnitude greater than 4.0 within the first 43 days including another major event of 7.3 Mw. We resolve the static coulomb failure stress (CFS) change onto the finite fault models of 7.9 Mw after Elliott et al. (2016) and Galezka et al. (2015) and its effect on associated receiver faults. Correlation of aftershocks with the enhanced CFS condition shows that the Elliott et al. (2016) model explains 60.4% and the Galezka et al. (2015) model explains about 47.7% of the aftershocks in high stress regions. Aftershocks were poorly spatially correlated with the enhanced CFS condition after the 7.9 Mw main shock and can be explained by correlation with release of seismic energy from the associated secondarily stressed prominent thrust planes and transverse faults. Stress resolved on the associated receiver faults show increased stress on both transverse and thrust fault systems with the potential of triggering significant aftershocks or subsequent main shocks.

  14. A model of return intervals between earthquake events

    Science.gov (United States)

    Zhou, Yu; Chechkin, Aleksei; Sokolov, Igor M.; Kantz, Holger

    2016-06-01

    Application of the diffusion entropy analysis and the standard deviation analysis to the time sequence of the southern California earthquake events from 1976 to 2002 uncovered scaling behavior typical for anomalous diffusion. However, the origin of such behavior is still under debate. Some studies attribute the scaling behavior to the correlations in the return intervals, or waiting times, between aftershocks or mainshocks. To elucidate a nature of the scaling, we applied specific reshulffling techniques to eliminate correlations between different types of events and then examined how it affects the scaling behavior. We demonstrate that the origin of the scaling behavior observed is the interplay between mainshock waiting time distribution and the structure of clusters of aftershocks, but not correlations in waiting times between the mainshocks and aftershocks themselves. Our findings are corroborated by numerical simulations of a simple model showing a very similar behavior. The mainshocks are modeled by a renewal process with a power-law waiting time distribution between events, and aftershocks follow a nonhomogeneous Poisson process with the rate governed by Omori's law.

  15. An experimental approach to non - extensive statistical physics and Epidemic Type Aftershock Sequence (ETAS) modeling. The case of triaxially deformed sandstones using acoustic emissions.

    Science.gov (United States)

    Stavrianaki, K.; Vallianatos, F.; Sammonds, P. R.; Ross, G. J.

    2014-12-01

    Fracturing is the most prevalent deformation mechanism in rocks deformed in the laboratory under simulated upper crustal conditions. Fracturing produces acoustic emissions (AE) at the laboratory scale and earthquakes on a crustal scale. The AE technique provides a means to analyse microcracking activity inside the rock volume and since experiments can be performed under confining pressure to simulate depth of burial, AE can be used as a proxy for natural processes such as earthquakes. Experimental rock deformation provides us with several ways to investigate time-dependent brittle deformation. Two main types of experiments can be distinguished: (1) "constant strain rate" experiments in which stress varies as a result of deformation, and (2) "creep" experiments in which deformation and deformation rate vary over time as a result of an imposed constant stress. We conducted constant strain rate experiments on air-dried Darley Dale sandstone samples in a variety of confining pressures (30MPa, 50MPa, 80MPa) and in water saturated samples with 20 MPa initial pore fluid pressure. The results from these experiments used to determine the initial loading in the creep experiments. Non-extensive statistical physics approach was applied to the AE data in order to investigate the spatio-temporal pattern of cracks close to failure. A more detailed study was performed for the data from the creep experiments. When axial stress is plotted against time we obtain the trimodal creep curve. Calculation of Tsallis entropic index q is performed to each stage of the curve and the results are compared with the ones from the constant strain rate experiments. The Epidemic Type Aftershock Sequence model (ETAS) is also applied to each stage of the creep curve and the ETAS parameters are calculated. We investigate whether these parameters are constant across all stages of the curve, or whether there are interesting patterns of variation. This research has been co-funded by the European Union

  16. The 2008 Wells, Nevada earthquake sequence: Source constraints using calibrated multiple event relocation and InSAR

    Science.gov (United States)

    Nealy, Jennifer; Benz, Harley M.; Hayes, Gavin; Berman, Eric; Barnhart, William

    2017-01-01

    The 2008 Wells, NV earthquake represents the largest domestic event in the conterminous U.S. outside of California since the October 1983 Borah Peak earthquake in southern Idaho. We present an improved catalog, magnitude complete to 1.6, of the foreshock-aftershock sequence, supplementing the current U.S. Geological Survey (USGS) Preliminary Determination of Epicenters (PDE) catalog with 1,928 well-located events. In order to create this catalog, both subspace and kurtosis detectors are used to obtain an initial set of earthquakes and associated locations. The latter are then calibrated through the implementation of the hypocentroidal decomposition method and relocated using the BayesLoc relocation technique. We additionally perform a finite fault slip analysis of the mainshock using InSAR observations. By combining the relocated sequence with the finite fault analysis, we show that the aftershocks occur primarily updip and along the southwestern edge of the zone of maximum slip. The aftershock locations illuminate areas of post-mainshock strain increase; aftershock depths, ranging from 5 to 16 km, are consistent with InSAR imaging, which shows that the Wells earthquake was a buried source with no observable near-surface offset.

  17. Kinematic Rupture Process of the 2015 Gorkha (Nepal) Earthquake Sequence from Joint Inversion of Teleseismic, hr-GPS, Strong-Ground Motion, InSAR interferograms and pixel offsets

    Science.gov (United States)

    Yue, H.; Simons, M.; Jiang, J.; Fielding, E. J.; Owen, S. E.; Moore, A. W.; Riel, B. V.; Polet, J.; Duputel, Z.; Samsonov, S. V.; Avouac, J. P.

    2015-12-01

    The April 2015 Gorkha, Nepal (Mw 7.8) earthquake ruptured the front of Himalaya thrust belt, causing more than 9,000 fatalities. 17 days after the main event, a large aftershock (Mw 7.2) ruptured to down-dip and east of the main rupture area. To investigate the kinematic rupture process of this earthquake sequence, we explored linear and non-linear inversion techniques using a variety of datasets including teleseismic, high rate and conventional GPS, InSAR interferograms and pixel-offsets. InSAR interferograms from ALOS-2, RADARSAT-2 and Sentinel-1a satellites are used in the joint inversion. The main event is characterized by unilateral rupture extending along strike approximately 70 km to the southeast and 40 km along dip direction. The rupture velocity is well resolved to be lie between 2.8 and 3.0 km/s, which is consistent with back-projection results. An emergent initial phase is observed in teleseismic body wave records, which is consistent with a narrow area of rupture initiation near the hypocenter. The rupture mode of the main event is pulse like. The aftershock ruptured down-dip to the northeast of the main event rupture area. The aftershock rupture area is compact and contained within 40 km of its hypocenter. In contrast to the main event, teleseismic body wave records of the aftershock suggest an abrupt initial phase, which is consistent with a crack like rupture mode. The locations of most of the aftershocks (small and large) surround the rupture area of the main shock with little, if any, spatial overlap.

  18. The January 2014 Northern Cuba Earthquake Sequence - Unusual Location and Unexpected Source Mechanism Variability

    Science.gov (United States)

    Braunmiller, J.; Thompson, G.; McNutt, S. R.

    2017-12-01

    On 9 January 2014, a magnitude Mw=5.1 earthquake occurred along the Bahamas-Cuba suture at the northern coast of Cuba revealing a surprising seismic hazard source for both Cuba and southern Florida where it was widely felt. Due to its location, the event and its aftershocks (M>3.5) were recorded only at far distances (300+ km) resulting in high-detection thresholds, low location accuracy, and limited source parameter resolution. We use three-component regional seismic data to study the sequence. High-pass filtered seismograms at the closest site in southern Florida are similar in character suggesting a relatively tight event cluster and revealing additional, smaller aftershocks not included in the ANSS or ISC catalogs. Aligning on the P arrival and low-pass filtering (T>10 s) uncovers a surprise polarity flip of the large amplitude surface waves on vertical seismograms for some aftershocks relative to the main shock. We performed regional moment tensor inversions of the main shock and its largest aftershocks using complete three-component seismograms from stations distributed throughout the region to confirm the mechanism changes. Consistent with the GCMT solution, we find an E-W trending normal faulting mechanism for the main event and for one immediate aftershock. Two aftershocks indicate E-W trending reverse faulting with essentially flipped P- and T-axes relative to the normal faulting events (and the same B-axes). Within uncertainties, depths of the two event families are indistinguishable and indicate shallow faulting (<10 km). One intriguing possible interpretation is that both families ruptured the same fault with reverse mechanisms compensating for overshooting. However, activity could also be spatially separated either vertically (with reverse mechanisms possibly below extension) or laterally. The shallow source depth and the 200-km long uplifted chain of islands indicate that larger, shallow and thus potentially tsunamigenic earthquakes could occur just

  19. Artificial seismic acceleration

    Science.gov (United States)

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  20. Body and Surface Wave Modeling of Observed Seismic Events

    Science.gov (United States)

    1981-04-30

    mechanisms for foreshock , mainshock, and aftershock sequences using Seismic Research Observatory (SRO) data, EOS, 57(12), p. 954, 1976. Bache, T.C., W.L...the event as well as that of the immediate foreshock were 95 located (Allen and Nordquist, 1972) and where the largest surface displacements were...1972). Foreshock , main shock and larger aftershocks of the Borrego Mountain earthquake, U. S. Geological Survey Professional Paper 787, 16-23. Bache

  1. The Shock and Vibration Digest. Volume 17, Number 2

    Science.gov (United States)

    1985-02-01

    Amplitude Measurements Suggest Assoc.) (1984). Foreshocks Have Different Focal Mecha- nisms than Aftershocks," Science, 201, pp (197) Mogi, K., "Some... Foreshock Sequence of Haicheng Earthquake pp 305-308 (1983). and Earthquake Swarm - the Use of Fore- shock Sequences in Earthquake Prediction...L (3), pp 281- quake and Its Foreshocks and Aftershocks," 293 (1980). Seismol. Geol., J. (1), pp 1-9 (1981). * (346) Rong, W., "Continuous Prediction

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    About 3000 aftershocks (d ≥ 1.0), were recorded by the GSI network over a monitoring period of about two and half months from 29th January 2001 to 15th April 2001. About 800 aftershocks (d ≥ 2.0) are located in this study. The epicenters are clustered in an area 60km × 30km, between 23.3°N and 23.6°N and 70°E ...

  3. The ANSS response to the Mw 5.8 Central Virginia Seismic Zone earthquake of August 23, 2011

    Science.gov (United States)

    McNamara, D. E.; Horton, S.; Benz, H.; Earle, P. S.; Withers, M. M.; Hayes, G. P.; Kim, W. Y.; Chapman, M. C.; Herrmann, R. B.; Petersen, M. D.; Williams, R. A.

    2011-12-01

    An Mw 5.8 earthquake (depth=6km) occurred on August 23, 2011 (17:51:04 UTC) near Mineral, Virginia, which was widely felt from Maine to Georgia along the eastern seaboard and west to Chicago and western Tennessee. The USGS tallied nearly 142,000 felt reports submitted to the Did You Feel It (DYFI) internet community intensity system, making it the most widely felt earthquake since the web-site began, and demonstrating that more people felt this earthquake than any other in U.S. history. Significant damage was reported in the epicentral area and as far away as Washington D.C. (135 km away); minor damage was reported in Baltimore (200 km). The reverse faulting earthquake occurred on a northeast-striking plane within a region of diffuse seismicity known as the Central Virginia Seismic Zone. Within the first week, the mainshock was followed by 17 aftershocks with magnitude greater than 2, including Mw 4.5, 4.2, and 3.8 events. In the days following the mainshock, 46 portable seismic stations were deployed by several organizations, making this among the best-recorded aftershock sequence in the eastern U.S. Within 24 hours of the mainshock, 8 portable stations were deployed in time to record the largest aftershock to date (M4.5). We will present the results of our post-earthquake response, including attenuation and site amplification observations using portable aftershock station data, details on the initial USGS NEIC post earthquake response products and an assessment of the seismotectonics of the Central Virginia Seismic Zone based on aftershock locations and source parameter modeling of the larger earthquakes.

  4. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments

    Science.gov (United States)

    Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.

    2013-01-01

    Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.

  5. Stress Regime in the Nepalese Himalaya from Recent Earthquakes.

    Science.gov (United States)

    Pant, M.; Karplus, M. S.; Velasco, A. A.; Nabelek, J.; Kuna, V. M.; Ghosh, A.; Mendoza, M.; Adhikari, L. B.; Sapkota, S. N.; Klemperer, S. L.; Patlan, E.

    2017-12-01

    The two recent earthquakes, April 25, 2015 Mw 7.8 (Gorkha earthquake) and May 12, 2015 Mw 7.2, at the Indo-Eurasian plate margin killed thousands of people and caused billion dollars of property loss. In response to these events, we deployed a dense array of seismometers to record the aftershocks along Gorkha earthquake rupture area. Our network NAMASTE (Nepal Array Measuring Aftershock Seismicity Trailing Earthquake) included 45 different seismic stations (16 short period, 25 broadband, and 4 strong motion sensors) covering a large area from north-central Nepal to south of the Main Frontal Thrust at a spacing of 20 km. The instruments recorded aftershocks from June 2015 to May 2016. We used time domain short term average (STA) and long term average (LTA) algorithms (1/10s and 4/40s) respectively to detect the arrivals and then developed an earthquake catalog containing 9300 aftershocks. We are manually picking the P-wave first motion arrival polarity to develop a catalog of focal mechanisms for the larger magnitude (>M3.0) events with adequate (>10) arrivals. We hope to characterize the seismicity and stress mechanisms of the complex fault geometries in the Nepalese Himalaya and to address the geophysical processes controlling seismic cycles in the Indo-Eurasian plate margin.

  6. Structure and tectonics of the Main Himalayan Thrust and associated faults from recent earthquake and seismic imaging studies using the NAMASTE array

    Science.gov (United States)

    Karplus, M. S.; Pant, M.; Velasco, A. A.; Nabelek, J.; Kuna, V. M.; Sapkota, S. N.; Ghosh, A.; Mendoza, M.; Adhikari, L. B.; Klemperer, S. L.

    2017-12-01

    The India-Eurasia collision zone presents a significant earthquake hazard, as demonstrated by the recent, devastating April 25, 2015 M=7.8 Gorkha earthquake and the following May 12, 2015 M=7.3 earthquake. Important questions remain, including distinguishing possible geometries of the Main Himalayan Thrust (MHT), the role of other regional faults, the crustal composition and role of fluids in faulting, and the details of the rupture process, including structural causes and locations of rupture segmentation both along-strike and down-dip. These recent earthquakes and their aftershocks provide a unique opportunity to learn more about this collision zone. In June 2015, funded by NSF, we deployed the Nepal Array Measuring Aftershock Seismicity Trailing Earthquake (NAMASTE) array of 46 seismic stations distributed across eastern and central Nepal, spanning the region with most of the aftershocks. This array remained in place for 11 months from June 2015 to May 2016. We combine new results from this aftershock network in Nepal with previous geophysical and geological studies across the Himalaya to derive a new understanding of the tectonics of the Himalaya and southern Tibet in Nepal and surrounding countries. We focus on structure and composition of the Main Himalayan Thrust and compare this continent-continent subduction megathrust with megathrusts in other subduction zones.

  7. Seismotectonics of the 2014 Chiang Rai, Thailand, earthquake sequence

    Science.gov (United States)

    Pananont, P.; Herman, M. W.; Pornsopin, P.; Furlong, K. P.; Habangkaem, S.; Waldhauser, F.; Wongwai, W.; Limpisawad, S.; Warnitchai, P.; Kosuwan, S.; Wechbunthung, B.

    2017-08-01

    On 5 May 2014, a Mw 6.2 strike-slip earthquake occurred in the Mae Lao region of Chiang Rai province in Thailand. This earthquake took place in a region of known faults and caused substantial damage and injuries, although the region had been previously identified as having a relatively low earthquake hazard. Detailed field reconnaissance and deployment of a dense, temporary, network of broadband seismometers allowed details of the damage and its relationship to seismicity to be analyzed. The aftershock sequence associated with this main shock occurs on two well-defined trends, reflecting the two potential fault planes in earthquake mechanisms for the main shock and the majority of the aftershocks. The damage area was relatively large for an event of this magnitude, but building damage was largely limited to the primary rupture region, while liquefaction and other ground failure are spatially associated with the rupture area and along regional rivers. Stress modeling, combined with the time series and pattern of aftershock activity, leads us to propose that slip near the northern termination of the main shock rupture continued slightly onto a conjugate fault, helping to trigger the distinct pattern of two discrete, conjugate trends of aftershock activity that mirror the kinematics of the main shock fault mechanism.

  8. Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone

    Science.gov (United States)

    Parsons, Tom

    2002-09-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ˜39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ˜7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  9. Imaging inhomogeneous seismic velocity structure in and around the fault plane of the 2008 Iwate-Miyagi, Japan, Nairiku Earthquake (M7.2) - spatial variation in depth of seismic-aseismic transition and possible high-T/overpressurized fluid distribution

    Science.gov (United States)

    Okada, T.; Umino, N.; Hasegawa, A.; 2008 Iwate-Miyagi Nairiku Earthquake, G. O.

    2008-12-01

    A large shallow earthquake (named the 2008 Iwate-Miyagi Nairiku Earthquake) with a JMA magnitude of 7.2 occurred in the central part of NE Japan on June 14, 2008. Focal area of the present earthquake is located in the Tohoku backbone range strain concentration zone (Miura et al., 2004) along the volcanic front. Just after the occurrence of this earthquake, Japanese universities (Hokkaido, Hirosaki, Tohoku, Tokyo, Nagoya, Kyoto, Kochi, Kyusyu, Kagoshima) and NIED deployed a dense aftershock observation network in and around the focal area. Total number of temporal stations is 128. Using data from this dense aftershock observation and other temporary and routinely operated stations, we estimate hypocenter distribution and seismic velocity structure of the crust in and around the focal area of the present earthquake. We determined three-dimensional seismic velocity structure and relocated hypocenters simultaneously using the double- difference tomography method (Zhang and Thurber, 2003). Spatial extent of the aftershock area is about 45 km (NNE-SSW) by 15 km (WNW-ESE). Most of aftershocks are aligned in westward dipping. Shallower extensions of aftershock alignments seem to be located nearly at the coseismic surface deformations, which are along a geological fault, and the surface trace of the active fault (Detana fault). Note that some aftershocks seem to occur off the fault plane of the mainshock. The focal area of the present earthquake is located at a high Vs area. In the lower crust, we found some distinct low-Vs areas. These low velocity zones are located just beneath the strain concentration zones / seismic belts along the backbone range and in the northern Miyagi region. Focal area of the present earthquake is also located just above the low velocity zone in the lower crust. Beneath active volcanoes, these low velocity zones become more distinct and shallower, and aftershocks tend to occur shallower and not occur within such low-velocity zones. These low

  10. Investigation of the temporal fluctuations of the 1960–2010 seismicity of Caucasus

    Directory of Open Access Journals (Sweden)

    L. Telesca

    2012-06-01

    Full Text Available The time-clustering behaviour of the seismicity of the Caucasus spanning from 1960 to 2010 was investigated. The analysis was performed on the whole and aftershock-depleted catalogues by means of the method of Allan Factor, which permits the identification and quantification of time-clustering in point processes. The whole sequence is featured by two scaling regimes with the scaling exponent at intermediate timescales lower than that at high timescales, and a crossover that could be probably linked with aftershock time activiation. The aftershock-depleted sequence is characterized by higher time-clustering degree and the presence of a periodicity probably correlated with the cyclic earth surface load variations on regional and local scales, e.g. with snow melting in Caucasian mountains and large Enguri dam operations. The obtained results were corroborated by the application of two surrogate methods: the random shuffling and the generation of Poissonian sequences.

  11. Seismicity and arrival-time residuals from the Victoria Earthquake of June 9, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wong, V.; Frez, J.

    1981-01-01

    Hypocenter distribution in space and time of the aftershock activity from the Victoria Earthquake of June 9, 1980 was studied. It was concluded that the main event excited aftershocks in several pre-existing nests at the northwest end of the Cerro Prieto Fault, but no significant activity occurred at the immediate neighborhood of the main event. The depth of the aftershocks increases with the distance from the northwest end of the fault and this feature might be related with the higher temperatures and the spreading center located between the ends of the Imperial and Cerro Prieto Faults. The significance of the arrival-times residuals for local and regional stations is discussed both for P and S-waves and the importance of obtaining station corrections is emphasized. The non-uniqueness in determining a structure which minimizes the residuals is illustrated. Two different structures which satisfy the local data are presented.

  12. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  13. Modeling of the Nano- and Picoseismicity Rate Changes Resulting from Static Stress Triggering due to Small (MW2.2) Event Recorded at Mponeng Deep Gold Mine, South Africa

    Science.gov (United States)

    Kozlowska, M.; Orlecka-Sikora, B.; Kwiatek, G.; Boettcher, M. S.; Dresen, G. H.

    2014-12-01

    Static stress changes following large earthquakes are known to affect the rate and spatio-temporal distribution of the aftershocks. Here we utilize a unique dataset of M ≥ -3.4 earthquakes following a MW 2.2 earthquake in Mponeng gold mine, South Africa, to investigate this process for nano- and pico- scale seismicity at centimeter length scales in shallow, mining conditions. The aftershock sequence was recorded during a quiet interval in the mine and thus enabled us to perform the analysis using Dietrich's (1994) rate and state dependent friction law. The formulation for earthquake productivity requires estimation of Coulomb stress changes due to the mainshock, the reference seismicity rate, frictional resistance parameter, and the duration of aftershock relaxation time. We divided the area into six depth intervals and for each we estimated the parameters and modeled the spatio-temporal patterns of seismicity rates after the stress perturbation. Comparing the modeled patterns of seismicity with the observed distribution we found that while the spatial patterns match well, the rate of modeled aftershocks is lower than the observed rate. To test our model, we used four metrics of the goodness-of-fit evaluation. Testing procedure allowed rejecting the null hypothesis of no significant difference between seismicity rates only for one depth interval containing the mainshock, for the other, no significant differences have been found. Results show that mining-induced earthquakes may be followed by a stress relaxation expressed through aftershocks located on the rupture plane and in regions of positive Coulomb stress change. Furthermore, we demonstrate that the main features of the temporal and spatial distribution of very small, mining-induced earthquakes at shallow depths can be successfully determined using rate- and state-based stress modeling.

  14. Relaxation of the south flank after the 7.2-magnitude Kalapana earthquake, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dvorak, John J.; Klein, Fred W.; Swanson, Donald A.

    1994-01-01

    An M = 7.2 earthquake on 29 November 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward several meters: a catastrophic release of compression of the south flank caused by earlier injections of magma into the adjacent segment of a rift zone. The focal mechanisms of the mainshock, the largest foreshock, and the largest aftershock suggest seaward movement of the upper block. The rate of aftershocks decreased in a familiar hyperbolic decay, reaching the pre-1975 rate of seismicity by the mid-1980s. Repeated rift-zone intrusions and eruptions after 1975, which occurred within 25 km of the summit area, compressed the adjacent portion of the south flank, apparently masking continued seaward displacement of the south flank. This is evident along a trilateration line that continued to extend, suggesting seaward displacement, immediately after the M = 7.2 earthquake, but then was compressed during a series of intrusions and eruptions that began in September 1977. Farther to the east, trilateration measurements show that the portion of the south flank above the aftershock zone, but beyond the area of compression caused by the rift-zone intrusions and eruptions, continued to move seaward at a decreasing rate until the mid-1980s, mimicking the decay in aftershock rate. Along the same portion of the south flank, the pattern of vertical surface displacements can be explained by continued seaward movement of the south flank and development of two eruptive fissures along the east rift zone, each of which extended from a depth of ∼3 km to the surface. The aftershock rate and continued seaward movement of the south flank are reminiscent of crustal response to other large earthquakes, such as the 1966 M = 6 Parkfield earthquake and the 1983 M = 6.5 Coalinga earthquake.

  15. TECTONIC AND SEISMOLOGICAL ASPECTS OF THE GREAT JAPAN EARTHQUAKE OF MARCH 11, 2011

    Directory of Open Access Journals (Sweden)

    Ivan N. Tikhonov

    2011-01-01

    Full Text Available The publication presents a review of the structure and seismotectonic features of the Pacific margin of the NorthEastern Honshu Island on the basis of data from seismic reflection and CDP, drilling and detailed seismic studies in view of the megaearthquake (Mw=9.0 which occurred in Japan on March 11, 2011. The megaearthquake is discussed in terms of its position in the succession of the strongest events (M≥7.6 in the area under study within the historical period and in the recent timeline. It is suggested that the period of recurrence is about 40 years for great events and about 1000+ years for megaearthquakes. A number of facts suggesting a probability of a planetaryscale earthquake in the Honshu Island region are revealed. Specifically, a seismic gap with a total length of about 800 km is determined in the study area. It is located southward of 39° north latitude has already manifested aftershocks of the megaearthquake of March 11, 2011. It is probable that the megaearthquake was related to the deep thrust along the Benioff zone and the Oyashio nappe being its structural cap rock in the middle Pacific slope. The sequence of its aftershocks is compared with those of the SumatraAndaman (Mw=9.3, 2004 and Simushir (Mw=8.3, 2006 earthquakes. It is established that development of the aftershock sequences of the first and second events was very similar in time, and development of the areas of aftershock epicentres of the first and third earthquakes is similar in space. The above similarities give grounds to suggest that an aftershock (M~8.0 is possible with a relative shifting from the main shock towards the deep trench.

  16. Determination of Focal Depths of Earthquakes in the Mid-Oceanic Ridges from Amplitude Spectra of Surface Waves

    Science.gov (United States)

    1969-06-01

    Foreshock , mainshock and aftershock of the Parkfield, California earthquake of June 28, 1966. b. The Denver earthquake of August 9, 1967. Let us look...into the results of these tests in more details. (1) Test on the main shock, foreshock and aftershock of the Parkfield earthquake of June 28, 1966...According to McEvilly et. al. (1967), the origin times and locations of.these events were the following: Foreshock June 28, 1966, 04:08:56.2 GMT; 350 57.6

  17. Sequential Ground Motion Effects on the Behavior of a Base-Isolated RCC Building

    Directory of Open Access Journals (Sweden)

    Zhi Zheng

    2017-01-01

    Full Text Available The sequential ground motion effects on the dynamic responses of reinforced concrete containment (RCC buildings with typical isolators are studied in this paper. Although the base isolation technique is developed to guarantee the security and integrity of RCC buildings under single earthquakes, seismic behavior of base-isolated RCC buildings under sequential ground motions is deficient. Hence, an ensemble of as-recorded sequential ground motions is employed to study the effect of including aftershocks on the seismic evaluation of base-isolated RCC buildings. The results indicate that base isolation can significantly attenuate the earthquake shaking of the RCC building under not only single earthquakes but also seismic sequences. It is also found that the adverse aftershock effect on the RCC can be reduced due to the base isolation applied to the RCC. More importantly, the study indicates that disregarding aftershocks can induce significant underestimation of the isolator displacement for base-isolated RCC buildings.

  18. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.

    Science.gov (United States)

    McGuire, Jeffrey J; Boettcher, Margaret S; Jordan, Thomas H

    2005-03-24

    East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

  19. Seismic Observations Indicating That the 2015 Ogasawara (Bonin) Earthquake Ruptured Beneath the 660 km Discontinuity

    Science.gov (United States)

    Kuge, Keiko

    2017-11-01

    The termination of deep earthquakes at a depth of 700 km is a key feature for understanding the physical mechanism of deep earthquakes. The 680 km deep 30 May 2015, Ogasawara (Bonin) earthquake (Mw 7.9) and its aftershocks were recorded by seismic stations at distances from 7° to 19°. Synthetic seismograms indicate that the P waveforms depend on whether the earthquake is located above or below the 660 km discontinuity. In this study, I show that broadband recordings indicate that the 2015 earthquake may have occurred below the 660 km velocity discontinuity. Recordings of the P wave from the strongest aftershock lack evidence for wave triplication expected when a subhorizontal discontinuity underlies the hypocenter. Theoretical waveforms computed with a 660 km discontinuity above the aftershock and mainshock match the observed waveforms more accurately. These observations may indicate earthquake ruptures due to mantle minerals other than olivine or strong deformation of the 660 km phase transition.

  20. A statistical analysis of afterschock sequences from a temporal and magnitude standpoint

    International Nuclear Information System (INIS)

    Mohammadioun, G.

    1990-07-01

    Until quite recently indeed in its history, mankind has been inclined to regard earthquakes, like most other natural phenomena, as veritable acts of God, and as such unpredictable by definition. This attitude began to evolve only after scientists succeeded in explaining these catastrophic events as resulting, most often, from displacement along fault planes involved in tectonic processes. With the natural origin of earthquakes thus firmly established, the idea logically took root that they might actually not be so unpredictable after all. Even then, attention at first focused principally upon large, damage-causing events to the exclusion of all others. Only very lately have earthquakes begun to be viewed, not as punctual, isolated occurrences, but rather as composite 'histories', extending outwards in time and space and implying complex causal ramifications. In this light, pattern recognition techniques, among others, could then pertinently be brought to bear upon the problem of earthquake prediction. Aftershocks and foreshocks can now accordingly be integrated into an overall scheme reflecting the conditions at any given moment on a fault or fault system. First used in the past to map the portion of a fault that had been activated in the course of a major earthquake, these lesser events can be also analyzed from a prediction standpoint, leastwise the prediction of potentially damaging aftershocks. The very definition of the aftershock concept is in fact not as clearcut as it might appear at first sight. Aftershocks are generally thought of as events with relatively insignificant magnitudes. In reality, many aftershock sequences contain events as strong or almost as strong as the so-called mainshock, and the main shock itself, if its magnitude is 6 or more, stands a good chance of being a multiple event, with two or more shocks in rapid succession (within seconds or fractions thereof). The question may also arise as to when a seismic event oc curing at the same

  1. Detecting aseismic strain transients from seismicity data

    Science.gov (United States)

    Llenos, A.L.; McGuire, J.J.

    2011-01-01

    Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M???1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor. Copyright 2011 by the American Geophysical Union.

  2. Spectra of the earthquake sequence February-March, 1981, in south-central Sweden

    OpenAIRE

    O. Kulhánek; T. van Eck; N. John; K. Meyer; Rutger Wahlström

    1983-01-01

    On February 13, 1981, a relatively strong earthquake occurred in the Lake Vanern region in south-central Sweden. The shock had a magnitude of M"SUB L" = 3.3 and was followed within three weeks by three aftershocks, with magnitudes 0.5 = or < M"SUB L" = or < 1.0. The focal mechanism solution of the main shock indicates reverse faulting with a strike in the N-S or NE-SW direction and a nearly horizontal compressional stress. The aftershocks were too small to yield data for a full mechanism solu...

  3. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence

    Science.gov (United States)

    Zhu, Lupei; Zhou, Xiaofeng

    2016-10-01

    Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the ;Cut-and-Paste; (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.

  4. The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations

    Science.gov (United States)

    Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, G.-A.; Voulgaris, N.; Lekkas, E.; Chouliaras, G.; Evangelidis, C.; Pavlou, K.; Kapetanidis, V.; Karakonstantis, A.; Kazantzidou-Firtinidou, D.; Fountoulakis, I.; Millas, C.; Spingos, I.; Aspiotis, T.; Moumoulidou, A.; Skourtsos, E.; Antoniou, V.; Andreadakis, E.; Mavroulis, S.; Kleanthi, M.

    2018-04-01

    A major earthquake (Mwö=ö6.3) occurred on the 12th of June 2017 (12:28 GMT) offshore, south of the SE coast of Lesvos Island, at a depth of 13ökm, in an area characterized by normal faulting with an important strike-slip component in certain cases. Over 900 events of the sequence between 12 and 30 June 2017 were manually analyzed and located, employing an optimized local velocity model. Double-difference relocation revealed seven spatially separated groups of events, forming two linear branches, roughly aligned N130°E, compatible with the strike of known mapped faults along the southern coast of Lesvos Island. Spatiotemporal analysis indicated gradual migration of seismicity towards NW and SE from the margins of the main rupture, while a strong secondary sequence at a separate fault patch SE of the mainshock, oriented NW-SE, was triggered by the largest aftershock (Mwö=ö5.2) that occurred on 17 June. The focal mechanisms of the mainshock (φö=ö122°, δö=ö40° and λö=ö-83°) and of the major aftershocks were determined using regional moment tensor inversion. In most cases normal faulting was revealed with the fault plane oriented in a NW-SE direction, dipping SW, with the exception of the largest aftershock that was characterized by strike-slip faulting. Stress inversion revealed a complex stress field south of Lesvos, related both to normal, in an approximate E-W direction, and strike-slip faulting. All aftershocks outside the main rupture, where gradual seismicity migration was observed, are located within the positive lobes of static stress transfer determined by applying the Coulomb criterion for the mainshock. Stress loading on optimal faults under a strike-slip regime explains the occurrence of the largest aftershock and the seismicity that was triggered at the eastern patch of the rupture zone.

  5. Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2015-12-01

    The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the

  6. Aftershocks triggered by fluid intrusion: Evidence for the aftershock sequence occurred 2014 in West Bohemia/Vogtland

    Czech Academy of Sciences Publication Activity Database

    Hainzl, S.; Fischer, Tomáš; Čermáková, Hana; Bachura, M.; Vlček, J.

    2016-01-01

    Roč. 121, č. 4 (2016), s. 2575-2590 ISSN 2169-9313 R&D Projects: GA ČR GAP210/12/2336; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : pore-pressure diffusion * 2000 earth quake swarm * Vogtland/Western Bohemia Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.350, year: 2016

  7. Nanoseismicity and picoseismicity rate changes from static stress triggering caused by a Mw 2.2 earthquake in Mponeng gold mine, South Africa

    Science.gov (United States)

    Kozłowska, Maria; Orlecka-Sikora, Beata; Kwiatek, Grzegorz; Boettcher, Margaret S.; Dresen, Georg

    2015-01-01

    Static stress changes following large earthquakes are known to affect the rate and distribution of aftershocks, yet this process has not been thoroughly investigated for nanoseismicity and picoseismicity at centimeter length scales. Here we utilize a unique data set of M ≥ -3.4 earthquakes following a Mw 2.2 earthquake in Mponeng gold mine, South Africa, that was recorded during a quiet interval in the mine to investigate if rate- and state-based modeling is valid for shallow, mining-induced seismicity. We use Dieterich's (1994) rate- and state-dependent formulation for earthquake productivity, which requires estimation of four parameters: (1) Coulomb stress changes due to the main shock, (2) the reference seismicity rate, (3) frictional resistance parameter, and (4) the duration of aftershock relaxation time. Comparisons of the modeled spatiotemporal patterns of seismicity based on two different source models with the observed distribution show that while the spatial patterns match well, the rate of modeled aftershocks is lower than the observed rate. To test our model, we used three metrics of the goodness-of-fit evaluation. The null hypothesis, of no significant difference between modeled and observed seismicity rates, was only rejected in the depth interval containing the main shock. Results show that mining-induced earthquakes may be followed by a stress relaxation expressed through aftershocks located on the rupture plane and in regions of positive Coulomb stress change. Furthermore, we demonstrate that the main features of the temporal and spatial distributions of very small, mining-induced earthquakes can be successfully determined using rate- and state-based stress modeling.

  8. The June 12, 1995 microearthquake sequence in the city of Rome 1167

    Directory of Open Access Journals (Sweden)

    G. Selvaggi

    1996-06-01

    Full Text Available The earthquake of June 12, 1995 has been located using local and regional data (41°48.8'N, 12°30.8°6E at a depth of about 11.5 km a few kilometers inside the city limit of Rome, in its southernmost part. This is the first event that occurred in Rome for which instrumental data are available. The local magnitude estimated from digital recordings is ML 3.6 and it was largely felt reaching intensity VI MCS. We constrained the focal mechanism by analyzing the S-wave polarization and it agrees well with the distribution of P-wave polarities. The fault plane solution shows a dominant strike slip mechanism (strike 275°, dip 70°, rake - 140°. Seismic moment, M0 = 2.3 ± 0.6 1021dyne × , was computed from S-wave displacement spectra of horizontal components of ground motion digital waveforms. The corresponding source radius ranges between 200 and 500 m, depending on the assumed stress drop (100 bars or 10 bars, respectively. The earthquake was preceded by a ML 2.6 foreshock. The seismic sequence lasted a few days during which 38 aftershocks were recorded. The seismicity pattern shows the characteristics of a mainshock-aftershock sequence, rather than swarm behavior which seems to characterize the activity of the neighboring seismogenic areas of the Alban Hills. We used a master event algorithm to locate some of the aftershocks. Results show that the relocated aftershocks are clustered in a small volume in proximity of the mainshock hypocenter.

  9. Space-time behavior of continental intraplate earthquakes and implications for hazard assessment in China and the Central U.S.

    Science.gov (United States)

    Stein, Seth; Liu, Mian; Luo, Gang; Wang, Hui

    2014-05-01

    Earthquakes in midcontinents and those at plate boundaries behave quite differently in space and time, owing to the geometry of faults and the rate at which they are loaded. Faults at plate boundaries are loaded at constant rates by steady relative plate motion. Consequently, earthquakes concentrate along the plate boundary faults, and show quasi-periodic occurrences, although the actual temporal patterns are often complicated. However, in midcontinents, the tectonic loading is shared by a complex system of interacting faults spread over a large region, such that a large earthquake on one fault could increase the loading rates on remote faults in the system. Because the low tectonic loading rate is shared by many faults in midcontinents, individual faults may remain dormant for a long time and then become active for a short period. The resulting earthquakes are therefore episodic and spatially migrating. These effects can be seen in many areas, with a prime example being a 2000-year record from North China, which shows migration of large earthquakes between fault systems spread over a large region such that no large earthquakes rupture the same fault segment twice. Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread concerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be aftershocks that continue for decades or even longer, because aftershock sequences often last much longer in midcontinents where tectonic loading is slow, than at plate boundaries. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 M7.8 Tangshan earthquake. Similarly, current seismicity in the New Madrid seismic zone in central U.S. appears to be aftershocks of a cluster of M ~7.0 events in 1811-1812. These large events and similar events in the past millennium release strain

  10. The East Aegean Sea strong earthquake sequence of October–November 2005: lessons learned for earthquake prediction from foreshocks

    Directory of Open Access Journals (Sweden)

    G. A. Papadopoulos

    2006-01-01

    Full Text Available The seismic sequence of October–November 2005 in the Samos area, East Aegean Sea, was studied with the aim to show how it is possible to establish criteria for (a the rapid recognition of both the ongoing foreshock activity and the mainshock, and (b the rapid discrimination between the foreshock and aftershock phases of activity. It has been shown that before the mainshock of 20 October 2005, foreshock activity is not recognizable in the standard earthquake catalogue. However, a detailed examination of the records in the SMG station, which is the closest to the activated area, revealed that hundreds of small shocks not listed in the standard catalogue were recorded in the time interval from 12 October 2005 up to 21 November 2005. The production of reliable relations between seismic signal duration and duration magnitude for earthquakes included in the standard catalogue, made it possible to use signal durations in SMG records and to determine duration magnitudes for 2054 small shocks not included in the standard catalogue. In this way a new catalogue with magnitude determination for 3027 events was obtained while the standard catalogue contains 1025 events. At least 55 of them occurred from 12 October 2005 up to the occurrence of the two strong foreshocks of 17 October 2005. This implies that foreshock activity developed a few days before the strong shocks of 17 October 2005 but it escaped recognition by the routine procedure of seismic analysis. The onset of the foreshock phase of activity is recognizable by the significant increase of the mean seismicity rate which increased exponentially with time. According to the least-squares approach the b-value of the magnitude-frequency relation dropped significantly during the foreshock activity with respect to the b-value prevailing in the declustered background seismicity. However, the maximum likelihood approach does not indicate such a drop of b. The b-value found for the aftershocks that

  11. The 2004 Sumatra Earthquake Mw 9.3: Seismological and Geophysical Investigations in the Andaman-Nicobar Islands

    Science.gov (United States)

    Mooney, W. D.; Kayal, J.

    2007-05-01

    The December 26, 2004 Sumatra-Andaman earthquake (MW 9.3) is the fourth largest event (M>9.0) in the world during the last 100 years. It occurred by thrust faulting on the interplate thrust zone of the subducting India plate and overriding Burma platelet. The main shock rupture, ~1300 km long and ~200 km wide, propagated from north of Sumatra to Andaman - Nicobar Islands; the slow rupture generated Tsunami which killed about 300,000 people. The epicenter of the earthquake is located at 3.90N and 94.260E with a focal depth at 28 km (USGS). This mega seismic event triggered giant tsunamis that devastated the coastal regions of Indonesia, Malaysia, Thailand, Sri Lanka, India, Maldives and even the east coast of Africa. The impact of the tsunami was quite severe in India, in the coasts of Andaman and Nicobar Islands. The Air-base in the Car- Nicobar island was totally devastated by the tsunami and killed about 200 people. Macroseismic survey was carried out by different teams of GSI in North Andaman, Middle Andaman, South Andaman, Havelock Hut Bay and also in the Nicobar Islands. A maximum intensity VIII was recorded in the Andaman Islands. The mega thrust event was followed by an intense aftershock activity spreading over an area extending between 30-140N along the Andaman - Nicobar - Sumatra Island arc region. The aftershocks are distributed northwards from the epicenter of the main shock suggesting a unilateral rupture propagation. The aftershock (M >4.5) area covers a length of about 1300 km and a width of about 200 km, in a 'banana' shape. The national network (IMD) recorded almost all aftershocks M >5.0; about 350 were recorded till 31.01.2005. The Geological Survey of India (GSI) deployed six temporary seismograph stations in the Andaman and Nicobar Islands and also in Havelok and Narkunda (volcanic) islands. About 20,000 aftershocks (M >3.0) were recorded until end of March, 2005. About 1000 aftershocks (M >3.0) located by the GSI network until January 31, 2005

  12. (Multi)fractality of Earthquakes by use of Wavelet Analysis

    Science.gov (United States)

    Enescu, B.; Ito, K.; Struzik, Z. R.

