WorldWideScience

Sample records for afferent nerves protect

  1. Blockage of the neurokinin 1 receptor and capsaicin-induced ablation of the enteric afferent nerves protect SCID mice against T-cell-induced chronic colitis

    DEFF Research Database (Denmark)

    Gad, Monika; Pedersen, Anders Elm; Kristensen, Nanna Ny; Fernandez, Carmen de Felipe; Claesson, Mogens H

    2009-01-01

    BACKGROUND: The neurotransmitter substance P (SP) released by, and the transient receptor potential vanilloid (TRPV1), expressed by afferent nerves, have been implicated in mucosal neuro-immune-regulation. To test if enteric afferent nerves are of importance for the development of chronic colitis......, we examined antagonists for the high-affinity neurokinin 1 (NK-1) SP receptor and the TRPV1 receptor agonist capsaicin in a T-cell transfer model for chronic colitis. METHODS: Chronic colitis was induced in SCID mice by injection of CD4(+)CD25(-) T cells. The importance of NK-1 signaling and TRPV1...

  2. On the nature of the afferent fibers of oculomotor nerve.

    Science.gov (United States)

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve. PMID:2719524

  3. Central changes in primary afferent fibers following peripheral nerve lesions.

    Science.gov (United States)

    Coggeshall, R E; Lekan, H A; Doubell, T P; Allchorne, A; Woolf, C J

    1997-04-01

    Cutting or crushing rat sciatic nerve does not significantly reduce the number of central myelinated sensory axons in the dorsal roots entering the fourth and fifth lumbar segments even over very extended periods of time. Unmyelinated axons were reduced by approximately 50%, but only long after sciatic nerve lesions (four to eight months), and reinnervation of the peripheral target did not rescue these axons. This indicates that a peripheral nerve lesion sets up a slowly developing but major shift towards large afferent fiber domination of primary afferent input into the spinal cord. In addition, since myelinated axons are never lost, this is good evidence that the cells that give rise to these fibers are also not lost. If this is the case, this would indicate that adult primary sensory neurons with myelinated axons do not depend on peripheral target innervation for survival. PMID:9130791

  4. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin

    OpenAIRE

    Foss, Jason D.; Wainford, Richard D.; Engeland, William C.; Fink, Gregory D.; Osborn, John W.

    2014-01-01

    Renal denervation has been shown to lower arterial pressure in some hypertensive patients, yet it remains unclear whether this is due to ablation of afferent or efferent renal nerves. To investigate the role of afferent renal nerves in arterial pressure regulation, previous studies have used methods that disrupt both renal and nonrenal afferent signaling. The present study was conducted to develop and validate a technique for selective ablation of afferent renal nerves that does not disrupt o...

  5. Sensitizing effects of lafutidine on CGRP-containing afferent nerves in the rat stomach

    OpenAIRE

    Nishihara, Katsushi; Nozawa, Yoshihisa; Nakano, Motoko; Ajioka, Hirofusa; Matsuura, Naosuke

    2002-01-01

    Capsaicin sensitive afferent nerves play an important role in gastric mucosal defensive mechanisms. Capsaicin stimulates afferent nerves and enhances the release of calcitonin gene-related peptide (CGRP), which seems to be the predominant neurotransmitter of spinal afferents in the rat stomach, exerting many pharmacological effects by a direct mechanism or indirectly through second messengers such as nitric oxide (NO).Lafutidine is a new type of anti-ulcer drug, possessing both an antisecreto...

  6. Afferent nerves regulating the cough reflex: Mechanisms and Mediators of Cough in Disease

    OpenAIRE

    Canning, Brendan J.

    2010-01-01

    Bronchopulmonary C-fibers and acid-sensitive, capsaicin-insensitive mechanoreceptors innervating the larynx, trachea and large bronchi regulate the cough reflex. These vagal afferent nerves may interact centrally with sensory input arising from afferent nerves innervating the intrapulmonary airways or even extrapulmonary afferents such as those innervating the nasal mucosa and esophagus to produce chronic cough or enhanced cough responsiveness. The mechanisms of cough initiation in health and...

  7. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin.

    Science.gov (United States)

    Foss, Jason D; Wainford, Richard D; Engeland, William C; Fink, Gregory D; Osborn, John W

    2015-01-15

    Renal denervation has been shown to lower arterial pressure in some hypertensive patients, yet it remains unclear whether this is due to ablation of afferent or efferent renal nerves. To investigate the role of afferent renal nerves in arterial pressure regulation, previous studies have used methods that disrupt both renal and nonrenal afferent signaling. The present study was conducted to develop and validate a technique for selective ablation of afferent renal nerves that does not disrupt other afferent pathways. To do this, we adapted a technique for sensory denervation of the adrenal gland by topical application of capsaicin and tested the hypothesis that exposure of the renal nerves to capsaicin (renal-CAP) causes ablation of afferent but not efferent renal nerves. Renal-CAP had no effect on renal content of the efferent nerve markers tyrosine hydroxylase and norepinephrine; however, the afferent nerve marker, calcitonin gene-related peptide was largely depleted from the kidney 10 days after intervention, but returned to roughly half of control levels by 7 wk postintervention. Moreover, renal-CAP abolished the cardiovascular responses to acute pharmacological stimulation of afferent renal nerves. Renal-CAP rats showed normal weight gain, as well as cardiovascular and fluid balance regulation during dietary sodium loading. To some extent, renal-CAP did blunt the bradycardic response and increase the dipsogenic response to increased salt intake. Lastly, renal-CAP significantly attenuated the development of deoxycorticosterone acetate-salt hypertension. These results demonstrate that renal-CAP effectively causes selective ablation of afferent renal nerves in rats. PMID:25411365

  8. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  9. Interdependency between mechanical parameters and afferent nerve discharge in hypertrophic intestine of rats.

    Science.gov (United States)

    Yang, Jian; Zhao, Jingbo; Chen, Pengmin; Nakaguchi, Toshiya; Grundy, David; Gregersen, Hans

    2016-03-15

    Partial intestinal obstruction causes smooth muscle hypertrophy, enteric neuronal plasticity, motility disorders, and biomechanical remodeling. In this study we characterized the stimulus-response function of afferent fibers innervating the partially obstructed jejunum. A key question is whether changes in afferent firing arise from remodeled mechanical tissue properties or from adaptive afferent processes. Partial obstruction was created by placing a polyethylene ring for 2 wk in jejunum of seven rats. Sham obstruction was made in six rats and seven rats served as normal controls. Firing from mesenteric afferent nerve bundles was recorded during mechanical ramp, relaxation, and creep tests. Stress-strain, spike rate increase ratio (SRIR), and firing rate in single units were assessed for evaluation of interdependency of the mechanical stimulations, histomorphometry data, and afferent nerve discharge. Partial intestinal obstruction resulted in hypertrophy and jejunal stiffening proximal to the obstruction site. Low SRIR at low strains during fast distension and at high stresses during slow distension was found in the obstructed rats. Single unit analysis showed increased proportion of mechanosensitive units but absent high-threshold (HT) units during slow stimulation, decreased number of HT units during fast stimulation, and shift from HT sensitivity towards low threshold sensitivity in the obstructed jejunum. Biomechanical remodeling and altered afferent response to mechanical stimulations were found in the obstructed jejunum. Afferents from obstructed jejunum preserved their function in encoding ongoing mechanical stimulation but showed changes in their responsiveness. The findings support that mechanical factors rather than adaption are important for afferent remodeling. PMID:26585414

  10. Temperature-dependent variation in afferent nerve discharge in rat jejunum

    DEFF Research Database (Denmark)

    Gregersen, Hans; Yang, Jian; Zhao, Jingbo

    2015-01-01

    Objective: The enteric nerve system is essential for intestinal function and sensation. Activation of various types of enteric receptors evokes afferent nerve spike discharges. These fibres play an important role in mediation of symptoms and pain. Despite the increasing number of GI studies on...... stimuli and afferent nerve responses may have implications for our understanding of thermal evoked hypersensitivity. The altered signaling may be transmitted to the central nervous system and affect pain perception, which is one important symptom experienced with ingestion of hot or cold food or with...

  11. Interdependency between mechanical parameters and afferent nerve discharge in hypertrophic intestine of rats

    DEFF Research Database (Denmark)

    Yang, Jian; Zhao, Jingbo; Chen, Pengmin;

    2015-01-01

    normal controls. Firing from mesenteric afferent nerve bundles was recorded during mechanical ramp, relaxation and creep tests. Stress-strain, spike rate increase ratio (SRIR) and firing rate in single units were assessed for evaluation of interdependency of the mechanical stimulations, histomorphometry...... data and afferent nerve discharge. RESULTS: Partial intestinal obstruction resulted in hypertrophy and jejunal stiffening proximal to the obstruction site. Low SRIR at low strains during fast distension and at high stresses during slow distension was found in the obstructed rats. Single unit analysis...

  12. Effects of nicotinic receptor agonists on bladder afferent nerve activity in an in vitro bladder-pelvic nerve preparation.

    Science.gov (United States)

    Yu, Yongbei; Daugherty, Stephanie L; de Groat, William C

    2016-04-15

    Effects of nicotinic receptor agonists (epibatidine and nicotine) on mechano-sensitive bladder afferent nerve (MS-BAN) activity were studied in an in vitro bladder-pelvic afferent nerve preparation. MS-BAN activity was induced by isotonic distention of the bladder at pressures of 10-40cmH2O. The effect of epibatidine varied according to the concentration, route of administration and the intravesical pressure stimulus. Epibatidine (300-500nM) administered in the perfusate to the serosal surface of the bladder decreased distension evoked afferent firing by 30-50% depending on the bladder pressure. However these concentrations also produced an immediate increase in tonic afferent firing in the empty bladder. Lower concentrations (50-100nM) elicited weaker and more variable effects. The inhibitory effects were blocked by bath application of mecamylamine (150µM) a nicotinic receptor antagonist. Bath application of nicotine (20µM) elicited similar effects. Intravesical administration of epibatidine (500nM) significantly increased MS-BAN firing by 15-30%; while lower concentrations (200-300nM) were ineffective. This facilitatory effect of epibatidine was blocked by intravesical administration of mecamylamine (250µM). Electrical stimulation on the surface of the bladder elicited action potentials (AP) in BAN. Bath application of epibatidine (300nM) or nicotine (20µM) did not change either the voltage threshold or the area of evoked AP. These results indicate that nicotinic agonists: (1) enhance MS-BAN activity originating at afferent receptors near the urothelium, (2) inhibit MS-BAN activity originating at afferent receptors located at other sites in the bladder, (3) directly excite unidentified afferents, (4) do not alter afferent axonal excitability. PMID:26876739

  13. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse.

    Science.gov (United States)

    Daly, Donna M; Park, Sung Jin; Valinsky, William C; Beyak, Michael J

    2011-06-01

    Gastrointestinal vagal afferents transmit satiety signals to the brain via both chemical and mechanical mechanisms. There is indirect evidence that these signals may be attenuated in obesity. We hypothesized that responses to satiety mediators and distension of the gut would be attenuated after induction of diet induced obesity. Obesity was induced by feeding a high fat diet (60% kcal from fat). Low fat fed mice (10% kcal from fat) served as a control. High fat fed mice were obese, with increased visceral fat, but were not hyperglycaemic. Recordings from jejunal afferents demonstrated attenuated responses to the satiety mediators cholecystokinin (CCK, 100 nm) and 5-hydroxytryptamine (5-HT, 10 μm), as was the response to low intensity jejunal distension, while responses to higher distension pressures were preserved. We performed whole cell patch clamp recordings on nodose ganglion neurons, both unlabelled, and those labelled by fast blue injection into the wall of the jejunum. The cell membrane of both labelled and unlabelled nodose ganglion neurons was less excitable in HFF mice, with an elevated rheobase and decreased number of action potentials at twice rheobase. Input resistance of HFF neurons was also significantly decreased. Calcium imaging experiments revealed reduced proportion of nodose ganglion neurons responding to CCK and 5-HT in obese mice. These results demonstrate a marked reduction in afferent sensitivity to satiety related stimuli after a chronic high fat diet. A major mechanism underlying this change is reduced excitability of the neuronal cell membrane. This may explain the development of hyperphagia when a high fat diet is consumed. Improving sensitivity of gastrointestinal afferent nerves may prove useful to limit food intake in obesity. PMID:21486762

  14. Afferent neurons of the hypoglossal nerve of the rat as demonstrated by horseradish peroxidase tracing.

    Science.gov (United States)

    Neuhuber, W; Mysicka, A

    1980-01-01

    Cell bodies of sensory neurons of the rat's hypoglossal nerve were demonstrated by the somatopetal horseradish peroxidase (HRP) transport technique. Labelled perikarya were found within the second and third cervical spinal ganglia and in the vagal sensory ganglia. After application of HRP to the cut peripheral trunk of the hypoglossal nerve about 200 labelled cell bodies were counted in each animal. The vast majority of the axons from cervical spinal ganglion cells reach the hypoglossal nerve via the descending ramus (N. descendens hypoglossi). However, there may exist an additional pathway, probably via the cervical sympathetic trunk. Application of HPR to the medial and lateral end branches led to a labelling of much fewer spinal ganglion cells while the number of labelled vegal sensory neurons remained unchanged. Thus, it is suggested that the majority of the cervical afferents of the hypoglossal nerve originates within the extrinsic tongue musculature and the geniohyoid muscle, whereas the vagal afferents may perhaps derive exclusively from the intrinsic muslces. Histograms of the mean diameters of labelled cell bodies show a predominance of very small perikarya. This contrasts with the diameter distribution of sensory perikarya labelled after HRP application to nerves supplying other skeletal muscles. It is therefore assumed that the afferent component of the hypoglossal nerve is composed mainly of small-calibre axons. PMID:7356184

  15. The Renal Nerves in Chronic Heart Failure: Afferent and Efferent Mechanisms

    Directory of Open Access Journals (Sweden)

    Alicia Marie Schiller

    2015-08-01

    Full Text Available The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF. Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent

  16. The role of skin nociceptive afferent nerves in blister healing.

    Science.gov (United States)

    Westerman, R A; Carr, R W; Delaney, C A; Morris, M J; Roberts, R G

    1993-01-01

    Because sensory neuropeptides improve survival of critical skin and muscle flaps in rats, skin nociceptive sensory nerve function in blister healing was examined. Sensory nerve ablation by unilateral hindlimb denervation or cutaneous axon reflex enhancement by 14 days systemic nicotine treatment (5 mg kg-1 day-1) decreased and increased, respectively, peripheral motor functions of nociceptive (peptidergic) skin nerves. Effects on nociception were measured by a radiant heat tail-flick test. Axon reflex flares were evoked by transdermal iontophoresis of acetylcholine or noxious electrical stimulation under pentobarbitone 40 mg kg-1 anaesthesia. Resultant changes in cutaneous microvascular blood flux were measured non-invasively by laser Doppler flowmetry. In nicotine-treated rats compared with placebo-treated controls, acetylcholine-evoked axon reflex flare was enhanced by 240% (p skin using a constant weight and diameter of compressed dry ice pellet applied for 30 secs at constant force. Dry-ice blisters raised on the hindpaw 14 days post-denervation were significantly slower to heal completely (42 days) than controls (30 days: P skin. The data signal a possible important role for neuropeptides in these processes and question the function of nicotinic receptors on sensory nerves. PMID:7712628

  17. Plasticity of Urinary Bladder Reflexes Evoked by Stimulation of Pudendal Afferent Nerves after Chronic Spinal Cord Injury in Cats

    OpenAIRE

    Tai, Changfeng; Chen, Mang; Shen, Bing; Wang, Jicheng; Liu, Hailong; Roppolo, James R.; de Groat, William C.

    2010-01-01

    Bladder reflexes evoked by stimulation of pudendal afferent nerves (PudA-to-Bladder reflex) were studied in normal and chronic spinal cord injured (SCI) adult cats to examine the reflex plasticity. Physiological activation of pudendal afferent nerves by tactile stimulation of the perigenital skin elicits an inhibitory PudA-to-Bladder reflex in normal cats, but activates an excitatory reflex in chronic SCI cats. However, in both normal and chronic SCI cats electrical stimulation applied to the...

  18. Nitric oxide modulates bladder afferent nerve activity in the in vitro urinary bladder–pelvic nerve preparation from rats with cyclophosphamide induced cystitis

    OpenAIRE

    Yu, Yongbei; de Groat, William C.

    2012-01-01

    Effects of a nitric oxide (NO) donor (SNAP), NO substrate (l-arginine), and NO synthase inhibitor (l-NAME) on bladder afferent nerve (BAN) activity were studied in an in vitro bladder–pelvic nerve preparation from untreated or cyclophosphamide (CYP) treated rats. Distension of the bladder induced phasic bladder contractions (PBC) that were accompanied by multiunit afferent firing. Intravesical administration of SNAP (2 mM) which did not change the amplitude of PBC significantly decreased peak...

  19. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. PMID:25056352

  20. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia.

    Science.gov (United States)

    Spencer, Nick J; Kyloh, Melinda; Beckett, Elizabeth A; Brookes, Simon; Hibberd, Tim

    2016-10-15

    In visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings. Recently, we developed a technique that now provides selective labeling of only spinal afferents. We used this approach to identify spinal afferent nerve endings in the upper GI tract of mice. Animals were anesthetized, and injections of dextran-amine were made into thoracic DRGs (T8-T12). Seven days post surgery, mice were euthanized, and the stomach and esophagus were removed, fixed, and stained for calcitonin gene-related peptide (CGRP). Spinal afferent axons were identified that ramified extensively through many rows of myenteric ganglia and formed nerve endings in discrete anatomical layers. Most commonly, intraganglionic varicose endings (IGVEs) were identified in myenteric ganglia of the stomach and varicose simple-type endings in the circular muscle and mucosa. Less commonly, nerve endings were identified in internodal strands, blood vessels, submucosal ganglia, and longitudinal muscle. In the esophagus, only IGVEs were identified in myenteric ganglia. No intraganglionic lamellar endings (IGLEs) were identified in the stomach or esophagus. We present the first identification of spinal afferent endings in the upper GI tract. Eight distinct types of spinal afferent endings were identified in the stomach, and most of them were CGRP immunoreactive. J. Comp. Neurol. 524:3064-3083, 2016. © 2016 Wiley Periodicals, Inc. PMID:27019197

  1. Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array.

    Science.gov (United States)

    Delivopoulos, Evangelos; Chew, Daniel J; Minev, Ivan R; Fawcett, James W; Lacour, Stéphanie P

    2012-07-21

    In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity. PMID:22569953

  2. Nitric oxide modulates bladder afferent nerve activity in the in vitro urinary bladder-pelvic nerve preparation from rats with cyclophosphamide induced cystitis.

    Science.gov (United States)

    Yu, Yongbei; de Groat, William C

    2013-01-15

    Effects of a nitric oxide (NO) donor (SNAP), NO substrate (l-arginine), and NO synthase inhibitor (l-NAME) on bladder afferent nerve (BAN) activity were studied in an in vitro bladder-pelvic nerve preparation from untreated or cyclophosphamide (CYP) treated rats. Distension of the bladder induced phasic bladder contractions (PBC) that were accompanied by multiunit afferent firing. Intravesical administration of SNAP (2mM) which did not change the amplitude of PBC significantly decreased peak afferent firing from 79 ± 15 spikes/s to 44 ± 8 spikes/s in CYP pretreated but not untreated preparations. In CYP treated preparations SNAP also decreased by 33-55% BAN firing induced by isotonic distension of the bladder at 10-40 cmH(2)O pressures. Electrical stimulation on the surface of the bladder elicited action potentials (AP) in BAN. SNAP significantly increased the voltage threshold by 75% (pbladder hyperactivity induced by pathological conditions. PMID:23063886

  3. Effects of Afferent Stimulation of the Lingual Nerve on Gastrointestinal Motility in the Rat

    Directory of Open Access Journals (Sweden)

    Sugimoto,Masaharu

    1987-06-01

    Full Text Available Effects of afferent stimulation of the lingual nerve (LNAS on gastrointestinal motility and the reflex pathways which mediate the response to LNAS were investigated in rats. LNAS induced excitatory, inhibitory or biphasic responses in the stomach, duodenum and proximal colon. These responses continued after bilateral vagotomy, but were abolished after additional bilateral splanchnicotomy or transection of the spinal cord between Th4 and Th5. The inhibitory, excitatory and biphasic responses induced by LNAS were not affected by decerebration. Both after administration of atropine (0.2 mg/kg, i.v. and guanethidine (3-5 mg/kg, i.v., LNAS-induced excitatory and inhibitory responses were abolished in most cases, but the slight inhibitory response in the stomach and duodenum to LNAS remained in a few cases. These results suggest that the reflex centers which cause LNAS-induced excitatory and inhibitory responses are located in the dorsal nucleus of vagus and that the reflex pathways include the vagus and splanchnic nerves.

  4. Effect of synthetic cationic protein on mechanoexcitability of vagal afferent nerve subtypes in guinea pig esophagus.

    Science.gov (United States)

    Yu, Shaoyong; Ouyang, Ann

    2011-12-01

    Eosinophilic esophagitis is characterized by increased infiltration and degranulation of eosinophils in the esophagus. Whether eosinophil-derived cationic proteins regulate esophageal sensory nerve function is still unknown. Using synthetic cationic protein to investigate such effect, we performed extracellular recordings from vagal nodose or jugular neurons in ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Nerve excitabilities were determined by comparing action potentials evoked by esophageal distensions before and after perfusion of synthetic cationic protein poly-L-lysine (PLL) with or without pretreatment with poly-L-glutamic acid (PLGA), which neutralized cationic charges of PLL. Perfusion with PLL did not evoke action potentials in esophageal nodose C fibers but increased their responses to esophageal distension. This potentiation effect lasted for 30 min after washing out of PLL. Pretreatment with PLGA significantly inhibited PLL-induced mechanohyperexcitability of esophageal nodose C fibers. In esophageal nodose Aδ fibers, perfusion with PLL did not evoke action potentials. In contrast to nodose C fibers, both the spontaneous discharges and the responses to esophageal distension in nodose Aδ fibers were decreased by perfusion with PLL, which can be restored after washing out PLL for 30-60 min. Pretreatment with PLGA attenuated PLL-induced decrease in spontaneous discharge and mechanoexcitability of esophageal nodose Aδ fibers. In esophageal jugular C fibers, PLL neither evoked action potentials nor changed their responses to esophageal distension. Collectively, these data demonstrated that synthetic cationic protein did not evoke action potential discharges of esophageal vagal afferents but had distinctive sensitization effects on their responses to esophageal distension. PMID:21960520

  5. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus.

    Science.gov (United States)

    Yu, Xiaoyun; Hu, Youtian; Ru, Fei; Kollarik, Marian; Undem, Bradley J; Yu, Shaoyong

    2015-03-15

    Sensory transduction in esophageal afferents requires specific ion channels and receptors. TRPM8 is a new member of the transient receptor potential (TRP) channel family and participates in cold- and menthol-induced sensory transduction, but its role in visceral sensory transduction is still less clear. This study aims to determine TRPM8 function and expression in esophageal vagal afferent subtypes. TRPM8 agonist WS-12-induced responses were first determined in nodose and jugular neurons by calcium imaging and then investigated by whole cell patch-clamp recordings in Dil-labeled esophageal nodose and jugular neurons. Extracellular single-unit recordings were performed in nodose and jugular C fiber neurons using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. TRPM8 mRNA expression was determined by single neuron RT-PCR in Dil-labeled esophageal nodose and jugular neurons. The TRPM8 agonist WS-12 elicited calcium influx in a subpopulation of jugular but not nodose neurons. WS-12 activated outwardly rectifying currents in esophageal Dil-labeled jugular but not nodose neurons in a dose-dependent manner, which could be inhibited by the TRPM8 inhibitor AMTB. WS-12 selectively evoked action potential discharges in esophageal jugular but not nodose C fibers. Consistently, TRPM8 transcripts were highly expressed in esophageal Dil-labeled TRPV1-positive jugular neurons. In summary, the present study demonstrated a preferential expression and function of TRPM8 in esophageal vagal jugular but not nodose neurons and C fiber subtypes. This provides a distinctive role of TRPM8 in esophageal sensory transduction and may lead to a better understanding of the mechanisms of esophageal sensation and nociception. PMID:25591866

  6. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi Shitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  7. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    OpenAIRE

    Fu, Liang-Wu; Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischem...

  8. Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique.

    Directory of Open Access Journals (Sweden)

    Nick J Spencer

    Full Text Available In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG. One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%, circular muscle (25% and myenteric ganglia (22%. Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs and occasionally rectal intraganglionic laminar endings (rIGLEs. Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings

  9. Identification of Different Types of Spinal Afferent Nerve Endings That Encode Noxious and Innocuous Stimuli in the Large Intestine Using a Novel Anterograde Tracing Technique

    Science.gov (United States)

    Spencer, Nick J.; Kyloh, Melinda; Duffield, Michael

    2014-01-01

    In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified

  10. Spike Sorting of Muscle Spindle Afferent Nerve Activity Recorded with Thin-Film Intrafascicular Electrodes

    OpenAIRE

    Milan Djilas; Christine Azevedo-Coste; David Guiraud; Ken Yoshida

    2010-01-01

    Afferent muscle spindle activity in response to passive muscle stretch was recorded in vivo using thin-film longitudinal intrafascicular electrodes. A neural spike detection and classification scheme was developed for the purpose of separating activity of primary and secondary muscle spindle afferents. The algorithm is based on the multiscale continuous wavelet transform using complex wavelets. The detection scheme outperforms the commonly used threshold detection, especially with recordings ...

  11. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Salter Michael W

    2010-11-01

    Full Text Available Abstract Background The blood-brain barrier (BBB plays the crucial role of limiting exposure of the central nervous system (CNS to damaging molecules and cells. Dysfunction of the BBB is critical in a broad range of CNS disorders including neurodegeneration, inflammatory or traumatic injury to the CNS, and stroke. In peripheral tissues, the vascular-tissue permeability is normally greater than BBB permeability, but vascular leakage can be induced by efferent discharge activity in primary sensory neurons leading to plasma extravasation into the extravascular space. Whether discharge activity of sensory afferents entering the CNS may open the BBB or blood-spinal cord barrier (BSCB remains an open question. Results Here we show that peripheral nerve injury (PNI produced by either sciatic nerve constriction or transecting two of its main branches causes an increase in BSCB permeability, as assessed by using Evans Blue dye or horseradish peroxidase. The increase in BSCB permeability was not observed 6 hours after the PNI but was apparent 24 hours after the injury. The increase in BSCB permeability was transient, peaking about 24-48 hrs after PNI with BSCB integrity returning to normal levels by 7 days. The increase in BSCB permeability was prevented by administering the local anaesthetic lidocaine at the site of the nerve injury. BSCB permeability was also increased 24 hours after electrical stimulation of the sciatic nerve at intensity sufficient to activate C-fibers, but not when A-fibers only were activated. Likewise, BSCB permeability increased following application of capsaicin to the nerve. The increase in permeability caused by C-fiber stimulation or by PNI was not anatomically limited to the site of central termination of primary afferents from the sciatic nerve in the lumbar cord, but rather extended throughout the spinal cord and into the brain. Conclusions We have discovered that injury to a peripheral nerve and electrical stimulation of C

  12. GABA(A) receptors in the rostral ventrolateral medulla mediate the depressor response induced by stimulation of the greater splanchnic nerve afferent fibres in rats.

    Science.gov (United States)

    Peng, Y J; Gong, Q L; Li, P

    1998-06-19

    Experiments have been carried out to investigate the chemical substrate in the rostral ventrolateral medulla (RVLM) underlying the depressor responses induced by activation of the greater splanchnic nerve (GSPL) afferent fibres of the rat. In anaesthetised rats with urethane and alpha-chloralose, microinjection of bicuculline, a GABA(A) receptor antagonist, into the RVLM, attenuated largely the depressor responses elicited by electrical stimulation of the GSPL afferent fibres, while strychnine or saline had no effect. In 18 RVLM neurons (including seven identified cardiovascular neurons), iontophoresis of bicuculline also significantly blocked the inhibition evoked by stimulation of the GSPL afferent inputs. We suggest that the depressor responses induced by stimulation of the GSPL afferent fibres involve a GABA(A)-receptor-mediated mechanism in the RVLM in rats. PMID:9682825

  13. Intact sciatic myelinated primary afferent terminals collaterally sprout in the adult rat dorsal horn following section of a neighbouring peripheral nerve.

    Science.gov (United States)

    Doubell, T P; Mannion, R J; Woolf, C J

    1997-03-31

    Peripheral nerve section induces sprouting of the central terminals of axotomized myelinated primary afferents outside their normal dorsoventral termination zones in lamina I, III, and IV of the dorsal horn into lamina II, an area that normally only receives unmyelinated C-fiber input. This axotomy-induced regenerative sprouting is confined to the somatotopic boundaries of the injured nerve in the spinal cord. We examined whether intact myelinated sciatic afferents are able to sprout novel terminals into neighbouring areas of the dorsal horn in the adult rat following axotomy of two test nerves, either the posterior cutaneous nerve of the thigh or the saphenous nerve. These peripheral nerves have somatotopically organized terminal areas in the dorsal horn that overlap in some areas and are contiguous in others, with that of the sciatic central terminal field. Two weeks after cutting either the posterior cutaneous or the saphenous nerve, intact sciatic myelinated fibers labelled with the B fragment of cholera toxin conjugated to horseradish peroxidase (B-HRP) sprouted into an area of lamina II normally only innervated by the adjacent injured test nerve. This collateral sprouting was strictly limited, however, to those particular areas of the dorsal horn where the A-fiber terminal field of the control sciatic and the C-fiber terminal field of the injured test nerve overlapped in the dorsoventral plane. No mediolateral sprouting was seen into those areas of neuropil solely innervated by the test nerve. We conclude that intact myelinated primary afferents do have the capacity to collaterally sprout, but that any resultant somatotopic reorganization of central projections is limited to the dorsoventral plane. These changes may contribute to sensory hypersensitivity at the edges of denervated skin. PMID:9073085

  14. Association between a relative afferent pupillary defect using pupillography and inner retinal atrophy in optic nerve disease

    Directory of Open Access Journals (Sweden)

    Takizawa G

    2015-10-01

    Full Text Available Go Takizawa,1 Atsushi Miki,1–3 Fumiatsu Maeda,4 Katsutoshi Goto,1 Syunsuke Araki,1 Yoshiaki Ieki,1 Junichi Kiryu,1 Kiyoshi Yaoeda3,51Department of Ophthalmology, Kawasaki Medical School, 2Department of Sensory Science, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 3Division of Ophthalmology and Visual Sciences, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; 4Department of Orthoptics and Visual Sciences, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan; 5Yaoeda Eye Clinic, Nagaoka, JapanPurpose: The aim of this study was to compare the asymmetrical light reflex of the control subjects and patients with optic nerve disease and to evaluate the relationships among the relative afferent pupillary defect (RAPD, visual acuity (VA, central critical fusion frequency (CFF, ganglion cell complex thickness (GCCT, and circumpapillary retinal nerve fiber layer thickness (cpRNFLT using spectral-domain optical coherence tomography.Materials and methods: Using a pupillography device, the RAPD scores from 15 patients with unilateral optic nerve disease and 35 control subjects were compared. The diagnostic accuracy of the RAPD amplitude and latency scores was compared using the area under the receiver operating characteristic curve. Thereafter, we assessed the relationships among the RAPD scores, VA, central CFF, GCCT, and cpRNFLT.Results: The average RAPD amplitude score in patients with optic nerve disease was significantly higher than that of the control subjects (P<0.001. The average RAPD latency score in patients with optic nerve disease was significantly higher than that of the control subjects (P=0.001. The area under the receiver operating characteristic curve for the RAPD amplitude score was significantly higher than that for the latency score (P=0.010. The correlation coefficients for the RAPD amplitude and latency scores

  15. GABAA-Receptor-Mediated Conductance and Action Potential Waveform in Cutaneous and Muscle Afferent Neurons of the Adult Rat: Differential Expression and Response to Nerve Injury

    OpenAIRE

    OYELESE, ADETOKUNBO A.; Kocsis, Jeffery D.

    1996-01-01

    Whole cell patch-clamp recordings were obtained from identified cutaneous and muscle afferent neurons (33-60 μm diam) in dissociated L4 and L5 dorsal root ganglia (DRGs) from normal rats and from rats 2-3 wk after sciatic nerve ligation or crush injury. γ-Aminobutyric acid (GABA)-induced conductance was compared in normal and injured neurons from both functional classes of sensory neurons.Control cutaneous afferent neurons had a peak GABA-mediated conductance of 287 ± 27 (SE) nS compared with...

  16. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation

    Science.gov (United States)

    Minev, Ivan R.; Chew, Daniel J.; Delivopoulos, Evangelos; Fawcett, James W.; Lacour, Stéphanie P.

    2012-04-01

    Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of -58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s-1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.

  17. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit

    Science.gov (United States)

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.

    1985-01-01

    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  18. Involvement of capsaicin-sensitive afferent nerves in the proteinase-activated receptor 2-mediated vasodilatation in the rat dura mater.

    Science.gov (United States)

    Dux, M; Rosta, J; Sántha, P; Jancsó, G

    2009-07-01

    Neurogenic inflammation of the dura mater encephali has been suggested to contribute to the mechanisms of meningeal nociception and blood flow regulation. Recent findings demonstrated that the rat dura mater is innervated by trigeminal capsaicin-sensitive peptidergic nociceptive afferent nerves which mediate meningeal vascular responses through activation of the transient receptor potential vanilloid type 1 (TRPV1) receptor. The present work explored the functional significance of the capsaicin-sensitive subpopulation of dural afferent nerves via their contribution to the meningeal vascular responses evoked through activation of the proteinase-activated receptor 2 (PAR-2). The vascular responses of the dura mater were studied by laser Doppler flowmetry in a rat open cranial window preparation. Topical applications of trypsin, a PAR-2-activator, or Ser-Leu-Ile-Gly-Arg-Leu-amide (SLIGRL-NH(2)), a selective PAR-2 agonist peptide, resulted in dose-dependent increases in meningeal blood flow. The SLIGRL-NH(2)-induced vasodilatation was significantly reduced following capsaicin-sensitive afferent nerve defunctionalization by prior systemic capsaicin treatment and by pretreatment of the dura mater with the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37). Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME) an unspecific inhibitor of nitric oxide (NO) production, but not 1-(2-trifluoromethylphenyl) imidazole (TRIM), a neuronal NO synthase inhibitor, also inhibited the vasodilator response to SLIGRL-NH(2). The vasodilator responses elicited by very low concentrations of capsaicin (10 nM) were significantly enhanced by prior application of SLIGRL-NH(2). The present findings demonstrate that activation of the PAR-2 localized on capsaicin-sensitive trigeminal nociceptive afferent nerves induces vasodilatation in the dural vascular bed by mechanisms involving NO and CGRP release. The results indicate that the PAR-2-mediated activation and

  19. Regionally distinct cutaneous afferent populations contribute to reflex modulation evoked by stimulation of the tibial nerve during walking.

    Science.gov (United States)

    Nakajima, Tsuyoshi; Suzuki, Shinya; Futatsubashi, Genki; Ohtsuska, Hiroyuki; Mezzarane, Rinaldo A; Barss, Trevor S; Klarner, Taryn; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-07-01

    During walking, cutaneous reflexes in ankle flexor muscle [tibialis anterior (TA)] evoked by tibial nerve (TIB) stimulation are predominantly facilitatory at early swing phase but reverse to suppression at late swing phase. Although the TIB innervates a large portion of the skin of the foot sole, the extent to which specific foot-sole regions contribute to the reflex reversals during walking remains unclear. Therefore, we investigated regional cutaneous contributions from discrete portions of the foot sole on reflex reversal in TA following TIB stimulation during walking. Summation effects on reflex amplitudes, when applying combined stimulation from foot-sole regions with TIB, were examined. Middle latency responses (MLRs; 70-120 ms) after TIB stimulation were strongly facilitated during the late stance to mid-swing phases and reversed to suppression just before heel (HL) strike. Both forefoot-medial (f-M) and forefoot-lateral stimulation in the foot sole induced facilitation during stance-to-swing transition phases, but HL stimulation evoked suppression during the late stance to the end of swing phases. At the stance-to-swing transition, a summation of MLR amplitude occurred only for combined f-M&TIB stimulation. However, the same was not true for the combined HL&TIB stimulation. At the swing-to-stance transition, there was a suppressive reflex summation only for HL&TIB stimulation. In contrast, this summation was not observed for the f-M&TIB stimulation. Our results suggest that reflex reversals evoked by TIB stimulation arise from distinct reflex pathways to TA produced by separate afferent populations innervating specific regions of the foot sole. PMID:27075541

  20. Excitation of afferent fibres in the cardiac sympathetic nerves induced by coronary occlusion and injection of bradykinin. The influence of acetylsalicylic acid and dipyron.

    Science.gov (United States)

    Vogt, A; Vetterlein, F; dal Ri, H; Schmidt, G

    1979-05-01

    Afferent impulse activity was recorded in single fibres of the inferior cardiac sympathetic nerve of the cat. When the descending branch of the left coronary artery was ligated for 60 sec an enhancement of afferent impulses was recorded. Elevations in discharge frequency were also induced by injecting bradykinin, epinephrine, and isoprenaline or by general hypoxia due to interruption of the artificial ventilation. When these procedures were after pretreatment with the analgesic agents, acetylsalicylic acid or dipyron a reduction in spike discharge was observed only with bradykinin after application of acetylsalicylic acid. No influence of these pretreatments on the effects of coronary occlusion, general hypoxia and injection of epinephrine and isoprenaline could be observed. These results suggest that bradykinin does not predominate as mediator substance in eliciting ischemic heart pain. PMID:485722

  1. No relation between afferent facilitation induced by digital nerve stimulation and the latency of cutaneomuscular reflexes and somatosensory evoked magnetic fields

    Directory of Open Access Journals (Sweden)

    Sho eKojima

    2014-12-01

    Full Text Available Primary motor cortex (M1 excitability can be assessed using transcranial magnetic stimulation (TMS and can be modulated by a conditioning electrical stimulus delivered to a peripheral nerve prior to TMS. This is known as afferent facilitation (AF. The aim of this study was to determine whether AF can be induced by digital nerve stimulation and to evaluate the relation between the interstimulus interval (ISI required for AF and the latency of the E2 component of the cutaneomuscular reflex (CMR and the prominent somatosensory evoked field (SEF deflection that occurs approximately 70 ms after digital nerve stimulation (P60m. Stimulation of the digital nerve of the right index finger was followed, at various time intervals, by single-pulse TMS applied to the contralateral hemisphere. The ISI between digital nerve stimulation and TMS was 20, 30, 40, 50, 60, 70, 80, 100, 140, 180, 200, or 220 ms. Single-pulse TMS was performed alone as a control. SEFs were recorded following digital nerve stimulation of the index finger, and the equivalent current dipole of prominent deflections that occurred around 70 ms after the stimulation was calculated. CMRs were recorded following digital nerve stimulation during muscle contraction. Motor evoked potentials were facilitated at an ISI between 50 and 100 ms in 11 of 13 subjects, and the facilitated MEP amplitude was larger than the unconditioned MEP amplitude (p < 0.01. There was no significant correlation between the ISI at which AF was maximal and the latency of the P60m component of the SEF (r = -0.50, p = 0.12 or the E2 component of the CMR (r = -0.54, p = 0.88. These results indicate that the precise ISI required for AF cannot be predicted using SEF or CMR.

  2. Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells

    Institute of Scientific and Technical Information of China (English)

    Chengjun Song; Zhenjun Yang; Meirong Zhong; Zhihong Chen

    2013-01-01

    Sericin from discarded silkworm cocoons of silk reeling has been used in different fields, such as cosmetology, skin care, nutrition, and oncology. The present study established a rat model of type 2 diabetes by consecutive intraperitoneal injections of low-dose (25 mg/kg) streptozotocin. After intragastrical perfusion of sericin for 35 days, blood glucose levels significantly declined, and the expression of neurofilament protein in the sciatic nerve and nerve growth factor in L4–6 spinal ganglion and anterior horn cells significantly increased. However, the expression of neuropeptide Y in spinal ganglion and anterior horn cells significantly decreased in model rats. These findings indicate that sericin protected the sciatic nerve and related nerve cells against injury in a rat type 2 diabetic model by upregulating the expression of neurofilament protein in the sciatic nerve and nerve growth factor in spinal ganglion and anterior horn cells, and downregulating the expression of neuropeptide Y in spinal ganglion and anterior horn cells.

  3. Vasopressin content in the cerebrospinal fluid and fluid perfusing cerebral ventricles in rats after the afferent vagus nerve fibres stimulation

    International Nuclear Information System (INIS)

    Experiments were carried out on male rats in urethane anaesthesia. Cerebroventricular system was perfused with McIlwain-Rodniht's solution from lateral ventricles to cerebellomedullary cistern. Both vagus nerves were cut and the central ends of the nerves were electrically stimulated during the collection of the third 30-min portion of perfusing fluid. Vasopressin (AVP) was determined by radioimmunoassay in samples of the cerebrospinal fluid (CSF) (the first portion) and in five successive samples of the perfusing fluid. AVP concentration in the CSF was several times greater than in the fluid perfusing cerebral ventricles. Alternate electrical stimulation of both vagus nerves did not change considerably the release of AVP into the fluid perfusing the cerebral ventricles in rat, although a certain upward tendency could be observed. It seems that only AVP raised in circulating blood and not in CSF, after vagus nerves stimulation may act on the central nervous structures. (author). 37 refs, 3 figs, 1 tab

  4. Vasopressin content in the cerebrospinal fluid and fluid perfusing cerebral ventricles in rats after the afferent vagus nerve fibres stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska-Majdak, M.; Traczyk, W.Z. [Akademia Medyczna, Lodz (Poland). Katedra Fizjologii

    1996-12-31

    Experiments were carried out on male rats in urethane anaesthesia. Cerebroventricular system was perfused with McIlwain-Rodniht`s solution from lateral ventricles to cerebellomedullary cistern. Both vagus nerves were cut and the central ends of the nerves were electrically stimulated during the collection of the third 30-min portion of perfusing fluid. Vasopressin (AVP) was determined by radioimmunoassay in samples of the cerebrospinal fluid (CSF) (the first portion) and in five successive samples of the perfusing fluid. AVP concentration in the CSF was several times greater than in the fluid perfusing cerebral ventricles. Alternate electrical stimulation of both vagus nerves did not change considerably the release of AVP into the fluid perfusing the cerebral ventricles in rat, although a certain upward tendency could be observed. It seems that only AVP raised in circulating blood and not in CSF, after vagus nerves stimulation may act on the central nervous structures. (author). 37 refs, 3 figs, 1 tab.

  5. Collateral sprouting of uninjured primary afferent A-fibers into the superficial dorsal horn of the adult rat spinal cord after topical capsaicin treatment to the sciatic nerve.

    Science.gov (United States)

    Mannion, R J; Doubell, T P; Coggeshall, R E; Woolf, C J

    1996-08-15

    That terminals of uninjured primary sensory neurons terminating in the dorsal horn of the spinal cord can collaterally sprout was first suggested by Liu and Chambers (1958), but this has since been disputed. Recently, horseradish peroxidase conjugated to the B subunit of cholera toxin (B-HRP) and intracellular HRP injections have shown that sciatic nerve section or crush produces a long-lasting rearrangement in the organization of primary afferent central terminals, with A-fibers sprouting into lamina II, a region that normally receives only C-fiber input (Woolf et al., 1992). The mechanism of this A-fiber sprouting has been thought to involve injury-induced C-fiber transganglionic degeneration combined with myelinated A-fibers being conditioned into a regenerative growth state. In this study, we ask whether C-fiber degeneration and A-fiber conditioning are both necessary for the sprouting of A-fibers into lamina II. Local application of the C-fiber-specific neurotoxin capsaicin to the sciatic nerve has previously been shown to result in C-fiber damage and degenerative atrophy in lamina II. We have used B-HRP to transganglionically label A-fiber central terminals and have shown that 2 weeks after topical capsaicin treatment to the sciatic nerve, the pattern of B-HRP staining in the dorsal horn is indistinguishable from that seen after axotomy, with lamina II displaying novel staining in the identical region containing capsaicin-treated C-fiber central terminals. These results suggest that after C-fiber injury, uninjured A-fiber central terminals can collaterally sprout into lamina II of the dorsal horn. This phenomenon may help to explain the pain associated with C-fiber neuropathy. PMID:8756447

  6. Variation in response dynamics of regular and irregular vestibular-nerve afferents during sinusoidal head rotations and currents in the chinchilla

    OpenAIRE

    Kim, Kyu-Sung; Minor, Lloyd B.; Della Santina, Charles; Lasker, David M.

    2011-01-01

    In mammals, primary vestibular afferents that innervate only type I hair cells (calyx-only afferents) respond nearly in phase with head acceleration for high-frequency motion, whereas afferents that innervate both type I and type II (dimorphic) or only type II (bouton-only) hair cells respond more in phase with head velocity. Afferents that exhibit irregular background firing rates have a larger phase lead re head velocity than those that fire more regularly. We wanted to examine what is the ...

  7. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways

    Science.gov (United States)

    Boyle, R.; Goldberg, J. M.; Highstein, S. M.

    1992-01-01

    1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs

  8. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Science.gov (United States)

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P stimulation (n = 5, P stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  9. [The Importance of Vagus Nerve Afferent in the Formation of Emotions in Attention-Deficit Hyperactivity Disorder Model Rat].

    Science.gov (United States)

    Hida, Hideki

    2016-06-01

    It is of interest to know how environmental stimuli contribute to the formation of emotion during development. In a rat model of attention-deficit hyperactivity disorder, monosodium L- glutamate (MSG), a taste substance of umami, was administered for 5 weeks during developmental period, followed by emotional behavior tests such as open-field test and social interaction test in adulthood. Although no significant change was observed in anxiety-like behavior, MSG intake caused a reduction in aggressive behavior. Vagotomy under the level of diaphragm resulted in eliminating the MSG effect on aggression, indicating the importance of neuronal activity of the vagus nerve in this effect. Futher studies will focus on futher questions regarding the gut-brain axis such as the change of microbiota and the mechanism of the axis in the brain. PMID:27279161

  10. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    Science.gov (United States)

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  11. Protective Effect of Paeoniflorin against Optic Nerve Crush

    Institute of Scientific and Technical Information of China (English)

    LI Jing; XIONG Xinchun; LIU Yunhai

    2007-01-01

    In order to evaluate the efficacy of traditional paeonia extract paeoniflorin against optic nerve crush, 16 Brown Norway rats were divided into two groups at random, with 8 rats in each group. In paeoniaflorin-treated group, 2 mg paeoniaflorin (total volum: 1 mL) was injected into rat's peritoneum one time a day for a period of 8 days. Rats in untreated group were given a single dose of vehicle. The optic nerve was crushed by a special forceps for 30 s in the left eye and a sham proce-dure was performed in the right eye on the 2nd day after the first injection. The retrograde fluorogold labeling of ganglion cells was conducted 5 days after optic nerve crush. The whole retina was flat-mounted thereafter. The ganglion cells that survived the crush were counted under fluorescent microscope by using an automatic counting software. As compared with the contralateral eye, the survival rate of ganglion cells in the left eye increased from 40.22% to 64.53% with a significant dif- ference found between them (t=2.55, P=0.023). The results suggested that the paeonia extract paeoniflorin possessed a protective effect against optic nerve crush.

  12. Gastro-protective action of lafutidine mediated by capsaicin-sensitive afferent neurons without interaction with TRPV1 and involvement of endogenous prostaglandins

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Fukushima; Yoko Aoi; Shinichi Kato; Koji Takeuchi

    2006-01-01

    AIM: Lafutidine, a histamine H2 receptor antagonist,exhibits gastro-protective action mediated by capsaicinsensitive afferent neurons (CSN). We compared the effect between lafutidine and capsaicin, with respect to the interaction with endogenous prostaglandins (PG), nitric oxide (NO) and the afferent neurons, including transient receptor potential vanilloid subtype 1 (TRPV1).METHODS: Male SD rats and C57BL/6 mice, both wildtype and prostacyclin IP receptor knockout animals, were used after 18 h of fasting. Gastric lesions were induced by the po administration of HCI/ethanol (60% in 150 mmol/L HCI) in a volume of 1 mL for rats or 0.3 mL for mice.RESULTS: Both lafutidine and capsaicin (1-10 mg/kg,po) afforded dose-dependent protection against HCI/ethanol in rats and mice. The effects were attenuated by both the ablation of CSN and pretreatment with NG-nitroL-arginine methyl ester, yet only the effect of capsaicin was mitigated by prior administration of capsazepine, the TRPV1 antagonist, as well as indomethacin. Lafutidine protected the stomach against HCI/ethanol in IP receptor knockout mice, similar to wild-type animals, while capsaicin failed to afford protection in the animals lacking IP receptors. Neither of these agents affected the mucosal PGE2 or 6-keto PGF1α contents in rat stomachs. Capsaicin evoked an increase in [Ca2+]i in rat TRPV1-transfected HEK293 cells while lafutidine did not.CONCLUSION: These results suggest that although both lafutidine and capsaicin exhibit gastro-protective action mediated by CSN, the mode of their effects differs regarding the dependency on endogenous PGs/IP receptors and TRPV1. It is assumed that lafutidine interacts with CSN at yet unidentified sites other than TRPV1.

  13. Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells★

    OpenAIRE

    Song, Chengjun; Yang, Zhenjun; Zhong, Meirong; Chen, Zhihong

    2013-01-01

    Sericin from discarded silkworm cocoons of silk reeling has been used in different fields, such as cosmetology, skin care, nutrition, and oncology. The present study established a rat model of type 2 diabetes by consecutive intraperitoneal injections of low-dose (25 mg/kg) streptozotocin. After intragastrical perfusion of sericin for 35 days, blood glucose levels significantly declined, and the expression of neurofilament protein in the sciatic nerve and nerve growth factor in L4–6 spinal gan...

  14. A comparison between complete immobilisation and protected active mobilisation in sensory nerve recovery following isolated digital nerve injury.

    LENUS (Irish Health Repository)

    Henry, F P

    2012-06-01

    Post-operative immobilisation following isolated digital nerve repair remains a controversial issue amongst the microsurgical community. Protocols differ from unit to unit and even, as evidenced in our unit, may differ from consultant to consultant. We undertook a retrospective review of 46 patients who underwent isolated digital nerve repair over a 6-month period. Follow-up ranged from 6 to 18 months. Twenty-four were managed with protected active mobilisation over a 4-week period while 22 were immobilised over the same period. Outcomes such as return to work, cold intolerance, two-point discrimination and temperature differentiation were used as indicators of clinical recovery. Our results showed that there was no significant difference noted in either clinical assessment of recovery or return to work following either post-operative protocol, suggesting that either regime may be adopted, tailored to the patient\\'s needs and resources of the unit.

  15. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    Full Text Available Physiological high frequency activities (HFA are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections, or different terminal layers (layer IV vs. layer II/III affect its frequency, we, in the primary somatosensory cortex (SI, compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response and N80 (late response of somatosensory evoked potentials (HFA(SEP(N20 and HFA(SEP(N80 and compared those overriding N1 and N2 (first and second responses of cortico-cortical evoked potentials (HFA(CCEP(N1 and HFA(CCEP(N2. HFA(SEP(N20 showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1 had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1 and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.

  16. Sensory nerves and pancreatitis

    OpenAIRE

    Li, Qingfu; PENG, JIE

    2014-01-01

    Sensory nerves are a kind of nerve that conduct afferent impulses from the periphery receptors to the central nervous system (CNS) and are able to release neuromediators from the activated peripheral endings. Sensory nerves are particularly important for microcirculatory response, and stimulation of pancreatic sensory nerves releases a variety of neuropeptides such as substance P (SP), calcitonin gene-related peptide (CGRP), etc., leading to neurogenic inflammation characterized as the local ...

  17. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    OpenAIRE

    Shi-lei Guo; Zhi-ying Zhang; Yan Xu; Yun-xia Zhi; Chang-jie Han; Yu-hao Zhou; Fang Liu; Hai-yan Lin; Chuan-sen Zhang

    2015-01-01

    Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were...

  18. Protective effects of Achyranthes bidentata polypeptides on retinal ganglion cells post-optic nerve crush in rats

    Institute of Scientific and Technical Information of China (English)

    Nan Hu; Qi Zhao; Fangling Zhang; Junfang Zhang; Xiaosong Gu

    2011-01-01

    Achyranthes bidentata polypeptides (ABPP) have been reported to inhibit apoptosis of retinal ganglion cells (RGCs).The present study investigated the protective effects of ABPP on RGCs in a rat model of optic nerve injury.With prolonged injury time,RGC densities were gradually decreased.ABPP (5 μg) significantly increased RGC densities and upregulated growth associated protein 43 expression in rats with optic nerve injury.Results demonstrate that ABPP can protect RGCs and promote axonal growth after optic nerve crush.

  19. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    Directory of Open Access Journals (Sweden)

    Shi-lei Guo

    2015-01-01

    Full Text Available Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG, immunohistochemistry, and transmission electron microscopy (TEM were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.

  20. Bone marrow-derived, neural-like cells have the characteristics of neurons to protect the peripheral nerve in microenvironment.

    Science.gov (United States)

    Guo, Shi-Lei; Zhang, Zhi-Ying; Xu, Yan; Zhi, Yun-Xia; Han, Chang-Jie; Zhou, Yu-Hao; Liu, Fang; Lin, Hai-Yan; Zhang, Chuan-Sen

    2015-01-01

    Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that "neural-like cells" may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG), immunohistochemistry, and transmission electron microscopy (TEM) were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve. PMID:25861281

  1. Selective Co-stimulation of Pudendal Afferents Enhances Reflex Bladder Activation

    OpenAIRE

    McGee, Meredith J.; Yoo, Paul B.; Grill, Warren M.

    2011-01-01

    The loss of normal bladder function is common in persons with spinal cord injury (SCI) and negatively impacts their quality of life. Electrical stimulation of pudendal nerve afferents is a promising approach to restore control of bladder function. Pudendal afferent stimulation can generate reflex contraction of the bladder, but the resulting bladder voiding efficiency remains low. The objective of this work was to evaluate selective co-stimulation of two branches of the pudendal nerve – the c...

  2. Chicken (Gallus domesticus) inner ear afferents

    Science.gov (United States)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  3. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.

    Science.gov (United States)

    Lv, Xue-Man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-04-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  4. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  5. Differential central projections of vestibular afferents in pigeons

    Science.gov (United States)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  6. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism

    Directory of Open Access Journals (Sweden)

    Yao-xian Xiang

    2015-01-01

    Full Text Available Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-and interleukin- 6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor- and interleukin-6 expression.

  7. Protective effect of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Ma Song-Tao

    2014-12-01

    Full Text Available Mulberry leaves (Morus alba L. are a traditional Chinese medicine for blood serum glucose reduction. This study evaluated the protective effects of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats. In this study, 80 Sprague-Dawley rats were divided into five groups: A (control, B (diabetic treated with saline, C-D (diabetic treated with 0.3, 0.1 g/kg mulberry flavonoids once a day for 8 weeks and E (diabetic treated with 0.3 mg/kg methycobal. The diabetic condition was induced by intraperitoneal injection of 200 mg/kg alloxan dissolved in saline. At the end of the experimental period, blood, and tissue samples were obtained for biochemical and histopathological investigation. Treatment with 0.3 g/kg mulberry flavonoids significantly inhibited the elevated serum glucose (P< 0.01. The increased myelin sheath area (P< 0.01, myelinated fiber cross-sectional area and extramedullary fiber number (P< 0.05 were also reduced in alloxan-induced rats treated with 0.3 g/kg mulberry flavonoids. 0.3 g/kg mulberry flavonoids also markedly decreased onion-bulb type myelin destruction and degenerative changes of mitochondria and Schwann cells. These findings demonstrate that mulberry flavonoids may improve the recovery of a severe peripheral nerve injury in alloxan-induced diabetic rats and is likely to be useful as a potential treatment on peripheral neuropathy (PN in diabetic rats.

  8. Localization of TRPV1 and P2X3 in unmyelinated and myelinated vagal afferents in the rat.

    Science.gov (United States)

    Hermes, Sam M; Andresen, Michael C; Aicher, Sue A

    2016-03-01

    The vagus nerve is dominated by afferent fibers that convey sensory information from the viscera to the brain. Most vagal afferents are unmyelinated, slow-conducting C-fibers, while a smaller portion are myelinated, fast-conducting A-fibers. Vagal afferents terminate in the nucleus tractus solitarius (NTS) in the dorsal brainstem and regulate autonomic and respiratory reflexes, as well as ascending pathways throughout the brain. Vagal afferents form glutamatergic excitatory synapses with postsynaptic NTS neurons that are modulated by a variety of channels. The organization of vagal afferents with regard to fiber type and channels is not well understood. In the present study, we used tract tracing methods to identify distinct populations of vagal afferents to determine if key channels are selectively localized to specific groups of afferent fibers. Vagal afferents were labeled with isolectin B4 (IB4) or cholera toxin B (CTb) to detect unmyelinated and myelinated afferents, respectively. We find that TRPV1 channels are preferentially found in unmyelinated vagal afferents identified with IB4, with almost half of all IB4 fibers showing co-localization with TRPV1. These results agree with prior electrophysiological findings. In contrast, we found that the ATP-sensitive channel P2X3 is found in a subset of both myelinated and unmyelinated vagal afferent fibers. Specifically, 18% of IB4 and 23% of CTb afferents contained P2X3. The majority of CTb-ir vagal afferents contained neither channel. Since neither channel was found in all vagal afferents, there are likely further degrees of heterogeneity in the modulation of vagal afferent sensory input to the NTS beyond fiber type. PMID:26706222

  9. Characterisation of the primary afferent spinal innervation of mouse uterus

    Directory of Open Access Journals (Sweden)

    NickJSpencer

    2014-07-01

    Full Text Available The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP. Using retrograde tracing, injection of 5-10µL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG with peak labelling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labelled cells was 463 µm2 +/- SEM. A significantly greater proportion of labelled neurons consisted of small cell bodies (<300 µm2 in the sacral spinal cord (S2 compared with peak labelling at the lumbar (L2 region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibres located primarily at the border between the circular and longitudinal muscle layers (N=4. The nerve endings were classified into three distinct types: “single”, “branching” or “complex”, that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus.

  10. Protective effects of soybean phospholipid liposome on glutamate-induced nerve cell injury in vitro

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: It has been previously reported that soybean phosphatide could reduce the cerebral ischemia damage obviously. Whether soybean phospholipid liposome (SPL) can protect cerebral cortical neurons cultured in vitro from glutamate (Glu)-induced neurotoxicity, particularly nerve cell membrane damage has not been fully investigated.OBJECTIVE: To study the protective effects of SPL on Glu-induced neurotoxicity of neurons in culture,and to discuss the possible mechanisms of neuroprotection.DESIGN: Randomized controlled trial.SETTING: Department of Biochemistry, Liaoning Medical University.MATERIALS: Twelve Sprague-Dawley rats, of either gender, aged 0 to 1 day, were involved in this study.Drugs and reagents: poly-L-lysine and L-glutamate were purchased from Sigma company (USA).METHODS: The study was carried out in the Department of Biochemistry of Jinzhou Medical University from November 2004 to June 2005. Glu(1×10-4 mol/L) was added to cortical neurons in injury group for 3 hours, while different concentrations of SPL (0.2, 0.4, 0.8, 1.6 g/L) were added at the same time in the SPL groups. Neurons in the normal control group were untouched.MAIN OUTCOME MEASURES: According to the instruction of reagent kit, lactate dehydrogenase(LDH) activity and nitric oxide(NO) content in the supematant fluid of the culture medium were assayed, and the activity of nitric oxide synthase (NOS) and superoxide dismutase(SOD),malonaldehyde (MDA) content in the neurocytes were also determined.RESULTS: ①Activities of LDH and NOS, as well as NO content in the supernatant fluid of injury group were significantly higher than those of normal control group (P < 0.01). Activities of LDH and NOS, and NO content in the supematant fluid of SPL groups were significantly lower than those of injury group (P < 0.01).②MDA content of the SPL groups was significantly lower than that of injury group (P < 0.01); SOD activity of neurons in the injury group was significantly lower than that in

  11. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  12. Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury.

    Science.gov (United States)

    Arfuzir, N N N; Lambuk, L; Jafri, A J A; Agarwal, R; Iezhitsa, I; Sidek, S; Agarwal, P; Bakar, N S; Kutty, M K; Yusof, A P Md; Krasilnikova, A; Spasov, A; Ozerov, A; Mohd Ismail, N

    2016-06-14

    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress. PMID:27012609

  13. Diverse mechanisms for assembly of branchiomeric nerves

    OpenAIRE

    Cox, Jane A.; LaMora, Angela; Stephen L Johnson; Voigt, Mark M.

    2011-01-01

    The formation of branchiomeric nerves (cranial nerves V, VII, IX and X) from their sensory, motor and glial components is poorly understood. The current model for cranial nerve formation is based on the Vth nerve, in which sensory afferents are formed first and must enter the hindbrain in order for the motor efferents to exit. Using transgenic zebrafish lines to discriminate between motor neurons, sensory neurons and peripheral glia, we show that this model does not apply to the remaining thr...

  14. Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits.

    Science.gov (United States)

    Edwards, I J; Lall, V K; Paton, J F; Yanagawa, Y; Szabo, G; Deuchars, S A; Deuchars, J

    2015-01-01

    Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours--the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD. PMID:24595534

  15. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    Science.gov (United States)

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  16. Engrafted human induced pluripotent stem cell-derived anterior specified neural progenitors protect the rat crushed optic nerve.

    Directory of Open Access Journals (Sweden)

    Leila Satarian

    Full Text Available BACKGROUND: Degeneration of retinal ganglion cells (RGCs is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs following intravitreal transplantation. METHODOLOGY/PRINCIPAL FINDINGS: NPs were produced under defined conditions from human induced pluripotent stem cells (hiPSCs and transplanted into rats whose optic nerves have been crushed (ONC. hiPSCs were induced to differentiate into anterior specified NPs by the use of Noggin and retinoic acid. The hiPSC-NPs were labeled by green fluorescent protein or a fluorescent tracer 1,1' -dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI and injected two days after induction of ONC in hooded rats. Functional analysis according to visual evoked potential recordings showed significant amplitude recovery in animals transplanted with hiPSC-NPs. Retrograde labeling by an intra-collicular DiI injection showed significantly higher numbers of RGCs and spared axons in ONC rats treated with hiPSC-NPs or their conditioned medium (CM. The analysis of CM of hiPSC-NPs showed the secretion of ciliary neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor. Optic nerve of cell transplanted groups also had increased GAP43 immunoreactivity and myelin staining by FluoroMyelin™ which imply for protection of axons and myelin. At 60 days post-transplantation hiPSC-NPs were integrated into the ganglion cell layer of the retina and expressed neuronal markers. CONCLUSIONS/SIGNIFICANCE: The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages. These NPs possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases.

  17. Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers

    Directory of Open Access Journals (Sweden)

    Grill Warren M

    2010-05-01

    Full Text Available Abstract Background Intraurethral electrical stimulation (IES of pudendal afferent nerve fibers can evoke both excitatory and inhibitory bladder reflexes in cats. These pudendovesical reflexes are a potential substrate for restoring bladder function in persons with spinal cord injury or other neurological disorders. However, the complex distribution of pudendal afferent fibers along the lower urinary tract presents a challenge when trying to determine the optimal geometry and position of IES electrodes for evoking these reflexes. This study aimed to determine the optimal intraurethral electrode configuration(s and locations for selectively activating targeted pudendal afferents to aid future preclinical and clinical investigations. Methods A finite element model (FEM of the male cat urethra and surrounding structures was generated to simulate IES with a variety of electrode configurations and locations. The activating functions (AFs along pudendal afferent branches innervating the cat urethra were determined. Additionally, the thresholds for activation of pudendal afferent branches were measured in α-chloralose anesthetized cats. Results Maximum AFs evoked by intraurethral stimulation in the FEM and in vivo threshold intensities were dependent on stimulation location and electrode configuration. Conclusions A ring electrode configuration is ideal for IES. Stimulation near the urethral meatus or prostate can activate the pudendal afferent fibers at the lowest intensities, and allowed selective activation of the dorsal penile nerve or cranial sensory nerve, respectively. Electrode location was a more important factor than electrode configuration for determining stimulation threshold intensity and nerve selectivity.

  18. Changes in vagal afferent drive alter tracheobronchial coughing in anesthetized cats.

    Science.gov (United States)

    Simera, Michal; Poliacek, Ivan; Veternik, Marcel; Babalova, Lucia; Kotmanova, Zuzana; Jakus, Jan

    2016-08-01

    Unilateral cooling of the vagus nerve (blood pressure (p>0.05), however, cold block of vagal conduction reduced respiratory rate (ppump muscles during coughing and alters cough temporal features. Differences in the effects of unilateral vagal cooling and vagotomy on coughing support an inhibitory role of sensory afferents that are relatively unaffected by cooling of the vagus nerve to 5°C on mechanically induced cough. PMID:27184303

  19. Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Seifert, Thomas; Hartwich, Doreen;

    2010-01-01

    Isolated activation of metabolically sensitive skeletal muscle afferents (muscle metaboreflex) using post-exercise ischaemia (PEI) following handgrip partially maintains exercise-induced increases in arterial blood pressure (BP) and muscle sympathetic nerve activity (SNA), while heart rate (HR...... of cardiac parasympathetic reactivation on heart rate....

  20. Effects of intragastric infusion of inosine monophosphate and l-glutamate on vagal gastric afferent activity and subsequent autonomic reflexes

    OpenAIRE

    Kitamura, Akihiko; Sato, Wataru; Uneyama, Hisayuki; Torii, Kunio; NIIJIMA, Akira

    2010-01-01

    In this study we investigated the effects of intragastric infusion of palatable basic taste substances (umami, sweet, and salty) on the activity of the vagal gastric afferent nerve (VGA), the vagal celiac efferent nerve (VCE), and the splanchnic adrenal efferent nerve (SAE) in anesthetized rats. To test the three selected taste groups, rats were infused with inosine monophosphate (IMP) and l-glutamate (GLU) for umami, with glucose and sucrose for sweet, and with sodium chloride (NaCl) for sal...

  1. A comparative ultrastructural study of primary afferents from the brachial and cervical plexuses to the external cuneate nucleus of gerbils.

    OpenAIRE

    Lan, C T; Wen, C. Y.; Tan, C K; Ling, E. A.; Shieh, J Y

    1995-01-01

    The synaptic organisation of the primary afferents from the brachial and cervical plexuses to the external cuneate nucleus of gerbils was compared following an intraneural injection of horseradish peroxidase into the musculocutaneous, median, ulnar and radial nerves of the brachial plexus or the main branches of the cervical plexus; 407 labelled primary afferent terminals from the brachial and 459 from the cervical plexus were studied. These boutons made synaptic contacts with 586 and 633 den...

  2. Variable Patterned Pudendal Nerve Stimuli Improves Reflex Bladder Activation

    OpenAIRE

    Bruns, Tim M.; Bhadra, Narendra; Gustafson, Kenneth J.

    2008-01-01

    We evaluated variable patterns of pudendal nerve (PN) stimuli for reflex bladder excitation. Reflex activation of the bladder has been demonstrated previously with 20–33 Hz continuous stimulation of PN afferents. Neuronal circuits accessed by afferent mediated pathways may respond better to physiological patterned stimuli than continuous stimulation. Unilateral PN nerve cuffs were placed in neurologically intact male cats. PN stimulation (0.5–100 Hz) was performed under isovolumetric conditio...

  3. Protective effects of cerebrolysin in a rat model of optic nerve crush.

    Science.gov (United States)

    Huang, Tzu-Lun; Huang, Sun-Ping; Chang, Chung-Hsing; Lin, Kung-Hung; Sheu, Min-Muh; Tsai, Rong-Kung

    2014-07-01

    To investigate the effects of cerebrolysin (Cbl) on optic nerves (ON) and retinal ganglion cells (RGC) in a rat model of ON crush. Rats received intravitreal injection of Cbl (n = 20), intra-ON injection of Cbl (n = 20), intraperitoneal injection (IPI) of Cbl (n = 20), or phosphate buffered saline (PBS; n = 20) every day for 2 weeks after ON crush injury. At 3 weeks post-trauma, RGC density was counted by retrograde labeling with FluoroGold and visual function was assessed by flash visual-evoked potentials. Activities of microglia after insults were quantified by immunohistochemical analysis of the presence of ED1 in the optic nerve. At 3 weeks postcrush, the densities of RGCs in the Cbl-IVI group (1125 ± 166/mm(2)) and in the Cbl-IPI treatment group (1328 ± 119/mm(2)) were significantly higher than those in the PBS group (641 ± 214/mm(2)). The flash visual-evoked potential measurements showed that latency of the P1 wave was significantly shorter in the Cbl-IVI- and Cbl-IPI-treated groups (105 ± 4 ms and 118 ± 26 ms, respectively) than in the PBS-treated group (170 ± 20 ms). However, only Cbl IPI treatment resulted in a significant decrease in the number of ED1-positive cells at the lesion sites of the ON (5 ± 2 cells/vs. 30 ± 4 cells/high-power field in control eyes). Treatment with intra-ON injection of Cbl was harmful to the optic nerve in the crush model. Systemic administration of Cbl had neuroprotective effects on RGC survival and visual function in the optic nerve crush model. PMID:24924838

  4. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats

    OpenAIRE

    Dorfman, Damián; Marcos L Aranda; Rosenstein, Ruth E.

    2015-01-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment ...

  5. Nerve growth factor protects cholinergic neurons against quinolinic acid-induced excitotoxicity in wistar rats

    OpenAIRE

    Vasiljević Ivana D.; Jovanović Marina D.; Čolić Miodrag J.; Mićić D.; Ninković Milica; Maličević Živorad

    2004-01-01

    The etiology of neuronal death in neurodegenerative diseases, including Huntington's disease (HD) is still unknown. There could be a complex interplay between altered energy metabolism, excitotoxicity and oxidative stress. Excitotoxic striatal lesions induced by quinolinic acid (QA), were used to test for the neuroprotective actions of nerve growth factor (NGF) on striatal cholinergic and GABAergic neurons. QA is an endogenous excitotoxin acting on N-methyl-D-aspartate (NMDA) rec...

  6. Lipopolysaccharide-induced changes in mesenteric afferent sensitivity of rat jejunum in vitro: role of prostaglandins.

    Science.gov (United States)

    Wang, B; Glatzle, J; Mueller, M H; Kreis, M; Enck, P; Grundy, D

    2005-08-01

    Bacterial translocation across the intestinal mucosal barrier leads to a macrophage-mediated inflammatory response, visceral hyperalgesia, and ileus. Our aim was to examine how mediators released into mesenteric lymph following LPS treatment influence intestinal afferent sensitivity and the role played by prostanoids in any sensitization. Intestinal lymph was collected from awake rats following treatment with either saline or LPS (5 mg/kg ip). Extracellular multiunit afferent recordings were made from paravascular mesenteric nerve bundles supplying the rat jejunum in vitro following arterial administration of control lymph, LPS lymph, and LPS. Mesenteric afferent discharge increased significantly after LPS lymph compared with control lymph. Peak discharge occurred within 2 min and remained elevated for 5 to 8 min. This response was attenuated by pretreatment with naproxen (10 microM), and restored upon addition of prostaglandin E(2) (5 microM) in the presence of naproxen, but AH6809 (5 microM), an EP(1)/EP(2) receptor(s) antagonist, failed to decrease the magnitude of LPS lymph-induced response. LPS itself also stimulated mesenteric afferent discharge but was unaffected by naproxen. TNF-alpha was significantly increased in LPS lymph compared with control lymph (1,583 +/- 197 vs. 169 +/- 38 pg/ml, P < 0.01) but exogenous TNF-alpha failed to evoke any afferent nerve discharge. We concluded that inflammatory mediators released from the gut into mesenteric lymph during endotoxemia have a profound effect on afferent discharge. These mediators influence afferent firing via the release of local prostaglandins. PMID:15790760

  7. AUTOCRINE/PARACRINE MODULATION OF BARORECEPTOR ACTIVITY AFTER ANTIDROMIC STIMULATION OF AORTIC DEPRESSOR NERVE IN VIVO

    OpenAIRE

    Valter J. Santana-Filho; Davis, Greg J.; Castania, Jaci A.; Ma, Xiuying; Salgado, Helio C; Abboud, Francois M.; Fazan, Rubens; Chapleau, Mark W.

    2014-01-01

    Activation of the sensory nerve endings of nonmyelinated C-fiber afferents evokes release of autocrine/paracrine factors that cause localized vasodilation, neurogenic inflammation, and modulation of sensory nerve activity. The aims of this study were to determine the effect of antidromic electrical stimulation on afferent baroreceptor activity in vivo, and investigate the role of endogenous prostanoids and hydrogen peroxide (H2O2) in mediating changes in nerve activity. Baroreceptor activity ...

  8. Salvianolic Acid A Protects the Peripheral Nerve Function in Diabetic Rats through Regulation of the AMPK-PGC1α-Sirt3 Axis

    Directory of Open Access Journals (Sweden)

    Guanhua Du

    2012-09-01

    Full Text Available Salvianolic acid A (SalA is one of the main efficacious, water-soluble constituents of Salvia miltiorrhiza Bunge. This study investigated the protective effects of SalA on peripheral nerve in diabetic rats. Administration of SalA (0.3, 1 and 3 mg/kg, ig was started from the 5th week after strepotozotocin (STZ60 mg/kg intraperitoneal injection and continued for 8 weeks. Paw withdrawal mechanical threshold (PWMT and motor nerve conduction velocity (MNCV were used to assess peripheral nerve function. The western blot methods were employed to test the expression levels of serine-threonine liver kinase B1 (LKB1, AMP-activated protein kinase (AMPK, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α, silent information regulator protein3 (sirtuin 3/Sirt3 and neuronal nitric oxide synthase (nNOS in sciatic nerve. Results showed that SalA administration could increase PWMT and MNCV in diabetic rats; reduce the deterioration of sciatic nerve pathology; increase AMPK phosphorylation level, up-regulate PGC-1α, Sirt3 and nNOS expression, but had no influence on LKB1. These results suggest that SalA has protective effects against diabetic neuropathy. The beneficial effects of SalA on peripheral nerve function in diabetic rats might be attributed to improvements in glucose metabolism through regulation of the AMPK-PGC1α-Sirt3 axis.

  9. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats.

    Science.gov (United States)

    Dorfman, Damián; Aranda, Marcos L; Rosenstein, Ruth E

    2015-01-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE) or remained in a standard environment (SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein immunoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway. PMID:26312758

  10. External QX-314 inhibits evoked cranial primary afferent synaptic transmission independent of TRPV1.

    Science.gov (United States)

    Hofmann, Mackenzie E; Largent-Milnes, Tally M; Fawley, Jessica A; Andresen, Michael C

    2014-12-01

    The cell-impermeant lidocaine derivative QX-314 blocks sodium channels via intracellular mechanisms. In somatosensory nociceptive neurons, open transient receptor potential vanilloid type 1 (TRPV1) receptors provide a transmembrane passageway for QX-314 to produce long-lasting analgesia. Many cranial primary afferents express TRPV1 at synapses on neurons in the nucleus of the solitary tract and caudal trigeminal nucleus (Vc). Here, we investigated whether QX-314 interrupts neurotransmission from primary afferents in rat brain-stem slices. Shocks to the solitary tract (ST) activated highly synchronous evoked excitatory postsynaptic currents (ST-EPSCs). Application of 300 μM QX-314 increased the ST-EPSC latency from TRPV1+ ST afferents, but, surprisingly, it had similar actions at TRPV1- ST afferents. Continued exposure to QX-314 blocked evoked ST-EPSCs at both afferent types. Neither the time to onset of latency changes nor the time to ST-EPSC failure differed between responses for TRPV1+ and TRPV1- inputs. Likewise, the TRPV1 antagonist capsazepine failed to prevent the actions of QX-314. Whereas QX-314 blocked ST-evoked release, the frequency and amplitude of spontaneous EPSCs remained unaltered. In neurons exposed to QX-314, intracellular current injection evoked action potentials suggesting a presynaptic site of action. QX-314 acted similarly at Vc neurons to increase latency and block EPSCs evoked from trigeminal tract afferents. Our results demonstrate that QX-314 blocked nerve conduction in cranial primary afferents without interrupting the glutamate release mechanism or generation of postsynaptic action potentials. The TRPV1 independence suggests that QX-314 either acted extracellularly or more likely entered these axons through an undetermined pathway common to all cranial primary afferents. PMID:25185814

  11. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just

  12. Protection of pattern electroretinogram and retinal ganglion cells by oncostatin M after optic nerve injury.

    Directory of Open Access Journals (Sweden)

    Xin Xia

    Full Text Available Injury to retinal ganglion cell (RGC axons leads to selective loss of RGCs and vision. Previous studies have shown that exogenous neurotrophic factors promote RGC survival. We investigated the neuroprotective effects of oncostatin M (OSM, a member of the IL-6 family of cytokines, on pattern electroretinogram (PERG and RGC survival after optic nerve crush (ON-crush in the mouse. BALB/C mice received ON-crush in the left eyes for either 4-second or 1-second duration (4-s or 1-s. Fluoro-gold retrograde labeling was used to identify RGCs. RGC function was assessed by PERG measurement. OSM or CNTF protein was injected intravitreally immediately after ON-crush. OSM responsive cells were identified by localization of increased STAT3 phosphorylation. Significant higher RGC survival (46% of untreated control was seen in OSM-treated eyes when assessed 2 weeks after 4-s ON-crush as compared to that (14% of untreated control of the PBS-treated eyes (P<0.001. In addition, PERG amplitude was significantly higher in eyes treated with OSM or CNTF 1 week after 1-s ON-crush (36% of baseline as compared with the amplitude of PBS-treated eyes (19% of the baseline, P = 0.003. An increase in STAT3 phosphorylation was localized in Müller layer after OSM treatment, suggesting that Müller cells mediate the effect of OSM. Our results demonstrate that one single injection of either OSM or CNTF after ON-crush improves RGC survival together with their electrophysiological activity. These data provide proof-of-concept for using neurotrophic factors OSM and CNTF for RGC degenerative diseases, including glaucoma and acute optic nerve trauma.

  13. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats.

    Directory of Open Access Journals (Sweden)

    Damián Dorfman

    Full Text Available Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm optic nerve (ON could be the first structural change of the visual pathway in streptozotocin (STZ-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE or remained in a standard environment (SE for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity, microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1 immunoreactivity, astrocyte reactivity (glial fibrillary acid protein-immunostaining, myelin (myelin basic protein immunoreactivity, ultrastructure, and brain derived neurotrophic factor (BDNF levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway.

  14. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    Science.gov (United States)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  15. Protective effect of sodium valproate on motor neurons in the spinal cord following sciatic nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Fei Wu; Danmou Xing; Zhengren Peng; Wusheng Kan

    2006-01-01

    /total number of cells× 100%) was calculated.MAIN OUTCOME MEASURES: A value of neurons with positive Bcl-2 expression and apoptotic rate in spinal cord of rats in the two groups.RESULTS: A total of 30 SD rats were involved in the result analysis. ①expression of positive Bcl-2 neurons: A value of positive Bcl-2 neurons were 0.71 ±0.02, 0.86±0.04, 1.02±0.06 at days 4, 7 and 14, respectively after operation in the treatment group, which were obviously higher than those in the model group (0.62±0.03, 0.71±0.05, 0.89±0.04, t = 3.10-4.50, P < 0.05). ②apoptotic result of motor neurons: Apoptotic rate of motor neurons in spinal cord was (6.91±0.89)% and (15.12±2.34)% at days 7 and 14 in the treatment group, which was significantly lower than those in the model group [(9.45±1.61)%, (19.35±0.92)%, t= 2.39, 3.03. P< 0.05].CONCLUSION: VPA can increase expression of Bcl-2 in spinal cord and reduce neuronal apoptosis in rats following sciatic nerve injury, and has protective effect on motor neuron in spinal cord of rats.

  16. Mechanism of rectal contraction mediated by sympathetic efferents from rectoanal pelvic afferents in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Neya,Toshiaki

    1984-02-01

    Full Text Available In guinea pigs whose pelvic nerves were bilaterally sectioned, afferent stimulation of rectoanal branches of the pelvic nerve (PAS could produce an intense contraction in the rectum similar to propulsive contractions elicited during defecation. The mechanism of this reflex was analyzed. Rectal contraction by PAS was abolished after transecting the spinal cord at T13 or sectioning the lumbar splanchnic nerves (LSN or lumbar colonic nerves (LCN, but was unaffected by severing the intermesenteric and hypogastric nerves. Rectal contraction induced by PAS was abolished peripherally by atropine, guanethidine or yohimbine, while propranolol had no affect. Yohimbine antagonized the inhibitory effect of LSN or LCN stimulation on atropine-sensitive rectal contractions. It may, therefore, be concluded that PAS blocks the inhibition, by LCN efferents acting through alpha-adrenoreceptors, of cholinergic neurons in the myenteric plexus, thus facilitating recto-rectal propulsive contractions initiated by the defecation reflex.

  17. Abdominal and internal intercostal motoneurones are strong synergists for expiration but are not synergists for Group I monosynaptic afferent inputs

    DEFF Research Database (Denmark)

    Ford, Tim W; Meehan, Claire Francesca; Kirkwood, Peter

    2014-01-01

    in 11 instances, 9 being in Group B Dist motoneurones. The complete absence of heteronymous monosynaptic Group I reflex excitation between muscles that are synergistically activated in expiration leads us to conclude that such connections from muscle spindle afferents of the thoracic nerves have......Internal intercostal and abdomininal motoneurones are strongly co-activated during expiration (Saywell et al. 2007; Road et al. 2013). We investigated whether that synergy was paralleled by synergistic Group I reflex excitation. Intracellular recordings were made from motoneurones of the internal...... intercostal nerve of T8 in anaesthetized cats and the specificity of the monosynaptic connections from afferents in each of the two main branches of this nerve was investigated by observing the presence or absence of short latency EPSPs from stimulation of each nerve branch. Cats were anaesthetized with...

  18. Assessing protection against OP pesticides and nerve agents provided by wild-type HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection.

    Science.gov (United States)

    Hodgins, Sean M; Kasten, Shane A; Harrison, Joshua; Otto, Tamara C; Oliver, Zeke P; Rezk, Peter; Reeves, Tony E; Chilukuri, Nageswararao; Cerasoli, Douglas M

    2013-03-25

    Human paraoxonase-1 (HuPON1) has been proposed as a catalytic bioscavenger of organophosphorus (OP) pesticides and nerve agents. We assessed the potential of this enzyme to protect against OP poisoning using two different paradigms. First, recombinant HuPON1 purified from cabbage loopers (iPON1; Trichoplusia ni) was administered to guinea pigs, followed by exposure to at least 2 times the median lethal dose (LD(50)) of the OP nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF), or chlorpyrifos oxon, the toxic metabolite of the OP pesticide chlorpyrifos. In the second model, mice were infected with an adenovirus that induced expression of HuPON1 and then exposed to sequential doses of GD, VX, or (as reported previously) diazoxon, the toxic metabolite of the OP pesticide diazinon. In both animal models, the exogenously added HuPON1 protected animals against otherwise lethal doses of the OP pesticides but not against the nerve agents. Together, the results support prior modeling and in vitro activity data which suggest that wild-type HuPON1 does not have sufficient catalytic activity to provide in vivo protection against nerve agents. PMID:23123254

  19. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Nielsen, Jens Bo

    2008-01-01

    immobilized the left foot and ankle joint for 2 weeks in 12 able-bodied subjects. Disynaptic reciprocal inhibition of soleus (SOL) motoneurones and presynaptic control of SOL group Ia afferents was measured before and after the immobilization as well as following 2 weeks of recovery. Following immobilization...... maximal voluntary plantar- and dorsiflexion torque (MVC) was significantly reduced and the maximal SOL H-reflex amplitude increased with no changes in Mmax. Decreased presynaptic inhibition of the Ia afferents likely contributed to the increase of the H-reflex size, since we observed a significant...... decrease in the long-latency depression of the SOL H-reflex evoked by peroneal nerve stimulation (D2 inhibition) and an increase in the size of the monosynaptic Ia facilitation of the SOL H-reflex evoked by femoral nerve stimulation. These two measures provide independent evidence of changes in presynaptic...

  20. Imaging of the facial nerve.

    Science.gov (United States)

    Veillona, F; Ramos-Taboada, L; Abu-Eid, M; Charpiot, A; Riehm, S

    2010-05-01

    The facial nerve is responsible for the motor innervation of the face. It has a visceral motor function (lacrimal, submandibular, sublingual glands and secretion of the nose); it conveys a great part of the taste fibers, participates to the general sensory of the auricle (skin of the concha) and the wall of the external auditory meatus. The facial mimic, production of tears, nasal flow and salivation all depend on the facial nerve. In order to image the facial nerve it is mandatory to be knowledgeable about its normal anatomy including the course of its efferent and afferent fibers and about relevant technical considerations regarding CT and MR to be able to achieve high-resolution images of the nerve. PMID:20456888

  1. Imaging of the facial nerve

    International Nuclear Information System (INIS)

    The facial nerve is responsible for the motor innervation of the face. It has a visceral motor function (lacrimal, submandibular, sublingual glands and secretion of the nose); it conveys a great part of the taste fibers, participates to the general sensory of the auricle (skin of the concha) and the wall of the external auditory meatus. The facial mimic, production of tears, nasal flow and salivation all depend on the facial nerve. In order to image the facial nerve it is mandatory to be knowledgeable about its normal anatomy including the course of its efferent and afferent fibers and about relevant technical considerations regarding CT and MR to be able to achieve high-resolution images of the nerve.

  2. Imaging of the facial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Veillon, F. [Service de Radiologie I, Hopital de Hautepierre, 67098 Strasbourg Cedex (France)], E-mail: Francis.Veillon@chru-strasbourg.fr; Ramos-Taboada, L.; Abu-Eid, M. [Service de Radiologie I, Hopital de Hautepierre, 67098 Strasbourg Cedex (France); Charpiot, A. [Service d' ORL, Hopital de Hautepierre, 67098 Strasbourg Cedex (France); Riehm, S. [Service de Radiologie I, Hopital de Hautepierre, 67098 Strasbourg Cedex (France)

    2010-05-15

    The facial nerve is responsible for the motor innervation of the face. It has a visceral motor function (lacrimal, submandibular, sublingual glands and secretion of the nose); it conveys a great part of the taste fibers, participates to the general sensory of the auricle (skin of the concha) and the wall of the external auditory meatus. The facial mimic, production of tears, nasal flow and salivation all depend on the facial nerve. In order to image the facial nerve it is mandatory to be knowledgeable about its normal anatomy including the course of its efferent and afferent fibers and about relevant technical considerations regarding CT and MR to be able to achieve high-resolution images of the nerve.

  3. A spinal GABAergic mechanism is necessary for bladder inhibition by pudendal afferent stimulation

    OpenAIRE

    McGee, Meredith J.; Danziger, Zachary C.; Bamford, Jeremy A.; Grill, Warren M.

    2014-01-01

    Electrical stimulation of pudendal afferents can inhibit bladder contractions and increase bladder capacity. Recent results suggest that stimulation-evoked bladder inhibition is mediated by a mechanism other than activation of sympathetic bladder efferents in the hypogastric nerve, generating α-adrenergic receptor-mediated inhibition at the vesical ganglia and/or β-adrenergic receptor-mediated direct inhibition of the detrusor muscle. We investigated several inhibitory neurotransmitters that ...

  4. Ileal bladder substitute: antireflux nipple or afferent tubular segment?

    Science.gov (United States)

    Studer, U E; Spiegel, T; Casanova, G A; Springer, J; Gerber, E; Ackermann, D K; Gurtner, F; Zingg, E J

    1991-01-01

    Spheroidal bladder substitutes made from double-folded ileal segments, similar to Goodwin's cup-patch technique, are devoid of major coordinated wall contractions. This, together with the reservoir's direct anastomosis to the membranous urethra, prevents major intraluminal pressure peaks and assures a residue-free voiding of sterile urine. In order to determine whether, under these conditions, an afferent tubular isoperistaltic ileal segment of 20-cm length protects the upper urinary tract as efficiently as an antireflux nipple, 60 male patients who were subjected to radical cystectomy were prospectively randomised to groups in which a bladder substitute was formed together with either of these 2 antireflux devices. An analysis of the results obtained in 20 patients from each group who could be followed for more than 1 year (median observation time 30 and 36 months) showed no differences between the groups in metabolic disturbances, kidney size, reservoir capacity, diurnal and nocturnal urinary continence, the incidence of urinary tract infection or episodes of acute pyelonephritis. Later than 1 year postoperatively, intravenous urograms of the renoureteral units of 25% of the patients with antireflux nipples showed persistent but generally slight dilatation of the upper urinary tracts. This observation was significantly more frequent than it was in patients with afferent tubular segments. Urodynamic and radiographic studies showed that the competence of the antireflux nipples was secured by the raised surrounding intravesical pressure. This, however, also resulted in a transient functional obstruction, and a gradual rise of the basal pressure in the upper urinary tracts was recorded. In patients with afferent ileal tubular segments, contrast medium could be forced upwards into the renal pelvis when the bladder substitutes were overfilled. However, despite raised intravesical pressures, peristalsis in the isoperistaltic afferent tubular segment gradually returned

  5. Chronic Trigeminal Nerve Stimulation Protects Against Seizures, Cognitive Impairments, Hippocampal Apoptosis, and Inflammatory Responses in Epileptic Rats.

    Science.gov (United States)

    Wang, Qian-Qian; Zhu, Li-Jun; Wang, Xian-Hong; Zuo, Jian; He, Hui-Yan; Tian, Miao-Miao; Wang, Lei; Liang, Gui-Ling; Wang, Yu

    2016-05-01

    Trigeminal nerve stimulation (TNS) has recently been demonstrated effective in the treatment of epilepsy and mood disorders. Here, we aim to determine the effects of TNS on epileptogenesis, cognitive function, and the associated hippocampal apoptosis and inflammatory responses. Rats were injected with pilocarpine to produce status epilepticus (SE) and the following chronic epilepsy. After SE induction, TNS treatment was conducted for 4 consecutive weeks. A pilocarpine re-injection was then used to induce a seizure in the epileptic rats. The hippocampal neuronal apoptosis induced by seizure was assessed by TUNEL staining and inflammatory responses by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). The spontaneous recurrent seizure (SRS) number was counted through video monitoring, and the cognitive function assessed through Morris Water Maze (MWM) test. TNS treatment attenuated the SRS attacks and improved the cognitive impairment in epileptic rats. A pilocarpine re-injection resulted in less hippocampal neuronal apoptosis and reduced level of interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α), and microglial activation in epileptic rats with TNS treatment in comparison to the epileptic rats without TNS treatment. It is concluded that TNS treatment shortly after SE not only protected against the chronic spontaneous seizures but also improved cognitive impairments. These antiepileptic properties of TNS may be related to its attenuating effects on hippocampal apoptosis and pro-inflammatory responses. PMID:26973056

  6. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  7. Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Xian-Bing Gan

    Full Text Available BACKGROUND: Cardiac sympathetic afferent reflex (CSAR contributes to sympathetic activation and angiotensin II (Ang II in paraventricular nucleus (PVN augments the CSAR in vagotomized (VT and baroreceptor denervated (BD rats with chronic heart failure (CHF. This study was designed to determine whether it is true in intact (INT rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. METHODOLOGY/PRINCIPAL FINDINGS: Sham-operated (Sham or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD or INT. Under anesthesia, renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. CONCLUSIONS: The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.

  8. 不同频率间歇低氧暴露后兔颈动脉体的炎症状态和窦神经传入活性%Carotid body inflammation and carotid sinus nerve afferent activity after intermittent hypoxia exposure of various frequencies in rabbits

    Institute of Scientific and Technical Information of China (English)

    冯靖; 陈宝元; 崔林阳; 王宝利; 刘春霞; 陈攀峰; 郭美南; 董丽霞; 李硕

    2008-01-01

    Objective To explore the inflammatory reactions,endothelin level and carotid sinus nerve(CSN)afferent activity of carotid body(CB)after intermittent hypoxia/reoxygenation(IH/ROX)exposure of various frequencies in rabbits.Methods Forty-nine male adult New Zealand white rabbits (2.5~3.0 kg)were separated into 7 groups(n=7 each).After anesthetization,the fight carotid artery and CSN were cleared of surrounding tissues without touching the right CB and the left carotid region.The CSN was unenveloped to pareally expose the myelin sheath.and electrodes were placed to the"single"chemoreceptor bundle of the CSN.with CSN afferent activity carefully monitored and recorded.Then the right common carotid artery was exposed,cannulated to distal part and its proximal part was ligated.Preparations were challenged by changing the PO2 of the gas mixture equilibrating the perfusate.Alternatively perfusion (2 mL/min) of equilibrated perfusate bubbled with normoxia or hypoxia gas mixtures formed IH/ROX cycles in right carotid common artery,simulating the pattern of hypoxic episodes seen in obstructive sleep apnea,or with continuously perfusing hypoxia perfusate to form continuous hypoxia (CH)modes.Groups were defined with different frequencies,and groups were: intermittent normnxia group (IN group) (21% O2,15 s;21% O2,1 min 45 s),10/hr group (5% O2,15 s ;21% O2,5 rain 45 s),30/hrgroup (5%O2,15 s;21%O2,1 min45 s),50/hr group (5%O2,15 s;21%O2,57 s),60/hr group (5%O2 ,15 s;21%O2,45 s) and 90/hr group (5%O2,15 s;21%O2,25 s).All the above groups were exposed to 60 treatment cycles;continuous hypoxia group (CH group),IN for 1 h 45min and then 5% O2 for 15 min.After exposure and 30 min of static placing,CSN afferent frequencies (Charge F) were recorded from chemoreceptor bundles,and the right CB was cleared of surrounding tissues and harvested.Interleukin-6 (IL-6),endothelin-1 (ET-1),hypoxla-indacible factor-1 (HIF-I),and vascular endothelial growth factor (VEGF) concentrations of the CB

  9. Interfascial Dissection for Protection of the Nerve Branches to the Frontalis Muscles during Supraorbital Trans-Eyebrow Approach: An Anatomical Study and Technical Note.