    2002-12-01

    The fractal character of earthquakes' occurrence, in time, space or energy, has by now been established beyond doubt and is in agreement with modern models of seismicity. Moreover, the cascade-like generation process of earthquakes -with one "main" shock followed by many aftershocks, having their own aftershocks- may well be described through multifractal analysis, well suited for dealing with such multiplicative processes. The (multi)fractal character of seismicity has been analysed so far by using traditional techniques, like the box-counting and correlation function algorithms. This work introduces a new approach for characterising the multifractal patterns of seismicity. The use of wavelet analysis, in particular of the wavelet transform modulus maxima, to multifractal analysis was pioneered by Arneodo et al. (1991, 1995) and applied successfully in diverse fields, such as the study of turbulence, the DNA sequences or the heart rate dynamics. The wavelets act like a microscope, revealing details about the analysed data at different times and scales. We introduce and perform such an analysis on the occurrence time of earthquakes and show its advantages. In particular, we analyse shallow seismicity, characterised by a high aftershock "productivity", as well as intermediate and deep seismic activity, known for its scarcity of aftershocks. We examine as well declustered (aftershocks removed) versions of seismic catalogues. Our preliminary results show some degree of multifractality for the undeclustered, shallow seismicity. On the other hand, at large scales, we detect a monofractal scaling behaviour, clearly put in evidence for the declustered, shallow seismic activity. Moreover, some of the declustered sequences show a long-range dependent (LRD) behaviour, characterised by a Hurst exponent, H > 0.5, in contrast with the memory-less, Poissonian model. We demonstrate that the LRD is a genuine characteristic and is not an effect of the time series probability

  13. The effect of lateral variations of friction on crustal faulting

    Directory of Open Access Journals (Sweden)

    M. Cocco

    1994-06-01

    Full Text Available We propose that lateral variations in fault friction control the heterogeneity of slip observed in large earthquakes, We model these variations using a rate and state-dependent friction law, where we differentiate velocity-weakening into strong and weak-seismic fields, and velocity-strengthening into compliant and viscous fields. The strong-seismic field comprises the seismic slip concentrations, or asperities. The two «intermediate» frictional fields, weak-seismic and compliant, modulate both the tectonic loading and the dynamic rupture process. During the interseismic period, the compliant and viscous regions slip aseismically while the strong-seismic regions remain locked, evolving into stress concentrations that fail only in main shocks. The weak-seismic regions contain most of the interseismic activity and aftershocks, but also «creep seismically», that is, most of the weak-seismic area slips aseismically, actuating the seismicity on the remaining area. This «mixed» frictional behavior can be obtained from a sufficiently heterogenous distribution for the critical slip distance. The interseismic slip provides an inherent rupture resistance: dynamic rupture fronts decelerate as they penetrate into these unloaded compliant or creeping weak-seismic areas, diffusing into broad areas of accelerated afterslip. Aftershocks occur in both the weak-seismic and compliant areas around the fault, but most of the stress is diffused through aseismic slip. Rapid afterslip on these peripheral areas can also produce aftershocks within the main shock rupture area, by reloading weak fault areas that slipped in the main shock and then healed. We test this frictional model by comparing the interevent seismicity and aftershocks to the coseismic slip distribution for the 1966 Parkfield, 1979 Coyote Lake, and 1984 Morgan Hill earthquakes.

  14. Attenuation tomography in the rupture area of the 2010 M8.8 Maule, Chile, earthquake

    Science.gov (United States)

    Heather-Smith, Helen; Rietbrock, Andreas

    2016-04-01

    In recent years several seismological studies have developed a detailed image of the megathrust interface between the subducting Nazca plate and and the overriding South American plate in the rupture area of the 2010 M8.8 Maule, Chile, earthquake. Hicks et al. (2014) have published a high resolution 3D seismic tomography model and characterised the different regimes acting along the interface based on their seismic properties. A more detailed study by Moreno et al. (2014) showed that the seismic Vp/Vs ratio and inter-seismic locking determined from GPS measurements are correlated. Together these observations open up the possibility to map the rupture potential of possible future earthquakes, although the underlying processes are yet not fully understood and a more in depth analysis of other physical properties is needed. 3D seismic attenuation structure as well as seismic stress-drop distribution based on the aftershock seismicity are providing independent data sets to better constrain the physical processes acting along the subduction zone interface. As seismic attenuation is particularly sensitive to fluid saturation it opens up the possibility to study more directly the influence of fluids on aftershock activity as compared to standard velocity tomography studies. Based on our event catalogue of approximately 30,000 aftershocks we are currently selecting the most appropriate data set for the staggered 3D attenuation tomography. The inverted attenuation model will then be used to calculate seismic stress drop values for the complete aftershock catalogue. We will present our preliminary 3D attenuation model together with our stress drop estimates and compare our finding to the 3D velocity structure and slip distribution.

  15. Two case studies of post-seismic regime in the Vrancea region

    International Nuclear Information System (INIS)

    Ciucu, I.; Fulga, C.

    2008-01-01

    The main geophysical conceptions regarding the tectonic seismicity of the Vrancea region are presented, with emphasis on great historical earthquakes as recorded by the Romanian Earthquake Catalogue. Their geographical and in-depth distribution is also presented, as well as their main characteristics. The post-seismic regime of two main events in Vrancea (August 1986 and May 1990) is analyzed, and Omori exponents are derived for the aftershocks distribution. One exponent agrees qualitatively with the usual range of exponents (0.8 with respect to 1), while the other exponent seems to be outside this range (0.3), possibly due to an imperfect definition of the genuine aftershocks. (authors)

  16. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    Science.gov (United States)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and its coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P wave onsets and a 2.5D velocity model of the combined on- and offshore network. Aftershock seismicity analysis in the northern part of the survey area reveals a well resolved seismically active splay fault in the accretionary prism of the Chilean forearc. Our findings imply that in the northernmost part of the rupture zone, co-seismic slip most likely propagated along the splay fault and not the subduction thrust fault. In addition, the updip limit of aftershocks along the plate interface can be verified to about 40 km landwards from the deformation front. Prior to

  17. Impact of Short-term Changes In Earthquake Hazard on Risk In Christchurch, New Zealand

    Science.gov (United States)

    Nyst, M.

    2012-12-01

    The recent Mw 7.1, 4 September 2010 Darfield, and Mw 6.2, 22 February 2011 Christchurch, New Zealand earthquakes and the following aftershock activity completely changed the existing view on earthquake hazard of the Christchurch area. Not only have several faults been added to the New Zealand fault database, the main shocks were also followed by significant increases in seismicity due to high aftershock activity throughout the Christchurch region that is still on-going. Probabilistic seismic hazard assessment (PSHA) models take into account a stochastic event set, the full range of possible events that can cause damage or loss at a particular location. This allows insurance companies to look at their risk profiles via average annual losses (AAL) and loss-exceedance curves. The loss-exceedance curve is derived from the full suite of seismic events that could impact the insured exposure and plots the probability of exceeding a particular loss level over a certain period. Insurers manage their risk by focusing on a certain return period exceedance benchmark, typically between the 100 and 250 year return period loss level, and then reserve the amount of money needed to account for that return period loss level, their so called capacity. This component of risk management is not too sensitive to short-term changes in risk due to aftershock seismicity, as it is mostly dominated by longer-return period, larger magnitude, more damaging events. However, because the secondairy uncertainties are taken into account when calculating the exceedance probability, even the longer return period losses can still experience significant impact from the inclusion of time-dependent earthquake behavior. AAL is calculated by summing the product of the expected loss level and the annual rate for all events in the event set that cause damage or loss at a particular location. This relatively simple metric is an important factor in setting the annual premiums. By annualizing the expected losses

  18. The 2012 Strike-slip Earthquake Sequence in Black Sea and its Link to the Caucasus Collision Zone

    Science.gov (United States)

    Tseng, T. L.; Hsu, C. H.; Legendre, C. P.; Jian, P. R.; Huang, B. S.; Karakhanian, A.; Chen, C. W.

    2016-12-01

    The Black Sea formed as a back-arc basin in Late Cretaceous to Paleogene with lots of extensional features. However, the Black Sea is now tectonically stable and absent of notable earthquakes except for the coastal region. In this study we invert regional waveforms of a new seismic array to constrain the focal mechanisms and depths of the 2012/12/23 earthquake sequence occurred in northeastern Black Sea basin that can provide unique estimates on the stress field in the region. The results show that the focal mechanisms for the main shock and 5 larger aftershocks are all strike-slip faulting and resembling with each other. The main rupture fall along the vertical dipping, NW-SE trending sinistral fault indicated by the lineation of most aftershocks. The fault strike and aftershock distribution are both consistent with the Shatsky Ridge, which is continental in nature but large normal faults was created by previous subsidence. The occurrence of 2012 earthquakes can be re-activated, as strike-slip, on one of the pre-existing normal fault cutting at depth nearly 20-30 km in the extended crust. Some of the aftershocks, including a larger one occurred 5 days later, are distributed toward NE direction 20 km away from main fault zone. Those events might be triggered by the main shock along a conjugate fault, which is surprisingly at the extension of proposed transform fault perpendicular to the rift axis of eastern Black Sea Basin. The focal mechanisms also indicate that the maximum compression in northeast Black Sea is at E-W direction, completely different from the N-S compression in the Caucasus and East Turkey controlled by Arabia-Eurasia collision. The origin of E-W maximum compression is probably the same as the secondary stress inferred from earthquakes in Racha region of the Greater Caucasus.

  19. Relation of geological structure to seismicity at Pahute Mesa, Nevada Test Site

    International Nuclear Information System (INIS)

    McKeown, F.A.

    1975-01-01

    Some of the abundant and unique geological and seismological data acquired at the Nevada Test Site is integrated with the objectives of (1) resolving some of the ambiguity in explanations of the source of aftershocks of nuclear explosions, and (2) demonstrating the value of using detailed geological and seismological data to infer realistic source parameters of earthquakes. The distribution of epicenters of aftershocks from nuclear explosions at Pahute Mesa suggests that they are related to faults or intersections of faults in the buried ring-fracture zones of calderas rather than to the conspicuous basin-and-range faults exposed at the surface. Histograms of fault length show clearly that faults in a basin-and-range regime differ significantly in length, median length, and distribution of length from faults in a caldera regime. A histogram of fault lengths derived from magnitudes of aftershocks shows both the median and distribution characteristics of caldera faults rather than of basin-and-range faults. Cumulative frequency-fault length-squared plots also show differences in the two fault regimes, and have slopes, herein called bf slopes, of --0.89 for caldera and basin-and-range faults, respectively. The bf slopes are similar to the average slope of a cumulative frequency-strain plot for aftershocks rather than to the b slopes for cumulative frequency-magnitude plots. Although the significance of b and bf slopes and differences between them are not resolved clearly, it is concluded that the fault length and strain data reflect dimensions of seismic sources rather than energy of seismic events. The principal conclusion of the investigation is that the most obvious geology of a seismically active area may not provide the proper basis for inferring seismic-source parameters. (U.S.)

  20. Normal faulting in a back arc basin: Seismological characteristics of the March 2, 1987, Edgecumbe, New Zealand, Earthquake

    Science.gov (United States)

    Anderson, Helen; Smith, Euan; Robinson, Russell

    1990-04-01

    The Edgecumbe earthquake (March 2, 1987, 0142 UT, 37.92°S, 176.76°E) occurred beneath a coastal river plain a the southeastern margin of the Central Volcanic Region (CVR) of the North Island of New Zealand, a back arc basin that is widening at a geodetically determined rate of about 12 mm/yr. Its situation enabled a wide range of geological and geophysical measurements to be made of the preseismic, coseismic and postseismic processes. The estimated hypocenter and fault plane solution are consistent with the observed surface faulting. Various estimates of the seismic moment of the mainshock range from 4.3×1018 N m (from long-period P wave modelling of the first 5 s) to 10×1018 N m (from dislocation modelling of geodetic data). The variation in the values can be reasonably explained in terms of the methods used to determine them. Focal mechanisms of both mainshock and aftershocks were similar to focal mechanisms previously determined for events in the CVR and its offshore extension. Normal faulting mechanisms make up 75% of the events with the remainder strike slip (dextral assuming a northeast striking fault). The distribution of mechanisms is consistent with the regional strain field as previously determined from geodetic observations. The mainshock has been modelled as a complex event with a second subevent about 3 s after the first, with both episodes of moment release initiating at a depth of about 8 km. The Edgecumbe earthquake was preceded by a large number of foreshocks, some near the mainshock, but most in a tight cluster 35 km away to the northwest (i.e., off-strike). After the first half hour following the mainshock, swarms of aftershocks began occurring up to 50 km from the mainshock rupture, mostly along the strike of the faulting. Main rupture aftershocks were mostly located in the footwall of the main fault. A notable gap in the aftershock distribution is coincident with a geothermal field along strike of the main rupture. Swarms are common in the

  1. Earthquake measurements in southern Sweden Oct 1, 1986 - Mar 31, 1987

    International Nuclear Information System (INIS)

    Slunga, R.; Nordgren, L.

    1987-12-01

    A network of four stations covering southeastern Sweden has been operated for the period Oct 1, 1986 - Mar 31, 1987. Three events were aftershocks to the strong Skoevde event, 860714, ML=4.5. This made it necessary to include the Skoevde main event together with a couple of earlier aftershocks in the analysis presented in this report. Thus the present study gives 10 new earthquake mechanisms. Three of these events are in the range ML=3.5-4.5. Of the earlier about 170 earthquake mechanisms available for southern Sweden the largest is ML=3.2. The earthquakes of the present study thus give significant new information about Swedish seismic activity. (orig./DG)

  2. Ductile gap between the Wenchuan and Lushan earthquakes revealed from the two-dimensional Pg seismic tomography.

    Science.gov (United States)

    Pei, Shunping; Zhang, Haijiang; Su, Jinrong; Cui, Zhongxiong

    2014-09-30

    A high-resolution two-dimensional Pg-wave velocity model is obtained for the upper crust around the epicenters of the April 20, 2013 Ms7.0 Lushan earthquake and the May 12, 2008 Ms8.0 Wenchuan earthquake, China. The tomographic inversion uses 47235 Pg arrival times from 6812 aftershocks recorded by 61 stations around the Lushan and Wenchuan earthquakes. Across the front Longmenshan fault near the Lushan earthquake, there exists a strong velocity contrast with higher velocities to the west and lower velocities to the east. Along the Longmenshan fault system, there exist two high velocity patches showing an "X" shape with an obtuse angle along the near northwest-southeast (NW-SE) direction. They correspond to the Precambrian Pengguan and Baoxing complexes on the surface but with a ~20 km shift, respectively. The aftershock gap of the 2008 Wenchuan and the 2013 Lushan earthquakes is associated with lower velocities. Based on the theory of maximum effective moment criterion, this suggests that the aftershock gap is weak and the ductile deformation is more likely to occur in the upper crust within the gap under the near NW-SE compression. Therefore our results suggest that the large earthquake may be hard to happen within the gap.

  3. Rupture behaviors of the 2010 Jiashian and 2016 Meinong Earthquakes: Implication for interaction of two asperities on the Chishan Transfer Fault Zone in SW Taiwan.

    Science.gov (United States)

    Jian, P. R.; Hung, S. H.; Chen, Y. L.; Meng, L.; Tseng, T. L.

    2017-12-01

    After about 45 years of seismic quiescence, southwest Taiwan was imperiled by two strong earthquakes, the 2010 Mw 6.2 Jiashian and deadly 2016 Mw 6.4 Meinong earthquakes in the last decade. The focal mechanisms and their aftershock distributions imply that both events occurred on NW-SE striking, shallow-dipping fault planes but at different depths of 21 and 16 km, respectively. Here we present the MUSIC back projection images using high-frequency P- and sP-waves recorded in the European and Australian seismic networks, the directivity analysis using global teleseismic P waves and relocated aftershocks to characterize the rupture behaviors of the two mainshocks and explore the potential connection between them. The results for the Meinong event indicate a unilateral, subhorizontal rupture propagating NW-ward 17 km and lasting for 6-7 s [Jian et al., 2017]. For the Jiashian event, the rupture initiated at a greater depth of 21 km and then propagated both NW-ward and up-dip ( 16o) on the fault plane, with a shorter rupture length of 10 km and duration of 4-5 s. The up-dip propagation is corroborated by the 3-D directivity analysis that leads to the widths of P-wave pulses increasing linearly with the directivity parameter. Moreover, relocation of aftershocks reveals that the Jiashian sequence is confined in a NW-SE elongated zone extending 15 km and 5 km shallower than the hypocenter. The Meinong aftershock sequence shows three clusters: one surrounding the mainshock hypocenter, another one distributed northwestern and deeper (>20 km) off the rupture plane beneath Tainan, and the other distant shallow-focus one (<10 km) beneath the southern Central Mountain Range. As evidenced by similar focal mechanism, rupture behaviors, as well as the spatial configuration of the mainshock rupture zones and aftershock distributions, we attribute the Jiashian and Meinong earthquakes to two asperities on a buried oblique fault that has been reactivated recently, the NW-SE striking

  4. Deepest Depth of Seismogenic Layer Within the Crust Beneath Japanese Islands on the Japan Sea Side Using High Resolved Earthquake Catalog and Heat Flux Data

    Science.gov (United States)

    Matsubara, M.; Yano, T. E.

    2017-12-01

    Understanding the deepest depth of seismogenic layer is important parameter for the earthquake hazard assessment because this relates to the size of earthquakes caused by the active fault. Using the indexes D90 and D95, defined as the depth above which 90% and 95 % of the whole crustal earthquakes occurred from the surface, as the lower limits of the seismogenic layer. We verified the seismogenic depth for particular earthquakes on the Japan Sea side occurred after the year of 2001. We compared with the actual main shock hypocenter depth, their aftershocks, main slip region on the fault, and depth where the temperature estimated to be 250, 300, and 450 degrees. For D90 and D95, we used two different earthquake catalogs. First, the catalog in which we relocated hypocenters for 12 years between 2001 and 2012 from the NIED Hi-net catalog (JUICE catalog, Yano et al. 2017) for high resolution hypocenter locations (Depth 0.0). This catalog is used to get D95 values. Second, the earthquake catalog redetermined with the 3D velocity structure (Matsubara and Obara, 2011) particularly for getting the D90 value around the costal region. In order to satisfy Gutenberg-Richter magnitude-frequency relation, we chose events M>1.5. We then calculated the D90 and D95 using the same method as Matsubara and Sato (2015). For depths where the temperatures are 250, 300, and 450 degrees are estimated from heat flux measured at Hi-net boreholes (Matsumoto, 2007) and other additional data Sakagawa et al. (2005). Depths are calculated using the steady-state, one-dimensional, heat conduction equation with an exponential decrease in the radioactivity heat generation introduced in Tanaka (2004). The general pattern of our results is consistent with previous studies of D90 as very deep D95 beneath the northern Hokkaido and northern Honshu and very shallow D95 along the volcanic front. We found that our D90/D95 showed the deepest boundary of hypocenter of mainshock, majority of aftershocks, main

  5. Lapse time and frequency-dependent attenuation of coda waves in the Zagros continental collision zone in Southwestern Iran

    International Nuclear Information System (INIS)

    Rahimi, H; Hamzehloo, H

    2008-01-01

    The coda Q, Q c , were estimated for the Zagros continental collision zone in southwestern Iran by analyzing the coda waves of 51 local earthquakes recorded on the three stations of the Iranian National Seismic Network (INSN) with magnitudes of between 3.1 and 4.9 recorded in the region during March and April 2006. Most of the analyzed events are foreshocks and aftershocks of the Darb-e-Astane earthquake which occurred on 31 March 2006 with a magnitude of 6.1 (IIEES). The earthquakes had an epicentral distance of between 120 and 200 km and a focal depth of about 18 km. The Q c values were computed at nine central frequencies of 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 16.0 and 20.0 Hz through eight lapse time windows from 25 to 60 s starting at double the time of the primary S-wave from the origin time using the time-domain coda-decay method of a single backscattering model. In this study the collected data were compared between the events that occurred before and after the main event (foreshocks and aftershocks). The analysis showed a significant variation in the value of coda, Q, for the study region in different lapse times and frequencies. The variation of the quality factor, Q c , before and after the main event was estimated at different lapse time windows to observe its effect with depth. The estimated average frequency-dependent relation of Q c for foreshocks varies from Q c = (144 ± 24)f (0.42±0.23) at 25 s to Q c = (85 ± 10)f (0.92±0.11) at 60 s lapse window time length, respectively. For aftershocks, it varies from Q c = (121 ± 55)f (0.97±0.26) at 25 s to Q c = (212 ± 59)f (0.82±0.15) at 60 s. The averages of Q c in all stations and lapse times window are obtained as Q c = 99f 0.84 and Q c = 178f 0.86 for foreshocks and aftershocks, respectively. The Q frequency relationship for foreshocks is similar to that for the South Carolina, Koyna, western Anatolia and Aleutian earthquakes, whereas for aftershocks it is similar to the Kumaun, NW Himalaya and

  6. Multinational Subsidiary Performance: Evidence from the Ghanaian ...

    African Journals Online (AJOL)

    2016-05-01

    May 1, 2016 ... the financial and economic foundations of the developed economies with its aftershock .... Likewise, Dunning (1993) noted that one of the fundamental reasons .... of management effectiveness and corporate performance in ...

  7. Stress Interactions Between the 1976 Magnitude 7.8 Tangshan Earthquake and Adjacent Fault Systems in Northern China

    Science.gov (United States)

    Zhang, Z.; Lin, J.; Chen, Y. J.

    2004-12-01

    The 28 July 1976 ML = 7.8 Tangshan earthquake struck a highly populated metropolitan center in northern China and was one of the most devastating earthquakes in modern history. Its occurrence has significantly changed the Coulomb stresses on a complex network of strike-slip, normal, and thrust faults in the region, potentially heightened the odds of future earthquakes on some of these fault segments. We have conducted a detailed analysis of the 3D stress effects of the Tangshan earthquake on its neighboring faults, the relationship between stress transfer and aftershock locations, and the implications for future seismic hazard in the region. Available seismic and geodetic data, although limited, indicate that the Tangshan main shock sequence is composed of complex rupture on 2-3 fault segments. The dominant rupture mode is right-lateral strike-slip on two adjoining sub-segments that strike N5¡aE and N35¡aE, respectively. We calculated that the Tangshan main shock sequence has increased the Coulomb failure stress by more than 1 bar in the vicinity of the Lunanxian district to the east, where the largest aftershock (ML = 7.1) occurred 15 hours after the Tangshan main event. The second largest aftershock (ML = 6.8) occurred on the Ninghe fault to the southwest of the main rupture, in a transitional region between the calculated Coulomb stress increase and decrease. The majority of the ML > 5.0 aftershocks also occurred in areas of calculated Coulomb stress increase. Our analyses further indicate that the Coulomb stress on portions of other fault segments, including the Leting and Lulong fault to the east and Yejito fault to the north, may also have been increased. Thus it is critical to obtain estimates of earthquake repeat times on these and other tectonic faults and to acquire continuous GPS and space geodetic measurements. Investigation of stress interaction and earthquake triggering in northern China is not only highly societal relevant but also important for

  8. The 2013 Crete (Hellenic Arc) Earthquake Sequence

    Science.gov (United States)

    Karakostas, V. G.; Papadimitriou, E. E.; Vallianatos, F.

    2014-12-01

    The western Hellenic Arc is a well known place of active interplate deformation, where the convergence motion vector is perpendicular to the subduction front. On 12 October 2013 this area was hit by a strong (Mw=6.7) earthquake, occurred on a thrust fault onto the coupled part of the overriding and descending plates, with the compression axis being oriented in the direction of plate convergence. This was the first strong (M>6.0) event to have occurred onto this segment of the descending slab, which has accommodated the largest (M8.3) known earthquake in the Mediterranean area, and to be recorded by the Hellenic Unified Seismological Network (HUSN) that has been considerably improved in the last five years. The first 2-days relocated seismicity shows activation of the upper part of the descending slab, downdip of the plate interface and forming a relatively narrow aftershock area on map view. The less densely visited by aftershocks area, where the main shock is also encompassed, is considered as the high-slip area along the downdip portion of the subducting plane. Dense concentration of the intraslab aftershocks are probably due to the increase of static stress generated by the main shock. A spectacular feature of the aftershock activity concerns the lateral extension of the slipped area, which appears very sharply defined. This provides evidence on localized coupling and aseismically creeping areas, explaining the low coupling ratio in the Hellenic Arc, as it derives from comparison between relative plate motion and seismic energy release. Elucidating the issue of how far the associated large-slip zone might be extended along the plate interface during the main rupture is crucial in assessing future earthquake hazards from subduction events in the study area. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project.

  9. Employing the Quake-Catcher Network (QCN) to Investigate Site Effects in Christchurch, New Zealand Using the κ Method

    Science.gov (United States)

    Neighbors, C.; Liao, E. J.; Cochran, E. S.; Chung, A. I.; Lawrence, J.; Kaiser, A. E.; Fry, B.; Christensen, C. M.

    2011-12-01

    The 3 September 2010 Mw 7.1 Darfield earthquake was felt over 900 km from the source. The maximum felt-intensity was estimated to be at Modified Mercalli Intensity (MMI) 9 and measured near-field accelerations were found to exceed 1 g. The mainshock damaged or destroyed over 100,000 buildings and spatially variable effects (such as liquefaction, slumping, and amplification) were observed throughout the city of Christchurch. Following the mainshock, a vigorous aftershock sequence has continued for months in the region. To record the aftershocks for early warning and other hazard mitigation efforts, a network of over 192 low-cost, 14-bit accelerometers were deployed in local buildings as part of the Quake-Catcher Network Rapid Aftershock Mobilization Project (RAMP). With a large number of sensors covering a city area of ~300 km2, the RAMP collected vastly more data and at a finer scale relative to the deployment of costly traditional broadband sensors. Recent comparison of the signal-to-noise quality of the 14-bit QCN sensors to the strong motion 24-bit New Zealand GeoNet sensors show similar responses. Initial analyses of the data show that aftershocks of magnitude >M4.5 within 30 km of the hypocentral distance were well recorded by QCN sensors. Utilizing the dense coverage, we investigate local site amplification by analyzing the spectra decay parameter, kappa (κ). Following the routine outlined in Douglas et al. (2010, Pure Appl. Geophys.), whereby a 5-sec S-wave window is used to calculate the Fourier spectra and κ for each station, investigations of κ values between stations are used to estimate site conditions on seismic wave behavior at each location. Results from this study will be compared to work performed by New Zealand researchers using other methods to calculate site response, such as the spectral ratio method. Together, these studies will highlight areas of the Christchurch region that may be more susceptible to ground shaking, which can be used to

  10. Teleseismic and regional data analysis for estimating depth, mechanism and rupture process of the 3 April 2017 MW 6.5 Botswana earthquake and its aftershock (5 April 2017, MW 4.5)

    Science.gov (United States)

    Letort, J.; Guilhem Trilla, A.; Ford, S. R.; Sèbe, O.; Causse, M.; Cotton, F.; Campillo, M.; Letort, G.

    2017-12-01

    We constrain the source, depth, and rupture process of the Botswana earthquake of April 3, 2017, as well as its largest aftershock (5 April 2017, Mw 4.5). This earthquake is the largest recorded event (Mw 6.5) in the East African rift system since 1970, making one important case study to better understand source processes in stable continental regions. For the two events an automatic cepstrum analysis (Letort et al., 2015) is first applied on respectively 215 and 219 teleseismic records, in order to detect depth phase arrivals (pP, sP) in the P-coda. Coherent detections of depth phases for different azimuths allow us to estimate the hypocentral depths respectively at 28 and 23 km, suggesting that the events are located in the lower crust. A same cepstrum analysis is conducted on five other earthquakes with mb>4 in this area (from 2002 to 2017), and confirms a deep crustal seismicity cluster (around 20-30 km). The source mechanisms are then characterized using a joint inversion method by fitting both regional long-period surface-waves and teleseismic high-frequency body-waves. Combining regional and teleseismic data (as well as systematic comparisons between theoretical and observed regional surface-waves dispersion curves prior to the inversion) allows us to decrease epistemic uncertainties due to lack of regional data and poor knowledge about the local velocity structure. Focal mechanisms are both constrained as normal faulting with a northwest trending, and hypocentral depths are confirmed at 28 and 24 km. Finally, in order to study the mainshock rupture process, we originally apply a kymograph analysis method (an image processing method, commonly used in the field of cell biology for identifying motions of molecular motors, e.g. Mangeol et al., 2016). Here, the kymograph allows us to better identify high-frequency teleseismic P-arrivals inside the P-coda by tracking both reflected depth phase and direct P-wave arrivals radiated from secondary sources during the

  11. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  12. Quantitative mapping of precursory seismic quiescence before the 1989, M 7.1off-Sanriku earthquake, Japan

    Directory of Open Access Journals (Sweden)

    N. Umino

    1999-06-01

    Full Text Available The first main shock of the off-Sanriku earthquake sequence (02/11/89, M 7.1; 18/07/92, M 6.9; 28/12/94, M 7.5 was preceded by a precursory seismic quiescence lasting 2.5 ± 1 year and up to this main shock. The detailed properties of this quiescence were mapped as a function of time and space by a gridding technique using the ZMAP computer code, and the statistical significance was estimated by generating a synthetic catalog based on the microearthquake catalog of Tohoku University, which was the data set used. The statistically most significant expression of this precursory quiescence has a probability of 0.1% to have occurred at random and was located in the eastern part of the 1989 aftershock area, at a point to which the 1994 aftershocks extended also. If we define the dimensions of the quiescence anomaly by a vertical cylinder with the depth of the entire seismogenic layer, centered at the point of most significant quiescence and showing a rate decrease of 75%, then we find its radius is 25 ± 9 km. If we allow other shapes, such as the simplified aftershock volume of 1989, or other simple geometric figures, to define the rate decrease we find dimensions of 80 by 80 km. The characteristics of the quiescence anomaly do not depend strongly on the choice of free parameters within the following ranges: 100 ? number of events ? 400, 2.0 ? Mmin £ 3.0, 1 ? time window ? 3 years. With our method, a thorough analysis of the period before the 1994 main shock is not possible because of the interference of the extended aftershock sequence of 1989. Nevertheless, we identified a quiescence of nearly zero earthquakes located near the center of the 1994 aftershock area that lasted for one year up to that main shock. However, this quiescence period ranked only 46th in significance, behind other quiescences of equal duration and similar dimensions distributed in time and space through the data set. Because of the ubiquitous existence of periods of near

  13. Testing the stress shadow hypothesis

    Science.gov (United States)

    Felzer, Karen R.; Brodsky, Emily E.

    2005-05-01

    A fundamental question in earthquake physics is whether aftershocks are predominantly triggered by static stress changes (permanent stress changes associated with fault displacement) or dynamic stresses (temporary stress changes associated with earthquake shaking). Both classes of models provide plausible explanations for earthquake triggering of aftershocks, but only the static stress model predicts stress shadows, or regions in which activity is decreased by a nearby earthquake. To test for whether a main shock has produced a stress shadow, we calculate time ratios, defined as the ratio of the time between the main shock and the first earthquake to follow it and the time between the last earthquake to precede the main shock and the first earthquake to follow it. A single value of the time ratio is calculated for each 10 × 10 km bin within 1.5 fault lengths of the main shock epicenter. Large values of the time ratio indicate a long wait for the first earthquake to follow the main shock and thus a potential stress shadow, whereas small values indicate the presence of aftershocks. Simulations indicate that the time ratio test should have sufficient sensitivity to detect stress shadows if they are produced in accordance with the rate and state friction model. We evaluate the 1989 MW 7.0 Loma Prieta, 1992 MW 7.3 Landers, 1994 MW 6.7 Northridge, and 1999 MW 7.1 Hector Mine main shocks. For each main shock, there is a pronounced concentration of small time ratios, indicating the presence of aftershocks, but the number of large time ratios is less than at other times in the catalog. This suggests that stress shadows are not present. By comparing our results to simulations we estimate that we can be at least 98% confident that the Loma Prieta and Landers main shocks did not produce stress shadows and 91% and 84% confident that stress shadows were not generated by the Hector Mine and Northridge main shocks, respectively. We also investigate the long hypothesized existence

  14. December 1988 Leninakan-Spitak-Kirovakan, Armenia Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The magnitude 6.9 earthquake shook northwestern Armenia, and was followed four minutes later by a magnitude 5.8 aftershock. The earthquakes affected an area 80...

  15. February 2011 Christchurch, New Zealand Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The South Island, New Zealand earthquake occurred as part of the aftershock sequence of the M 7.0 September 3, 2010 Darfield, NZ earthquake. It involved...

  16. September 1999 Nantou, Taiwan Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — At least 2,297 people killed, 8,700 injured, 600,000 people left homeless and about 82,000 housing units damaged by the earthquake and larger aftershocks. Damage...

  17. Coseismic deformation pattern of the Emilia 2012 seismic sequence imaged by Radarsat-1 interferometry

    Directory of Open Access Journals (Sweden)

    Christian Bignami

    2012-10-01

    Full Text Available On May 20 and 29, 2012, two earthquakes of magnitudes 5.9 and 5.8 (Mw, respectively, and their aftershock sequences hit the central Po Plain (Italy, about 40 km north of Bologna. More than 2,000 sizable aftershocks were recorded by the Isti-tuto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology National Seismic Network (http://iside.rm.ingv.it/. The sequence was generated by pure compressional faulting over blind thrusts of the western Ferrara Arc, and it involved a 50-km-long stretch of this buried outer front of the northern Apennines. The focal mechanisms of the larger shocks agree with available structural data and with present-day tectonic stress indicators, which show locally a maximum horizontal stress oriented ca. N-S; i.e. oriented perpendicular to the main structural trends. Most of the sequence occurred between 1 km and 12 km in depth, above the local basal detachment of the outer thrust fronts of the northern Apennines. We measured the surface displacement patterns associated with the mainshocks and some of the larger aftershocks (some of which had Mw >5.0 by applying the Interferometric Synthetic Aperture Radar (InSAR technique to a pair of C-Band Radarsat-1 images. We then used the coseismic motions detected over the epicentral region as input information, to obtain the best-fit model fault for the two largest shocks. […

  18. Tomographic models and seismotectonics of the Reggio Emilia region, Italy

    Science.gov (United States)

    Ciaccio, M. G.; Chiarabba, C.

    2002-02-01

    The aim of this study is to define the Vp and Vp/Vs structure of the fault zone ruptured by the M L 5.1 earthquake of October 15, 1996 which occurred near Reggio Emilia (central-northern Italy). A 1-month-long seismic sequence followed the mainshock and occurred in a small region along the outer border of the northern Apenninic belt, at depth ranging between 10 and 17 km. P- and S-wave arrival times from 304 aftershocks recorded by two local dense seismic arrays installed in the epicentral region have been inverted to obtain one- and three-dimensional velocity models by using state of the art local earthquake tomographic techniques. Velocity models and aftershock relocation help us to infer the seismotectonic of the region. Earthquakes originated along a NW-dipping backthrust of a NE-trending main thrust, composing the western part of the broad Ferrara Arc. A main high Vp and high Vp/Vs region delineates a pop-up structure in the center of the area. The high Vp/Vs within the pop-up structure supports the presence of a zone with increased pore pressure. The hypocentral depth of both mainshock and aftershocks is greater than those usually found for the main seismogenic regions of the Apenninic belt. P-wave velocity values in the seismogenic area, obtained by tomography, are compatible with rocks of the Mesozoic cover and suggest that seismicity occurred within the Mesozoic units stack at present by compressional tectonics.

  19. September 1886 Charleston, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Generally referred to as August 31, 1886, as the earthquake occurred at 9:51 pm local time. Eight minutes later there was a severe aftershock. This was the most...

  20. Correlations between solid tides and worldwide earthquakes MS ≥ 7.0 since 1900

    Directory of Open Access Journals (Sweden)

    Q. H. Xu

    2012-03-01

    Full Text Available Most studies on the correlations between earthquakes and solid tides mainly concluded the syzygies (i.e. new or full moons of each lunar cycle have more earthquakes than other days in the month. We show a correlation between the aftershock sequence of the ML = 6.3 Christchurch, New Zealand, earthquake and the diurnal solid tide. Ms ≥ 7 earthquakes worldwide since 1900 are more likely to occur during the 0°, 90°, 180° or 270° phases (i.e. earthquake-prone phases of the semidiurnal solid earth tidal curve (M2. Thus, the semidiurnal solid tides triggers earthquakes. However, the long-term triggering effect of the lunar periodicity is uncertain. This proposal is helpful in defining possible origin times of aftershocks several days after a mainshock and can be used for warning of subsequent larger shocks.

  1. Dampak Psikologis Tokoh Pria dan Wanita dalam Film Tangshan Da Dizhen

    Directory of Open Access Journals (Sweden)

    Andriani Sinarsih

    2015-11-01

    Full Text Available "Tangshan Earthquake" by Feng Xiaogang began shooting at the 2010 Aftershock of a background to the film. Movie tells the story of a mother for her daughter because of the expense of her choice between life and death caused deep trauma, the purpose of this study was to indicate the difference between sex behavior may cause deep psychological trauma. This article uses the collected literature research method, to "Aftershock" movie LiYuanni Stool and post-disaster psychological research scope and use of gender inequality theory, post-disaster trauma psychology to analyze the process of gender inequality in the movie protagonist psychology. Analysis showed that factors of gender inequality is mainly a social problem and a lack of self-consciousness of women. The uneven treatment of choice in pondering Fang Deng and mother for decades. 

  2. A data-based model to locate mass movements triggered by seismic events in Sichuan, China.

    Science.gov (United States)

    de Souza, Fabio Teodoro

    2014-01-01

    Earthquakes affect the entire world and have catastrophic consequences. On May 12, 2008, an earthquake of magnitude 7.9 on the Richter scale occurred in the Wenchuan area of Sichuan province in China. This event, together with subsequent aftershocks, caused many avalanches, landslides, debris flows, collapses, and quake lakes and induced numerous unstable slopes. This work proposes a methodology that uses a data mining approach and geographic information systems to predict these mass movements based on their association with the main and aftershock epicenters, geologic faults, riverbeds, and topography. A dataset comprising 3,883 mass movements is analyzed, and some models to predict the location of these mass movements are developed. These predictive models could be used by the Chinese authorities as an important tool for identifying risk areas and rescuing survivors during similar events in the future.

  3. Stress shadows - a controversial topic

    Science.gov (United States)

    Lasocki, Stanislaw; Karakostas, Vassilis G.; Papadimitriou, Eletheria E.; Orlecka-Sikora, Beata

    2010-05-01

    The spatial correlation between the positive Coulomb stress changes and the subsequent seismic activity has been firmly confirmed in many recent studies. If, however, the static stress transfer is a consistent expression of interaction between earthquakes one should also observe a decrease of the activity in the zones of negative stress changes. Instead, the existence of stress shadows is poorly evidenced and may be questioned. We tested the influence of the static stress changes associated with the coseismic slip of the 1995 Mw6.5 Kozani-Grevena (Greece) earthquake on locations of its aftershocks. The study was based on a detailed slip model for the main shock and accurate locations and reliable fault plane solutions of an adequate number of the aftershocks. We developed a statistical testing method, which tested whether the proportions of aftershocks located inside areas determined by a selected criterion on the static stress change could be attained if there were no effect of the stress change due to the main shock on aftershock locations. The areas of stress change were determined at the focus of every aftershock. The distribution of test statistic was constructed with the use of a two-dimensional nonparametric, kernel density estimator of the reference epicenter distribution. The tests highly confidently indicated a rise in probability to locate aftershocks inside areas of positive static stress change, which supported the hypothesis on the triggering effect in these areas. Furthermore, it was evidenced that a larger stress increase caused a stronger triggering effect. The analysis, however, did not evidence the existence of stress shadows inside areas of negative stress change. Contrary to expectations, the tests indicated a significant increase of the probability of event location in the areas of a stress decrease of more than or equal to 5.0 and 10.0 bar. It turned out that for areas of larger absolute stress change this probability increased regardless of

  4. Tehuantepec and Morelos-Puebla earthquakes lived and reported by the Servicio Sismológico Nacional, Mexico

    Science.gov (United States)

    Perez-Campos, X.

    2017-12-01

    On September 2017, Mexico experienced two significant inslab earthquakes with only 11 days apart from each other. Both caused severe damage in the epicentral states: Chiapas, Oaxaca, Puebla, Morelos, and Mexico City. In all senses, they tested the capabilities of the Servicio Sismológico Nacional (SSN, Mexican National Seismological Service), from the acquisition, processing, and reporting systems (both, automatic and manual), to social network and media response. In this work, we present the various aspects of the performance of the SSN and the results obtained real-time and the days after. The first earthquake occurred on 8 September within the Gulf of Tehuantepec. The SSN estimated its magnitude as Mww8.2, from W-phase inversion of local and regional data. Forty days later, it has had more than 7750 aftershocks with magnitudes larger than 2.5, making restless to inhabitants in the epicentral area. A preliminary hypo-DD relocation of the aftershocks shows two parallel SE-NW alignments. The mainshock seemed to have triggered seismicity in central Mexico, an effect previously observed by Singh et al. (1998) for coastal earthquakes. Barely 11 days had passed since this major quake. The SSN was in the middle of an intense aftershock sequence and conducting several outreach activities due to the anniversary of the 19 September 1985 (Mw8.0) earthquake, when the second quake hit. SSN located its epicenter at the border of the states of Morelos and Puebla and estimated its magnitude as Mww7.1. In this case, SSN identified only eight aftershocks, which was a similar behavior for previous inslab earthquakes in the region. Important aspects that these events have highlighted are the media and social network responses. Immediately after the first quake, SSN faced misinformation due to viral videos and social media messages predicting massive earthquakes and their relation to a solar storm that took place days before. Outreach to the public and the media became essential

  5. Roles of Radon-222 and other natural radionuclides in earthquake prediction

    International Nuclear Information System (INIS)

    Smith, A.R.; Wollenberg, H.A.; Mosier, D.F.

    1980-01-01

    The concentration of 222 Rn in subsurface waters is one of the natural parameters being investigated to help develop the capability to predict destructive earthquakes. Since 1966, scientists in several nations have sought to link radon variations with ongoing seismic activity, primarily through the dilatancy model for earthquake occurrences. Within the range of these studies, alpha-, beta-, and gamma-radiation detection techniques have been used in both discrete-sampling and continiuous-monitoring programs. These measured techniques are reviewed in terms of instrumentation adapted to seismic-monitoring purposes. A recent Lawrence Berkeley Laboratory study conducted in central California incorporated discrete sampling of wells in the aftershock area of the 1975 Oroville earthquake and continuous monitoring of water radon in a well on the San Andreas Fault. The results presented show short-term radon variations that may be associated with aftershocks and diurnal changes that may reflect earth tidal forces

  6. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    Analytical expressions are derived for the stress field caused by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress, where the hydrostatic stress is positive.

  7. Synchronization and desynchronization in the Olami-Feder-Christensen earthquake model and potential implications for real seismicity

    Directory of Open Access Journals (Sweden)

    S. Hergarten

    2011-09-01

    Full Text Available The Olami-Feder-Christensen model is probably the most studied model in the context of self-organized criticality and reproduces several statistical properties of real earthquakes. We investigate and explain synchronization and desynchronization of earthquakes in this model in the nonconservative regime and its relevance for the power-law distribution of the event sizes (Gutenberg-Richter law and for temporal clustering of earthquakes. The power-law distribution emerges from synchronization, and its scaling exponent can be derived as τ = 1.775 from the scaling properties of the rupture areas' perimeter. In contrast, the occurrence of foreshocks and aftershocks according to Omori's law is closely related to desynchronization. This mechanism of foreshock and aftershock generation differs strongly from the widespread idea of spontaneous triggering and gives an idea why some even large earthquakes are not preceded by any foreshocks in nature.

  8. Earthquake and nuclear explosion location using the global seismic network

    International Nuclear Information System (INIS)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30 0 distances, the largest deviation being around 10 seconds at 13-18 0 . At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations

  9. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  10. Characterizing potentially induced earthquake rate changes in the Brawley Seismic Zone, southern California

    Science.gov (United States)

    Llenos, Andrea L.; Michael, Andrew J.

    2016-01-01

    The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.

  11. Performance of Models for Flash Flood Warning and Hazard Assessment : The 2015 Kali Gandaki Landslide Dam Breach in Nepal

    NARCIS (Netherlands)

    Bricker, J.D.; Schwanghart, W.; Raj Adhikari, B.; Moriguchi, S.; Roeber, Volker; Giri, S.