    Science.gov (United States)

    Mathias, Roger Neves; Lieber, Stefan; de Aguiar, Paulo Henrique Pires; Maldaun, Marcos Vinícius Calfat; Gardner, Paul; Fernandez-Miranda, Juan C

    2016-06-01

    Introduction Preservation of the temporal branches of the facial nerve during anterolateral craniotomies is important. Damaging it can inflict undesirable cosmetic defects to the patient. The supraorbital trans-eyebrow approach (SOTE) is a versatile keyhole craniotomy but still has a high rate of frontalis muscle (FM) palsy. Objective Anatomical study to implement the interfascial dissection during the SOTE to preserve the nerves to the FM. Methods Slight modification of the standard technique of the SOTE was performed in 6 cadaveric specimens (12 sides). Results Distal rami to the FM were exposed. The standard "u-shape" incision of the FM can cross over the nerves. Alternatively, an "l-shape" incision was performed until the superior temporal line (STL). An interfascial dissection was performed near to the STL and the interfascial fat pad was used as a protective layer for the nerves. Conclusion Various pathologies can be addressed with the SOTE. In the majority of the cases the cosmetic results are good, but FM palsy remains a drawback of this approach. The interfascial dissection may be used in an attempt to prevent frontalis rami palsy. PMID:27175323

  10. Protective Effects of Beta Glucan and Gliclazide on Brain Tissue and Sciatic Nerve of Diabetic Rats Induced by Streptozosin

    OpenAIRE

    Alp, Harun; Varol, Sefer; Celik, Muhammet Murat; Altas, Murat; Evliyaoglu, Osman; Tokgoz, Orhan; Tanrıverdi, Mehmet Halis; Uzar, Ertugrul

    2012-01-01

    There have not been yet enough studies about effects of beta glucan and gliclazide on oxidative stress created by streptozotocin in the brain and sciatic nerve of diabetic rats. The aim of this paper was to investigate the antioxidant effects of gliclazide and beta glucan on oxidative stress and lipid peroxidation created by streptozotosin in brain and sciatic nerve. Total of 42 rats were divided into 6 groups including control, diabetic untreated (DM) (only STZ, diabetic), STZ (DM) + beta gl...

  11. Pinched Nerve

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Pinched Nerve Information Page Table of Contents (click to jump ... being done? Clinical Trials Organizations What is Pinched Nerve? The term "pinched nerve" is a colloquial term ...

  12. Nerve biopsy

    Science.gov (United States)

    Biopsy - nerve ... A nerve biopsy is most often done on a nerve in the ankle, forearm, or along a rib. The health care ... feel a prick and a mild sting. The biopsy site may be sore for a few days ...

  13. Identification of bladder and colon afferents in the nodose ganglia of male rats.

    Science.gov (United States)

    Herrity, April N; Rau, Kristofer K; Petruska, Jeffrey C; Stirling, David P; Hubscher, Charles H

    2014-11-01

    The sensory neurons innervating the urinary bladder and distal colon project to similar regions of the central nervous system and often are affected simultaneously by various diseases and disorders, including spinal cord injury. Anatomical and physiological commonalities between the two organs involve the participation of shared spinally derived pathways, allowing mechanisms of communication between the bladder and colon. Prior electrophysiological data from our laboratory suggest that the bladder also may receive sensory innervation from a nonspinal source through the vagus nerve, which innervates the distal colon as well. The present study therefore aimed to determine whether anatomical evidence exists for vagal innervation of the male rat urinary bladder and to assess whether those vagal afferents also innervate the colon. Additionally, the relative contribution to bladder and colon sensory innervation of spinal and vagal sources was determined. By using lipophilic tracers, neurons that innervated the bladder and colon in both the nodose ganglia (NG) and L6/S1 and L1/L2 dorsal root ganglia (DRG) were quantified. Some single vagal and spinal neurons provided dual innervation to both organs. The proportions of NG afferents labeled from the bladder did not differ from spinal afferents labeled from the bladder when considering the collective population of total neurons from either group. Our results demonstrate evidence for vagal innervation of the bladder and colon and suggest that dichotomizing vagal afferents may provide a neural mechanism for cross-talk between the organs. PMID:24845615

  14. Activity of spindle afferents from cat anterior thigh muscles. III. Effects of external stimuli.

    Science.gov (United States)

    Loeb, G E; Hoffer, J A; Marks, W B

    1985-09-01

    Chronically implanted electrodes were used to record the activity of identified single muscle spindle afferents in awake cats during responses to various types of manual and electrical stimulation. During vigorous cyclical responses such as shaking and scratching, spindle afferents generally maintained at least some activity during both lengthening and shortening of the parent muscle, indicating that the programs for these movements include both extra- and intrafusal recruitment. During noncyclical responses such as ipsilateral limb withdrawal and crossed-extension, spindle activity was modest and poorly correlated with extrafusal activity. Weak cutaneous nerve shocks during walking elicited complex excitatory and inhibitory phase-dependent reflexes in the various muscles studied but caused relatively little change in spindle afferent activity, indicating a lack of correlation between alpha and gamma motoneuron activity. A primary and a secondary afferent from sartorius muscle were recorded simultaneously during walking cycles that were perturbed by electrically induced twitches of the antagonist hamstring muscles; both demonstrated highly sensitive, short latency responses to the resulting skeletal motion, consistent with their previously suggested roles in detecting small brief mechanical perturbations. The degree to which fusimotor responses were correlated with extrafusal responses to somatosensory perturbations was highly dependent on the specific nature of the stimulus and the response. Fusimotor reprogramming of the spindle sensitivity appears to be a feature of cyclical movements that are presumably under proprioceptive control, whereas brief perturbations within the context of a particular motor program may be ignored by the fusimotor system. PMID:2931503

  15. Modeling the spinal pudendo-vesical reflex for bladder control by pudendal afferent stimulation.

    Science.gov (United States)

    McGee, Meredith J; Grill, Warren M

    2016-06-01

    Electrical stimulation of the pudendal nerve (PN) is a promising approach to restore continence and micturition following bladder dysfunction resulting from neurological disease or injury. Although the pudendo-vesical reflex and its physiological properties are well established, there is limited understanding of the specific neural mechanisms that mediate this reflex. We sought to develop a computational model of the spinal neural network that governs the reflex bladder response to PN stimulation. We implemented and validated a neural network architecture based on previous neuroanatomical and electrophysiological studies. Using synaptically-connected integrate and fire model neurons, we created a network model with realistic spiking behavior. The model produced expected sacral parasympathetic nucleus (SPN) neuron firing rates from prescribed neural inputs and predicted bladder activation and inhibition with different frequencies of pudendal afferent stimulation. In addition, the model matched experimental results from previous studies of temporal patterns of pudendal afferent stimulation and selective pharmacological blockade of inhibitory neurons. The frequency- and pattern-dependent effects of pudendal afferent stimulation were determined by changes in firing rate of spinal interneurons, suggesting that neural network interactions at the lumbosacral level can mediate the bladder response to different frequencies or temporal patterns of pudendal afferent stimulation. Further, the anatomical structure of excitatory and inhibitory interneurons in the network model was necessary and sufficient to reproduce the critical features of the pudendo-vesical reflex, and this model may prove useful to guide development of novel, more effective electrical stimulation techniques for bladder control. PMID:26968615

  16. Vestibular afferent responses to microrotational stimuli

    Science.gov (United States)

    Myers, Steven F.; Lewis, Edwin R.

    1991-01-01

    Intracellular microelectrode recording/labeling techniques were used to investigate vestibular afferent responses in the bullfrog, to very small amplitude (less than 5 deg p-p) sinusoidal rotations in the vertical plane over the frequency range of 0.063-4 Hz. Robust responses to peak accelerations as low as 0.031 deg/sec per sec were obtained from units subsequently traced to either the central portion of the anterior canal crista or the striolar region of the utricle. All of these microrotationally sensitive afferent neurons had irregular resting discharge rates, and the majority had transfer ratios (relative to rotational velocity) of 1-40 spikes/sec per deg/sec. Individual utricular afferent velocity transfer ratios were nearly constant over the frequency range of 0.125-4 Hz. Canal units displayed decreasing response transfer ratios as stimulus frequencies increased. These findings indicate that, although utricular striolar and central crista afferent velocity transfer ratios to microrotations were very similar, utricular striolar afferent neurons were more faithful sensors of very small amplitude rotational velocity in the vertical plane.

  17. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M;

    2009-01-01

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...... blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac...... system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia....

  18. Transgenic inhibition of astroglial NF-κB protects from optic nerve damage and retinal ganglion cell loss in experimental optic neuritis

    Directory of Open Access Journals (Sweden)

    Brambilla Roberta

    2012-09-01

    Full Text Available Abstract Background Optic neuritis is an acute, demyelinating neuropathy of the optic nerve often representing the first appreciable symptom of multiple sclerosis. Wallerian degeneration of irreversibly damaged optic nerve axons leads to death of retinal ganglion cells, which is the cause of permanent visual impairment. Although the specific mechanisms responsible for triggering these events are unknown, it has been suggested that a key pathological factor is the activation of immune-inflammatory processes secondary to leukocyte infiltration. However, to date, there is no conclusive evidence to support such a causal role for infiltrating peripheral immune cells in the etiopathology of optic neuritis. Methods To dissect the contribution of the peripheral immune-inflammatory response versus the CNS-specific inflammatory response in the development of optic neuritis, we analyzed optic nerve and retinal ganglion cells pathology in wild-type and GFAP-IκBα-dn transgenic mice, where NF-κB is selectively inactivated in astrocytes, following induction of EAE. Results We found that, in wild-type mice, axonal demyelination in the optic nerve occurred as early as 8 days post induction of EAE, prior to the earliest signs of leukocyte infiltration (20 days post induction. On the contrary, GFAP-IκBα-dn mice were significantly protected and showed a nearly complete prevention of axonal demyelination, as well as a drastic attenuation in retinal ganglion cell death. This correlated with a decrease in the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, as well as a prevention of NAD(PH oxidase subunit upregulation. Conclusions Our results provide evidence that astrocytes, not infiltrating immune cells, play a key role in the development of optic neuritis and that astrocyte-mediated neurotoxicity is dependent on activation of a transcriptional program regulated by NF-κB. Hence, interventions targeting the NF-κB transcription

  19. Distinct target cell-dependent forms of short-term plasticity of the central visceral afferent synapses of the rat

    Directory of Open Access Journals (Sweden)

    Watabe Ayako M

    2010-10-01

    Full Text Available Abstract Background The visceral afferents from various cervico-abdominal sensory receptors project to the dorsal vagal complex (DVC, which is composed of the nucleus of the solitary tract (NTS, the area postrema and the dorsal motor nucleus of the vagus nerve (DMX, via the vagus and glossopharyngeal nerves and then the solitary tract (TS in the brainstem. While the excitatory transmission at the TS-NTS synapses shows strong frequency-dependent suppression in response to repeated stimulation of the afferents, the frequency dependence and short-term plasticity at the TS-DMX synapses, which also transmit monosynaptic information from the visceral afferents to the DVC neurons, remain largely unknown. Results Recording of the EPSCs activated by paired or repeated TS stimulation in the brainstem slices of rats revealed that, unlike NTS neurons whose paired-pulse ratio (PPR is consistently below 0.6, the distribution of the PPR of DMX neurons shows bimodal peaks that are composed of type I (PPR, 0.6-1.5; 53% of 120 neurons recorded and type II (PPR, Conclusions These two general types of short-term plasticity might contribute to the differential activation of distinct vago-vagal reflex circuits, depending on the firing frequency and type of visceral afferents.

  20. Whisker-related afferents in superior colliculus.

    Science.gov (United States)

    Castro-Alamancos, Manuel A; Favero, Morgana

    2016-05-01

    Rodents use their whiskers to explore the environment, and the superior colliculus is part of the neural circuits that process this sensorimotor information. Cells in the intermediate layers of the superior colliculus integrate trigeminotectal afferents from trigeminal complex and corticotectal afferents from barrel cortex. Using histological methods in mice, we found that trigeminotectal and corticotectal synapses overlap somewhat as they innervate the lower and upper portions of the intermediate granular layer, respectively. Using electrophysiological recordings and optogenetics in anesthetized mice in vivo, we showed that, similar to rats, whisker deflections produce two successive responses that are driven by trigeminotectal and corticotectal afferents. We then employed in vivo and slice experiments to characterize the response properties of these afferents. In vivo, corticotectal responses triggered by electrical stimulation of the barrel cortex evoke activity in the superior colliculus that increases with stimulus intensity and depresses with increasing frequency. In slices from adult mice, optogenetic activation of channelrhodopsin-expressing trigeminotectal and corticotectal fibers revealed that cells in the intermediate layers receive more efficacious trigeminotectal, than corticotectal, synaptic inputs. Moreover, the efficacy of trigeminotectal inputs depresses more strongly with increasing frequency than that of corticotectal inputs. The intermediate layers of superior colliculus appear to be tuned to process strong but infrequent trigeminal inputs and weak but more persistent cortical inputs, which explains features of sensory responsiveness, such as the robust rapid sensory adaptation of whisker responses in the superior colliculus. PMID:26864754

  1. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration

    Science.gov (United States)

    Brinkman, C. Colin; Iwami, Daiki; Hritzo, Molly K.; Xiong, Yanbao; Ahmad, Sarwat; Simon, Thomas; Hippen, Keli L.; Blazar, Bruce R.; Bromberg, Jonathan S.

    2016-01-01

    Regulatory T cells (Tregs) are essential to suppress unwanted immunity or inflammation. After islet allo-transplant Tregs must migrate from blood to allograft, then via afferent lymphatics to draining LN to protect allografts. Here we show that Tregs but not non-Treg T cells use lymphotoxin (LT) during migration from allograft to draining LN, and that LT deficiency or blockade prevents normal migration and allograft protection. Treg LTαβ rapidly modulates cytoskeletal and membrane structure of lymphatic endothelial cells; dependent on VCAM-1 and non-canonical NFκB signalling via LTβR. These results demonstrate a form of T-cell migration used only by Treg in tissues that serves an important role in their suppressive function and is a unique therapeutic focus for modulating suppression. PMID:27323847

  2. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    Directory of Open Access Journals (Sweden)

    Wang Cong-Yi

    2008-06-01

    Full Text Available Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograde labeling, immunostaining, calcium imaging, and electrophysiological recordings, here we show that a subpopulation of airway vagal afferent nerves express TRPM8 receptors and that activation of TRPM8 receptors by cold excites these airway autonomic nerves. Thus activation of TRPM8 receptors may provoke autonomic nerve reflex to increase airway resistance. This putative autonomic response may be associated with cold-induced exacerbation of asthma and other pulmonary disorders, making TRPM8 receptors a possible target for prevention of cold-associated respiratory disorders.

  3. Intraoperative vagal nerve monitoring.

    Science.gov (United States)

    Leonetti, J P; Jellish, W S; Warf, P; Hudson, E

    1996-08-01

    A variety of benign and malignant neoplasms occur in the superior cervical neck, parapharyngeal space or the infratemporal fossa. The surgical resection of these lesions may result in postoperative iatrogenic injury to the vagus nerve with associated dysfunctional swallowing and airway protection. Anatomic and functional preservation of this critical cranial nerve will contribute to a favorable surgical outcome. Fourteen patients with tumors of the cervical neck or adjacent skull base underwent intraoperative vagal nerve monitoring in an attempt to preserve neural integrity following tumor removal. Of the 11 patients with anatomically preserved vagal nerves in this group, seven patients had normal vocal cord mobility following surgery and all 11 patients demonstrated normal vocal cord movement by six months. In an earlier series of 23 patients with tumors in the same region who underwent tumor resection without vagal nerve monitoring, 18 patients had anatomically preserved vagal nerves. Within this group, five patients had normal vocal cord movement at one month and 13 patients demonstrated normal vocal cord movement at six months. This paper will outline a technique for intraoperative vagal nerve monitoring utilizing transcricothyroid membrane placement of bipolar hook-wire electrodes in the vocalis muscle. Our results with the surgical treatment of cervical neck and lateral skull base tumors for patients with unmonitored and monitored vagal nerves will be outlined. PMID:8828272

  4. Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents

    Science.gov (United States)

    Peng, Chih-Wei; Chen, Jia-Jin Jason; Cheng, Chen-Li; Grill, Warren M.

    2008-06-01

    Urinary retention is the inability to empty the bladder completely, and may result from bladder hypocontractility, increases in outlet resistance or both. Chronic urinary retention can lead to several urological complications and is often refractory to pharmacologic, behavioral and surgical treatments. We sought to determine whether electrical stimulation of sensory fibers in the pudendal nerve could engage an augmenting reflex and thereby improve bladder emptying in an animal model of urinary retention. We measured the efficiency of bladder emptying with and without concomitant electrical stimulation of pudendal nerve afferents in urethane-anesthetized rats. Voiding efficiency (VE = voided volume/initial volume) was reduced from 72 ± 7% to 29 ± 7% following unilateral transection of the sensory branch of the pudendal nerve (UST) and from 70 ± 5% to 18 ± 4% following bilateral transection (BST). Unilateral electrical stimulation of the proximal transected sensory pudendal nerve during distention-evoked voiding contractions significantly improved VE. Low-intensity stimulation at frequencies of 1-50 Hz increased VE to 40-51% following UST and to 39-49% following BST, while high-intensity stimulation was ineffective at increasing VE. The increase in VE was mediated by increases in the duration of distention-evoked voiding bladder contractions, rather than increases in contraction amplitude. These results are consistent with an essential role for pudendal sensory feedback in efficient bladder emptying, and raise the possibility that electrical activation of pudendal nerve afferents may provide a new approach to restore efficient bladder emptying in persons with urinary retention.

  5. Spinal inhibition of phrenic motoneurones by stimulation of afferents from leg muscle in the cat: blockade by strychnine.

    Science.gov (United States)

    Eldridge, F L; Millhorn, D E; Waldrop, T

    1987-08-01

    1. Phrenic nerve responses to stimulation of calf muscle receptors or their afferents were studied in paralysed high (C1) spinal cats whose phrenic nerve activity was evoked by activation of the intercostal-to-phrenic reflex. End-tidal PCO2 was maintained at a constant level by means of a servo-controlled ventilator. 2. Physical stimulation of calf muscles or electrical stimulation of the tibial nerve uniformly caused inhibition of phrenic activity evoked by facilitatory conditioning stimuli. The degree of inhibition gradually decreased as muscle stimulation continued, and there was a post-stimulus augmentation of phrenic activity. 3. Pre-treatment with subconvulsive doses of strychnine, an antagonist of the neurotransmitter glycine, partially or completely blocked the inhibitory effects on phrenic activity of muscle-afferent stimulation. The blockade was reversible with time. 4. Pre-treatment with a subconvulsive dose of bicuculline, an antagonist of the neurotransmitter gamma-aminobutyric acid (GABA), had no effect on the inhibitory mechanism. 5. We conclude that glycine is an important transmitter of the inhibition of phrenic motoneurones induced by muscle-afferent stimulation, but that GABA is not involved in this inhibitory mechanism. PMID:3681723

  6. Nerve conduction

    Science.gov (United States)

    ... the central nervous system (CNS) and peripheral nervous system (PNS). The CNS contains the brain and the spinal cord and the PNS consists of thousands of nerves that connect the spinal cord to muscles and sensory receptors. A peripheral nerve is composed of nerve ...

  7. Retinal Ganglion Cell Protection Via Topical and Systemic Alpha-Tocopherol Administration in Optic Nerve Crush Model of Rat

    Directory of Open Access Journals (Sweden)

    Zeynep Aktaş

    2013-06-01

    Full Text Available Pur po se: The aim of our study was to investigate the neuroprotective effects of topical α-tocopherol in optic nerve crush model of rat and to compare its efficacy with that of systemic α -tocopherol. Ma te ri al and Met hod: 50 eyes of 25 Wistar albino rats were included. The eyes were divided into six groups. Optic nerve crush was performed in Groups 1, 3, 5. Additionally, systemic and topical α-tocopherol therapies were given to Groups 1 and 3, respectively. No treatment was applied in Group 5. Groups 2, 4, and 6 were the fellow eyes of the animals comprising Groups 1, 3, and 5. Eyes were enucleated at day 45 of the study. Retinal ganglion cells (RGCs were counted with light microscopy. Re sults: Mean RGC numbers were 14.5±3.7 (10.3-20 and 27.5±2.6 (24-30 in Groups 5 and 6, respectively (p: 0.001 They were measured to be 26.6±7.8 (19-45 and 24.6±3.9 (20-32 in Groups 1 and 2 and 21.1±7.1 (11-34 and 27±7.5 (18-42 in Groups 3 and 4 (p:0.659, p:0.094, respectively. There was no difference in Groups 2 and 4 compared with Group 6 (p:0.210, p:0.299, respectively. Dis cus si on: Topical α-tocopherol has a significant neuroprotective effects in optic nerve crush model of rat and may be used in the future for the treatment of optic neuropathies such as glaucoma. (Turk J Ophthalmol 2013; 43: 161-6

  8. Pain processing by spinal microcircuits: afferent combinatorics.

    Science.gov (United States)

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn. PMID:22409855

  9. Three-dimensional Reconstruction of Peripheral Nerve Internal Fascicular Groups.

    Science.gov (United States)

    Zhong, Yingchun; Wang, Liping; Dong, Jianghui; Zhang, Yi; Luo, Peng; Qi, Jian; Liu, Xiaolin; Xian, Cory J

    2015-01-01

    Peripheral nerves are important pathways for receiving afferent sensory impulses and sending out efferent motor instructions, as carried out by sensory nerve fibers and motor nerve fibers. It has remained a great challenge to functionally reconnect nerve internal fiber bundles (or fascicles) in nerve repair. One possible solution may be to establish a 3D nerve fascicle visualization system. This study described the key technology of 3D peripheral nerve fascicle reconstruction. Firstly, fixed nerve segments were embedded with position lines, cryostat-sectioned continuously, stained and imaged histologically. Position line cross-sections were identified using a trained support vector machine method, and the coordinates of their central pixels were obtained. Then, nerve section images were registered using the bilinear method, and edges of fascicles were extracted using an improved gradient vector flow snake method. Subsequently, fascicle types were identified automatically using the multi-directional gradient and second-order gradient method. Finally, a 3D virtual model of internal fascicles was obtained after section images were processed. This technique was successfully applied for 3D reconstruction for the median nerve of the hand-wrist and cubital fossa regions and the gastrocnemius nerve. This nerve internal fascicle 3D reconstruction technology would be helpful for aiding peripheral nerve repair and virtual surgery. PMID:26596642

  10. Effects of afferent input on the breathing pattern continuum in the tambaqui (Colossoma macropomum).

    Science.gov (United States)

    Reid, Stephen G; Sundin, Lena; Florindo, Luis Henrique; Rantin, Francisco Tadeu; Milsom, William K

    2003-06-12

    This study used a decerebrate and artificially-ventilated preparation to examine the roles of various afferent inputs in breathing pattern formation in the tambaqui (Colossoma macropomum). Three general breathing patterns were observed: (1) regular breathing; (2) frequency cycling and (3) episodic breathing. Under normoxic, normocapnic conditions, 50% of control fish exhibited regular continuous breathing and 50% exhibited frequency cycling. Denervation of the gills and oro-branchial cavity promoted frequency cycling. Central denervation of the glossopharyngeal and vagus nerves produced episodic breathing. Regardless of the denervation state, hyperoxia produced either frequency cycling or episodic breathing while hypoxia and hypercarbia shifted the pattern to frequency cycling and continuous breathing. We suggest that these breathing patterns represent a continuum from continuous to episodic breathing with waxing and waning occupying an intermediate stage. The data further suggest that breathing pattern is influenced by both specific afferent input from chemoreceptors and generalised afferent input while chemoreceptors specific for producing changes in breathing pattern may exist in fish. PMID:12809797

  11. Involvement of sinoaortic afferents in renal sympathoinhibition and vasodilation induced by acute hypernatremia.

    Science.gov (United States)

    Silva, Elaine F; Sera, Celisa T N; Mourão, Aline A; Lopes, Paulo R; Moreira, Marina C S; Ferreira-Neto, Marcos L; Colombari, Débora A S; Cravo, Sérgio L D; Pedrino, Gustavo R

    2015-11-01

    Despite the abundance of evidence that supports the important role of aortic and carotid afferents to short-term regulation of blood pressure and detection of variation in the arterial PO2 , PCO2 and pH, relatively little is known regarding the role of these afferents during changes in the volume and composition of extracellular compartments. The present study sought to determine the involvement of these afferents in the renal vasodilation and sympathoinhibition induced by hypertonic saline (HS) infusion. Sinoaortic-denervated and sham male Wistar rats were anaesthetised with intravenous (i.v.) urethane (1.2 g/kg body weight (bw)) prior to the measurement of the mean arterial pressure (MAP), renal vascular conductance (RVC) and renal sympathetic nerve activity (RSNA). In the sham group, the HS infusion (3 mol/L NaCl, 1.8 mL/kg bw, i.v.) induced transient hypertension (12 ± 4 mmHg from baseline, peak at 10 min; P hypernatremia. PMID:26440715

  12. Neuromedin B Restores Erectile Function by Protecting the Cavernous Body and the Nitrergic Nerves from Injury in a Diabetic Rat Model.

    Directory of Open Access Journals (Sweden)

    Hiroaki Nishimatsu

    Full Text Available Erectile dysfunction (ED is a major health problem worldwide and affects approximately 75% of diabetic patients, likely due to severely damaged cavernous body. While screening for cytokines produced by adipose tissue-derived stem cells, we detected neuromedin B (NMB. To explore a potential treatment option for ED, we examined whether NMB was capable of restoring erectile function. We also examined the potential mechanism by which NMB could restore erectile function. Male Wistar rats were injected with streptozotocin (STZ to induce diabetes. An adenovirus expressing NMB (AdNMB was injected into the penis 6 weeks after STZ administration. Four weeks after the injection of AdNMB, erectile function, penile histology, and protein expression were analyzed. As assessed by the measurement of intracavernous pressure, AdNMB injection significantly restored erectile function compared with the injection of an adenovirus expressing green fluorescent protein. This restoration was associated with conservation of the cavernous body structure and neural nitric oxide synthase (nNOS-expressing nerves, together with recovery of α-smooth muscle actin, vascular endothelial-cadherin, and nNOS expression. Furthermore, NMB significantly stimulated the survival of SH-SY5Y cells derived from human neuroblastoma tissue with characteristics similar to neurons. Collectively, these results suggested that NMB restored erectile function via protection of the cavernous body from injury and stimulation of the survival of the associated nerves. NMB may be useful to treat ED patients with a severely damaged cavernous body.

  13. Neuromedin B Restores Erectile Function by Protecting the Cavernous Body and the Nitrergic Nerves from Injury in a Diabetic Rat Model.

    Science.gov (United States)

    Nishimatsu, Hiroaki; Suzuki, Etsu; Saito, Yasuho; Niimi, Aya; Nomiya, Akira; Yamada, Daisuke; Homma, Yukio

    2015-01-01

    Erectile dysfunction (ED) is a major health problem worldwide and affects approximately 75% of diabetic patients, likely due to severely damaged cavernous body. While screening for cytokines produced by adipose tissue-derived stem cells, we detected neuromedin B (NMB). To explore a potential treatment option for ED, we examined whether NMB was capable of restoring erectile function. We also examined the potential mechanism by which NMB could restore erectile function. Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. An adenovirus expressing NMB (AdNMB) was injected into the penis 6 weeks after STZ administration. Four weeks after the injection of AdNMB, erectile function, penile histology, and protein expression were analyzed. As assessed by the measurement of intracavernous pressure, AdNMB injection significantly restored erectile function compared with the injection of an adenovirus expressing green fluorescent protein. This restoration was associated with conservation of the cavernous body structure and neural nitric oxide synthase (nNOS)-expressing nerves, together with recovery of α-smooth muscle actin, vascular endothelial-cadherin, and nNOS expression. Furthermore, NMB significantly stimulated the survival of SH-SY5Y cells derived from human neuroblastoma tissue with characteristics similar to neurons. Collectively, these results suggested that NMB restored erectile function via protection of the cavernous body from injury and stimulation of the survival of the associated nerves. NMB may be useful to treat ED patients with a severely damaged cavernous body. PMID:26207818

  14. Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system.

    OpenAIRE

    N.Berardi; Cellerino, A.; L. DOMENICI; Fagiolini, M.; Pizzorusso, T.; Cattaneo, A.; L Maffei

    1994-01-01

    Exogenous supply of nerve growth factor (NGF) prevents the effects of monocular deprivation. This suggests that visual afferents may be competing for an endogenous neurotrophic factor, related to NGF, whose production by postsynaptic cells depends on the activity of afferent fibers. To test the hypothesis that endogenous NGF may play a role in the functional and anatomical development of the rat geniculo cortical system, the physiological action of NGF in the rat visual system was antagonized...

  15. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    OpenAIRE

    Wang Cong-Yi; Tominaga Makoto; Johnson Richard D; Chen Meng; Ling Jennifer X; Xing Hong; Gu Jianguo

    2008-01-01

    Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograd...

  16. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  17. Progesterone and peripheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Fei Fan; Haichao Li; Yuwei Wang; Yanglin Zheng; Lianjun Jia; Zhihui Wang

    2006-01-01

    OBJECTIVE: To explore the effect of progesterone on peripheral nerve regeneration.DATA SOURCES: An online search of Medline and OVID databases was under taken to identify articles about progesterone and peripheral nerve regeneration published in English between January 1990 and June 2004 by using the keywords of "peripheral nerve, injury, progesterone, regeneration".STUDY SELECTION: The data were primarily screened, those correlated with progesterone and peripheral nerve regeneration were involved, and their original articles were further searched, the repetitive studies or reviews were excluded.DATA EXTRACTION: Totally 59 articles about progesterone and peripheral nerve regeneration were collected, and 26 of them were involved, the other 33 excluded ones were the repetitive studies or reviews.DATA SYNTHESIS: Recent researches found that certain amount of progesterone could be synthetized in peripheral nervous system, and the expression of progesterone receptor could be found in sensory neurons and Schwann cells. After combined with the receptor, endogenous and exogenous progesterone can accelerate the formation of peripheral nerve myelin sheath, also promote the axonal regeneration.CONCLUSION: Progesterone plays a role in protecting neurons, increasing the sensitivity of nerve tissue to nerve growth factor, and accelerating regeneration of nerve in peripheral nerve regeneration, which provides theoretical references for the treatment of demyelinated disease and nerve injury, as well as the prevention of neuroma, especially that the in vivo level of progesterone should be considered for the elderly people accompanied by neuropathy and patients with congenital luteal phase defect, which is of positive significance in guiding the treatment.

  18. Terminal nerve: cranial nerve zero

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Duque Parra

    2006-12-01

    Full Text Available It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH. In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a common nerve that integrates the terminal nerve with the olfactory nerves and the vomeronasals nerves which seem to carry out the odors detection function as well as in the food search, pheromone detection and nasal vascular regulation.

  19. [Depolarization of primary afferents during real scratching in the cat].

    Science.gov (United States)

    Baev, K V; Esipenko, V B

    1985-01-01

    Changes in depolarization of primary afferents and their correlation with afferent impulsation and limb movement were studied in the lumbar spinal cord during real scratching of decerebrated cats. Two components in rhythmic dorsal root potential were observed. First--centrally evoked, retained during fictitive scratching after immobilization; second--evoked by afferent discharge, coming to the spinal cord during the scratching phase of the limb movement. PMID:3974754

  20. Arnold’s nerve cough reflex: evidence for chronic cough as a sensory vagal neuropathy

    OpenAIRE

    Ryan, Nicole M; Gibson, Peter G; Birring, Surinder S.

    2014-01-01

    Arnold’s nerve ear-cough reflex is recognised to occur uncommonly in patients with chronic cough. In these patients, mechanical stimulation of the external auditory meatus can activate the auricular branch of the vagus nerve (Arnold’s nerve) and evoke reflex cough. This is an example of hypersensitivity of vagal afferent nerves, and there is now an increasing recognition that many cases of refractory or idiopathic cough may be due to a sensory neuropathy of the vagus nerve. We present two cas...

  1. Bursting stimulation of proximal urethral afferents improves bladder pressures and voiding

    Science.gov (United States)

    Bruns, Tim M.; Bhadra, Narendra; Gustafson, Kenneth J.

    2009-12-01

    Reflex bladder excitation has been evoked via pudendal nerve, pudendal nerve branch and intraurethral stimulation; however, afferent-evoked bladder emptying has been less efficient than direct activation of the bladder via sacral root stimulation. A stimulation method that improves activation of the urethra-bladder excitatory reflex with minimal sphincter recruitment may lead to improved bladder emptying. Fine wire electrodes were placed in the wall of the urethra in five cats. Placement of electrodes near the proximal urethra evoked bladder contractions with minimal sphincter activation. On these electrodes, lower frequency burst-patterned stimuli evoked greater bladder voiding efficiencies (71.2 ± 27.8%) than other stimulus patterns on the same electrodes (50.4 ± 41.5%, p > 0.05) or any stimulus pattern on electrodes that elicited urethral closure (16.5 ± 12.7%, p < 0.05). Fine wire electrodes specifically targeted afferent fibers in the urethra, indicating the feasibility of clinical evaluations using the same method. This work may improve the translation of next generation neuroprostheses for bladder control.

  2. Time course of post-excitatory effects separates afferent human C fibre classes.

    Science.gov (United States)

    Weidner, C; Schmidt, R; Schmelz, M; Hilliges, M; Handwerker, H O; Torebjörk, H E

    2000-08-15

    1. To study post-excitatory changes of conduction velocity, action potentials were recorded from 132 unmyelinated nerve fibres (C fibres) in cutaneous fascicles of the peroneal nerve using microneurography in healthy human subjects. The 'marking' technique was used to assess responsiveness to mechanical and heat stimuli or sympathetic reflex provocation. 2. C fibres were classified into three major classes: mechano-responsive afferent (n = 76), mechano-insensitive afferent (n = 48) and sympathetic efferent C fibres (n = 8). 3. During regular stimulation at 0.25 Hz, conditioning pulses were intermittently interposed. Changes of conduction velocity were assessed for different numbers of conditioning impulses and varying interstimulus intervals (ISIs). For all three fibre classes the latency shift following conditioning pulses at an ISI of 1000 ms increased linearly with their number (n = 1, 2 and 4). However, the absolute degree of conduction velocity slowing was much higher in the 32 mechano-insensitive fibres as compared with 56 mechano-responsive or 8 sympathetic fibres. 4. Single additional pulses were interposed at different ISIs from 20 to 2000 ms. For 20 mechano-responsive fibres conduction velocity slowing increased with decreasing ISI (subnormal phase). In contrast, for 16 mechano-insensitive C fibres the conduction velocity slowing decreased with shorter ISIs, and at values lower than 417 +/- 49 ms (mean +/- s.e.m.) the conduction velocity of the conditioned action potential was faster than before (conduction velocity speeding). This supernormal phase had its maximum at 69 +/- 10 ms. 5. In this study we provide, for the first time, direct evidence of relative supernormal conduction in human mechano-insensitive C fibres. The implications for temporal coding in different afferent C fibre classes are discussed. PMID:10944181

  3. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-01-01

    Full Text Available Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ′excellent′ and ′good′ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.

  4. Afferent innervation patterns of the saccule in pigeons

    Science.gov (United States)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  5. Terminal nerve: cranial nerve zero

    OpenAIRE

    Jorge Eduardo Duque Parra; Carlos Alberto Duque Parra

    2006-01-01

    It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH). In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a co...

  6. Adenovirus-mediated human β-nerve growth factor gene transfer has a protective effect on cochlear spiral ganglion after blast exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To study whether adenovirus-mediated human β-nerve growth factor (Ad-hNGFβ) gene has any protective effect on blast hearing impairment. Methods:Deafness was induced by blast exposure (172. 0 dB) in 30 healthy guinea pigs. On day 7 of blast exposure, Ad-hNGFβ was infused into the perilymphatic space of 20 animals as the study group (hNGFβ group), and artificial perilymph fluid (APF) was infused into the perilymphatic space of the other 10 animals as the control group. At weeks 1, 4 and 8 after blast exposure, the animals were sacrificed and the cochleae were removed for immunohis-tochemical and HE stainings. Results: Expression of Ad-hNGFβ protein was detected in each turn of the cochlea at the 1st week, with almost equal intensity in all turns. At the 4th week, the reactive intensity of the expression of Ad-hNGFβ protein decreased. At the 8th week, no expression was detectable. The results of HE staining showed that the amount of spiral ganglions in hNGFβ group was significantly greater than that of the control group at week 4 (F<0. 01). Conclusion: Ad-hNGFβ can be expressed at a high level and for a relatively long period in the blast impaired cochlea, suggesting that Ad-hNGFβ has a protective effect on cochlear spiral ganglion cells after blast exposure and the efficient gene transfer into cochlea had been achieved without toxicity.

  7. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin B subunit by nociceptive C-fiber primary afferent neurons.

    Science.gov (United States)

    Oszlács, O; Jancsó, G; Kis, G; Dux, M; Sántha, P

    2015-12-17

    The distribution of spinal primary afferent terminals labeled transganglionically with the choleratoxin B subunit (CTB) or its conjugates changes profoundly after perineural treatment with capsaicin. Injection of CTB conjugated with horseradish peroxidase (HRP) into an intact nerve labels somatotopically related areas in the ipsilateral dorsal horn with the exceptions of the marginal zone and the substantia gelatinosa, whereas injection of this tracer into a capsaicin-pretreated nerve also results in massive labeling of these most superficial layers of the dorsal horn. The present study was initiated to clarify the role of C-fiber primary afferent neurons in this phenomenon. In L5 dorsal root ganglia, analysis of the size frequency distribution of neurons labeled after injection of CTB-HRP into the ipsilateral sciatic nerve treated previously with capsaicin or resiniferatoxin revealed a significant increase in the proportion of small neurons. In the spinal dorsal horn, capsaicin or resiniferatoxin pretreatment resulted in intense CTB-HRP labeling of the marginal zone and the substantia gelatinosa. Electron microscopic histochemistry disclosed a dramatic, ∼10-fold increase in the proportion of CTB-HRP-labeled unmyelinated dorsal root axons following perineural capsaicin or resiniferatoxin. The present results indicate that CTB-HRP labeling of C-fiber dorsal root ganglion neurons and their central terminals after perineural treatment with vanilloid compounds may be explained by their phenotypic switch rather than a sprouting response of thick myelinated spinal afferents which, in an intact nerve, can be labeled selectively with CTB-HRP. The findings also suggest a role for GM1 ganglioside in the modulation of nociceptor function and pain. PMID:26520849

  8. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans

    DEFF Research Database (Denmark)

    Perez, Monica A.; Lungholt, Bjarke K.S.; Nielsen, Jens Bo

    2005-01-01

    and returned to baseline after 10 min. No changes were observed after the control task. To elucidate the mechanisms contributing to the H-reflex depression, we measured the size of the long-latency depression of the soleus H-reflex evoked by peroneal nerve stimulation (D1 inhibition) and the size of...... the monosynaptic Ia facilitation of the soleus H-reflex evoked by femoral nerve stimulation. The D1 inhibition was increased and the femoral nerve facilitation was decreased following the visuo-motor skill task, suggesting an increase in presynaptic inhibition of Ia afferents. No changes were observed...... novel visuo-motor task involving the ankle muscles, and a control task involving simple voluntary ankle movements, would induce changes in the size of the soleus H-reflex. The slope of the H-reflex recruitment curve and the H-max/M-max ratio were depressed after repetition of the visuo-motor skill task...

  9. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus.

    Science.gov (United States)

    Yu, Xiaoyun; Hu, Youtian; Yu, Shaoyong

    2014-08-15

    Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases. PMID:24994852

  10. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  11. Fictive locomotion and scratching inhibit dorsal horn neurons receiving thin fiber afferent input.

    Science.gov (United States)

    Degtyarenko, A M; Kaufman, M P

    2000-08-01

    In decerebrate paralyzed cats, we examined the effects of two central motor commands (fictive locomotion and scratching) on the discharge of dorsal horn neurons receiving input from group III and IV tibial nerve afferents. We recorded the impulse activity of 74 dorsal horn neurons, each of which received group III input from the tibial nerve. Electrical stimulation of the mesencephalic locomotor region (MLR), which evoked fictive static contraction or fictive locomotion, inhibited the discharge of 44 of the 64 dorsal horn neurons tested. The mean depth from the dorsal surface of the spinal cord of the 44 neurons whose discharge was inhibited by MLR stimulation was 1.77 +/- 0.04 mm. Fictive scratching, evoked by topical application of bicuculline to the cervical spinal cord and irritation of the ear, inhibited the discharge of 22 of the 29 dorsal horn neurons tested. Fourteen of the twenty-two neurons whose discharge was inhibited by fictive scratching were found to be inhibited by MLR stimulation as well. The mean depth from the dorsal surface of the cord of the 22 neurons whose discharge was inhibited by fictive scratching was 1.77 +/- 0.06 mm. Stimulation of the MLR or the elicitation of fictive scratching had no effect on the activity of 22 dorsal horn neurons receiving input from group III and IV tibial nerve afferents. The mean depth from the dorsal surface of the cord was 1.17 +/- 0.07 mm, a value that was significantly (P scratching. We conclude that centrally evoked motor commands can inhibit the discharge of dorsal horn neurons receiving thin fiber input from the periphery. PMID:10938225

  12. Microvascular Cranial Nerve Palsy

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Microvascular Cranial Nerve Palsy Sections What Is Microvascular Cranial Nerve Palsy? ... Microvascular Cranial Nerve Palsy Treatment What Is Microvascular Cranial Nerve Palsy? Aug. 02, 2012 Microvascular cranial nerve palsy ( ...

  13. Functionality of the baroreceptor nerves in heart rate regulation

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, Mette

    2011-01-01

    arterial pressure. As a result both the rate and the relative level of the carotid sinus arterial pressure is sensed. Simulations with these models show that responses to step changes in pressure follow from the rate sensitivity as observed in experimental studies. Adaptation and asymmetric responses are a...... consequence of the memory encapsulated by the models, and the nonlinearity gives rise to sigmoidal response curves. The nonlinear afferent baroreceptor models are coupled with an effector model, and the coupled model has been used to predict baroreceptor feedback regulation of heart rate during postural...... change from sitting to standing and during head-up tilt. The efferent model couples the afferent nerve paths to the sympathetic and parasympathetic outflow, and subsequently predicts the build up of an action potential at the sinus knot of the heart. In this paper, we analyze the nonlinear afferent model...

  14. EFFECTS OF CAPSAICIN ON RAT SCIATIC NERVE IN VINCRISTINE-INDUCED NEUROPATHIC PAIN MODEL

    Directory of Open Access Journals (Sweden)

    Thanaa A. El-Masry *, Magda E. El Sayaad , Ibrahim A. Gaaboub and Wafaa M. Fouda

    2013-02-01

    Full Text Available Capsaicin, the pungent ingredient of red pepper, is used topically to treat different types of neuropathic pain, in rat model of vincristine induced neuropathic pain we tried to investigate the effect of capsaicin on sciatic nerve through electrophysiological and histopathological studies. We found that treatment of animals with vincristine results in significant decrease in sciatic nerve conduction velocity and degeneration of the nerve fibers, where combined treatment of vincristine and capsaicin showed highly significant decrease in sciatic nerve conduction velocity and degeneration of the nerve fibers compared with that treated with vincristine only. In new trial, we tried to investigate the effect of direct capsaicin titration on sciatic nerve fibers that results in nearly abolishment of nerve conduction velocity. All of these findings may illustrate the mechanism of capsaicin effect through afferent nerves degeneration.

  15. Gait phase detection from sciatic nerve recordings in functional electrical stimulation systems for foot drop correction

    International Nuclear Information System (INIS)

    Cutaneous afferent activities recorded by a nerve cuff electrode have been used to detect the stance phase in a functional electrical stimulation system for foot drop correction. However, the implantation procedure was difficult, as the cuff electrode had to be located on the distal branches of a multi-fascicular nerve to exclude muscle afferent and efferent activities. This paper proposes a new gait phase detection scheme that can be applied to a proximal nerve root that includes cutaneous afferent fibers as well as muscle afferent and efferent fibers. To test the feasibility of this scheme, electroneurogram (ENG) signals were measured from the rat sciatic nerve during treadmill walking at several speeds, and the signal properties of the sciatic nerve were analyzed for a comparison with kinematic data from the ankle joint. On the basis of these experiments, a wavelet packet transform was tested to define a feature vector from the sciatic ENG signals according to the gait phases. We also propose a Gaussian mixture model (GMM) classifier and investigate whether it could be used successfully to discriminate feature vectors into the stance and swing phases. In spite of no significant differences in the rectified bin-integrated values between the stance and swing phases, the sciatic ENG signals could be reliably classified using the proposed wavelet packet transform and GMM classification methods. (paper)

  16. Electrical potentials from the eye and optic nerve of Strombus: effects of electrical stimulation of the optic nerve.

    Science.gov (United States)

    Gillary, H L

    1977-02-01

    1. Photic stimulation of the mature eye of Strombus can evoke in the optic nerve 'on' activity in numerous small afferent fibres and repetitive 'off' bursts of afferent impulses in a smaller number of larger fibres. 2. Synchronous invasion of the eye by electrically evoked impulses in small optic nerve fibres (apparently the 'on' afferents, antidromically activated) can evoke a burst of impulses in the larger 'off' fibres which propagate away from the eye. Invasion of the eye via one branch of optic nerve can evoke an answering burst in another branch. 3. Such electrically evoked bursts are similar to light-evoked 'off' bursts with respect to their impulse composition, their ability to be inhibited by illumination of the eye, and their susceptibility to MgCl2 anaesthesia. 4. Invasion of the eye by a train of repetitive electrically evoked impulses in the absence of photic stimulation can give rise to repetitive 'off' bursts as well as concomitant oscillatory potentials in the eye which are similar to those normally evoked by cessation of a photic stimulus. 5. The electrically evoked 'off' bursts appear to be caused by an excitatory rebound following the cessation of inhibitory synaptic input from photoreceptors which can be antidromically activated by electrical stimulation of the optic nerve. 6. The experimental results suggest that the rhythmic discharge of the 'off' fibres evoked by the cessation of a photic stimulus is mediated by the abrupt decrease of inhibitory synaptic input from the receptors. PMID:192827

  17. Direct Activation of Guinea Pig Vagal Afferent Neurons by FMRFamide

    OpenAIRE

    Lee, Min-Goo; Park, Ji-Yong; Park, Young Keun; Undem, Bradley J.

    2011-01-01

    Vagus nerve is composed of distinct two kinds of nerves, nodose and jugular ganglionic nerves. We tested pharmacological difference between two vagal nerves in the responsiveness to FMRFamide. The response probability to FMRFamide was significantly higher in nodose than jugular nerves in intracellular calcium measurement. Nodose nerves also depolarized membrane potential to FMRFamide more than jugular nerves did in patch clamp recording. But the probability of action potential discharge was s...

  18. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    Science.gov (United States)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  19. The projection and synaptic organisation of NTS afferent connections with presympathetic neurones, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus.

    OpenAIRE

    Affleck, V.S.; Coote, J.H.; Pyner, S.

    2012-01-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may ...

  20. Neck afferents and muscle sympathetic activity in humans: implications for the vestibulosympathetic reflex.

    Science.gov (United States)

    Ray, C A; Hume, K M

    1998-02-01

    We have shown previously that head-down neck flexion (HDNF) in humans elicits increases in muscle sympathetic nerve activity (MSNA). The purpose of this study was to determine the effect of neck muscle afferents on MSNA. We studied this question by measuring MSNA before and after head rotation that would activate neck muscle afferents but not the vestibular system (i.e., no stimulation of the otolith organs or semicircular canals). After a 3-min baseline period with the head in the normal erect position, subjects rotated their head to the side (approximately 90%) and maintained this position for 3 min. Head rotation was performed by the subjects in both the prone (n = 5) and sitting (n = 6) positions. Head rotation did not elicit changes in MSNA. Average MSNA, expressed as burst frequency and total activity, was 13 +/- 1 and 13 +/- 1 bursts/min and 146 +/-34 and 132 +/- 27 units/min during baseline and head rotation, respectively. There were no significant changes in calf blood flow (2.6 +/- 0.3 to 2.5 +/- 0.3 ml.100 ml-1.min-1, n = 8) and calf vascular resistance (39 +/- 4 to 41 +/- 4 units; n = 8). Heart rate (64 +/- 3 to 66 +/- 3 beats/min; P = 0.058) and mean arterial pressure (90 +/- 3 to 93 +/- 3; P HDNF was tested in 9 of the 13 subjects. MSNA was significantly increased by 79 +/- 12% (P HDNF. These findings indicate that neck afferents activated by horizontal neck rotation or flexion in the absence of significant force development do not elicit changes in MSNA. These findings support the concept that HDNF increases MSNA by the activation of the vestibular system. PMID:9475851

  1. The effect of atenolol on the spontaneous and reflex activity of the sympathetic nerves in the cat: influence of cardiopulmonary receptors

    OpenAIRE

    Scott, Evelyn M.

    1983-01-01

    1 Atenolol reduces sympathetic efferent discharge and attenuates the responses of the sympathetic nerves to changes in blood pressure. The present experiments were carried out to determine whether these changes were mediated by cardiopulmonary receptors whose afferents lie in the vagal nerves.

  2. Reliability of clinical tests to evaluate nerve function and mechanosensitivity of the upper limb peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Bachmann Lucas M

    2009-01-01

    Full Text Available Abstract Background Clinical tests to assess peripheral nerve disorders can be classified into two categories: tests for afferent/efferent nerve function such as nerve conduction (bedside neurological examination and tests for increased mechanosensitivity (e.g. upper limb neurodynamic tests (ULNTs and nerve palpation. Reliability reports of nerve palpation and the interpretation of neurodynamic tests are scarce. This study therefore investigated the intertester reliability of nerve palpation and ULNTs. ULNTs were interpreted based on symptom reproduction and structural differentiation. To put the reliability of these tests in perspective, a comparison with the reliability of clinical tests for nerve function was made. Methods Two experienced clinicians examined 31 patients with unilateral arm and/or neck pain. The examination included clinical tests for nerve function (sensory testing, reflexes and manual muscle testing (MMT and mechanosensitivity (ULNTs and palpation of the median, radial and ulnar nerve. Kappa statistics were calculated to evaluate intertester reliability. A meta-analysis determined an overall kappa for the domains with multiple kappa values (MMT, ULNT, palpation. We then compared the difference in reliability between the tests of mechanosensitivity and nerve function using a one-sample t-test. Results We observed moderate to substantial reliability for the tests for afferent/efferent nerve function (sensory testing: kappa = 0.53; MMT: kappa = 0.68; no kappa was calculated for reflexes due to a lack of variation. Tests to investigate mechanosensitivity demonstrated moderate reliability (ULNT: kappa = 0.45; palpation: kappa = 0.59. When compared statistically, there was no difference in reliability for tests for nerve function and mechanosensitivity (p = 0.06. Conclusion This study demonstrates that clinical tests which evaluate increased nerve mechanosensitivity and afferent/efferent nerve function have comparable moderate to

  3. Pulp nerve fibers distribution of human carious teeth: An immunohistochemical study

    OpenAIRE

    Tetiana Haniastuti

    2010-01-01

    Background: Human dental pulp is richly innervated by trigeminal afferent axons that subserve nociceptive function. Accordingly, they respond to stimuli that induce injury to the pulp tissue. An injury to the nerve terminals and other tissue components in the pulp stimulate metabolic activation of the neurons in the trigeminal ganglion which result in morphological changes in the peripheral nerve terminals. Purpose: The aim of the study was to observe caries-related changes in the distributio...

  4. A binocular pupil model for simulation of relative afferent pupil defects and the swinging flashlight test.

    Science.gov (United States)

    Privitera, Claudio M; Stark, Lawrence W

    2006-03-01

    Many important intracranial neural pathways are involved in the control of the two muscles of the human pupil and the observation and analysis of pupil responses to light or other stimuli is of great interest in many clinical procedures. The binocular pupil model presented in this document has a topology encompassing much of the complexity of the pupil system neurophysiology. The dynamic parameters of the model were matched against pupil experiments under multiple conditions. It is employed here to simulate responses to the swinging flashlight test, a procedure which is routinely practiced in ophthalmology to diagnose different degrees of relative afferent pupil defects often a consequence of severe optic nerve diseases or retinal dysfunctions. Other, not light-dependent, pupil stimuli are briefly discussed. PMID:16404612

  5. Spectrum of myelinated pulmonary afferents (II)

    OpenAIRE

    LIU Jun; Yu, Jerry

    2013-01-01

    Recently, it has been recognized that a single airway sensory unit may contain multiple receptive fields and that each field houses at least one encoder. Since some units respond to both lung inflation and deflation, we hypothesized that these units contain heterogeneous encoders for sensing inflation and deflation, respectively. Single unit activities were recorded from the cervical vagus nerve in anesthetized, open chest, and mechanically ventilated rabbits. Fifty-two airway sensory units w...

  6. Changes of norepinephrine and tumor necrosis factor in submandibular gland of rats with sympathetic nerve injury and the protective effect of 17 beta-estradiol

    Institute of Scientific and Technical Information of China (English)

    Yagao Feng; Suya Deng; Zhenqi Liu; Min Hu; Houjun Yan; Qiusheng Wang

    2006-01-01

    and TNF levels in submandibular glands of rats in each group were observed.RESULTS: All the 50 rats were involved in the analysis of results. ① The NE content was obviously lower in the ovariectomy+6-OHDA+saline group than in the sham-operated group [(1 035±196), (1 823±314) ng/g,P < 0.05], there were no significant differences between the ovariectomy+6-OHDA+17β-estradiol 50 μg/kg group and ovariectomy+6-OHDA+saline group [(1 004±253), (1 035±196) ng/g, P > 0.05], but obviously higher in the ovariectomy+6-OHDA+17β-estradiol 200 and 500 μg/kg groups than in the ovariectomy+6-0-ously higher in the ovariectomy+6-OHDA+saline group than in the sham-operated group [(3.498±0.792),(1.893±0.533) ng/g, P < 0.05], there were no significant differences between the ovariectomy+6-OHDA+17β-estradiol 50 μg/kg group and ovariectomy+6-OHDA+saline group [(3.328 ±0.712),(3.498±0.792) ng/g, P > 0.05], but obviously lower in the ovariectomy+6-OHDA+17β-estradiol 200 and 500 μg/kg groups than in the ovariectomy+6-OHDA+saline group [(2.639±0.438), (2.016±0.619),(3.498±0.792) ng/g, P < 0.05].CONCLUSION: Estrogen has obvious protective effect dose-dependently on 6-OHDA induced chemical sympathetic nerve terminal injury in rats, and it may play its protective role by reducing TNF level and ameliorating inflammatory reaction.

  7. Hepatogastrostomy by EUS for malignant afferent loop obstruction after duodenopancreatectomy

    OpenAIRE

    Ratone, Jean-Philippe; Caillol, Fabrice; Bories, Erwan; Pesenti, Christian; Godat, Sebastien; Giovannini, Marc

    2015-01-01

    One of the most difficult biliary drainages is the recurrence and stenosis on afferent loop after surgery. We report an original case of hepaticogastrostomy (HGE) in a patient who had malignant stenosis of afferent loop after cephalic duodenopancreatectomy (CDP). After failure of the gastrointestinal stent, two metal self-expandable stents were placed by endoscopic ultrasound (EUS) after puncture of the dilated left hepatic duct. On clinical improvement and disappearance of jaundice, palliati...

  8. Afferent diversity and the organization of central vestibular pathways

    OpenAIRE

    Jay M Goldberg

    2000-01-01

    This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitiv...

  9. Autocrine protective mechanisms of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells after optic nerve crush.

    Science.gov (United States)

    Huang, Shun-Ping; Fang, Kan-Tang; Chang, Chung-Hsing; Huang, Tzu-Lun; Wen, Yao-Tseng; Tsai, Rong-Kung

    2016-02-01

    This study investigated the role of autocrine mechanisms in the anti-apoptotic effects of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells (RGCs) after optic nerve (ON) crush. We observed that both G-CSF and G-CSF receptor (G-CSFR) are expressed in normal rat retina. Further dual immunofluorescence staining showed G-CSFR immunoreactive cells were colocalized with RGCs, Müller cells, horizontal and amacrine cells. These results confirm that G-CSF is an endogenous ligand in the retina. The semi-quantitative RT-PCR finding demonstrated the transcription levels of G-CSF and G-CSFR were up-regulated after ON crush injury. G-CSF treatment further increased and prolonged the expression level of G-CSFR in the retina. G-CSF has been shown to enhance transdifferentiation of the mobilized hematopoietic stem cells into tissue to repair central nervous system injury. We test the hypothesis that the hematopoietic stem cells recruited by G-CSF treatment can transdifferentiate into RGCs after ON crush by performing sublethal irradiation of the rats 5 days before ON crush. The flow cytometric analysis showed the number of CD34 positive cells in the peripheral blood is significantly lower in the irradiated, crushed and G-CSF-treated group than the sham control group or crush and G-CSF treated group. Nevertheless, the G-CSF treatment enhances the RGC survival after sublethal irradiation and ON crush injury. These data indicate that G-CSF seems unlikely to induce hematopoietic stem cell transdifferentiation into RGCs after ON crush injury. In conclusion, G-CSF may serve an endogenous protective signaling in the retina through direct activation of intrinsic G-CSF receptors and downstream signaling pathways to rescue RGCs after ON crush injury, exogenous G-CSF administration can enhance the anti-apoptotic effects on RGCs. PMID:26518178

  10. Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy.

    Science.gov (United States)

    Woolf, C J; Shortland, P; Reynolds, M; Ridings, J; Doubell, T; Coggeshall, R E

    1995-09-11

    We have investigated the time course and extent to which peripheral nerve lesions cause a morphological reorganization of the central terminals of choleragenoid-horseradish peroxidase (B-HRP)-labelled primary afferent fibers in the mammalian dorsal horn. Choleragenoid-horseradish peroxidase is retrogradely transported by myelinated (A) sensory axons to laminae I, III, IV and V of the normal dorsal horn of the spinal cord, leaving lamina II unlabelled. We previously showed that peripheral axotomy results in the sprouting of numerous B-HRP-labelled large myelinated sensory axons into lamina II. We show here that this spread of B-HRP-labelled axons into lamina II is detectable at 1 week, maximal by 2 weeks and persists for over 6 months postlesion. By 9 months, however, B-HRP fibers no longer appear in lamina II. The sprouting into lamina II occurs whether regeneration is allowed (crush) or prevented (section with ligation), and does not reverse at times when peripheral fibers reinnervate the periphery. We also show that 15 times more synaptic terminals in lamina II are labelled by B-HRP 2 weeks after axotomy than in the normal. We interpret this as indicating that the sprouting fibers are making synaptic contacts with postsynaptic targets. This implies that A-fiber terminal reorganization is a prominent and long-lasting but not permanent feature of peripheral axotomy. We also provide evidence that this sprouting is the consequence of a combination of an atrophic loss of central synaptic terminals and the conditioning of the sensory neurons by peripheral axotomy. The sprouting of large sensory fibers into the spinal territory where postsynaptic targets usually receive only small afferent fiber input may bear on the intractable touch-evoked pain that can follow nerve injury. PMID:7499558

  11. Cutaneous nerve entrapment syndrome

    Institute of Scientific and Technical Information of China (English)

    DongFuhui

    2004-01-01

    The cutaneous nerve entrapment syndrome is named that, the cutaneous nerve's functional disorder caused by some chronic entrapment, moreover appears a series of nerve's feeling obstacle,vegetative nerve function obstacle, nutrition obstacle, even motor function obstacle in various degree.

  12. Nerve biopsy (image)

    Science.gov (United States)

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  13. Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey

    Science.gov (United States)

    Lysakowski, A.; Minor, L. B.; Fernandez, C.; Goldberg, J. M.

    1995-01-01

    1. Semicircular-canal afferents in the squirrel monkey were characterized by their resting discharge, discharge regularity, sensitivity to galvanic currents delivered to the ear (beta *), the gain (g2Hz), and phase lead (phi 2Hz) of their response to 2-Hz sinusoidal head rotations, and their antidromic conduction velocity. Discharge regularity was measured by a normalized coefficient of variation (CV*); the higher the CV*, the more irregular the discharge. g2Hz and phi 2Hz were expressed relative to angular head velocity. 2. These physiological measures were used in an attempt to discern the discharge properties of the three morphological classes of afferents innervating the crista. Presumed bouton (B) fibers were identified as slowly conducting afferents. Presumed calyx (C) fibers were recognized by their irregular discharge and low rotational gains. The remaining fibers were considered to be dimorphic (D) units. Single letters (B, C, and D) are used to emphasize that the classification is based on circumstantial evidence and may be wrong for individual fibers. Of the 125 identified fibers, 13 (10%) were B units, 36 (29%) were C units, and 76 (61%) were D units. 3. B units were regularly discharging D units ranged from regularly to irregularly discharging. C units were the most irregularly discharging afferents encountered. The mean resting discharge for the entire sample was 74 spikes/s. Resting rates were similar for regularly discharging B and D units and higher than those for irregularly discharging C and D units. 4. Except for their lower conduction velocities, the discharge properties of B units are indistinguishable from those of regularly discharging D units. Many of the discharge properties of B and D units vary with discharge regularity. There is a strong, positive relation when beta *, g2Hz, or phi 2Hz is plotted against CV*. For beta * or phi 2Hz, C units conform to the relation for B and D units. In contrast, values of g2Hz for C units are three to

  14. Fiber diameter distributions in the chinchilla's ampullary nerves

    Science.gov (United States)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  15. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    Science.gov (United States)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  16. Transient inflammation-induced ongoing pain is driven by TRPV1 sensitive afferents

    Directory of Open Access Journals (Sweden)

    Mercado Ramon

    2011-01-01

    Full Text Available Abstract Background Tissue injury elicits both hypersensitivity to evoked stimuli and ongoing, stimulus-independent pain. We previously demonstrated that pain relief elicits reward in nerve-injured rats. This approach was used to evaluate the temporal and mechanistic features of inflammation-induced ongoing pain. Results Intraplantar Complete Freund's Adjuvant (CFA produced thermal hyperalgesia and guarding behavior that was reliably observed within 24 hrs and maintained, albeit diminished, 4 days post-administration. Spinal clonidine produced robust conditioned place preference (CPP in CFA treated rats 1 day, but not 4 days following CFA administration. However, spinal clonidine blocked CFA-induced thermal hyperalgesia at both post-CFA days 1 and 4, indicating different time-courses of ongoing and evoked pain. Peripheral nerve block by lidocaine administration into the popliteal fossa 1 day following intraplantar CFA produced a robust preference for the lidocaine paired chamber, indicating that injury-induced ongoing pain is driven by afferent fibers innervating the site of injury. Pretreatment with resiniferatoxin (RTX, an ultrapotent capsaicin analogue known to produce long-lasting desensitization of TRPV1 positive afferents, fully blocked CFA-induced thermal hypersensitivity and abolished the CPP elicited by administration of popliteal fossa lidocaine 24 hrs post-CFA. In addition, RTX pretreatment blocked guarding behavior observed 1 day following intraplantar CFA. In contrast, administration of the selective TRPV1 receptor antagonist, AMG9810, at a dose that reversed CFA-induced thermal hyperalgesia failed to reduce CFA-induced ongoing pain or guarding behavior. Conclusions These data demonstrate that inflammation induces both ongoing pain and evoked hypersensitivity that can be differentiated on the basis of time course. Ongoing pain (a is transient, (b driven by peripheral input resulting from the injury, (c dependent on TRPV1 positive

  17. Afferent innervation of the utricular macula in pigeons

    Science.gov (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  18. Gastric vagal afferent inputs reach the glycemia-sensitive neurons of lateral hypothalamic area in the rat

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The glycemia-sensitive neuron in lateral hypothalamic area (LHA) is one of the important central neural events involved in the feeding control. Electrophysiological studies have demonstrated that gastrointestinal vagal afferent inputs could convey the meal-related information of gastrointestinal tract to the hypothalamus. In this study, we examined whether the gastric vagal afferent inputs could reach the glycemia-sensitive neurons of the LHA by using in vivo extracellular recording technique in the rat. The results showed that stimulation of gastric vagal nerves elicited two types of the LHA neurons responses: the phasic response (93/116, 80.2%) and the change in cell's firing pattern (23/116, 19.8%). Within the 93 cells that responded to the gastric vagal stimulation with a phasic response, 67 (72.0%) showed an inhibition in the cell's firing rate, 26 (27.4%) were excited. Of the 23 cells that showed a change in the firing pattern, 13 responded to the gastric vagal stimulation with a long-lasting increase or decrease in firing rate, the remaining 10 cells turned their discrete spiking to the burst discharging. In addition, of 101 LHA neurons including the two types of responsive neurons, 73 (72.3%) were identified to be glycemia-sensitive neurons. These results demonstrated that the gastric vagal afferent inputs could reach the LHA and predominantly reach those glycemia-sensitive neurons in the LHA. Presumably, the modulation of glycemia-sensitive neurons of LHA by the gastric vagal afferent inputs may play an important role in the short-term regulation of feeding behavior.

  19. Variant position of the medial plantar nerve

    OpenAIRE

    Astik RB; Dave UH; Gajendra KS

    2011-01-01

    Knowledge of variation of position of the medial plantar nerve is important for the forefoot surgeon for plantar reconstruction, local injection therapy and an excision of interdigital neuroma. During routine dissection of 50-year-old female cadaver, we found the medial plantar nerve and vessels variably located between plantar aponeurosis and the muscles of the first layer of the sole of the right foot. Due to this variant position, the medial plantar nerve and vessels lose their protection ...

  20. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    OpenAIRE

    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A; Redl, Heinz; Tracey, Kevin J

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and aft...

  1. [Changes in the intensity of integral afferent inflow from limb receptors and the level of polarization of primary afferent endings in the decerebrate cat during scratching].

    Science.gov (United States)

    Baev, K V; Esipenko, V B

    1988-01-01

    The experiments performed on decerebrated cats have shown that afferent activity during scratching consisted of two components--tonic and periodic phasic ones. The first component was determined by the limb position, the second was closely related to the amplitude and velocity of joint angle changes. Maximum of integral afferent activity in the cycle coincided with the scratching jerk phase. These two components of afferent activity evoked corresponding depolarization changes in primary afferent terminals and these changes added to those elicited by central generator. Statistical correlations between the aforementioned parameters were studied. The afferent control mechanisms of scratching generator are under discussion. PMID:3380211

  2. Thermal nociceptive properties of trigeminal afferent neurons in rats

    Directory of Open Access Journals (Sweden)

    Nemenov Michael I

    2010-07-01

    Full Text Available Abstract Background Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating. Results The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating. Conclusions This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies.

  3. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue.

    Science.gov (United States)

    Kecskes, Szilvia; Matesz, Clara; Gaál, Botond; Birinyi, András

    2016-04-01

    The hypoglossal motor nucleus is one of the efferent components of the neural network underlying the tongue prehension behavior of Ranid frogs. Although the appropriate pattern of the motor activity is determined by motor pattern generators, sensory inputs can modify the ongoing motor execution. Combination of fluorescent tracers were applied to investigate whether there are direct contacts between the afferent fibers of the trigeminal, facial, vestibular, glossopharyngeal-vagal, hypoglossal, second cervical spinal nerves and the hypoglossal motoneurons. Using confocal laser scanning microscope, we detected different number of close contacts from various sensory fibers, which were distributed unequally between the motoneurons innervating the protractor, retractor and inner muscles of the tongue. Based on the highest number of contacts and their closest location to the perikaryon, the glossopharyngeal-vagal nerves can exert the strongest effect on hypoglossal motoneurons and in agreement with earlier physiological results, they influence the protraction of the tongue. The second largest number of close appositions was provided by the hypoglossal and second cervical spinal afferents and they were located mostly on the proximal and middle parts of the dendrites of retractor motoneurons. Due to their small number and distal location, the trigeminal and vestibular terminals seem to have minor effects on direct activation of the hypoglossal motoneurons. We concluded that direct contacts between primary afferent terminals and hypoglossal motoneurons provide one of the possible morphological substrates of very quick feedback and feedforward modulation of the motor program during various stages of prey-catching behavior. PMID:25575900

  4. Presence of neuropeptide FF receptors on primary afferent fibres of the rat spinal cord

    International Nuclear Information System (INIS)

    A radioiodinated analogue of neuropeptide FF, [125I][d.Tyr1,(NMe)Phe3]neuropeptide FF, was used as a selective probe to label neuropeptide FF receptors in the rat spinal cord. Following neonatal capsaicin treatment, dorsal rhizotomy or sciatic nerve section, the distribution and possible alterations of spinal cord specific [125I][d.Tyr1,(NMe)Phe3]neuropeptide FF binding sites were evaluated using in vitro quantitative receptor autoradiography. In normal rats, the highest densities of sites were observed in the superficial layers of the dorsal horn (laminae I-II) whereas moderate to low amounts of labelling were seen in the deeper (III-VI) laminae, around the central canal, and in the ventral horn. Capsaicin-treated rats showed a bilateral decrease (47%) in [125I][d.Tyr1,(NMe)Phe3]neuropeptide FF binding in all spinal areas. Unilateral sciatic nerve section and unilateral dorsal rhizotomy induced significant depletions (15-27%) in [125I][d.Tyr1,(NMe)Phe3]neuropeptide FF labelling in the ipsilateral dorsal horn.These results suggest that a proportion of neuropeptide FF receptors is located on primary afferent terminals of the dorsal horn and could thus play a role in the modulation of nociceptive transmission. (Copyright (c) 1996 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Presence of neuropeptide FF receptors on primary afferent fibres of the rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Zajac, J.-M. [Laboratoire de Pharmacologie et de Toxicologie Fondamentales, C.N.R.S., 205 Route de Narbonne, 31077 Toulouse Cedex (France); Kar, S. [Douglas Hospital Research Centre and Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Verdun, Quebec H4H1R3 (Canada); Gouarderes, C. [Laboratoire de Pharmacologie et de Toxicologie Fondamentales, C.N.R.S., 205 Route de Narbonne, 31077 Toulouse Cedex (France)

    1996-09-01

    A radioiodinated analogue of neuropeptide FF, [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF, was used as a selective probe to label neuropeptide FF receptors in the rat spinal cord. Following neonatal capsaicin treatment, dorsal rhizotomy or sciatic nerve section, the distribution and possible alterations of spinal cord specific [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF binding sites were evaluated using in vitro quantitative receptor autoradiography. In normal rats, the highest densities of sites were observed in the superficial layers of the dorsal horn (laminae I-II) whereas moderate to low amounts of labelling were seen in the deeper (III-VI) laminae, around the central canal, and in the ventral horn. Capsaicin-treated rats showed a bilateral decrease (47%) in [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF binding in all spinal areas. Unilateral sciatic nerve section and unilateral dorsal rhizotomy induced significant depletions (15-27%) in [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF labelling in the ipsilateral dorsal horn.These results suggest that a proportion of neuropeptide FF receptors is located on primary afferent terminals of the dorsal horn and could thus play a role in the modulation of nociceptive transmission. (Copyright (c) 1996 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Neurochemical characterization of the vestibular nerves in women with vulvar vestibulitis syndrome.

    Science.gov (United States)

    Bohm-Starke, N; Hilliges, M; Falconer, C; Rylander, E

    1999-01-01

    Women with vulvar vestibulitis syndrome (VVS) have a distinct burning pain provoked by almost any stimuli in the area around the vaginal introitus. In a previous study we observed an increased number of intraepithelial free nerve endings in women with VVS. The aim of the present study was to neurochemically characterize the superficial nerves in the vulvar vestibular mucosa of women with VVS. Immunohistochemical methods were used to detect neuropeptides normally found in various types of nerve fibers. Calcitonin gene-related peptide, which is known to exist in nociceptive afferent nerves, was the only neuropeptide detected in the superficial nerves of the vestibular mucosa. These findings confirm our previous theory that the free nerve endings within the epithelium are nociceptors. PMID:10592432

  7. Arnold’s nerve cough reflex: evidence for chronic cough as a sensory vagal neuropathy

    Science.gov (United States)

    Gibson, Peter G.; Birring, Surinder S.

    2014-01-01

    Arnold’s nerve ear-cough reflex is recognised to occur uncommonly in patients with chronic cough. In these patients, mechanical stimulation of the external auditory meatus can activate the auricular branch of the vagus nerve (Arnold’s nerve) and evoke reflex cough. This is an example of hypersensitivity of vagal afferent nerves, and there is now an increasing recognition that many cases of refractory or idiopathic cough may be due to a sensory neuropathy of the vagus nerve. We present two cases where the cause of refractory chronic cough was due to sensory neuropathy associated with ear-cough reflex hypersensitivity. In both cases, the cough as well as the Arnold’s nerve reflex hypersensitivity were successfully treated with gabapentin, a treatment that has previously been shown to be effective in the treatment of cough due to sensory laryngeal neuropathy (SLN). PMID:25383210

  8. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    Science.gov (United States)

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway. PMID:25768433

  9. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... results show that K+-induced contraction of smooth muscle cells in the afferent arteriole is highly sensitive to chloride, whereas neurotransmitter release and ensuing contraction is not dependent on chloride. Thus, there are different activation pathways for depolarizing vasoconstrictors and for the......-Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...

  10. Giant renin secretory granules in beige mouse renal afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Rasch, Ruth; Nyengaard, Jens Randel;

    1997-01-01

    The mutant beige mouse (C57BL/6 bg) has a disease characterised by abnormally enlarged cytoplasmic granules in a variety of cells. With the purpose of establishing a suitable cellular model for studying renin secretion, the present study was undertaken to compare renin granule morphology in beige...... (average granular volume 0.681 microm3), whereas 1-2 large granules were present per cell in beige mice. The volume of afferent arteriole that contained secretory granules was lower in the beige mice. We conclude that the beige mouse synthesizes, stores and releases active renin. Renin secretory granules...... in beige mice are grossly enlarged with 1-2 granules per juxtaglomerular cell. Compared with control mice, a similar amount of total renin granule volume per afferent arteriole is contained in a smaller part of beige mouse afferent arteriole. Granular cells from beige mice could therefore be a...

  11. 牛磺酸对脑出血大鼠神经细胞的保护作用研究%The protective effects of taurine on nerve cells of SD rats suffered from cerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    陈世伟; 张黎明; 张蜂

    2011-01-01

    Objective : To study the effects of taurine on nerve cell of SD rats. Methods : SpragueDawley rat were randomly divided in to groups named cerebral hemorrhage group and taurine group, and determined the level of nerve cells apoptosis at different time by using immunohistochemistry technique.Results : There was significant difference between taurine group and cerebral hemorrhage group (P<0. 05).Conclusion: Taurine can protect nerve cells of SD rats againse cerebral hemorrhage by means of certain ways.%目的:探讨牛磺酸对脑出血大鼠的神经细胞的作用.方法:将SD大鼠随机分为脑出血模型组、牛磺酸剂量治疗组,应用免疫组化技术分别在不同时间点测定神经细胞凋亡程度,研究牛磺酸对脑出血后神经细胞的作用,及其影响程度.结果:与模型组相比,牛磺酸治疗组细胞凋亡细胞明显减少(P<0.05).结论:牛磺酸可能通过多种途径来对大鼠脑出血起到一定的保护作用.

  12. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology

    Directory of Open Access Journals (Sweden)

    Tetsade Piermartiri

    2015-11-01

    Full Text Available α-Linolenic acid (ALA is a nutraceutical found in vegetable products such as flax and walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB, brain-derived neurotrophic factor (BDNF, a major neuroprotective protein in brain, and downstream signaling pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review, we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman. Organophosphate (OP nerve agents are highly toxic chemical warfare agents and a threat to military and civilian populations. Once considered only for battlefield use, these agents are now used by terrorists to inflict mass casualties. OP nerve agents inhibit the critical enzyme acetylcholinesterase (AChE that rapidly leads to a cholinergic crisis involving multiple organs. Status epilepticus results from the excessive accumulation of synaptic acetylcholine which in turn leads to the overactivation of muscarinic receptors; prolonged seizures cause the neuropathology and long-term consequences in survivors. Current countermeasures mitigate symptoms and signs as well as reduce brain damage, but must be given within minutes after exposure to OP nerve agents supporting interest in newer and more effective therapies. The pleiotropic properties of ALA result in a coordinated molecular and cellular program to restore neuronal networks and improve cognitive function in soman-exposed animals. Collectively, ALA should be brought to the clinic to treat the long-term consequences of nerve agents in survivors. ALA may be an effective therapy for other acute and chronic neurodegenerative disorders.

  13. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus.

    Science.gov (United States)

    Liu, Zhenyu; Hu, Youtian; Yu, Xiaoyun; Xi, Jiefeng; Fan, Xiaoming; Tse, Chung-Ming; Myers, Allen C; Pasricha, Pankaj J; Li, Xingde; Yu, Shaoyong

    2015-03-15

    Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE. PMID:25591867

  14. Cervical Radiculopathy (Pinched Nerve)

    Science.gov (United States)

    ... the seven small vertebrae that form the neck. Spinal nerve root. AAOS does not endorse any treatments, procedures, ... whether your symptoms are caused by pressure on spinal nerve roots and nerve damage or by another condition ...

  15. Nerve conduction velocity

    Science.gov (United States)

    Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... surface electrodes are placed on the skin over nerves at different spots. Each patch gives off a ...

  16. Optic Nerve Imaging

    Science.gov (United States)

    ... News About Us Donate In This Section Optic Nerve Imaging email Send this article to a friend ... measurements of nerve fiber damage (or loss). The Nerve Fiber Analyzer (GDx) uses laser light to measure ...

  17. Femoral nerve damage (image)

    Science.gov (United States)

    The femoral nerve is located in the leg and supplies the muscles that assist help straighten the leg. It supplies sensation ... leg. One risk of damage to the femoral nerve is pelvic fracture. Symptoms of femoral nerve damage ...

  18. Ulnar nerve damage (image)

    Science.gov (United States)

    The ulnar nerve originates from the brachial plexus and travels down arm. The nerve is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body where ...

  19. TRPV1 Marks Synaptic Segregation of Multiple Convergent Afferents at the Rat Medial Solitary Tract Nucleus

    OpenAIRE

    Peters, James H.; McDougall, Stuart J.; Fawley, Jessica A.; Andresen, Michael C.

    2011-01-01

    TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS). TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST) afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs) under whole cell voltage clamp conditions fro...

  20. Protective immunity of rAd5/NR2B vaccine against concomitant aversiveness of spontaneous neuropathic pain following spinal nerve ligation injury

    OpenAIRE

    Wang, Gong-Ming; Wang, Xiao-Yan; Liu, Guang-Jie; Cheng, Kun; Wang, Hua; Guo, Shou-Gang

    2015-01-01

    Objective: Peripheral nerve injury elicits an aversive state of spontaneous neuropathic pain, and up to now, the modulation of this concomitant aversive state remains a major therapeutic challenge. NMDA receptor subunits NR2B in the rACC are critically involved in the processing of this aversive state and then a strategy targeted at the NR2B subunit might be promising for modulation of the aversive state. Thus, in the present study, using negative reinforcement animal model to reveal spontane...

  1. Cellular mechanisms for presynaptic inhibition of sensory afferents

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; delgado-lezama, rodolfo; Christensen, Rasmus Kordt;

    It is well established that presynaptic inhibition of primary afferents involves the activation of GABAA receptors located on presynaptic terminals. However, the source of GABA remains unknown. In an integrated preparation of the spinal cord of the adult turtle, we evoked dorsal root potentials (...

  2. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis

    DEFF Research Database (Denmark)

    Roos, Ewa M.; Herzog, Walter; Block, Joel A;

    2011-01-01

    Lower-extremity muscle strength and afferent sensory dysfunction, such as reduced proprioceptive acuity, are potentially modifiable putative risk factors for knee osteoarthritis (OA). Findings from current studies suggest that muscle weakness is a predictor of knee OA onset, while there is confli...... previous knee injuries) are easily identified, and may benefit from exercise interventions to prevent or delay OA onset....

  3. Polycystic Ovary Syndrome: Aggressive or Protective Factor for the Retina? Evaluation of Macular Thickness and Retinal Nerve Fiber Layers Using High-Definition Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    José Edvan de Souza-Júnior

    2015-01-01

    Full Text Available Objective. To compare macular thickness (MT and retinal nerve fiber layers (RNFL between women with polycystic ovary syndrome (PCOS and healthy women. Materials and Methods. The study included 45 women with PCOS and 47 ovulatory women undergoing clinical-gynecological and ophthalmic evaluations, including measurement of MT, RNFL, and optic disc parameters using optical coherence tomography. Results. The superior RNFL around the optic nerve was significantly thicker in PCOS than in healthy volunteers (P=0.036. After stratification according to insulin resistance, the temporal inner macula (TIM, the inferior inner macula (IIM, the nasal inner macula (NIM, and the nasal outer macula (NOM were significantly thicker in PCOS group than in control group (P<0.05. Both the presence of obesity associated with insulin resistance (P=0.037 and glucose intolerance (P=0.001 were associated with significant increase in the PC1 mean score, relative to MT. A significant increase in the PC2 mean score occurred when considering the presence of metabolic syndrome (P<0.0001. There was a significant interaction between obesity and inflammation in a decreasing mean PC2 score relative to macular RNFL thickness (P=0.034. Conclusion. Decreased macular RNFL thickness and increased total MT are associated with metabolic abnormalities, while increased RNFL thickness around the optic nerve is associated with hormonal changes inherent in PCOS.

  4. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report

    Directory of Open Access Journals (Sweden)

    De Cicco Vincenzo

    2012-09-01

    Full Text Available Abstract Introduction A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. Case presentation A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. Conclusions A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be

  5. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways.

    Science.gov (United States)

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi; Jin, Xunjie

    2015-11-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg. PMID:25582052

  6. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats

    Science.gov (United States)

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  7. Presynaptic inhibition of soleus Ia afferents does not vary with center of pressure displacements during upright standing.

    Science.gov (United States)

    Johannsson, J; Duchateau, J; Baudry, S

    2015-07-01

    The present work was designed to investigate the presynaptic modulation of soleus Ia afferents with the position and the direction of the displacement of the center of pressure (CoP) during unperturbed upright standing and exaggerated CoP displacements in young adults. Hoffmann (H) reflex was evoked in the soleus by stimulating the tibial nerve at the knee level. Modulation of Ia presynaptic inhibition was assessed by conditioning the H reflex with fibular nerve (D1 inhibition) and femoral nerve (heteronymous facilitation) stimulation. Leg muscle activity was assessed by electromyography (EMG). The results indicate that in unperturbed standing and exaggerated CoP displacements, the H-reflex amplitude was greater during forward than backward CoP direction (pposterior position in both experimental conditions (p0.34). The tibialis anterior EMG did not change during unperturbed standing, but was greater for backward than forward CoP direction during exaggerated CoP displacements. In this experimental condition, soleus EMG was negatively associated with tibialis anterior EMG (r(2)=0.81). These results indicate that Ia presynaptic inhibition is not modulated with CoP direction and position, but rather suggest that CoP displacements induced changes in excitability of the soleus motor neuron pool. PMID:25869621

  8. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    Energy Technology Data Exchange (ETDEWEB)

    AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman, Av. Roca 2200, PC 4000 (Argentina); Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina)

    2007-11-15

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  9. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Ladouceur, Michel; Andersen, Jacob B.;

    2001-01-01

    1. The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. 2. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h(-1) with the left ankle...... attached to a portable stretching device. The soleus stretch reflex was elicited by applying small amplitude (approximately 8 deg) dorsiflexion perturbations 200 ms after heel contact. 3. Short and medium latency responses were observed with latencies of 55 +/- 5 and 78 +/- 6 ms, respectively. The short...... latency response was velocity sensitive (P < 0.001), while the medium latency response was not (P = 0.725). 4. Nerve cooling increased the delay of the medium latency component to a greater extent than that of the short latency component (P < 0.005). 5. Ischaemia strongly decreased the short latency...

  10. Bilateral sensory deprivation of trigeminal afferent fibers on corticomotor control of human tongue musculature: A preliminary study

    DEFF Research Database (Denmark)

    Kothari, Mohit; Baad-Hansen, Lene; Svensson, Peter

    2016-01-01

    Background: Transcranial magnetic stimulation (TMS) has demonstrated changes in motor evoked potentials (MEPs) in human limb muscles following modulation of sensory afferent inputs. Objective: The aim of the present study was to determine whether bilateral local anaesthesia (LA) of the lingual...... the tongue dorsum in four different conditions: (1) immediately prior to anaesthesia (baseline), (2) during bilateral LA block of the lingual nerve, (3) after anaesthesia had subjectively subsided (recovery) and (4) 3 hrs after bilateral lingual block injection. MEPs were assessed using stimulus......–response curves in steps of 10% of motor threshold (T). Eight stimuli were given at each stimulus level. Results: The amplitudes of the tongue MEPs were significantly influenced by the stimulus intensity (P<0.001) but not by condition (P=0.186). However, post hoc tests showed that MEPS were statistically...

  11. NEURAL PATHWAYS OF TRIGEMINAL PROPRIOCEPTIVE AFFERENTS COORDINATE ORAL MOTOR BEHAVIORS

    Institute of Scientific and Technical Information of China (English)

    Luo Pifu; Zhang Jingdong; Li Jishuo

    2003-01-01

    Neural pathways and synaptic connections from the trigeminal mesencephalic nucleus (Vme) neurons to the cranial motor nuclei were studied in the rat using double labelling methodologies of intracellular Neurobiotin staining combined with retrograde horseradish peroxidase (HRP) transport, anterograde biotinylated dextran amine (BDA) tracing combined with retrograde HRP transport, and a dual fluorescent labelling of BDA anterograde combined tracing with Cholera Toxin B (CTB) retrograde transport. Direct projections and synapses were demonstrated from Vme neuronal boutons to motoneurons (MNs) of the trigeminal motor nucleus (Vmo), the hypoglossal nucleus (Ⅻ) and the ambiguus nucleus (Amb). Indirect projections and pathways from Vme neurons to the cranial motor nuclei including Vmo, Ⅻ, the facial nucleus (Ⅶ) and the cervical spinal cord (C1~5) were seen to relay on their premotor neurons. The premotor neurons of above cranial motor nuclei were overlapped in bilateral premotor neuronal pool including the parvocellular reticular formation (PCRt) and its alpha division (PCRtA), the dorsomedial part of the spinal trigeminal nucleus oralis (Vodm), and interpolaris (Vidm), the medullary reticular nucleus dorsal division (MdD), the supratrigeminal region (Vsup) and the dorsomedial part of the principal trigeminal sensory nucleus (Vpdm).Synapses between Vme neuronal boutons and Vmo and Ⅻ MNs and Ⅻ premotor neurons were predominantly asymmetric.There were four types of synaptic organizations, i.e. synaptic convergence; synaptic divergence presynaptic inhibition and afferent feedforward inhibition seen between Vme boutons and Vmno, Ⅻ MNs and between Vme boutons and Ⅻ premotor neurons.The results of present studies have demonstrated direct pathways from the trigeminal proprioceptive afferents to Vmo, Ⅻ and Amb MNs, and indirect pathways from the trigeminal proprioceptive afferents to bilateral Vmno, Ⅻ, Ⅶ and C1~s via their premotor neurons. It provides

  12. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura

    Directory of Open Access Journals (Sweden)

    Oksana Tuchina

    2015-07-01

    Full Text Available The Coenobitidae (Decapoda, Anomura, Paguroidea is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans.

  13. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice

    OpenAIRE

    Kentish, Stephen J.; Frisby, Claudine L.; Kritas, Stamatiki; Hui LI; Hatzinikolas, George; O’Donnell, Tracey A.; Wittert, Gary A; Page, Amanda J

    2015-01-01

    Aim Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1) are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of...

  14. Peripheral nerve injuries in the athlete.

    Science.gov (United States)

    Feinberg, J H; Nadler, S F; Krivickas, L S

    1997-12-01

    Peripheral nerves are susceptible to injury in the athlete because of the excessive physiological demands that are made on both the neurological structures and the soft tissues that protect them. The common mechanisms of injury are compression, traction, ischaemia and laceration. Seddon's original classification system for nerve injuries based on neurophysiological changes is the most widely used. Grade 1 nerve injury is a neuropraxic condition, grade 2 is axonal degeneration and grade 3 is nerve transection. Peripheral nerve injuries are more common in the upper extremities than the lower extremities, tend to be sport specific, and often have a biomechanical component. While the more acute and catastrophic neurological injuries are usually obvious, many remain subclinical and are not recognised before neurological damage is permanent. Early detection allows initiation of a proper rehabilitation programme and modification of biomechanics before the nerve injury becomes irreversible. Recognition of nerve injuries requires an understanding of peripheral neuroanatomy, knowledge of common sites of nerve injury and an awareness of the types of peripheral nerve injuries that are common and unique to each sport. The electrodiagnostic exam, usually referred to as the 'EMG', consists of nerve conduction studies and the needle electrode examination. It is used to determine the site and degree of neurological injury and to predict outcome. It should be performed by a neurologist or physiatrist (physician specialising in physical medicine and rehabilitation), trained and skilled in this procedure. Timing is essential if the study is to provide maximal information. Findings such as decreased recruitment after injury and conduction block at the site of injury may be apparent immediately after injury but other findings such as abnormal spontaneous activity may take several weeks to develop. The electrodiagnostic test assists with both diagnosis of the injury and in predicting

  15. Reactive oxygen species in paraventricular nucleus involved in cardiac sympathetic afferent reflex in rats

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Yang Yu; Ying Zhang; Yingchun Li; Luqing Zhang; Lingling Fan; Yingya Gao; Guoqing Zhu

    2005-01-01

    Objective: The present study was designed to determine if reactive oxygen species (ROS) in the paraventricularnucleus (PVN) were involved in modulating cardiac sympathetic afferent reflex (CSAR) in anesthetized rats. Methods: Malondialdehyde(MDA), the end product of lipid peroxidation, in the PVN, was determined by thiobarbituric acid (TBA) spectrometric method. Renalsympathetic nerve activity (RSNA) and arterial pressure were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSARwas evaluated by the response of the RSNA evoked by epicardial application of bradykinin (BK, 0.4 μg). Results: The MDA in the PVNwas significantly increased after epicardial application of BK compared with control (2.0 + 0.3 vs 0.8 + 0.1 nmol/mg protein, P < 0.01 ).Microinjectionof a superoxide anion scavenger, tiron (20 nmol) into the PVN significantly inhibited the CSAR evoked by BK (12.3 ± 1.9vs 4.2+ 1.2%, P < 0.01) and decreased MDA level (1.9±0.3 vs 0.6+0.1 nmol/mg protein, P <0.01) compared with control.Conclusion: The ROS in the PVN is involved in modulating the CSAR in rats.

  16. Minocycline protects retinal ganglion cells after optic nerve crush injury in mice by delaying autophagy and upregulating nuclear factor-κB2

    Institute of Scientific and Technical Information of China (English)

    Jiao Xiaoling; Peng Yuan; Yang Liu

    2014-01-01

    Background Currently,no medicine is available that can prevent or treat neural damage associated with optic nerve injury.Minocycline is recently reported to have a neuroprotective function.The aims of this study were to exarmine the neuroprotective effect of minocycline on retinal ganglion cells (RGCs) and determine its underlying mechanisms,using a mouse model of optic nerve crush (ONC).Methods ONC was performed in the left eye of adult male mice,and the mice were randomly divided into minocycline-treated group and saline-treated control group.The mice without receiving ONC injury were used as positive controls.RGC densities were assessed in retinal whole mounts with immunofluorescence labeling of βⅢ-tubulin.Transmission electron microscopy was used to detect RGC morphologies,and Western blotting and real-time PCR were applied to investigate the expression of autophagy markers LC3-Ⅰ,LC3-Ⅱ,and transcriptional factors nuclear factor-κB1 (NF-κB1),NF-κB2.Results In the early stage after ONC (at Days 4 and 7),the density of RGCs in the minocycline-treated group was higher than that of the saline-treated group.Electron micrographs showed that minocycline prevented nuclei and mitochondria injuries at Day 4.Western blotting analysis demonstrated that the conversion of LC3-Ⅰ to LC3-Ⅱ was reduced in the minocycline-treated group at Days 4 and 7,which meant autophagy process was inhibited by minocycline.In addition,the gene expression of NF-κB2 was upregulated by minocycline at Day 4.Conclusion The neuroprotective effect of minocycline is generated in the early stage after ONC in mice,partly through delaying autophagy process and regulating NF-κB2 pathway.