    2017-01-01

    The 2015 magnitude 7.8 Gorkha earthquake and its aftershocks weakened mountain slopes in Nepal. Co- and postseismic landsliding and the formation of landslide-dammed lakes along steeply dissected valleys were widespread, among them a landslide that dammed the Kali Gandaki River. Overtopping of the

  12. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    In this paper, analytical expressions of the stress field given rise by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants are derived. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of the Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at the surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng, (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress where the hydrostatic stress is positive.

  13. The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty

    Science.gov (United States)

    Duputel, Zacharie; Jiang, Junle; Jolivet, Romain; Simons, Mark; Rivera, Luis; Ampuero, Jean-Paul; Riel, Bryan; Owen, Susan E; Moore, Angelyn W; Samsonov, Sergey V; Ortega Culaciati, Francisco; Minson, Sarah E.

    2016-01-01

    The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the Mw=8.1 main shock and a static slip model of the Mw=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Green's functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the Mw=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region.

  14. Coulomb stress analysis of the 21 February 2008 Mw= 6.0 Wells, Nevada, earthquake

    Science.gov (United States)

    Sevilgen, Volkan

    2011-01-01

    Static Coulomb stress changes imparted by the February 21, 2008 Wells, Nevada earthquake are calculated, using an 8 x 6 km rectangular patch with a uniform slip as a source fault. Stress changes are resolved on nearby active faults using their rake, dip, and strike direction, assuming a fault friction of 0.4. The largest Coulomb stress increase (0.2 bars) imparted to surrounding major active faults from the Wells earthquake occurs on the Clover Hill fault, which may be the southern continuation of the ruptured fault. A 0.1 bar Coulomb stress increase is calculated on the western Snake Mountains fault. Coulomb stress decreases of 0.5 bars are calculated for the northern parts of the Independence and Ruby Mountains faults. The Coulomb stress change is calculated on relocated aftershocks assuming that they have the same strike, dip, and rake, as the source fault. Under this assumption, 75% of the aftershocks received a Coulomb stress increase.

  15. Tidal triggering of earthquakes in the Ning'er area of Yunnan Province, China

    Science.gov (United States)

    Xie, Chaodi; Lei, Xinglin; Zhao, Xiaoyan; Ma, Qingbo; Yang, Simeng; Wang, Yingnan

    2017-05-01

    To investigate the potential effect of tidal modulation on the seismicity in the Ning'er area, a seismically and geothermally active zone in Yunnan Province, China, we studied the correlation between Earth tides and the occurrence of M ≥ 6.0 earthquakes dating back to 1970, as well as their aftershock sequences, using theoretically calculated tidal stresses and a statistical test. The results show a significant correlation between Earth tides and the occurrence of earthquakes. Six of seven main events occurred when the Earth tide increased the Coulomb failure stress on the source fault. Four main events occurred in a narrow range of phase angle corresponding to the maximum loading rate of tidal stress. Furthermore, the histories of the aftershock sequence as a function of the tidal phases demonstrate clear tidal modulation with a high significance. Thus, we conclude that Earth tides have a clear role in triggering (or modulating) the rupture of the fault systems in the Ning'er area.

  16. STUDIES ON SOIL LIQUEFACTION AND SETTLEMENT IN THE URAYASU DISTRICT USING EFFECTIVE STRESS ANALYSES FOR THE 2011 EAST JAPAN GREAT EARTHQUAKE

    Science.gov (United States)

    Fukutake, Kiyoshi; Jang, Jiho

    The 2011 East Japan Great Earthquake caused soil liquefaction over a wide area. In particular, severe soil liquefaction was reported in the northern parts of the reclaimed lands around Tokyo Bay, even though the seismic intensity in this area was only about 5 on the Japan scale with low acceleration. The authors surveyed the residual settlement in the Urayasu district and then conducted effective stress analyses of areas affected and not affected by liquefaction. The analyses compared with the acceleration waves monitored with K-NET Urayasu or ground settlements surveyed. It is based on the acceleration observed on the seismic bedrocks in earthquake engineering in some other districts adjacent to Urayasu. Much of the settlement was due to the long duration of the earthquake, with further settlement resulting from the aftershock. The study shows that the affects of aftershocks need to be monitored, as well as needs for improvement of simplified liquefaction prediction methods using the factor of safety, FL.

  17. Seismicity Controlled by a Frictional Afterslip During a Small-Magnitude Seismic Sequence (ML Taiwan

    Science.gov (United States)

    Canitano, Alexandre; Godano, Maxime; Hsu, Ya-Ju; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn

    2018-02-01

    We report evidence for frictional afterslip at shallow depths (about 5 to 7 km) during a small-magnitude seismic sequence (with MLTaiwan. The afterslip, which was recorded by a nearby borehole dilatometer, lasted about a month with a cumulative geodetic moment magnitude of 4.8 ± 0.2. The afterslip comprised two stages and controlled the aftershock sequence. The first postseismic stage, which followed a ML 4.6 earthquake, lasted about 6 h and mostly controlled the ruptures of neighboring asperities (e.g., multiplets) near the hypocenter. Then, a 4 week duration large afterslip event following a ML 4.9 earthquake controlled the rate of aftershocks during its first 2 days through brittle creep. The study presents a rare case of simultaneous seismological and geodetic observations for afterslip following earthquakes with magnitude lower than 5. Furthermore, the geodetic moment of the postseismic phase is at least equivalent to the coseismic moment of the sequence.

  18. Spatio-temporal analysis of Modified Omori law in Bayesian framework

    Science.gov (United States)

    Rezanezhad, V.; Narteau, C.; Shebalin, P.; Zoeller, G.; Holschneider, M.

    2017-12-01

    This work presents a study of the spatio temporal evolution of the modified Omori parameters in southern California in then time period of 1981-2016. A nearest-neighbor approach is applied for earthquake clustering. This study targets small mainshocks and corresponding big aftershocks ( 2.5 ≤ mmainshocks ≤ 4.5 and 1.8 ≤ maftershocks ≤ 2.8 ). We invert for the spatio temporal behavior of c and p values (especially c) all over the area using a MCMC based maximum likelihood estimator. As parameterizing families we use Voronoi cells with randomly distributed cell centers. Considering that c value represents a physical character like stress change we expect to see a coherent c value pattern over seismologically coacting areas. This correlation of c valus can actually be seen for the San Andreas, San Jacinto and Elsinore faults. Moreover, the depth dependency of c value is studied which shows a linear behavior of log(c) with respect to aftershock's depth within 5 to 15 km depth.

  19. The Chiloé Mw 7.6 earthquake of 2016 December 25 in Southern Chile and its relation to the Mw 9.5 1960 Valdivia earthquake

    Science.gov (United States)

    Lange, Dietrich; Ruiz, Javier; Carrasco, Sebastián; Manríquez, Paula

    2018-04-01

    On 2016 December 25, an Mw 7.6 earthquake broke a portion of the Southern Chilean subduction zone south of Chiloé Island, located in the central part of the Mw 9.5 1960 Valdivia earthquake. This region is characterized by repeated earthquakes in 1960 and historical times with very sparse interseismic activity due to the subduction of a young (˜15 Ma), and therefore hot, oceanic plate. We estimate the coseismic slip distribution based on a kinematic finite-fault source model, and through joint inversion of teleseismic body waves and strong motion data. The coseismic slip model yields a total seismic moment of 3.94 × 1020 N.m that occurred over ˜30 s, with the rupture propagating mainly downdip, reaching a peak slip of ˜4.2 m. Regional moment tensor inversion of stronger aftershocks reveals thrust type faulting at depths of the plate interface. The fore- and aftershock seismicity is mostly related to the subduction interface with sparse seismicity in the overriding crust. The 2016 Chiloé event broke a region with increased locking and most likely broke an asperity of the 1960 earthquake. The updip limit of the main event, aftershocks, foreshocks and interseismic activity are spatially similar, located ˜15 km offshore and parallel to Chiloé Islands west coast. The coseismic slip model of the 2016 Chiloé earthquake suggests a peak slip of 4.2 m that locally exceeds the 3.38 m slip deficit that has accumulated since 1960. Therefore, the 2016 Chiloé earthquake possibly released strain that has built up prior to the 1960 Valdivia earthquake.

  20. Multifractal Omori law for earthquake triggering: new tests on the California, Japan and worldwide catalogues

    Science.gov (United States)

    Ouillon, G.; Sornette, D.; Ribeiro, E.

    2009-07-01

    The Multifractal Stress-Activated model is a statistical model of triggered seismicity based on mechanical and thermodynamic principles. It predicts that, above a triggering magnitude cut-off M0, the exponent p of the Omori law for the time decay of the rate of aftershocks is a linear increasing function p(M) = a0M + b0 of the main shock magnitude M. We previously reported empirical support for this prediction, using the Southern California Earthquake Center (SCEC) catalogue. Here, we confirm this observation using an updated, longer version of the same catalogue, as well as new methods to estimate p. One of this methods is the newly defined Scaling Function Analysis (SFA), adapted from the wavelet transform. This method is able to measure a mathematical singularity (hence a p-value), erasing the possible regular part of a time-series. The SFA also proves particularly efficient to reveal the coexistence and superposition of several types of relaxation laws (typical Omori sequences and short-lived swarms sequences) which can be mixed within the same catalogue. Another new method consists in monitoring the largest aftershock magnitude observed in successive time intervals, and thus shortcuts the problem of missing events with small magnitudes in aftershock catalogues. The same methods are used on data from the worldwide Harvard Centroid Moment Tensor (CMT) catalogue and show results compatible with those of Southern California. For the Japan Meteorological Agency (JMA) catalogue, we still observe a linear dependence of p on M, but with a smaller slope. The SFA shows however that results for this catalogue may be biased by numerous swarm sequences, despite our efforts to remove them before the analysis.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    pp 1421-1440. Simultaneous estimation of earthquake source parameters and crustal value from broadband data of selected aftershocks of the 2001 7.7 Bhuj earthquake · A Saha S Lijesh P Mandal · More Details Abstract Fulltext PDF. This paper presents the simultaneous estimation of source parameters and crustal ...

  2. Teacher Guidelines for Helping Students after an Earthquake

    Science.gov (United States)

    National Child Traumatic Stress Network, 2013

    2013-01-01

    Being in an earthquake is very frightening, and the days, weeks, and months following are very stressful. Most families recover over time, especially with the support of relatives, friends, and their community. But different families may have different experiences during and after the earthquake, including the experience of aftershocks which may…

  3. CMP reflection imaging via interferometry of distributed subsurface sources

    Science.gov (United States)

    Kim, D.; Brown, L. D.; Quiros, D. A.

    2015-12-01

    The theoretical foundations of recovering body wave energy via seismic interferometry are well established. However in practice, such recovery remains problematic. Here, synthetic seismograms computed for subsurface sources are used to evaluate the geometrical combinations of realistic ambient source and receiver distributions that result in useful recovery of virtual body waves. This study illustrates how surface receiver arrays that span a limited distribution suite of sources, can be processed to reproduce virtual shot gathers that result in CMP gathers which can be effectively stacked with traditional normal moveout corrections. To verify the feasibility of the approach in practice, seismic recordings of 50 aftershocks following the magnitude of 5.8 Virginia earthquake occurred in August, 2011 have been processed using seismic interferometry to produce seismic reflection images of the crustal structure above and beneath the aftershock cluster. Although monotonic noise proved to be problematic by significantly reducing the number of usable recordings, the edited dataset resulted in stacked seismic sections characterized by coherent reflections that resemble those seen on a nearby conventional reflection survey. In particular, "virtual" reflections at travel times of 3 to 4 seconds suggest reflector sat approximately 7 to 12 km depth that would seem to correspond to imbricate thrust structures formed during the Appalachian orogeny. The approach described here represents a promising new means of body wave imaging of 3D structure that can be applied to a wide array of geologic and energy problems. Unlike other imaging techniques using natural sources, this technique does not require precise source locations or times. It can thus exploit aftershocks too small for conventional analyses. This method can be applied to any type of microseismic cloud, whether tectonic, volcanic or man-made.

  4. The 1911 M ~6.6 Calaveras earthquake: Source parameters and the role of static, viscoelastic, and dynamic coulomb stress changes imparted by the 1906 San Francisco earthquake

    Science.gov (United States)

    Doser, D.I.; Olsen, K.B.; Pollitz, F.F.; Stein, R.S.; Toda, S.

    2009-01-01

    The occurrence of a right-lateral strike-slip earthquake in 1911 is inconsistent with the calculated 0.2-2.5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strikeslip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 Mw 6.1 Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to corroborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to understand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4-5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a calculated dynamic stress of ???3 bar. Just 20 km to the south of the 1911 epicenter, we find that surface creep of the Calaveras fault at Hollister paused for ~17 yr after 1906, about the expected delay for the calculated static stress drop imparted by the 1906 earthquake when San Andreas fault postseismic creep and viscoelastic relaxation are included. Thus, the 1911 earthquake may have been promoted by the transient dynamic stresses, while Calaveras fault creep 20 km to the south appears to have been inhibited by the static stress changes.

  5. Fundamental questions of earthquake statistics, source behavior, and the estimation of earthquake probabilities from possible foreshocks

    Science.gov (United States)

    Michael, Andrew J.

    2012-01-01

    Estimates of the probability that an ML 4.8 earthquake, which occurred near the southern end of the San Andreas fault on 24 March 2009, would be followed by an M 7 mainshock over the following three days vary from 0.0009 using a Gutenberg–Richter model of aftershock statistics (Reasenberg and Jones, 1989) to 0.04 using a statistical model of foreshock behavior and long‐term estimates of large earthquake probabilities, including characteristic earthquakes (Agnew and Jones, 1991). I demonstrate that the disparity between the existing approaches depends on whether or not they conform to Gutenberg–Richter behavior. While Gutenberg–Richter behavior is well established over large regions, it could be violated on individual faults if they have characteristic earthquakes or over small areas if the spatial distribution of large‐event nucleations is disproportional to the rate of smaller events. I develop a new form of the aftershock model that includes characteristic behavior and combines the features of both models. This new model and the older foreshock model yield the same results when given the same inputs, but the new model has the advantage of producing probabilities for events of all magnitudes, rather than just for events larger than the initial one. Compared with the aftershock model, the new model has the advantage of taking into account long‐term earthquake probability models. Using consistent parameters, the probability of an M 7 mainshock on the southernmost San Andreas fault is 0.0001 for three days from long‐term models and the clustering probabilities following the ML 4.8 event are 0.00035 for a Gutenberg–Richter distribution and 0.013 for a characteristic‐earthquake magnitude–frequency distribution. Our decisions about the existence of characteristic earthquakes and how large earthquakes nucleate have a first‐order effect on the probabilities obtained from short‐term clustering models for these large events.

  6. Statistical distributions of earthquakes and related non-linear features in seismic waves

    International Nuclear Information System (INIS)

    Apostol, B.-F.

    2006-01-01

    A few basic facts in the science of the earthquakes are briefly reviewed. An accumulation, or growth, model is put forward for the focal mechanisms and the critical focal zone of the earthquakes, which relates the earthquake average recurrence time to the released seismic energy. The temporal statistical distribution for average recurrence time is introduced for earthquakes, and, on this basis, the Omori-type distribution in energy is derived, as well as the distribution in magnitude, by making use of the semi-empirical Gutenberg-Richter law relating seismic energy to earthquake magnitude. On geometric grounds, the accumulation model suggests the value r = 1/3 for the Omori parameter in the power-law of energy distribution, which leads to β = 1,17 for the coefficient in the Gutenberg-Richter recurrence law, in fair agreement with the statistical analysis of the empirical data. Making use of this value, the empirical Bath's law is discussed for the average magnitude of the aftershocks (which is 1.2 less than the magnitude of the main seismic shock), by assuming that the aftershocks are relaxation events of the seismic zone. The time distribution of the earthquakes with a fixed average recurrence time is also derived, the earthquake occurrence prediction is discussed by means of the average recurrence time and the seismicity rate, and application of this discussion to the seismic region Vrancea, Romania, is outlined. Finally, a special effect of non-linear behaviour of the seismic waves is discussed, by describing an exact solution derived recently for the elastic waves equation with cubic anharmonicities, its relevance, and its connection to the approximate quasi-plane waves picture. The properties of the seismic activity accompanying a main seismic shock, both like foreshocks and aftershocks, are relegated to forthcoming publications. (author)

  7. The 2016 south Alboran earthquake (Mw = 6.4): A reactivation of the Ibero-Maghrebian region?

    Science.gov (United States)

    Buforn, E.; Pro, C.; Sanz de Galdeano, C.; Cantavella, J. V.; Cesca, S.; Caldeira, B.; Udías, A.; Mattesini, M.

    2017-08-01

    On 25 January 2016, an earthquake of magnitude Mw = 6.4 occurred at the southern part of the Alboran Sea, between southern Spain and northern Morocco. This shock was preceded by a foreshock (Mw = 5.1) and followed by a long aftershock sequence. Focal mechanism of main shock has been estimated from slip inversion of body waves at teleseismic distances. Solution corresponds to left-lateral strike-slip motion, showing a complex bilateral rupture, formed by two sub-events, with most energy propagating along a plane oriented N30°E plane dipping to the NW. Relocation of larger events of the aftershock series, show two alignments of epicentres in NE-SW and NNE-SSW direction that intersect at the epicentre of the main shock. We have estimated the focal mechanisms of the largest aftershocks from moment tensor inversion at regional distances. We have obtained two families of focal mechanisms corresponding to strike slip for the NNE-SSW alignment and thrusting motion for the NE-SW alignment. Among the faults present in the area the Al Idrisi fault (or fault zone) may be a good candidate for the source of this earthquake. The study of Coulomb Failure Stress shows that it is possible that the 2016 earthquake was triggered by the previous nearby earthquakes of 1994 (Mw = 5.8) and 2004 (Mw = 6.3). The possible seismic reactivation of the central part of the Ibero-Maghrebian region is an open question, but it is clear that the occurrence of the 2016 earthquake confirms that from 1994 the seismicity of central part of IMR is increasing and that focal mechanism of largest earthquakes in this central part correspond to complex ruptures (or zone of fault).

  8. Coping with Natural Disasters: Lessons Learnt by a Head of Department

    Science.gov (United States)

    Lord, Beverley

    2011-01-01

    Since the first of the 29 significant earthquakes and thousands of aftershocks that the University of Canterbury (New Zealand) community has endured in the last year, Beverly Lord has learned a few lessons as a departmental head in a university during a time of natural disaster. Herein, she organizes and describes these lessons under five…

  9. The Impact of a Natural Disaster: Under- and Postgraduate Nursing Education Following the Canterbury, New Zealand, Earthquake Experiences

    Science.gov (United States)

    Richardson, S. K.; Richardson, A.; Trip, H.; Tabakakis, K.; Josland, H.; Maskill, V.; Dolan, B.; Hickmott, B.; Houston, G.; Cowan, L.; McKay, L.

    2015-01-01

    While natural disasters have been reported internationally in relation to the injury burden, role of rescuers and responders, there is little known about the impact on education in adult professional populations. A 7.1 magnitude earthquake affected the Canterbury region of New Zealand on 4 September 2010 followed by more than 13,000 aftershocks in…

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We characterized aftershock behaviour in terms of -value, -value, spatial fractal dimension (s), and slip ratio (ratio of the slip that occurred on the primary fault and that of the total slip). The estimated -value is 1.05, which indicates that the earthquake occurred due to active tectonics in the region. The three dimensional ...

  11. Toughened cyanate ester alloys via reaction-induced phase separation; Hanno yuhatsugataso bunkai ni yoru taishogekisei cyanate ester alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hirohata, T.; Kuroda, M.; Nishimura, A. [Sumitomo Electric Industries, Ltd., Osaka (Japan); Inoue, T. [Tokyo Institute of Technology, Tokyo (Japan)

    1998-03-15

    For the purpose of toughening the matrices of fiber-reinforced plastics (FRPs), the effect of thermosetting/thermoplastic polymer alloys based on cyanate ester alloys is investigated. In the experiment, materials are heated and then allowed to set, which are mixtures of 87.0-43.5wt% of cyanate ester resin, 0-43.5wt% of epoxy resin, and 13.0wt% of soluble polyimide. FRP properties are examined by measuring the after-shock compressive strength, flexural elasticity and flaxural strength, and by performing morphology observation. It is then found that a cyanate ester/soluble polyimide system forms a polymer alloy with phase separation, that its glass transition temperature does not drop, and that the rupture strength is increased approximately twice. A carbon fiber-reinforced plastic (CFRP) incorporating this system is twice higher in after-shock compression strength than a CFRP incorporating a cyanate ester. The system withstands high temperatures, retaining at 200degC approximately 90% of the elastic modulus it exhibits at room temperature. 15 refs., 16 figs.

  12. The Effects of Travel Path and Source Structure on the Character of Regional Distance Seismograms from Nuclear Explosions

    Science.gov (United States)

    1991-12-27

    and had a ML of 6.4. The earthquake sequence was very energetic, having a foreshock with a ML of 5.9 and three large aftershocks measuring 5.8, 5.6...regional data-A review, Bull. Seism. Soc. Am. 72, S89-S129. Smith, K. D., and K. F. Priestley (1988). The foreshock sequence of the 1986 Chalfant

  13. Integrated geophysical characteristics of the 2015 Illapel, Chile, earthquake

    NARCIS (Netherlands)

    Herman, Matthew W.; Nealy, Jennifer L.; Yeck, William L.; Barnhart, William D.; Hayes, Gavin P.; Furlong, Kevin P.; Benz, Harley M.

    2017-01-01

    On 16 September 2015, a Mw 8.3 earthquake ruptured the subduction zone offshore of Illapel, Chile, generating an aftershock sequence with 14 Mw 6.0–7.0 events. A double source W phase moment tensor inversion consists of a Mw 7.2 subevent and the main Mw 8.2 phase. We determine two slip models for

  14. Fault plane solutions of the January 26th, 2001 Bhuj earthquake ...

    Indian Academy of Sciences (India)

    Fault-plane solutions of the best- located and selected cluster of events that occurred along the NE trend, at a depth of 15-38 km, show reverse faulting with a large left-lateral strike-slip motion, which are comparable with the main-shock solution. The NW trending upper crustal aftershocks at depth < 10 km, on the other hand ...

  15. Seismicity of the 24 May 2014 Mw 7.0 Aegean Sea earthquake sequence along the North Aegean Trough

    Science.gov (United States)

    Görgün, Ethem; Görgün, Burçak

    2015-11-01

    The northern Aegean Sea was hit by a large size (Mw = 7.0) earthquake on 2014 May 24. Centroid moment tensor solutions for 40 events with moment magnitudes (Mw) between 3.3 and 7.0 are computed by applying a waveform inversion method on data from the Turkish and Greek broadband seismic networks. The time span of data covers the period between 2014 May 24 and 2014 June 26. The mainshock is a shallow focus strike-slip event at a depth of 15 km. Focal depths of aftershocks range from 6 to 30 km. The seismic moment (Mo) of the mainshock is estimated as 4.60 × 1019 Nm. The calculated rupture duration of the North Aegean Sea mainshock is 40 s. The focal mechanisms of the aftershocks are mainly strike-slip faulting with a minor normal component. The geometry of focal mechanisms reveals a strike-slip faulting regime with NE-SW trending direction of T-axis in the entire activated region. A stress tensor inversion of focal mechanism data is performed to acquire a more accurate picture of the northern Aegean Sea stress field along the North Aegean Trough. The stress tensor inversion results indicate a predominant strike-slip stress regime with a NW-SE oriented maximum principal compressive stress (σ1). In the development of the North Aegean Trough in Aegean Sea is in good agreement with the resolved stress tensors. With respect the newly determined focal mechanisms, the effect of the propagating of the North Anatolian Fault into Aegean Sea is very clearly pronounced. According to high-resolution hypocenter relocation of the North Aegean Sea seismic sequence, three main clusters are revealed. The aftershock activity in the observation period between 2014 May 24 and 2014 July 31 extends from the mainshock cluster from NE to the SW direction. Seismic cross-sections indicate that a complex pattern of the hypocenter distribution with the activation of seventeen segments. The eastern cluster is associated with a fault plane trending mainly ENE-WSW and dipping vertical, while the

  16. Investigation of the seismicity at regional and teleseismic distances following underground nuclear detonations. Final technical report

    International Nuclear Information System (INIS)

    Willis, D.E.; Stubenrauch, A.; Willis, M.E.

    1977-01-01

    The main emphasis of the investigation was to determine the seismicity of the Nevada Test Site area during a time period which encompassed a lull in the testing program. The time period studied extends from April 1, 1973 to October 1, 1975. The aftershock sequence of nuclear shots fired on Pahute Mesa during late 1975 and early 1976 were also included

  17. Statistical study of acoustic emissions generated during the controlled deformation of migmatite specimens

    Czech Academy of Sciences Publication Activity Database

    Vilhelm, J.; Rudajev, V.; Ponomarev, A. V.; Smirnov, V. B.; Lokajíček, Tomáš

    2017-01-01

    Roč. 100, December 2017 (2017), s. 83-89 ISSN 1365-1609 R&D Projects: GA ČR GA13-13967S; GA ČR(CZ) GA16-03950S Institutional support: RVO:67985831 Keywords : laboratory measurements * steplike loading * cyclic loading * migmatite sample * aftershock series * autocorrelation analysis Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.268, year: 2016

  18. Simultaneous estimation of earthquake source parameters and ...

    Indian Academy of Sciences (India)

    moderate-size aftershocks (Mw 2.1–5.1) of the Mw 7.7 2001 Bhuj earthquake. The horizontal- ... claimed a death toll of 20,000 people. This earth- .... quake occurred west of Kachchh, with an epicenter at 24. ◦. N, 68 ..... for dominance of body waves for R ≤ 100 km ...... Bhuj earthquake sequence; J. Asian Earth Sci. 40.

  19. Simultaneous inversion of the aftershock data of the 1993 Killari ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    faulting; both the solutions suggest dip slip motion with a small strike-slip component (figure 1). Fortyone temporary ... the seismicity of Peninsular India to block tectonics with a strain field being caused by the Indian plate motion. According to ...

  20. Remotely triggered seismicity in north China following the 2008 M w 7.9 Wenchuan earthquake

    Science.gov (United States)

    Peng, Zhigang; Wang, Weijun; Chen, Qi-Fu; Jiang, Tao

    2010-11-01

    We conduct a systematic survey of remote triggering of earthquakes in north China following the 2008 M w 7.9 Wenchuan earthquake. We identify triggered earthquakes as impulsive seismic energies with clear P and S arrivals on 5 Hz high-pass-filtered three-component velocity seismograms during and immediately after the passage of teleseismic waves. We find clearly triggered seismic activity near the Babaoshan and Huangzhuang-Gaoliying faults southwest of Beijing, and near the aftershock zone of the 1976 M W 7.6 Tangshan earthquake. While several earthquakes occur during and immediately after the teleseismic waves in the aftershock zone of the 1975 M w 7.0 Haicheng earthquake, the change of seismicity is not significant enough to establish the direct triggering relationship. Our results suggest that intraplate regions with active faults associated with major earthquakes during historic or recent times are susceptible to remote triggering. We note that this does not always guarantee the triggering to occur, indicating that other conditions are needed. Since none of these regions is associated with any active geothermal or volcanic activity, we infer that dynamic triggering could be ubiquitous and occur in a wide range of tectonic environments.

  1. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    Science.gov (United States)

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  2. Seismogenic Structure Beneath Décollement Inferred from 2009/11/5 ML 6.2 Mingjian Earthquake in Central Taiwan

    Directory of Open Access Journals (Sweden)

    Che-Min Lin

    2014-01-01

    Full Text Available One decade after the 1999 Chi-Chi earthquake, central Taiwan experienced more strong ground shaking [Central Weather Bureau (CWB, intensity VII] induced by a ML 6.2 earthquake on 5th November 2009. This earthquake occurred in the Mingjian Township of Nantou County, only 12 km southwest of the Chi-Chi earthquake epicenter. The broadband microearthquake monitoring network operated by the National Center for Research on Earthquake Engineering (NCREE observed numerous aftershocks in the five days following the mainshock. The relocated aftershocks and the mainshock focal mechanism indicated a NE-SW striking fault dipping 60¢X toward the northwest. This fault plane is inside the pre-Miocene basement and the rupture extends from the lower crust to 10 km depth just beneath the basal décollement of the thin-skinned model that is generally used to explain the regional tectonics in Taiwan. The fault plane is vertically symmetrical with the Chelungpu fault by the basal décollement. The NW-SE compressive stress of plate collision in Taiwan, as well as the deep tectonic background, resulted in the seismogenic structure of the Mingjian earthquake at this location.

  3. A prototype operational earthquake loss model for California based on UCERF3-ETAS – A first look at valuation

    Science.gov (United States)

    Field, Edward; Porter, Keith; Milner, Kevn

    2017-01-01

    We present a prototype operational loss model based on UCERF3-ETAS, which is the third Uniform California Earthquake Rupture Forecast with an Epidemic Type Aftershock Sequence (ETAS) component. As such, UCERF3-ETAS represents the first earthquake forecast to relax fault segmentation assumptions and to include multi-fault ruptures, elastic-rebound, and spatiotemporal clustering, all of which seem important for generating realistic and useful aftershock statistics. UCERF3-ETAS is nevertheless an approximation of the system, however, so usefulness will vary and potential value needs to be ascertained in the context of each application. We examine this question with respect to statewide loss estimates, exemplifying how risk can be elevated by orders of magnitude due to triggered events following various scenario earthquakes. Two important considerations are the probability gains, relative to loss likelihoods in the absence of main shocks, and the rapid decay of gains with time. Significant uncertainties and model limitations remain, so we hope this paper will inspire similar analyses with respect to other risk metrics to help ascertain whether operationalization of UCERF3-ETAS would be worth the considerable resources required.

  4. Focal mechanisms and moment magnitudes of micro-earthquakes in central Brazil by waveform inversion with quality assessment and inference of the local stress field

    Science.gov (United States)

    Carvalho, Juraci; Barros, Lucas Vieira; Zahradník, Jiří

    2016-11-01

    This paper documents an investigation on the use of full waveform inversion to retrieve focal mechanisms of 11 micro-earthquakes (Mw 0.8 to 1.4). The events represent aftershocks of a 5.0 mb earthquake that occurred on October 8, 2010 close to the city of Mara Rosa in the state of Goiás, Brazil. The main contribution of the work lies in demonstrating the feasibility of waveform inversion of such weak events. The inversion was made possible thanks to recordings available at 8 temporary seismic stations in epicentral distances of less than 8 km, at which waveforms can be successfully modeled at relatively high frequencies (1.5-2.0 Hz). On average, the fault-plane solutions obtained are in agreement with a composite focal mechanism previously calculated from first-motion polarities. They also agree with the fault geometry inferred from precise relocation of the Mara Rosa aftershock sequence. The focal mechanisms provide an estimate of the local stress field. This paper serves as a pilot study for similar investigations in intraplate regions where the stress-field investigations are difficult due to rare earthquake occurrences, and where weak events must be studied with a detailed quality assessment.

  5. Båth's law and its relation to the tectonic environment: A case study for earthquakes in Mexico

    Science.gov (United States)

    Rodríguez-Pérez, Q.; Zúñiga, F. R.

    2016-09-01

    We studied 66 mainshocks and their largest aftershocks in the Mexican subduction zone and in the Gulf of California with magnitudes in the range of 5.2 worldwide studies supporting the observation of mechanism dependence of radiated seismic energy. The statistical tests indicate that the only significant difference is for shallow thrust and strike-slip events for these parameters. The statistical comparison of stress drop of shallow thrust versus that of inslab events shows a strongly significant difference with a confidence better than 99%. The comparison of stress drop of shallow thrust events with that of strike-slip events, also indicates a strongly significant difference. We see no dependence of stress drop with magnitude, which is strong evidence of earthquake self-similarity. We do not observe a systematic depth dependence of stress drop. The results also reveal differences in the earthquake rupture among the events. The magnitude difference between the mainshock and the largest aftershock for inslab events is larger than interplate and strike-slip events suggesting focal mechanism dependence of Båth's law. For the case of this parameter, only that for inslab and strike-slip events present a significant difference with 95% confidence.

  6. Sediment-induced amplification and the collapse of the Nimitz Freeway

    Science.gov (United States)

    Hough, S.E.; Friberg, P.A.; Busby, R.; Field, E.F.; Jacob, K.H.; Borcherdt, R.D.

    1990-01-01

    THE amplification of ground motion by low-seismic-velocity surface sediments is an important factor in determining the seismic hazard specific to a given site. The Ms = 7.1 Loma Prieta earthquake of 17 October 1989 was the largest event in the contiguous United States in 37 years, and yielded an unparalleled volume of seismic data from the main shock and aftershock sequence1. These data can be used to image the seismic source, to study detailed Earth structure, and to study the propagation of seismic waves both through bedrock at depth and through sediment layers near the surface. Near the edge of San Francisco Bay, site conditions vary considerably on scales of hundreds of metres. The collapsed section of the two-tiered Nimitz Freeway in Oakland was built on San Francisco Bay mud, whereas stiffer alluvial sediments underlie a southern section that was damaged but did not collapse. Here we analyse high-quality, digital aftershock recordings from several sites near the Nimitz Freeway, and conclude that soil conditions and resulting ground-motion amplification may have contributed significantly to the failure of the structure.

  7. Geological-Seismological Evaluation of Earthquake Hazards at West Thompson Damsite, Connecticut.

    Science.gov (United States)

    1984-06-01

    Connecticut, N of 41.61N 72.12W 1.5 - Norwich ( Foreshock ) 29 Jun 80 Connecticut, N of 41.46N 72.09W 1.8 - Norwich 28 Jul 80 Connecticut, N of 41.52N...the event was judged to be either an aftershock or foreshock ; the geographic location is given as north latitude and west longitude, to the nearest 0.10

  8. A Matched Field Processing Framework for Coherent Detection Over Local and Regional Networks

    Science.gov (United States)

    2011-06-01

    Sensors for a One-Hour Time Interval Around the Largest Foreshock of the Odaesan Earthquake Sequence. .......................53 37 Detector...cluster consists of the so-called Odaesan earthquake with foreshock and aftershock sequences described by Kim and Park (2010), located at a distance of...As first test, we selected one of the larger foreshocks occurring on 17 January as the processing template. The corresponding waveforms at the

  9. Problems of the active tectonics of the Eastern Black Sea

    Science.gov (United States)

    Javakhishvili, Z.; Godoladze, T.; Dreger, D. S.; Mikava, D.; Tvaliashvili, A.

    2016-12-01

    The Black Sea Basin is the part of the Arabian Eurasian Collision zone and important unit for understanding the tectonic process of the region. This complex basin comprises two deep basins, separated by the mid-Black Sea Ridge. The basement of the Black Sea includes areas with oceanic and continental crust. It was formed as a "back-arc" basin over the subduction zone during the closing of the Tethys Ocean. In the past decades the Black Sea has been the subject of intense geological and geophysical studies. Several papers were published about the geological history, tectonics, basement relief and crustal and upper mantle structure of the basin. New tectonic schemes were suggested (e. g. Nikishin et al 2014, Shillington et al. 2008, Starostenko et al. 2004 etc.). Nevertheless, seismicity of the Black Sea is poorly studied due to the lack of seismic network in the coastal area. It is considered, that the eastern basin currently lies in a compressional setting associated with the uplift of the Caucasus and structural development of the Caucasus was closely related to the evolution of the Eastern Black Sea Basin. Analyses of recent sequence of earthquakes in 2012 can provide useful information to understand complex tectonic structure of the Eastern Black Sea region. Right after the earthquake of 2012/12/23, National Seismic monitoring center of Georgia deployed additional 4 stations in the coastal area of the country, close to the epicenter area, to monitor aftershock sequence. Seismic activity in the epicentral area is continuing until now. We have relocated approximately 1200 aftershocks to delineate fault scarf using data from Georgian, Turkish and Russian datacenters. Waveforms of the major events and the aftershocks were inverted for the fault plane solutions of the events. For the inversion were used green's functions, computed using new 1D velocity model of the region. Strike-slip mechanism of the major events of the earthquake sequence indicates extensional

  10. Rushan earthquake swarm in eastern China and its indications of fluid-triggered rupture

    Science.gov (United States)

    Zheng, Jian-Chang; Li, Dong-Mei; Li, Cui-Qin; Wang, Peng; Xu, Chang-Peng

    2017-12-01

    An extraordinary earthquake swarm occurred at Rushan on the Jiaodong Peninsula from October 1, 2013, onwards, and more than 12,000 aftershocks had been detected by December 31, 2015. All the activities of the whole swarm were recorded at the nearest station, RSH, which is located about 12 km from the epicenter. We examine the statistical characteristics of the Rushan swarm in this paper using RSH station data to assess the arrival time difference, t_{{{S} - {P}}} , of Pg and Sg phases. A temporary network comprising 18 seismometers was set up on May 6, 2014, within the area of the epicenter; based on the data from this network and use of the double difference method, we determine precise hypocenter locations. As the distribution of relocated sources reveals migration of seismic activity, we applied the mean-shift cluster method to perform clustering analysis on relocated catalogs. The results of this study show that there were at least 16 clusters of seismic activities between May 6, 2014, and June 30, 2014, and that each was characterized by a hypocenter spreading process. We estimated the hydraulic diffusivity, D, of each cluster using envelope curve fitting; the results show that D values range between 1.2 and 3.5 m2/d and that approximate values for clusters on the edge of the source area are lower than those within the central area. We utilize an epidemic-type aftershock sequence (ETAS) model to separate external triggered events from self-excited aftershocks within the Rushan swarm. The estimated parameters for this model suggest that α = 1.156, equivalent to sequences induced by fluid-injection, and that the forcing rate (μ) implies just 0.15 events per day. These estimates indicate that around 3% of the events within the swarm were externally triggered. The fact that variation in μ is synchronous with swarm activity implies that pulses in fluid pressure likely drove this series of earthquakes.

  11. Real-Time Science on Social Media: The Example of Twitter in the Minutes, Hours, Days after the 2015 M7.8 Nepal Earthquake

    Science.gov (United States)

    Lomax, A.; Bossu, R.; Mazet-Roux, G.

    2015-12-01

    Scientific information on disasters such as earthquakes typically comes firstly from official organizations, news reports and interviews with experts, and later from scientific presentations and peer-reviewed articles. With the advent of the Internet and social media, this information is available in real-time from automated systems and within a dynamic, collaborative interaction between scientific experts, responders and the public. After the 2015 M7.8 Nepal earthquake, Twitter Tweets from earth scientists* included information, analysis, commentary and discussion on earthquake parameters (location, size, mechanism, rupture extent, high-frequency radiation, …), earthquake effects (distribution of felt shaking and damage, triggered seismicity, landslides, …), earthquake rumors (e.g. the imminence of a larger event) and other earthquake information and observations (aftershock forecasts, statistics and maps, source and regional tectonics, seismograms, GPS, InSAR, photos/videos, …).In the future (while taking into account security, false or erroneous information and identity verification), collaborative, real-time science on social media after a disaster will give earlier and better scientific understanding and dissemination of public information, and enable improved emergency response and disaster management.* A sample of scientific Tweets after the 2015 Nepal earthquake: In the first minutes: "mb5.9 Mwp7.4 earthquake Nepal 2015.04.25-06:11:25UTC", "Major earthquake shakes Nepal 8 min ago", "Epicenter between Pokhara and Kathmandu", "Major earthquake shakes Nepal 18 min ago. Effects derived from witnesses' reports". In the first hour: "shallow thrust faulting to North under Himalayas", "a very large and shallow event ... Mw7.6-7.7", "aftershocks extend east and south of Kathmandu, so likely ruptured beneath city", "Valley-blocking landslides must be a very real worry". In the first day: "M7.8 earthquake in Nepal 2hr ago: destructive in Kathmandu Valley and

  12. Search for Anisotropy Changes Associated with Two Large Earthquakes in Japan and New Zealand

    Science.gov (United States)

    Savage, M. K.; Graham, K.; Aoki, Y.; Arnold, R.

    2017-12-01

    Seismic anisotropy is often considered to be an indicator of stress in the crust, because the closure of cracks due to differential stress leads to waves polarized parallel to the cracks travelling faster than the orthogonal direction. Changes in shear wave splitting have been suggested to result from stress changes at volcanoes and earthquakes. However, the effects of mineral or structural alignment, and the difficulty of distinguishing between changes in anisotropy along an earthquake-station path from distinguishing changes in the path itself, have made such findings controversial. Two large earthquakes in 2016 provide unique datasets to test the use of shear wave splitting for measuring variations in stress because clusters of closely-spaced earthquakes occurred both before and after a mainshock. We use the automatic, objective splitting analysis code MFAST to speed process and minimize unwitting observer bias when determining time variations. The sequence of earthquakes related to the M=7.2 Japanese Kumamoto earthquake of 14 April 2016 includes both foreshocks, mainshocks and aftershocks. The sequence was recorded by the NIED permanent network, which already contributed background seismic anisotropy measurements in a previous study of anisotropy and stress in Kyushu. Preliminary measurements of shear wave splitting from earthquakes that occurred in 2016 show results at some stations that clearly differ from those of the earlier study. They also change between earthquakes recorded before and after the mainshock. Further work is under way to determine whether the changes are more likely due to changes in stress during the observation time, or due to spatial changes in anisotropy combined with changes in earthquake locations. Likewise, background seismicity and also foreshocks and aftershocks in the 2013 Cook Strait earthquake sequence including two M=6.5 earthquakes in 2013 in New Zealand were in the same general region as aftershocks of the M=7.8 Kaikoura

  13. Megacity Megaquakes: Two Near-misses, and the Clues they Leave for Earthquake Interaction

    Science.gov (United States)

    Stein, R. S.; Toda, S.

    2013-12-01

    Two recent earthquakes left their mark on cities lying well beyond the mainshock rupture zones, raising questions of their future vulnerability, and about earthquake interaction broadly. The 27 February 2010 M=8.8 Maule earthquake struck the Chilean coast, killing 550 people. Chile's capital of Santiago lies 400 km from the high-slip portion of the rupture, and 100 km beyond its edge. The 11 March 2011 M=9.0 Tohoku oki earthquake struck the coast of Japan, its massive tsunami claiming most of its 18,564 victims. Reminiscent of Santiago, Japan's capital of Tokyo lies 400 km from the high-slip portion of the rupture, and 100 km beyond its edge. Because of this distance, both cities largely escaped damage. But it may not have been a clean get-away: The rate of small shocks beneath each city jumped by a factor of about 10 immediately after its megaquake. At Santiago, the quake rate remains two times higher today than it was before the Maule shock; at Tokyo it is three times higher. What this higher rate of moderate (M<6) quakes portends for the likelihood of large ones is difficult--but imperative--to answer, as Tokyo and Santiago are probably just the most striking cases of a common phenomenon: Seismicity increases well beyond the rupture zone, as also seen in the 1999 Izmit-Düzce and 2010 Darfield-Christchurch sequences. Are the Tokyo and Santiago earthquakes, 100 km from the fault rupture, aftershocks? The seismicity beneath Santiago is occurring on the adjacent unruptured section of the Chile-Peru trench megathrust, whereas shocks beneath Tokyo illuminate a deeper, separate fault system. In both cases, the rate of shocks underwent an Omori decay, although the decay ceased beneath Tokyo about a year after the mainshock. Coulomb calculations suggest that the stress imparted by the nearby megaquakes brought the faults beneath Santiago and Tokyo closer to failure (Lorito et al, Nature Geoscience 2010; Toda and Stein, GRL 2013). So, they are aftershocks in the sense

  14. Physics-based and statistical earthquake forecasting in a continental rift zone: the case study of Corinth Gulf (Greece)

    Science.gov (United States)

    Segou, Margarita

    2016-01-01

    I perform a retrospective forecast experiment in the most rapid extensive continental rift worldwide, the western Corinth Gulf (wCG, Greece), aiming to predict shallow seismicity (depth statistics, four physics-based (CRS) models, combining static stress change estimations and the rate-and-state laboratory law and one hybrid model. For the latter models, I incorporate the stress changes imparted from 31 earthquakes with magnitude M ≥ 4.5 at the extended area of wCG. Special attention is given on the 3-D representation of active faults, acting as potential receiver planes for the estimation of static stress changes. I use reference seismicity between 1990 and 1995, corresponding to the learning phase of physics-based models, and I evaluate the forecasts for six months following the 1995 M = 6.4 Aigio earthquake using log-likelihood performance metrics. For the ETAS realizations, I use seismic events with magnitude M ≥ 2.5 within daily update intervals to enhance their predictive power. For assessing the role of background seismicity, I implement a stochastic reconstruction (aka declustering) aiming to answer whether M > 4.5 earthquakes correspond to spontaneous events and identify, if possible, different triggering characteristics between aftershock sequences and swarm-type seismicity periods. I find that: (1) ETAS models outperform CRS models in most time intervals achieving very low rejection ratio RN = 6 per cent, when I test their efficiency to forecast the total number of events inside the study area, (2) the best rejection ratio for CRS models reaches RN = 17 per cent, when I use varying target depths and receiver plane geometry, (3) 75 per cent of the 1995 Aigio aftershocks that occurred within the first month can be explained by static stress changes, (4) highly variable performance on behalf of both statistical and physical models is suggested by large confidence intervals of information gain per earthquake and (5) generic ETAS models can adequately

  15. Formation of Ground Truth Databases and Related Studies and Regional Seismic Monitoring Research

    Science.gov (United States)

    2006-06-01

    experiments (1997-1999) in the former Semipalatinsk test site , Proceedings of the 22nd Annual DoDLDOE Seismic Research Symposium, Vol. I, U. S. Department of...DefenselEnergy, 55-66. Kim, Won-Young (1998), Waveform Data Information Product: Calibration Explosions at Semipalatinsk Test Site , Kazakstan...from the aftershocks of a 100 ton chemical explosion at the Degelen, Kazakh Test Site on 22 August 1998 (Omega-1). Epicentral locations, based on P

  16. Research into Surface Wave Phenomena in Sedimentary Basins.

    Science.gov (United States)

    1981-12-31

    Z 1.0 A (Eocene) - .9 and A (Post-Eocene) - .8 2.4 Golden Seismograms The Pocatello Valley earthquake sequence included a mL - 4.2 foreshock , a 6.0...4.2 foreshock and the 4.7 aftershock as well. The first arrival, at ia30s after the origin time of 1 6h15m6s March 28, is the Pn phase. This is a low

  17. GPS Time Series Analysis of Southern California Associated with the 2010 M7.2 El Mayor/Cucapah Earthquake

    Science.gov (United States)

    Granat, Robert; Donnellan, Andrea

    2011-01-01

    The Magnitude 7.2 El-Mayor/Cucapah earthquake the occurred in Mexico on April 4, 2012 was well instrumented with continuous GPS stations in California. Large Offsets were observed at the GPS stations as a result of deformation from the earthquake providing information about the co-seismic fault slip as well as fault slip from large aftershocks. Information can also be obtained from the position time series at each station.

  18. Earthquake simulations with time-dependent nucleation and long-range interactions

    Directory of Open Access Journals (Sweden)

    J. H. Dieterich

    1995-01-01

    Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.

  19. Soundness confirmation through cold test of the system equipment of HTTR

    International Nuclear Information System (INIS)

    Ono, Masato; Shinohara, Masanori; Iigaki, Kazuhiko; Tochio, Daisuke; Nakagawa, Shigeaki; Shimazaki, Yosuke

    2014-01-01

    HTTR was established at the Oarai Research and Development Center of Japan Atomic Energy Agency, for the purpose of the establishment and upgrading of high-temperature gas-cooled reactor technology infrastructure. Currently, it performs a safety demonstration test in order to demonstrate the safety inherent in high-temperature gas-cooled reactor. After the Great East Japan Earthquake, it conducted confirmation test for the purpose of soundness survey of facilities and equipment, and it confirmed that the soundness of the equipment was maintained. After two years from the confirmation test, it has not been confirmed whether the function of dynamic equipment and the soundness such as the airtightness of pipes and containers are maintained after receiving the influence of damage or deterioration caused by aftershocks generated during two years or aging. To confirm the soundness of these facilities, operation under cold state was conducted, and the obtained plant data was compared with confirmation test data to evaluate the presence of abnormality. In addition, in order to confirm through cold test the damage due to aftershocks and degradation due to aging, the plant data to compare was supposed to be the confirmation test data, and the evaluation on abnormality of the plant data of machine starting time and normal operation data was performed. (A.O.)

  20. Geological evidence of pre-2012 seismic events, Emilia-Romagna, Italy

    Directory of Open Access Journals (Sweden)

    Riccardo Caputo

    2012-10-01

    Full Text Available In May 2012, two moderate (-to-strong earthquakes that were associated with a noticeable aftershock sequence affected the eastern sector of the Po Plain, Italy, in correspondence with a buried portion of the Apennines thrust belt. The Provinces of Ferrara, Modena and Bologna (Emilia Romagna Region, Mantua (Lombardy Region, and Rovigo (Veneto Region were affected to different extents. The first shock (Ml 5.9 according to the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology, and Mw 6.1 according to the US Geological Service occurred on May 20, 2012, at 2:03 a.m. (GMT; this was the strongest of the sequence, and it was followed by several aftershocks (up to Ml 5.1. This first event produced secondary ground deformation effects, which were mainly associated with liquefaction phenomena that were spread across the broader epicentral region, and particularly in the western sector of the Ferrara Province [Papathanassiou et al. 2012, this volume]. A few weeks after the earthquake, a paleoseismological trench was excavated south of San Carlo village, where earthquake-induced effects were widely documented. This report presents the preliminary results of the paleoseismological investigation and documents the occurrence in the same area of paleo-events older than the May 2012 earthquakes. […

  1. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  2. The role of post-earthquake structural safety in pre-earthquake retrof in decision: guidelines and applications

    International Nuclear Information System (INIS)

    Bazzurro, P.; Telleen, K.; Maffei, J.; Yin, J.; Cornell, C.A.

    2009-01-01

    Critical structures such as hospitals, police stations, local administrative office buildings, and critical lifeline facilities, are expected to be operational immediately after earthquakes. Any rational decision about whether these structures are strong enough to meet this goal or whether pre-empitive retrofitting is needed cannot be made without an explicit consideration of post-earthquake safety and functionality with respect to aftershocks. Advanced Seismic Assessment Guidelines offer improvement over previous methods for seismic evaluation of buildings where post-earthquake safety and usability is a concern. This new method allows engineers to evaluate the like hood that a structure may have restricted access or no access after an earthquake. The building performance is measured in terms of the post-earthquake occupancy classifications Green Tag, Yellow Tag, and Red Tag, defining these performance levels quantitatively, based on the structure's remaining capacity to withstand aftershocks. These color-coded placards that constitute an established practice in US could be replaced by the standard results of inspections (A to E) performed by the Italian Dept. of Civil Protection after an event. The article also shows some applications of these Guidelines to buildings of the largest utility company in California, Pacific Gas and Electric Company (PGE). [it

  3. Geology and neotectonism in the epicentral area of the 2011 M5.8 Mineral, Virginia, earthquake

    Science.gov (United States)

    Burton, William C.; Spears, David B.; Harrison, Richard W.; Evans, Nicholas H.; Schindler, J. Stephen; Counts, Ronald C.

    2015-01-01

    This fi eld guide covers a two-day west-to-east transect across the epicentral region of the 2011 M5.8 Mineral, Virginia, earthquake, the largest ever recorded in the Central Virginia seismic zone. The fi eld trip highlights results of recent bedrock and surficial geologic mapping in two adjoining 7.5-min quadrangles, the Ferncliff and the Pendleton, which together encompass the epicenter and most of the 2011–2012 aftershocks.

  4. The United States Air Force and Humanitarian Airlift Operations 1947-1994

    Science.gov (United States)

    1998-01-01

    Ecuador . Aftershocks in southern Ecuador on December 10 compounded the destruction in cities and villages such as Loja , Cariamango, Celica, and Alamor... Ecuador . Date(s): August 10–19, 1949. Emergency: An earthquake measuring 7.5 on the Richter scale struck central Ecuador . Air Force Organization(s...Operations: A severe earthquake registering 7.5 on the Richter scale struck the high valleys of central Ecuador in the Andes on Thursday, August 4

  5. The Klamath Falls, Oregon, earthquakes on September 20, 1993

    Science.gov (United States)

    Brantley, S.R.

    1993-01-01

    The strongest earthquake to strike Oregon in more than 50 yrs struck the southern part of the State on September 20, 1993. These shocks, a magnitude 5.9 earthquake at 8:28pm and a magnitude 6.0 earthquake at 10:45pm, were the opening salvo in a swarm of earthquakes that continued for more than three months. During this period, several thousand aftershocks, many strong enough to be felt, were recorded by seismographs.

  6. Aftershocks of Chile's Earthquake for an Ongoing, Large-Scale Experimental Evaluation

    Science.gov (United States)

    Moreno, Lorenzo; Trevino, Ernesto; Yoshikawa, Hirokazu; Mendive, Susana; Reyes, Joaquin; Godoy, Felipe; Del Rio, Francisca; Snow, Catherine; Leyva, Diana; Barata, Clara; Arbour, MaryCatherine; Rolla, Andrea

    2011-01-01

    Evaluation designs for social programs are developed assuming minimal or no disruption from external shocks, such as natural disasters. This is because extremely rare shocks may not make it worthwhile to account for them in the design. Among extreme shocks is the 2010 Chile earthquake. Un Buen Comienzo (UBC), an ongoing early childhood program in…

  7. Study of the epicentral trends and depth sections for aftershocks of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2001-01-26

    Jan 26, 2001 ... war trend and ENE-WSW Satpura trend as shown in figure 1. The NE-SW ... and terminates in the Gulf of Kutch. A few more lineaments along this ..... mitting us to present this paper in the international seminar at New Delhi.

  8. Adapting Pipeline Architectures to Track Developing Aftershock Sequences and Recurrent Explosions

    Science.gov (United States)

    2014-02-14

    creation of robust event hypotheses over an extended source region. 86 Approved for public release; distribution is unlimited. REFERENCES Ali , Z...H., Kondo, H., Sugito, N., Awata, Y., Akhtar, S. S., Majid , A., Khattak, W., Awan, A. A., Yeats, R. S., Hussain, A., Ashraf, M., Wesnousky, S. G...of the region (e.g. Ali et al., 2009; Bendick et al., 2006; Jayangondaperumal and Thakur, 2008; Jouanne et al., 2011; Kaneda et al., 2008; Parsons

  9. Imaging the Crust in the Northern Sector of the 2009 L'Aquila Seismic Sequence through Oil Exploration Data Interpretation

    Science.gov (United States)

    Grazia Ciaccio, Maria; Improta, Luigi; Patacca, Etta; Scandone, Paolo; Villani, Fabio

    2010-05-01

    The 2009 L'Aquila seismic sequence activated a complex, about 40 km long, NW-trending and SW-dipping normal fault system, consisting of three main faults arranged in right-lateral en-echelon geometry. While the northern sector of the epicentral area was extensively investigated by oil companies, only a few scattered, poor-quality commercial seismic profiles are available in the central and southern sector. In this study we interpret subsurface commercial data from the northern sector, which is the area where is located the source of the strong Mw5.4 aftershock occurred on the 9th April 2009. Our primary goals are: (1) to define a reliable framework of the upper crust structure, (2) to investigate how the intense aftershock activity, the bulk of which is clustered in the 5-10 km depth range, relates to the Quaternary extensional faults present in the area. The investigated area lies between the western termination of the W-E trending Gran Sasso thrust system to the south, the SW-NE trending Mt. Sibillini thrust front (Ancona-Anzio Line Auctt.) to the north and west, and by the NNW-SSE trending, SW-dipping Mt. Gorzano normal fault to the east. In this area only middle-upper Miocene deposits are exposed (Laga Flysch and underlying Cerrogna Marl), but commercial wells have revealed the presence of a Triassic-Miocene sedimentary succession identical to the well known Umbria-Marche stratigraphic sequence. We have analyzed several confidential seismic reflection profiles, mostly provided by ENI oil company. Seismic lines are tied to two public wells, 5766 m and 2541 m deep. Quality of the reflection imaging is highly variable. A few good quality stack sections contain interpretable signal down to 4.5-5.5 s TWT, corresponding to depths exceeding 10-12 km and thus allowing crustal imaging at seismogenic depths. Key-reflectors for the interpretation correspond to: (1) the top of the Miocene Cerrogna marls, (2) the top of the Upper Albian-Oligocene Scaglia Group, (3) the

  10. Seismotectonics of the Nicobar Swarm and the geodynamic implications for the 2004 Great Sumatran Earthquake

    Science.gov (United States)

    Lister, Gordon

    2017-04-01

    The Great Sumatran Earthquake took place on 26th December 2004. One month into the aftershock sequence, a dense swarm of earthquakes took place beneath the Andaman Sea, northeast of the Nicobar Islands. The swarm continued for ˜11 days, rapidly decreasing in intensity towards the end of that period. Unlike most earthquake swarms, the Nicobar cluster was characterised by a large number of shocks with moment magnitude exceeding five. This meant that centroid moment tensor data could be determined, and this data in turn allows geometric analysis of inferred fault plane motions. The classification obtained using program eQuakes shows aftershocks falling into distinct spatial groups. Thrusts dominate in the south (in the Sumatran domain), and normal faults dominate in the north (in the Andaman domain). Strike-slip faults are more evenly spread. They occur on the Sumatran wrench system, for example, but also on the Indian plate itself. Orientation groups readily emerge from such an analysis. Temporal variation in behaviour is immediately evident, changing after ˜12 months. Orientation groups in the first twelve months are consistent with margin perpendicular extension beneath the Andaman Sea (i.e. mode II megathrust behaviour) whereas afterward the pattern of deformation appears to have reverted to that expected in consequence of relative plate motion. In the first twelve months, strike-slip motion appears to have taken place on faults that are sub-parallel to spreading segments in the Andaman Sea. By early 2006 however normal fault clusters formed that showed ˜N-S extension across these spreading segments had resumed, while the overall density of aftershocks in the Andaman segment had considerably diminished. Throughout this entire period the Sumatran segment exhibited aftershock sequences consistent with ongoing Mode I megathrust behaviour. The Nicobar Swarm marks the transition from one sort of slab dynamics to the other. The earthquake swarm may have been

  11. Source rupture process of the 12 January 2010 Port-au-Prince (Haiti, Mw7.0) earthquake

    Science.gov (United States)

    Borges, José; Caldeira, Bento; Bezzeghoud, Mourad; Santos, Rúben

    2010-05-01

    The Haiti earthquake occurred on tuesday, January 12, 2010 at 21:53:10 UTC. Its epicenter was at 18.46 degrees North, 72.53 degrees West, about 25 km WSW of Haiti's capital, Port-au-Prince. The earthquake was relatively shallow (H=13 km, U.S. Geological Survey) and thus had greater intensity and destructiveness. The earthquake occurred along the tectonic boundary between Caribbean and North America plate. This plate boundary is dominated by left-lateral strike slip motion and compression with 2 cm/year of slip velocity eastward with respect to the North America plate. The moment magnitude was measured to be 7.0 (U.S. Geological Survey) and 7.1 (Harvard Centroid-Moment-Tensor (CMT). More than 10 aftershocks ranging from 5.0 to 5.9 in magnitude (none of magnitude larger than 6.0) struck the area in hours following the main shock. Most of these aftershocks have occurred to the West of the mainshock in the Mirogoane Lakes region and its distribution suggests that the length of the rupture was around 70 km. The Harvard Centroid Moment Tensor (CMT) mechanism solution indicates lefth-lateral strike slip movement with a fault plane trending toward (strike = 251o ; dip = 70o; rake = 28o). In order to obtain the spatiotemporal slip distribution of a finite rupture model we have used teleseismic body wave and the Kikuchi and Kanamori's method [1]. Rupture velocity was constrained by using the directivity effect determined from a set of waveforms well recorded at regional and teleseismic distances [2]. Finally, we compared a map of aftershocks with the Coulomb stress changes caused by the event in the region [3]. [1]- Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves: Bull. Seismol. Soc. Am., v. 72, p. 491-506. [2] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/s10950-009-9183-x (http://www.springerlink.com/content/xp524g2225628773/) [3] -King, G. C. P

  12. Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

    Science.gov (United States)

    Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.

    2014-12-01

    Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion

  13. Calibration of the seismic velocity structure and understanding of the fault formation in the environs of the Orkney M5.5 earthquake, South Africa

    Science.gov (United States)

    Ogasawara, H.; Manzi, M. S.; Durrheim, R. J.; Ogasawara, H.

    2017-12-01

    In August 2014, the largest seismic event (M5.5) to occur in a South African gold mining district took place near Orkney. The M5.5 event and aftershocks were recorded by strainmeters installed at 3 km depth hundreds of meters above the M5.5 fault, 46 in-mine 4.5Hz triaxial geophone stations at depths of 2-3 km within a hypocentral radius of 2-3 km, and 17 surface strong motion stations (South African Seismograph Network; SANSN) within an epicentral radius of 25 km. Aftershocks were distributed on a nearly vertical plane striking NNW-SSE. The upper edge of this fault was hundreds of meters below the deepest level of the mine. ICDP approved a project "Drilling into seismogenic zones of M2.0-5.5 earthquakes in South African gold mines" to elucidate the details of the events (DSeis; Yabe et al. invited talk in S020 in this AGU). On 1 August 2017 drilling was within a few hundreds of meters of intersecting the M5.5 fault zone. To locate the drilling target accurately it is very important to determine the velocity structure between the seismic events and sensors. We do this by using the interval velocities used to migrate 3D-reflection seismic data that was previously acquired by a mining company to image the gold-bearing reef and any fault structures close to the mining horizon. Less attention was given to the velocities below the mining horizon, as accurate imaging of the geological structure was not as important and very little drilling information was available. We used the known depths of prominent reflectors above the mining horizon to derive the interval velocities needed to convert two-way-travel-time to depth. We constrain the velocity below the mining horizon by comparing the DSeis drilling results with the 3D seismic cube. The geometric data is crucial for the kinematic modeling that Ogasawara et al. (S018 in this AGU) advocates. The efforts will result in a better understanding of the main rupture and aftershocks.

  14. On rate-state and Coulomb failure models

    Science.gov (United States)

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  15. Coulomb Failure Stress Accumulation in Nepal After the 2015 Mw 7.8 Gorkha Earthquake: Testing Earthquake Triggering Hypothesis and Evaluating Seismic Hazards

    Science.gov (United States)

    Xiong, N.; Niu, F.

    2017-12-01

    A Mw 7.8 earthquake struck Gorkha, Nepal, on April 5, 2015, resulting in more than 8000 deaths and 3.5 million homeless. The earthquake initiated 70km west of Kathmandu and propagated eastward, rupturing an area of approximately 150km by 60km in size. However, the earthquake failed to fully rupture the locked fault beneath the Himalaya, suggesting that the region south of Kathmandu and west of the current rupture are still locked and a much more powerful earthquake might occur in future. Therefore, the seismic hazard of the unruptured region is of great concern. In this study, we investigated the Coulomb failure stress (CFS) accumulation on the unruptured fault transferred by the Gorkha earthquake and some nearby historical great earthquakes. First, we calculated the co-seismic CFS changes of the Gorkha earthquake on the nodal planes of 16 large aftershocks to quantitatively examine whether they were brought closer to failure by the mainshock. It is shown that at least 12 of the 16 aftershocks were encouraged by an increase of CFS of 0.1-3 MPa. The correspondence between the distribution of off-fault aftershocks and the increased CFS pattern also validates the applicability of the earthquake triggering hypothesis in the thrust regime of Nepal. With the validation as confidence, we calculated the co-seismic CFS change on the locked region imparted by the Gorkha earthquake and historical great earthquakes. A newly proposed ramp-flat-ramp-flat fault geometry model was employed, and the source parameters of historical earthquakes were computed with the empirical scaling relationship. A broad region south of the Kathmandu and west of the current rupture were shown to be positively stressed with CFS change roughly ranging between 0.01 and 0.5 MPa. The maximum of CFS increase (>1MPa) was found in the updip segment south of the current rupture, implying a high seismic hazard. Since the locked region may be additionally stressed by the post-seismic relaxation of the lower

  16. The Mw 5.4 Reggio Emilia 1996 earthquake: active compressional tectonics in the Po Plain, Italy

    Science.gov (United States)

    Selvaggi, G.; Ferulano, F.; Di Bona, M.; Frepoli, A.; Azzara, R.; Basili, A.; Chiarabba, C.; Ciaccio, M. G.; Di Luccio, F.; Lucente, F. P.; Margheriti, L.; Nostro, C.

    2001-01-01

    We have analysed the seismic sequence that occurred in October 1996 near the town of Reggio Emilia on the southern edge of the Po Plain. The onset of the sequence was marked by a 5.4 moment magnitude main shock, located at 15km depth. The main-shock focal mechanism is a reverse solution with a strike-slip component and the scalar moment is 1.46×1017Nm. We used broad-band digital recordings from a borehole station, located at about 70km from the epicentre, for a spectral analysis in order to estimate attenuation and source parameters for the main shock. In addition, the empirical Green's function method has been applied to evaluate the source time function in terms of both moment rate and stress rate. We infer an asperity-like rupture process for the main shock, as suggested by the short duration of the stress release with respect to the overall duration of the moment rate function. This analysis also allows us to estimate the average dynamic stress drop of the main shock (600bar). We analysed the digital recordings of the temporary local seismic network deployed after the main shock and of a permanent local network maintained by the Italian Petroleum Agency (AGIP). During 15days of field experiments, we recorded more than 800 aftershocks, which delineate a 9km long, NE-elongated distribution, confined between 12 and 15km depth, suggesting that the basement is involved in the deformation processes. 102 focal mechanism of aftershocks have been computed from P-wave polarities, showing mainly pure reverse solutions. We calculate the principal stress axes from a selected population of earthquakes providing a constraint on the stress regime of this part of the Po Plain. The focal mechanisms are consistent with a N-S subhorizontal σ1. All the seismological data we have analysed confirm that this region is undergoing active compressional tectonics, as already inferred from recent earthquakes, geomorphological data and other stress indicators. Moreover, the elongation of

  17. Intraplate seismicity along the Gedi Fault in Kachchh rift basin of western India

    Science.gov (United States)

    Joshi, Vishwa; Rastogi, B. K.; Kumar, Santosh

    2017-11-01

    The Kachchh rift basin is located on the western continental margin of India and has a history of experiencing large to moderate intraplate earthquakes with M ≥ 5. During the past two centuries, two large earthquakes of Mw 7.8 (1819) and Mw 7.7 (2001) have occurred in the Kachchh region, the latter with an epicenter near Bhuj. The aftershock activity of the 2001 Bhuj earthquake is still ongoing with migration of seismicity. Initially, epicenters migrated towards the east and northeast within the Kachchh region but, since 2007, it has also migrated to the south. The triggered faults are mostly within 100 km and some up to 200 km distance from the epicentral area of the mainshock. Most of these faults are trending in E-W direction, and some are transverse. It was noticed that some faults generate earthquakes down to the Moho depth whereas some faults show earthquake activity within the upper crustal volume. The Gedi Fault, situated about 50 km northeast of the 2001 mainshock epicenter, triggered the largest earthquake of Mw 5.6 in 2006. We have carried out detailed seismological studies to evaluate the seismic potential of the Gedi Fault. We have relocated 331 earthquakes by HypoDD to improve upon location errors. Further, the relocated events are used to estimate the b value, p value, and fractal correlation dimension Dc of the fault zone. The present study indicates that all the events along the Gedi Fault are shallow in nature, with focal depths less than 20 km. The estimated b value shows that the Gedi aftershock sequence could be classified as Mogi's type 2 sequence, and the p value suggests a relatively slow decay of aftershocks. The fault plane solutions of some selected events of Mw > 3.5 are examined, and activeness of the Gedi Fault is assessed from the results of active fault studies as well as GPS and InSAR results. All these results are critically examined to evaluate the material properties and seismic potential of the Gedi Fault that may be useful

  18. E-DECIDER Rapid Response to the M 6.0 South Napa Earthquake

    Science.gov (United States)

    Glasscoe, M. T.; Parker, J. W.; Pierce, M. E.; Wang, J.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.

    2014-12-01

    E-DECIDER initiated rapid response mode when the California Earthquake Clearinghouse was activated the morning following the M6 Napa earthquake. Data products, including: 1) rapid damage and loss estimates, 2) deformation magnitude and slope change maps, and 3) aftershock forecasts were provided to the Clearinghouse partners within 24 hours of the event via XchangeCore Web Service Data Orchestration sharing. NASA data products were provided to end-users via XchangeCore, EERI and Clearinghouse websites, and ArcGIS online for Napa response, reaching a wide response audience. The E-DECIDER team helped facilitate rapid delivery of NASA products to stakeholders and participated in Clearinghouse Napa earthquake briefings to update stakeholders on product information. Rapid response products from E-DECIDER can be used to help prioritize response efforts shortly after the event has occurred. InLET (Internet Loss Estimation Tool) post-event damage and casualty estimates were generated quickly after the Napa earthquake. InLET provides immediate post-event estimates of casualties and building damage by performing loss/impact simulations using USGS ground motion data and FEMA HAZUS damage estimation technology. These results were provided to E-DECIDER by their collaborators, ImageCat, Inc. and the Community Stakeholder Network (CSN). Strain magnitude and slope change maps were automatically generated when the Napa earthquake appeared on the USGS feed. These maps provide an early estimate of where the deformation has occurred and where damage may be localized. Using E-DECIDER critical infrastructure overlays with damage estimates, decision makers can direct response effort that can be verified later with field reconnaissance and remote sensing-based observations. Earthquake aftershock forecast maps were produced within hours of the event. These maps highlight areas where aftershocks are likely to occur and can also be coupled with infrastructure overlays to help direct response

  19. Tsunami source of the 2016 Muisne, Ecuador Earthquake inferred from tide gauge and DART records

    Science.gov (United States)

    Adriano, B.; Fujii, Y.; Koshimura, S.

    2016-12-01

    On April 16, 2016 an earthquake occurred in the central coast of Ecuador (0.382°N 79.922°W, Mw=7.8 at 23:58:36.980 UTC according to U.S. Geological Service). It was reported that widespread damage occurred at several towns of Monabi coastal province. According to reports from the Ecuador Government, more than 15,000 buildings were damaged. This earthquake generated a relatively small tsunami that was detected at several tide gauge station as well as offshore DARTs (Deep Ocean Tsunami Detection Buoys). This study aims to investigate the tsunami source of the 2016 Muisne Earthquake using inversion of recorded tsunami waveform signals. The INOCAR (Instituto Oceanográfico de la Armada in Spanish) of the Ecuador provided the tide records of Esmeraldas, Manta, and La Libertad ports. In addition, the DIMAR (Dirección General Marítima in Spanish) of Colombia provided the tide record of Tumaco port. Finally, waveform signal from two DARTs were also employed. These waveform records usually include ocean tides, which we removed by applying a high-pass filter. To estimate the extent of the tsunami source and the slip distribution, we divide the tsunami source into 4 subfaults that covers the aftershock area during one month after the mainshock. The subfault size is 30 km x 60 km with a top depth of 10 km. The focal mechanisms for all the subfaults were taken form the USGS solution of the mainshock. The inversion result showed that the largest slip was located around the epicenter with a maximum value of 3.1 m. The estimated moment magnitude was calculated as Mw=7.78 (5.89E+20 N-m), which is slightly smaller than the proposed by USGS (Mw7.8, moment 7.05E+20 N-m). The estimated slip distribution suggested that the fault rupture started near the epicenter and propagated from north to south. This evidence is supported by the aftershock distribution, which is higher to the south of the epicenter with a main aftershock of Mw=6.0 on April 22.

  20. Deformation associated with continental normal faults

    Science.gov (United States)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  1. The Al Hoceima earthquake sequence of 1994, 2004 and 2016: Stress transfer and poroelasticity in the Rif and Alboran Sea region

    Science.gov (United States)

    Kariche, J.; Meghraoui, M.; Timoulali, Y.; Cetin, E.; Toussaint, R.

    2018-01-01

    The 2016 January 25 earthquake (Mw 6.3) follows in sequence from the1994 May 26 earthquake (Mw 6.0) and the 2004 February 24 earthquake (Mw 6.4) in the Rif Mountains and Alboran Sea. The earlier two seismic events which were destructive took place on inland conjugate faults, and the third event occurred on an offshore fault. These earthquake sequences occurred within a period of 22 yr at ˜25 km distance and 11-16-km depth. The three events have similar strike-slip focal mechanism solutions with NNE-SSW trending left-lateral faulting for the 1994 and 2016 events and NW-SE trending right-lateral faulting for the 2004 event. This shallow seismic sequence offers the possibility (i) to model the change in Coulomb Failure Function (ΔCFF with low μ΄ including the pore pressure change) and understand fault-rupture interaction, and (ii) to analyse the effect of pore fluid on the rupture mechanism, and infer the clock-time advance. The variation of static stress change has a direct impact on the main shock, aftershocks and related positive lobes of the 2004 earthquake rupture with a stress change increase of 0.7-1.1 bar. Similarly, the 2004 main shock and aftershocks indicate loading zones with a stress change (>0.25 bar) that includes the 2016 earthquake rupture. The tectonic loading of 19-24 nanostrain yr-1 obtained from the seismicity catalogue of Morocco is comparable to the 5.0 × 1017 N.m yr-1 seismic strain release in the Rif Mountains. The seismic sequence is apparently controlled by the poroelastic properties of the seismogenic layer that depend on the undrained and drained fluid conditions. The short interseismic period between main shocks and higher rate of aftershocks with relatively large magnitudes (4 stress-rate ranges between 461 and 582 Pa yr-1 with a ΔCFF of 0.2-1.1 bar. The computed clock-time advance reaches 239 ± 22 yr in agreement with the ˜10 yr delay between main shocks. The calculated static stress change of 0.9-1.3 bar, under pore

  2. The 1987 Whittier Narrows, California, earthquake: A Metropolitan shock

    OpenAIRE

    Hauksson, Egill; Stein, Ross S.

    1989-01-01

    Just 3 hours after the Whittier Narrows earthquake struck, it became clear that a heretofore unseen geological structure was seismically active beneath metropolitan Los Angeles. Contrary to initial expectations of strike-slip or oblique-slip motion on the Whittier fault, whose north end abuts the aftershock zone, the focal mechanism of the mainshock showed pure thrust faulting on a deep gently inclined surface [Hauksson et al., 1988]. This collection of nine research reports spans the spectru...

  3. Numerical modeling of block structure dynamics: Application to the Vrancea region and study of earthquakes sequences in the synthetic catalogs

    International Nuclear Information System (INIS)

    Soloviev, A.A.; Vorobieva, I.A.

    1995-08-01

    A seismically active region is represented as a system of absolutely rigid blocks divided by infinitely thin plane faults. The interaction of the blocks along the fault planes and with the underlying medium is viscous-elastic. The system of blocks moves as a consequence of prescribed motion of boundary blocks and the underlying medium. When for some part of a fault plane the stress surpasses a certain strength level a stress-drop (''a failure'') occurs. It can cause a failure for other parts of fault planes. The failures are considered as earthquakes. As a result of the numerical simulation a synthetic earthquake catalogue is produced. This procedure is applied for numerical modeling of dynamics of the block structure approximating the tectonic structure of the Vrancea region. By numerical experiments the values of the model parameters were obtained which supplied the synthetic earthquake catalog with the space distribution of epicenters close to the real distribution of the earthquake epicenters in the Vrancea region. The frequency-magnitude relations (Gutenberg-Richter curves) obtained for the synthetic and real catalogs have some common features. The sequences of earthquakes arising in the model are studied for some artificial structures. It is found that ''foreshocks'', ''main shocks'', and ''aftershocks'' could be detected among earthquakes forming the sequences. The features of aftershocks, foreshocks, and catalogs of main shocks are analysed. (author). 5 refs, 12 figs, 16 tabs

  4. Recent earthquake activity in Trichonis region and its tectonic significance

    Directory of Open Access Journals (Sweden)

    N. DELIBASIS

    1977-06-01

    Full Text Available SUMMARY. - The aftershock activity associated with the central Greece
    (Trichonis Lake earthquake of |une-Dec. 1975, has been studied, with emphasis
    on the time and magnitude distribution. It has been found that the value of b,
    in Gutenberg - R i c h t e r ' s relationship was near the same for the primary as
    well as the secondary or second order aftershocks of the sequences, but depends
    upon the focal depth.
    A correlation between the calculated focal mechanisms and the associated
    stress components to the distribution pattern of meizoseismic effects as well
    as to the geological structure of the seismic region was found.
    The seismic region lies at the top of an anticline which was found moving
    downwards, apparently due to compressional stresses.
    Within the series of three earthquakes the progress of the destruction of
    the buildings was observed and reported. The interest is concentrated to modern
    buildings out of reinforced concrete and infill brick walls. The relatively unexpected
    rather bad performance of the later case of buildings was compared to that
    of the traditional small houses out of brick or stone masonry, the behaviour of
    which may be considered as better from what it was expected.

  5. Quantitative law describing market dynamics before and after interest-rate change

    International Nuclear Information System (INIS)

    Petersen, Alexander M.; Wang Fengzhong; Stanley, H. Eugene; Havlin, Shlomo

    2010-01-01

    We study the behavior of U.S. markets both before and after U.S. Federal Open Market Commission meetings and show that the announcement of a U.S. Federal Reserve rate change causes a financial shock, where the dynamics after the announcement is described by an analog of the Omori earthquake law. We quantify the rate n(t) of aftershocks following an interest-rate change at time T and find power-law decay which scales as n(t-T)∼(t-T) -Ω , with Ω positive. Surprisingly, we find that the same law describes the rate n ' (|t-T|) of 'preshocks' before the interest-rate change at time T. This study quantitatively relates the size of the market response to the news which caused the shock and uncovers the presence of quantifiable preshocks. We demonstrate that the news associated with interest-rate change is responsible for causing both the anticipation before the announcement and the surprise after the announcement. We estimate the magnitude of financial news using the relative difference between the U.S. Treasury Bill and the Federal Funds effective rate. Our results are consistent with the 'sign effect', in which 'bad news' has a larger impact than 'good news'. Furthermore, we observe significant volatility aftershocks, confirming a 'market under-reaction' that lasts at least one trading day.

  6. Quantitative law describing market dynamics before and after interest-rate change.

    Science.gov (United States)

    Petersen, Alexander M; Wang, Fengzhong; Havlin, Shlomo; Stanley, H Eugene

    2010-06-01

    We study the behavior of U.S. markets both before and after U.S. Federal Open Market Commission meetings and show that the announcement of a U.S. Federal Reserve rate change causes a financial shock, where the dynamics after the announcement is described by an analog of the Omori earthquake law. We quantify the rate n(t) of aftershocks following an interest-rate change at time T and find power-law decay which scales as n(t-T)∼(t-T)(-Ω) , with Ω positive. Surprisingly, we find that the same law describes the rate n'(|t-T|) of "preshocks" before the interest-rate change at time T . This study quantitatively relates the size of the market response to the news which caused the shock and uncovers the presence of quantifiable preshocks. We demonstrate that the news associated with interest-rate change is responsible for causing both the anticipation before the announcement and the surprise after the announcement. We estimate the magnitude of financial news using the relative difference between the U.S. Treasury Bill and the Federal Funds effective rate. Our results are consistent with the "sign effect," in which "bad news" has a larger impact than "good news." Furthermore, we observe significant volatility aftershocks, confirming a "market under-reaction" that lasts at least one trading day.

  7. Remarkable changes in behavior and physiology of laboratory mice after the massive 2011 Tohoku earthquake in Japan.

    Science.gov (United States)

    Yanai, Shuichi; Semba, Yuki; Endo, Shogo

    2012-01-01

    A devastating earthquake and tsunami hit Japan on March 11, 2011, followed by several long and intense aftershocks. Laboratory mice housed in the Tokyo, located approximately 330 km south of this earthquake's epicenter, displayed remarkable changes in a variety of behaviors and physiological measures. Although unusual pre-earthquake behaviors have been previously reported in laboratory animals, little is known about behavioral and physiological changes that occur after a great earthquake. In the present study, the effects of Tohoku earthquake on mice behavior were investigated. "Earthquake-experienced" mice displayed a marked increase in food consumption without gaining body weight in response to the earthquake. They also displayed enhanced anxiety, and in a formal fear memory task, showed significantly greater tone- and context-dependent conditioned freezing. Water maze performance of earthquake-experienced mice showed the quicker acquisition of the task, faster swim speed and longer swim distance than the naive mice. Serum corticosterone levels were elevated compared to the naive mice, indicating that the earthquake and aftershocks were stressful for the mice. These results demonstrate that great earthquakes strongly affect mouse behaviors and physiology. Although the effects of a variety of experimental manipulations on mouse behaviors in disease models or in models of higher cognitive functions have been extensively examined, researchers need to be aware how natural phenomena, such as earthquakes and perhaps other natural environmental factors, influence laboratory animal behaviors and physiology.

  8. Radon anomalies prior to earthquakes (2). Atmospheric radon anomaly observed before the Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    Before the 1995 Hyogoken-Nanbu earthquake, various geochemical precursors were observed in the aftershock area: chloride ion concentration, groundwater discharge rate, groundwater radon concentration and so on. Kobe Pharmaceutical University (KPU) is located about 25 km northeast from the epicenter and within the aftershock area. Atmospheric radon concentration had been continuously measured from 1984 at KPU, using a flow-type ionization chamber. The radon concentration data were analyzed using the smoothed residual values which represent the daily minimum of radon concentration with the exclusion of normalized seasonal variation. The radon concentration (smoothed residual values) demonstrated an upward trend about two months before the Hyogoken-Nanbu earthquake. The trend can be well fitted to a log-periodic model related to earthquake fault dynamics. As a result of model fitting, a critical point was calculated to be between 13 and 27 January 1995, which was in good agreement with the occurrence date of earthquake (17 January 1995). The mechanism of radon anomaly before earthquakes is not fully understood. However, it might be possible to detect atmospheric radon anomaly as a precursor before a large earthquake, if (1) the measurement is conducted near the earthquake fault, (2) the monitoring station is located on granite (radon-rich) areas, and (3) the measurement is conducted for more than several years before the earthquake to obtain background data. (author)

  9. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  10. Long-term seismicity of the Reykjanes Ridge (North Atlantic) recorded by a regional hydrophone array

    Science.gov (United States)

    Goslin, Jean; Lourenço, Nuno; Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Haxel, Joe; Luis, Joaquim

    2005-08-01

    The seismicity of the northern Mid-Atlantic Ridge was recorded by two hydrophone networks moored in the sound fixing and ranging (SOFAR) channel, on the flanks of the Mid-Atlantic Ridge, north and south of the Azores. During its period of operation (05/2002-09/2003), the northern `SIRENA' network, deployed between latitudes 40° 20'N and 50° 30'N, recorded acoustic signals generated by 809 earthquakes on the hotspot-influenced Reykjanes Ridge. This activity was distributed between five spatio-temporal event clusters, each initiated by a moderate-to-large magnitude (4.0-5.6 M) earthquake. The rate of earthquake occurrence within the initial portion of the largest sequence (which began on 2002 October 6) is described adequately by a modified Omori law aftershock model. Although this is consistent with triggering by tectonic processes, none of the Reykjanes Ridge sequences are dominated by a single large-magnitude earthquake, and they appear to be of relatively short duration (0.35-4.5 d) when compared to previously described mid-ocean ridge aftershock sequences. The occurrence of several near-equal magnitude events distributed throughout each sequence is inconsistent with the simple relaxation of mainshock-induced stresses and may reflect the involvement of magmatic or fluid processes along this deep (>2000 m) section of the Reykjanes Ridge.

  11. Discovery of source fault in the region without obvious active fault. Geophysical survey in the source area of the 1984 western Nagano prefecture earthquake

    International Nuclear Information System (INIS)

    Aoyagi, Yasuhira; Abe, Shintaro

    2009-01-01

    The 1984 Western Nagano Prefecture Earthquake (MJ6.8) occurred at shallow part of the southern foot of Mt. Ontake volcano, central Japan. Despite the large magnitude neither clear surface rupture nor active fault has been found around the source area. Therefore the earthquake is an issue for seismic assessment based on active fault survey. The purpose of this study is to find any tectonic geomorphologic features in the source area and to elucidate its relation to the source fault. In order to achieve it, an integrated survey with (1) micro earthquake observation, (2) airborne LIDAR, and (3) seismic reflection survey was demonstrated in the source area from 2006 to 2008. The survey area of airborne LIDAR (18 km x 4 km) covers main part of the aftershock distribution just after the mainshock. A linear zone with abrupt change of topographic roughness was found in ENE-WSW direction at the center of the LIDAR target area. River valleys flowing down to SSE direction change their directions and widths abruptly across the linear zone. Seismic reflection survey across the source region detect deformation zone just beneath the linear zone. These features of topographic and crustal deformation coincide well with the aftershock distribution. Therefore they indicate an active structure formed by the cumulative displacement of the source fault. (author)

  12. Quantitative law describing market dynamics before and after interest-rate change

    Science.gov (United States)

    Petersen, Alexander M.; Wang, Fengzhong; Havlin, Shlomo; Stanley, H. Eugene

    2010-06-01

    We study the behavior of U.S. markets both before and after U.S. Federal Open Market Commission meetings and show that the announcement of a U.S. Federal Reserve rate change causes a financial shock, where the dynamics after the announcement is described by an analog of the Omori earthquake law. We quantify the rate n(t) of aftershocks following an interest-rate change at time T and find power-law decay which scales as n(t-T)˜(t-T)-Ω , with Ω positive. Surprisingly, we find that the same law describes the rate n'(|t-T|) of “preshocks” before the interest-rate change at time T . This study quantitatively relates the size of the market response to the news which caused the shock and uncovers the presence of quantifiable preshocks. We demonstrate that the news associated with interest-rate change is responsible for causing both the anticipation before the announcement and the surprise after the announcement. We estimate the magnitude of financial news using the relative difference between the U.S. Treasury Bill and the Federal Funds effective rate. Our results are consistent with the “sign effect,” in which “bad news” has a larger impact than “good news.” Furthermore, we observe significant volatility aftershocks, confirming a “market under-reaction” that lasts at least one trading day.