  17. H-REFLEX UP-CONDITIONING ENCOURAGES RECOVERY OF EMG ACTIVITY AND H-REFLEXES AFTER SCIATIC NERVE TRANSECTION AND REPAIR IN RATS

    OpenAIRE

    Chen, Yi; Wang, Yu; Chen, Lu; Sun, Chenyuo; English, Arthur W.; Wolpaw, Jonathan R.; Chen, Xiang Yang

    2010-01-01

    Operant conditioning of the spinal stretch reflex or its electrical analog, the H-reflex, produces spinal cord plasticity and can thereby affect motoneuron responses to primary afferent input. To explore whether this conditioning can affect the functional outcome after peripheral nerve injury, we assessed the effect of up-conditioning soleus (SOL) H-reflex on SOL and tibialis anterior (TA) function after sciatic nerve transection and repair. Sprague-Dawley rats were implanted with EMG electro...

  18. Value of blink reflex in assessing V and VII nerve function in patients with C. P. Angle tumours— a prospective study of 75 patients

    OpenAIRE

    Mahapatra, A. K.; A. K. Singh

    1997-01-01

    This propsective study analyses the role of blink reflex (BR) in 75 patients with Cerebellopontine Angle (CPA) tumours. The aim was to find out the subclinical involvement from the blink reflex findings. Fifth nerve was clinically involved in 82.7% patients while, BR was able to detect afferent abnormality only in 54% patients. The seventh nerve was clinically involved in 74.7% and blink reflex could detect the efferent abnormality is 72% patients. Thus, clinicoelectrophysiological correlatio...

  19. Variant position of the medial plantar nerve

    Directory of Open Access Journals (Sweden)

    Astik RB

    2011-01-01

    Full Text Available Knowledge of variation of position of the medial plantar nerve is important for the forefoot surgeon for plantar reconstruction, local injection therapy and an excision of interdigital neuroma. During routine dissection of 50-year-old female cadaver, we found the medial plantar nerve and vessels variably located between plantar aponeurosis and the muscles of the first layer of the sole of the right foot. Due to this variant position, the medial plantar nerve and vessels lose their protection from the muscles of the first layer of the sole of the foot and became vulnerable for compression.

  20. Deletion of the murine ATP/UTP receptor P2Y2 alters mechanical and thermal response properties in polymodal cutaneous afferents.

    Science.gov (United States)

    Molliver, Derek C; Rau, Kristofer K; Jankowski, Michael P; Soneji, Deepak J; Baumbauer, Kyle M; Koerber, H Richard

    2016-09-22

    P2Y2 is a member of the P2Y family of G protein-coupled nucleotide receptors that is widely co-expressed with TRPV1 in peripheral sensory neurons of the dorsal root ganglia. To characterize P2Y2 function in cutaneous afferents, intracellular recordings from mouse sensory neurons were made using an ex vivo preparation in which hindlimb skin, saphenous nerve, dorsal root ganglia and spinal cord are dissected intact. The peripheral response properties of individual cutaneous C-fibers were analyzed using digitally controlled mechanical and thermal stimuli in male P2Y2(+/+) and P2Y2(-/-) mice. Selected sensory neurons were labeled with Neurobiotin and further characterized by immunohistochemistry. In wildtype preparations, C-fibers responding to both mechanical and thermal stimuli (CMH or CMHC) preferentially bound the lectin marker IB4 and were always immunonegative for TRPV1. Conversely, cells that fired robustly to noxious heat, but were insensitive to mechanical stimuli, were TRPV1-positive and IB4-negative. P2Y2 gene deletion resulted in reduced firing by TRPV1-negative CMH fibers to a range of heat stimuli. However, we also identified an atypical population of IB4-negative, TRPV1-positive CMH fibers. Compared to wildtype CMH fibers, these TRPV1-positive neurons exhibited lower firing rates in response to mechanical stimulation, but had increased firing to noxious heat (43-51°C). Collectively, these results demonstrate that P2Y2 contributes to response properties of cutaneous afferents, as P2Y2 deletion reduces responsiveness of conventional unmyelinated polymodal afferents to heat and appears to result in the acquisition of mechanical responsiveness in a subset of TRPV1-expressing afferents. PMID:27393251

  1. Diabetes and nerve damage

    Science.gov (United States)

    Nerve damage that occurs in people with diabetes is called diabetic neuropathy. This condition is a complicaiton ... In people with diabetes, the body's nerves can be damaged by ... sugar level . This condition is more likely when the blood sugar ...

  2. Degenerative Nerve Diseases

    Science.gov (United States)

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many ... viruses. Sometimes the cause is not known. Degenerative nerve diseases include Alzheimer's disease Amyotrophic lateral sclerosis Friedreich's ...

  3. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  4. Laparoscopic pelvic anatomy of nerve-sparing radical hysterectomy.

    Science.gov (United States)

    Park, Nae Yoon; Cho, Young Lae; Park, Il Soo; Lee, Yoon Soon

    2010-03-01

    Many reports regarding nerve-sparing radical hysterectomy have been published. However, most reports have been based on systematic descriptions via laparotomy or cadaver dissection. The aim of this work was to describe the pelvic anatomy of nerve-sparing radical hysterectomy via laparoscopy, with specific focus on the inferior hypogastric plexus. This study is based on 125 patients with FIGO stage IB cervical cancer who had undergone laparoscopic nerve-sparing radical hysterectomies since 1999. The inferior hypogastric plexus was demonstrated via laparoscopy and was comprised of afferent fibers from the sacral root (S2, S3, and S4), sacral sympathetic ganglion, and hypogastric nerve, and efferent fibers forming its vesical, uterovaginal, and rectal branches. During the dissection of the posterior leaf of the vesicouterine ligament, various vesical veins were identified. If the cut edge of an inferior vesical vein was pulled medially with upward traction, the vesical branches of the inferior hypogastric plexus were exposed and these were divided into medial and lateral branches. The magnified view of laparoscopy made it possible to dissect nerves and vessels meticulously and to secure a clear resection margin during the dissection of the deep part of the cardinal ligament, uterosacral ligament, and posterior leaf of the vesicouterine ligament. PMID:20108355

  5. Optic Nerve Injury in a Patient with Chronic Allergic Conjunctivitis

    Directory of Open Access Journals (Sweden)

    Ribhi Hazin

    2014-01-01

    Full Text Available Manipulation of the optic nerve can lead to irreversible vision changes. We present a patient with a past medical history of skin allergy and allergic conjunctivitis (AC who presented with insidious unexplained unilateral vision loss. Physical exam revealed significant blepharospasm, mild lid edema, bulbar conjunctival hyperemia, afferent pupillary defect, and slight papillary hypertrophy. Slit lamp examination demonstrated superior and inferior conjunctival scarring as well as superior corneal scarring but no signs of external trauma or neurological damage were noted. Conjunctival cultures and cytologic evaluation demonstrated significant eosinophilic infiltration. Subsequent ophthalmoscopic examination revealed optic nerve atrophy. Upon further questioning, the patient admitted to vigorous itching of the affected eye for many months. Given the presenting symptoms, history, and negative ophthalmological workup, it was determined that the optic nerve atrophy was likely secondary to digital pressure from vigorous itching. Although AC can be a significant source of decreased vision via corneal ulceration, no reported cases have ever described AC-induced vision loss of this degree from vigorous itching and chronic pressure leading to optic nerve damage. Despite being self-limiting in nature, allergic conjunctivitis should be properly managed as extreme cases can result in mechanical compression of the optic nerve and compromise vision.

  6. Degeneration of primary afferent terminals following brachial plexus extensive avulsion injury in rats

    OpenAIRE

    Muñetón-Gómez, Vilma; Taylor, Julian S.; Averill, Sharon; Priestley, John V; Nieto-Sampedro, Manuel

    2004-01-01

    Important breakthroughs in the understanding regeneration failure in an injured CNS have been made by studies of primary afferent neurons. Dorsal rhizotomy has provided an experimental model of brachial plexus (BP) avulsion. This is an injury in which the central branches of primary afferents are disrupted at their point of entry into the spinal cord, bringing motor and sensory dysfunction to the upper limbs. In the present work, the central axonal organization of primary afferents was examin...

  7. The Furcal Nerve Revisited

    OpenAIRE

    Harshavardhana, Nanjundappa S.; Harshad V. Dabke

    2014-01-01

    Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked) is an independent nerve with its own ventral and dorsal branches (rootlets) and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to t...

  8. Electrical Stimulation at the ST36 Acupoint Protects against Sepsis Lethality and Reduces Serum TNF Levels through Vagus Nerve- and Catecholamine-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Albino Villegas-Bastida

    2014-01-01

    Full Text Available Electrical vagus nerve (VN stimulation during sepsis attenuates tumor necrosis factor (TNF production through the cholinergic anti-inflammatory pathway, which depends on the integrity of the VN and catecholamine production. To characterize the effect of electroacupuncture at ST36 (EA-ST36 on serum TNF, IL-6, nitrite, and HMGB1 levels and survival rates, based on VN integrity and catecholamine production, a sepsis model was induced in rats using cecal ligation and puncture (CLP. The septic rats were subsequently treated with EA-ST36 (CLP+ST36, and serum samples were collected and analyzed for cytokines levels. The serum TNF, IL-6, nitrite, and HMGB1 levels in the CLP+ST36 group were significantly lower compared with the group without treatment, the survival rates were significantly higher (P<0.05, and the acute organ injury induced by CLP was mitigated by EA-ST36; however, when subdiaphragmatic vagotomy was performed, the serum levels of TNF in the CLP+ST36 group did not show a significant difference compared with the group without electrostimulation, and, similarly, no significant difference in serum TNF levels was found under the pharmacological blockade of catecholamines. These results suggest that in rats with CLP sepsis models EA-ST36 reduces serum TNF levels through VN- and atecholamine-dependent mechanisms.

  9. The role of regional nerve block anesthesia for carotid endarterectomy: an experimental comparison with previous series with the use of general anesthesia and barbiturates for cerebral protection.

    Science.gov (United States)

    Agrifoglio, G; Agus, G B; Bonalumi, F; Costantini, A; Carlesi, R

    1987-01-01

    A retrospective analysis was performed on a consecutive series of 60 cases divided into two groups given carotid endarterectomy (C.E.) for atherosclerotic disease. In the first group general anesthesia and barbiturate cerebral protection were employed; in group two, loco-regional anesthesia. Indications and risk factors were similar in the two groups; the surgical procedure was identical. The differences in the results are reported and factors contributing to cerebral protection or reduction in the risk of stroke are analyzed. The analysis indicates that loco-regional anesthesia for C.E. is a reliable method for detecting cerebral ischemia and guaranteeing cerebral protection by means of a temporary shunt when strictly necessary. PMID:3450753

  10. Basic study on the influence of inhibition induced by the magnetic stimulation on the peripheral nerve

    Science.gov (United States)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Iramina, Keiji

    2015-05-01

    The purpose of this study is to analyze the inhibition mechanism of magnetic stimulation on motor function. A magnetic stimulator with a flat figure-eight coil was used to stimulate the peripheral nerve of the antebrachium. The intensity of magnetic stimulation was 0.8 T, and the stimulation frequency was 1 Hz. The amplitudes of the motor-evoked potentials (MEPs) at the abductor pollicis brevis muscle and first dorsal interosseous muscle were used to evaluate the effects of magnetic stimulation. The effects of magnetic stimulation were evaluated by analyzing the MEP amplitude before and after magnetic stimulation to the primary motor cortex. The results showed that MEP amplitude after magnetic stimulation compared with before magnetic stimulation decreased. Because there were individual differences in MEP amplitude induced by magnetic stimulation, the MEP amplitude after stimulation was normalized by the amplitude of each participant before stimulation. The MEP amplitude after stimulation decreased by approximately 58% (p peripheral nerve. We suggest that the decrease in MEP amplitude found in this study was obtained via the feedback from a peripheral nerve through an afferent nerve to the brain. This study suggests that peripheral excitement by magnetic stimulation of the peripheral nerve may control the central nervous system via afferent feedback.

  11. The Physics of Nerves

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The accepted model for nerve pulse propagation in biological membranes seems insufficient. It is restricted to dissipative electrical phenomena and considers nerve pulses exclusively as a microscopic phenomenon. A simple thermodynamic model that is based on the macroscopic properties of membranes allows explaining more features of nerve pulse propagation including the phenomenon of anesthesia that has so far remained unexplained.

  12. Intraparotid facial nerve schwannoma.

    OpenAIRE

    Shah H; Kantharia C; Shenoy A

    1997-01-01

    Intraparotid facial nerve schwannoma are uncommon. Preoperative diagnosis of parotid tumour as schwannoma is difficult when facial nerve function is normal. A rare case of solitary schwannoma involving the upper branch of the facial nerve is described and the literature on the subject is reviewed.

  13. Laryngeal nerve damage

    Science.gov (United States)

    Laryngeal nerve damage is injury to one or both of the nerves that are attached to the voice box. ... Injury to the laryngeal nerves is uncommon. When it does occur, it can be from: A complication of neck or chest surgery (especially thyroid, lung, ...

  14. Optic Nerve Pit

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  15. Hippocampal plasticity after a vagus nerve injury in the rat

    Institute of Scientific and Technical Information of China (English)

    Giulia Ronchi; Vitaly Ryu; ong ling; Krzysztof Czaja

    2012-01-01

    Stimulation of the vagus nerve has been previously reported to promote neural plasticity and neurogenesis in the brain. Several studies also revealed plastic changes in the spinal cord after injuries to somatosensory nerves originating from both the brachial and lumbo-sacral plexuses. However, the neurogenic responses of the brain to the injury of the viscerosensory innervation are not as yet well understood. In the present study, we investigated whether cells in the dentate gyrus of the hippocampus respond to a chemical and physical damage to the vagus nerve in the adult rat. Intraperitoneal capsaicin administration was used to damage non-myelinated vagal afferents while subdiaphragmatic vagotomy was used to damage both the myelinated and non-myelinated vagal afferents. The 5-bromo-2-deoxyuridine (BrdU) incorporation together with cell-specific markers was used to study neural proliferation in subgranular zone, granule cell layer, molecular layer and hilus of the dentate gyrus. Microglia activation was determined by quantifying changes in the intensity of fluorescent staining with a primary antibody against ionizing calcium adapter-binding molecule 1. Results revealed that vagotomy decreased BrdU incorporation in the hilus 15 days after injury compared to the capsaicin group. Capsaicin administration decreased BrdU incorporation in the granular cell layer 60 days after the treatment. Capsaicin decreased the number of doublecortin-expressing cells in the dentate gyrus, whereas vagotomy did not alter the expression of doublecortin in the hippocampus. Both the capsaicin- and the vagotomy-induced damage to the vagus nerve decreased microglia activation in the hippocampus at 15 days after the injury. At 30 days post injury, capsaicin-treated and vagotomized rats revealed significantly more activated microglia. Our findings show that damage to the subdiaphragmatic vagus in adult rats is followed by microglia activation and long-lasting changes in the dentate gyrus

  16. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch;

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect the...... optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen at...... similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  17. [Ganglia of peripheral nerves].

    Science.gov (United States)

    Tatagiba, M; Penkert, G; Samii, M

    1993-01-01

    The authors present two different types of ganglion affecting the peripheral nerves: extraneural and intraneural ganglion. Compression of peripheral nerves by articular ganglions is well known. The surgical management involves the complete removal of the lesion with preservation of most nerve fascicles. Intraneural ganglion is an uncommon lesion which affects the nerve diffusely. The nerve fascicles are usually intimately involved between the cysts, making complete removal of all cysts impossible. There is no agreement about the best surgical management to be applied in these cases. Two possibilities are available: opening of the epineural sheath lengthwise and pressing out the lesion; or resection of the affected part of the nerve and performing a nerve reconstruction. While in case of extraneural ganglion the postoperative clinical evolution is very favourable, only long follow up studies will reveal in case of intraneural ganglion the best surgical approach. PMID:8128785

  18. Extraforaminal ligament attachments of the thoracic spinal nerves in humans

    OpenAIRE

    Kraan, G.A.; Hoogland, P. V. J. M.; Wuisman, P. I. J. M.

    2009-01-01

    An anatomical study of the extraforaminal attachments of the thoracic spinal nerves was performed using human spinal columns. The objectives of the study are to identify and describe the existence of ligamentous structures at each thoracic level that attach spinal nerves to structures at the extraforaminal region. During the last 120 years, several mechanisms have been described to protect the spinal nerve against traction. All the described structures were located inside the spinal canal pro...

  19. The puerperium alters spinal cord plasticity following peripheral nerve injury

    OpenAIRE

    Gutierrez, Silvia; Hayashida, Ken-ichiro; Eisenach, James C.

    2012-01-01

    Tissue and nerve damage can result in chronic pain. Yet, chronic pain after cesarean delivery is remarkably rare in women and hypersensitivity from peripheral nerve injury in rats resolves rapidly if the injury occurs in the puerperium. Little is known regarding the mechanisms of this protection except for a reliance on central nervous system oxytocin signaling. Here we show that density of inhibitory noradrenergic fibers in the spinal cord is greater when nerve injury is performed in rats du...

  20. Assessment of nerve morphology in nerve activation during electrical stimulation

    Science.gov (United States)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  1. Interactions between visceral afferent signaling and stimulus processing

    Directory of Open Access Journals (Sweden)

    Hugo D Critchley

    2015-08-01

    Full Text Available Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed.

  2. Plasmacytoid dendritic cells migrate in afferent skin lymph.

    Science.gov (United States)

    Pascale, Florentina; Pascale, Florentia; Contreras, Vanessa; Bonneau, Michel; Courbet, Alexandre; Chilmonczyk, Stefan; Bevilacqua, Claudia; Epardaud, Mathieu; Eparaud, Mathieu; Niborski, Violeta; Riffault, Sabine; Balazuc, Anne-Marie; Foulon, Eliane; Guzylack-Piriou, Laurence; Riteau, Beatrice; Hope, Jayne; Bertho, Nicolas; Charley, Bernard; Schwartz-Cornil, Isabelle

    2008-05-01

    Conventional dendritic cells enter lymph nodes by migrating from peripheral tissues via the lymphatic route, whereas plasmacytoid dendritic cells (pDC), also called IFN-producing cells (IPC), are described to gain nodes from blood via the high endothelial venules. We demonstrate here that IPC/pDC migrate in the afferent lymph of two large mammals. In sheep, injection of type A CpG oligodinucleotide (ODN) induced lymph cells to produce type I IFN. Furthermore, low-density lymph cells collected at steady state produced type I IFN after stimulation with type A CpG ODN and enveloped viruses. Sheep lymph IPC were found within a minor B(neg)CD11c(neg) subset expressing CD45RB. They presented a plasmacytoid morphology, expressed high levels of TLR-7, TLR-9, and IFN regulatory factor 7 mRNA, induced IFN-gamma production in allogeneic CD4(pos) T cells, and differentiated into dendritic cell-like cells under viral stimulation, thus fulfilling criteria of bona fide pDC. In mini-pig, a CD4(pos)SIRP(pos) subset in afferent lymph cells, corresponding to pDC homologs, produced type I IFN after type A CpG-ODN triggering. Thus, pDC can link innate and acquired immunity by migrating from tissue to draining node via lymph, similarly to conventional dendritic cells. PMID:18424716

  3. Activation of the galanin receptor 2 in the periphery reverses nerve injury-induced allodynia

    Directory of Open Access Journals (Sweden)

    Wynick David

    2011-04-01

    Full Text Available Abstract Background Galanin is expressed at low levels in the intact sensory neurons of the dorsal root ganglia with a dramatic increase after peripheral nerve injury. The neuropeptide is also expressed in primary afferent terminals in the dorsal horn, spinal inter-neurons and in a number of brain regions known to modulate nociception. Intrathecal administration of galanin modulates sensory responses in a dose-dependent manner with inhibition at high doses. To date it is unclear which of the galanin receptors mediates the anti-nociceptive effects of the neuropeptide and whether their actions are peripherally and/or centrally mediated. In the present study we investigated the effects of direct administration into the receptive field of galanin and the galanin receptor-2/3-agonist Gal2-11 on nociceptive primary afferent mechanical responses in intact rats and mice and in the partial saphenous nerve injury (PSNI model of neuropathic pain. Results Exogenous galanin altered the responses of mechano-nociceptive C-fibre afferents in a dose-dependent manner in both naive and nerve injured animals, with low concentrations facilitating and high concentrations markedly inhibiting mechano-nociceptor activity. Further, use of the galanin fragment Gal2-11 confirmed that the effects of galanin were mediated by activation of galanin receptor-2 (GalR2. The inhibitory effects of peripheral GalR2 activation were further supported by our demonstration that after PSNI, mechano-sensitive nociceptors in galanin over-expressing transgenic mice had significantly higher thresholds than in wild type animals, associated with a marked reduction in spontaneous neuronal firing and C-fibre barrage into the spinal cord. Conclusions These findings are consistent with the hypothesis that the high level of endogenous galanin in injured primary afferents activates peripheral GalR2, which leads to an increase in C-fibre mechanical activation thresholds and a marked reduction in

  4. Possible involvement of convergent nociceptive input to medullary dorsal horn neurons in intraoral hyperalgesia following peripheral nerve injury.

    Science.gov (United States)

    Terayama, Ryuji; Tsuchiya, Hiroki; Omura, Shinji; Maruhama, Kotaro; Mizutani, Masahide; Iida, Seiji; Sugimoto, Tomosada

    2015-04-01

    Previous studies demonstrated that the number of c-Fos protein-like immunoreactive (c-Fos-IR) neurons in the medullary dorsal horn (MDH) evoked by noxious stimulation was increased after peripheral nerve injury, and such increase has been proposed to reflect the development of neuropathic pain state. The aim of this study was to examine the MDH for convergent collateral primary afferent input to second order neurons deafferented by peripheral nerve injury, and to explore a possibility of its contribution to the c-Fos hyperinducibility. Double immunofluorescence labeling for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) was performed to detect convergent synaptic input. c-Fos expression and the phosphorylation of ERK were induced by the intraoral application of capsaicin and by electrical stimulation of the inferior alveolar nerve (IAN), respectively. The number of c-Fos-IR neurons in the MDH induced by the intraoral application of capsaicin was increased after IAN injury, whereas the number of p-ERK immunoreactive neurons remained unchanged. The number of double-labeled neurons, that presumably received convergent primary afferent input from the lingual nerve and the IAN, was significantly increased after IAN injury. These results indicated that convergent primary nociceptive input through neighboring intact nerves may contribute to the c-Fos hyperinducibility in the MDH and the pathogenesis of neuropathic pain following trigeminal nerve injury. PMID:25407627

  5. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E;

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...

  6. CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents

    NARCIS (Netherlands)

    van de Wall, EHEM; Duffy, P; Ritter, RC

    2005-01-01

    Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhanc

  7. Percutaneous transhepatic metallic stent insertion for malignant afferent loop obstruction following pancreaticoduodenectomy: a case report

    OpenAIRE

    Hosokawa Isamu; Kato Atsushi; Shimizu Hiroaki; Furukawa Katsunori; Miyazaki Masaru

    2012-01-01

    Abstract Introduction Malignant afferent loop obstruction following pancreaticoduodenectomy is a rare complication and may be fatal if suppurative cholangitis or obstructive jaundice develops. Effective and safe therapeutic strategies for malignant afferent loop obstruction following pancreaticoduodenectomy are scarce at present. Case presentation A 51-year-old Japanese man underwent pancreaticoduodenectomy for carcinoma of the papilla of Vater. Seven months postoperatively, he developed a hi...

  8. Imaging the trigeminal nerve

    International Nuclear Information System (INIS)

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  9. Imaging the trigeminal nerve

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Radiology Department, Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Rua Prof. Lima Basto, 1093, Lisboa (Portugal)], E-mail: borgalexandra@gmail.com; Casselman, Jan [Department of Radiology, A. Z. St Jan Brugge and A. Z. St Augustinus Antwerpen Hospitals (Belgium)

    2010-05-15

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  10. Endoscopic Management of Afferent Loop Syndrome after a Pylorus Preserving Pancreatoduodenecotomy Presenting with Obstructive Jaundice and Ascending Cholangitis

    OpenAIRE

    Kim, Jae Kyung; Park, Chan Hyuk; Huh, Ji Hye; Park, Jeong Youp; Park, Seung Woo; Song, Si Young; Chung, Jaebock; Bang, Seungmin

    2011-01-01

    Afferent loop syndrome is a rare complication of gastrojejunostomy. Patients usually present with abdominal distention and bilious avomiting. Afferent loop syndrome in patients who have undergone a pylorus preserving pancreaticoduodenectomy can present with ascending cholangitis. This condition is related to a large volume of reflux through the biliary-enteric anastomosis and static materials with bacterial overgrowth in the afferent loop. Patients with afferent loop syndrome after pylorus pr...

  11. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent

  12. Sciatic nerve injection injury.

    Science.gov (United States)

    Jung Kim, Hyun; Hyun Park, Sang

    2014-06-11

    Nerve injury is a common complication following intramuscular injection and the sciatic nerve is the most frequently affected nerve, especially in children, the elderly and underweight patients. The neurological presentation may range from minor transient pain to severe sensory disturbance and motor loss with poor recovery. Management of nerve injection injury includes drug treatment of pain, physiotherapy, use of assistive devices and surgical exploration. Early recognition of nerve injection injury and appropriate management are crucial in order to reduce neurological deficit and to maximize recovery. Sciatic nerve injection injury is a preventable event. Total avoidance of intramuscular injection is recommended if other administration routes can be used. If the injection has to be administered into the gluteal muscle, the ventrogluteal region (gluteal triangle) has a more favourable safety profile than the dorsogluteal region (the upper outer quadrant of the buttock). PMID:24920643

  13. The furcal nerve revisited

    Directory of Open Access Journals (Sweden)

    Nanjundappa S. Harshavardhana

    2014-10-01

    Full Text Available Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked is an independent nerve with its own ventral and dorsal branches (rootlets and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to the lumbosacral trunk. It is most commonly found at L4 level and is the most common cause of atypical presentation of radiculopathy/sciatica. Very little is published about the furcal nerve and many are unaware of its existence. This article summarizes all the existing evidence about furcal nerve in English literature in an attempt to create awareness and offer insight about this unique entity to fellow colleagues/ professionals involved in spine care.

  14. The Furcal Nerve Revisited

    Science.gov (United States)

    Dabke, Harshad V.

    2014-01-01

    Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked) is an independent nerve with its own ventral and dorsal branches (rootlets) and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to the lumbosacral trunk. It is most commonly found at L4 level and is the most common cause of atypical presentation of radiculopathy/sciatica. Very little is published about the furcal nerve and many are unaware of its existence. This article summarizes all the existing evidence about furcal nerve in English literature in an attempt to create awareness and offer insight about this unique entity to fellow colleagues/professionals involved in spine care. PMID:25317309

  15. Spinal accessory nerve neurilemmoma

    International Nuclear Information System (INIS)

    A neurilemmoma of the spinal accessory nerve extending from the lower brain stem to the high cervical region, without typical jugular foramen syndome is presented. Preoperative diagnosis is difficult but should be considered in the differential diagnosis of a high cervical intradural extramedullary lesion in patients with lower cranial nerve(s) dysfunction. The value of intrathecal and intravenous contrast enhancement computed tomography (CT) myelogram is emphasized. 13 refs.; 3 figs

  16. Facial Nerve Neuroma Management

    OpenAIRE

    Weber, Peter C; Osguthorpe, J. David

    1998-01-01

    Three facial nerve neuromas were identified in the academic year 1994-1995. Each case illustrates different management dilemmas. One patient with a grade III facial nerve palsy had a small geniculate ganglion neuroma with the dilemma of decompression versus resection clear nerve section margins. The second patient underwent facial neuroma resection with cable graft reconstruction, but the permanent sections were positive. The last patient had a massive neuroma in which grafting versus other f...

  17. Differential roles of galanin on mechanical and cooling responses at the primary afferent nociceptor

    Directory of Open Access Journals (Sweden)

    Hulse Richard P

    2012-06-01

    Full Text Available Abstract Background Galanin is expressed in a small percentage of intact small diameter sensory neurons of the dorsal root ganglia and in the afferent terminals of the superficial lamina of the dorsal horn of the spinal cord. The neuropeptide modulates nociception demonstrating dose-dependent pro- and anti-nociceptive actions in the naïve animal. Galanin also plays an important role in chronic pain, with the anti-nociceptive actions enhanced in rodent neuropathic pain models. In this study we compared the role played by galanin and its receptors in mechanical and cold allodynia by identifying individual rat C-fibre nociceptors and characterising their responses to mechanical or acetone stimulation. Results Mechanically evoked responses in C-fibre nociceptors from naive rats were sensitised after close intra-arterial infusion of galanin or Gal2-11 (a galanin receptor-2/3 agonist confirming previous data that galanin modulates nociception via activation of GalR2. In contrast, the same dose and route of administration of galanin, but not Gal2-11, inhibited acetone and menthol cooling evoked responses, demonstrating that this inhibitory mechanism is not mediated by activation of GalR2. We then used the partial saphenous nerve ligation injury model of neuropathic pain (PSNI and the complete Freund’s adjuvant model of inflammation in the rat and demonstrated that close intra-arterial infusion of galanin, but not Gal2-11, reduced cooling evoked nociceptor activity and cooling allodynia in both paradigms, whilst galanin and Gal2-11 both decreased mechanical activation thresholds. A previously described transgenic mouse line which inducibly over-expresses galanin (Gal-OE after nerve injury was then used to investigate whether manipulating the levels of endogenous galanin also modulates cooling evoked nociceptive behaviours after PSNI. Acetone withdrawal behaviours in naive mice showed no differences between Gal-OE and wildtype (WT mice. 7-days after

  18. 溶脂抽脂术对乳腺癌手术保护肋间臂神经的探讨%The effects of lipolysis and liposuction on intercostobrachial nerve protection during breast cancer operation

    Institute of Scientific and Technical Information of China (English)

    冯铎; 陶霖玉; 何劲松; 徐菲; 齐柯; 林秋生; 陈天文; 李杏

    2011-01-01

    Objective To investigate the protective effect of lipolysis and liposuction on intercostobrachial nerve (ICBN) during breast cancer open surgery. Methods The incidences of ICBN injury between observation group including 29 patients with lipolysis and liposuction and control group consisting 31 patients without lipolysis and liposuction were compared. Results In observation group, one patient's ICBN was directly injuried during lipolysis, and one patient 's ICBN was injuried due to unsatisfactory lipolysis during open surgery. In control group, ICBN injury was found in 8 cases. Conclusions It is feasible and effctive to perform lipolysis and liposuction first for protecting ICBN during open surgery of breast cancer, ff the operator can proficienctly perform the procedure.%目的 探讨利用腋下溶脂、抽脂术对乳腺癌开放性手术中保护肋间臂神经的效果.方法 对比乳腺癌改良根治手术中先采用溶脂、抽脂术观察组(29例)和未采用溶脂、抽脂术对照组(31例)对肋间臂神经损伤的发生情况,评估两者预防肋间臂神经损伤的效果.结果 观察组中1例在溶脂过程中直接损伤肋间臂神经,1例溶脂不理想,致手术时误断肋间臂神经;对照组中8例误伤肋间臂神经.结论 在开放性乳腺癌手术中先行溶脂、抽脂术以行保护肋间臂神经是可行的、有效的,如术者能在熟练掌握该技术.

  19. Glaucoma and optic nerve repair.

    Science.gov (United States)

    Diekmann, Heike; Fischer, Dietmar

    2013-08-01

    Glaucoma is a leading cause of irreversible blindness worldwide and causes progressive visual impairment attributable to the dysfunction and death of retinal ganglion cells (RGCs). Progression of visual field damage is slow and typically painless. Thus, glaucoma is often diagnosed after a substantial percentage of RGCs has been damaged. To date, clinical interventions are mainly restricted to the reduction of intraocular pressure (IOP), one of the major risk factors for this disease. However, the lowering of IOP is often insufficient to halt or reverse the progress of visual loss, underlining the need for the development of alternative treatment strategies. Several lines of evidence suggest that axonal damage of RGCs occurs primary at the optic nerve head, where axons appear to be most vulnerable. Axonal injury leads to the functional loss of RGCs and subsequently induces the death of the neurons. However, the detailed molecular mechanism(s) underlying IOP-induced optic nerve injury remain poorly understood. Moreover, whether glaucoma pathophysiology is primarily axonal, glial, or vascular remains unclear. Therefore, protective strategies to prevent further axonal and subsequent soma degeneration are of great importance to limit the progression of sight loss. In addition, strategies that stimulate injured RGCs to regenerate and reconnect axons with their central targets are necessary for functional restoration. The present review provides an overview of the context of glaucoma pathogenesis and surveys recent findings regarding potential strategies for axonal regeneration of RGCs and optic nerve repair, focusing on the role of cytokines and their downstream signaling pathways. PMID:23512141

  20. Patterns of motor activity in the isolated nerve cord of the octopus arm.

    Science.gov (United States)

    Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin

    2006-12-01

    The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension. PMID:17179381

  1. Rationale, Science, and Economics of Surgical Nerve Decompression for Diabetic Neuropathy Foot Complications.

    Science.gov (United States)

    Nickerson, David Scott

    2016-04-01

    Nerve decompression is effective and safe for dealing with the pain and numbness symptoms of the frequent nerve compression entrapments in diabetic symmetric peripheral neuropathy (DSPN). Evidence has accumulated of balance and stability improvements and protection against diabetic foot ulceration, recurrence and its complication cascade. Nerve decompression proffers significant benefit versus the large socioeconomic costs of DSPN complications. Advancing understanding of the mechanism of nerve compression and altered axonal activity in diabetes clarifies the basis of clinical benefit. Clinicians should seek out and recognize nerve entrapments and consider advising nerve decompression for relief of DSPN symptoms and prevention of complications. PMID:27013417

  2. Hair cell tufts and afferent innervation of the bullfrog crista ampullaris

    Science.gov (United States)

    Myers, Steven F.; Lewis, Edwin R.

    1990-01-01

    Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.

  3. Novel Afferent Terminal Structure in the Crista Ampullaris of the Goldfish, Carassius auratus

    Science.gov (United States)

    Lanford, Pamela J.; Popper, Arthur N.

    1996-01-01

    Using transmission electron microscopy, we have identified a new type of afferent terminal structure in the crista ampullaris of the goldfish Carassius auratus. In addition to the bouton-type afferent terminals previously described in the ear of this species, the crista also contained enlarged afferent terminals that enveloped a portion of the basolateral hair cell membrane. The hair cell membrane was evaginated and protruded into the afferent terminal in a glove-and-finger configuration. The membranes of the two cells were regularly aligned in the protruded region of the contact and had a distinct symmetrical electron density. The electron-dense profiles of these contacts were easily identified and were present in every crista sampled. In some cases, efferent terminals synapsed onto the afferents at a point where the hair cell protruded into the terminal. The ultrastructural similarities of the goldfish crista afferents to calyx afferents found in amniotes (birds, reptiles, and mammals) are discussed. The results of the study support the hypothesis that structural variation in the vertebrate inner ear may have evolved much earlier in evolution than previously supposed.

  4. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery.

    Science.gov (United States)

    Reijntjes, Daniël O J; Pyott, Sonja J

    2016-06-01

    The spiral ganglion neurons (SGNs) are the first action potential generating neurons in the auditory pathway. The type I SGNs contact the sensory inner hair cells via their peripheral dendrites and relay auditory information to the brainstem via their central axon fibers. Individual afferent fibers show differences in response properties that are essential for normal hearing. The mechanisms that give rise to the heterogeneity of afferent responses are very poorly understood but are likely already in place at the peripheral dendrites where synapses are formed and action potentials are generated. To identify these molecular mechanisms, this review synthesizes a variety of literature and comprehensively outlines the cellular and molecular components positioned to regulate SGN afferent dendrite excitability, especially following glutamate release. These components include 1) proteins of the SGN postsynapses and neighboring supporting cells that together shape glutamatergic signaling, 2) the ion channels and transporters that determine the intrinsic excitability of the SGN afferent dendrites, and 3) the neurotransmitter receptors that extrinsically modify this excitability via synaptic input from the lateral olivocochlear efferents. This cellular and molecular machinery, together with presynaptic specializations of the inner hair cells, can be collectively referred to as the type I afferent signaling complex. As this review underscores, interactions of this signaling complex determine excitability of the SGN afferent dendrites and the afferent fiber responses. Moreover, this complex establishes the environmental milieu critical for the development and maintenance of the SGN afferent dendrites and synapses. Motivated by these important functions, this review also indicates areas of future research to elucidate the contributions of the afferent signaling complex to both normal hearing and also hearing loss. PMID:27018296

  5. Neuronal changes resulting in up-regulation of alpha-1 adrenoceptors after peripheral nerve injury

    Institute of Scientific and Technical Information of China (English)

    Peter D.Drummond

    2014-01-01

    Under normal conditions, the sympathetic neurotransmitter noradrenaline inhibits the pro-duction and release of pro-inlfammatory cytokines. However, after peripheral nerve and tissue injury, pro-inflammatory cytokines appear to induce the expression of the alpha1A-adreno-ceptor subtype on immune cells and perhaps also on other cells in the injured tissue. In turn, noradrenaline may act on up-regulated alpha1-adrenoceptors to increase the production of the pro-inflammatory cytokine interleukin-6. In addition, the release of inflammatory mediators and nerve growth factor from keratinocytes and other cells may augment the expression of al-pha1-adrenoceptors on peripheral nerve ifbers. Consequently, nociceptive afferents acquire an abnormal excitability to adrenergic agents, and inlfammatory processes build. These mechanisms could contribute to the development of sympathetically maintained pain in conditions such as post-herpetic neuralgia, cutaneous neuromas, amputation stump pain and complex regional pain syndrome.

  6. Percutaneous jejunostomy through the liver parenchyma for palliation of afferent loop syndrome.

    Science.gov (United States)

    Kwon, Jae Hyun; Han, Yoon Hee

    2015-01-01

    In the treatment of afferent loop syndrome, jejunostomy or Roux-en-Y gastrojejunostomy have tended to represent the preferred procedures. In patients who are not good candidates for surgery, palliative treatment-i.e., percutaneous transhepatic biliary drainage or percutaneous direct transperitoneal jejunostomy techniques-have been applied. Transhepatic biliary drainage confers a risk of ascending cholangitis. Direct percutaneous transperitoneal drainage may be impractical when overlying bowel loops prevent access to deeply located afferent loops. In the present case, percutaneous jejunostomy through the liver parenchyma was performed successfully for palliation of afferent loop syndrome. PMID:25433418

  7. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    Science.gov (United States)

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. PMID:26420473

  8. [Readjustment of the efferent activity of the scratching generator in response to stimulation of cutaneous afferents of the hindlimb of the decerebrate immobilized cat].

    Science.gov (United States)

    Shimanskiĭ, Iu P; Baev, K V

    1987-01-01

    Rebuildings of the scratching generator efferent activity caused by the phasic electrical stimulation of ipsilateral hindlimb skin nerves during different hindlimb positions were studied in decerebrated immobilized cats. Stimulation was followed by short latency inhibition of the efferent activity. Stimulation did not cause correlation shifts in the common "aiming" and "scratching" activity. Changes in the efferent activity cycle duration and intensity depended on the stimulation phase. Inversion of intensity changes occurred with transition from the middle-force to strong stimulation. A functional role of the dependence of the efferent activity rebuilding on the stimulation phase is considered. The scratching generator is supposed to contain a model of the afferent inflow which enters the spinal cord during real scratching. PMID:3614458

  9. EFFECT OF ANGELICA SINENSIS ON AFFERENT DISCHARGE OF SINGLE MUSCLE SPINDLE IN TOADS

    Institute of Scientific and Technical Information of China (English)

    高云芳; 樊小力

    2004-01-01

    Objective In drugs for invigorating blood circulation, to find a herb that can stimulate afferent discharge of muscle spindle. Methods A single muscle spindle was isolated from sartorial muscle of toad. Using air-gap technique, afferent discharge of the muscle spindle was recorded. Effects of Angelica Sinensis, Salvia Miltiorrhiza, and Safflower on afferent discharge of the muscle spindle were observed. Results Angelica Sinensis could distinctly increase afferent discharge frequency of the muscle spindle, and this increase was dose-dependent. But Salvia Miltiorrhiza and Safflower had no this excitatory effect. Conclusion It is known that Angelica Sinensis can invigorate blood circulation, and we have found its excitatory effect on muscle spindle which makes it possible to serve people with muscle atrophy if more evidences from clinical experiments are available.

  10. Lipopolysaccharide-induced hyperalgesia of intracranial capsaicin sensitive afferents in conscious rats

    NARCIS (Netherlands)

    Kemper, RHA; Spoelstra, MB; Meijler, WJ; Ter Horst, GJ

    1998-01-01

    Migraineous and non-migraineous headache is reported to be at highest intensity after an infection. This study investigated whether activation of the immune system can induce hyperalgesia in intracranial capsaicin sensitive afferents. The effects of intraperitoneal injected lipopolysaccharides (LPS)

  11. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch;

    2005-01-01

    glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen...... through a mechanism of vasodilatation and lowering of the intraocular pressure. Carbonic anhydrase inhibition reduces the removal of CO2 from the tissue and the CO2 accumulation induces vasodilatation resulting in increased blood flow and improved oxygen supply. This effect is inhibited by the cyclo...

  12. Radial Nerve Tendon Transfers.

    Science.gov (United States)

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  13. Genetic and pharmacological evidence for low-abundance TRPV3 expression in primary vagal afferent neurons.

    Science.gov (United States)

    Wu, Shaw-Wen; Lindberg, Jonathan E M; Peters, James H

    2016-05-01

    Primary vagal afferent neurons express a multitude of thermosensitive ion channels. Within this family of ion channels, the heat-sensitive capsaicin receptor (TRPV1) greatly influences vagal afferent signaling by determining the threshold for action-potential initiation at the peripheral endings, while controlling temperature-sensitive forms of glutamate release at central vagal terminals. Genetic deletion of TRPV1 does not completely eliminate these temperature-dependent effects, suggesting involvement of additional thermosensitive ion channels. The warm-sensitive, calcium-permeable, ion channel TRPV3 is commonly expressed with TRPV1; however, the extent to which TRPV3 is found in vagal afferent neurons is unknown. Here, we begin to characterize the genetic and functional expression of TRPV3 in vagal afferent neurons using molecular biology (RT-PCR and RT-quantitative PCR) in whole nodose and isolated neurons and fluorescent calcium imaging on primary cultures of nodose ganglia neurons. We confirmed low-level TRPV3 expression in vagal afferent neurons and observed direct activation with putative TRPV3 agonists eugenol, ethyl vanillin (EVA), and farnesyl pyrophosphate (FPP). Agonist activation stimulated neurons also containing TRPV1 and was blocked by ruthenium red. FPP sensitivity overlapped with EVA and eugenol but represented the smallest percentage of vagal afferent neurons, and it was the only agonist that did not stimulate neurons from TRPV3(-/-1) mice, suggesting FPP has the highest selectivity. Further, FPP was predictive of enhanced responses to capsaicin, EVA, and eugenol in rats. From our results, we conclude TRPV3 is expressed in a discrete subpopulation of vagal afferent neurons and may contribute to vagal afferent signaling either directly or in combination with TRPV1. PMID:26843581

  14. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin

    OpenAIRE

    Zhang, Shujuan; Feng ZHANG; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-01-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sym...

  15. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    OpenAIRE

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was medi...

  16. Ion channels in mammalian vestibular afferents may set regularity of firing

    OpenAIRE

    Eatock, Ruth Anne; Xue, Jingbing; Kalluri, Radha

    2008-01-01

    Rodent vestibular afferent neurons offer several advantages as a model system for investigating the significance and origins of regularity in neuronal firing interval. Their regularity has a bimodal distribution that defines regular and irregular afferent classes. Factors likely to be involved in setting firing regularity include the morphology and physiology of the afferents’ contacts with hair cells, which may influence the averaging of synaptic noise and the afferents’ intrinsic electrical...

  17. ON AND OFF DOMAINS OF GENICULATE AFFERENTS IN CAT PRIMARY VISUAL CORTEX

    OpenAIRE

    Jin, J. Z.; Weng, C.; Yeh, C. I.; Gordon, J A; RUTHAZER, E.S.; Stryker, M.P.; Swadlow, H A; Alonso, J M

    2007-01-01

    On- and off-center geniculate afferents form two major channels of visual processing that are thought to converge in the primary visual cortex. However, humans with severely reduced on-responses can have normal visual acuity when tested in a white background, which indicates that off-channels can function relatively independently of on-channels under certain conditions. Consistent with this functional independence of channels, here we demonstrate that on- and off-center geniculate afferents s...

  18. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    Science.gov (United States)

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. PMID:27094893

  19. Color threshold and ratio of S100 beta, MAP5, NF68/200, GABA & GAD. I. Distribution in inner ear afferents

    Science.gov (United States)

    Fermin, C. D.; Martin, D. S.; Hara, H.

    1997-01-01

    Afferents of chick embryos (Gallus domesticus) VIIIth nerve were examined at E3, E6, E9, E13, El7, and hatching (NH) for anti-S100 beta, anti-MAP5, anti-GABA, anti-GAD and anti-NF68/200 stain. Different ages were processed together to determine if the distribution of these antibodies changed during synaptogenesis and myelination. Color thresholding showed that saturation of pixels changed for S100 beta only 5%, for NF68/200 10%, and for MAP5, 10%, between E9-NH. Color ratio of NF68/200 over MAP5 was 1.00 at E13 and 0.25 at E16 and NH. S100 beta, GABA and GAD were co-expressed on nerve endings at the edge of the maculae and center of the cristae, whereas hair cells in the center of the maculae expressed either S100 beta or GABA, but not both. S100 beta/NF68/200 shared antigenic sites on the chalices, but NF68/200 expression was higher than S100 beta in the chalices at hatching. MAP5 was expressed in more neurons than NF68/200 at E11, whereas NF68/200 was more abundant than MAP5 at hatching. The results suggest that: 1) the immunoexpression of these neuronal proteins is modulated concomitantly with the establishment of afferent synapses and myelination; 2) S100 beta may serve a neurotrophic function in the chalices where it is co-expressed with the neurotransmitter GABA and its synthesizing enzyme GAD.