  13. Automatic Hypocenter Determination Method in JMA Catalog and its Application

    Science.gov (United States)

    Tamaribuchi, K.

    2017-12-01

    The number of detectable earthquakes around Japan has increased by developing the high-sensitivity seismic observation network. After the 2011 Tohoku-oki earthquake, the number of detectable earthquakes have dramatically increased due to its aftershocks and induced earthquakes. This enormous number of earthquakes caused inability of manually determination of all the hypocenters. The Japan Meteorological Agency (JMA), which produces the earthquake catalog in Japan, has developed a new automatic hypocenter determination method and started its operation from April 1, 2016. This method (named PF method; Phase combination Forward search method) can determine the hypocenters of earthquakes that occur simultaneously by searching for the optimal combination of P- and S-wave arrival times and the maximum amplitudes using a Bayesian estimation technique. In the 2016 Kumamoto earthquake sequence, we successfully detected about 70,000 aftershocks automatically during the period from April 14 to the end of May, and this method contributed to the real-time monitoring of the seismic activity. Furthermore, this method can be also applied to the Earthquake Early Warning (EEW). Application of this method for EEW is called the IPF method and has been used as the hypocenter determination method of the EEW system in JMA from December 2016. By developing this method further, it is possible to contribute to not only speeding up the catalog production, but also improving reliability of the early warning.

  14. Broadband Discrimination Studies

    Science.gov (United States)

    1976-03-01

    Oroville. This low seismicity continued through initial loading of nearby Oroville Dam in 1967-68 and until the first foreshock on June 28, 1975...Twenty-one foreshocks (ML > 1.6), the largest of magnitude 4.7, preceded the magnitude 5.7 main shock of 01 August. All foreshocks and aftershocks of ML...preceded by foreshocks beginning on June 28, 1975, the largest of which had ML = 3.5 (Table 1); the sequence appeared to have died out (only five events

  15. An analysis of Greek seismicity based on Non Extensive Statistical Physics: The interdependence of magnitude, interevent time and interevent distance.

    Science.gov (United States)

    Efstathiou, Angeliki; Tzanis, Andreas; Vallianatos, Filippos

    2014-05-01

    range of spatial, temporal and magnitude scales. Provided that the multivariate empirical frequency distributions are based on a sufficient number of observations as an empirical lower limit, the results are stable and consistent with the established ken, irrespective of the magnitude and spatio-temporal range of the earthquake catalogue, or operations pertaining to re-sampling, bootstrapping or re-arrangement of the catalogue. It is also demonstrated that that the expression of the regional active tectonic grain may comprise a mixture of processes significantly dependent on Δd. The analysis of the size (energy) distribution of earthquakes yielded results consistent with a correlated sub-extensive system; the results are also consistent with conventional determinations of Frequency-Magnitude distributions. The analysis of interevent times, has determined the existence of sub-extensivity and near-field interaction (correlation) in the complete catalogue of Greek and western Turkish seismicity (mixed background earthquake activity and aftershock processes),as well as in the pure background process (declustered catalogue).This could be attributed to the joint effect of near-field interaction between neighbouring earthquakes or seismic areas and interaction within aftershock sequences. The background process appears to be moderately - weakly correlated at the far field. Formal random temporal processes have not been detected. A general syllogism affordable by the above observations is that aftershock sequences may be an integral part of the seismogenetic process, as they appear to partake in long-range interaction. A formal explanation of such an effect is pending, but may nevertheless involve delayed remote triggering of seismic activity by (transient or static) stress transfer from the main shocks and large aftershocks and/or cascading effects already discussed by Marsan and Lengliné (2008). In this view, the effect weakens when aftershocks are removed because

  16. A model of seismic focus and related statistical distributions of earthquakes

    International Nuclear Information System (INIS)

    Apostol, Bogdan-Felix

    2006-01-01

    A growth model for accumulating seismic energy in a localized seismic focus is described, which introduces a fractional parameter r on geometrical grounds. The model is employed for deriving a power-type law for the statistical distribution in energy, where the parameter r contributes to the exponent, as well as corresponding time and magnitude distributions for earthquakes. The accompanying seismic activity of foreshocks and aftershocks is discussed in connection with this approach, as based on Omori distributions, and the rate of released energy is derived

  17. Fault structures in the focal area of the 2016 Kumamoto earthquake revealed by derivatives and structure parameters of a gravity gradient tensor

    Science.gov (United States)

    Hiramatsu, Y.; Matsumoto, N.; Sawada, A.

    2016-12-01

    We analyze gravity anomalies in the focal area of the 2016 Kumamoto earthquake, evaluate the continuity, segmentation and faulting type of the active fault zones, and discuss relationships between those features and the aftershock distribution. We compile the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013). We apply terrain corrections with 10 m DEM and a low-pass filter, then remove a linear trend to obtain Bouguer anomalies. We calculate the first horizontal derivative (HD), the first vertical derivative (VD), the normalized total horizontal derivative (TDX) (Cooper and Cowan, 2006), the dimensionality index (Di) (Beki and Pedersen, 2010), and dip angle (β) (Beki, 2013) from a gravity gradient tensor. The HD, VD and TDX show the existence of the continuous fault structure along the Futagawa fault zone, extending from the Uto peninsula to the Beppu Bay except Mt. Aso area. Aftershocks are distributed along this structural boundary from the confluence of the Futagawa and the Hinagu fault zones to the east end of the Aso volcano. The distribution of dip angle β along the Futagawa fault zone implies a normal faulting, which corresponds to the coseismic faulting estimated geologically and geomorphologically. We observe the S-shaped distribution of the Bouguer anomalies around the southern part of the Hinagu segment, indicating a right lateral faulting. The VD and TDX support the existence of the fault structure along the segment but it is not so clear. We can recognize no clear structural boundaries along the Takano-Shirahata segment. TDX implies the existence of a structural boundary with a NW-SE trend around the boundary between the Hinagu and Takano-Shirahata segments. The Di shows that this boundary has a 3D-like structure rather than a 2D-like one, suggesting the discontinuity of 2D-like fault

  18. Three-dimensional magnetotelluric imaging of the 1997 Kagoshima earthquake doublet, Southwest Japan

    Science.gov (United States)

    Asamori, K.; Makuuchi, A.; Umeda, K.

    2013-12-01

    The 1997 Kagoshima earthquake doublet struck on unrecognized active faults lacking clear surface expression where very few large earthquakes have occurred. Two shallow moderate earthquakes occurred in the northwestern part of Kagoshima province, on March 26 (Mw 6.1) and May 13 (Mw 6.0) in 1997, both followed by intensive aftershock sequences. Aftershock distribution of the 1997 earthquake doublet reflects complicated rupture process attributed to the geological (rheological) conditions and coupling of hydraulic pressure as well as tectonic shear stress. For advanced understanding of dynamic interactions between fluids and faulting, it is imperative to obtain three-dimensional (3-D) images of the electrical resistivity structure around the seismogenic faults. In this study, we conduct magnetotelluric (MT) soundings in and around the source region of the 1997 Kagoshima earthquake sequence and perform a 3-D inversion of wideband MT data above a depth of 30 km. MT stations were deployed around the aftershock area of the 1997 Kagoshima earthquake. All of 42 MT sites were set up in the land area. The data were collected using five component (three magnetic and two telluric components) wide-band MT instruments (Phoenix MTU-5 system) in February, 2013. The data were acquired in the frequency range from 0.000343 to 320 Hz. The recording duration ranged from 2 to 8 days. As the cultural noises severely affect the measurements, the time series analysis focused on the nocturnal data when there were fewer noise. A simultaneous remote reference measurement was carried out at the Sawauchi site (1300 km northeast of the study area). Using the remote reference technique (Gamble et al., 1979), we were able to reduce the unfavorable cultural noises. The observed apparent resistivity and phase data were inverted simultaneously using the 3-D inversion code of Sasaki (2004). In this inversion, the 3-D blocks were set up in the crust and upper mantle. These block size in the horizontal

  19. Radar Determination of Fault Slip and Location in Partially Decorrelated Images

    Science.gov (United States)

    Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Stough, Timothy; Pierce, Marlon; Wang, Jun

    2017-06-01

    Faced with the challenge of thousands of frames of radar interferometric images, automated feature extraction promises to spur data understanding and highlight geophysically active land regions for further study. We have developed techniques for automatically determining surface fault slip and location using deformation images from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), which is similar to satellite-based SAR but has more mission flexibility and higher resolution (pixels are approximately 7 m). This radar interferometry provides a highly sensitive method, clearly indicating faults slipping at levels of 10 mm or less. But interferometric images are subject to decorrelation between revisit times, creating spots of bad data in the image. Our method begins with freely available data products from the UAVSAR mission, chiefly unwrapped interferograms, coherence images, and flight metadata. The computer vision techniques we use assume no data gaps or holes; so a preliminary step detects and removes spots of bad data and fills these holes by interpolation and blurring. Detected and partially validated surface fractures from earthquake main shocks, aftershocks, and aseismic-induced slip are shown for faults in California, including El Mayor-Cucapah (M7.2, 2010), the Ocotillo aftershock (M5.7, 2010), and South Napa (M6.0, 2014). Aseismic slip is detected on the San Andreas Fault from the El Mayor-Cucapah earthquake, in regions of highly patterned partial decorrelation. Validation is performed by comparing slip estimates from two interferograms with published ground truth measurements.

  20. Some rapid and long traveled landslides triggered by the May 12, 2008 Sichuan earthquake

    Science.gov (United States)

    Wang, G.; Kamai, T.; Chigira, M.; Wu, X. Y.; Zhang, D. X.

    2009-04-01

    On May 12, 2008, a 7.9M earthquake struck Sichuan province of China, causing a huge number of death and injuries, and great loss of properties, becoming the most damaging earthquake since the 1976 Tangshan earthquake, in China. The collapse of buildings during the earthquake is the main reason for the casualties. There are a huge number of landslides that had been triggered by this earthquake. Almost all the roads to the mountainous areas had been blocked and many dams were formed by the displaced landslide materials, resulting in great difficulties for the aftershock rescue activities. Also a big portion of the casualties was directly caused by the landslides. The authors had reconnaissance field trips of the landslides, and performed preliminary investigation on some of the catastrophic ones. In this report, four landslides, i.e., Xiejiadian landslide in Pengzhou city, Donghekou landslide and Magongxiang landslide in Qingchuan County, and Niujuangou landslide on the epicenter area of Yingxiu Town, are introduced. The characteristics of deposited landslide masses in Donghekou landslide were investigated by means of a multichannel surface wave technique. Two earthquake recorders were installed at the upper part and deposit area of Donghekou landslide. The seismic responses of different parts of the landslides were monitored, and recorded successfully during the aftershocks that occurred in Qingchuan County on July 24, 2008. Also the drained and undrained dynamic shear behaviors of samples from the landslide areas were examined. Some preliminary analyzing results will be presented in this report.

  1. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  2. Coseismic slip in the 2010 Yushu earthquake (China, constrained by wide-swath and strip-map InSAR

    Directory of Open Access Journals (Sweden)

    Y. Wen

    2013-01-01

    Full Text Available On 14 April 2010, an Mw = 6.9 earthquake occurred in the Yushu county of China, which caused ~3000 people to lose their lives. Integrated with the information from the observed surface ruptures and aftershock locations, the faulting pattern of this earthquake is derived from the descending wide-swath and ascending strip mode PALSAR data collected by ALOS satellite. We used a layered crustal model and stress drop smoothing constraint to infer the coseismic slip distribution. Our model suggests that the earthquake fault can be divided into four segments and the slip mainly occurs within the upper 12 km with a maximum slip of 2.0 m at depth of 3 km on the Jiegu segment. The rupture of the upper 12 km is dominated by left-lateral strike-slip motion. The relatively small slip along the SE region of Yushu segment suggests a slip deficit there. The inverted geodetic moment is approximately Mw = 6.9, consistent with the seismological results. The average stress drop caused by the earthquake is about 2 MPa with a maximum stress drop of 8.3 MPa. Furthermore, the calculated static Coulomb stress changes in surrounding regions show increased Coulomb stress occurred in the SE region along the Yushu segment but with less aftershock, indicating an increased seismic hazard in this region after the earthquake.

  3. The 2014, MW6.9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities

    Science.gov (United States)

    Konca, Ali Ozgun; Cetin, Seda; Karabulut, Hayrullah; Reilinger, Robert; Dogan, Ugur; Ergintav, Semih; Cakir, Ziyadin; Tari, Ergin

    2018-05-01

    We report that asperities with the highest coseismic slip in the 2014 MW6.9 North Aegean earthquake persisted through the interseismic, coseismic and immediate post-seismic periods. We use GPS and seismic data to obtain the source model of the 2014 earthquake, which is located on the western extension of the North Anatolian Fault (NAF). The earthquake ruptured a bilateral, 90 km strike-slip fault with three slip patches: one asperity located west of the hypocentre and two to the east with a rupture duration of 40 s. Relocated pre-earthquake seismicity and aftershocks show that zones with significant coseismic slip were relatively quiet during both the 7 yr of interseismic and the 3-month aftershock periods, while the surrounding regions generated significant seismicity during both the interseismic and post-seismic periods. We interpret the unusually long fault length and source duration, and distribution of pre- and post-main-shock seismicity as evidence for a rupture of asperities that persisted through strain accumulation and coseismic strain release in a partially coupled fault zone. We further suggest that the association of seismicity with fault creep may characterize the adjacent Izmit, Marmara Sea and Saros segments of the NAF. Similar behaviour has been reported for sections of the San Andreas Fault, and some large subduction zones, suggesting that the association of seismicity with creeping fault segments and rapid relocking of asperities may characterize many large earthquake faults.

  4. Seasonal variations in shallow Alaska seismicity and stress modulation from GRACE derived hydrological loading

    Science.gov (United States)

    Johnson, C. W.; Fu, Y.; Burgmann, R.

    2017-12-01

    Shallow (≤50 km), low magnitude (M≥2.0) seismicity in southern Alaska is examined for seasonal variations during the annual hydrological cycle. The seismicity is declustered with a spatio-temporal epidemic type aftershock sequence (ETAS) model. The removal of aftershock sequences allows detailed investigation of seismicity rate changes, as water and ice loads modulate crustal stresses throughout the year. The GRACE surface loads are obtained from the JPL mass concentration blocks (mascons) global land and ocean solutions. The data product is smoothed with a 9˚ Gaussian filter and interpolated on a 25 km grid. To inform the surface loading model, the global solutions are limited to the region from -160˚ to -120˚ and 50˚ to 70˚. The stress changes are calculated using a 1D spherical layered earth model at depth intervals of 10 km from 10 - 50 km in the study region. To evaluate the induced seasonal stresses, we use >30 years of earthquake focal mechanisms to constrain the background stress field orientation and assess the stress change with respect to the principal stress orientation. The background stress field is assumed to control the preferred orientation of faulting, and stress field perturbations are expected to increase or decrease seismicity. The number of excess earthquakes is calculated with respect to the background seismicity rates. Here, we present preliminary results for the shallow seismicity variations and quantify the seasonal stresses associated with changes in hydrological loading.

  5. Remarkable changes in behavior and physiology of laboratory mice after the massive 2011 Tohoku earthquake in Japan.

    Directory of Open Access Journals (Sweden)

    Shuichi Yanai

    Full Text Available A devastating earthquake and tsunami hit Japan on March 11, 2011, followed by several long and intense aftershocks. Laboratory mice housed in the Tokyo, located approximately 330 km south of this earthquake's epicenter, displayed remarkable changes in a variety of behaviors and physiological measures. Although unusual pre-earthquake behaviors have been previously reported in laboratory animals, little is known about behavioral and physiological changes that occur after a great earthquake. In the present study, the effects of Tohoku earthquake on mice behavior were investigated. "Earthquake-experienced" mice displayed a marked increase in food consumption without gaining body weight in response to the earthquake. They also displayed enhanced anxiety, and in a formal fear memory task, showed significantly greater tone- and context-dependent conditioned freezing. Water maze performance of earthquake-experienced mice showed the quicker acquisition of the task, faster swim speed and longer swim distance than the naive mice. Serum corticosterone levels were elevated compared to the naive mice, indicating that the earthquake and aftershocks were stressful for the mice. These results demonstrate that great earthquakes strongly affect mouse behaviors and physiology. Although the effects of a variety of experimental manipulations on mouse behaviors in disease models or in models of higher cognitive functions have been extensively examined, researchers need to be aware how natural phenomena, such as earthquakes and perhaps other natural environmental factors, influence laboratory animal behaviors and physiology.

  6. The 2009 Samoa-Tonga great earthquake triggered doublet

    Science.gov (United States)

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  7. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    Science.gov (United States)

    Peng, Zhigang; Aiken, Chastity; Kilb, Debi; Shelly, David R.; Enescu, Bogdan

    2012-01-01

    The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ∼8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ∼3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan.

  8. Investigation of Back-Projection Uncertainties with M6 Earthquakes

    Science.gov (United States)

    Fan, W.; Shearer, P. M.

    2017-12-01

    We investigate possible biasing effects of inaccurate timing corrections on teleseismic P-wave back-projection imaging of large earthquake ruptures. These errors occur because empirically-estimated time shifts based on aligning P-wave first arrivals are exact only at the hypocenter and provide approximate corrections for other parts of the rupture. Using the Japan subduction zone as a test region, we analyze 46 M6-7 earthquakes over a ten-year period, including many aftershocks of the 2011 M9 Tohoku earthquake, performing waveform cross-correlation of their initial P-wave arrivals to obtain hypocenter timing corrections to global seismic stations. We then compare back-projection images for each earthquake using its own timing corrections with those obtained using the time corrections for other earthquakes. This provides a measure of how well sub-events can be resolved with back-projection of a large rupture as a function of distance from the hypocenter. Our results show that back-projection is generally very robust and that sub-event location errors average about 20 km across the entire study region ( 700 km). The back-projection coherence loss and location errors do not noticeably converge to zero even when the event pairs are very close (<20 km). This indicates that most of the timing differences are due to 3D structure close to each of the hypocenter regions, which limits the effectiveness of attempts to refine back-projection images using aftershock calibration, at least in this region.

  9. Investigation of Backprojection Uncertainties With M6 Earthquakes

    Science.gov (United States)

    Fan, Wenyuan; Shearer, Peter M.

    2017-10-01

    We investigate possible biasing effects of inaccurate timing corrections on teleseismic P wave backprojection imaging of large earthquake ruptures. These errors occur because empirically estimated time shifts based on aligning P wave first arrivals are exact only at the hypocenter and provide approximate corrections for other parts of the rupture. Using the Japan subduction zone as a test region, we analyze 46 M6-M7 earthquakes over a 10 year period, including many aftershocks of the 2011 M9 Tohoku earthquake, performing waveform cross correlation of their initial P wave arrivals to obtain hypocenter timing corrections to global seismic stations. We then compare backprojection images for each earthquake using its own timing corrections with those obtained using the time corrections from other earthquakes. This provides a measure of how well subevents can be resolved with backprojection of a large rupture as a function of distance from the hypocenter. Our results show that backprojection is generally very robust and that the median subevent location error is about 25 km across the entire study region (˜700 km). The backprojection coherence loss and location errors do not noticeably converge to zero even when the event pairs are very close (<20 km). This indicates that most of the timing differences are due to 3-D structure close to each of the hypocenter regions, which limits the effectiveness of attempts to refine backprojection images using aftershock calibration, at least in this region.

  10. Hear it, See it, Explore it: Visualizations and Sonifications of Seismic Signals

    Science.gov (United States)

    Fisher, M.; Peng, Z.; Simpson, D. W.; Kilb, D. L.

    2010-12-01

    Sonification of seismic data is an innovative way to represent seismic data in the audible range (Simpson, 2005). Seismic waves with different frequency and temporal characteristics, such as those from teleseismic earthquakes, deep “non-volcanic” tremor and local earthquakes, can be easily discriminated when time-compressed to the audio range. Hence, sonification is particularly useful for presenting complicated seismic signals with multiple sources, such as aftershocks within the coda of large earthquakes, and remote triggering of earthquakes and tremor by large teleseismic earthquakes. Previous studies mostly focused on converting the seismic data into audible files by simple time compression or frequency modulation (Simpson et al., 2009). Here we generate animations of the seismic data together with the sounds. We first read seismic data in the SAC format into Matlab, and generate a sequence of image files and an associated WAV sound file. Next, we use a third party video editor, such as the QuickTime Pro, to combine the image sequences and the sound file into an animation. We have applied this simple procedure to generate animations of remotely triggered earthquakes, tremor and low-frequency earthquakes in California, and mainshock-aftershock sequences in Japan and California. These animations clearly demonstrate the interactions of earthquake sequences and the richness of the seismic data. The tool developed in this study can be easily adapted for use in other research applications and to create sonification/animation of seismic data for education and outreach purpose.

  11. Quasi real-time estimation of the moment magnitude of large earthquake from static strain changes

    Science.gov (United States)

    Itaba, S.

    2016-12-01

    The 2011 Tohoku-Oki (off the Pacific coast of Tohoku) earthquake, of moment magnitude 9.0, was accompanied by large static strain changes (10-7), as measured by borehole strainmeters operated by the Geological Survey of Japan in the Tokai, Kii Peninsula, and Shikoku regions. A fault model for the earthquake on the boundary between the Pacific and North American plates, based on these borehole strainmeter data, yielded a moment magnitude of 8.7. On the other hand, based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency (JMA) announced just after earthquake occurrence was 7.9. Such geodetic moment magnitudes, derived from static strain changes, can be estimated almost as rapidly as determinations using seismic waves. I have to verify the validity of this method in some cases. In the case of this earthquake's largest aftershock, which occurred 29 minutes after the mainshock. The prompt report issued by JMA assigned this aftershock a magnitude of 7.3, whereas the moment magnitude derived from borehole strain data is 7.6, which is much closer to the actual moment magnitude of 7.7. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami. Our simple method of using static strain changes is one of the strong methods for rapid estimation of the magnitude of large earthquakes, and useful to improve the accuracy of Earthquake Early Warning.

  12. Remarkable Changes in Behavior and Physiology of Laboratory Mice after the Massive 2011 Tohoku Earthquake in Japan

    Science.gov (United States)

    Yanai, Shuichi; Semba, Yuki; Endo, Shogo

    2012-01-01

    A devastating earthquake and tsunami hit Japan on March 11, 2011, followed by several long and intense aftershocks. Laboratory mice housed in the Tokyo, located approximately 330 km south of this earthquake’s epicenter, displayed remarkable changes in a variety of behaviors and physiological measures. Although unusual pre-earthquake behaviors have been previously reported in laboratory animals, little is known about behavioral and physiological changes that occur after a great earthquake. In the present study, the effects of Tohoku earthquake on mice behavior were investigated. “Earthquake-experienced” mice displayed a marked increase in food consumption without gaining body weight in response to the earthquake. They also displayed enhanced anxiety, and in a formal fear memory task, showed significantly greater tone- and context-dependent conditioned freezing. Water maze performance of earthquake-experienced mice showed the quicker acquisition of the task, faster swim speed and longer swim distance than the naive mice. Serum corticosterone levels were elevated compared to the naive mice, indicating that the earthquake and aftershocks were stressful for the mice. These results demonstrate that great earthquakes strongly affect mouse behaviors and physiology. Although the effects of a variety of experimental manipulations on mouse behaviors in disease models or in models of higher cognitive functions have been extensively examined, researchers need to be aware how natural phenomena, such as earthquakes and perhaps other natural environmental factors, influence laboratory animal behaviors and physiology. PMID:22957073

  13. 20 cool facts about the New Madrid Seismic Zone-Commemorating the bicentennial of the New Madrid earthquake sequence, December 1811-February 1812 [poster

    Science.gov (United States)

    Williams, R.A.; McCallister, N.S.; Dart, R.L.

    2011-01-01

    This poster summarizes a few of the more significant facts about the series of large earthquakes that struck the New Madrid seismic zone of southeastern Missouri, northeastern Arkansas, and adjacent parts of Tennessee and Kentucky from December 1811 to February 1812. Three earthquakes in this sequence had a magnitude (M) of 7.0 or greater. The first earthquake occurred on December 16, 1811, at 2:15 a.m.; the second on January 23, 1812, at 9 a.m.; and the third on February 7, 1812, at 3:45 a.m. These three earthquakes were among the largest to strike North America since European settlement. The mainshocks were followed by many hundreds of aftershocks that occurred over the next decade. Many of the aftershocks were major earthquakes themselves. The area that was strongly shaken by the three main shocks was 2-3 times as large as the strongly shaken area of the 1964 M9.2 Alaskan earthquake and 10 times as large as that of the 1906 M7.8 San Francisco earthquake. Geologic studies show that the 1811-1812 sequence was not an isolated event in the New Madrid region. The 1811-1812 New Madrid earthquake sequence was preceded by at least two other similar sequences in about A.D. 1450 and A.D. 900. Research also indicates that other large earthquakes have occurred in the region surrounding the main New Madrid seismicity trends in the past 5,000 years or so.

  14. Southern San Andreas Fault seismicity is consistent with the Gutenberg-Richter magnitude-frequency distribution

    Science.gov (United States)

    Page, Morgan T.; Felzer, Karen

    2015-01-01

    The magnitudes of any collection of earthquakes nucleating in a region are generally observed to follow the Gutenberg-Richter (G-R) distribution. On some major faults, however, paleoseismic rates are higher than a G-R extrapolation from the modern rate of small earthquakes would predict. This, along with other observations, led to formulation of the characteristic earthquake hypothesis, which holds that the rate of small to moderate earthquakes is permanently low on large faults relative to the large-earthquake rate (Wesnousky et al., 1983; Schwartz and Coppersmith, 1984). We examine the rate difference between recent small to moderate earthquakes on the southern San Andreas fault (SSAF) and the paleoseismic record, hypothesizing that the discrepancy can be explained as a rate change in time rather than a deviation from G-R statistics. We find that with reasonable assumptions, the rate changes necessary to bring the small and large earthquake rates into alignment agree with the size of rate changes seen in epidemic-type aftershock sequence (ETAS) modeling, where aftershock triggering of large earthquakes drives strong fluctuations in the seismicity rates for earthquakes of all magnitudes. The necessary rate changes are also comparable to rate changes observed for other faults worldwide. These results are consistent with paleoseismic observations of temporally clustered bursts of large earthquakes on the SSAF and the absence of M greater than or equal to 7 earthquakes on the SSAF since 1857.

  15. Earthquakes in Switzerland and surrounding regions during 2007

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.; Deichmann, N.; Clinton, J.; Husen, S.; Faeh, D.; Giardini, D.; Kaestli, P.; Kradolfer, U.; Wiemer, S

    2008-12-15

    This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2007. During this period, 531 earthquakes and 92 quarry blasts were detected and located in the region under consideration. Of these earthquakes, 30 are aftershocks of the stimulation of a proposed geothermal reservoir beneath the city of Basel in December of 2006. With 20 events with {mu}{sub {iota}} {>=} 2.5, four of which were artificially induced, the seismic activity in the year 2007 was far below the average over the previous 32 years. (author)

  16. Earthquakes in Switzerland and surrounding regions during 2007

    International Nuclear Information System (INIS)

    Baer, M.; Deichmann, N.; Clinton, J.; Husen, S.; Faeh, D.; Giardini, D.; Kaestli, P.; Kradolfer, U.; Wiemer, S.

    2008-01-01

    This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2007. During this period, 531 earthquakes and 92 quarry blasts were detected and located in the region under consideration. Of these earthquakes, 30 are aftershocks of the stimulation of a proposed geothermal reservoir beneath the city of Basel in December of 2006. With 20 events with Μ ι ≥ 2.5, four of which were artificially induced, the seismic activity in the year 2007 was far below the average over the previous 32 years. (author)

  17. Engineering geological aspect of Gorkha Earthquake 2015, Nepal

    Science.gov (United States)

    Adhikari, Basanta Raj; Andermann, Christoff; Cook, Kristen

    2016-04-01

    Strong shaking by earthquake causes massif landsliding with severe effects on infrastructure and human lives. The distribution of landslides and other hazards are depending on the combination of earthquake and local characteristics which influence the dynamic response of hillslopes. The Himalayas are one of the most active mountain belts with several kilometers of relief and is very prone to catastrophic mass failure. Strong and shallow earthquakes are very common and cause wide spread collapse of hillslopes, increasing the background landslide rate by several magnitude. The Himalaya is facing many small and large earthquakes in the past i.e. earthquakes i.e. Bihar-Nepal earthquake 1934 (Ms 8.2); Large Kangra earthquake of 1905 (Ms 7.8); Gorkha earthquake 2015 (Mw 7.8). The Mw 7.9 Gorkha earthquake has occurred on and around the main Himalayan Thrust with a hypocentral depth of 15 km (GEER 2015) followed by Mw 7.3 aftershock in Kodari causing 8700+ deaths and leaving hundreds of thousands of homeless. Most of the 3000 aftershocks located by National Seismological Center (NSC) within the first 45 days following the Gorkha Earthquake are concentrated in a narrow 40 km-wide band at midcrustal to shallow depth along the strike of the southern slope of the high Himalaya (Adhikari et al. 2015) and the ground shaking was substantially lower in the short-period range than would be expected for and earthquake of this magnitude (Moss et al. 2015). The effect of this earthquake is very unique in affected areas by showing topographic effect, liquefaction and land subsidence. More than 5000 landslides were triggered by this earthquake (Earthquake without Frontiers, 2015). Most of the landslides are shallow and occurred in weathered bedrock and appear to have mobilized primarily as raveling failures, rock slides and rock falls. Majority of landslides are limited to a zone which runs east-west, approximately parallel the lesser and higher Himalaya. There are numerous cracks in

  18. Effect of fault roughness on aftershock distribution and post co-seismic strain accumulation.

    Science.gov (United States)

    Aslam, K.; Daub, E. G.

    2017-12-01

    We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.

  19. Implication of conjugate faulting in the earthquake brewing and originating process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L.M. (Massachusetts Inst. of Tech., Cambridge); Deng, Q.; Jiang, P.

    1980-03-01

    The earthquake sequence, precursory and geologo-structural background of the Haicheng, Tangshan, Songpan-Pingwu earthquakes are discussed in this article. All of these earthquakes occurred in a seismic zone controlled by the main boundary faults of an intraplate fault block. However, the fault plane of a main earthquake does not consist of the same faults, but is rather a related secondary fault. They formed altogether a conjugate shearing rupture zone under the action of a regional tectonic stress field. As to the earthquake sequence, the foreshocks and aftershocks might occur on the conjugate fault planes within an epicentral region rather than be limited to the fault plane of a main earthquake, such as the distribution of foreshocks and aftershocks of the Haicheng earthquake. The characteristics of the long-, medium-, and imminent-term earthquake precursory anomalies of the three mentioned earthquakes, especially the character of well-studies anomaly phenomena in electrical resistivity, radon emission, groundwater and animal behavior, have been investigated. The studies of these earthquake precursors show that they were distributed in an area rather more extensive than the epicentral region. Some fault zones in the conjugate fault network usually appeared as distributed belts or concentrated zones of earthquake precursory anomalies, and can be traced in the medium-long term precursory field, but seem more distinct in the short-imminent term precursory anomalous field. These characteristics can be explained by the rupture and sliding originating along the conjugate shear network and the concentration of stress in the regional stress field.

  20. Evidence of a Large Triggered Event in the Nepal Himalaya Following the Gorkha Earthquake: Implications Toward Enhanced Seismic Hazard

    Science.gov (United States)

    Mandal, Prantik

    2018-03-01

    A DC (double couple) constrained multiple point-source moment-tensor inversion is performed on the band-passed (0.008-0.10 Hz) displacement data of the 25 April (M w 7.8) 2015 Nepal mainshock, from 17 broadband stations in India. Our results reveal that the 25 April event (strike = 324°, dip = 14°, rake = 88°) ruptured the north-dipping main Himalayan thrust (MHT) at 16 km depth. We modeled the Coulomb failure stress changes (ΔCFS) produced by the slip on the fault plane of the 25 April Nepal mainshock. A strong correlation with occurrences of aftershocks and regions of increased positive ΔCFS is obtained below the aftershock zone of the 2015 Nepal mainshock. We notice that predicted ΔCFS at 16 km depth show a positive Coulomb stress of 0.06 MPa at the location of the 12 May 2015 event. These small modeled stress changes can lead to trigger events if the crust is already near to failure, but these small stresses can also advance the occurrence of future earthquakes. The main finding of our ΔCFS modeling implies that the 25 April event increased the Coulomb stress changes by 0.06 MPa at 16 km depth below the site of the 12 May event, and thus, this event can be termed as triggered. We propose that the seismic hazard in the Himalaya is not only caused by the mainshock slip on the MHT; rather, the occurrence of large triggered event on the MHT can also enhance our understanding of the seismic hazard in the Nepal Himalaya.

  1. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence

    Science.gov (United States)

    Sumy, Danielle F.; Cochran, Elizabeth S.; Keranen, Katie M.; Wei, Maya; Abers, Geoffrey A.

    2014-01-01

    In November 2011, a M5.0 earthquake occurred less than a day before a M5.7 earthquake near Prague, Oklahoma, which may have promoted failure of the mainshock and thousands of aftershocks along the Wilzetta fault, including a M5.0 aftershock. The M5.0 foreshock occurred in close proximity to active fluid injection wells; fluid injection can cause a buildup of pore fluid pressure, decrease the fault strength, and may induce earthquakes. Keranen et al. [2013] links the M5.0 foreshock with fluid injection, but the relationship between the foreshock and successive events has not been investigated. Here we examine the role of coseismic Coulomb stress transfer on earthquakes that follow the M5.0 foreshock, including the M5.7 mainshock. We resolve the static Coulomb stress change onto the focal mechanism nodal plane that is most consistent with the rupture geometry of the three M ≥ 5.0 earthquakes, as well as specified receiver fault planes that reflect the regional stress orientation. We find that Coulomb stress is increased, e.g., fault failure is promoted, on the nodal planes of ~60% of the events that have focal mechanism solutions, and more specifically, that the M5.0 foreshock promoted failure on the rupture plane of the M5.7 mainshock. We test our results over a range of effective coefficient of friction values. Hence, we argue that the M5.0 foreshock, induced by fluid injection, potentially triggered a cascading failure of earthquakes along the complex Wilzetta fault system.

  2. The smart cluster method. Adaptive earthquake cluster identification and analysis in strong seismic regions

    Science.gov (United States)

    Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann

    2017-07-01

    Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.

  3. Implications of fault constitutive properties for earthquake prediction.

    Science.gov (United States)

    Dieterich, J H; Kilgore, B

    1996-04-30

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  4. Earthquake correlations and networks: A comparative study

    International Nuclear Information System (INIS)

    Krishna Mohan, T. R.; Revathi, P. G.

    2011-01-01

    We quantify the correlation between earthquakes and use the same to extract causally connected earthquake pairs. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski [M. Baiesi and M. Paczuski, Phys. Rev. E 69, 066106 (2004)]. A network of earthquakes is then constructed from the time-ordered catalog and with links between the more correlated ones. A list of recurrences to each of the earthquakes is identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions (viz., California, Japan, and the Himalayas) are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub structure rooted on the large magnitude earthquakes. In-degree distribution is seen to be dependent on the density of events in the neighborhood. Power laws, with two regimes having different exponents, are obtained with recurrence time distribution. The first regime confirms the Omori law for aftershocks while the second regime, with a faster falloff for the larger recurrence times, establishes that pure spatial recurrences also follow a power-law distribution. The crossover to the second power-law regime can be taken to be signaling the end of the aftershock regime in an objective fashion.

  5. Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence

    Science.gov (United States)

    Miyake, H.

    2013-12-01

    The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.

  6. Strategic crisis and risk communication during a prolonged natural hazard event: lessons learned from the Canterbury earthquake sequence

    Science.gov (United States)

    Wein, A. M.; Potter, S.; Becker, J.; Doyle, E. E.; Jones, J. L.

    2015-12-01

    While communication products are developed for monitoring and forecasting hazard events, less thought may have been given to crisis and risk communication plans. During larger (and rarer) events responsible science agencies may find themselves facing new and intensified demands for information and unprepared for effectively resourcing communications. In a study of the communication of aftershock information during the 2010-12 Canterbury Earthquake Sequence (New Zealand), issues are identified and implications for communication strategy noted. Communication issues during the responses included reliability and timeliness of communication channels for immediate and short decision time frames; access to scientists by those who needed information; unfamiliar emergency management frameworks; information needs of multiple audiences, audience readiness to use the information; and how best to convey empathy during traumatic events and refer to other information sources about what to do and how to cope. Other science communication challenges included meeting an increased demand for earthquake education, getting attention on aftershock forecasts; responding to rumor management; supporting uptake of information by critical infrastructure and government and for the application of scientific information in complex societal decisions; dealing with repetitive information requests; addressing diverse needs of multiple audiences for scientific information; and coordinating communications within and outside the science domain. For a science agency, a communication strategy would consider training scientists in communication, establishing relationships with university scientists and other disaster communication roles, coordinating messages, prioritizing audiences, deliberating forecasts with community leaders, identifying user needs and familiarizing them with the products ahead of time, and practicing the delivery and use of information via scenario planning and exercises.

  7. Oceanic Sub-Moho Reflectors in and Around the Segmentation Boundary Between the Tonankai-Nankai Earthquake Area, the Central Nankai Trough

    Science.gov (United States)

    Nakanishi, A.; Kodaira, S.; Miura, S.; Ito, A.; Sato, T.; Park, J.; Obana, K.; Kaneda, Y.

    2006-12-01

    The Nankai Trough is a unique subduction zone because the recurrence intervals of M8 class earthquakes and the segmentation of rupture zones are well documented on the basis of geophysical, geological and historic data. In 2004, large intraslab earthquake (Mw7.5) occurred southeast off the Kii Peninsula, the central Nankai Trough. Recent ocean bottom seismograph observation off the Kii Peninsula shows seismicity concentrated in the oceanic crust and the uppermost mantle. To understand the genesis of such intraslab earthquakes and its relation to large interplate earthquakes as well as to obtain an entire structural image of Nankai Trough subduction seismogenic zone, a wide-angle reflection/refraction survey across the coseismic rupture zone of the Tonankai earthquake was conducted in 2004. This research is part of "Structure research on plate dynamics of the presumed rupture zone of the Tonankai-Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology. The result of structural image shows a bit thicker oceanic crust (>8km) subducting landward, and the existence of oceanic sub-Moho reflectors in the uppermost mantle. The aftershocks of the 2004 off Kii Peninsula earthquake are distributed within the oceanic crust and the uppermantle, which is not consistent with the estimated fault plane of main shock. Comparing the structural image with this aftershock distribution and usual seismicity in the uppermost mantle, the depth of the oceanic sub-Moho reflectors and the intraslab events within the uppermantle are both distributed around 20km. We consider that such sub-Moho reflectors may become a seismic fault of intraslab earthquakes.

  8. Rupture processes of the 2013-2014 Minab earthquake sequence, Iran

    Science.gov (United States)

    Kintner, Jonas A.; Ammon, Charles J.; Cleveland, K. Michael; Herman, Matthew

    2018-06-01

    We constrain epicentroid locations, magnitudes and depths of moderate-magnitude earthquakes in the 2013-2014 Minab sequence using surface-wave cross-correlations, surface-wave spectra and teleseismic body-wave modelling. We estimate precise relative locations of 54 Mw ≥ 3.8 earthquakes using 48 409 teleseismic, intermediate-period Rayleigh and Love-wave cross-correlation measurements. To reduce significant regional biases in our relative locations, we shift the relative locations to align the Mw 6.2 main-shock centroid to a location derived from an independent InSAR fault model. Our relocations suggest that the events lie along a roughly east-west trend that is consistent with the faulting geometry in the GCMT catalogue. The results support previous studies that suggest the sequence consists of left-lateral strain release, but better defines the main-shock fault length and shows that most of the Mw ≥ 5.0 aftershocks occurred on one or two similarly oriented structures. We also show that aftershock activity migrated westwards along strike, away from the main shock, suggesting that Coulomb stress transfer played a role in the fault failure. We estimate the magnitudes of the relocated events using surface-wave cross-correlation amplitudes and find good agreement with the GCMT moment magnitudes for the larger events and underestimation of small-event size by catalogue MS. In addition to clarifying details of the Minab sequence, the results demonstrate that even in tectonically complex regions, relative relocation using teleseismic surface waves greatly improves the precision of relative earthquake epicentroid locations and can facilitate detailed tectonic analyses of remote earthquake sequences.

  9. New insights into fault activation and stress transfer between en echelon thrusts: The 2012 Emilia, Northern Italy, earthquake sequence

    Science.gov (United States)

    Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.; Atzori, S.

    2016-06-01

    Here we present the results of the inversion of a new geodetic data set covering the 2012 Emilia seismic sequence and the following 1 year of postseismic deformation. Modeling of the geodetic data together with the use of a catalog of 3-D relocated aftershocks allows us to constrain the rupture geometries and the coseismic and postseismic slip distributions for the two main events (Mw 6.1 and 6.0) of the sequence and to explore how these thrust events have interacted with each other. Dislocation modeling reveals that the first event ruptured a slip patch located in the center of the Middle Ferrara thrust with up to 1 m of reverse slip. The modeling of the second event, located about 15 km to the southwest, indicates a main patch with up to 60 cm of slip initiated in the deeper and flatter portion of the Mirandola thrust and progressively propagated postseismically toward the top section of the rupture plane, where most of the aftershocks and afterslip occurred. Our results also indicate that between the two main events, a third thrust segment was activated releasing a pulse of aseismic slip equivalent to a Mw 5.8 event. Coulomb stress changes suggest that the aseismic event was likely triggered by the preceding main shock and that the aseismic slip event probably brought the second fault closer to failure. Our findings show significant correlations between static stress changes and seismicity and suggest that stress interaction between earthquakes plays a significant role among continental en echelon thrusts.

  10. An overview of the on-site inspection measurements from the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, J.J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    An on-site inspection (OSI) is an in-person visit to site to collect data and examine evidence in order to determine the source of an ambiguous event detected via remote monitoring systems or other measures. Its purpose is to determine whether the treaty has been violated, to deter violations, and to build confidence. At the time of this writing, it is anticipated that the Comprehensive Test Ban Treaty (CTBT) being developed in the Conference on Disarmament will contain OSI provisions. In an era of testing moratoria, the Non-Proliferation Experiment (NPE) provided a unique opportunity to investigate candidate OSI techniques. On site inspections could occur in three different contexts: after-the-fact inspections based on information from remote monitoring systems; inspections prior to, during, and after large declared chemical explosions (e.g., a large mining explosion); continuous monitoring inspections with unattended sensors at certain agreed-upon sites (e.g., previous test sites). OSI monitoring techniques need to be designed to detect the phenomena and residual effects of nuclear explosions. In the underground case, the primary effects of interest for OSI are the electromagnetic pulse, shock waves, aftershocks, radioactive gas, rubble zone, and apical void. These effects are well known and the basic techniques for their detection well established. We designed our measurement program for the NPE to answer specific issues about these detection technologies. Our measurement program includes the following: zerotime electromagnetic measurements; seismic aftershock survey; before and after electrical soundings; gas tracers introduced into the explosive; before and after multispectral overhead imagery from low-flying aircraft; before and after geological surveys.