  20. Computed tomographic features of afferent loop syndrome: pictorial essay

    International Nuclear Information System (INIS)

    This pictorial essay reviews the computed tomography (CT) findings of afferent loop syndrome (ALS) in various pathological conditions to demonstrate the contribution of a common imaging modality-that is, abdominal CT, used nowadays for various abdominal complaints-to the diagnosis of ALS. ALS is caused by obstruction of the duodenum and jejunum proximal to a gastrojejunostomy anastomosis. It is a rare complication after Billroth II subtotal gastrectomy and even more rare after total or subtotal gastrectomy with Roux-en-Y reconstruction. Although currently advanced medical treatment and endoscopic interventions have dramatically decreased the necessity of surgery for peptic ulcer disease, ALS may appear years after previously common operations. Alternatively, the use of surgical resection for early gastric cancer nowadays leads to an increasing rate of malignancy-related ALS. Clinically, ALS may be difficult to diagnose as its presentation may be vague and nonspecific, but it has a characteristic appearance on CT. Clinicians and radiologists should therefore be familiar with this rare complication. Prompt recognition and correct diagnosis of this syndrome and its probable etiology are important as a guide for treatment. This review illustrates the CT features of ALS in various conditions. (author)

  1. Computed tomographic features of afferent loop syndrome: pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Zissin, R. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Hertz, M. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Paran, H. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Surgery ' A' , Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Osadchy, A. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Gayer, G. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Assaf Harofe Medical Center, Zrifin, Sackler Faculty of Medicine, Tel Aviv (Israel)

    2005-04-15

    This pictorial essay reviews the computed tomography (CT) findings of afferent loop syndrome (ALS) in various pathological conditions to demonstrate the contribution of a common imaging modality-that is, abdominal CT, used nowadays for various abdominal complaints-to the diagnosis of ALS. ALS is caused by obstruction of the duodenum and jejunum proximal to a gastrojejunostomy anastomosis. It is a rare complication after Billroth II subtotal gastrectomy and even more rare after total or subtotal gastrectomy with Roux-en-Y reconstruction. Although currently advanced medical treatment and endoscopic interventions have dramatically decreased the necessity of surgery for peptic ulcer disease, ALS may appear years after previously common operations. Alternatively, the use of surgical resection for early gastric cancer nowadays leads to an increasing rate of malignancy-related ALS. Clinically, ALS may be difficult to diagnose as its presentation may be vague and nonspecific, but it has a characteristic appearance on CT. Clinicians and radiologists should therefore be familiar with this rare complication. Prompt recognition and correct diagnosis of this syndrome and its probable etiology are important as a guide for treatment. This review illustrates the CT features of ALS in various conditions. (author)

  2. Percutaneous transhepatic metallic stent insertion for malignant afferent loop obstruction following pancreaticoduodenectomy: a case report

    Directory of Open Access Journals (Sweden)

    Hosokawa Isamu

    2012-07-01

    Full Text Available Abstract Introduction Malignant afferent loop obstruction following pancreaticoduodenectomy is a rare complication and may be fatal if suppurative cholangitis or obstructive jaundice develops. Effective and safe therapeutic strategies for malignant afferent loop obstruction following pancreaticoduodenectomy are scarce at present. Case presentation A 51-year-old Japanese man underwent pancreaticoduodenectomy for carcinoma of the papilla of Vater. Seven months postoperatively, he developed a high-grade fever, jaundice, and right upper abdominal pain. Abdominal contrast-enhanced computed tomography showed afferent loop obstruction and intrahepatic bile duct dilatation due to nodal recurrence. Percutaneous transhepatic biliary drainage was performed, and a self-expanding metallic stent (WallFlex™ duodenal stent was placed across the stricture using the transhepatic route. Conclusions There are surgical and nonsurgical treatments for malignant afferent loop obstruction following pancreaticoduodenectomy. Nonsurgical treatments include either an endoscopic or percutaneous approach to the afferent loop. Of these methods, percutaneous transhepatic insertion of a self-expanding metallic stent is the preferred treatment for malignant afferent loop obstruction following pancreaticoduodenectomy because it is more prompt and less invasive.

  3. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    Science.gov (United States)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  4. Diabetic Nerve Problems

    Science.gov (United States)

    ... at the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get ... you change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. ...

  5. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T;

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  6. Development of a sensory afferent projection in the grasshopper embryo. II. Growth and branching of peripheral sensory axons within the central nervous system.

    Science.gov (United States)

    Shankland, M

    1981-08-01

    The morphogenesis of several types of sensory axon branching patterns has been described by cobalt filling the cercal nerve of the grasshopper embryo at a series of different stages in development, thus staining the earliest sensory axons as they grow through the CNS. This embryonic sensory projection contains all five types of cercal afferents seen in the adult, and no new sensory tracts are added during postembryonic life. When the embryonic sensory axons first follow their pioneer axons into the neuropil they choose pathways which are characteristic of the adult sensory tracts. Since the afferents follow these paths without sending collaterals into the other tracts, it appears that the growth axon chooses its specific pathway without extensive exploration of alternative routes. Likewise, nearly all of the branches which arise from the embryonic sensory axons remain within the eventual domain characteristic of each cell type. This precise, determinate pattern of initial growth implies that the sensory axons are guided through the neuropil and achieve their final branching patterns with a minimum of overgrowth and pruning. The fact that initial growth is so precise also suggests that the parameters which guide the growing axon may help to determine its eventual pattern of synaptic connectivity by limiting its physical access to large portions of the neuropil which contain potentially compatible synaptic partner cells. Two different types of neurons may be supplying the sensory afferents with guidance cues: (i) Although most of the cercal sensory axons diverge from the cercal pioneer axons within the CNS, some sensory afferents continue to follow the pioneers through several ganglia. (ii) In the adult, a large number of the cercal sensory axons form a hollow shell of arborization around the main dendrite of an identified synaptic target cell, the Medical Giant Interneuron (MGI). This structure, the interneuron dendrite and the shell of sensory arbor, is called the

  7. Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: a 5-year bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2015-01-01

    Full Text Available With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and large-gap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "pe-ripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany, Washington University (USA, and Nantong University (China. The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad-ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.

  8. Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries:a 5-year bibliometric analysis

    Institute of Scientific and Technical Information of China (English)

    Yuan Gao; Yu-ling Wang; Dan Kong; Bo Qu; Xiao-jing Su; Huan Li; Hong-ying Pi

    2015-01-01

    With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and large-gap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords“pe-ripheral nerve injury”,“autotransplant”,“nerve graft”, and“biomaterial”, we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this ifeld include Hannover Medical School (Germany), Washington University (USA), and Nantong University (China). The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad-ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientiifc contributions to this ifeld of research.

  9. Nerve Conduction Studies and Electromyography

    OpenAIRE

    Keyes, Robert D.

    1990-01-01

    Nerve conduction studies and electromyography can aid in the diagnosis of peripheral nervous system disease. The author reviews various techniques used during electromyography and nerve conduction studies. He reviews briefly peripheral nerve and muscle neuroanatomy and neurophysiology. The author defines terms used in nerve conduction studies and electromyography and relates terminology to the underlying pathophysiology and histopathology. He also reviews briefly typical nerve conduction and ...

  10. Endoscopic management of afferent loop syndrome after a pylorus preserving pancreatoduodenecotomy presenting with obstructive jaundice and ascending cholangitis.

    Science.gov (United States)

    Kim, Jae Kyung; Park, Chan Hyuk; Huh, Ji Hye; Park, Jeong Youp; Park, Seung Woo; Song, Si Young; Chung, Jaebock; Bang, Seungmin

    2011-09-01

    Afferent loop syndrome is a rare complication of gastrojejunostomy. Patients usually present with abdominal distention and bilious vomiting. Afferent loop syndrome in patients who have undergone a pylorus preserving pancreaticoduodenectomy can present with ascending cholangitis. This condition is related to a large volume of reflux through the biliary-enteric anastomosis and static materials with bacterial overgrowth in the afferent loop. Patients with afferent loop syndrome after pylorus preserving pancreaticoduodenectomy frequently cannot be confirmed as surgical candidates due to poor medical condition. In that situation, a non-surgical palliation should be considered. Herein, we report two patients with afferent loop syndrome presenting with obstructive jaundice and ascending cholangitis. The patients suffered from the recurrence of pancreatic cancer after pylorus preserving pancreaticoduodenectomy. The diagnosis of afferent loop syndrome was confirmed, and the patients were successfully treated by inserting an endoscopic metal stent using a colonoscopic endoscope. PMID:22741115

  11. [Biophysics of nerve excitation].

    Science.gov (United States)

    Kol'e, O R; Maksimov, G V

    2010-01-01

    The studies testifying to the presence of the interrelation between the physiological functions of the organism and physical and chemical processes in nerves are discussed. Changes in some physical and chemical parameters observed both upon elicited rhythmic exaltation of nerves and during the spontaneous rhythmic activity of neurons are analyzed. Upon rhythmic exaltation, a complex of physical and chemical processes is triggered, and reversible structural and metabolic rearrangements at the subcellular and molecular levels occur that do not take place during the generation of a single action potential. Thus, only in conditions of rhythmic exaltation of a nerve, it is possible to reveal those processes that provide exaltation of nerves in the organism. The future possibilities of the investigations combining the biophysical and physiological approaches are substantiated. Characteristic changes in physicochemical parameters are observed in nerves during the generation of a series of action potentials of different frequency and duration ("frequency dependence") under normal physiological conditions, as well as in extreme situations and in nerve pathology. The structural and metabolic rearrangements are directly related to the mode of rhythmic exaltation and proceed both in the course of rhythmic exaltation and after its termination. Participation and the basic components of the nervous fulcrum (an axon, Shwan cell, myelin, subcellular organelles) in the realization of rhythmic exaltation is shown. In the coordination of all processes involved in rhythmic exaltation, the main role is played by the systems of redistribution and transport of intercellular and endocellular calcium. The idea is put forward that myelin of nerve fibers is not only an isolator, but also an "intercellular depot" of calcium and participates in the redistribution of different ions. Thus, the rhythmic excitation is of great importance in the realization of some physiological functions, the

  12. Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents

    Directory of Open Access Journals (Sweden)

    André Maia Chagas

    2013-12-01

    Full Text Available Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of ‘how much’ information is conveyed by primary afferents, using the direct method, a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s. Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on ‘what’ is coded by primary afferents. Amongst the kinematic variables tested - position, velocity, and acceleration - primary afferent spikes encoded velocity best. The other two variables contribute to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e. well separated sets of combinations of the three instantaneous kinematic variables. Secondly, spikes are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time, and thirdly, they show spike patterns (precise doublet and triplet spiking. In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the direct method. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80-90%. The final 10-20% were found to be due to non-linear coding by spike bursts.

  13. [Surfactant and water balance of lung in intracerebral hemorrhage at conditions of capsaicin blockade of vagus nerve].

    Science.gov (United States)

    Urakova, M A; Bryndina, I G

    2015-03-01

    It is known that intracranial hemorrhage (ICH) is accompanied by the development of neurogenic pulmonary edema and insufficiency of surfactant function. The present study was undertaken for evaluation of the role of vagal afferents in the mechanisms of ICH effects on pulmonary surfactant and water balance of the lung. We explored the surface activity and biochemical composition of surfactant, as well as blood supply, total, intravascular and extravascular fluid content in lung after ICH, simulated by intraventricular administration of autologous blood against the background of bilateral blockade of capsaicin-sensitive vagal affere its. The blockade was caused by the capsaicin application (50 mcmol) on the cervical part of the nerves. Intracerebralhemorrhage was accompanied by the decrease of surfactant activity which appeared by the enhancement of minimal, maximal and static surface tension of bronchoalveolar lavage fluid (BAL), the reduction of total phospholipids including their main fraction phosphatidylcholine, the increase of lysophosphatidyicholine content and hyperhydration of the lung. The level of total proteins in BAL elevated, confirmed the enhanced permeability of the alveolar-blood barrier. The exhaustion of neuropeptides in capsaicin-sensitive vagal afferents led to the partial restoration of surface active properties of lung, normalization of phospholipids and protein contents and water balance parameters. The obtained results suggest that capsaicin-sensitive vagal afferents play a pivotal role in the disturbances of surfactant function and water balance of the lung after ICH. PMID:26016324

  14. AMPA and NMDA glutamate receptors are found in both peptidergic and non-peptidergic primary afferent neurons in the rat

    OpenAIRE

    Willcockson, Helen; Valtschanoff, Juli

    2008-01-01

    Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers...

  15. Isolated long thoracic nerve paralysis - a rare complication of anterior spinal surgery: a case report

    Directory of Open Access Journals (Sweden)

    Ameri Ebrahim

    2009-06-01

    Full Text Available Abstract Introduction Isolated long thoracic nerve injury causes paralysis of the serratus anterior muscle. Patients with serratus anterior palsy may present with periscapular pain, weakness, limitation of shoulder elevation and scapular winging. Case presentation We present the case of a 23-year-old woman who sustained isolated long thoracic nerve palsy during anterior spinal surgery which caused external compressive force on the nerve. Conclusion During positioning of patients into the lateral decubitus position, the course of the long thoracic nerve must be attended to carefully and the nerve should be protected from any external pressure.

  16. Chitosan crosslinked flat scaffolds for peripheral nerve regeneration.

    Science.gov (United States)

    Fregnan, F; Ciglieri, E; Tos, P; Crosio, A; Ciardelli, G; Ruini, F; Tonda-Turo, C; Geuna, S; Raimondo, S

    2016-01-01

    Chitosan (CS) has been widely used in a variety of biomedical applications, including peripheral nerve repair, due to its excellent biocompatibility, biodegradability, readily availability and antibacterial activity. In this study, CS flat membranes, crosslinked with dibasic sodium phosphate (DSP) alone (CS/DSP) or in association with the γ-glycidoxypropyltrimethoxysilane (CS/GPTMS_DSP), were fabricated with a solvent casting technique. The constituent ratio of crosslinking agents and CS were previously selected to obtain a composite material having both adequate mechanical properties and high biocompatibility. In vitro cytotoxicity tests showed that both CS membranes allowed cell survival and proliferation. Moreover, CS/GPTMS_DSP membranes promoted cell adhesion, induced Schwann cell-like morphology and supported neurite outgrowth from dorsal root ganglia explants. Preliminary in vivo tests carried out on both types of nerve scaffolds (CS/DSP and CS/GPTMS_DSP membranes) demonstrated their potential for: (i) protecting, as a membrane, the site of nerve crush or repair by end-to-end surgery and avoiding post-operative nerve adhesion; (ii) bridging, as a conduit, the two nerve stumps after a severe peripheral nerve lesion with substance loss. A 1 cm gap on rat median nerve was repaired using CS/DSP and CS/GPTMS_DSP conduits to further investigate their ability to induce nerve regeneration in vivo. CS/GPTMS_DSP tubes resulted to be more fragile during suturing and, along a 12 week post-operative lapse of time, they detached from the distal nerve stump. On the contrary CS/DSP conduits promoted nerve fiber regeneration and functional recovery, leading to an outcome comparable to median nerve repaired by autograft. PMID:27508969

  17. Peripheral injury of pelvic visceral sensory nerves alters GFRa (GDNF family receptor alpha) localization in sensory and autonomic pathways of the sacral spinal cord

    OpenAIRE

    Osborne, Peregrine B.

    2015-01-01

    GDNF (glial cell line-derived neurotrophic factor), neurturin and artemin use their co-receptors (GFRα1, GFRα2 and GFRα3, respectively) and the tyrosine kinase Ret for downstream signalling. In rodent dorsal root ganglia (DRG) most of the unmyelinated and some myelinated sensory afferents express at least one GFRα. The adult function of these receptors is not completely elucidated but their activity after peripheral nerve injury can facilitate peripheral and central axonal regeneration, recov...

  18. Peripheral injury of pelvic visceral sensory nerves alters GFRα (GDNF family receptor alpha) localization in sensory and autonomic pathways of the sacral spinal cord

    OpenAIRE

    Forrest, Shelley L.; Sophie C Payne; Keast, Janet R; Osborne, Peregrine B.

    2015-01-01

    GDNF (glial cell line-derived neurotrophic factor), neurturin and artemin use their co-receptors (GFRα1, GFRα2 and GFRα3, respectively) and the tyrosine kinase Ret for downstream signaling. In rodent dorsal root ganglia (DRG) most of the unmyelinated and some myelinated sensory afferents express at least one GFRα. The adult function of these receptors is not completely elucidated but their activity after peripheral nerve injury can facilitate peripheral and central axonal regeneration, recove...

  19. 蛇床子素对颅脑损伤模型小鼠的神经保护作用%Protective Effects of Osthole on the Nerves of Model Mice with Craniocerebral Injury

    Institute of Scientific and Technical Information of China (English)

    孔亮; 姚璎珈; 教亚男; 李少恒; 陶震宇; 杨静娴

    2015-01-01

    目的:研究蛇床子素对颅脑损伤模型小鼠的神经保护作用。方法:开颅钻孔以复制小鼠颅脑损伤模型。实验分为假手术(等容蒸馏水)组、模型(等容蒸馏水)组和蛇床子素高、中、低剂量(30、20、10 mg/kg)组,复制模型成功1 h后ip给药,每天1次,连续14 d。在复制模型12 h与3、7、14、21 d后对小鼠进行神经功能缺损评分;在复制模型7、14 d后进行HE染色,显微镜下观察脑组织损伤面积;在复制模型24、72 h后测定小鼠脑组织中髓过氧化物酶(MPO)活性;在复制模型7 d后,采用免疫组化法测定小鼠脑组织匀浆中脑源神经生长因子(BDNF)、神经营养因子(NT)3的表达。结果:复制模型成功3、14、21 d后,蛇床子素高、中剂量组小鼠神经功能缺损评分降低;复制模型成功7d后,蛇床子素高剂量组小鼠神经功能缺损评分降低。复制模型成功7d后,蛇床子素高剂量组小鼠脑组织损伤面积减小;复制模型成功14 d后,蛇床子素高、中剂量组小鼠脑组织损伤面积减小。复制模型成功24、72 h后,蛇床子素高剂量组小鼠脑组织中MPO活性减弱。复制模型成功7 d后,蛇床子素高、中剂量组小鼠脑组织中BDNF、NT-3表达增强。以上差异均有统计学意义(P<0.01或P<0.05)。结论:蛇床子素对颅脑损伤模型小鼠神经具有一定保护作用,其机制为改善小鼠神经功能、促进伤口愈合,抑制炎症因子的产生及促进神经营养因子表达。%OBJECTIVE:To investigate the protective effects of osthole on the nerves in model mice with craniocerebral injury. METHODS:Mice models of craniocerebral injury were established by craniotomy drill. There was a sham-operation group(isomet-ric normal saline),a model group (isometric normal saline) and osthole high,mediu,low dose groups (30,20,10 mg/kg). The drugs were given to the mice 1 h after successful

  20. Cranial nerve palsies

    International Nuclear Information System (INIS)

    This paper evaluates the utility of multiplanar reconstructions (MPRs) of three-dimensional (3D) MR angiography data sets in the examination of patients with cranial nerve palsies. The authors hypothesis was that 3D data could be reformatted to highlight the intricate spatial relationships of vessels to adjacent neural tissues by taking advantage of the high vessel-parenchyma contrast in high-resolution 3D time-of-flight sequences. Twenty patients with cranial nerve palsies and 10 asymptomatic patients were examined with coronal T1-weighted and axial T2-weighted imaging plus a gadolinium-enhanced 3D MRA sequence (40/7/15 degrees, axial 60-mm volume, 0.9-mm isotropic resolution). Cranial nerves II-VIII were subsequently evaluated on axial and reformatted coronal and/or sagittal images

  1. Nerve Transfers in Tetraplegia.

    Science.gov (United States)

    Fox, Ida K

    2016-05-01

    Hand and upper extremity function is instrumental to basic activities of daily living and level of independence in cervical spinal cord injury (SCI). Nerve transfer surgery is a novel and alternate approach for restoring function in SCI. This article discusses the biologic basis of nerve transfers in SCI, patient evaluation, management, and surgical approaches. Although the application of this technique is not new; recent case reports and case series in the literature have increased interest in this field. The challenges are to improve function, achieve maximal gains in function, avoid complications, and to primum non nocere. PMID:27094894

  2. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Directory of Open Access Journals (Sweden)

    Holzer Peter

    2009-06-01

    Full Text Available Abstract Background Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Methods Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg or cimetidine (10 mg/kg, and 30 min later their stomachs were exposed to exogenous HCl (0.25 M. During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Results Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. Conclusion These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect

  3. [Readjustment of the efferent activity of the scratching generator in response to stimulation of muscle afferents of the hindlimb of the decerebrate immobilized cat].

    Science.gov (United States)

    Shimanskiĭ, Iu P; Baev, K V

    1987-01-01

    Rebuildings of the scratching generator activity caused by phasic electrical stimulation of ipsilateral hindlimb muscle nerves during different hindlimb positions were studied in decerebrated immobilized cats. Strong dependence of these rebuildings on the stimulation phase was observed. The character of the "scratch" cycle duration rebuilding was formed by the scratching generator tendency to bring efferent activity into such correlation with the stimulus that the stimulation moment coincided with the moment of efferent activity phase triggering. Phasic altering of the efferent activity intensity rebuilding was observed against a background of "aiming" and "scratching" activity correlation shift in the direction of strengthening activation of muscles innervated by the stimulated nerve. This rebuilding was intensified when the hindlimb deflects from the aimed position in the direction of corresponding muscles stretching. Physiological sense of "rebuilding absence phases" is discussed. It is postulated that absence of the duration and intensity changes can be achieved simultaneously only with definite correlation between phase and intensity of the afferent impulsation burst. PMID:3614457

  4. Emotional proprioception: Treatment of depression with afferent facial feedback.

    Science.gov (United States)

    Finzi, Eric; Rosenthal, Norman E

    2016-09-01

    We develop the concept of emotional proprioception, whereby the muscles of facial expression play a central role in encoding and transmitting information to the brain's emotional circuitry, and describe its underlying neuroanatomy. We explore the role of facial expression in both reflecting and influencing depressed mood. The circuitry involved in this latter effect is a logical target for treatment with botulinum toxin, and we review the evidence in support of this strategy. Clinical trial data suggest that botulinum toxin is effective in treating depression. We discuss the clinical and theoretical implications of these data. This novel treatment approach is just one example of the potential importance of the cranial nerves in the treatment of depression. PMID:27344227

  5. Neuromuscular Ultrasound of Cranial Nerves

    OpenAIRE

    Tawfik, Eman A.; Walker, Francis O.; Cartwright, Michael S.

    2015-01-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few re...

  6. High division of sciatic nerve

    OpenAIRE

    Tripti Shrivastava; Lalit Garg; B. K. Mishra; Neeta Chhabra

    2014-01-01

    Background: The Sciatic nerve is the largest and thickest nerve in the human body with a long course in the inferior extremity. It divides into tibial and common peroneal nerves which can occur at any level from the sacral plexus to the inferior part of the popliteal space. Sciatic nerve variations are relatively common. These variations may contribute to clinical conditions ex sciatica, coccygodynia and piriformis syndrome and have important clinical implications in anaesthesiology, neurolog...

  7. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses to...... chloride. We conclude that norepinephrine and ANG II use different mechanisms for contraction and that extracellular chloride is essential for contraction in afferent arterioles after activation of voltage-dependent calcium channels. We suggest that a chloride influx pathway is activated concomitantly with......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular...

  8. Progress of peripheral nerve repair

    Institute of Scientific and Technical Information of China (English)

    陈峥嵘

    2002-01-01

    Study on repair of peripheral nerve injury has been proceeding over a long period of time. With the use of microsurgery technique since 1960s,the quality of nerve repair has been greatly improved. In the past 40 years, with the continuous increase of surgical repair methods, more progress has been made on the basic research of peripheral nerve repair.

  9. Tumors of the optic nerve

    DEFF Research Database (Denmark)

    Lindegaard, Jens; Heegaard, Steffen

    2009-01-01

    the nerve (e.g., astrocytes and meningothelial cells). The optic nerve may also be invaded from tumors originating elsewhere (secondary tumors), invading the nerve from adjacent structures (e.g., choroidal melanoma and retinoblastoma) or from distant sites (e.g., lymphocytic infiltration and distant...

  10. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T;

    2004-01-01

    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta...

  11. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus

    Directory of Open Access Journals (Sweden)

    Michael C. Andresen

    2013-01-01

    Full Text Available The brainstem nucleus of the solitary tract (NTS holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current (EPSC often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g. hypothalamus neuron sources. Presynaptic receptors for angiotensin (AT1, vasopressin (V1a, oxytocin (OT, opioid (MOR, ghrelin (GHSR1 and cholecystokinin (CCK differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 (TRPV1 and the cannabinoid receptor (CB1 that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.

  12. Direct and indirect regulation of spinal cord Ia afferent terminal formation by the γ-Protocadherins

    Directory of Open Access Journals (Sweden)

    Tuhina ePrasad

    2011-12-01

    Full Text Available The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons, do not undergo excessive apoptosis in Pcdh-γdel/del null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants are expanded, clumped, and fill the space between individual motor neurons; quantitative analysis shows a ~2.5 fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons, many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of ventral interneurons, which act as intermediate Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for ventral interneurons; Hb9-Cre for motor neurons also revealed a direct requirement for the γ-Pcdhs in Ia neurons and ventral interneurons, but not in motor neurons themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of ventral interneurons that act as intermediate Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target ventral interneurons.

  13. Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons

    Science.gov (United States)

    Dickman, J. D.

    1996-01-01

    Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the

  14. Pathology of the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    De Foer, Bert [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: bert.defoer@GZA.be; Kenis, Christoph [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: christophkenis@hotmail.com; Van Melkebeke, Deborah [Department of Neurology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Deborah.vanmelkebeke@Ugent.be; Vercruysse, Jean-Philippe [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: jphver@yahoo.com; Somers, Thomas [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Thomas.somers@GZA.be; Pouillon, Marc [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: marc.pouillon@GZA.be; Offeciers, Erwin [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Erwin.offeciers@GZA.be; Casselman, Jan W. [Department of Radiology, AZ Sint-Jan AV Hospital, Ruddershove 10, Bruges (Belgium); Consultant Radiologist, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium); Academic Consultent, University of Ghent (Belgium)], E-mail: jan.casselman@azbrugge.be

    2010-05-15

    There is a large scala of pathology affecting the vestibulocochlear nerve. Magnetic resonance imaging is the method of choice for the investigation of pathology of the vestibulocochlear nerve. Congenital pathology mainly consists of agenesis or hypoplasia of the vestibulocochlear nerve. Tumoral pathology affecting the vestibulocochlear nerve is most frequently located in the internal auditory canal or cerebellopontine angle. Schwannoma of the vestibulocochlear nerve is the most frequently found tumoral lesion followed by meningeoma, arachnoid cyst and epidermoid cyst. The most frequently encountered pathologies as well as some more rare entities are discussed in this chapter.

  15. Angiotensin-(1-7 in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Ying Han

    Full Text Available BACKGROUND: Excessive sympathetic activity contributes to the pathogenesis and progression of hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR is involved in sympathetic activation. This study was designed to determine the roles of angiotensin (Ang-(1-7 in paraventricular nucleus (PVN in modulating sympathetic activity and CSAR and its signal pathway in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Renovascular hypertension was induced with two-kidney, one-clip method. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded in sinoaortic-denervated and cervical-vagotomized rats with anesthesia. CSAR was evaluated with the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of Ang-(1-7 and cAMP analogue db-cAMP caused greater increases in RSNA and MAP, and enhancement in CSAR in hypertensive rats than in sham-operated rats, while Mas receptor antagonist A-779 produced opposite effects. There was no significant difference in the angiotensin-converting enzyme 2 (ACE2 activity and Ang-(1-7 level in the PVN between sham-operated rats and hypertensive rats, but the Mas receptor protein expression in the PVN was increased in hypertensive rats. The effects of Ang-(1-7 were abolished by A-779, adenylyl cyclase inhibitor SQ22536 or protein kinase A (PKA inhibitor Rp-cAMP. SQ22536 or Rp-cAMP reduced RSNA and MAP in hypertensive rats, and attenuated the CSAR in both sham-operated and hypertensive rats. CONCLUSIONS: Ang-(1-7 in the PVN increases RSNA and MAP and enhances the CSAR, which is mediated by Mas receptors. Endogenous Ang-(1-7 and Mas receptors contribute to the enhanced sympathetic outflow and CSAR in renovascular hypertension. A cAMP-PKA pathway is involved in the effects of Ang-(1-7 in the PVN.

  16. Evidence of the Primary Afferent Tracts Undergoing Neurodegeneration in Horses With Equine Degenerative Myeloencephalopathy Based on Calretinin Immunohistochemical Localization.

    Science.gov (United States)

    Finno, C J; Valberg, S J; Shivers, J; D'Almeida, E; Armién, A G

    2016-01-01

    Equine degenerative myeloencephalopathy (EDM) is characterized by a symmetric general proprioceptive ataxia in young horses, and is likely underdiagnosed for 2 reasons: first, clinical signs overlap those of cervical vertebral compressive myelopathy; second, histologic lesions--including axonal spheroids in specific tracts of the somatosensory and motor systems--may be subtle. The purpose of this study was (1) to utilize immunohistochemical (IHC) markers to trace axons in the spinocuneocerebellar, dorsal column-medial lemniscal, and dorsospinocerebellar tracts in healthy horses and (2) to determine the IHC staining characteristics of the neurons and degenerated axons along the somatosensory tracts in EDM-affected horses. Examination of brain, spinal cord, and nerves was performed on 2 age-matched control horses, 3 EDM-affected horses, and 2 age-matched disease-control horses via IHC for calbindin, vesicular glutamate transporter 2, parvalbumin, calretinin, glutamic acid decarboxylase, and glial fibrillary acidic protein. Primary afferent axons of the spinocuneocerebellar, dorsal column-medial lemniscal, and dorsospinocerebellar tracts were successfully traced with calretinin. Calretinin-positive cell bodies were identified in a subset of neurons in the dorsal root ganglia, suggesting that calretinin IHC could be used to trace axonal projections from these cell bodies. Calretinin-immunoreactive spheroids were present in EDM-affected horses within the nuclei cuneatus medialis, cuneatus lateralis, and thoracicus. Neurons within those nuclei were calretinin negative. Cell bodies of degenerated axons in EDM-affected horses are likely located in the dorsal root ganglia. These findings support the role of sensory axonal degeneration in the pathogenesis of EDM and provide a method to highlight tracts with axonal spheroids to aid in the diagnosis of this neurodegenerative disease. PMID:26253880

  17. Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development.

    Science.gov (United States)

    Flores, A; Manilla, S; Huidobro, N; De la Torre-Valdovinos, B; Kristeva, R; Mendez-Balbuena, I; Galindo, F; Treviño, M; Manjarrez, E

    2016-05-13

    The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development. PMID:26926966

  18. Gastroesophageal Variceal Filling and Drainage Pathways: An Angiographic Description of Afferent and Efferent Venous Anatomic Patterns

    OpenAIRE

    Gaba, Ron C.; Couture, Patrick M; Janesh Lakhoo

    2015-01-01

    Varices commonly occur in liver cirrhosis patients and are classified as esophageal (EV), gastroesophageal (GEV), or isolated gastric (IGV) varices. These vessels may be supplied and drained by several different afferent and efferent pathways. A working knowledge of variceal anatomy is imperative for Interventional Radiologists performing transjugular intrahepatic portosystemic shunt and embolization/obliteration procedures. This pictorial essay characterizes the angiographic anatomy of varic...

  19. A binocular pupil model for simulation of relative afferent pupil defect, RAPD.

    Science.gov (United States)

    Privitera, Claudio M; Stark, Lawrence W

    2004-01-01

    The human pupil is an important element studied in many clinical procedures. The binocular pupil model presented has a topology encompassing much of the complexity of the pupil system neurophysiology. The dynamic parameters of the model were matched against pupil experiments under multiple conditions. It simulates responses to the swinging flashlight test for different degrees of relative afferent pupil defects, RAPD. PMID:17271776

  20. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

    Science.gov (United States)

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J

    2016-06-15

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells. J. Comp. Neurol. 524:1892-1919, 2016. © 2016 Wiley Periodicals, Inc. PMID:26660356

  1. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice

    DEFF Research Database (Denmark)

    Oppermann, Mona; Hansen, Pernille B; Castrop, Hayo; Schnermann, Jurgen

    2007-01-01

    Loop diuretics like furosemide have been shown to cause renal vasodilatation in dogs and humans, an effect thought to result from both a direct vascular dilator effect and from inhibition of tubuloglomerular feedback. In isolated perfused afferent arterioles preconstricted with angiotensin II or N...... capillaries by the expanding tubular compartment are responsible for the reduction of RBF in vivo....

  2. Differential Role of Inhibition in Habituation of Two Independent Afferent Pathways to a Common Motor Output

    Science.gov (United States)

    Bristol, Adam S.; Carew, Thomas J.

    2005-01-01

    Many studies of the neural mechanisms of learning have focused on habituation, a simple form of learning in which a response decrements with repeated stimulation. In the siphon-elicited siphon withdrawal reflex (S-SWR) of the marine mollusk "Aplysia," the prevailing view is that homosynaptic depression of primary sensory afferents underlies…

  3. Effect of tyrosine kinase blockade on norepinephrine-induced cytosolic calcium response in rat afferent arterioles

    DEFF Research Database (Denmark)

    Salomonsson, Max; Arendshorst, William J

    2004-01-01

    We used genistein (Gen) and tyrphostin 23 (Tyr-23) to evaluate the importance of tyrosine phosphorylation in norepinephrine (NE)-induced changes in intracellular free calcium concentration ([Ca(2+)](i)) in rat afferent arterioles. [Ca(2+)](i) was measured in microdissected arterioles using ratiom...

  4. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve

    Science.gov (United States)

    McCulloch, Paul F.; Warren, Erik A.; DiNovo, Karyn M.

    2016-01-01

    This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response. PMID:27148082

  5. Optic nerve hypoplasia

    Directory of Open Access Journals (Sweden)

    Savleen Kaur

    2013-01-01

    Full Text Available Optic nerve hypoplasia (ONH is a congenital anomaly of the optic disc that might result in moderate to severe vision loss in children. With a vast number of cases now being reported, the rarity of ONH is obviously now refuted. The major aspects of ophthalmic evaluation of an infant with possible ONH are visual assessment, fundus examination, and visual electrophysiology. Characteristically, the disc is small, there is a peripapillary double-ring sign, vascular tortuosity, and thinning of the nerve fiber layer. A patient with ONH should be assessed for presence of neurologic, radiologic, and endocrine associations. There may be maternal associations like premature births, fetal alcohol syndrome, maternal diabetes. Systemic associations in the child include endocrine abnormalities, developmental delay, cerebral palsy, and seizures. Besides the hypoplastic optic nerve and chiasm, neuroimaging shows abnormalities in ventricles or white- or gray-matter development, septo-optic dysplasia, hydrocephalus, and corpus callosum abnormalities. There is a greater incidence of clinical neurologic abnormalities in patients with bilateral ONH (65% than patients with unilateral ONH. We present a review on the available literature on the same to urge caution in our clinical practice when dealing with patients with ONH. Fundus photography, ocular coherence tomography, visual field testing, color vision evaluation, neuroimaging, endocrinology consultation with or without genetic testing are helpful in the diagnosis and management of ONH. (Method of search: MEDLINE, PUBMED.

  6. Optic nerve hypoplasia.

    Science.gov (United States)

    Kaur, Savleen; Jain, Sparshi; Sodhi, Harsimrat B S; Rastogi, Anju; Kamlesh

    2013-05-01

    Optic nerve hypoplasia (ONH) is a congenital anomaly of the optic disc that might result in moderate to severe vision loss in children. With a vast number of cases now being reported, the rarity of ONH is obviously now refuted. The major aspects of ophthalmic evaluation of an infant with possible ONH are visual assessment, fundus examination, and visual electrophysiology. Characteristically, the disc is small, there is a peripapillary double-ring sign, vascular tortuosity, and thinning of the nerve fiber layer. A patient with ONH should be assessed for presence of neurologic, radiologic, and endocrine associations. There may be maternal associations like premature births, fetal alcohol syndrome, maternal diabetes. Systemic associations in the child include endocrine abnormalities, developmental delay, cerebral palsy, and seizures. Besides the hypoplastic optic nerve and chiasm, neuroimaging shows abnormalities in ventricles or white- or gray-matter development, septo-optic dysplasia, hydrocephalus, and corpus callosum abnormalities. There is a greater incidence of clinical neurologic abnormalities in patients with bilateral ONH (65%) than patients with unilateral ONH. We present a review on the available literature on the same to urge caution in our clinical practice when dealing with patients with ONH. Fundus photography, ocular coherence tomography, visual field testing, color vision evaluation, neuroimaging, endocrinology consultation with or without genetic testing are helpful in the diagnosis and management of ONH. (Method of search: MEDLINE, PUBMED). PMID:24082663

  7. Nerve conduction and excitability studies in peripheral nerve disorders

    DEFF Research Database (Denmark)

    Krarup, Christian; Moldovan, Mihai

    2009-01-01

    counterparts in the peripheral nervous system, in some instances without peripheral nervous system symptoms. Both hereditary and acquired demyelinating neuropathies have been studied and the effects on nerve pathophysiology have been compared with degeneration and regeneration of axons. SUMMARY: Excitability....... Studies of different metabolic neuropathies have assessed the influence of uremia, diabetes and ischemia, and the use of these methods in toxic neuropathies has allowed pinpointing damaging factors. Various mutations in ion channels associated with central nervous system disorders have been shown to have......PURPOSE OF REVIEW: The review is aimed at providing information about the role of nerve excitability studies in peripheral nerve disorders. It has been known for many years that the insight into peripheral nerve pathophysiology provided by conventional nerve conduction studies is limited. Nerve...

  8. Repair of sciatic nerve defects using tissue engineered nerves

    OpenAIRE

    Zhang, Caishun; Lv, Gang

    2013-01-01

    In this study, we constructed tissue-engineered nerves with acellular nerve allografts in Sprague-Dawley rats, which were prepared using chemical detergents-enzymatic digestion and mechanical methods, in combination with bone marrow mesenchymal stem cells of Wistar rats cultured in vitro, to repair 15 mm sciatic bone defects in Wistar rats. At postoperative 12 weeks, electrophysiological detection results showed that the conduction velocity of regenerated nerve after repair with tissue-engine...

  9. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    Science.gov (United States)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (neurons peaked in phase with linear velocity, in contrast to primary afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements. The fact that otolith-only central neurons with "high

  10. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  11. THE ROLE OF NUCLEUS RAPHE MAGNUS IN THE ANTINOCICEPTIVE EFFECT OF MUSCLE SPINDLE AFFERENTS IN THE RAT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To investigate the role of NRM in the antinociceptive effect of muscle spindle afferents, the influence of NRM lesion on the inhibitory effect of muscle spindle afferents on the nociceptive responses of wide dynamic range (WDR) neurons and the effects of the muscle spindle afferents on the NRM neuronal activities were observed. Methods The single units of WDR neurons in the spinal dorsal horn were recorded extracellularly, and the inhibitory effects of activating muscle spindle afferents by intravenous administration of succinyicholine (SCH) on the C-fibers evoked responses (C-responses) of WDR neurons were tested before and after lesion of NRM. The ef- fects of the muscle spindle afferents activated by administrating SCH on the single NRM neurons were also examined. Results ①lt was found that the C-responses of WDR neurons were significantly inhibited by intravenously adminis- tration of SCH, and the inhibitory effect was reduced after lesion of NRM ;②The activities of most of the NRM neu- rons could be changed significantly by administrating SCH. According to their responses, NRM neurons could be classified into three types:excitatory, inhibitory and non-responsive neurons, and the responses were dose-depen- dent. Conclusion These results suggest that the muscle spindle afferents evoked by SCH may activate the NRM neu- rons, which plays an important role in the antinociception of muscle spindle afferents.

  12. [Active selection of afferent information--the principle underlying peripheral correction of the function of spinal generators of rhythmic movements].

    Science.gov (United States)

    Baev, K V

    1984-01-01

    The paper presents data obtained in experiments on the study of primary afferent depolarization and retuning of segmental reactions to afferent signals during fictitious locomotion and fictitious scratching in immobilized decorticated, decerebrated and spinal cats. Fictitious locomotion was accompanied by sustained hyperpolarization, while fictitious scratching--by sustained depolarization of primary afferent central terminals. On the background of tonic changes periodic waves of primary afferent depolarization coinciding with the rhythm of efferent activity were observed. In different ipsilateral lumbosacral segments these periodic waves occurred in phase. The data are presented about the groups of afferent fibres in which central endings display tonic and phasic changes of primary afferent depolarization. Fictitious locomotion led to tonic increase and fictitious scratching--to tonic decrease in a number of evoked segmental reflex reactions. These tonic changes served as the background on which segmental reactions were modulated with the rhythm of locomotor and scratching generators. It is shown that the modulation of polarization of central primary endings by locomotor and scratching generators is the reason for many changes in reflex reactions. The conclusion is made that due to modulation of presynaptic inhibition the generators perform an active tonic and phase-dependent selection of afferent information. The role of such active selection in the peripheral correction of the function of locomotor and scratching generators is discussed. PMID:6462286

  13. Altered neuronatin expression in the rat dorsal root ganglion after sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    Wu Chih-Hsien

    2010-05-01

    Full Text Available Abstract Background Several molecular changes occur following axotomy, such as gene up-regulation and down-regulation. In our previous study using Affymetrix arrays, it was found that after the axotomy of sciatic nerve, there were many novel genes with significant expression changes. Among them, neuronatin (Nnat was the one which expression was significantly up-regulated. Nnat was identified as a gene selectively expressed in neonatal brains and markedly reduced in adult brains. The present study investigated whether the expression of Nnat correlates with symptoms of neuropathic pain in adult rats with transected sciatic nerve. Methods Western blotting, immunohistochemistry, and the Randall and Selitto test were used to study the protein content, and subcellular localization of Nnat in correlation with pain-related animal behavior. Results It was found that after nerve injury, the expression of Nnat was increased in total protein extracts. Unmyelinated C-fiber and thinly myelinated A-δ fiber in adult dorsal root ganglions (DRGs were the principal sub-population of primary afferent neurons with distributed Nnat. The increased expression of Nnat and its subcellular localization were related to mechanical hyperalgesia. Conclusions The results indicated that there was significant correlation between mechanical hyperalgesia in axotomy of sciatic nerve and the increased expression of Nnat in C-fiber and A-δ fiber of adult DRG neurons.

  14. Microengineered peripheral nerve-on-a-chip for preclinical physiological testing.

    Science.gov (United States)

    Huval, Renee M; Miller, Oliver H; Curley, J Lowry; Fan, Yuwei; Hall, Benjamin J; Moore, Michael J

    2015-05-21

    The use of advanced in vitro testing is a powerful tool to develop predictive cellular assays suitable for improving the high attrition rates of novel pharmaceutical compounds. A microscale, organotypic model of nerve tissue with physiological measures that mimic clinical nerve compound action potential (CAP) and nerve fiber density (NFD) tests may be more predictive of clinical outcomes, enabling a more cost-effective approach for selecting promising lead compounds with higher chances of late-stage success. However, the neurological architecture, physiology, and surrounding extracellular matrix are hard to mimic in vitro. Using a dual hydrogel construct and explants from rat embryonic dorsal root ganglia, the present study describes an in vitro method for electrophysiological recording of intra- and extra-cellular recordings using a spatially-controlled, microengineered sensory neural fiber tract. Specifically, these 3D neural cultures exhibit both structural and functional characteristics that closely mimic those of afferent sensory peripheral fibers found in vivo. Our dual hydrogel system spatially confines growth to geometries resembling nerve fiber tracts, allowing for a high density of parallel, fasciculated neural growth. Perhaps more importantly, outputs resembling clinically relevant test criteria, including the measurement of CAP and NFD are possible through our advanced model. Moreover, the 3D hydrogel constructs allow flexibility in incorporated cell type, geometric fabrication, and electrical manipulation, providing a viable assay for systematic culture, perturbation, and testing of biomimetic neural growth for mechanistic studies necessitating physiologically-relevant readouts. PMID:25850799

  15. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat.

    Science.gov (United States)

    Millhorn, D E

    1986-12-01

    1. The respiratory response, measured as integrated phrenic nerve activity, during and for up to an hour following 10 min of continuous electrical stimulation of raphe obscurus was quantitated in anaesthetized, artificially ventilated cats whose carotid sinus nerves and vagus nerves had been cut. End-tidal PCO2 and body temperature were kept constant with servocontrollers. 2. Stimulation of raphe obscurus caused a significant increase in both phrenic tidal activity and respiratory frequency that persisted following cessation of the stimulus. This persistent facilitation is referred to as 'long-term potentiation' of respiration. 3. Control stimulations in the parenchyma of the medulla oblongata failed to stimulate respiration and cause the long-term potentiation. 4. Both the direct facilitatory effects of raphe obscurus stimulation on phrenic nerve activity and the long-term potentiation of respiration following the stimulus were prevented by pre-treating cats with methysergide, a serotonin receptor antagonist. 5. The results are discussed in terms of the raphe obscurus being the potential source of the long-term potentiation of respiration that occurs following stimulation of carotid body afferents (Millhorn, Eldridge & Waldrop, 1980a, b). PMID:3114470

  16. Percutaneous Transhepatic Duodenal Drainage as an Alternative Approach in Afferent Loop Obstruction with Secondary Obstructive Jaundice in Recurrent Gastric Cancer

    International Nuclear Information System (INIS)

    Two cases are reported of chronic, partial afferent loop obstruction with resultant obstructive jaundice in recurrent gastric cancer. The diagnosis was made by characteristic clinical presentations, abdominal computed tomography, and cholescintigraphy. Percutaneous transhepatic duodenal drainage (PTDD) provided effective palliation for both afferent loop obstruction and biliary stasis. We conclude that cholescintigraphy is of value in making the diagnosis of partial afferent loop obstruction and in differentiating the cause of obstructive jaundice in such patients, and PTDD provides palliation for those patients in whom surgical intervention is not feasible

  17. Trigeminal nerve schwannoma

    Directory of Open Access Journals (Sweden)

    Prashant Kashyap

    2016-05-01

    Full Text Available Trigeminal schwannomas are uncommon slow growing encapsulated tumours composed of schwann cells. Trigeminal schwannomas are the second most common type of schwannoma, after the far more common acoustic schwannoma. In this case definite diagnosis could not be made after 1 CT (computerized tomography scan and 3 MRI (magnetic resonance imaging (outside hospital but finally after proper clinical examination and discussion with radiologist about the best diagnostic imaging in this case we reached to a diagnosis of trigeminal nerve schwannoma after MRI brain with contrast. [Int J Res Med Sci 2016; 4(5.000: 1739-1741

  18. An unusual ulnar nerve-median nerve communicating branch.

    OpenAIRE

    Hoogbergen, M M; Kauer, J M

    1992-01-01

    Branching of the ulnar nerve distal to the origin of the dorsal cutaneous branch was investigated in 25 hands in one of which an anatomical variation was observed. This finding may be of importance in the evaluation of certain entrapment phenomena of the ulnar nerve or unexplained sensory loss after trauma or surgical intervention in that particular area.

  19. Effect of superficial radial nerve stimulation on the activity of nigro-striatal dopaminergic neurons in the cat: role of cutaneous sensory input

    International Nuclear Information System (INIS)

    The release of 3H-dopamine (DA) continuously synthesized from 3H-thyrosine was measured in the caudate nucleus (CN) and in the substantia nigra (SN) in both sides of the brain during electrical stimulation of the superficial radial nerve in cats lightly anaesthetized with halothane. Use of appropriate electrophysiologically controlled stimulation led to selective activation of low threshold afferent fibers whereas high stimulation activated all cutaneous afferents. Results showed that low threshold fiber activation induced a decreased dopaminergic activity in CN contralateral to nerve stimulation and a concomitant increase in dopaminergic activity on the ipsilateral side. Stimulation of group I and threshold stimulation of group II afferent fibers induced changes in the release of 3H-DA mainly on the contralateral CN and SN and in the ipsilateral CN. High stimulation was followed by a general increase of the neurotransmitter release in the four structures. This shows that the nigro-striatal dopaminergic neurons are mainly-if not exclusively-controlled by cutaneous sensory inputs. This control, non-specific when high threshold cutaneous fibers are also activated. Such activations could contribute to restablish sufficient release of DA when the dopaminergic function is impaired as in Parkinson's disease. (Author)

  20. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity

    OpenAIRE

    Gross, Noah B.; Duncker, Patrick C.; Marshall, John F.

    2011-01-01

    Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce non-exocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAM...

  1. Peripheral nerve: from the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure.

    Science.gov (United States)

    Topp, Kimberly S; Boyd, Benjamin S

    2012-01-01

    Peripheral nerves are composed of motor and sensory axons, associated ensheathing Schwann cells, and organized layers of connective tissues that are in continuity with the tissues of the central nervous system. Nerve fiber anatomy facilitates conduction of electrical impulses to convey information over a distance, and the length of these polarized cells necessitates regulated axonal transport of organelles and structural proteins for normal cell function. Nerve connective tissues serve a protective function as the limb is subjected to the stresses of myriad limb positions and postures. Thus, the tissues are uniquely arranged to control the local nerve fiber environment and modulate physical stresses. In this brief review, we describe the microscopic anatomy and physiology of peripheral nerve and the biomechanical properties that enable nerve to withstand the physical stresses of everyday life. PMID:22133662

  2. L-carnitine alleviates sciatic nerve crush injury in rats:functional and electron microscopy assessments

    Institute of Scientific and Technical Information of China (English)

    Ümmü Zeynep Avsar; Umit Avsar; Ali Aydin; Muhammed Yayla; Berna Ozturkkaragoz; Harun Un; Murat Saritemur; Tolga Mercantepe

    2014-01-01

    Several studies have demonstrated that L-carnitine exhibits neuroprotective effects on injured sciatic nerve of rats with diabetes mellitus. It is hypothesized that L-carnitine exhibits neuro-protective effects on injured sciatic nerve of rats. Rat sciatic nerve was crush injured by a forceps and exhibited degenerative changes. After intragastric administration of 50 and 100 mg/kg L-carnitine for 30 days, axon area, myelin sheath area, axon diameter, myelin sheath diameter, and numerical density of the myelinated axons of injured sciatic nerve were similar to normal, and the function of injured sciatic nerve also improved signiifcantly. These ifndings suggest that L-carnitine exhibits neuroprotective effects on sciatic nerve crush injury in rats.

  3. Isolated cranial nerve palsies in multiple sclerosis

    OpenAIRE

    Zadro, Ivana; Barun, Barbara; Habek, Mario; Brinar, Vesna V.

    1997-01-01

    During a 10 year period 24 patients with definite multiple sclerosis with isolated cranial nerve palsies were studied (third and fourth nerve: one patient each, sixth nerve: 12 patients, seventh nerve: three patients, eighth nerve: seven patients), in whom cranial nerve palsies were the presenting sign in 14 and the only clinical sign of an exacerbation in 10 patients. MRI was carried out in 20 patients and substantiated corresponding brainstem lesions in seven patients (...

  4. Autonomic nervous regulation of ovarian function by noxious somatic afferent stimulation

    OpenAIRE

    Uchida, Sae; Kagitani, Fusako

    2014-01-01

    It is well known that ovarian function is regulated by hypothalamic–pituitary–ovarian hormones. However, although several histological studies have described the autonomic innervation of the ovary, the involvement of these autonomic nerves in ovarian function is unclear. Recently, it has been shown that both the superior ovarian nerve (SON) and the ovarian nerve plexus (ONP) induce vasoconstrictor activity by activation of alpha 1-adrenoceptors, whereas the SON, but not the ONP, inhibits ovar...

  5. Efficacy of Endoscopically Created Bypass Anastomosis in Treatment of Afferent Limb Syndrome: A Single-Center Study.

    Science.gov (United States)

    Rodrigues-Pinto, Eduardo; Grimm, Ian S; Baron, Todd H

    2016-04-01

    Afferent limb syndrome is a postoperative complication of gastrointestinal surgery, resulting from obstruction of a biliary-enteric limb. Surgery has been the cornerstone of treatment for this condition, but advances in endoscopic and percutaneous techniques could offer less-invasive options. Creation of an internal endoscopic anastomosis between the obstructed afferent limb and an adjacent gastrointestinal lumen can relieve symptoms and might provide a long-term solution. We report the efficacy of endoscopic treatment of afferent limb syndrome using lumen-apposing self-expandable metal stents to create 3 types of enteric anastomoses: a jejunojejunostomy, 2 gastrojejunostomies, and a duodenuojejunostomy in patients who developed afferent limb obstruction following a resection for pancreaticobiliary cancer. PMID:26674590

  6. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene;

    2007-01-01

    calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas the...... protein kinase C inhibitor calphostin C had no effect. The calcium-activated chloride channel inhibitor IAA-94 (30 microM) inhibited the adenosine-mediated constriction. Patch clamp experiments showed that adenosine treatment induced a depolarizing current in preglomerular smooth muscle cells which was....... METHODS AND RESULTS: Adenosine (10(-7) M) significantly increased the intracellular calcium concentration in mouse isolated afferent arterioles measured by fura-2 fluorescence. Pre-treatment with thapsigargin (2 microM) blocked the vasoconstrictor action of adenosine (10(-7) M) indicating that release of...

  7. Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Lan Bao

    2012-01-01

    μ-opioid receptor (MOR) agonists such as morphine are powerful analgesics used for pain therapy.However,the use of these drugs is limited by their side-effects,which include antinociceptive tolerance and dependence.Earlier studies reported that MOR analgesic tolerance is reduced by blockade of δ-opioid receptors (DORs) that interact with MORs.Recent studies show that the MOR/DOR interaction in nociceptive afferent neurons in the dorsal root ganglion may contribute to morphine analgesic tolerance.Further analysis of the mechanisms for regulating the trafficking of receptors,ion channels and signaling molecules in nociceptive afferent neurons would help to understand the nociceptive mechanisms and improve pain therapy.

  8. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    Science.gov (United States)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  9. Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair.

    Science.gov (United States)

    Vivó, Meritxell; Puigdemasa, Antoni; Casals, Laura; Asensio, Elena; Udina, Esther; Navarro, Xavier

    2008-05-01

    We have studied whether electrical stimulation immediately after nerve injury may enhance axonal regeneration and modulate plastic changes at the spinal cord level underlying the appearance of hyperreflexia. Two groups of adult rats were subjected to sciatic nerve section followed by suture repair. One group (ES) received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h after injury. A second group served as control (C). Nerve conduction, H reflex, motor evoked potentials, and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. The electrophysiological results showed higher levels of reinnervation, and histological results a significantly higher number of regenerated myelinated fibers in the distal tibial nerve in group ES in comparison with group C. The monosynaptic H reflex was facilitated in the injured limb, to a higher degree in group C than in group ES. The amplitudes of motor evoked potentials were similar in both groups, although the MEP/M ratio was increased in group C compared to group ES, indicating mild central motor hyperexcitability. Immunohistochemical labeling of sensory afferents in the spinal cord dorsal horn showed prevention of the reduction in expression of substance P at one month postlesion in group ES. In conclusion, brief electrical stimulation applied after sciatic nerve injury promotes axonal regeneration over a long distance and reduces facilitation of spinal motor responses. PMID:18316076

  10. Adipose derived stem cells and nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  11. Ultrasound-Guided Peripheral Nerve Procedures.

    Science.gov (United States)

    Strakowski, Jeffrey A

    2016-08-01

    Ultrasound guidance allows real-time visualization of the needle in peripheral nerve procedures, improving accuracy and safety. Sonographic visualization of the peripheral nerve and surrounding anatomy can provide valuable information for diagnostic purposes and procedure enhancement. Common procedures discussed are the suprascapular nerve at the suprascapular notch, deep branch of the radial nerve at the supinator, median nerve at the pronator teres and carpal tunnel, lateral cutaneous nerve of the thigh, superficial fibular nerve at the leg, tibial nerve at the ankle, and interdigital neuroma. For each procedure, the indications, relevant anatomy, preprocedural scanning technique, and injection procedure itself are detailed. PMID:27468673

  12. Temperature differentially facilitates spontaneous but not evoked glutamate release from cranial visceral primary afferents.

    Directory of Open Access Journals (Sweden)

    Jessica A Fawley

    Full Text Available Temperature is fundamentally important to all biological functions including synaptic glutamate release. Vagal afferents from the solitary tract (ST synapse on second order neurons in the nucleus of the solitary tract, and glutamate release at this first central synapse controls autonomic reflex function. Expression of the temperature-sensitive Transient Receptor Potential Vanilloid Type 1 receptor separates ST afferents into C-fibers (TRPV1+ and A-fibers (TRPV1-. Action potential-evoked glutamate release is similar between C- and A-fiber afferents, but TRPV1 expression facilitates a second form of synaptic glutamate release in C-fibers by promoting substantially more spontaneous glutamate release. The influence of temperature on different forms of glutamate release is not well understood. Here we tested how temperature impacts the generation of evoked and spontaneous release of glutamate and its relation to TRPV1 expression. In horizontal brainstem slices of rats, activation of ST primary afferents generated synchronous evoked glutamate release (ST-eEPSCs at constant latency whose amplitude reflects the probability of evoked glutamate release. The frequency of spontaneous EPSCs in these same neurons measured the probability of spontaneous glutamate release. We measured both forms of glutamate from each neuron during ramp changes in bath temperature of 4-5 °C. Spontaneous glutamate release from TRPV1+ closely tracked with these thermal changes indicating changes in the probability of spontaneous glutamate release. In the same neurons, temperature changed axon conduction registered as latency shifts but ST-eEPSC amplitudes were constant and independent of TRPV1 expression. These data indicate that TRPV1-operated glutamate release is independent of action potential-evoked glutamate release in the same neurons. Together, these support the hypothesis that evoked and spontaneous glutamate release originate from two pools of vesicles that are

  13. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    Science.gov (United States)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements. The fact that otolith-only central neurons with "high-pass" filter properties exhibit semicircular canal-like dynamics during head tilts might have important consequences for the conclusions of previous studies of sensory convergence and sensorimotor transformations in central vestibular neurons.

  14. Spinal efferents and afferents of the periaqueductal gray: Possible role in pain, sex and micturition

    OpenAIRE

    Mouton, Leonora Johanna

    1999-01-01

    The present thesis presents new direct spinal efferent pathways from and afferent pathways to the periaqueductal gray (PAG). The PAG plays an important role in the control of emotional behavior. The PAG is also well known for its role in the control of nociception: stimulation of the PAG can inhibit pain. The present work has been done with the aim to precisely determine the pathways that the PAG uses to control such emotional behaviors. ... Zie: Summary

  15. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat

    OpenAIRE

    Zhou, Shi-Yi; Lu, Yuan-Xu; Owyang, Chung

    2008-01-01

    Hyperglycemia has a profound effect on gastric motility. However, little is known about site and mechanism that sense alteration in blood glucose level. The identification of glucose-sensing neurons in the nodose ganglia led us to hypothesize that hyperglycemia acts through vagal afferent pathways to inhibit gastric motility. With the use of a glucose clamp rat model, we showed that glucose decreased intragastric pressure in a dose-dependent manner. In contrast to intravenous infusion of gluc...

  16. Afferent and Efferent Connections of the Optic Tectum in the Carp (Cyprinus carpio L.)

    OpenAIRE

    Luiten, P.G.M.

    1981-01-01

    The afferent and efferent connections of the tectum opticum in the carp (Cyprinus carpio L.) were studied with the HRP method. Following iontophoretic peroxidase injections in several parts of the rectum anterograde transport of the enzyme revealed tectal projections to the lateral geniculate nucleus, dorsal tegmentum, pretectal nuclei, nucleus rotundus, torus longitudinalis, torus semicircularis, nucleus isthmi, contralateral tectum and to the mesencephalic and bulbar reticular formations. T...

  17. Regulation of Piezo2 Mechanotransduction by Static Plasma Membrane Tension in Primary Afferent Neurons.

    Science.gov (United States)

    Jia, Zhanfeng; Ikeda, Ryo; Ling, Jennifer; Viatchenko-Karpinski, Viacheslav; Gu, Jianguo G

    2016-04-22

    The Piezo2 channel is a newly identified mammalian mechanical transducer that confers rapidly adapting mechanically activated (RA-MA) currents in primary afferent neurons. The Piezo2 channels sense rapid membrane displacement, but it is not clear whether they are sensitive to osmotic swelling, which slowly increases static plasma membrane tension (SPMT). Here, we show that SPMT exerts a profound impact on the mechanical sensitivity of RA-MA channels in primary afferent neurons. RA-MA currents are greatly enhanced, and the mechanical threshold was reduced in both primary afferent neurons of rat dorsal root ganglia (DRG) and HEK293 cells heterologously expressing Piezo2 when these cells undergo osmotic swelling to increase SPMT. Osmotic swelling switches the kinetics of RA-MA currents to the slowly adapting type in both cultured DRG neurons and HEK293 cells heterologously expressing Piezo2. The potentiation of RA-MA currents is abolished when cultured DRG neurons are treated with cytochalasin D, an actin filament disruptor that prevents SPMT of cultured DRG neurons from an increase by osmotic swelling. Osmotic swelling significantly increases DRG neuron mechano-excitability such that a subthreshold mechanical stimulus can result in action potential firing. Behaviorally, the mechanical hind paw withdrawal threshold in rats is reduced following the injection of a hypotonic solution, but this osmotic effect is abolished when cytochalasin D or Gd(3+) is co-administered with the hypo-osmotic solution. Taken together, our findings suggest that Piezo2-mediated mechanotransduction is regulated by SPMT in primary afferent neurons. Because SPMT can be changed by multiple biological factors, our findings may have broad implications in mechanical sensitivity under physiological and pathological conditions. PMID:26929410

  18. Population coding of forelimb joint kinematics by peripheral afferents in monkeys.

    Directory of Open Access Journals (Sweden)

    Tatsuya Umeda

    Full Text Available Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates.

  19. Differential role of inhibition in habituation of two independent afferent pathways to a common motor output

    OpenAIRE

    Bristol, Adam S.; Carew, Thomas J.

    2005-01-01

    Many studies of the neural mechanisms of learning have focused on habituation, a simple form of learning in which a response decrements with repeated stimulation. In the siphon-elicited siphon withdrawal reflex (S-SWR) of the marine mollusk Aplysia, the prevailing view is that homosynaptic depression of primary sensory afferents underlies short-term habituation. Here we examined whether this mechanism is also utilized in habituation of the tail-elicited siphon withdrawal reflex (T-SWR), which...

  20. Calcium-dependent synaptic vesicle trafficking underlies indefatigable release at the hair cell afferent fiber synapse

    OpenAIRE

    Schnee, M.E.; Santos-Sacchi, J; Castellano-Muñoz, M.; Kong, J-H.; Ricci, A.J.

    2011-01-01

    Sensory hair cell ribbon synapses respond to graded stimulation in a linear, indefatigable manner, requiring that vesicle trafficking to synapses is rapid and non rate limiting. Real time monitoring of vesicle fusion identified two release components. The first was saturable with both release rate and magnitude varying linearly with Ca2+, however the magnitude was too small to account for sustained afferent firing rates. A second superlinear release component required recruitment, in a Ca2+-d...

  1. Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius

    OpenAIRE

    Wang, Wei-zhong; Gao, Lie; Pan, Yan-Xia; Zucker, Irving H.; Wang, Wei

    2006-01-01

    Activation of the cardiac “sympathetic afferent” reflex (CSAR) has been reported to depress the arterial baroreflex and enhance the arterial chemoreflex via a central mechanism. In the present study, we used single-unit extracellular recording techniques to examine the effects of stimulation of cardiac sympathetic afferents on baro- or chemosensitive neurons in the nucleus tractus solitarius (NTS) in anesthetized rats. Of 54 barosensitive NTS neurons tested for their response to epicardial ap...

  2. Effect of estrogen on vagal afferent projections to the brainstem in the female.

    Science.gov (United States)

    Ciriello, John; Caverson, Monica M

    2016-04-01

    The effects of 17β-estradiol (E) on the distribution and density of brainstem projections of small or large diameter primary vagal afferents were investigated in Wistar rats using transganglionic transport of wheat germ agglutinin- (WGA; preferentially transported by non-myelinated afferent C-fibers; 2%), or cholera toxin B-subunit- (CTB, 5%; preferentially transported by large myelinated afferent A-fibers) conjugated horseradish peroxidase (HRP) in combination with the tetramethylbenzidine method in age matched ovariectomized (OVX) only or OVX and treated with E (OVX+E; 30pg/ml plasma) females for 12 weeks. Additionally, these projections were compared to aged matched males. Unilateral microinjection of WGA-HRP into the nodose ganglion resulted in dense anterograde labeling bilaterally, with an ipsilateral predominance in several subnuclei of the nucleus of the solitary tract (NTS) and in area postrema that was greatest in OVX+E animals compared to OVX only and males. Moderately dense anterograde labeling was also observed in paratrigeminal nucleus (PAT) of the OVX+E animals. CTB-HRP produced less dense anterograde labeling in the NTS complex, but had a wider distribution within the brainstem including the area postrema, dorsal motor nucleus of the vagus, PAT, the nucleus ambiguus complex and ventrolateral medulla in all groups. The distribution of CTB-HRP anterograde labeling was densest in OVX+E, less dense in OVX only females and least dense in male rats. Little, if any, labeling was found within PAT in males using either WGA-or CTB-HRP. Taken together, these data suggest that small, non-myelinated (WGA-labeled) and large myelinated (CTB-labeled) diameter vagal afferents projecting to brainstem autonomic areas are differentially affected by circulating levels of estrogen. These effects of estrogen on connectivity may contribute to the sex differences observed in central autonomic mechanisms between gender, and in females with and without estrogen. PMID

  3. Developmental segregation in the afferent projections to mammalian auditory hair cells.

    OpenAIRE

    Echteler, S M

    1992-01-01

    The mammalian ear contains two types of auditory receptors, inner and outer hair cells, that lie in close proximity to each other within the sensory epithelium of the cochlea. In adult mammals, these two classes of auditory hair cells are innervated by separate populations of afferent neurons that differ strikingly in their cellular morphology and their pattern of arborization within the cochlea. At present, it is unclear when or how these distinctive patterns of cochlear innervation emerge a...

  4. Functional Changes in Muscle Afferent Neurones in an Osteoarthritis Model: Implications for Impaired Proprioceptive Performance

    OpenAIRE

    Wu, Qi; Henry, James L

    2012-01-01

    Background Impaired proprioceptive performance is a significant clinical issue for many who suffer osteoarthritis (OA) and is a risk factor for falls and other liabilities. This study was designed to evaluate weight-bearing distribution in a rat model of OA and to determine whether changes also occur in muscle afferent neurones. Methodology/Principal Findings Intracellular recordings were made in functionally identified dorsal root ganglion neurones in acute electrophysiological experiments o...

  5. Metallic stent insertion with double-balloon endoscopy for malignant afferent loop obstruction

    OpenAIRE

    Fujii, Masakuni; Ishiyama, Shuhei; Saito, Hiroaki; Ito, Mamoru; Fujiwara, Akiko; Niguma, Takefumi; Yoshioka, Masao; Shiode, Junji

    2015-01-01

    Progress in double-balloon endoscopy (DBE) has allowed for the diagnosis and treatment of disease in the postoperative bowel. For example, a short DBE, which has a 2.8 mm working channel and 152 cm working length, is useful for endoscopic retrograde cholangiopancreatography in bowel disease patients. However, afferent loop and Roux-limb obstruction, though rare, is caused by postoperative recurrence of biliary tract cancer with intractable complications. Most of the clinical findings involvin...

  6. Neural Mechanisms That Underlie Angina-Induced Referred Pain in the Trigeminal Nerve Territory: A c-Fos Study in Rats

    Science.gov (United States)

    Hayashi, Bunsho; Maeda, Masako; Inoue, Tomio

    2013-01-01

    The present study was designed to determine whether the trigeminal sensory nuclear complex (TSNC) is involved in angina-induced referred pain in the trigeminal nerve territory and to identify the peripheral nerve conducting nociceptive signals that are input into the TSNC. Following application of the pain producing substance (PPS) infusion, the number of Fos-labeled cells increased significantly in the subnucleus caudalis (Sp5C) compared with other nuclei in the TSNC. The Fos-labeled cells in the Sp5C disappeared when the left and right cervical vagus nerves were sectioned. Lesion of the C1-C2 spinal segments did not reduce the number of Fos-labeled cells. These results suggest that the nociceptive signals that conduct vagal afferent fibers from the cardiac region are input into the Sp5C and then projected to the thalamus. PMID:27335881

  7. Local activation of cannabinoid CB1 receptors in the urinary bladder reduces the inflammation-induced sensitization of bladder afferents

    Directory of Open Access Journals (Sweden)

    Cervero Fernando

    2011-05-01

    Full Text Available Abstract Background Systemic administration of cannabinoid agonists is known to reduce pain induced by bladder inflammation and to modulate cystometric parameters in vivo. We have previously reported that intravesical administration of a cannabinoid agonist reduces the electrical activity of bladder afferents under normal conditions. However, the effects of local activation of bladder cannabinoid receptors on afferent activity during inflammation are unknown. This study was aimed to assess the effects of intravesical administration of a cannabinoid agonist on the discharges of afferent fibers in inflamed bladders ex vivo. We also characterized the expression of CB1 receptors in the bladder and their localization and co-expression with TRPV1, a marker of nociceptive afferents. Results Compared to untreated animals, afferent fiber activity in inflamed bladders was increased for intravesical pressures between 10 and 40 mmHg. Local treatment with a non selective cannabinoid agonist (AZ12646915 significantly reduced the afferent activity at intravesical pressures above 20 mmHg. This effect was blocked by AM251 but not by AM630 (selective for CB1 and CB2 respectively. Finally, CB1 was co-expressed with TRPV1 in control and inflamed bladders. Conclusion These results demonstrate that sensitization of bladder afferents induced by inflammation is partly suppressed by intravesical activation of cannabinoid receptors, an effect that appears to be mediated by CB1 receptors. Also, TRPV1 positive fibers were found to co-express CB1, supporting the hypothesis of a direct action of the cannabinoid agonist on nociceptive afferents. Taken together, these results indicate a peripheral modulation by the cannabinoid system of bladder hypersensitivity during inflammation.

  8. Nucleus Paragigantocellularis Afferents in Male and Female Rats: Organization, Gonadal Steroid Sensitivity, and Activation During Sexual Behavior

    OpenAIRE

    Normandin, Joseph J.; Murphy, Anne Z.

    2008-01-01

    The central regulation of genital reflexes is poorly understood. The brainstem nucleus paragigantocellularis (nPGi) of rats is a well-established source of tonic inhibition of genital reflexes. However the organization, gonadal steroid sensitivity, and activity of nPGi afferents during sex have not been fully characterized in male and female rats. To delineate the anatomical and physiological organization of nPGi afferents, the retrograde tracer Fluorogold (FG) was injected into the nPGi of s...

  9. Percutaneous Cholangioscopic Lithotripsy for Afferent Loop Syndrome Caused by Enterolith Development after Roux-en-Y Hepaticojejunostomy: A Case Report

    OpenAIRE

    Kim, Seong Hyun; Jeong, Seok; Lee, Don Haeng; Yoo, Sung Soo; Lee, Keon-Young

    2013-01-01

    Afferent loop obstruction caused by enterolith formation is rare and cannot be easily treated with endoscopy because of the difficulty associated with the nonsurgical removal of enteroliths. A 74-year-old woman was admitted with fever and acute abdominal pain. Clinical features and imaging studies suggested afferent loop obstruction caused by an enterolith after Roux-en-Y hepaticojejunostomy. Percutaneous transhepatic biliary drainage was initially performed because of severe cholangitis with...

  10. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons.

    Science.gov (United States)

    Price, T J; Flores, C M; Cervero, F; Hargreaves, K M

    2006-09-15

    Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation. PMID:16809002

  11. Laparoscopic Revision of an Omega Loop Gastric Bypass to Treat Afferent Loop Syndrome.

    Science.gov (United States)

    Kassir, Radwan; Blanc, Pierre; Lointier, Patrice; Breton, Christophe; Debs, Tarek; Tiffet, Olivier

    2015-10-01

    The omega loop gastric bypass (OLGB) has become a very commonly performed bariatric procedure because of the advantages it carries over the Roux en Y gastric bypass (RYGBP). However, mini gastric bypass is a misnomer, as this procedure is more malabsorptive than the RYGBP. Recently, it is called single or one anastomosis gastric bypass. The omega loop procedure is associated with a risk of afferent loop syndrome, a known complication of the Billroth II (Finsterer) operation. This rare complication of the OLGB can be debilitating, serious, and deadly. Afferent loop syndrome should be suspected in case of malabsorption syndrome with chronic diarrhea, steatorrhea, iron-deficiency anemia, edema, emaciation, and osteomalacia and also in case of simple biological anomalies such as macrocytosis or megaloblastic anemia. The diagnosis can be confirmed by measuring bacterial overgrowth, although this requires a jejunal aspirate performed during endoscopy with jejunal intubation. A microbial population of more than 106 organisms per milliliter of aspirate is pathological. Afferent loop syndrome is encountered less frequently now that the number of gastrectomies has dropped. Yet, with the omega loop bypass procedure becoming more common, surgeons must again be made aware of this potential complication. PMID:26210192

  12. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain.

    Science.gov (United States)

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R; Wieskopf, Jeffrey S; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S; Séguéla, Philippe

    2016-01-01

    We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8(+) primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch(+) mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2(+)-Arch(+) mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch(+) mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8(+) afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  13. The Organization of Submodality-Specific Touch Afferent Inputs in the Vibrissa Column

    Directory of Open Access Journals (Sweden)

    Katsuyasu Sakurai

    2013-10-01

    Full Text Available The rodent tactile vibrissae are innervated by several different types of touch sensory neurons. The central afferents of all touch neurons from one vibrissa collectively project to a columnar structure called a barrelette in the brainstem. Delineating how distinct types of sensors connect to second-order neurons within each barrelette is critical for understanding tactile information coding and processing. Using genetic and viral techniques, we labeled slowly adapting (SA mechanosensory neurons, rapidly adapting (RA mechanosensory neurons, afferent synapses, and second-order projection neurons with four different fluorescent markers to examine their connectivity. We discovered that within each vibrissa column, individual sensory neurons project collaterals to multiply distributed locations, inputs from SA and RA afferents are spatially intermixed without any discernible stereotypy or topography, and second-order projection neurons receive convergent SA and RA inputs. Our findings reveal a “one-to-many and many-to-one” connectivity scheme and the circuit architecture for tactile information processing at the first-order synapses.

  14. THE ROLE OF RED NUCLEUS IN THE MODULATION OF SPINAL NOCICEPTIVE TRANSMISSION AND IN NOCICEPTION ELICITED BY MUSCLE SPINDLE AFFERENTS

    Institute of Scientific and Technical Information of China (English)

    唐斌; 樊小力; 吴苏娣

    2003-01-01

    Objective To analyse the antinociceptive effect of red nucleus (RN) and its role in the antinociceptive effect of muscle spindle afferents. Methods The single units of RN or wide dynamic range (WDR) neuron in the spinal cord dorsal horn were extracelluarly recorded. The effects of RN stimulation on nociceptive responses (C-fibers-evoked responses, C-responses) of WDR neurons were observed. The influence of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on the spontaneous discharge of RN neurons and on C-responses of WDR neurons were observed. The effect of muscle spindle afferents on C-responses of WDR neurons after unilateral lesions of RN was also observed. Results Electrical stimulation of the RN produced a significantly inhibitory effect on the nociceptive responses of WDR neurons. RN neurons were excited by muscle spindle afferents. Muscle spindle afferents significantly inhibited C-response of WDR neurons and this inhibitory effect was reduced by lesions of RN. Conclusion RN neurons have a significant antinociceptive effect and might be involved in the antinociceptive effects elicited by muscle spindle afferents.

  15. Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Juan Carlos López-Ramos

    2015-01-01

    Full Text Available Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex is identified in rodents by its dense connectivity with the mediodorsal thalamus, and because of its inputs from other sites, such as hippocampus and amygdala. The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the mediodorsal thalamus, the hippocampal CA1 area, or the basolateral amygdala, and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. Field postsynaptic potentials evoked at the medial prefrontal cortex from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals’ avoidance of the reward. Field postsynaptic potentials collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations.

  16. Histological modifications of the rat prostate following transection of somatic and autonomic nerves

    Directory of Open Access Journals (Sweden)

    Rosaura Diaz

    2010-06-01

    Full Text Available It is known that hormones influence significantly the prostate tissue. However, we reported that mating induces an increase in androgen receptors, revealing a neural influence on the gland. These data suggested that somatic afferents (scrotal and genitofemoral nerves and autonomic efferents (pelvic and hypogastric nerves could regulate the structure of the prostate. Here we assessed the role of these nerves in maintaining the histology of the gland. Hence, afferent or efferent nerves of male rats were transected. Then, the ventral and dorsolateral regions of the prostate were processed for histology. Results showed that afferent transection affects prostate histology. The alveoli area decreased and increased in the ventral and dorsolateral prostate, respectively. The epithelial cell height increased in both regions. Efferent denervation produced dramatic changes in the prostate gland. The tissue lost its configuration, and the epithelium became scattered and almost vanished. Thus, afferent nerves are responsible for spinal processes pertaining to the trophic control of the prostate, activating its autonomic innervation. Hence, our data imply that innervation seems to be synergic with hormones for the healthy maintenance of the prostate. Thus, it is suggested that some prostate pathologies could be due to the failure of the autonomic neural pathways regulating the gland.Sabe-se que os hormônios influenciam significativamente o tecido prostático. Entretanto, nós demonstramos que o acasalamento induz um aumento nos receptores androgênicos, revelando uma influência neural sobre a glândula. Esses dados sugerem que os aferentes somáticos (nervos escrotal e genito-femural e os eferentes autonômicos (nervos pélvicos e hipo-gástricos poderiam regular a estrutura da próstata. Neste trabalho, avaliou-se a função destes nervos na manutenção da histologia da glândula. Dessa forma, os nervos aferentes e eferentes de ratos machos foram

  17. Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects

    OpenAIRE

    Biazar, Esmaeil; Keshel, Saeed Heidari; Pouya, Majid; Rad, Hadi; Nava, Melody Omrani; Azarbakhsh, Mohammad; Hooshmand, Shirin

    2013-01-01

    It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve defects needs to be assessed. In this study, we used a nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit to bridge a 30-mm-long gap in the rat sciatic nerve. At 4 months after nerve conduit implantation, regenerated nerves were cally observed and histologicall...

  18. Combination of Acellular Nerve Graft and Schwann Cells-Like Cells for Rat Sciatic Nerve Regeneration

    OpenAIRE

    Songtao Gao; Yan Zheng; Qiqing Cai; Zhansheng Deng; Weitao Yao; Jiaqiang Wang; Xin Wang; Peng Zhang

    2014-01-01

    Objective. To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Methods. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI), neural electrophysiology (NEP), histological and tra...

  19. The Impact of Motor and Sensory Nerve Architecture on Nerve Regeneration

    OpenAIRE

    MORADZADEH, ARASH; Borschel, Gregory H.; Luciano, Janina P.; Whitlock, Elizabeth L.; Hayashi, Ayato; Hunter, Daniel A.; Mackinnon, Susan E.

    2008-01-01

    Sensory nerve autografting is the standard of care for injuries resulting in a nerve gap. Recent work demonstrates superior regeneration with motor nerve grafts. Improved regeneration with motor grafting may be a result of the nerve’s Schwann cell basal lamina tube size. Motor nerves have larger SC basal lamina tubes, which may allow more nerve fibers to cross a nerve graft repair. Architecture may partially explain the suboptimal clinical results seen with sensory nerve grafting techniques. ...

  20. Unmyelinated nerve fibers in the human dental pulp express markers for myelinated fibers and show sodium channel accumulations

    Directory of Open Access Journals (Sweden)

    Henry Michael A

    2012-03-01

    Full Text Available Abstract Background The dental pulp is a common source of pain and is used to study peripheral inflammatory pain mechanisms. Results show most fibers are unmyelinated, yet recent findings in experimental animals suggest many pulpal afferents originate from fibers that are myelinated at more proximal locations. Here we use the human dental pulp and confocal microscopy to examine the staining relationships of neurofilament heavy (NFH, a protein commonly expressed in myelinated afferents, with other markers to test the possibility that unmyelinated pulpal afferents originate from myelinated axons. Other staining relationships studied included myelin basic protein (MBP, protein gene product (PGP 9.5 to identify all nerve fibers, tyrosine hydroxylase (TH to identify sympathetic fibers, contactin-associated protein (caspr to identify nodal sites, S-100 to identify Schwann cells and sodium channels (NaChs. Results Results show NFH expression in most PGP9.5 fibers except those with TH and include the broad expression of NFH in axons lacking MBP. Fibers with NFH and MBP show NaCh clusters at nodal sites as expected, but surprisingly, NaCh accumulations are also seen in unmyelinated fibers with NFH, and in fibers with NFH that lack Schwann cell associations. Conclusions The expression of NFH in most axons suggests a myelinated origin for many pulpal afferents, while the presence of NaCh clusters in unmyelinated fibers suggests an inherent capacity for the unmyelinated segments of myelinated fibers to form NaCh accumulations. These findings have broad implications on the use of dental pulp to study pain mechanisms and suggest possible novel mechanisms responsible for NaCh cluster formation and neuronal excitability.

  1. Differential roles for EphA and EphB signaling in segregation and patterning of central vestibulocochlear nerve projections.

    Directory of Open Access Journals (Sweden)

    Michelle R Allen-Sharpley

    Full Text Available Auditory and vestibular afferents enter the brainstem through the VIIIth cranial nerve and find targets in distinct brain regions. We previously reported that the axon guidance molecules EphA4 and EphB2 have largely complementary expression patterns in the developing avian VIIIth nerve. Here, we tested whether inhibition of Eph signaling alters central targeting of VIIIth nerve axons. We first identified the central compartments through which auditory and vestibular axons travel. We then manipulated Eph-ephrin signaling using pharmacological inhibition of Eph receptors and in ovo electroporation to misexpress EphA4 and EphB2. Anterograde labeling of auditory afferents showed that inhibition of Eph signaling did not misroute axons to non-auditory target regions. Similarly, we did not find vestibular axons within auditory projection regions. However, we found that pharmacologic inhibition of Eph receptors reduced the volume of the vestibular projection compartment. Inhibition of EphB signaling alone did not affect auditory or vestibular central projection volumes, but it significantly increased the area of the auditory sensory epithelium. Misexpression of EphA4 and EphB2 in VIIIth nerve axons resulted in a significant shift of dorsoventral spacing between the axon tracts, suggesting a cell-autonomous role for the partitioning of projection areas along this axis. Cochlear ganglion volumes did not differ among treatment groups, indicating the changes seen were not due to a gain or loss of cochlear ganglion cells. These results suggest that Eph-ephrin signaling does not specify auditory versus vestibular targets but rather contributes to formation of boundaries for patterning of inner ear projections in the hindbrain.

  2. Angiotensin II and angiotensin-(1-7 in paraventricular nucleus modulate cardiac sympathetic afferent reflex in renovascular hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Hai-Jian Sun

    Full Text Available BACKGROUND: The enhanced cardiac sympathetic afferent reflex (CSAR is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT(1 receptors by angiotension (Ang II in the paraventricular nucleus (PVN augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7 in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7 and Ang II on CSAR in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS: The two-kidney, one-clip (2K1C method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7 in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham rats. Mas receptor antagonist A-779 and AT(1 receptor antagonist losartan induced opposite effects to Ang-(1-7 or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7. PVN pretreatment with Ang-(1-7 dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT(1 receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7 level did not. CONCLUSIONS: Ang-(1-7 in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7 and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7 in PVN potentiates the effects of Ang II in renovascular hypertension.

  3. Schwannomatosis of the sciatic nerve

    International Nuclear Information System (INIS)

    A 52-year-old woman with schwannomatosis in the left sciatic nerve is presented. The patient had no stigmata of neurofibromatosis (NF) type 1 or 2. Cutaneous or spinal schwannomas were not detected. Magnetic resonance (MR) imaging of the sciatic nerve revealed more than 15 tumors along the course of the nerve. Histological examination revealed schwannomas consisting of Antoni A and B areas. Immunohistochemical study showed most cells reacting intensely for S-100 protein. The patient underwent conservative follow-up treatment due to the minimal symptoms. The relationship of the disease with NF-2 and plexiform schwannoma is discussed. (orig.)

  4. Schwannomatosis of the sciatic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tetsuji; Maruyama, Shigeki; Mizuno, Kosaku [Dept. of Orthopaedic Surgery, Kobe University School of Medicine (Japan)

    2001-02-01

    A 52-year-old woman with schwannomatosis in the left sciatic nerve is presented. The patient had no stigmata of neurofibromatosis (NF) type 1 or 2. Cutaneous or spinal schwannomas were not detected. Magnetic resonance (MR) imaging of the sciatic nerve revealed more than 15 tumors along the course of the nerve. Histological examination revealed schwannomas consisting of Antoni A and B areas. Immunohistochemical study showed most cells reacting intensely for S-100 protein. The patient underwent conservative follow-up treatment due to the minimal symptoms. The relationship of the disease with NF-2 and plexiform schwannoma is discussed. (orig.)

  5. Nerve Transfers for Treatment of Isolated Axillary Nerve Injuries

    OpenAIRE

    Wheelock, Margie; Clark, Tod A; Giuffre, Jennifer L

    2015-01-01

    Almost one-half of all dislocations involve the shoulder and may also involve the axillary nerves, which may influence functional recovery and result in persistent shoulder neuropathy. Although individuals with intact rotator cuffs may be able to compensate for axillary nerve dysfunction, the injury may become problematic in later years, especially given the increasing incidence of rotator cuff tears in aging populations, thus placing increased importance on the immediate success of acute man...

  6. Postoperative splinting for isolated digital nerve injuries in the hand.

    Science.gov (United States)

    Vipond, Nicole; Taylor, William; Rider, Mark

    2007-01-01

    Digital nerve injuries in the hand are common and can result in significant impairment and functional restriction. Despite this, there is relatively little literature, particularly with respect to postoperative rehabilitation. Splinting after repair, purported to protect the repaired nerve from excessive stretch is still commonly used. Recent cadaveric studies indicate postoperative rehabilitation is not necessary with resection up to 2.5mm. A randomized controlled trial was therefore undertaken to determine whether splinting after isolated 5th degree digital nerve transection is in fact necessary. Twenty-six subjects were recruited over a two-year period and randomized to either three weeks of hand-based splinting or free active motion. ANCOVA indicated no differences in sensibility at six months between the two groups. Subjects also reported their greatest functional limitations were because of hyperesthesia. Although this study is underpowered, these limited results suggest splinting may not be required postoperatively. PMID:17658415

  7. Perspectives of optic nerve prostheses.

    Science.gov (United States)

    Lane, Frank John; Nitsch, Kristian; Huyck, Margaret; Troyk, Philip; Schug, Ken

    2016-05-01

    A number of projects exist that are investigating the ability to restore visual percepts for individuals who are blind through a visual prosthesis. While many projects have reported the results from a technical basis, very little exists in the professional literature on the human experience of visual implant technology. The current study uses an ethnographic methodological approach to document the experiences of the research participants and study personnel of a optic nerve vision prosthesis project in Brussels, Belgium. The findings have implications for motivation for participating in clinical trials, ethical safeguards of participants and the role of the participant in a research study. Implications for Rehabilitation Rehabilitation practitioners are often solicited by prospective participants to assist in evaluating a clinical trial before making a decision about participation. Rehabilitation professionals should be aware that: The decision to participate in a clinical trial is ultimately up to the individual participant. However, participants should be aware that family members might experience stress from of a lack of knowledge about the research study. The more opportunities a participant has to share thoughts and feelings about the research study with investigators will likely result in a positive overall experience. Ethical safeguards put in place to protect the interests of an individual participant may have the opposite effect and create stress. Rehabilitation professionals can play an important role as participant advocates from recruitment through termination of the research study. Participant hope is an important component of participation in a research study. Information provided to participants by investigators during the consent process should be balanced carefully with potential benefits, so it does not destroy a participant's hope. PMID:25425410

  8. Identification of the main generator source of longitudinal muscle contraction in the earthworm ventral nerve cord

    Directory of Open Access Journals (Sweden)

    Y.C. Chang

    1998-10-01

    Full Text Available The main generator source of a longitudinal muscle contraction was identified as an M (mechanical-stimulus-sensitive circuit composed of a presynaptic M-1 neuron and a postsynaptic M-2 neuron in the ventral nerve cord of the earthworm, Amynthas hawayanus, by simultaneous intracellular response recording and Lucifer Yellow-CH injection with two microelectrodes. Five-peaked responses were evoked in both neurons by a mechanical, but not by an electrical, stimulus to the mechanoreceptor in the shaft of a seta at the opposite side of an epidermis-muscle-nerve-cord preparation. This response was correlated to 84% of the amplitude, 73% of the rising rate and 81% of the duration of a longitudinal muscle contraction recorded by a mechano-electrical transducer after eliminating the other possible generator sources by partitioning the epidermis-muscle piece of this preparation. The pre- and postsynaptic relationship between these two neurons was determined by alternately stimulating and recording with two microelectrodes. Images of the Lucifer Yellow-CH-filled M-1 and M-2 neurons showed that both of them are composed of bundles of longitudinal processes situated on the side of the nerve cord opposite to stimulation. The M-1 neuron has an afferent process (A1 in the first nerve at the stimulated side of this preparation and the M-2 neuron has two efferent processes (E1 and E3 in the first and third nerves at the recording side where their effector muscle cell was identified by a third microelectrode.

  9. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff

    Science.gov (United States)

    Schuettler, Martin; Donaldson, Nick; Seetohul, Vipin; Taylor, John

    2013-06-01

    Objective. We investigate the ability of the method of velocity selective recording (VSR) to determine the fibre types that contribute to a compound action potential (CAP) propagating along a peripheral nerve. Real-time identification of the active fibre types by determining the direction of action potential propagation (afferent or efferent) and velocity might allow future neural prostheses to make better use of biological sensor signals and provide a new and simple tool for use in fundamental neuroscience. Approach. Fibre activity was recorded from explanted Xenopus Laevis frog sciatic nerve using a single multi-electrode cuff that records whole nerve activity with 11 equidistant ring-shaped electrodes. The recorded signals were amplified, delayed against each other with variable delay times, added and band-pass filtered. Finally, the resulting amplitudes were measured. Main Result. Our experiments showed that electrically evoked frog CAP was dominated by two fibre populations, propagating at around 20 and 40 m/s, respectively. The velocity selectivity, i.e. the ability of the system to discriminate between individual populations was increased by applying band-pass filtering. The method extracted an entire velocity spectrum from a 10 ms CAP recording sample in real time. Significance. Unlike the techniques introduced in the 1970s and subsequently, VSR requires only a single nerve cuff and does not require averaging to provide velocity spectral information. This makes it potentially suitable for the generation of highly-selective real-time control-signals for future neural prostheses. In our study, electrically evoked CAPs were analysed and it remains to be proven whether the method can reliably classify physiological nerve traffic. The work presented here was carried out at the laboratories of the Implanted Devices Group, Department of Medical Physics and Bioengineering, University College London, UK.

  10. Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study.

    Science.gov (United States)

    Bonaz, B; Sinniger, V; Hoffmann, D; Clarençon, D; Mathieu, N; Dantzer, C; Vercueil, L; Picq, C; Trocmé, C; Faure, P; Cracowski, J-L; Pellissier, S

    2016-06-01

    The vagus nerve (VN) is a link between the brain and the gut. The VN is a mixed nerve with anti-inflammatory properties through the activation of the hypothalamic-pituitary-adrenal axis by its afferents and by activating the cholinergic anti-inflammatory pathway through its efferents. We have previously shown that VN stimulation (VNS) improves colitis in rats and that the vagal tone is blunted in Crohn's disease (CD) patients. We thus performed a pilot study of chronic VNS in patients with active CD. Seven patients under VNS were followed up for 6 months with a primary endpoint to induce clinical remission and a secondary endpoint to induce biological (CRP and/or fecal calprotectin) and endoscopic remission and to restore vagal tone (heart rate variability). Vagus nerve stimulation was feasible and well-tolerated in all patients. Among the seven patients, two were removed from the study at 3 months for clinical worsening and five evolved toward clinical, biological, and endoscopic remission with a restored vagal tone. These results provide the first evidence that VNS is feasible and appears as an effective tool in the treatment of active CD. PMID:26920654

  11. GRP nerves in pig antrum

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier

    We extracted gastrin-releasing peptide (GRP) and its C-terminal decapeptide corresponding to 6.4 and 6.8 pmol/g from pig antrum mucosa. By immunohistochemistry GRP was localized to mucosal, submucosal, and myenteric nerve fibers. A few nerve cell bodies were also identified. Using isolated perfused...... pig antrum with intact vagal innervation, we found concomitant, atropine-resistant release of GRP and gastrin during electrical stimulation of the vagal nerves. Intra-arterial GRP at 10(-11)-10(-10) mol/l caused up to fivefold, dose-dependent increases in gastrin secretion; higher doses were less...... response to GRP and abolished the effect of vagal stimulation. The available evidence strongly suggests that GRP nerves are responsible for the stimulatory vagal effects on gastrin secretion in the pig....