  11. Segmented seismicity of the Mw 6.2 Baladeh earthquake sequence (Alborz mountains, Iran) revealed from regional moment tensors

    DEFF Research Database (Denmark)

    Donner, Stefanie; Rössler, Dirk; Krüger, Frank

    2013-01-01

    The M w 6.2 Baladeh earthquake occurred on 28 May 2004 in the Alborz Mountains, northern Iran. This earthquake was the first strong shock in this intracontinental orogen for which digital regional broadband data are available. The Baladeh event provides a rare opportunity to study fault geometry...... model, regional waveform data of the mainshock and larger aftershocks (M w  ≥3.3) were inverted for moment tensors. For the Baladeh mainshock, this included inversion for kinematic parameters. All analysed earthquakes show dominant thrust mechanisms at depths between 14 and 26 km, with NW–SE striking...

  12. Power-law relaxation in human violent conflicts

    Science.gov (United States)

    Picoli, Sergio; Antonio, Fernando J.; Itami, Andreia S.; Mendes, Renio S.

    2017-08-01

    We study relaxation patterns of violent conflicts after bursts of activity. Data were obtained from available catalogs on the conflicts in Iraq, Afghanistan and Northern Ireland. We find several examples in each catalog for which the observed relaxation curves can be well described by an asymptotic power-law decay (the analog of the Omori's law in geophysics). The power-law exponents are robust, nearly independent of the conflict. We also discuss the exogenous or endogenous nature of the shocks. Our results suggest that violent conflicts share with earthquakes and other natural and social phenomena a common feature in the dynamics of aftershocks.

  13. 2D Modelling of the Gorkha earthquake through the joint exploitation of Sentinel 1-A DInSAR measurements and geological, structural and seismological information

    Science.gov (United States)

    De Novellis, Vincenzo; Castaldo, Raffaele; Solaro, Giuseppe; De Luca, Claudio; Pepe, Susi; Bonano, Manuela; Casu, Francesco; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Tizzani, Pietro

    2016-04-01

    A Mw 7.8 earthquake struck Nepal on 25 April 2015 at 06:11:26 UTC, killing more than 9,000 people, injuring more than 23,000 and producing extensive damages. The main seismic event, known as the Gorkha earthquake, had its epicenter localized at ~82 km NW of the Kathmandu city and the hypocenter at a depth of approximately 15 km. After the main shock event, about 100 aftershocks occurred during the following months, propagating toward the south-east direction; in particular, the most energetic shocks were the Mw 6.7 and Mw 7.3 occurred on 26 April and 12 May, respectively. In this study, we model the causative fault of the earthquake by jointly exploiting surface deformation retrieved by the DInSAR measurements collected through the Sentinel 1-A (S1A) space-borne sensor and the available geological, structural and seismological information. We first exploit the analytical solution performing a back-analysis of the ground deformation detected by the first co-seismic S1A interferogram, computed by exploiting the 17/04/2015 and 29/04/2015 SAR acquisitions and encompassing the main earthquake and some aftershocks, to search for the location and geometry of the fault plane. Starting from these findings and by benefiting from the available geological, structural and seismological data, we carry out a Finite Element (FE)-based 2D modelling of the causative fault, in order to evaluate the impact of the geological structures activated during the seismic event on the distribution of the ground deformation field. The obtained results show that the causative fault has a rather complex compressive structure, dipping northward, formed by segments with different dip angles: 6° the deep segment and 60° the shallower one. Therefore, although the hypocenters of the main shock and most of the more energetic aftershocks are located along the deeper plane, corresponding to a segment of the Main Himalayan Thrust (MHT), the FE solution also indicates the contribution of the shallower

  14. Future Developments for the Earthquake Early Warning System following the 2011 off the Pacific Coast of Tohoku Earthquake

    Science.gov (United States)

    Yamada, M.; Mori, J. J.

    2011-12-01

    The 2011 off the Pacific Coast of Tohoku Earthquake (Mw9.0) caused significant damage over a large area of northeastern Honshu. An earthquake early warning was issued to the public in the Tohoku region about 8 seconds after the first P-arrival, which is 31 seconds after the origin time. There was no 'blind zone', and warnings were received at all locations before S-wave arrivals, since the earthquake was fairly far offshore. Although the early warning message was properly reported in Tohoku region which was the most severely affected area, a message was not sent to the more distant Tokyo region because the intensity was underestimated. . This underestimation was because the magnitude determination in the first few seconds was relatively small (Mj8.1)., and there was no consideration of a finite fault with a long length. Another significant issue is that warnings were sometimes not properly provided for aftershocks. Immediately following the earthquake, the waveforms of some large aftershocks were contaminated by long-period surface waves from the mainshock, which made it difficult to pick P-wave arrivals. Also, correctly distinguishing and locating later aftershocks was sometimes difficult, when multiple events occurred within a short period of time. This masinhock begins with relatively small moment release for the first 10 s . Since the amplitude of the initial waveforms is small, most methods that use amplitudes and periods of the P-wave (e.g. Wu and Kanamori, 2005) cannot correctly determine the size of the4 earthquake in the first several seconds. The current JMA system uses the peak displacement amplitude for the magnitude estimation, and the magnitude saturated at about M8 1 minute after the first P-wave arrival. . Magnitudes of smaller earthquakes can be correctly identified from the first few seconds of P- or S-wave arrivals, but this M9 event cannot be characterized in such a short time. The only way to correctly characterize the size of the Tohoku

  15. The 2012 Emilia earthquake in northern Italy: coseismic geological effects within a compressive tectonic framework

    Science.gov (United States)

    Montone, P.; Alessio, G.; Alfonsi, L.; Brunori, C.; Burrato, P.; Casula, G.; Cinti, F. R.; Civico, R.; Colini, L.; Cucci, L.; De Martini, P. M.; Falcucci, E.; Galadini, F.; Gaudiosi, G.; Gori, S.; Mariucci, M.; Moro, M.; Nappi, R.; Nardi, A.; Nave, R.; Pantosti, D.; Patera, A.; Pesci, A.; Pignone, M.; Pinzi, S.; Pucci, S.; Vannoli, P.; Venuti, A.; Villani, F.

    2012-12-01

    On May 20 2012 a Ml 5.9 seismic event hit the Emilia Po Plain area (northern Italy) triggering an intense earthquake activity along a broad area of the Plain. Nine days later, on May 29 a Ml 5.8 event occurred roughly 10 km to the SW of the first main shock; these events caused 26 victims and several injured and damages. The aftershock area extended for more than 50 km, in WNW-ESE direction, including five major aftershocks with 5.1≤Ml≤5.3 and more than two thousands of minor events. In general, the seismic sequence was confined in the upper 10 km of depth (ISIDe, http://iside.rm.ingv.it/). The focal mechanisms calculated for the main events and also for several M>4.5 aftershocks are almost all consistent with a compression (P-axes) N-S oriented due to thrust fault mechanisms. The two nodal planes, both E-W oriented, show a 40° southward and 60-70° northward dipping plane (QRCMT, Quick Regional Moment Tensors, http://autorcmt.bo.ingv.it/quicks.html), connected with the compressional regime of the area. From a tectonic point of view, the active Apennine thrust fronts, buried under the Po Plain Plio-Quaternary sediments, locally consist of three N-verging arcs. The most external structures, the active Ferrara and Mirandola thrusts and folds are responsible for the Emilia Romagna 2012 earthquake sequence. Just after the 20th May seismic event, the EMERGEO Working Group was active in surveying the epicentral area searching for coseismic geological effects. The survey lasted one month, involving about thirty researchers and technicians of the INGV in field and aerial investigations. Simultaneously, a laboratory-working group gathered, organized and interpreted the observations, processing them in the EMERGEO Information System (siE), on a GIS environment. The most common coseismic effects are: 1) liquefactions related to overpressure of aquifers hosted in buried and confined sand layers, occurring both as single cones or through several aligned vents forming

  16. High-resolution backprojection at regional distance: Application to the Haiti M7.0 earthquake and comparisons with finite source studies

    Science.gov (United States)

    Meng, L.; Ampuero, J.-P.; Sladen, A.; Rendon, H.

    2012-04-01

    A catastrophic Mw7 earthquake ruptured on 12 January 2010 on a complex fault system near Port-au-Prince, Haiti. Offshore rupture is suggested by aftershock locations and marine geophysics studies, but its extent remains difficult to define using geodetic and teleseismic observations. Here we perform the multitaper multiple signal classification (MUSIC) analysis, a high-resolution array technique, at regional distance with recordings from the Venezuela National Seismic Network to resolve high-frequency (about 0.4 Hz) aspects of the earthquake process. Our results indicate westward rupture with two subevents, roughly 35 km apart. In comparison, a lower-frequency finite source inversion with fault geometry based on new geologic and aftershock data shows two slip patches with centroids 21 km apart. Apparent source time functions from USArray further constrain the intersubevent time delay, implying a rupture speed of 3.3 km/s. The tips of the slip zones coincide with subevents imaged by backprojections. The different subevent locations found by backprojection and source inversion suggest spatial complementarity between high- and low-frequency source radiation consistent with high-frequency radiation originating from rupture arrest phases at the edges of main slip areas. The centroid moment tensor (CMT) solution and a geodetic-only inversion have similar moment, indicating most of the moment released is captured by geodetic observations and no additional rupture is required beyond where it is imaged in our preferred model. Our results demonstrate the contribution of backprojections of regional seismic array data for earthquakes down to M ≈ 7, especially when incomplete coverage of seismic and geodetic data implies large uncertainties in source inversions.

  17. Using regional moment tensors to constrain the kinematics and stress evolution of the 2010–2013 Canterbury earthquake sequence, South Island, New Zealand

    Science.gov (United States)

    Herman, Matthew W.; Herrmann, Robert B.; Benz, Harley M.; Furlong, Kevin P.

    2014-01-01

    On September 3, 2010, a MW 7.0 (U.S. Geological Survey moment magnitude) earthquake ruptured across the Canterbury Plains in South Island, New Zealand. Since then, New Zealand GNS Science has recorded over 10,000 aftershocks ML 2.0 and larger, including three destructive ~ MW 6.0 earthquakes near Christchurch. We treat the Canterbury earthquake sequence as an intraplate earthquake sequence, and compare its kinematics to an Andersonian model for fault slip in a uniform stress field. We determined moment magnitudes and double couple solutions for 150 earthquakes having MW 3.7 and larger through the use of a waveform inversion technique using data from broadband seismic stations on South Island, New Zealand. The majority (126) of these double couple solutions have strike-slip focal mechanisms, with right-lateral slip on ENE fault planes or equivalently left-lateral slip on SSE fault planes. The remaining focal mechanisms indicate reverse faulting, except for two normal faulting events. The strike-slip segments have compatible orientations for slip in a stress field with a horizontal σ1 oriented ~ N115°E, and horizontal σ3. The preference for right lateral strike-slip earthquakes suggests that these structures are inherited from previous stages of deformation. Reverse slip is interpreted to have occurred on previously existing structures in regions with an absence of existing structures optimally oriented for strike-slip deformation. Despite the variations in slip direction and faulting style, most aftershocks had nearly the same P-axis orientation, consistent with the regional σ1. There is no evidence for significant changes in these stress orientations throughout the Canterbury earthquake sequence.

  18. Subsurface geologic features of the 2011 central Virginia earthquakes revealed by airborne geophysics

    Science.gov (United States)

    Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K

    2014-01-01

    Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.

  19. Stress/strain changes and triggered seismicity at The Geysers, California

    Science.gov (United States)

    Gomberg, Joan; Davis, Scott

    1996-01-01

    The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency, or, equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.

  20. Stress/strain changes and triggered seismicity at The Geysers, California

    Science.gov (United States)

    Gomberg, J.; Davis, S.

    1996-01-01

    The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency or equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.

  1. Investigating the Local Three-dimensional Velocity Structure of the 2008 Taoyuan Earthquake Sequence of Kaohsiung, Taiwan

    Science.gov (United States)

    Shih, M. H.; Huang, B. S.

    2016-12-01

    March 4, 2008, a moderate earthquake (ML 5.2) occurred in Taoyuan district of Kaohsiung County in the southern Taiwan. It was followed by numerous aftershocks in the following 48 hours, including three events with magnitude larger than 4. The Taoyuan earthquake sequence occurred during the TAIGER (Taiwan Integrated Geodynamic Research) project which is to image lithospheric structure of Taiwan orogeny. The high-resolution waveform data of this sequence were well-recorded by a large number of recording stations belong to several different permanent and TAIGER networks all around Taiwan. We had collected the waveform data and archived to a mega database. Then, we had identified 2,340 events from database in the preliminary locating process by using 1-D velocity model. In this study, we applied the double-difference tomography to investigate not only the fault geometry of the main shock but also the detailed 3-D velocity structure in this area. A total of 3,034 events were selected from preliminary locating result and CWBSN catalog in the vicinity. The resulting aftershocks are extended along the NE-SW direction and located on a 45° SE-dipping plane which agrees to one of the nodal planes of Global CMT solution (strike = 45°, dip = 40° and rake = 119°). We can identify a clear low-velocity area which is enclosed by events next to the main shock in the final 3D velocity model. We also recognized a 45°-dipping zone which is extended to the ground surface with low-velocity; meanwhile, velocity structure variation in study area correspond with major geologic units in Taiwan.

  2. Earthquake correlations and networks: A comparative study

    Science.gov (United States)

    Krishna Mohan, T. R.; Revathi, P. G.

    2011-04-01

    We quantify the correlation between earthquakes and use the same to extract causally connected earthquake pairs. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski [M. Baiesi and M. Paczuski, Phys. Rev. E EULEEJ1539-375510.1103/PhysRevE.69.06610669, 066106 (2004)]. A network of earthquakes is then constructed from the time-ordered catalog and with links between the more correlated ones. A list of recurrences to each of the earthquakes is identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions (viz., California, Japan, and the Himalayas) are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub structure rooted on the large magnitude earthquakes. In-degree distribution is seen to be dependent on the density of events in the neighborhood. Power laws, with two regimes having different exponents, are obtained with recurrence time distribution. The first regime confirms the Omori law for aftershocks while the second regime, with a faster falloff for the larger recurrence times, establishes that pure spatial recurrences also follow a power-law distribution. The crossover to the second power-law regime can be taken to be signaling the end of the aftershock regime in an objective fashion.

  3. 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan

    Science.gov (United States)

    Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku

    2017-11-01

    We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.

  4. The failure of earthquake failure models

    Science.gov (United States)

    Gomberg, J.

    2001-01-01

    In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.

  5. Historical intensity VIII earthquakes along the Rhone valley (Valais, Switzerland): primary and secondary effects

    Energy Technology Data Exchange (ETDEWEB)

    Fritsche, S.; Faeh, D.; Schwarz-Zanetti, G.

    2012-06-15

    In recent years the upper Rhone Valley has been one of the most intensively investigated regions by the Swiss Seismological Service. The high seismicity in the region encourages research in the seismological field and one main focus has been historical seismology. This report presents the state of the art of our historical investigations by giving an overview of the effects of four damaging earthquakes with intensity larger than VII, for which a fairly large number of documents could be found and analyzed. The overview includes the events of 1584 (Aigle, epicentral intensity VIII), 1755 (Brig, epicentral intensity VIII), 1855 (Visp, epicentral intensity VIII), and 1946 (Sierre, epicentral intensity VIII for the main shock and intensity VII for the largest aftershock). The paper focuses mainly on primary and secondary effects in the epicentral region, providing the key data and a general characterization of the event. Generally, primary effects such as the reaction of the population and impact on buildings took more focus in the past. Thus building damage is more frequently described in historic documents. However, we also found a number of sources describing secondary effects such as landslides, snow avalanches, and liquefaction. Since the sources may be useful, we include citations of these documents. The 1584 Aigle event, for example, produced exceptional movements in the Lake of Geneva, which can be explained by an expanded sub aquatic slide with resultant tsunami and seiche. The strongest of the aftershocks of the 1584 event triggered a destructive landslide covering the villages Corbeyrier and Yvorne, Vaud. All macroseismic data on the discussed events are accessible through the web page of the Swiss Seismological Service (http://www.seismo.ethz.ch). (authors)

  6. Seismological studies carried out by the CEA in connection with the safety of nuclear sites

    International Nuclear Information System (INIS)

    Barbreau, A.; Ferrieux, H.; Mohammadioun, B.

    1975-01-01

    In order to evaluate the seismic risk at nuclear sites, the Department of Nuclear Safety of the French Atomic Energy Commission (CEA) has been conducting a programme of seismological studies for several years past. This programme is aimed at acquiring a better knowledge of seismic phenomena, in particular the spectral distribution of the energy of earthquakes, considered to be the only correct approach to the problem of earthquake protection, as well as a better knowledge of the seismic activity of the areas surrounding nuclear sites. The authors propose defining the design spectrum of the site on the basis of the probable energy at the source, the distance from the epicentre and the transfer function of the geological formations. The need - for the purpose of defining this spectrum - to acquire data on the characteristics of French earthquakes and on regional seismicity led the Department of Nuclear Safety to set up a network of seismic stations. It now has an observatory at the Cadarache Nuclear Research Centre and mobile stations with automatic magnetic recording for studying aftershock sequences and the activity of faults in the vicinity of nuclear sites, and for making the measurements necessary to calculate the transfer functions. With this equipment it was possible to record six aftershocks of the Oleron earthquake on 7 September 1972 close to the epicentre, and to calculate the spectra therefrom. The latter contained a lot of high frequencies, which is in agreement with the data obtained from other sources for earthquakes of low energy. The synthetic spectra calculated on the basis of one magnitude and one distance are in good agreement with the spectra obtained experimentally

  7. Laboratory generated M -6 earthquakes

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.; Lockner, David A.; Beeler, Nicholas M.

    2014-01-01

    We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.

  8. Detailed site effect estimation in the presence of strong velocity reversals within a small-aperture strong-motion array in Iceland

    KAUST Repository

    Rahpeyma, Sahar

    2016-08-11

    The rock site characterization for earthquake engineering applications in Iceland is common due to the easily exposed older bedrock and more recent volcanic lava rock. The corresponding site amplification is generally assumed to be low but has not been comprehensively quantified, especially for volcanic rock. The earthquake strong-motion of the Mw6.3 Ölfus earthquake on 29 May 2008 and 1705 of its aftershocks recorded on the first small-aperture strong-motion array (ICEARRAY I) in Iceland showed consistent and significant variations in ground motion amplitudes over short distances (<2 km) in an urban area located mostly on lava rock. This study analyses the aftershock recordings to quantify the local site effects using the Horizontal to Vertical Spectral Ratio (HVSR) and Standard Spectral Ratio (SSR) methods. Additionally, microseismic data has been collected at array stations and analyzed using the HVSR method. The results between the methods are consistent and show that while the amplification levels remain relatively low, the predominant frequency varies systematically between stations and is found to correlate with the geological units. In particular, for stations on lava rock the underlying geologic structure is characterized by repeated lava-soil stratigraphy characterized by reversals in the shear wave velocity with depth. As a result, standard modeling of HVSR using vertically incident body waves does not apply. Instead, modeling the soil structure as a two-degree-of-freedom dynamic system is found to capture the observed predominant frequencies of site amplification. The results have important implications for earthquake resistant design of structures on rock sites characterized by velocity reversals. © 2016 Elsevier Ltd

  9. Spatiotemporal Variation of Stress Drop During the 2008 Mogul, Nevada, Earthquake Swarm

    Science.gov (United States)

    Ruhl, C. J.; Abercrombie, R. E.; Smith, K. D.

    2017-10-01

    We estimate stress drops for 148 shallow (function-derived spectral ratios. Near-source, temporary broadband seismometers deployed before the Mw4.9 main shock provide high-quality records of many foreshocks and aftershocks, and an ideal opportunity to investigate uncertainties in corner frequency measurement as well as stress drop (Δσ) variation related to space, time, depth, mechanism, and magnitude. We explore uncertainties related to source model, measurement approach, cross-correlation limit, and frequency bandwidth. P (S) wave Δσ results range from 0.2 ± 0.15 (0.3 ± 0.15) to 36±20 (58±7) MPa, a variation greater than the error range of each individual estimate. Although this variation is not explained simply by any one parameter, spatiotemporal variation along the main shock fault plane is distinct: coherent clusters of high and low Δσ earthquakes are seen, and high-Δσ foreshocks correlate with an area of reduced aftershock productivity. These observations are best explained by a difference in rheology along the fault plane. Average Δσs of 3.9±1.1 (4.0±1.1) MPa using P (S) are similar to those found for earthquakes in a variety of settings, implying that these shallow, potentially fluid-driven earthquakes do not have systematically lower Δσ than average tectonic earthquakes ( 4 MPa) and, therefore, have similar (or higher, due to proximity to the surface) expected ground motions compared to typical earthquakes. The unprecedented detail achieved for these shallow, small-magnitude earthquakes confirms that Δσ, when measured precisely, is a valuable observation of physically meaningful fault zone properties and earthquake behavior.

  10. Stress transfer among en echelon and opposing thrusts and tear faults: Triggering caused by the 2003 Mw = 6.9 Zemmouri, Algeria, earthquake

    Science.gov (United States)

    Lin, J.; Stein, R.S.; Meghraoui, M.; Toda, S.; Ayadi, A.; Dorbath, C.; Belabbes, S.

    2011-01-01

    The essential features of stress interaction among earthquakes on en echelon thrusts and tear faults were investigated, first through idealized examples and then by study of thrust faulting in Algeria. We calculated coseismic stress changes caused by the 2003 Mw = 6.9 Zemmouri earthquake, finding that a large majority of the Zemmouri afterslip sites were brought several bars closer to Coulomb failure by the coseismic stresses, while the majority of aftershock nodal planes were brought closer to failure by an average of ~2 bars. Further, we calculated that the shallow portions of the adjacent Thenia tear fault, which sustained ~0.25 m slip, were brought >2 bars closer to failure. We calculated that the Coulomb stress increased by 1.5 bars on the deeper portions of the adjacent Boumerdes thrust, which lies just 10–20 km from the city of Algiers; both the Boumerdes and Thenia faults were illuminated by aftershocks. Over the next 6 years, the entire south dipping thrust system extending 80 km to the southwest experienced an increased rate of seismicity. The stress also increased by 0.4 bar on the east Sahel thrust fault west of the Zemmouri rupture. Algiers suffered large damaging earthquakes in A.D. 1365 and 1716 and is today home to 3 million people. If these shocks occurred on the east Sahel fault and if it has a ~2 mm/yr tectonic loading rate, then enough loading has accumulated to produce a Mw = 6.6–6.9 shock today. Thus, these potentially lethal faults need better understanding of their slip rate and earthquake history.

  11. Use of Archived Information by the United States National Data Center

    Science.gov (United States)

    Junek, W. N.; Pope, B. M.; Roman-Nieves, J. I.; VanDeMark, T. F.; Ichinose, G. A.; Poffenberger, A.; Woods, M. T.

    2012-12-01

    The United States National Data Center (US NDC) is responsible for monitoring international compliance to nuclear test ban treaties, acquiring data and data products from the International Data Center (IDC), and distributing data according to established policy. The archive of automated and reviewed event solutions residing at the US NDC is a valuable resource for assessing and improving the performance of signal detection, event formation, location, and discrimination algorithms. Numerous research initiatives are currently underway that are focused on optimizing these processes using historic waveform data and alphanumeric information. Identification of optimum station processing parameters is routinely performed through the analysis of archived waveform data. Station specific detector tuning studies produce and compare receiver operating characteristics for multiple detector configurations (e.g., detector type, filter passband) to identify an optimum set of processing parameters with an acceptable false alarm rate. Large aftershock sequences can inundate automated phase association algorithms with numerous detections that are closely spaced in time, which increases the number of false and/or mixed associations in automated event solutions and increases analyst burden. Archived waveform data and alphanumeric information are being exploited to develop an aftershock processor that will construct association templates to assist the Global Association (GA) application, reduce the number of false and merged phase associations, and lessen analyst burden. Statistical models are being developed and evaluated for potential use by the GA application for identifying and rejecting unlikely preliminary event solutions. Other uses of archived data at the US NDC include: improved event locations using empirical travel time corrections and discrimination via a statistical framework known as the event classification matrix (ECM).

  12. Frontal compression along the Apennines thrust system: The Emilia 2012 example from seismicity to crustal structure

    Science.gov (United States)

    Chiarabba, Claudio; De Gori, Pasquale; Improta, Luigi; Lucente, Francesco Pio; Moretti, Milena; Govoni, Aladino; Di Bona, Massimo; Margheriti, Lucia; Marchetti, Alessandro; Nardi, Anna

    2014-12-01

    The evolution of the Apennines thrust-and-fold belt is related to heterogeneous process of subduction and continental delamination that generates extension within the mountain range and compression on the outer front of the Adria lithosphere. While normal faulting earthquakes diffusely occur along the mountain chain, the sparse and poor seismicity in the compressional front does not permit to resolve the ambiguity that still exists about which structure accommodates the few mm/yr of convergence observed by geodetic data. In this study, we illustrate the 2012 Emilia seismic sequence that is the most significant series of moderate-to-large earthquakes developed during the past decades on the compressional front of the Apennines. Accurately located aftershocks, along with P-wave and Vp/Vs tomographic models, clearly reveal the geometry of the thrust system, buried beneath the Quaternary sediments of the Po Valley. The seismic sequence ruptured two distinct adjacent thrust faults, whose different dip, steep or flat, accounts for the development of the arc-like shape of the compressional front. The first shock of May 20 (Mw 6.0) developed on the middle Ferrara thrust that has a southward dip of about 30°. The second shock of May 29 (Mw 5.8) ruptured the Mirandola thrust that we define as a steep dipping (50-60°) pre-existing (Permo-Triassic) basement normal fault inverted during compression. The overall geometry of the fault system is controlled by heterogeneity of the basement inherited from the older extension. We also observe that the rupture directivity during the two main-shocks and the aftershocks concentration correlate with low Poisson ratio volumes, probably indicating that portions of the fault have experienced intense micro-damage.

  13. Reducing Variability in Stress Drop with Root-Mean Acceleration

    Science.gov (United States)

    Crempien, J.; Archuleta, R. J.

    2012-12-01

    Stress drop is a fundamental property of the earthquake source. For a given tectonic region stress drop is assumed to be constant allowing for the scaling of earthquake spectra. However, the variability of the stress drop, either for worldwide catalogs or regional catalogs, is quite large. The variability around the median value is on the order of 1.5 in log10 units. One question that continues to pervade the analysis of stress drop is whether this variability is an inherent characteristic of the Earth or is an artifact of the determination of stress drop via the use of the spectral analysis. It is simple to see that the stress drop determined by seismic moment times corner frequency cubed that errors in the corner frequency will strongly influence the variability in the stress drop. To avoid this strong dependence on corner frequency cubed, we have examined the determination of stress drop based on the approach proposed by Hanks (1979), namely using the root-mean-square acceleration. The stress drop determined using rms acceleration may be advantageous because the stress drop is only affected by the square root of the corner frequency. To test this approach we have determined stress drops for the 2000 Tottori earthquake and its aftershocks. We use both the classic method of fitting to a spectrum as well as using rms acceleration. For a preliminary analysis of eight aftershocks and the mainshock we find that the variability in stress drop is reduced by about a factor of two. This approach needs more careful analysis of more events, which will be shown at the meeting.

  14. 'Universal' Distribution of Interearthquake Times Explained

    International Nuclear Information System (INIS)

    Saichev, A.; Sornette, D.

    2006-01-01

    We propose a simple theory for the 'universal' scaling law previously reported for the distributions of waiting times between earthquakes. It is based on a largely used benchmark model of seismicity, which just assumes no difference in the physics of foreshocks, mainshocks, and aftershocks. Our theoretical calculations provide good fits to the data and show that universality is only approximate. We conclude that the distributions of interevent times do not reveal more information than what is already known from the Gutenberg-Richter and the Omori power laws. Our results reinforce the view that triggering earthquakes by other earthquakes is a key physical mechanism to understand seismicity

  15. Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence

    Science.gov (United States)

    Kadinsky-Cade, K.; Reilinger, R.; Isacks, B.

    1985-01-01

    The 1977 Caucete (San Juan) earthquake considered in the present paper occurred near the Sierra Pie de Palo in the Sierras Pampeanas tectonic province of western Argentina. In the study reported, coseismic surface deformation is combined with seismic observations (main shock and aftershocks, both teleseismic and local data) to place constraints on the geometry and slip of the main fault responsible for the 1977 earthquake. The implications of the 1977 event for long-term crustal shortening and earthquake recurrence rates in this region are also discussed. It is concluded that the 1977 Caucete earthquake was accompanied by more than 1 m of vertical uplift.

  16. GIS Based Study on Seismicity of Makran over 100 Years

    Directory of Open Access Journals (Sweden)

    Mubarik Ali

    2015-12-01

    Full Text Available The earthquakes in Makran have a history of 600 years (1483-2015. The new ventures of development, urbanization, mining, and exploration for hydrocarbons in Makran region demand recent studies on seismicity. The major tectonic earthquakes are although infrequent in Makran, but are responsible for generating tsunami in coastal areas of Pakistan and Iran and have a long tail of aftershocks of shallow to deep focal depths. The oceanic part of Arabian plate which is underthrusting Eurasian plate (northwards, contributes a major share in producing seismicity of low magnitude (ML 6 on Richter scale has a relation with the rotation of moon (lunar dates in Makran.

  17. Tohoku's earthquake of Friday March 11, 2011 (5:46 UT), magnitude 9.0, off Honshu island (Japan)

    International Nuclear Information System (INIS)

    2011-01-01

    On Friday March 11, 2011, at 5:46 UT (2:46 PM local time), a magnitude 9.0 earthquake took place at 80 km east of Honshu island (Japan). The earthquake generated a tsunami which led to the loss of the cooling systems of the Fukushima Dai-ichi and Fukushima Daini power plants. This paper describes the seismo-tectonic and historical seismic context of the Japan archipelago and the first analyses of the Tohoku earthquake impact: magnitudes of first shock and of aftershocks, impact on nuclear facilities (maximum acceleration values detected with respect to design basis values, subsidence of coastal areas and submersion of power plant platforms). (J.S.)

  18. Tohoku's earthquake of Friday March 11, 2011 (5:46 UT), magnitude 9.0, off Honshu island (Japan); Seisme de Tohoku au large de l'Ile d'Honshu (Japon) du vendredi 11 mars 2011 (5h46 TU) Magnitude = 9,0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    On Friday March 11, 2011, at 5:46 UT (2:46 PM local time), a magnitude 9.0 earthquake took place at 80 km east of Honshu island (Japan). The earthquake generated a tsunami which led to the loss of the cooling systems of the Fukushima Dai-ichi and Fukushima Daini power plants. This paper describes the seismo-tectonic and historical seismic context of the Japan archipelago and the first analyses of the Tohoku earthquake impact: magnitudes of first shock and of aftershocks, impact on nuclear facilities (maximum acceleration values detected with respect to design basis values, subsidence of coastal areas and submersion of power plant platforms). (J.S.)

  19. The Rheology of the Earth in the Intermediate Time Range

    Directory of Open Access Journals (Sweden)

    A. E. SCHEIDEGGER

    1970-06-01

    Full Text Available The evidence bearing upon the rheology of the " tectonically
    significant layers" of the Earth (" tectonosphere " in the intermediate
    time range (4 hours to 15000 years is analyzed. This evidence is
    based upon observations of rock-behavior in the laboratory, of seismic
    aftershock sequences, of Earth tides and of the decay of the Chandler wobble.
    It is shown that of the rheological models (Maxwell-material, Kelvin-material,
    and logarithmically creeping material advocated in the literature, only that
    based on logarithmic creep does not contradict any of the observational
    evidence available to date. In addition, a strength limit may be present.

  20. The September 2017 M=8.1 Chiapas and M=7.1 Puebla, Mexico, earthquakes: Chain reaction or coincidence?

    Science.gov (United States)

    Toda, S.; Stein, R. S.

    2017-12-01

    The M=8.1 and M=7.1 events struck 12 days and 600 km apart, both with an independent probability of occurrence of 0.5% per year, based on the GEAR model [Bird et al., 2015]. Are they related? First, we calculated the static stress imparted by the M=8.1 shock to the fault that ruptured in the M=7.1, and find a tiny push that would favor rupture. But the stress increase (0.2 kPa) is less than the fault would experience from the tidal stresses, and so it should be inconsequential. We next used the México Servicio Sismológico Nacional (UNAM) online catalog to look at the quakes in the month before the M=8.1 and in the 13 days since. We calculate the completeness to be M≥4.0. There are virtually no remote aftershocks from the Chiapas rupture that extend within 250 km of the M=7.1 shock during the first week after the M=8.1. So, if anything, the M=8.1 turned off for a week or more the region that ruptured in the M=7.1. Events started turning on about 2-3 days before the M=7.1, but none of those struck within 40 km of the future M=7.1 mainshock. The seismic surface waves unleashed by great earthquakes envelop the globe in just 160 minutes, and yet triggering of remote large aftershocks during these 2-3 hours is either very rare [Pollitz et al., Nature 2012] or in dispute [Fan & Shearer, 2016 vs. Yue et al., 2017]. So, the waves must trigger tiny shocks that cascade into larger shocks after some delay. Or, perhaps the stresses conveyed by the waves pump pockets of fluids that slowly diffuse into nearby fault zones, lubricating them to the point of failure [Parsons at al., 2017]. In the cases where great earthquakes are indisputably seen to trigger aftershocks at great distances or even globally, they to do so within several days, or a week at most. Since Puebla struck 12 days later, this seems to us too long a period to be explained by dynamic triggering. Even though neither quake on their own is rare, what's the chance of independent M=8.1 and M=7.1 events just 12

  1. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    Science.gov (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  2. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  3. Continuous Earthquake Observation using pop-up Ocean Bottom Seismographs (OBSs) in Suruga Bay at the Pacific Coast of Shizuoka, Japan.

    Science.gov (United States)

    Baba, H.; Ichinose, S.; HIrata, K.; Yamazaki, A.; Tsushima, H.; Nakata, K.; Nishiimiya, T.; Nagao, T.

    2017-12-01

    Tokai University and Meteorological Research Institute have been conducting seismic observation using pop-up type OBSs in the Suruga Bay since 2012. Suruga Bay is located in the Pacific coast of central Honshu, Japan, where large thrust earthquake along the Suruga trough expected to occur (Ishibashi, 1981) and often referred to as the Tokai Earthquake. OBSs deployment and retrieval have been repeated every three months at three or four sites continually. Seismicity has become active after the moderate earthquakes (M6.5 in 2009 and M6.2 in 2011) occurred in the Suruga Bay. From land based network observations, these earthquakes are thought to have occurred with related to subduction of the Philippine Sea Plate, and the depth of these moderate earthquakes were not determined with enough accuracy due to the lack of observation points in the sea areas. We will report the results of OBSs observation and the local seismicity in Suruga Bay in terms of frequency of earthquakes and hypocenter distribution. As a result of the observation, the followings have become clear. (1) Earthquakes were occurring frequently beneath Senoumi Bank in the Suruga Bay. It is thought these seismic activities might be the aftershocks of the earthquakes of M6.5 in 2009, and M6.2 in 2011. These aftershocks were located west side of the Suruga Trough axis. (2) Most of these earthquakes occurred at depths shallower than 25km, and were smaller than M2.0, and they were not detected by land based network. (3) It is clear that many earthquakes were occurring along the plate subduction zone. (4) It is conceivable that most of the determined hypocenters might be in the subducting Philippine plate because hypocenter along the plate boundary were not determined in the northern area of the Suruga Bay.

  4. Natural hazards and self-organized criticality

    International Nuclear Information System (INIS)

    Krenn, R.

    2012-01-01

    Several natural hazards exhibit power-law behavior on their frequency-size distributions. Self-organized criticality has become a promising candidate that could offer a more in-depth understanding of the origin of temporal and spatial scaling in dissipative nonequilibrium systems. The outcomes of this thesis are presented in three scientific papers followed by a concluding summary and an appendix.In paper (A) we present a semi-phenomenological approach to explain the complex scaling behavior of the Drossel-Schwabl forest-fire model (DS-FFM) in two dimensions. We derive the scaling exponent solely from the scaling exponent of the clusters' accessible perimeter. Furthermore, the unusual transition to an exponential decay is explained both qualitatively and quantitatively. The exponential decay itself could be reproduced at least qualitatively. In paper (B) we extend the DS-FFM towards anthropogenic ignition factors. The main outcomes are an increase of the scaling exponent with decreasing lightning probability as well as a splitting of the partial frequency-size distributions of lightning induced and man made fires. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results could be validated through an analysis of the Canadian Large Fire Database.In paper (C) we obtain an almost complete theory of the Olami-Feder-Christensen (OFC) model's complex spatio-temporal behavior. Synchronization pushes the system towards a critical state and generates the Gutenberg-Richter law. Desynchronization prevents the system from becoming overcritical and generates foreshocks and aftershocks. Our approach also provides a simple explanation of Omori's law. Beyond this, it explains the phenomena of foreshock migration and aftershock diffusion and the occurrence of large earthquakes without any foreshocks. A novel integer algorithm for the numerics is presented in appendix (A).(author) [de

  5. Clustered and transient earthquake sequences in mid-continents

    Science.gov (United States)

    Liu, M.; Stein, S. A.; Wang, H.; Luo, G.

    2012-12-01

    Earthquakes result from sudden release of strain energy on faults. On plate boundary faults, strain energy is constantly accumulating from steady and relatively rapid relative plate motion, so large earthquakes continue to occur so long as motion continues on the boundary. In contrast, such steady accumulation of stain energy does not occur on faults in mid-continents, because the far-field tectonic loading is not steadily distributed between faults, and because stress perturbations from complex fault interactions and other stress triggers can be significant relative to the slow tectonic stressing. Consequently, mid-continental earthquakes are often temporally clustered and transient, and spatially migrating. This behavior is well illustrated by large earthquakes in North China in the past two millennia, during which no single large earthquakes repeated on the same fault segments, but moment release between large fault systems was complementary. Slow tectonic loading in mid-continents also causes long aftershock sequences. We show that the recent small earthquakes in the Tangshan region of North China are aftershocks of the 1976 Tangshan earthquake (M 7.5), rather than indicators of a new phase of seismic activity in North China, as many fear. Understanding the transient behavior of mid-continental earthquakes has important implications for assessing earthquake hazards. The sequence of large earthquakes in the New Madrid Seismic Zone (NMSZ) in central US, which includes a cluster of M~7 events in 1811-1812 and perhaps a few similar ones in the past millennium, is likely a transient process, releasing previously accumulated elastic strain on recently activated faults. If so, this earthquake sequence will eventually end. Using simple analysis and numerical modeling, we show that the large NMSZ earthquakes may be ending now or in the near future.

  6. Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium

    Directory of Open Access Journals (Sweden)

    Semih eTurkaya

    2015-09-01

    Full Text Available The characterization and understanding of rock deformation processes due to fluid flow is a challenging problem with numerous applications. The signature of this problem can be found in Earth Science and Physics, notably with applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control, volcanic eruptions, or in industrial applications such as hydraulic-fracturing, steam-assisted gravity drainage, CO₂ sequestration operations or soil remediation. Here we investigate the link between the visual deformation and the mechanical wave signals generated due to fluid injection into porous media. In a rectangular Hele-Shaw Cell, side air injection causes burst movement and compaction of grains along with channeling (creation of high permeability channels empty of grains. During the initial compaction and emergence of the main channel, the hydraulic fracturing in the medium generates a large non-impulsive low frequency signal in the frequency range 100 Hz - 10 kHz. When the channel network is established, the relaxation of the surrounding medium causes impulsive aftershock-like events, with high frequency (above 10 kHz acoustic emissions, the rate of which follows an Omori Law. These signals and observations are comparable to seismicity induced by fluid injection. Compared to the data obtained during hydraulic fracturing operations, low frequency seismicity with evolving spectral characteristics have also been observed. An Omori-like decay of microearthquake rates is also often observed after injection shut-in, with a similar exponent p≃0.5 as observed here, where the decay rate of aftershock follows a scaling law dN/dt ∝(t-t₀-p . The physical basis for this modified Omori law is explained by pore pressure diffusion affecting the stress relaxation.

  7. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Science.gov (United States)

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  8. Correlation of Foreshock Occurrence with Mainshock Depth, Rake, and Magnitude from the High Precision Catalog for Northern California

    Science.gov (United States)

    Schaff, D. P.; Waldhauser, F.; Lerner-Lam, A.

    2010-12-01

    Foreshocks are perhaps the best-documented and most undisputed precursors to some large earthquakes. The question remains, however, if foreshocks have any more predictive power for future mainshocks than any other earthquake. Several researchers argue for a single unifying triggering law for foreshocks, mainshocks, and aftershocks. An alternate model is that foreshocks are the byproduct of an aseismic pre-slip phase that scales with mainshock magnitude. In this case foreshocks are different than other earthquakes and have predictive value for the mainshock location, origin time, and magnitude. We examine 612 mainshocks with M ≥ 4 from the cross-correlation double-difference catalog for northern California. 235 (44%) of these had foreshock sequences, providing us with a data set more than an order of magnitude larger than those used in previous studies. We are able to confirm with improved accuracy correlations of foreshock occurrence and characteristics with depth. The proportion of mainshocks with associated foreshocks, the number of foreshocks in the sequence, the foreshock duration, and the foreshock radius in map view all decrease with increasing depth, all with statistical significance above 95%. This supports models where increasing normal stress due to lithostatic load inhibits foreshock occurrence. Other M ≥ 4 events that were classified as aftershocks of larger events did not show the depth dependence. However, our analysis does not confirm a previous observation that increased normal stress due to tectonic loading appears to inhibit foreshock occurrence. We observe a negative correlation of foreshock magnitude with foreshock duration which is consistent with a model of mainshocks triggered by increased pore pressure. We observe a statistically significant relationship between foreshock magnitude and mainshock magnitude, lending support to the pre-slip model.

  9. Analysis of short time-space range seismicity patterns in Italy

    Directory of Open Access Journals (Sweden)

    M. Imotof

    1997-06-01

    Full Text Available In our paper we analyze the data base obtained from the observations of the Italian Seismological Network from 1975 to 1994 by using a simple algotithm to determine the rate of occurrence of seismic events condi- tioned by the occurrence of previous events after a period of quiescence. The number of observed pairs of earthquakes depends on several parameters: the magnitude threshold of the two events, the spatial and tempo- ral ranges of the quiescence period preceding the first (non aftershock event, the time elapsed between the first and the second events and the spatial dimension of the alarm area. The Akaike information criterion was adopted to assess the optimal set of space-time parameters used in the definition of non-aftershock (events not related to a stronger previous one. In Central Italy, the rate of M ³3.8 earthquakes preceded by at least one M ~ 3.3 foreshock within 14.1 km and 2 days is 30%, while the rate of M ~ 3.3 earthquakes followed by a M ~ 3.8 mainshock in the same space time range is 7%. We observed that the probability that an earthquake of magnitude MI will be followed by an earthquake of magnitude M2 (success rate fits the law log À = a+b (Mi -M2 with b approximately equal to l. By computing the success rate for given values of magnitude threshold of the first and the second events over a dense grid of spatial coordinates, we obtained maps of this feature over the investigated area. The results of this process document variations larger than a factor of five in the success rate over the Italian territory.

  10. Foreshock occurrence before large earthquakes

    Science.gov (United States)

    Reasenberg, P.A.

    1999-01-01

    Rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured in two worldwide catalogs over ???20-year intervals. The overall rates observed are similar to ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering based on patterns of small and moderate aftershocks in California. The aftershock model was extended to the case of moderate foreshocks preceding large mainshocks. Overall, the observed worldwide foreshock rates exceed the extended California generic model by a factor of ???2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events, a large majority, composed of events located in shallow subduction zones, had a high foreshock rate, while a minority, located in continental thrust belts, had a low rate. These differences may explain why previous surveys have found low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggests the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich. If this is so, then the California generic model may significantly underestimate the conditional probability for a very large (M ??? 8) earthquake following a potential (M ??? 7) foreshock in Cascadia. The magnitude differences among the identified foreshock-mainshock pairs in the Harvard catalog are consistent with a uniform

  11. A 30-year history of earthquake crisis communication in California and lessons for the future

    Science.gov (United States)

    Jones, L.

    2015-12-01

    The first statement from the US Geological Survey to the California Office of Emergency Services quantifying the probability of a possible future earthquake was made in October 1985 about the probability (approximately 5%) that a M4.7 earthquake located directly beneath the Coronado Bay Bridge in San Diego would be a foreshock to a larger earthquake. In the next 30 years, publication of aftershock advisories have become routine and formal statements about the probability of a larger event have been developed in collaboration with the California Earthquake Prediction Evaluation Council (CEPEC) and sent to CalOES more than a dozen times. Most of these were subsequently released to the public. These communications have spanned a variety of approaches, with and without quantification of the probabilities, and using different ways to express the spatial extent and the magnitude distribution of possible future events. The USGS is re-examining its approach to aftershock probability statements and to operational earthquake forecasting with the goal of creating pre-vetted automated statements that can be released quickly after significant earthquakes. All of the previous formal advisories were written during the earthquake crisis. The time to create and release a statement became shorter with experience from the first public advisory (to the 1988 Lake Elsman earthquake) that was released 18 hours after the triggering event, but was never completed in less than 2 hours. As was done for the Parkfield experiment, the process will be reviewed by CEPEC and NEPEC (National Earthquake Prediction Evaluation Council) so the statements can be sent to the public automatically. This talk will review the advisories, the variations in wording and the public response and compare this with social science research about successful crisis communication, to create recommendations for future advisories

  12. Inversion of Orkney M5.5 earthquake South Africa using strain meters at very close distances

    Science.gov (United States)

    Yasutomi, T.; Mori, J. J.; Yamada, M.; Ogasawara, H.; Okubo, M.; Ogasawara, H.; Ishida, A.

    2017-12-01

    The largest event recorded in a South African gold mining region, a M5.5 earthquake took place near Orkney on 5 August 2014. The mainshock and afterhocks were recorded by 46 geophones at 2-3 km depths, 3 Ishii borehole strainmeters at 2.9km depth, and 17 surface strong motion instruments at close distances. The upper edge of the planar distribution of aftershock activity dips almost vertically and was only several hundred meters below the sites where the strainmeters were installed. In addition the seismic data, drilling across this fault is now in progress (Jun 2017 to December 2017) and will contribute valuable geological and stress information. Although the geophones data were saturated during the mainshock, the strainmeters recorded clear nearfield waveforms. We try to model the source of the M5.5 mainshock using the nearfield strainmeter data. Two strain meters located at same place, depth at 2.8km. Remaining one is located depth at 2.9km. Distance of each other is only 150m. Located at depth 2.9km recorded large stable strain, on the other hand, located at depth 2.8 km recorded three or four times smaller stable strain than 2.9km. These data indicates the distance between M5.5 fault and 2.9km depth strainmeter is a few hundred meters order. The strain Green functions were calculated assuming an infinite medium and using a finite difference method. We use small aftershocks to verify the Green function. Matching of the waveforms for the small events validates and Green functions used for the mainshock inversion. We present a model of the source rupture using these strain data. The nearfield data provide good resolution of the nearby earthquake rupture. There are two large subevents, one near the hypocenter and the second several hundred meters to the west.

  13. Space Geodetic Observations and Modeling of 2016 Mw 5.9 Menyuan Earthquake: Implications on Seismogenic Tectonic Motion

    Directory of Open Access Journals (Sweden)

    Yongsheng Li

    2016-06-01

    Full Text Available Determining the relationship between crustal movement and faulting in thrust belts is essential for understanding the growth of geological structures and addressing the proposed models of a potential earthquake hazard. A Mw 5.9 earthquake occurred on 21 January 2016 in Menyuan, NE Qinghai Tibetan plateau. We combined satellite interferometry from Sentinel-1A Terrain Observation with Progressive Scans (TOPS images, historical earthquake records, aftershock relocations and geological data to determine fault seismogenic structural geometry and its relationship with the Lenglongling faults. The results indicate that the reverse slip of the 2016 earthquake is distributed on a southwest dipping shovel-shaped fault segment. The main shock rupture was initiated at the deeper part of the fault plane. The focal mechanism of the 2016 earthquake is quite different from that of a previous Ms 6.5 earthquake which occurred in 1986. Both earthquakes occurred at the two ends of a secondary fault. Joint analysis of the 1986 and 2016 earthquakes and aftershocks distribution of the 2016 event reveals an intense connection with the tectonic deformation of the Lenglongling faults. Both earthquakes resulted from the left-lateral strike-slip of the Lenglongling fault zone and showed distinct focal mechanism characteristics. Under the shearing influence, the normal component is formed at the releasing bend of the western end of the secondary fault for the left-order alignment of the fault zone, while the thrust component is formed at the restraining bend of the east end for the right-order alignment of the fault zone. Seismic activity of this region suggests that the left-lateral strike-slip of the Lenglongling fault zone plays a significant role in adjustment of the tectonic deformation in the NE Tibetan plateau.

  14. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    Science.gov (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  15. Spatial Distribution of earthquakes off the coast of Fukushima Two Years after the M9 Earthquake: the Southern Area of the 2011 Tohoku Earthquake Rupture Zone

    Science.gov (United States)

    Yamada, T.; Nakahigashi, K.; Shinohara, M.; Mochizuki, K.; Shiobara, H.

    2014-12-01

    Huge earthquakes cause vastly stress field change around the rupture zones, and many aftershocks and other related geophysical phenomenon such as geodetic movements have been observed. It is important to figure out the time-spacious distribution during the relaxation process for understanding the giant earthquake cycle. In this study, we pick up the southern rupture area of the 2011 Tohoku earthquake (M9.0). The seismicity rate keeps still high compared with that before the 2011 earthquake. Many studies using ocean bottom seismometers (OBSs) have been doing since soon after the 2011 Tohoku earthquake in order to obtain aftershock activity precisely. Here we show one of the studies at off the coast of Fukushima which is located on the southern part of the rupture area caused by the 2011 Tohoku earthquake. We deployed 4 broadband type OBSs (BBOBSs) and 12 short-period type OBSs (SOBS) in August 2012. Other 4 BBOBSs attached with absolute pressure gauges and 20 SOBSs were added in November 2012. We recovered 36 OBSs including 8 BBOBSs in November 2013. We selected 1,000 events in the vicinity of the OBS network based on a hypocenter catalog published by the Japan Meteorological Agency, and extracted the data after time corrections caused by each internal clock. Each P and S wave arrival times, P wave polarity and maximum amplitude were picked manually on a computer display. We assumed one dimensional velocity structure based on the result from an active source experiment across our network, and applied time corrections every station for removing ambiguity of the assumed structure. Then we adopted a maximum-likelihood estimation technique and calculated the hypocenters. The results show that intensive activity near the Japan Trench can be seen, while there was a quiet seismic zone between the trench zone and landward high activity zone.

  16. Prediction of site specific ground motion for large earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1990-01-01

    In this paper, we apply the semi-empirical synthesis method by IRIKURA (1983, 1986) to the estimation of site specific ground motion using accelerograms observed at Kumatori in Osaka prefecture. Target earthquakes used here are a comparatively distant earthquake (Δ=95 km, M=5.6) caused by the YAMASAKI fault and a near earthquake (Δ=27 km, M=5.6). The results obtained are as follows. 1) The accelerograms from the distant earthquake (M=5.6) are synthesized using the aftershock records (M=4.3) for 1983 YAMASAKI fault earthquake whose source parameters have been obtained by other authors from the hypocentral distribution of the aftershocks. The resultant synthetic motions show a good agreement with the observed ones. 2) The synthesis for a near earthquake (M=5.6, we call this target earthquake) are made using a small earthquake which occurred in the neighborhood of the target earthquake. Here, we apply two methods for giving the parameters for synthesis. One method is to use the parameters of YAMASAKI fault earthquake which has the same magnitude as the target earthquake, and the other is to use the parameters obtained from several existing empirical formulas. The resultant synthetic motion with the former parameters shows a good agreement with the observed one, but that with the latter does not. 3) We estimate the source parameters from the source spectra of several earthquakes which have been observed in this site. Consequently we find that the small earthquakes (M<4) as Green's functions should be carefully used because the stress drops are not constant. 4) We propose that we should designate not only the magnitudes but also seismic moments of the target earthquake and the small earthquake. (J.P.N.)

  17. What Can Sounds Tell Us About Earthquake Interactions?

    Science.gov (United States)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  18. Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory

    Science.gov (United States)

    Zeng, Yuehua

    2017-01-01

    This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.

  19. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    Science.gov (United States)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  20. Coseismic and Early Post-Seismic Slip Distributions of the 2012 Emilia (Northern Italy) Seismic Sequence: New Insights in the Faults Activation and Resulting Stress Changes on Adjacent Faults

    Science.gov (United States)

    Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.

    2015-12-01

    The 2012 Emilia sequence (main shocks Mw 6.1 May 20 and Mw 5.9 May 29) ruptured two thrust segments of a ~E-W trending fault system of the buried Ferrara Arc, along a portion of the compressional system of the Apennines that had remained silent during past centuries. Here we use the rupture geometry constrained by the aftershocks and new geodetic data (levelling, InSAR and GPS measurements) to estimate an improved coseismic slip distribution of the two main events. In addition, we use post-seismic displacements, described and analyzed here for the first time, to infer a brand new post-seismic slip distribution of the May 29 event in terms of afterslip on the same coseismic plane. In particular, in this study we use a catalog of precisely relocated aftershocks to explore the different proposed geometries of the proposed thrust segments that have been published so far and estimate the coseismic and post-seismic slip distributions of the ruptured planes responsible for the two main seismic events from a joint inversion of the geodetic data.Joint inversion results revealed that the two earthquakes ruptured two distinct planar thrust faults, characterized by single main coseismic patches located around the centre of the rupture planes, in agreement with the seismological and geological information pointing out the Ferrara and the Mirandola thrust faults, as the causative structures of the May 20 and May 29 main shocks respectively.The preferred post-seismic slip distribution related to the 29 May event, yielded to a main patch of afterslip (equivalent to a Mw 5.6 event) located westward and up-dip of the main coseismic patch, suggesting that afterslip was triggered at the edges of the coseismic asperity. We then use these co- and post-seismic slip distribution models to calculate the stress changes on adjacent fault.

  1. The May 20 (MW 6.1) and 29 (MW 6.0), 2012, Emilia (Po Plain, northern Italy) earthquakes: New seismotectonic implications from subsurface geology and high-quality hypocenter location

    Science.gov (United States)

    Carannante, Simona; Argnani, Andrea; Massa, Marco; D'Alema, Ezio; Lovati, Sara; Moretti, Milena; Cattaneo, Marco; Augliera, Paolo

    2015-08-01

    This study presents new geological and seismological data that are used to assess the seismic hazard of a sector of the Po Plain (northern Italy), a large alluvial basin hit by two strong earthquakes on May 20 (MW 6.1) and May 29 (MW 6.0), 2012. The proposed interpretation is based on high-quality relocation of 5369 earthquakes ('Emilia sequence') and a dense grid of seismic profiles and exploration wells. The analyzed seismicity was recorded by 44 seismic stations, and initially used to calibrate new one-dimensional and three-dimensional local Vp and Vs velocity models for the area. Considering these new models, the initial sparse hypocenters were then relocated in absolute mode and adjusted using the double-difference relative location algorithm. These data define a seismicity that is elongated in the W-NW to E-SE directions. The aftershocks of the May 20 mainshock appear to be distributed on a rupture surface that dips ~ 45° SSW, and the surface projection indicates an area ~ 10 km wide and 23 km long. The aftershocks of the May 29 mainshock followed a steep rupture surface that is well constrained within the investigated volume, whereby the surface projection of the blind source indicates an area ~ 6 km wide and 33 km long. Multichannel seismic profiles highlight the presence of relevant lateral variations in the structural style of the Ferrara folds that developed during the Pliocene and Pleistocene. There is also evidence of a Mesozoic extensional fault system in the Ferrara arc, with faults that in places have been seismically reactivated. These geological and seismological observations suggest that the 2012 Emilia earthquakes were related to ruptures along blind fault surfaces that are not part of the Pliocene-Pleistocene structural system, but are instead related to a deeper system that is itself closely related to re-activation of a Mesozoic extensional fault system.

  2. Relating triggering processes in lab experiments with earthquakes.

    Science.gov (United States)

    Baro Urbea, J.; Davidsen, J.; Kwiatek, G.; Charalampidou, E. M.; Goebel, T.; Stanchits, S. A.; Vives, E.; Dresen, G.

    2016-12-01

    Statistical relations such as Gutenberg-Richter's, Omori-Utsu's and the productivity of aftershocks were first observed in seismology, but are also common to other physical phenomena exhibiting avalanche dynamics such as solar flares, rock fracture, structural phase transitions and even stock market transactions. All these examples exhibit spatio-temporal correlations that can be explained as triggering processes: Instead of being activated as a response to external driving or fluctuations, some events are consequence of previous activity. Although different plausible explanations have been suggested in each system, the ubiquity of such statistical laws remains unknown. However, the case of rock fracture may exhibit a physical connection with seismology. It has been suggested that some features of seismology have a microscopic origin and are reproducible over a vast range of scales. This hypothesis has motivated mechanical experiments to generate artificial catalogues of earthquakes at a laboratory scale -so called labquakes- and under controlled conditions. Microscopic fractures in lab tests release elastic waves that are recorded as ultrasonic (kHz-MHz) acoustic emission (AE) events by means of piezoelectric transducers. Here, we analyse the statistics of labquakes recorded during the failure of small samples of natural rocks and artificial porous materials under different controlled compression regimes. Temporal and spatio-temporal correlations are identified in certain cases. Specifically, we distinguish between the background and triggered events, revealing some differences in the statistical properties. We fit the data to statistical models of seismicity. As a particular case, we explore the branching process approach simplified in the Epidemic Type Aftershock Sequence (ETAS) model. We evaluate the empirical spatio-temporal kernel of the model and investigate the physical origins of triggering. Our analysis of the focal mechanisms implies that the occurrence

  3. Earthquake statistics, spatiotemporal distribution of foci and source mechanisms - a key to understanding of the West Bohemia/Vogtland earthquake swarms

    Science.gov (United States)

    Horálek, Josef; Čermáková, Hana; Fischer, Tomáš

    2016-04-01

    Earthquake swarms are sequences of numerous events closely clustered in space and time and do not have a single dominant mainshock. A few of the largest events in a swarm reach similar magnitudes and usually occur throughout the course of the earthquake sequence. These attributes differentiate earthquake swarms from ordinary mainshock-aftershock sequences. Earthquake swarms occur worldwide, in diverse geological units. The swarms typically accompany volcanic activity at margins of the tectonic plate but also occur in intracontinental areas where strain from tectonic-plate movement is small. The origin of earthquake swarms is still unclear. The swarms typically occur at the plate margins but also in intracontinental areas. West Bohemia-Vogtland represents one of the most active intraplate earthquake-swarm areas in Europe. It is characterised by a frequent reoccurrence of ML 2.8 swarm events are located in a few dense clusters which implies step by step rupturing of one or a few asperities during the individual swarms. The source mechanism patters (moment-tensor description, MT) of the individual swarms indicate several families of the mechanisms, which fit well geometry of respective fault segments. MTs of the most events signify pure shears except for the 1997-swarm events the MTs of which indicates a combine sources including both shear and tensile components. The origin of earthquake swarms is still unclear. Nevertheless, we infer that the individual earthquake swarms in West Bohemia-Vogtland are mixture of the mainshock-aftershock sequences which correspond to step by step rupturing of one or a few asperities. The swarms occur on short fault segments with heterogeneous stress and strength, which may be affected by pressurized crustal fluids reducing normal component of the tectonic stress and lower friction. This way critically loaded faults are brought to failure and the swarm activity is driven by the differential local stress.

  4. Seismicity and source spectra analysis in Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2016-12-01

    The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid

  5. The M w = 5.8 14 August 2016 middle Sakhalin earthquake on a boundary between Okhotsk and Eurasian (Amurian) plates

    Science.gov (United States)

    Konovalov, A. V.; Stepnov, A. A.; Safonov, D. A.; Kozhurin, A. I.; Pavlov, A. S.; Gavrilov, A. V.; Manaychev, K. A.; Tomilev, D. Ye.; Takahashi, H.; Ichiyanagi, M.

    2018-04-01

    An earthquake with the moment magnitude M w = 5.8 occurred in the middle part of the Sakhalin Island, Russian Federation, on 14 August 2016, at 11:17 a.m. UTC. The earthquake source was located west of the Central Sakhalin Fault Zone, which is considered to mark the boundary between the Okhotsk and Eurasian (Amurian) plates. Moment tensor solution of the mainshock as well as the configuration of aftershock cloud suggests that the earthquake was caused by slip on a SW-dipping reverse fault. For the first time for Sakhalin, we have got the felt reports unified in accordance with DYFI. We also analyzed observed PGA values and, based on them, produced shaking maps.

  6. EFFECTS OF THE 1983 COALINGA, CALIFORNIA, EARTHQUAKE ONCREEP ALONG THE SAN ADREAS FAULT.

    Science.gov (United States)

    Mavko, Gerald M.; Schulz, Sandra; Brown, Beth D.

    1985-01-01

    The M//L approximately equals 6. 5 earthquake that occurred near Coalinga, California, on May 2, 1983 induced changes in near-surface fault slip along the San Andreas fault. Coseismic steps were observed by creepmeters along a 200-km section of the San Andreas. some of the larger aftershocks induced additional steps, both right-lateral and left-lateral, and in general the sequence disrupted observed creep at several sites from preseismic long-term patterns. Static dislocation models can approximately explain the magnitudes and distribution of the larger coseismic steps on May 2. The smaller, more distant steps appear to be the abrupt release of accumulated slip, triggered by the coseismic strain changes, but independent of the strain change amplitudes.

  7. Chilean earthquake and identity in the nerudian letter

    Directory of Open Access Journals (Sweden)

    Luis Rubilar Solís

    2011-11-01

    Full Text Available Given the geo-physic consistency of the narrow Chilean territory, extended between volcanoes and tectonic plates, the occurrence of natural catastrophes has been diachronic in its bicentennial existence as a nation. The oral as well as the written traditions have expressed this seismic nature as an ancestral ingredient of national identity. In Neruda's vital circumstances (1904-1973 four earthquakes took place, whose semiotic aftershocks resound in his writing. Noticing the telluric fate in this fi nis terrae, the poet's voice invites us to avoid mechanical and collective forgetfulness, warning us to install in the social imagination preventive attitudes to face futures disasters.

  8. Precursory diffuse carbon dioxide degassing signature related to a 5.1 magnitude earthquake in El Salvador, Central America

    Science.gov (United States)

    Salazar, J. M. L.; Pérez, N. M.; Hernández, P. A.; Soriano, T.; Barahona, F.; Olmos, R.; Cartagena, R.; López, D. L.; Lima, R. N.; Melián, G.; Galindo, I.; Padrón, E.; Sumino, H.; Notsu, K.

    2002-12-01

    Anomalous changes in the diffuse emission of carbon dioxide have been observed before some of the aftershocks of the 13 February 2001 El Salvador earthquake (magnitude 6.6). A significant increase in soil CO 2 efflux was detected 8 days before a 5.1 magnitude earthquake on 8 May 2001 25 km away from the observation site. In addition, pre- and co-seismic CO 2 efflux variations have also been observed related to the onset of a seismic swarm beneath San Vicente volcano on May 2001. Strain changes and/or fluid pressure fluctuations prior to earthquakes in the crust are hypothesized to be responsible for the observed variations in gas efflux at the surface environment of San Vicente volcano.

  9. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?

    Science.gov (United States)

    Stevens, Nicola; Erasmus, B F N; Archibald, S; Bond, W J

    2016-09-19

    Woody encroachment in 'open' biomes like grasslands and savannahs is occurring globally. Both local and global drivers, including elevated CO2, have been implicated in these increases. The relative importance of different processes is unresolved as there are few multi-site, multi-land-use evaluations of woody plant encroachment. We measured 70 years of woody cover changes over a 1020 km(2) area covering four land uses (commercial ranching, conservation with elephants, conservation without elephants and communal rangelands) across a rainfall gradient in South African savannahs. Different directions of woody cover change would be expected for each different land use, unless a global factor is causing the increases. Woody cover change was measured between 1940 and 2010 using the aerial photo record. Detection of woody cover from each aerial photograph was automated using eCognitions' Object-based image analysis (OBIA). Woody cover doubled in all land uses across the rainfall gradient, except in conservation areas with elephants in low-rainfall savannahs. Woody cover in 2010 in low-rainfall savannahs frequently exceeded the maximum woody cover threshold predicted for African savannahs. The results indicate that a global factor, of which elevated CO2 is the likely candidate, may be driving encroachment. Elephants in low-rainfall savannahs prevent encroachment and localized megafaunal extinction is a probable additional cause of encroachment.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  10. The 2017 North Korea M6 seismic sequence: moment tensor, source time function, and aftershocks

    Science.gov (United States)

    Ni, S.; Zhan, Z.; Chu, R.; He, X.

    2017-12-01

    On September 3rd, 2017, an M6 seismic event occurred in North Korea, with location near previous nuclear test sites. The event features strong P waves and short period Rayleigh waves are observed in contrast to weak S waves, suggesting mostly explosion mechanism. We performed joint inversion for moment tensor and depth with both local and teleseismic waveforms, and find that the event is shallow with mostly isotropic yet substantial non-isotropic components. Deconvolution of seismic waveforms of this event with respect to previous nuclear test events shows clues of complexity in source time function. The event is followed by smaller earthquakes, as early as 8.5 minutes and lasted at least to October. The later events occurred in a compact region, and show clear S waves, suggesting double couple focal mechanism. Via analyzing Rayleigh wave spectrum, these smaller events are found to be shallow. Relative locations, difference in waveforms of the events are used to infer their possible links and generation mechanism.

  11. Co- and postseismic slip distribution for the 2011 March 9 earthquake based on the geodetic data: Role on the initiation of the 2011 Tohoku earthquake

    Science.gov (United States)

    Ohta, Y.; Hino, R.; Inazu, D.; Ohzono, M.; Mishina, M.; Nakajima, J.; Ito, Y.; Sato, T.; Tamura, Y.; Fujimoto, H.; Tachibana, K.; Demachi, T.; Osada, Y.; Shinohara, M.; Miura, S.

    2012-04-01

    A large foreshock with M7.3 occurred on March 9, 2011 at the subducting Pacific plate interface followed by the M9.0 Tohoku earthquake 51 hours later. We propose a slip distribution of the foreshock deduced from dense inland GPS sites and Ocean Bottom Pressure gauge (OBP) sites. The multiple OBP gauges were installed before the M7.3 foreshock in and around the focal area. We succeed to collect the OBP gauge data in 9 sites, which included two cabled OBPs in off Kamaishi (TM1, TM2). The inland GPS horizontal coseismic displacements are estimated based on baseline analyses to show the broad area of displacement field up to ~30mm directing to the focal area. In contrast, there is no coherent signal in the vertical components. The several OBP sites, for example, P2 and P6 sites located the westward from the epicenter of the foreshock clearly detected the coseismic displacement. The estimated coseismic displacement reached more than 100mm in P6 sites. Intriguingly, GJT3 sites, which the most nearly OBP sites from the epicenter, did not show the significant displacement. Based on the inland GPS sites and OBPs data, we estimated a coseismic slip distribution in the subducting plate interface. The estimated slip distribution can explain observations including the vertical displacement obtained at the OBP sites. The amount of moment release is equivalent to Mw 7.2. The spatio-temporal aftershock distribution of the foreshock shows a southward migration from our estimated fault model. We suggest that aseismic slip occurred after the M7.3 earthquake. The onshore GPS data also supports the occurrence of the afterslip in the southwestward area of the coseismic fault. We estimated the sub-daily coordinates every three hours at the several coastal GPS sites to reveal the time evolutional sequences suggesting the postseismic deformation, especially in the horizontal components. We also examine volumetric strain data at Kinka-san Island, which is situated at the closest distance

  12. The 2006-2007 Kuril Islands great earthquake sequence

    Science.gov (United States)

    Lay, T.; Kanamori, H.; Ammon, C.J.; Hutko, Alexander R.; Furlong, K.; Rivera, L.

    2009-01-01

    The southwestern half of a ???500 km long seismic gap in the central Kuril Island arc subduction zone experienced two great earthquakes with extensive preshock and aftershock sequences in late 2006 to early 2007. The nature of seismic coupling in the gap had been uncertain due to the limited historical record of prior large events and the presence of distinctive upper plate, trench and outer rise structures relative to adjacent regions along the arc that have experienced repeated great interplate earthquakes in the last few centuries. The intraplate region seaward of the seismic gap had several shallow compressional events during the preceding decades (notably an MS 7.2 event on 16 March 1963), leading to speculation that the interplate fault was seismically coupled. This issue was partly resolved by failure of the shallow portion of the interplate megathrust in an MW = 8.3 thrust event on 15 November 2006. This event ruptured ???250 km along the seismic gap, just northeast of the great 1963 Kuril Island (Mw = 8.5) earthquake rupture zone. Within minutes of the thrust event, intense earthquake activity commenced beneath the outer wall of the trench seaward of the interplate rupture, with the larger events having normal-faulting mechanisms. An unusual double band of interplate and intraplate aftershocks developed. On 13 January 2007, an MW = 8.1 extensional earthquake ruptured within the Pacific plate beneath the seaward edge of the Kuril trench. This event is the third largest normal-faulting earthquake seaward of a subduction zone on record, and its rupture zone extended to at least 33 km depth and paralleled most of the length of the 2006 rupture. The 13 January 2007 event produced stronger shaking in Japan than the larger thrust event, as a consequence of higher short-period energy radiation from the source. The great event aftershock sequences were dominated by the expected faulting geometries; thrust faulting for the 2006 rupture zone, and normal faulting for

  13. Rapid GNSS and Data Communication System Deployments In Chile and Argentina Following the M8.8 Maule Earthquake

    Science.gov (United States)

    Blume, F.; Meertens, C. M.; Brooks, B. A.; Bevis, M. G.; Smalley, R.; Parra, H.; Baez, J.

    2010-12-01

    Because the signal is so big, great earthquakes allow us to make quantum leaps in our understanding of Earth deformation process and material properties. The Maule earthquake, with its occurrence near a large subaerial landmass and the large numbers of instruments available to study it, will surely become one of the most important geophysical events in modern memory. Much of the important signal, however, decays and changes rapidly in the short-term following the event and so a rapid response is necessary. Actually delivering the data from the CGPS response stations, however, represents an intellectual challenge in terms of properly matching the engineering realities with the scientific desiderata. We expect multiple major science advances to come from these data: (1) Understanding earthquake and tsunami-genesis via use of the coseismic displacement field to create the most well-constrained fault slip and tsunami-genesis models. (2) The role of stress loading on both the principal thrust plane and subsidiary planes. (3) The relationship between fault afterslip to the main event as well as to the distribution of aftershocks (4) Study of large aftershocks jointly using conventional seismology and high-rate GPS coseismic displacement seismogram. (5) Rheological behavior of the fault interface. (6) The mechanical response of the bulk earth to large stress perturbations. Within 10 days of the earthquake 20 complete GPS systems were delivered by UNAVCO personnel to IGM and OSU staff in Santiago, and 5 were shipped via diplomatic pouch to Argentina. Consisting of of 10 Trimble NetRS and 15 Topcon GB-1000 receivers, the units were deployed througout the affected area during the following three weeks, using welded-in-place steel tripod monuments driven into soil or drilled into bedrock, or steel masts. Additional GPS hardware was procured from cooperating institutions and donated by GPS manufacturers, and a total of 43 post-earthquake GPS stations are continuously operating

  14. Field Investigation of Surface Deformation Induced by the 2016 Meinong Earthquake and its Implications to Regional Geological Structures

    Science.gov (United States)

    Yi, De-Cheng; Chuang, Ray Y.; Lin, Ching-Weei

    2017-04-01

    We demonstrate mapping results of a newly-identified active folding-associated fault in southwestern Taiwan, which was triggered by the distant ML 6.6 Meinong earthquake in 2016. The 14.6-km-deep main shock occurred in Meinong at 3:57 (GMT +08) on February 6th while a series of 21-27 km deep aftershocks were induced after 160 seconds in Guanmiao, where is 25km NW away from the epicenter of the main shock. The focal mechanism of the Meinong main shock shows a westward oblique thrust with the fault plane of 275°/42°/17° (strike/dip/rake) but Guanmiao aftershocks show the N-S striking eastward normal movement. The study area locates at an on-going fold-and-thrust belt close to the deformation front of Taiwan orogeny with high rates of convergence, uplift and erosion. The geology of SW Taiwan is characterized by the 3-km-thick mudstones with high fluid pressure underlying the loose sedimentary rocks forming mud diapirs or mud-core anticlines. The significance of the Meinong earthquake is (1) aftershocks are far away from the main shock, and (2) the surface cracks partially distributed systematically along lineaments observed from InSAR, which has never been recognized as geological structures before. This study aims to establish possible kinematic processes of shallow deformation induced by the Meinong earthquake. We mapped surface cracks around the lineaments by using hand-held GPS and measured surface cracks by the compass and vernier. Among 249 kinematic data measured from 244 observed surface cracks and ruptures, the type of deformation was mostly identified as dilation or lateral translation and only 4 data were compressional deformation. The overall surface displacement moved to the northwest and west, consistent with the regional coseismic movement. The opening of the surface cracks range from 0.5 to 105 mm and 85% of them are less than 10 mm. Preseismic deformed features such as failure of the retaining wall were also observed along the western and eastern

  15. USGS-WHOI-DPRI Coulomb Stress-Transfer Model for the January 12, 2010, MW=7.0 Haiti Earthquake

    Science.gov (United States)

    Lin, Jian; Stein, Ross S.; Sevilgen, Volkan; Toda, Shinji

    2010-01-01

    Using calculated stress changes to faults surrounding the January 12, 2010, rupture on the Enriquillo Fault, and the current (January 12 to 26, 2010) aftershock productivity, scientists from the U.S. Geological Survey (USGS), Woods Hole Oceanographic Institution (WHOI), and Disaster Prevention Research Institute, Kyoto University (DPRI) have made rough estimates of the chance of a magnitude (Mw)=7 earthquake occurring during January 27 to February 22, 2010, in Haiti. The probability of such a quake on the Port-au-Prince section of the Enriquillo Fault is about 2 percent, and the probability for the section to the west of the January 12, 2010, rupture is about 1 percent. The stress changes on the Septentrional Fault in northern Haiti are much smaller, although positive.

  16. Inductive seismo-electromagnetic effect in relation to seismogenic ULF emission

    Directory of Open Access Journals (Sweden)

    O. Molchanov

    2001-01-01

    Full Text Available During the seismic wave propagation through the crust, the electromagnetic pulse can originate due to MHD conversion in this conductive medium. On the assumption of simple models of seismic wave excitation and attenuation, the problem is reduced to the analysis of a diffusion-like equation for a vector potential function. In this way, we need to change the classical gauge condition. A semi-analytical form of the solution is obtained in a case with constant ground conductivity. Dependencies of the electric and magnetic field components and the pulse duration on distance and crust conductivity have been computed in detail. The results could be useful for the explanation of electromagnetic signals related to coseismic, foreshock and aftershock activity.

  17. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  18. Relocation and Seismogenic Structure of the 1998 Zhangbei-Shangyi Earthquake Sequence

    Science.gov (United States)

    Yang, Z.

    2002-05-01

    An earthquake of magnitude 6.2 occurred in the Zhangbei-Shangyi region in the northern China on January 10, 1998. The earthquake was about 180km to the northwest of the Beijing City and was felt at Beijing. This earthquake is the largest event since the 1976 great Tangshan earthquake of magnitude 7.8 in the northern China. Historically seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault constituting the seismogenic geological features capable of generating moderate earthquakes like this earthquake has been found before the earthquake. Nor surface faulting has been observed after the earthquake. Field geological investigation after the earthquake found two conjugate surface features trending NNE-NE and NNW-WNW. Because of the geometry of the seismic network the hypocentral distribution of the Zhangbei-Shangyi earthquake sequence given by routine location exhibited no any preferable orientation feature. In this study the Zhangbei-Shangyi earthquake and its aftershocks with magnitude equal or lager than 3.0 were relocated using both the master event relative relocation algorithm and the double-difference earthquake relocation algorithm (Waldhauser, 2000). Both algorithms gave consistent results within accuracy limits. The epicenter of the main shock was 41.15­aN and 114.46­aE, which was located 4km apart from the macro-epicenter of this event. The focal depth of the main shock was 15 km. The epicenters of aftershocks of this earthquake sequence distribute in a nearly vertical plane and its vicinity with orientation N20­aE. The results of relocation for the Zhangbei-Shangyi earthquake sequence clearly indicate that the seismogenic structure of this event is a N20­aE striking fault with right-lateral reverse slip, and that the occurrence of the Zhangbei-Shangyi earthquake is tectonically driven by the horizontal and oriented ENE compression stress, same as that of the stress field in northern China.

  19. Relocation of the 2010-2013 near the north coast of Papua earthquake sequence using Modified Joint Hypocenter Determination (MJHD) method

    International Nuclear Information System (INIS)

    Salomo, Dimas; Daryono,; Subakti, Hendri

    2015-01-01

    The accuracy of earthquake hypocenter position is necessary to analyze the tectonic conditions. This study aims to: (1) relocate the mainshock and aftershocks of the large earthquakes in Papua region i.e. June 16, 2010, April 21, 2012 and April 06, 2013 earthquake (2) determine the true fault plane, (3) estimate the area of the fracture, and (4) analyze the advantages and disadvantages of relocation with MJHD method in benefits for tectonic studies. This study used Modified Joint Hypocenter Determination (MJHD) method. Using P arrival phase data reported by the BMKG and openly available from website repogempa.bmkg.go.id, we relocated the mainshock of this large significant earthquake and its aftershocks. Then we identified the prefered fault planes from the candidate fault planes provided by the global CMT catalogue. The position of earthquakes was successfully relocated. The earthquakes mostly were clustered around the mainshock. Earthquakes that not clustered around mainshock are considered to be different mechanism from the mainshock. Relocation results indicate that the mainshock fault plane of June 16, 2010 earthquake is a field with strike 332o, dip 80o and −172o slip, the mainshock fault plane of April 21, 2012 earthquake is a field with strike 82o, dip 84o and 2o slip, the mainshock fault plane of April 06, 2013 earthquake is a field with strike 339o, dip 56o and −137o slip. Fault plane area estimated by cross section graphical method is an area of 2816.0 km2 (June 16, 2010), 906.2 km2 (April 21, 2012) and 1984.3 km2 (April 06, 2013). MJHD method has the advantage that it can calculate a lot of earthquakes simultaneously and has a station correction to account for lateral heterogeneity of the earth. This method successfully provides significant changes to improve the position of the depth of earthquakes that most of the hypocenter depth manually specified as a fixed depth (± 10 km). But this method cannot be sure that the hypocenters derived from the

  20. Time-dependent earthquake probability calculations for southern Kanto after the 2011 M9.0 Tohoku earthquake

    Science.gov (United States)

    Nanjo, K. Z.; Sakai, S.; Kato, A.; Tsuruoka, H.; Hirata, N.

    2013-05-01

    Seismicity in southern Kanto activated with the 2011 March 11 Tohoku earthquake of magnitude M9.0, but does this cause a significant difference in the probability of more earthquakes at the present or in the To? future answer this question, we examine the effect of a change in the seismicity rate on the probability of earthquakes. Our data set is from the Japan Meteorological Agency earthquake catalogue, downloaded on 2012 May 30. Our approach is based on time-dependent earthquake probabilistic calculations, often used for aftershock hazard assessment, and are based on two statistical laws: the Gutenberg-Richter (GR) frequency-magnitude law and the Omori-Utsu (OU) aftershock-decay law. We first confirm that the seismicity following a quake of M4 or larger is well modelled by the GR law with b ˜ 1. Then, there is good agreement with the OU law with p ˜ 0.5, which indicates that the slow decay was notably significant. Based on these results, we then calculate the most probable estimates of future M6-7-class events for various periods, all with a starting date of 2012 May 30. The estimates are higher than pre-quake levels if we consider a period of 3-yr duration or shorter. However, for statistics-based forecasting such as this, errors that arise from parameter estimation must be considered. Taking into account the contribution of these errors to the probability calculations, we conclude that any increase in the probability of earthquakes is insignificant. Although we try to avoid overstating the change in probability, our observations combined with results from previous studies support the likelihood that afterslip (fault creep) in southern Kanto will slowly relax a stress step caused by the Tohoku earthquake. This afterslip in turn reminds us of the potential for stress redistribution to the surrounding regions. We note the importance of varying hazards not only in time but also in space to improve the probabilistic seismic hazard assessment for southern Kanto.

  1. 3-D dynamic rupture simulations of the 2016 Kumamoto, Japan, earthquake

    Science.gov (United States)

    Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi; Kubo, Hisahiko

    2017-11-01

    Using 3-D dynamic rupture simulations, we investigated the 2016 Mw7.1 Kumamoto, Japan, earthquake to elucidate why and how the rupture of the main shock propagated successfully, assuming a complicated fault geometry estimated on the basis of the distributions of the aftershocks. The Mw7.1 main shock occurred along the Futagawa and Hinagu faults. Within 28 h before the main shock, three M6-class foreshocks occurred. Their hypocenters were located along the Hinagu and Futagawa faults, and their focal mechanisms were similar to that of the main shock. Therefore, an extensive stress shadow should have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of the relocated aftershock hypocenters. We then evaluated the static stress changes on the main shock fault plane that were due to the occurrence of the three foreshocks, assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that Coulomb failure stress change (ΔCFS) was positive just below the hypocenter of the main shock, while the ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the propagation of the rupture toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes caused by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we computed 3-D dynamic rupture by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges that could reproduce the characteristic features of the main shock rupture revealed by seismic waveform analyses. We also

  2. Characterization of active faulting beneath the Strait of Georgia, British Columbia

    Science.gov (United States)

    Cassidy, J.F.; Rogers, Gary C.; Waldhauser, F.

    2000-01-01

    Southwestern British Columbia and northwestern Washington State are subject to megathrust earthquakes, deep intraslab events, and earthquakes in the continental crust. Of the three types of earthquakes, the most poorly understood are the crustal events. Despite a high level of seismicity, there is no obvious correlation between the historical crustal earthquakes and the mapped surface faults of the region. On 24 June 1997, a ML = 4.6 earthquake occurred 3-4 km beneath the Strait of Georgia, 30 km to the west of Vancouver, British Columbia. This well-recorded earthquake was preceded by 11 days by a felt foreshock (ML = 3.4) and was followed by numerous small aftershocks. This earthquake sequence occurred in one of the few regions of persistent shallow seismic activity in southwestern British Columbia, thus providing an ideal opportunity to attempt to characterize an active near-surface fault. We have computed focal mechanisms and utilized a waveform cross-correlation and joint hypocentral determination routine to obtain accurate relative hypocenters of the mainshock, foreshock, and 53 small aftershocks in an attempt to image the active fault and the extent of rupture associated with this earthquake sequence. Both P-nodal and CMT focal mechanisms show thrust faulting for the mainshock and the foreshock. The relocated hypocenters delineate a north-dipping plane at 2-4 km depth, dipping at 53??, in good agreement with the focal mechanism nodal plane dipping to the north at 47??. The rupture area is estimated to be a 1.3-km-diameter circular area, comparable to that estimated using a Brune rupture model with the estimated seismic moment of 3.17 ?? 1015 N m and the stress drop of 45 bars. The temporal sequence indicates a downdip migration of the seismicity along the fault plane. The results of this study provide the first unambiguous evidence for the orientation and sense of motion for active faulting in the Georgia Strait area of British Columbia.

  3. Statistical Analysis and ETAS Modeling of Seismicity Induced by Production of Geothermal Energy from Hydrothermal Systems

    Science.gov (United States)

    Dinske, C.; Langenbruch, C.; Shapiro, S. A.

    2017-12-01

    We investigate seismicity related to hydrothermal systems in Germany and Italy, focussing on temporal changes of seismicity rates. Our analysis was motivated by numerical simulations The modeling of stress changes caused by the injection and production of fluid revealed that seismicity rates decrease on a long-term perspective which is not observed in the considered case studies. We analyze the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity comprises two components: (1) seismicity that is directly triggered by production and re-injection of fluid, i.e. induced events, and (2) seismicity that is triggered by earthquake interactions, i.e. aftershock triggering. In order to better constrain our numerical simulations using the observed induced seismicity we apply catalog declustering to seperate the two components. We use the magnitude-dependent space-time windowing approach introduced by Gardner and Knopoff (1974) and test several published algorithms to calculate the space-time windows. After declustering, we conclude that the different hydrothermal reservoirs show a comparable seismic response to the circulation of fluid and additional triggering by earthquake interactions. The declustered catalogs contain approximately 50 per cent of the number of events in the original catalogs. We then perform ETAS (Epidemic Type Aftershock; Ogata, 1986, 1988) modeling for two reasons. First, we want to know whether the different reservoirs are also comparable regarding earthquake interaction patterns. Second, if we identify systematic patterns, ETAS modeling can contribute to forecast seismicity during production of geothermal energy. We find that stationary ETAS models cannot accurately capture real seismicity rate changes. One reason for this finding is given by the rate of observed induced events which is not constant over time. Hence

  4. 3-D Spontaneous Rupture Simulations of the 2016 Kumamoto, Japan, Earthquake

    Science.gov (United States)

    Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi

    2017-04-01

    We investigated the M7.3 Kumamoto, Japan, earthquake to illuminate why and how the rupture of the main shock propagated successfully by 3-D dynamic rupture simulations, assuming a complicated fault geometry estimated based on the distributions of aftershocks. The M7.3 main shock occurred along the Futagawa and Hinagu faults. A few days before, three M6-class foreshocks occurred. Their hypocenters were located along by the Hinagu and Futagawa faults and their focal mechanisms were similar to those of the main shock; therefore, an extensive stress shadow can have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of relocated aftershock hypocenters. Then, we evaluated static stress changes on the main shock fault plane due to the occurrence of the three foreshocks assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that the hypocenter of the main shock is located on the region with positive Coulomb failure stress change (ΔCFS) while ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the rupture propagating toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we conducted 3-D dynamic rupture simulations by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges to reproduce the rupture propagation of the main shock consistent with those revealed by seismic waveform analyses. We also demonstrated that the free surface encouraged

  5. Time-Dependent Risk Estimation and Cost-Benefit Analysis for Mitigation Actions

    Science.gov (United States)

    van Stiphout, T.; Wiemer, S.; Marzocchi, W.

    2009-04-01

    Earthquakes strongly cluster in space and time. Consequently, the most dangerous time is right after a moderate earthquake has happened, because their is a ‘high' (i.e., 2-5 percent) probability that this event will be followed by a subsequent aftershock which happens to be as large or larger than the initiating event. The seismic hazard during this time-period exceeds the background probability significantly and by several orders of magnitude. Scientists have developed increasingly accurate forecast models that model this time-dependent hazard, and such models are currently being validated in prospective testing. However, this probabilistic information in the hazard space is difficult to digest for decision makers, the media and general public. Here, we introduce a possible bridge between seismology and decision makers (authorities, civil defense) by proposing a more objective way to estimate time-dependent risk assessment. Short Term Earthquake Risk assessment (STEER) combines aftershock hazard and loss assessments. We use site-specific information on site effects and building class distribution and combine this with existing loss models to compute site specific time-dependent risk curves (probability of exceedance for fatalities, injuries, damages etc). We show the effect of uncertainties in the different components using Monte Carlo Simulations of the input parameters. This time-dependent risk curves can act as a decision support. We extend the STEER approach by introducing a Cost-Benefit approach for certain mitigation actions after a medium-sized earthquake. Such Cost-Benefit approaches have been recently developed for volcanic risk assessment to rationalize precautionary evacuations in densely inhabitated areas threatened by volcanoes. Here we extend the concept to time-dependent probabilistic seismic risk assessment. For the Cost-Benefit analysis of mitigation actions we calculate the ratio between the cost for the mitigation actions and the cost of the

  6. Source Parameters of the 8 October, 2005 Mw7.6 Kashmir Earthquake

    Science.gov (United States)

    Mandal, Prantik; Chadha, R. K.; Kumar, N.; Raju, I. P.; Satyamurty, C.

    2007-12-01

    During the last six years, the National Geophysical Research Institute, Hyderabad has established a semi-permanent seismological network of 5 broadband seismographs and 10 accelerographs in the Kachchh seismic zone, Gujarat, with the prime objective to monitor the continued aftershock activity of the 2001 Mw7.7 Bhuj mainshock. The reliable and accurate broadband data for the Mw 7.6 (8 Oct., 2005) Kashmir earthquake and its aftershocks from this network, as well as from the Hyderabad Geoscope station, enabled us to estimate the group velocity dispersion characteristics and the one-dimensional regional shear-velocity structure of peninsular India. Firstly, we measure Rayleigh- and Love-wave group velocity dispersion curves in the range of 8 to 35 sec and invert these curves to estimate the crustal and upper mantle structure below the western part of peninsular India. Our best model suggests a two-layered crust: The upper crust is 13.8-km thick with a shear velocity (Vs) of 3.2 km/s; the corresponding values for the lower crust are 24.9 km and 3.7 km/sec. The shear velocity for the upper mantle is found to be 4.65 km/sec. Based on this structure, we perform a moment tensor (MT) inversion of the bandpass (0.05 0.02 Hz) filtered seismograms of the Kashmir earthquake. The best fit is obtained for a source located at a depth of 30 km, with a seismic moment, Mo, of 1.6 × 1027 dyne-cm, and a focal mechanism with strike 19.5°, dip 42°, and rake 167°. The long-period magnitude (MA ~ Mw) of this earthquake is estimated to be 7.31. An analysis of well-developed sPn and sSn regional crustal phases from the bandpassed (0.02 0.25 Hz) seismograms of this earthquake at four stations in Kachchh suggests a focal depth of 30.8 km.

  7. Reflections on Communicating Science during the Canterbury Earthquake Sequence of 2010-2011, New Zealand

    Science.gov (United States)

    Wein, A. M.; Berryman, K. R.; Jolly, G. E.; Brackley, H. L.; Gledhill, K. R.

    2015-12-01

    The 2010-2011 Canterbury Earthquake Sequence began with the 4th September 2010 Darfield earthquake (Mw 7.1). Perhaps because there were no deaths, the mood of the city and the government was that high standards of earthquake engineering in New Zealand protected us, and there was a confident attitude to response and recovery. The demand for science and engineering information was of interest but not seen as crucial to policy, business or the public. The 22nd February 2011 Christchurch earthquake (Mw 6.2) changed all that; there was a significant death toll and many injuries. There was widespread collapse of older unreinforced and two relatively modern multi-storey buildings, and major disruption to infrastructure. The contrast in the interest and relevance of the science could not have been greater compared to 5 months previously. Magnitude 5+ aftershocks over a 20 month period resulted in confusion, stress, an inability to define a recovery trajectory, major concerns about whether insurers and reinsurers would continue to provide cover, very high levels of media interest from New Zealand and around the world, and high levels of political risk. As the aftershocks continued there was widespread speculation as to what the future held. During the sequence, the science and engineering sector sought to coordinate and offer timely and integrated advice. However, other than GeoNet, the national geophysical monitoring network, there were few resources devoted to communication, with the result that it was almost always reactive. With hindsight we have identified the need to resource information gathering and synthesis, execute strategic assessments of stakeholder needs, undertake proactive communication, and develop specific information packages for the diversity of users. Overall this means substantially increased resources. Planning is now underway for the science sector to adopt the New Zealand standardised CIMS (Coordinated Incident Management System) structure for

  8. Constitutive law for seismicity rate based on rate and state friction: Dieterich 1994 revisited.

    Science.gov (United States)

    Heimisson, E. R.; Segall, P.

    2017-12-01

    Dieterich [1994] derived a constitutive law for seismicity rate based on rate and state friction, which has been applied widely to aftershocks, earthquake triggering, and induced seismicity in various geological settings. Here, this influential work is revisited, and re-derived in a more straightforward manner. By virtue of this new derivation the model is generalized to include changes in effective normal stress associated with background seismicity. Furthermore, the general case when seismicity rate is not constant under constant stressing rate is formulated. The new derivation provides directly practical integral expressions for the cumulative number of events and rate of seismicity for arbitrary stressing history. Arguably, the most prominent limitation of Dieterich's 1994 theory is the assumption that seismic sources do not interact. Here we derive a constitutive relationship that considers source interactions between sub-volumes of the crust, where the stress in each sub-volume is assumed constant. Interactions are considered both under constant stressing rate conditions and for arbitrary stressing history. This theory can be used to model seismicity rate due to stress changes or to estimate stress changes using observed seismicity from triggered earthquake swarms where earthquake interactions and magnitudes are take into account. We identify special conditions under which influence of interactions cancel and the predictions reduces to those of Dieterich 1994. This remarkable result may explain the apparent success of the model when applied to observations of triggered seismicity. This approach has application to understanding and modeling induced and triggered seismicity, and the quantitative interpretation of geodetic and seismic data. It enables simultaneous modeling of geodetic and seismic data in a self-consistent framework. To date physics-based modeling of seismicity with or without geodetic data has been found to give insight into various processes

  9. Source Rupture Process of the 2016 Kumamoto Prefecture, Japan, Earthquake Derived from Near-Source Strong-Motion Records

    Science.gov (United States)

    Zheng, A.; Zhang, W.

    2016-12-01

    On 15 April, 2016 the great earthquake with magnitude Mw7.1 occurred in Kumamoto prefecture, Japan. The focal mechanism solution released by F-net located the hypocenter at 130.7630°E, 32.7545°N, at a depth of 12.45 km, and the strike, dip, and the rake angle of the fault were N226°E, 84° and -142° respectively. The epicenter distribution and focal mechanisms of aftershocks implied the mechanism of the mainshock might have changed in the source rupture process, thus a single focal mechanism was not enough to explain the observed data adequately. In this study, based on the inversion result of GNSS and InSAR surface deformation with active structures for reference, we construct a finite fault model with focal mechanism changes, and derive the source rupture process by multi-time-window linear waveform inversion method using the strong-motion data (0.05 1.0Hz) obtained by K-NET and KiK-net of Japan. Our result shows that the Kumamoto earthquake is a right-lateral strike slipping rupture event along the Futagawa-Hinagu fault zone, and the seismogenic fault is divided into a northern segment and a southern one. The strike and the dip of the northern segment are N235°E, 60° respectively. And for the southern one, they are N205°E, 72° respectively. The depth range of the fault model is consistent with the depth distribution of aftershocks, and the slip on the fault plane mainly concentrate on the northern segment, in which the maximum slip is about 7.9 meter. The rupture process of the whole fault continues for approximately 18-sec, and the total seismic moment released is 5.47×1019N·m (Mw 7.1). In addition, the essential feature of the distribution of PGV and PGA synthesized by the inversion result is similar to that of observed PGA and seismic intensity.

  10. Source Rupture Process of the 2016 Kumamoto, Japan, Earthquake Inverted from Strong-Motion Records

    Science.gov (United States)

    Zhang, Wenbo; Zheng, Ao

    2017-04-01

    On 15 April, 2016 the great earthquake with magnitude Mw7.1 occurred in Kumamoto prefecture, Japan. The focal mechanism solution released by F-net located the hypocenter at 130.7630°E, 32.7545°N, at a depth of 12.45 km, and the strike, dip, and the rake angle of the fault were N226°E, 84˚ and -142° respectively. The epicenter distribution and focal mechanisms of aftershocks implied the mechanism of the mainshock might have changed in the source rupture process, thus a single focal mechanism was not enough to explain the observed data adequately. In this study, based on the inversion result of GNSS and InSAR surface deformation with active structures for reference, we construct a finite fault model with focal mechanism changes, and derive the source rupture process by multi-time-window linear waveform inversion method using the strong-motion data (0.05 1.0Hz) obtained by K-NET and KiK-net of Japan. Our result shows that the Kumamoto earthquake is a right-lateral strike slipping rupture event along the Futagawa-Hinagu fault zone, and the seismogenic fault is divided into a northern segment and a southern one. The strike and the dip of the northern segment are N235°E, 60˚ respectively. And for the southern one, they are N205°E, 72˚ respectively. The depth range of the fault model is consistent with the depth distribution of aftershocks, and the slip on the fault plane mainly concentrate on the northern segment, in which the maximum slip is about 7.9 meter. The rupture process of the whole fault continues for approximately 18-sec, and the total seismic moment released is 5.47×1019N·m (Mw 7.1). In addition, the essential feature of the distribution of PGV and PGA synthesized by the inversion result is similar to that of observed PGA and seismic intensity.

  11. Near-real-time and scenario earthquake loss estimates for Mexico

    Science.gov (United States)

    Wyss, M.; Zuñiga, R.

    2017-12-01

    The large earthquakes of 8 September 2017, M8.1, and 19 September 2017, M7.1 have focused attention on the dangers of Mexican seismicity. The near-real-time alerts by QLARM estimated 10 to 300 fatalities and 0 to 200 fatalities, respectively. At the time of this submission the reported death tolls are 96 and 226, respectively. These alerts were issued within 96 and 57 minutes of the occurrence times. For the M8.1 earthquake the losses due to a line model could be calculated. The line with length L=110 km extended from the initial epicenter to the NE, where the USGS had reported aftershocks. On September 19, no aftershocks were available in near-real-time, so a point source had to be used for the quick calculation of likely casualties. In both cases, the casualties were at least an order of magnitude smaller than what they could have been because on 8 September the source was relatively far offshore and on 19 September the hypocenter was relatively deep. The largest historic earthquake in Mexico occurred on 28 March 1787 and likely had a rupture length of 450 km and M8.6. Based on this event, and after verifying our tool for Mexico, we estimated the order of magnitude of a disaster, given the current population, in a maximum credible earthquake along the Pacific coast. In the countryside along the coast we expect approximately 27,000 fatalities and 480,000 injured. In the special case of Mexico City the casualties in a worst possible earthquake along the Pacific plate boundary would likely be counted as five digit numbers. The large agglomerate of the capital with its lake bed soil attracts most attention. Nevertheless, one should pay attention to the fact that the poor, rural segment of society, living in buildings of weak resistance to shaking, are likely to sustain a mortality rate about 20% larger than the population in cities on average soil.

  12. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  13. Expanding the Delivery of Rapid Earthquake Information and Warnings for Response and Recovery

    Science.gov (United States)

    Blanpied, M. L.; McBride, S.; Hardebeck, J.; Michael, A. J.; van der Elst, N.

    2017-12-01

    Scientific organizations like the United States Geological Survey (USGS) release information to support effective responses during an earthquake crisis. Information is delivered to the White House, the National Command Center, the Departments of Defense, Homeland Security (including FEMA), Transportation, Energy, and Interior. Other crucial stakeholders include state officials and decision makers, emergency responders, numerous public and private infrastructure management centers (e.g., highways, railroads and pipelines), the media, and the public. To meet the diverse information requirements of these users, rapid earthquake notifications have been developed to be delivered by e-mail and text message, as well as a suite of earthquake information resources such as ShakeMaps, Did You Feel It?, PAGER impact estimates, and data are delivered via the web. The ShakeAlert earthquake early warning system being developed for the U.S. West Coast will identify and characterize an earthquake a few seconds after it begins, estimate the likely intensity of ground shaking, and deliver brief but critically important warnings to people and infrastructure in harm's way. Currently the USGS is also developing a capability to deliver Operational Earthquake Forecasts (OEF). These provide estimates of potential seismic behavior after large earthquakes and during evolving aftershock sequences. Similar work is underway in New Zealand, Japan, and Italy. In the development of OEF forecasts, social science research conducted during these sequences indicates that aftershock forecasts are valued for a variety of reasons, from informing critical response and recovery decisions to psychologically preparing for more earthquakes. New tools will allow users to customize map-based, spatiotemporal forecasts to their specific needs. Hazard curves and other advanced information will also be available. For such authoritative information to be understood and used during the pressures of an earthquake

  14. Strong-motion characteristics and source process during the Suruga Bay earthquake in 2009 through observed records on rock sites

    International Nuclear Information System (INIS)

    Shiba, Yoshiaki; Sato, Hiroaki; Kuriyama, Masayuki

    2010-01-01

    On 11 August 2009, a moderate earthquake of M 6.5 occurred in the Suruga Bay region, south of Shizuoka prefecture. During this event, JMA Seismic Intensity reached 6 lower in several cities around the hypocenter, and at Hamaoka nuclear power plant of Chubu Electric Power reactors were automatically shutdown due to large ground motions. Though the epicenter is located at the eastern edge of source area for the assumed great Tokai earthquake of M 8, this event is classified into the intra-plate (intra-slab) earthquake, due to its focal depth lower than that of the plate boundary and fault geometry supposed from the moment tensor solution. Dense strong-motion observation network has been deployed mainly on the rock outcrops by our institute around the source area, and the waveform data of the main shock and several aftershocks were obtained at 13 stations within 100 km from the hypocenter. The observed peak ground motions and velocity response spectral amplitudes are both obviously larger than the empirical attenuation relations derived from the inland and plate-boundary earthquake data, which displays the characteristics of the intra-slab earthquake faulting. Estimated acceleration source spectra of the main shock also exhibit the short period level about 1.7 times larger than the average of those for past events, and it corresponds with the additional term in the attenuation curve of the peak ground acceleration for the intra-plate earthquake. Detailed source process of the main shock is inferred using the inversion technique. The initial source model is assumed to be composed of two distinct fault planes according to the minute aftershock distribution. Estimated source model shows that large slip occurred near the hypocenter and at the boundary region between two fault planes where the rupture transfers from primary to secondary fault. Furthermore the broadband source inversion using velocity motions in the frequency up to 5 Hz demonstrates the high effective

  15. Examining seismicity patterns in the 2010 M 8.8 Maule rupture zone.

    Science.gov (United States)

    Diniakos, R. S.; Bilek, S. L.; Rowe, C. A.; Draganov, D.

    2016-12-01

    The subduction of the Nazca Plate beneath the South American Plate along Chile has produced some of the largest earthquakes recorded on modern seismic instrumentation. These include the 1960 M 9.5 Valdivia, 2010 M 8.8 Maule, 2014 M 8.1 Iquique, and more recently the 2015 M 8.3 Illapel earthquakes. Slip heterogeneity in the 2010 Maule earthquake has been noted in various studies, with bilateral slip and peak slip of 15 m north of the epicenter. For other great subduction zone earthquakes, such as the 2004 M 9.1 Sumatra, 2010 M 8.8 Maule, and 2011 M 9.0 Tohoku, there was an increase in normal-faulting earthquakes in regions of high slip. In order to understand aftershock behavior of the 2010 Maule event, we are expanding the catalog of small magnitude earthquakes using a template-matching algorithm to find other small earthquakes in the rupture area. We use a starting earthquake catalog (magnitudes between 2.5-4.0) developed from regional and local array seismic data; these comprise our template catalog from Jan. - Dec. 2012 that we use to search through seismic waveforms recorded by a 2012 temporary seismic array in Malargüe, Argentina located 300 km east of the Maule rupture area. We use waveform cross correlation techniques in order to detect new events, and then we use HYPOINVERSE2000 (Klein, 2002) and a velocity model designed for the south-central Chilean region (Haberland et al., 2006) to locate new detections. We also determine focal mechanisms to further analyze aftershock behavior for the region. To date, over 2400 unique detections have been found, of which we have located 133 events with an RMS <1. Many of these events are located in the region of greatest coseismic slip, north of the 2010 epicenter, whereas catalog events are located north and south of the epicenter, along the regions of bilateral slip. Focal mechanisms for the new locations will also be presented.

  16. A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast

    Science.gov (United States)

    Field, Edward; Milner, Kevin R.; Hardebeck, Jeanne L.; Page, Morgan T.; van der Elst, Nicholas; Jordan, Thomas H.; Michael, Andrew J.; Shaw, Bruce E.; Werner, Maximillan J.

    2017-01-01

    We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type aftershock sequence (ETAS) component to the previously published time‐independent and long‐term time‐dependent forecasts. This combined model, referred to as UCERF3‐ETAS, collectively represents a relaxation of segmentation assumptions, the inclusion of multifault ruptures, an elastic‐rebound model for fault‐based ruptures, and a state‐of‐the‐art spatiotemporal clustering component. It also represents an attempt to merge fault‐based forecasts with statistical seismology models, such that information on fault proximity, activity rate, and time since last event are considered in OEF. We describe several unanticipated challenges that were encountered, including a need for elastic rebound and characteristic magnitude–frequency distributions (MFDs) on faults, both of which are required to get realistic triggering behavior. UCERF3‐ETAS produces synthetic catalogs of M≥2.5 events, conditioned on any prior M≥2.5 events that are input to the model. We evaluate results with respect to both long‐term (1000 year) simulations as well as for 10‐year time periods following a variety of hypothetical scenario mainshocks. Although the results are very plausible, they are not always consistent with the simple notion that triggering probabilities should be greater if a mainshock is located near a fault. Important factors include whether the MFD near faults includes a significant characteristic earthquake component, as well as whether large triggered events can nucleate from within the rupture zone of the mainshock. Because UCERF3‐ETAS has many sources of uncertainty, as

  17. The Hawkes process with different excitation functions and its asymptotoc behavior

    DEFF Research Database (Denmark)

    Fierro, Raúl; Leiva, Víctor; Møller, Jesper

    The standard Hawkes process is constructed from a homogeneous Poisson process and using the same exciting function for dierent generations of offspring. We propose an extension of this process by considering different exciting functions. This consideration could be important to be taken into acco......The standard Hawkes process is constructed from a homogeneous Poisson process and using the same exciting function for dierent generations of offspring. We propose an extension of this process by considering different exciting functions. This consideration could be important to be taken...... into account in a number of fields; e.g. in seismology, where main shocks produce aftershocks with possibly different intensities. The main results are devoted to the asymptotic behavior of this extension of the Hawkes process. Indeed, a law of large numbers and a central limit theorem are stated...

  18. Universality in the dynamical properties of seismic vibrations

    Science.gov (United States)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil

    2018-02-01

    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  19. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    Science.gov (United States)

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M. A.; Johnson, Neil F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  20. Geomorphic and Geologic Controls of Geohazards induced by Nepal's 2015 Gorkha Earthquake

    Science.gov (United States)

    Kargel, J. S.; Leonard, G. J.; Shugar, D. H.; Haritashya, U.K.; Bevington, A.; Fielding, E. J.; Fujita, K.; Geertsema, M.; Miles, E. S.; Steiner, J.; hide

    2015-01-01

    The Gorkha earthquake (Magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing approx.9,000 and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision makers. We mapped 4,312 co-seismic and post-seismic landslides. We also surveyed 491 glacier lakes for earthquake damage, but found only 9 landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.

  1. Collaborative Research: failure of RockMasses from Nucleation and Growth of Microscopic Defects and Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Klein, William [Boston Univ., MA (United States)

    2016-09-12

    Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structure of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.

  2. Human Trafficking in Nepal: Post-Earthquake Risk and Response.

    Science.gov (United States)

    Gyawali, Bishal; Keeling, June; Kallestrup, Per

    2017-04-01

    As Nepal mourns the 1-year commemoration of the April 2015 earthquake and its aftershocks that killed more than 8500 people and left thousands injured and displaced, other more hidden repercussions of the resultant chaotic environment need attention: the increased risk of human trafficking. Considering that natural disasters provide a milieu for this illicit trade, there is a need for a robust response from stakeholders such as donors, civil society organizations, and government organizations against human trafficking following disasters such as the Nepal earthquake. Responsibility to prevent and fight trafficking should be explicitly included in the mandate of relief and rehabilitation mechanisms set up at the national level to coordinate the disaster relief response, serving to support populations in both rural and urban areas. (Disaster Med Public Health Preparedness. 2017;11:153-154).

  3. Fracking and labquakes

    Science.gov (United States)

    Baró, Jordi; Planes, Antoni; Salje, Ekhard K. H.; Vives, Eduard

    2016-12-01

    Local fracture events (or labquakes) during compression of shale rocks have been studied by acoustic emission. They are assumed to simulate quakes induced by hydraulic fracturing (fracking) or other water injection activities. Results are compared with those obtained during compression of porous Vycor glass, which are known to display statistical features very similar to those characterising natural earthquakes. Our acoustic emission results show that labquake energies are power law distributed, which is consistent with recent statistical analysis of fracking-/water injection-induced quakes. The data confirm a Gutenberg-Richter behaviour with exponents larger than the exponents characterising the energy distribution of natural earthquakes. In contrast to natural earthquakes, labquakes in shales do not show time correlations, which indicates that the probability of aftershocks is smaller than in the natural scenario (e.g. during Californian earthquakes).

  4. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    Science.gov (United States)

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  5. On precursory ULF/ELF electromagnetic signatures for the Kobe earthquake on April 12, 2013

    Science.gov (United States)

    Schekotov, A.; Izutsu, J.; Hayakawa, M.

    2015-12-01

    After the 2011 Tohoku earthquake (EQ), there have been numerous aftershocks in the eastern and Pacific Ocean of Japan, but EQs are still rare in the western part of Japan. In this situation a relatively large (magnitude (M) ∼ 6) EQ happened on April 12 (UT), 2013 at a place close to the 1995 Kobe EQ (M ∼ 7), so we have tried to find whether there existed any electromagnetic precursors to this EQ. Two precursory signatures are detected: one is the depression of ULF (ultra-low-frequency, 0.01-0.02 Hz) geomagnetic variations on April 9, and the second is wideband ELF (extremely low frequency) electromagnetic radiation on April 11. These results for the 2013 Kobe EQ are compared with the corresponding results for the former 1995 Kobe EQ.

  6. Did mud contribute to freeway collapse?

    Science.gov (United States)

    Hough, Susan E.; Friberg, Paul A.; Busby, Robert; Field, Edward F.; Jacob, Klaus H.; Borcherdt, Roger D.

    At least 41 people were killed October 17 when the upper tier of the Nimitz Freeway in Oakland, Calif., collapsed during the Ms = 7.1 Loma Prieta earthquake. Seismologists studying aftershocks concluded that soil conditions and resulting ground motion amplification were important in the failure of the structure and should be considered in the reconstruction of the highway.Structural design weaknesses in the two-tiered freeway, known as the Cypress structure, had been identified before the tragedy. The seismologists, from Lamont Doherty Geological Observatory in Palisades, N.Y., and the U.S. Geological Survey in Menlo Park, Calif., found that the collapsed section was built on fill over Bay mud. A southern section of the Cypress structure built on alluvium of Quaternary age did not collapse (see Figure 1).

  7. Real-time Automatic Detectors of P and S Waves Using Singular Values Decomposition

    Science.gov (United States)

    Kurzon, I.; Vernon, F.; Rosenberger, A.; Ben-Zion, Y.

    2013-12-01

    We implement a new method for the automatic detection of the primary P and S phases using Singular Value Decomposition (SVD) analysis. The method is based on a real-time iteration algorithm of Rosenberger (2010) for the SVD of three component seismograms. Rosenberger's algorithm identifies the incidence angle by applying SVD and separates the waveforms into their P and S components. We have been using the same algorithm with the modification that we filter the waveforms prior to the SVD, and then apply SNR (Signal-to-Noise Ratio) detectors for picking the P and S arrivals, on the new filtered+SVD-separated channels. A recent deployment in San Jacinto Fault Zone area provides a very dense seismic network that allows us to test the detection algorithm in diverse setting, such as: events with different source mechanisms, stations with different site characteristics, and ray paths that diverge from the SVD approximation used in the algorithm, (e.g., rays propagating within the fault and recorded on linear arrays, crossing the fault). We have found that a Butterworth band-pass filter of 2-30Hz, with four poles at each of the corner frequencies, shows the best performance in a large variety of events and stations within the SJFZ. Using the SVD detectors we obtain a similar number of P and S picks, which is a rare thing to see in ordinary SNR detectors. Also for the actual real-time operation of the ANZA and SJFZ real-time seismic networks, the above filter (2-30Hz) shows a very impressive performance, tested on many events and several aftershock sequences in the region from the MW 5.2 of June 2005, through the MW 5.4 of July 2010, to MW 4.7 of March 2013. Here we show the results of testing the detectors on the most complex and intense aftershock sequence, the MW 5.2 of June 2005, in which in the very first hour there were ~4 events a minute. This aftershock sequence was thoroughly reviewed by several analysts, identifying 294 events in the first hour, located in a

  8. Progress report on lithium-related geologic investigations in Bolivia

    Science.gov (United States)

    Davis, J.R.; Howard, K.A.; Rettig, S.L.; Smith, R.L.; Ericksen, G.E.; Risacher, Francois; Alarcon, Hugo; Morales, Ricardo

    1982-01-01

    The September 1, 1981, Samoa Islands Region earthquake occurred at the extreme northern end of the Tonga arc in a region where the Pacific plate may be disjointed along a hinge fault. In the last 50 years, magnitude 7 or greater earthquakes have occurred in this region on the average of once every six years, but four 7+ events have now occurred within the last six years. The mainshock was preceded about two hours earlier by a foreshock that was used as a calibration event for the Joint Epicenter Determination relocation of the mainshock and nearby seismicity occurring within a period seven months prior to and one week after the mainshock. The foreshock, better-located events of the prior seismicity, and most aftershocks are concentrated in a group near the mainshock epicenter, but several more distant aftershocks suggest that the aftershock zone may have been as large as 125 km in length and trended about S35?E. Identification of depth phases from a full suite of broadband records gives source depths of 25-3km for the mainshock and 29.5?3 km for the foreshock using a JB earth model. Source parameters were determined for the mainshock utilizing WWSSN analog and GDSN digital data. The preferred fault plane solution based on P-wave first motion data is a south by southwesterly steeply dipping normal fault, remarkably similar to the mechanism reported by Johnson and Molnar (1972) for the nearby earthquake of April 20, 196B. A waveform inversion technique described by Sipkin (1982), when applied to long-period P waveforms, gives an 'average' point source solution for a purely deviatoric moment rate tensor at a preferred source depth of 22 km. Very similar results were obtained from long-period GDSN body-wave and mantle-wave data using a centroid-moment tensor inversion technique described in Dziewonski, and others (1981). Both techniques provide solutions very close to a double couple source with a south by southwesterly shallow-dipping normal fault mechanism. To obtain

  9. Preliminary analysis of the rupture process of 11 March 2011 Tohoku-Oki earthquake

    Science.gov (United States)

    Vilotte, J.; Satriano, C.; Dionicio, V.; Lancieri, M.; Bernard, P.

    2011-12-01

    The great 11 March 2011 Off the Pacific Coast of Tohoku earthquake (Mw 9.1) ruptured a ~ 200 km wide mega-thrust fault, with average displacement of ~15-20 m. The earthquake triggered a large devastating tsunami as well as strong ground motion along the east Honshu coastline. Seismic activity in this area is characterized by a number of large earthquakes with Mw ~7.2-7.9 along the down-dip portion of the mega-thrust seaward of Miyagi prefecture, with only few events of magnitude greater than 8 in last hundred years. This region was also recognized to have had a large tsunami earthquake in 869 with a source area estimated further offshore. The rupture process of the Tohoku-Oki earthquake is investigated here combining teleseismic short period P-waves back-projection imaging and broadband P-wave finite fault inversions, together with a preliminary broadband analysis of the Kik-net strong motion recordings across Japan. The main features of the Tohoku-Oki rupture process imaged by the short period (1s) back-projection are: an initial 70-80s radiation phase eastward of the epicenter, with a slow (~1-1.5 km/s) along-dip rupture propagation; a short radiation phase northward of the epicenter; and ultimately a southward radiation phase with a relatively faster rupture propagation. These features are robust and consistent using both the North American and European arrays configurations. At lower periods, the back-projection analysis reveals a shift in the radiation centroid seaward toward the trench. In contrast, the broadband (1-200s) P-waves finite fault inversion exhibits a quite complementary image with a first long period radiation phase up-dip of the epicenter followed by down-dip late southwestward radiation phase that remains however poorly constraint. The robustness and the resolution of both the back-projection and the finite fault inversion analysis are carefully assessed through bootstrap analysis, and the analysis of some of the main foreshocks and aftershocks

  10. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    Science.gov (United States)

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  11. Temporal properties of seismicity and largest earthquakes in SE Carpathians

    Directory of Open Access Journals (Sweden)

    S. Byrdina

    2006-01-01

    Full Text Available In order to estimate the hazard rate distribution of the largest seismic events in Vrancea, South-Eastern Carpathians, we study temporal properties of historical and instrumental catalogues of seismicity. First, on the basis of Generalized Extreme Value theory we estimate the average return period of the largest events. Then, following Bak et al. (2002 and Corral (2005a, we study scaling properties of recurrence times between earthquakes in appropriate spatial volumes. We come to the conclusion that the seismicity is temporally clustered, and that the distribution of recurrence times is significantly different from a Poisson process even for times largely exceeding corresponding periods of foreshock and aftershock activity. Modeling the recurrence times by a gamma distributed variable, we finally estimate hazard rates with respect to the time elapsed from the last large earthquake.

  12. Seismic evidence of conjugate normal faulting: The 1994 Devil Canyon earthquake sequence near Challis, Idaho

    International Nuclear Information System (INIS)

    Jackson, S.M.

    1994-08-01

    In this study, the term ''conjugate'' refers to faults that occur in two intersecting sets and coordinated kinematically, with each set being distinctive in both orientation and sense of shear (Davis, 1984). Contemporaneous activity along the conjugate faults is defined as occurring within the time frame of the mainshock-aftershock sequence (three weeks for this sequence and generally less than one month in other observed cases). Detailed recordings of microearthquakes from a dense array of temporary analog seismic stations are analyzed. The focal mechanisms and hypocenter spatial and temporal characteristics are combined with geological information to assess the style, geometry, timing, kinematics, and mechanics of conjugate normal faulting. The characteristics of conjugate normal faulting observed in the Devil Canyon sequence are compared to other conjugate normal faulting sequences, and strike-slip and thrust conjugate sequences worldwide

  13. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.

    2004-01-01

    The December 22, 2003, San Simeon, California, (M6.5) earthquake caused damage to houses, road surfaces, and underground utilities in Oceano, California. The community of Oceano is approximately 50 miles (80 km) from the earthquake epicenter. Damage at this distance from a M6.5 earthquake is unusual. To understand the causes of this damage, the U.S. Geological Survey conducted extensive subsurface exploration and monitoring of aftershocks in the months after the earthquake. The investigation included 37 seismic cone penetration tests, 5 soil borings, and aftershock monitoring from January 28 to March 7, 2004. The USGS investigation identified two earthquake hazards in Oceano that explain the San Simeon earthquake damage?site amplification and liquefaction. Site amplification is a phenomenon observed in many earthquakes where the strength of the shaking increases abnormally in areas where the seismic-wave velocity of shallow geologic layers is low. As a result, earthquake shaking is felt more strongly than in surrounding areas without similar geologic conditions. Site amplification in Oceano is indicated by the physical properties of the geologic layers beneath Oceano and was confirmed by monitoring aftershocks. Liquefaction, which is also commonly observed during earthquakes, is a phenomenon where saturated sands lose their strength during an earthquake and become fluid-like and mobile. As a result, the ground may undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves displacement of large blocks of ground down gentle slopes or towards stream channels. The USGS investigation indicates that the shallow geologic units beneath Oceano are very susceptible to liquefaction. They include young sand dunes and clean sandy artificial fill that was used to bury and convert marshes into developable lots. Most of

  14. Prospective testing of Coulomb short-term earthquake forecasts

    Science.gov (United States)

    Jackson, D. D.; Kagan, Y. Y.; Schorlemmer, D.; Zechar, J. D.; Wang, Q.; Wong, K.

    2009-12-01

    Earthquake induced Coulomb stresses, whether static or dynamic, suddenly change the probability of future earthquakes. Models to estimate stress and the resulting seismicity changes could help to illuminate earthquake physics and guide appropriate precautionary response. But do these models have improved forecasting power compared to empirical statistical models? The best answer lies in prospective testing in which a fully specified model, with no subsequent parameter adjustments, is evaluated against future earthquakes. The Center of Study of Earthquake Predictability (CSEP) facilitates such prospective testing of earthquake forecasts, including several short term forecasts. Formulating Coulomb stress models for formal testing involves several practical problems, mostly shared with other short-term models. First, earthquake probabilities must be calculated after each “perpetrator” earthquake but before the triggered earthquakes, or “victims”. The time interval between a perpetrator and its victims may be very short, as characterized by the Omori law for aftershocks. CSEP evaluates short term models daily, and allows daily updates of the models. However, lots can happen in a day. An alternative is to test and update models on the occurrence of each earthquake over a certain magnitude. To make such updates rapidly enough and to qualify as prospective, earthquake focal mechanisms, slip distributions, stress patterns, and earthquake probabilities would have to be made by computer without human intervention. This scheme would be more appropriate for evaluating scientific ideas, but it may be less useful for practical applications than daily updates. Second, triggered earthquakes are imperfectly recorded following larger events because their seismic waves are buried in the coda of the earlier event. To solve this problem, testing methods need to allow for “censoring” of early aftershock data, and a quantitative model for detection threshold as a function of

  15. Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes

    Science.gov (United States)

    Bijukchhen, Subeg M.; Takai, Nobuo; Shigefuji, Michiko; Ichiyanagi, Masayoshi; Sasatani, Tsutomu; Sugimura, Yokito

    2017-07-01

    The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous studies have shown that the sediments are 600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1-0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses

  16. Comparison of the November 2002 Denali and November 2001 Kunlun Earthquakes

    Science.gov (United States)

    Bufe, C. G.

    2002-12-01

    Major earthquakes occurred in Tibet on the central Kunlun fault (M 7.8) on November 14, 2001 (Lin and others, 2002) and in Alaska on the central Denali fault (M 7.9) on November 3, 2002. Both earthquakes generated large surface waves (Kunlun Ms 8.0 (USGS) and Denali Ms 8.5). Each event occurred on east-west-trending strike-slip faults and exhibited nearly unilateral rupture propagating several hundred kilometers from west to east. Surface rupture length estimates were about 400 km for Kunlun, 300 km for Denali. Maximum surface faulting and moment release were observed far to the east of the points of rupture initiation. Harvard moment centroids were located east of USGS epicenters by 182 km (Kunlun) and by 126 km (Denali). Maximum surface faulting was observed near 240 km (Kunlun, 16 m left lateral) and near 175 km (Denali, 9 m right lateral) east of the USGS epicenters. Significant thrust components were observed in the initiation of the Denali event (ERI analysis and mapped thrust) and in the termination of the Kunlun rupture, as evidenced by thrust mechanisms of the largest aftershocks which occurred near the eastern part of the Kunlun rupture. In each sequence the largest aftershock was about 2 orders of magnitude smaller than the mainshock. Moment release along the ruptured segments was examined for the 25-year periods preceding the main shocks. The Denali zone shows precursory accelerating moment release with the dominant events occurring on October 22, 1996 (M 5.8) and October 23, 2002 (M 6.7). The Kunlun zone shows nearly constant moment release over time with the last significant event before the main shock occurring on November 26, 2000 (M 5.4). Moment release data are consistent with previous observations of annual periodicity preceding major earthquakes, possibly due to the evolution of a critical state with seasonal and tidal triggering (Varnes and Bufe, 2001). Annual periodicity is also evident for the larger events in the greater San Francisco Bay

  17. Size and duration of the high-frequency radiator in the source of the December 26, 2004 Sumatra earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, A A [Institute of Volcanology and Seismology, Russian Academy of Sciences, Petropavlovsk-Kamchatskii (Russian Federation); [Kamchatka Branch, Geophysical Survey, Russian Academy of Sciences, Petropavlovsk-Kamchatskii (Russian Federation)]. E-mail: gusev@emsd.iks.ru; Guseva, E M [Kamchatka Branch, Geophysical Survey, Russian Academy of Sciences, Petropavlovsk-Kamchatskii (Russian Federation); Panza, G F [University of Trieste, Department of Earth Sciences, Trieste (Italy); [Abdus Salam International Centre for Theoretical Physics, SAND Group, Trieste (Italy)

    2006-04-15

    We recover the gross space-time characteristics of high-frequency (HF) radiator of the great Sumatra-Andaman islands earthquake of Dec. 26, 2004, (M{sub w}=9.0-9.3) using the inversion of parameters describing the time histories of the power of radiated HF P waves. To determine these time histories we process teleseismic P waves at 37 BB stations, using, in sequence: (1) band filtering in the bands 0.4-1.2, 1.2-2, 2-3 and 3-4 Hz; (2) calculation of squared attenuation-corrected acceleration wave amplitudes, making 'power signal'; (3) elimination of distortion related to scattering and expressed as P coda. In step (3) we employ, as an empirical Green function, the power signal determined from an aftershock, from which we construct an inverse filter, and apply it to the recorded power signal. We thus recover the source time function for HF power, with a definite end and no coda. Three parameters are extracted from such signals: full ('100%') duration, temporal centroid, and 99% duration. Through linear inversion, station full durations deliver estimates of the rupture stopping point and stopping time. Similarly, signal temporal centroids and 99% durations can be inverted to obtain the position of the space-time centroid of HF energy radiator and of the point corresponding to the discharge of 99% of the energy. Inversion was successful for the three lower-frequency bands and resulted in the following joint estimates: source length of 1100{+-}220 km (100%) and 800{+-}200 km (99%), source duration of 690 s (100%) and 550 s (99%). The stopping point differs insignificantly from the northern extremity of the aftershock zone. Spatial HF radiation centroid is located at the distance of about 400 km at the azimuth N327W from the epicenter. Rupture propagation velocity estimates are 1.4-1.7 km/s for the entire rupture and 2.3 km/s for its southern, more powerful part. An interesting detail of the source is that the northernmost 300 km of the rupture radiated only 1% of the

  18. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic

  19. Predicting earthquakes by analyzing accelerating precursory seismic activity

    Science.gov (United States)

    Varnes, D.J.

    1989-01-01

    During 11 sequences of earthquakes that in retrospect can be classed as foreshocks, the accelerating rate at which seismic moment is released follows, at least in part, a simple equation. This equation (1) is {Mathematical expression},where {Mathematical expression} is the cumulative sum until time, t, of the square roots of seismic moments of individual foreshocks computed from reported magnitudes;C and n are constants; and tfis a limiting time at which the rate of seismic moment accumulation becomes infinite. The possible time of a major foreshock or main shock, tf,is found by the best fit of equation (1), or its integral, to step-like plots of {Mathematical expression} versus time using successive estimates of tfin linearized regressions until the maximum coefficient of determination, r2,is obtained. Analyzed examples include sequences preceding earthquakes at Cremasta, Greece, 2/5/66; Haicheng, China 2/4/75; Oaxaca, Mexico, 11/29/78; Petatlan, Mexico, 3/14/79; and Central Chile, 3/3/85. In 29 estimates of main-shock time, made as the sequences developed, the errors in 20 were less than one-half and in 9 less than one tenth the time remaining between the time of the last data used and the main shock. Some precursory sequences, or parts of them, yield no solution. Two sequences appear to include in their first parts the aftershocks of a previous event; plots using the integral of equation (1) show that the sequences are easily separable into aftershock and foreshock segments. Synthetic seismic sequences of shocks at equal time intervals were constructed to follow equation (1), using four values of n. In each series the resulting distributions of magnitudes closely follow the linear Gutenberg-Richter relation log N=a-bM, and the product n times b for each series is the same constant. In various forms and for decades, equation (1) has been used successfully to predict failure times of stressed metals and ceramics, landslides in soil and rock slopes, and volcanic

  20. Source characteristics of moderate size events using empirical Green funclions: an application to some Guerrero (Mexico subduction zone earthquakes

    Directory of Open Access Journals (Sweden)

    S. K. Singh

    1994-06-01

    Full Text Available The records of an aftershock (M ~ 4 of a moderate size event (M = 5.9 which occurred along the subduction zone of Guerrero (Mexico, are used as empirical Green functions (EGF to determine the source characteristics of the mainshock and of its smaller size (M = 5.5 foreshock. The data consist of accelerograms recorded by the Guerrero Accelerograph Array, a high dynamic range strong motion array. The three events appear to be located close to each other at distances much smaller than the source to receiver distances. The fault mechanism of the mainshock is computed by non-linear inversion of P polarity readings and S wave polarizations determined at two near source stations. The foreshock and aftershock fault mechanisms are similar to that of the mainshock as inferred from long period data and shear wave polarization analysis. The maximum likelihood solution is well constrained, indicating a typical shallow dipping thrust fault mechanism, with the P-axis approximately oriented in a SSW direction. The source time functions (STFs of the mainshock and foreshock events are determined using a new method of deconvolution of the EGF records at three strong motion sites. In this method the STF of the large event is approximated by a superposition of pseudo triangular pulses whose parameters are determined by a non-linear inversion in frequency domain. The source time function of the mainshock shows the presence of two separate pulses, which can be related to multiple rupture episodes. The relative location of mainshock sub-events is done by using plots of isochrones computed from measurementes of the time delay between pulses on the STF records at each station. The first sub-event is located no more than 2.5-3 km away from the other along the fault strike. The STF retrieved from foreshock records shows single pulse waveforms. The computed STFs are used to estimate seismic moments, source radii and stress release of the events assuming a circular fault