  12. Nerve Disease and Bladder Control

    Science.gov (United States)

    ... Research Training & Career Development Grant programs for students, postdocs, and faculty Research at NIDDK Labs, faculty, and ... KB) Alternate Language URL Nerve Disease and Bladder Control Page Content On this page: What bladder control ...

  13. Overview of Optic Nerve Disorders

    Science.gov (United States)

    ... 2 Diabetes, Heart Disease a Dangerous Combo Are 'Workaholics' Prone to OCD, Anxiety? ALL NEWS > Resources First ... anatomic arrangement, damage along the optic nerve pathway causes specific patterns of vision loss. By understanding the ...

  14. Bladder hyperactivity and increased excitability of bladder afferent neurons associated with reduced expression of Kv1.4 α-subunit in rats with cystitis

    OpenAIRE

    Hayashi, Yukio; Takimoto, Koichi; Chancellor, Michael B.; Erickson, Kristin A.; Erickson, Vickie L.; Kirimoto, Tsukasa; Nakano, Koushi; de Groat, William C.; Yoshimura, Naoki

    2009-01-01

    Hyperexcitability of C-fiber bladder afferent pathways has been proposed to contribute to urinary frequency and bladder pain in chronic bladder inflammation including interstitial cystitis. However, the detailed mechanisms inducing afferent hyperexcitability after bladder inflammation are not fully understood. Thus, we investigated changes in the properties of bladder afferent neurons in rats with bladder inflammation induced by intravesical application of hydrochloric acid. Eight days after ...

  15. Cranial nerve palsies in childhood

    OpenAIRE

    Lyons, C J; Godoy, F; ALQahtani, E

    2015-01-01

    We review ocular motor cranial nerve palsies in childhood and highlight many of the features that differentiate these from their occurrence in adulthood. The clinical characteristics of cranial nerve palsies in childhood are affected by the child's impressive ability to repair and regenerate after injury. Thus, aberrant regeneration is very common after congenital III palsy; Duane syndrome, the result of early repair after congenital VI palsy, is invariably associated with retraction of the g...

  16. CT appearance of intercostal nerve neurotisation

    OpenAIRE

    Gadahadh, R; Rachapalli, V; Roberts, D. E.

    2012-01-01

    A nerve transfer or neurotisation procedure is performed to repair damaged nerves, in particular those of the brachial plexus following an avulsion injury. An intercostal to phrenic nerve transfer to re-innervate the diaphragm in patients with high cervical spine injury has also been reported in the literature. We present the imaging finding in a 65-year-old female who had an intercostal nerve transfer for a damaged phrenic nerve following a resection for a non-small cell lung carcinoma.

  17. Unilateral traumatic oculomotor nerve paralysis

    International Nuclear Information System (INIS)

    The present authors report a case of unilateral traumatic oculomotor nerve paralysis which shows interesting CT findings which suggest its mechanism. A 60-year-old woman was admitted to our hospital with a cerebral concussion soon after a traffic accident. A CT scan was performed soon after admission. A high-density spot was noted at the medial aspect of the left cerebral peduncle, where the oculomotor nerve emerged from the midbrain, and an irregular, slender, high-density area was delineated in the right dorsolateral surface of the midbrain. Although the right hemiparesis had already improved by the next morning, the function of the left oculomotor nerve has been completely disturbed for the three months since the injury. In our case, it is speculated that an avulsion of the left oculomotor nerve rootlet occurred at the time of impact as the mechanism of the oculomotor nerve paralysis. A CT taken soon after the head injury showed a high-density spot; this was considered to be a hemorrhage occurring because of the avulsion of the nerve rootlet at the medial surface of the cerebral peduncle. (J.P.N.)

  18. Storage and allogeneic transplantation of peripheral nerve using a green tea polyphenol solution in a canine model

    Directory of Open Access Journals (Sweden)

    Noguchi Takashi

    2010-11-01

    Full Text Available Abstract Background In our previous study, allogeneic-transplanted peripheral nerve segments preserved for one month in a polyphenol solution at 4°C could regenerate nerves in rodents demonstrated the same extent of nerve regeneration as isogeneic fresh nerve grafts. The present study investigated whether the same results could be obtained in a canine model. Methods A sciatic nerve was harvested from a male beagle dog, divided into fascicules of Sry and β-actin to investigate whether cells of donor origin remained in the allogeneic nerve segments. FK506 concentration was measured in blood samples taken before the animals were killed. Results The total myelinated axon numbers and amplitudes of the muscle action potentials correlated significantly with the blood FK506 concentration. Few axons were observed in the allogeneic-transplanted nerve segments in the PA0.025 group. PCR showed clear Sry-specific bands in specimens from the PA0.1 and PA0.05 groups but not from the PA0.025 group. Conclusions Successful nerve regeneration was observed in the polyphenol-treated nerve allografts when transplanted in association with a therapeutic dose of FK506. The data indicate that polyphenols can protect nerve tissue from ischemic damage for one month; however, the effects of immune suppression seem insufficient to permit allogeneic transplantation of peripheral nerves in a canine model.

  19. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain123

    Science.gov (United States)

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R.; Wieskopf, Jeffrey S.; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S.

    2016-01-01

    Abstract We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8+ primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch+ mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2+-Arch+mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch+ mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8+ afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  20. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys

    Directory of Open Access Journals (Sweden)

    Tatsuya eUmeda

    2014-05-01

    Full Text Available Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for determining the optimal parameters of afferent stimulation to transmit proprioceptive signals in neuroprosthetics. To investigate whether the spike timing of dorsal root ganglion (DRG neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The spike timing of the DRG neurons was calculated using an IF model, in which a spike occurs if the cumulative sum of the firing frequency value exceeded a constant threshold. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that the simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine

  1. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals.

    Science.gov (United States)

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S; Kim, Hyeyoung; McRoberts, James A; Marvizón, Juan Carlos G

    2014-05-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75(NTR) ), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75(NTR) inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr(1472) phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and a Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  2. Electrophysiological evaluation of nerve function in inferior alveolar nerve injury: relationship between nerve action potentials and histomorphometric observations.

    Science.gov (United States)

    Murayama, M; Sasaki, K; Shibahara, T

    2015-12-01

    The objective of this study was to improve the accuracy of diagnosis of inferior alveolar nerve (IAN) injury by determining degrees of nerve disturbance using the sensory nerve action potential (SNAP) and sensory nerve conduction velocity (SCV). Crush and partial and complete nerve amputation injuries were applied to the IAN of rabbits, then SNAPs and histomorphometric observations were recorded at 1, 5, and 10 weeks. For crush injury, most nerves were smaller in diameter at 5 weeks than at 1 week, however after 10 weeks, extensive nerve regeneration was observed. The SNAP showed a decrease in SCV at weeks 1 and 5, followed by an increase at week 10. For partial nerve amputation, small to medium-sized nerve fibres were observed at weeks 1 and 5, then larger nerves were seen at week 10. Minimal changes in SCV were observed at weeks 1 and 5, however SCV increased at week 10. For complete nerve amputation, nerve fibres were sparse at week 1, but gradual nerve regeneration was observed at weeks 5 and 10. SNAPs were detectable from week 10, however the SCV was extremely low. This study showed SCV to be an effective factor in the evaluation of nerve injury and regeneration. PMID:26433750

  3. Comparison of nerve graft integration after segmentar resection versus epineural burying in crushed rat sciatic nerves

    Directory of Open Access Journals (Sweden)

    Cunha Marco Túlio Rodrigues da

    1997-01-01

    Full Text Available The aim of the present paper is to compare and correlate the take of nerve segments in a severely crushed nerve. Forty adult Wistar rats had their right sciatic nerve by a "Péan-Murphy" forceps for 40 minutes. In Group 1 (n=20, a segmentar serection in the crushed sciatic nerve was made. A sural nerve segment from the opposite hindpaw was placed in the gap. In Group 2 (n=20, a lontudinal insision in the epineurium of the lesioned sciatic nerve was made. A sural nerve segment was buried underneath the epineurium. The crushed sciatic nerves undergone Wallerian degeneration and endoneurial fibrosis. Sciatic nerves from Group 2 had significant better histological aspects than those from Group 1. Sural nerve grafts presented better degrees of regeneration than crushed sciatic nerves. Sural nerve grafts from Group 2 (burying method integrated as well as those from Group 1 (segmentar resection.

  4. NERVE: New Enhanced Reverse Vaccinology Environment

    Directory of Open Access Journals (Sweden)

    Filippini Francesco

    2006-07-01

    Full Text Available Abstract Background Since a milestone work on Neisseria meningitidis B, Reverse Vaccinology has strongly enhanced the identification of vaccine candidates by replacing several experimental tasks using in silico prediction steps. These steps have allowed scientists to face the selection of antigens from the predicted proteome of pathogens, for which cell culture is difficult or impossible, saving time and money. However, this good example of bioinformatics-driven immunology can be further developed by improving in silico steps and implementing biologist-friendly tools. Results We introduce NERVE (New Enhanced Reverse Vaccinology Environment, an user-friendly software environment for the in silico identification of the best vaccine candidates from whole proteomes of bacterial pathogens. The software integrates multiple robust and well-known algorithms for protein analysis and comparison. Vaccine candidates are ranked and presented in a html table showing relevant information and links to corresponding primary data. Information concerning all proteins of the analyzed proteome is not deleted along selection steps but rather flows into an SQL database for further mining and analyses. Conclusion After learning from recent years' works in this field and analysing a large dataset, NERVE has been implemented and tuned as the first available tool able to rank a restricted pool (~8–9% of the whole proteome of vaccine candidates and to show high recall (~75–80% of known protective antigens. These vaccine candidates are required to be "safe" (taking into account autoimmunity risk and "easy" for further experimental, high-throughput screening (avoiding possibly not soluble antigens. NERVE is expected to help save time and money in vaccine design and is available as an additional file with this manuscript; updated versions will be available at http://www.bio.unipd.it/molbinfo.

  5. Vein conduit associated with microsurgical suture for complete collateral digital nerve severance.

    Science.gov (United States)

    Alligand-Perrin, P; Rabarin, F; Jeudy, J; Césari, B; Saint-Cast, Y; Fouque, P-A; Raimbeau, G

    2011-06-01

    The aim of this study is to present the long term results of a series of 53 vein conduit grafts as first line therapy to repair complete severance of one or more collateral digital nerves. The surgical technique included an epi-perineural suture of the nerve under minimal tension, associated with a vein graft harvested from the back of the hand to cover the nerve. None of the patients presented with a neuroma, spontaneous pain or had stopped using the injured finger. Sensibility results were good or very good in 67% of cases. The scar at the donor site was very light or invisible. A total of 96% of patients were satisfied or very satisfied. This simple technique, by protecting the injured nerve, results in a rate of sensory nerve recovery that is comparable or better than that of other series in the literature, without neuroma and with minimal scarring at the donor site. PMID:21531189

  6. Contribution of irregular semicircular canal afferents to the horizontal vestibuloocular response during constant velocity rotation

    Science.gov (United States)

    Angelaki, D. E.; Perachio, A. A.

    1993-01-01

    1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.

  7. Transhepatic insertion of a metallic stent for the relief of malignant afferent loop obstruction

    International Nuclear Information System (INIS)

    A 65-year-old man with a polya gastrectomy presented with biliary obstruction. Percutaneous cholangiography indicated strictures of the distal common bile duct and afferent duodenal loop due to an inoperable carcinoma of the head of the pancreas. The patient was unlit for bypass surgery, and a previous gastrectomy precluded endoscopic intervention. Successful palliation of the biliary obstruction was achieved by placing metallic stents across the duodenal and biliary strictures via the transhepatic route. The use of stents for gastrointestinal stricture is reviewed.

  8. Transhepatic Insertion of a Metallic Stent for the Relief of Malignant Afferent Loop Obstruction

    International Nuclear Information System (INIS)

    A 65-year-old man with a polya gastrectomy presented with biliary obstruction. Percutaneous cholangiography indicated strictures of the distal common bile duct and afferent duodenal loop due to an inoperable carcinoma of the head of the pancreas. The patient was unfit for bypass surgery, and a previous gastrectomy precluded endoscopic intervention. Successful palliation of the biliary obstruction was achieved by placing metallic stents across the duodenal and biliary strictures via the transhepatic route. The use of stents for gastrointestinal stricture is reviewed

  9. Characterization of efferent T suppressor cells induced by Paracoccidioides brasiliensis-specific afferent T suppressor cells.

    OpenAIRE

    Jimenez-Finkel, B E; Murphy, J W

    1988-01-01

    Previously, we reported that Paracoccidioides brasiliensis culture filtrate antigen (Pb.Ag) when injected i.v. into mice induces antigen-specific suppressor cells which down-regulate the anti-P. brasiliensis delayed-type hypersensitivity (DTH) response. The suppressor cells are present in both spleens and lymph nodes of Pb.Ag-treated animals and suppress the afferent limb but not the efferent limb of the DTH response to P. brasiliensis. The suppressor cells induced by Pb.Ag are L3T4+ Lyt-1+2-...

  10. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Yong Seek; Park, Cheung-Seog [Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Jin, Young-Ho, E-mail: jinyh@khu.ac.kr [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  11. Vasopressin responses to unloading arterial baroreceptors during cardiac nerve blockade in conscious dogs

    Science.gov (United States)

    O'Donnell, C. P.; Keil, L. C.; Thrasher, T. N.

    1992-01-01

    We examined the relative contributions of afferent input from the heart and from arterial baroreceptors in the stimulation of arginine vasopressin (AVP) secretion in response to hypotension caused by thoracic inferior vena caval constriction (TIVCC). Afferent input from cardiac receptors was reversibly blocked by infusing 2% procaine into the pericardial space to anesthetize the cardiac nerves. Acute cardiac nerve blockade (CNB) alone caused a rise in mean arterial pressure (MAP) of 24 +/- 3 mmHg but no change in plasma AVP. If the rise in MAP was prevented by TIVCC, plasma AVP increased by 39 +/- 15 pg/ml, and if MAP was allowed to increase and then was forced back to control by TIVCC, plasma AVP increased by 34 +/- 15 pg/ml. Thus the rise in MAP during CNB stimulated arterial baroreceptors, which in turn compensated for the loss of inhibitory input from cardiac receptors on AVP secretion. These results indicate that the maximum secretory response resulting from complete unloading of cardiac receptors at a normal MAP results in a mean increase in plasma AVP of 39 pg/ml in this group of dogs. When MAP was reduced 25% below control levels (from 95 +/- 5 to 69 +/- 3 mmHg) by TIVCC during pericardial saline infusion, plasma AVP increased by 79 +/- 42 pg/ml. However, the same degree of hypotension during CNB (MAP was reduced from 120 +/- 5 to 71 +/- 3 mmHg) led to a greater (P less than 0.05) increase in plasma AVP of 130 +/- 33 pg/ml. Because completely unloading cardiac receptors can account for an increase of only 39 pg/ml on average in this group of dogs, the remainder of the increase in plasma AVP must be due to other sources of stimulation. We suggest that the principal stimulus to AVP secretion after acute CNB in these studies arises from unloading the arterial baroreceptors.

  12. The longitudinal epineural incision and complete nerve transection method for modeling sciatic nerve injury

    OpenAIRE

    Xing-long Cheng; Pei Wang; Bo Sun; Shi-bo Liu; Yun-feng Gao; Xin-ze He; Chang-yu Yu

    2015-01-01

    Injury severity, operative technique and nerve regeneration are important factors to consider when constructing a model of peripheral nerve injury. Here, we present a novel peripheral nerve injury model and compare it with the complete sciatic nerve transection method. In the experimental group, under a microscope, a 3-mm longitudinal incision was made in the epineurium of the sciatic nerve to reveal the nerve fibers, which were then transected. The small, longitudinal incision in the epineur...

  13. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair

    OpenAIRE

    Wang, Dong; Huang, Xijun; Fu, Guo; Gu, Liqiang; Liu, Xiaolin; WANG, HONGGANG; Hu, Jun; Yi, Jianhua; Niu, Xiaofeng; Zhu, Qingtang

    2014-01-01

    Current research on bone marrow stem cell transplantation and autologous or xenogenic nerve transplantation for peripheral nerve regeneration has mainly focused on the repair of peripheral nerve defects in rodents. In this study, we established a standardized experimental model of radial nerve defects in primates and evaluated the effect of repair on peripheral nerve injury. We repaired 2.5-cm lesions in the radial nerve of rhesus monkeys by transplantation of autografts, acellular allografts...

  14. Differential effects of superoxide and hydrogen peroxide on myogenic signaling, membrane potential, and contractions of mouse renal afferent arterioles.

    Science.gov (United States)

    Li, Lingli; Lai, En Yin; Wellstein, Anton; Welch, William J; Wilcox, Christopher S

    2016-06-01

    Myogenic contraction is the principal component of renal autoregulation that protects the kidney from hypertensive barotrauma. Contractions are initiated by a rise in perfusion pressure that signals a reduction in membrane potential (Em) of vascular smooth muscle cells to activate voltage-operated Ca(2+) channels. Since ROS have variable effects on myogenic tone, we investigated the hypothesis that superoxide (O2 (·-)) and H2O2 differentially impact myogenic contractions. The myogenic contractions of mouse isolated and perfused single afferent arterioles were assessed from changes in luminal diameter with increasing perfusion pressure (40-80 mmHg). O2 (·-), H2O2, and Em were assessed by fluorescence microscopy during incubation with paraquat to increase O2 (·-) or with H2O2 Paraquat enhanced O2 (·-) generation and myogenic contractions (-42 ± 4% vs. -19 ± 4%, P < 0.005) that were blocked by SOD but not by catalase and signaled via PKC. In contrast, H2O2 inhibited the effects of paraquat and reduced myogenic contractions (-10 ± 1% vs. -19 ± 2%, P < 0.005) and signaled via PKG. O2 (·-) activated Ca(2+)-activated Cl(-) channels that reduced Em, whereas H2O2 activated Ca(2+)-activated and voltage-gated K(+) channels that increased Em Blockade of voltage-operated Ca(2+) channels prevented the enhanced myogenic contractions with paraquat without preventing the reduction in Em Myogenic contractions were independent of the endothelium and largely independent of nitric oxide. We conclude that O2 (·-) and H2O2 activate different signaling pathways in vascular smooth muscle cells linked to discreet membrane channels with opposite effects on Em and voltage-operated Ca(2+) channels and therefore have opposite effects on myogenic contractions. PMID:27053691

  15. Whole-nerve chorda tympani responses to sweeteners in C57BL/6ByJ and 129P3/J mice

    OpenAIRE

    Inoue, Masashi; McCaughey, Stuart A.; Alexander A Bachmanov; Beauchamp, Gary K.

    2001-01-01

    The C57BL/6ByJ (B6) strain of mice exhibits higher preferences than does the 129P3/J (129) strain for a variety of sweet-tasting compounds. We measured gustatory afferent responses of the whole chorda tympani nerve in these two strains using a broad array of sweeteners and other taste stimuli. Neural responses were greater in B6 than in 129 mice to the sugars sucrose and maltose, the polyol D-sorbitol, and the non-caloric sweeteners NaSaccharin, acesulfame-K, SC-45647, and sucralose. Lower ne...

  16. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    Institute of Scientific and Technical Information of China (English)

    Huawei Liu; Weisheng Wen; Min Hu; Wenting Bi; Lijie Chen; Sanxia Liu; Peng Chen; Xinying Tan

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as wel as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. Electro-physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation il ustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits com-bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits.

  17. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects.

    Science.gov (United States)

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-11-25

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  18. Sensory Afferents Regenerated into Dorsal Columns after Spinal Cord Injury Remain in a Chronic Pathophysiological State

    OpenAIRE

    Tan, Andrew M.; Petruska, Jeffrey C.; Mendell, Lorne M.; Levine, Joel M.

    2007-01-01

    Axon regeneration after experimental spinal cord injury (SCI) can be promoted by combinatorial treatments that increase the intrinsic growth capacity of the damaged neurons and reduce environmental factors that inhibit axon growth. A prior peripheral nerve conditioning lesion is a well established means of increasing the intrinsic growth state of sensory neurons whose axons project within the dorsal columns of the spinal cord. Combining such a prior peripheral nerve conditioning lesion with t...

  19. Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Castrop, Hayo; Briggs, Josie; Schnermann, Jurgen

    2003-01-01

    Adenosine induces vasoconstriction of renal afferent arterioles through activation of A1 adenosine receptors (A1AR). A1AR are directly coupled to Gi/Go, resulting in inhibition of adenylate cyclase, but the contribution of this signaling pathway to smooth muscle cell activation is unclear. In......-induced vasoconstriction was stable for up to 30 min and was most pronounced in the most distal part of the afferent arterioles. Adenosine did not cause vasoconstriction in arterioles from A1AR-/- mice. Pretreatment with pertussis toxin (PTX) (400 ng/ml) for 2 h blocked the vasoconstricting action of adenosine or N(6......) blocked the constriction responses to both adenosine and angiotensin II. In contrast, the adenylate cyclase inhibitor SQ22536 (10 micro M) and the protein kinase A antagonist KT5720 (0.1 and 1 micro M) did not induce significant vasoconstriction of afferent arterioles. It is concluded that the...

  20. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C.; De Palma, F.; De Vito, L.; Stefanelli, A. [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell`Uomo

    1997-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  1. Imaging the ocular motor nerves

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Teresa [Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: T.A.Ferreira@lumc.nl; Verbist, Berit [Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: B.M.Verbist@lumc.nl; Buchem, Mark van [Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: M.A.van_Buchem@lumc.nl; Osch, Thijs van [C.J. Gorter for High-Field MRI, Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: M.J.P.van_Osch@lumc.nl; Webb, Andrew [C.J. Gorter for High-Field MRI, Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: A.Webb@lumc.nl

    2010-05-15

    The ocular motor nerves (OMNs) comprise the oculomotor, trochlear and the abducens nerves. According to their course, they are divided into four or five anatomic segments: intra-axial, cisternal, cavernous and intra-orbital and, for the abducens nerve, an additional interdural segment. Magnetic resonance imaging is the imaging method of choice in the evaluation of the normal and pathologic ocular motor nerves. CT still plays a limited but important role in the evaluation of the intraosseous portions at the skull base and bony foramina. We describe for each segment of these cranial nerves, the normal anatomy, the most appropriate image sequences and planes, their imaging appearance and pathologic conditions. Magnetic resonance imaging with high magnetic fields is a developing and promising technique. We describe our initial experience with a Phillips 7.0 T MRI scanner in the evaluation of the brainstem segments of the OMNs. As imaging becomes more refined, an understanding of the detailed anatomy is increasingly necessary, as the demand on radiology to diagnose smaller lesions also increases.

  2. Magnetic resonance neurography. Imaging of peripheral nerves

    International Nuclear Information System (INIS)

    Magnetic resonance neurography (MRN) is a non-invasive technique using magnetic resonance imaging (MRI) in order to diagnose peripheral nerve pathologies and their underlying etiologies. MRN is already in clinical use and is now mostly used to delineate the anatomy of nerves and to establish the continuity or discontinuity of nerves in patients with traumatic nerve injuries, as well as to monitor processes of peripheral nerve degeneration and regeneration. This article reviews established and evolving novel MRN technologies with regard to their potential to meet the requirements for non-invasive imaging of peripheral nerves in clinical settings. (orig.)

  3. Neurophysiological approach to disorders of peripheral nerve

    DEFF Research Database (Denmark)

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves...... methods including nerve conduction studies and electromyography used in the study of patients suspected of having a neuropathy and the significance of the findings are discussed in detail and more novel and experimental methods are mentioned. Diagnostic considerations are based on a flow chart classifying...

  4. Study on Variant Anatomy of Sciatic Nerve

    OpenAIRE

    Adibatti, Mallikarjun; V, Sangeetha

    2014-01-01

    Introduction: Sciatic Nerve (SN) is the nerve of the posterior compartment of thigh formed in the pelvis from the ventral rami of the L4 to S3 spinal nerves. It leaves the pelvis via the greater sciatic foramen below piriformis and divides into Common Peroneal Nerve (CPN) and Tibial Nerve (TN) at the level of the upper angle of the popliteal fossa. Higher division of the sciatic nerve is the most common variation where the TN and CPN may leave the pelvis through different routes. Such variati...

  5. Liver afferents contribute to water drinking-induced sympathetic activation in human subjects: a clinical trial.

    Directory of Open Access Journals (Sweden)

    Marcus May

    Full Text Available UNLABELLED: Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups after 30-40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. TRIAL REGISTRATION: ClinicalTrials.gov NCT01237431.

  6. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons.

    Science.gov (United States)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun; Park, Yong Seek; Park, Cheung-Seog; Jin, Young-Ho

    2015-01-01

    Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E2 (PGE2) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE2 induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE2 effect on visceral afferent sensory neurons of the rat. Interestingly, PGE2 itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE2-induced potentiation were blocked by a selective E-prostanoid type 4 (EP4) receptors antagonist, L-161,982, but type 1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE2 effects. PGE2 induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE2 potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin synthetase inhibitors by selectively targeting EP4 receptor/PKA pathway without interrupt prostaglandin synthesis. PMID:25446121

  7. Adaptation to cold of homeothermic organism: changes in afferent and efferent links of the thermoregulatory system

    Directory of Open Access Journals (Sweden)

    Tamara Vladimirovna Kozyreva

    2013-08-01

    Full Text Available This review focuses on mechanisms of cold adaptation and with the interaction of the afferent and efferent links of the system of thermal homeostasis found through major research advances in our department. Certain mechanisms of adaptive changes in metabolic and heat loss processes were disclosed mostly concentrated on muscle and respiratory functions. It was shown that, as a result of cold adaptation, there occur changes in the functional characteristics of the central and peripheral thermoreceptors, which form the input signal and determine the regulatory parameters of the system of thermal homeostasis. The adaptive changes in the afferent link are consistent also with the re-arrangement in the work of the respiratory system. The accumulated facts give grounds for believing that the important role of thermoreceptors in maintenance of adaptive re-arrangement is due to the direct and feedback relation to the neurohumoral systems of the organism. The direct relation makes possible the implementation of a wide range of effector responses to thermal stimulus; while the feedback relation makes possible various modulations of the thermoreceptors, which are the initial link of the thermoregulatory system. [J Exp Integr Med 2013; 3(4.000: 255-265

  8. Role of afferent input in load-dependent plasticity of rat muscle

    Science.gov (United States)

    Kawano, F.; Umemoto, S.; Higo, Y.; Kawabe, N.; Wang, X. D.; Lan, Y. B.; Ohira, Y.

    We have been studying the role of afferent input in the plasticity of skeletal muscles. The present study was performed to investigate the mechanisms responsible for the deafferentation-related inhibition of the compensatory hypertrophy in rat soleus muscle. Adult male Wistar rats were randomly separated into the control, functionally overloaded (FO), and functionally overloaded + deafferentation (FO+DA) group. The tendons of plantaris and gastrocnemius muscles were transected in the FO rats. The dorsal roots of the spinal cord at the L4-5 segmental levels were additionally transected in the FO+DA rats. The sampling of the soleus was performed 2 weeks after the surgery and ambulation recovery. The single muscle fibers were isolated in low-calcium relaxing solution. Further, the myonuclei or argyrophilic nucleolar organizer regions (AgNORs) were stained. Significant increase of the fiber cross-sectional area (CSA) was seen in the FO, but not in the FO+DA, rats. The myonuclear number in fiber was significantly decreased by FO. Addition of DA to FO further promoted the reduction of myonuclear number. The mean nucleus size and DNA content in single nucleus in all groups were identical. Although a single or double AgNORs were seen in ~90% of myonuclei in the control rats, their distributions were 72 and 76% in the FO and FO+DA rats, respectively (phypertrophy. It was also indicated that intact afferent input plays an essential role in these phenomena.

  9. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    Directory of Open Access Journals (Sweden)

    Benjamin J. Harrison

    2015-12-01

    Full Text Available Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1–9]. In the model used here (the “spared dermatome” model, the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days and maintenance (14 days phases of the spared dermatome model relative to intact (“naïve” sensory ganglia. Data has been deposited into GEO (GSE72551.

  10. Metallic stent insertion with double-balloon endoscopy for malignant afferent loop obstruction.

    Science.gov (United States)

    Fujii, Masakuni; Ishiyama, Shuhei; Saito, Hiroaki; Ito, Mamoru; Fujiwara, Akiko; Niguma, Takefumi; Yoshioka, Masao; Shiode, Junji

    2015-06-10

    Progress in double-balloon endoscopy (DBE) has allowed for the diagnosis and treatment of disease in the postoperative bowel. For example, a short DBE, which has a 2.8 mm working channel and 152 cm working length, is useful for endoscopic retrograde cholangiopancreatography in bowel disease patients. However, afferent loop and Roux-limb obstruction, though rare, is caused by postoperative recurrence of biliary tract cancer with intractable complications. Most of the clinical findings involving these complications are relatively nonspecific and include abdominal pain, nausea, vomiting, fever, and obstructive jaundice. Treatments by surgery, percutaneous transhepatic biliary drainage, percutaneous enteral stent insertion, and endoscopic therapy have been reported. The general conditions of patients with these complications are poor due to cancer progression; therefore, a less invasive treatment is better. We report on the usefulness of metallic stent insertion using an overtube for afferent loop and Roux-limb obstruction caused by postoperative recurrence of biliary tract cancer under short DBE in two patients with complexly reconstructed intestines. PMID:26078835

  11. Ischemic preconditioning reduces the severity of ischemia-reperfusion injury of peripheral nerve in rats

    Directory of Open Access Journals (Sweden)

    Kurutas Ergul

    2006-09-01

    Full Text Available Abstract Background and aim Allow for protection of briefly ischemic tissues against the harmful effects of subsequent prolonged ischemia is a phenomennon called as Ischemic Preconditioning (IP. IP has not been studied in ischemia-reperfusion (I/R model of peripheral nerve before. We aimed to study the effects of acute IP on I/R injury of peripheral nerve in rats. Method 70 adult male rats were randomly divided into 5 groups in part 1 experimentation and 3 groups in part 2 experimentation. A rat model of severe nerve ischemia which was produced by tying iliac arteries and all idenfiable anastomotic vessels with a silk suture (6-0 was used to study the effects of I/R and IP on nerve biochemistry. The suture technique used was a slip-knot technique for rapid release at time of reperfusion in the study. Cytoplasmic vacuolar degeneration was also histopathologically evaluated by light microscopic examination in sciatic nerves of rats at 7th day in part 2 study. Results 3 hours of Reperfusion resulted in an increase in nerve malondialdehyde levels when compared with ischemia and non-ischemia groups (p 0.05. There was also a significant decrease in vacoular degeneration of sciatic nerves in IP group than I/R group (p Conclusion IP reduces the severity of I/R injury in peripheral nerve as shown by reduced tissue MDA levels at 3 th hour of reperfusion and axonal vacoulization at 7 th postischemic day.

  12. The Use of Degradable Nerve Conduits for Human Nerve Repair: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    M. F. Meek

    2005-01-01

    Full Text Available The management of peripheral nerve injury continues to be a major clinical challenge. The most widely used technique for bridging defects in peripheral nerves is the use of autologous nerve grafts. This technique, however, has some disadvantages. Many alternative experimental techniques have thus been developed, such as degradable nerve conduits. Degradable nerve guides have been extensively studied in animal experimental studies. However, the repair of human nerves by degradable nerve conduits has been limited to only a few clinical studies. In this paper, an overview of the available international published literature on degradable nerve conduits for bridging human peripheral nerve defects is presented for literature available until 2004. Also, the philosophy on the use of nerve guides and nerve grafts is given.

  13. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve

    Directory of Open Access Journals (Sweden)

    Paul F Mcculloch

    2016-04-01

    Full Text Available This research was designed to investigate the role of the anterior ethmoidal nerve (AEN during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N=24 were trained to swim and dive through a 5 m underwater maze. Some rats (N=12 had bilateral sectioning of the AEN, others a Sham surgery (N=12. Twelve rats (6 AEN cut and 6 Sham had 24 post-surgical dive trials over 2 hrs to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus the AENs are not required for initiation of the diving response. Other nerve(s that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response.

  14. An experimental study of nerve bypass graft

    Institute of Scientific and Technical Information of China (English)

    XU Jie; LI Xue-shi

    2008-01-01

    Objective: To study the use of a nerve "bypass" graft as a possible alternative to neurolysis or segmental resection with interposition grafting in the treatment of neuroma-in-continuity. Methods: A sciatic nerve crush injury model was established in the Sprague-Dawley rat by compression with a straight hemostatic forceps. Epineurial windows were created proximal and distal to the injury site. An 8-mm segment of radial nerve was harvested and coaptated to the sciatic nerve at the epineurial window sites proximal and distal to the compressed segment (bypass group). A sciatic nerve crush injury without bypass served as a control. Nerve conduction studies were performed over an 8-week period. Sciatic nerves were then harvested and studied under transmission electron microscopy. Myelinated axon counts were obtained. Results: Nerve conduction velocity was significantly faster in the bypass group than in the control group at 8 weeks (63.57 m/s±5.83 m/s vs. 54.88 m/s±4.79m/s, P<0.01). Myelinated axon counts in distal segments were found more in the experimental sciatic nerve than in the control sciatic nerve. Significant axonal growth was noted in the bypass nerve segment itself. Conclusion: Nerve bypass may serve to augment peripheral axonal growth while avoiding further loss of the native nerve.

  15. Peripheral nerve conduits: technology update

    Directory of Open Access Journals (Sweden)

    Arslantunali D

    2014-12-01

    Full Text Available D Arslantunali,1–3,* T Dursun,1,2,* D Yucel,1,4,5 N Hasirci,1,2,6 V Hasirci,1,2,7 1BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU, Ankara, Turkey; 2Department of Biotechnology, METU, Ankara, Turkey; 3Department of Bioengineering, Gumushane University, Gumushane, Turkey; 4Faculty of Engineering, Department of Medical Engineering, Acibadem University, Istanbul, Turkey; 5School of Medicine, Department of Histology and Embryology, Acibadem University, Istanbul, Turkey; 6Department of Chemistry, Faculty of Arts and Sciences, METU, Ankara, Turkey; 7Department of Biological Sciences, Faculty of Arts and Sciences, METU, Ankara, Turkey *These authors have contributed equally to this work Abstract: Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers and designs (tubular, fibrous, and matrix type are being presented. Keywords: peripheral nerve injury, natural biomaterials, synthetic biomaterials

  16. Solitary schwannoma of sciatic nerve

    International Nuclear Information System (INIS)

    A solitary schwannoma of the peripheral nerve may arise sporadically in patients who have no evidence of a genetic predetermination of von Recklinghausen's disease. In the leg, schwannomas usually appear on the flexor aspect, especially near the elbow, wrist and knee, and the feet are usually spared. A solitary schwannoma of the sciatic nerve is very rare as a case of a sciatic pain, and the CT diagnosis of such a lesion has not been previously reported. In the present case, the deeply situated, small lesion was clearly delineated with high resolution CT. (J.P.N.)

  17. Nerve lesioning with direct current

    Science.gov (United States)

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  18. Imaging of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Minerva [Head and Neck and Maxillofacial Radiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland)], E-mail: minerva.becker@hcuge.ch; Masterson, Karen [Head and Neck and Maxillofacial Radiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Delavelle, Jacqueline [Neuroradiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Viallon, Magalie [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Vargas, Maria-Isabel [Neuroradiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Becker, Christoph D. [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland)

    2010-05-15

    This article provides an overview of the imaging findings of diseases affecting the optic nerve with special emphasis on clinical-radiological correlation and on the latest technical developments in MR imaging and CT. The review deals with congenital malformations, tumors, toxic/nutritional and degenerative entities, inflammatory and infectious diseases, compressive neuropathy, vascular conditions and trauma involving the optic nerve from its ocular segment to the chiasm. The implications of imaging findings on patient management and outcome and the importance of performing high-resolution tailored examinations adapted to the clinical situation are discussed.

  19. Nerve Injury Diminishes Opioid Analgesia through Lysine Methyltransferase-mediated Transcriptional Repression of μ-Opioid Receptors in Primary Sensory Neurons.

    Science.gov (United States)

    Zhang, Yuhao; Chen, Shao-Rui; Laumet, Geoffroy; Chen, Hong; Pan, Hui-Lin

    2016-04-15

    The μ-opioid receptor (MOR, encoded by Oprm1) agonists are the mainstay analgesics for treating moderate to severe pain. Nerve injury causes down-regulation of MORs in the dorsal root ganglion (DRG) and diminishes the opioid effect on neuropathic pain. However, the epigenetic mechanisms underlying the diminished MOR expression caused by nerve injury are not clear. G9a (encoded by Ehmt2), a histone 3 at lysine 9 methyltransferase, is a key chromatin regulator responsible for gene silencing. In this study, we determined the role of G9a in diminished MOR expression and opioid analgesic effects in animal models of neuropathic pain. We found that nerve injury in rats induced a long-lasting reduction in the expression level of MORs in the DRG but not in the spinal cord. Nerve injury consistently increased the enrichment of the G9a product histone 3 at lysine 9 dimethylation in the promoter of Oprm1 in the DRG. G9a inhibition or siRNA knockdown fully reversed MOR expression in the injured DRG and potentiated the morphine effect on pain hypersensitivity induced by nerve injury. In mice lacking Ehmt2 in DRG neurons, nerve injury failed to reduce the expression level of MORs and the morphine effect. In addition, G9a inhibition or Ehmt2 knockout in DRG neurons normalized nerve injury-induced reduction in the inhibitory effect of the opioid on synaptic glutamate release from primary afferent nerves. Our findings indicate that G9a contributes critically to transcriptional repression of MORs in primary sensory neurons in neuropathic pain. G9a inhibitors may be used to enhance the opioid analgesic effect in the treatment of chronic neuropathic pain. PMID:26917724

  20. Functional nerve recovery after bridging a 15 mm gap in rat sciatic nerve with a biodegradable nerve guide

    NARCIS (Netherlands)

    Meek, MF; Klok, F; Robinson, PH; Nicolai, JPA; Gramsbergen, A; van der Werf, J.F.A.

    2003-01-01

    Recovery of nerve function was evaluated after bridging a 15 mm sciatic nerve gap in 51 rats with a biodegradable poly(DL-lactide-epsilon-caprolactone) nerve guide. Recovery of function was investigated by analysing the footprints, by analysing video recordings of gait, by electrically eliciting the

  1. Palsies of Cranial Nerves That Control Eye Movement

    Science.gov (United States)

    ... Medical News Palsies of Cranial Nerves That Control Eye Movement By Michael Rubin, MDCM NOTE: This is the ... Gaze Palsies Palsies of Cranial Nerves That Control Eye Movement Third Cranial Nerve (Oculomotor Nerve) Palsy Fourth Cranial ...

  2. Inflammatory peripheral facial nerve palsy. An overview

    International Nuclear Information System (INIS)

    In inflammatory peripheral facial nerve palsy pathologically intense, linear and smooth enhancement of the distal intrameatal nerve segment can always be observed on T1-w- SE- MR sequences. The other nerve segments often present with a pathological enhancement as well. On T2-w- SE sequences, a thickening of the distal intrameatal nerve segment can be observed. The pathological enhancement persists over weeks and months; even in patients with complete clinical recovery, a persistent enhancement of the distal intrameatal nerve segment can be demonstrated. No correlation can be established between the intensity of the enhancement, the clinical condition and the electrophysiological data on electroneurography. The persistent enhancement of the different nerve segments is due to a longlasting breakdown of the blood-peripheral nerve-barrier related to the process of degeneration and regeneration of the facial nerve in inflammatory palsy. (orig.)

  3. Nerve supply to the pelvis (image)

    Science.gov (United States)

    The nerves that branch off the central nervous system (CNS) provide messages to the muscles and organs for normal ... be compromised. In multiple sclerosis, the demyelinization of nerve cells may lead to bowel incontinence, bladder problems ...

  4. Prediabetes May Damage Nerves More Than Thought

    Science.gov (United States)

    ... medlineplus/news/fullstory_158274.html Prediabetes May Damage Nerves More Than Thought Early pain and tingling in ... 12, 2016 (HealthDay News) -- Prediabetes may cause more nerve damage than previously believed, researchers say. "The results ...

  5. Diabetic Neuropathies: The Nerve Damage of Diabetes

    Science.gov (United States)

    ... Organizations (PDF, 293 KB). Alternate Language URL Español Diabetic Neuropathies: The Nerve Damage of Diabetes Page Content ... treated? Points to Remember Clinical Trials What are diabetic neuropathies? Diabetic neuropathies are a family of nerve ...

  6. Optic nerve invasion of uveal melanoma

    DEFF Research Database (Denmark)

    Lindegaard, Jens; Isager, Peter; Prause, Jan Ulrik; Heegaard, Steffen

    2007-01-01

    The aim of the study was to identify the histopathological characteristics associated with the invasion of the optic nerve of uveal melanoma and to evaluate the association between invasion of the optic nerve and survival. In order to achieve this, all uveal melanomas with optic nerve invasion in...... Denmark between 1942 and 2001 were reviewed (n=157). Histopathological characteristics and depth of optic nerve invasion were recorded. The material was compared with a control material from the same period consisting of 85 cases randomly drawn from all choroidal/ciliary body melanomas without optic nerve...... 4) in one case a tumor spread along the inner limiting membrane to the optic nerve through the lamina cribrosa. Invasion of the optic nerve had no impact on all-cause mortality or melanoma-related mortality in multivariate analyses. The majority of melanomas invading the optic nerve are large...

  7. Cranial Nerves IX, X, XI, and XII

    OpenAIRE

    Gillig, Paulette Marie; Sanders, Richard D.

    2010-01-01

    This article concludes the series on cranial nerves, with review of the final four (IX–XII). To summarize briefly, the most important and common syndrome caused by a disorder of the glossopharyngeal nerve (craniel nerve IX) is glossopharyngeal neuralgia. Also, swallowing function occasionally is compromised in a rare but disabling form of tardive dyskinesia called tardive dystonia, because the upper motor portion of the glossopharyngel nerve projects to the basal ganglia and can be affected b...

  8. Imaging the cranial nerves in cancer

    OpenAIRE

    Chong, Vincent

    2004-01-01

    The cranial nerves are often involved in head and neck malignancies. Some malignancies have a strong propensity to show perineural spread. Cranial nerve palsy may be the presenting sign of metastatic disease to the skull base. Like metastatic disease to the lungs or liver, the cranial nerves themselves may be the site of metastatic disease. In addition, cranial nerves can be injured by radiation therapy or sacrificed during surgical treatment. This paper focuses on the imaging features of per...

  9. Effect of experimental devascularization on peripheral nerves

    Directory of Open Access Journals (Sweden)

    Eros Abrantes Erhart

    1966-03-01

    Full Text Available In order to explore the functional importance of the vasa-nervorum and the nerve natural connective bed, fine nerve devascularizations were performed in ten adult dogs, using a dissecting microscope. 4 to 5 cm of the nerve vascularization and corresponding connective bed were injured. By this procedure it could be demonstrated, 30 days later, motor deficiencies and in the histological serial preparations a distad nerve degeneration, total in some fascicles and partial in others.

  10. Proximal Sciatic Nerve Intraneural Ganglion Cyst

    OpenAIRE

    Fee, Dominic B.; Swartz, Karin R.; Michael Boland; Dianne Wilson

    2009-01-01

    Intraneural ganglion cysts are nonneoplastic, mucinous cysts within the epineurium of peripheral nerves which usually involve the peroneal nerve at the knee. A 37-year-old female presented with progressive left buttock and posterior thigh pain. Magnetic resonance imaging revealed a sciatic nerve mass at the sacral notch which was subsequently revealed to be an intraneural ganglion cyst. An intraneural ganglion cyst confined to the proximal sciatic nerve has only been reported once prior to 2009.

  11. Shoulder posture and median nerve sliding

    Directory of Open Access Journals (Sweden)

    Dilley Andrew

    2004-07-01

    Full Text Available Abstract Background Patients with upper limb pain often have a slumped sitting position and poor shoulder posture. Pain could be due to poor posture causing mechanical changes (stretch; local pressure that in turn affect the function of major limb nerves (e.g. median nerve. This study examines (1 whether the individual components of slumped sitting (forward head position, trunk flexion and shoulder protraction cause median nerve stretch and (2 whether shoulder protraction restricts normal nerve movements. Methods Longitudinal nerve movement was measured using frame-by-frame cross-correlation analysis from high frequency ultrasound images during individual components of slumped sitting. The effects of protraction on nerve movement through the shoulder region were investigated by examining nerve movement in the arm in response to contralateral neck side flexion. Results Neither moving the head forward or trunk flexion caused significant movement of the median nerve. In contrast, 4.3 mm of movement, adding 0.7% strain, occurred in the forearm during shoulder protraction. A delay in movement at the start of protraction and straightening of the nerve trunk provided evidence of unloading with the shoulder flexed and elbow extended and the scapulothoracic joint in neutral. There was a 60% reduction in nerve movement in the arm during contralateral neck side flexion when the shoulder was protracted compared to scapulothoracic neutral. Conclusion Slumped sitting is unlikely to increase nerve strain sufficient to cause changes to nerve function. However, shoulder protraction may place the median nerve at risk of injury, since nerve movement is reduced through the shoulder region when the shoulder is protracted and other joints are moved. Both altered nerve dynamics in response to moving other joints and local changes to blood supply may adversely affect nerve function and increase the risk of developing upper quadrant pain.

  12. Isolated trochlear nerve palsy with midbrain hemorrhage

    Directory of Open Access Journals (Sweden)

    Raghavendra S

    2010-01-01

    Full Text Available Midbrain hemorrhage causing isolated fourth nerve palsy is extremely rare. Idiopathic, traumatic and congenital abnormalities are the most common causes of fourth nerve palsy. We report acute isolated fourth nerve palsy in an 18-year-old lady due to a midbrain hemorrhage probably due to a midbrain cavernoma. The case highlights the need for neuroimaging in selected cases of isolated trochlear nerve palsy.

  13. Posterior Interosseous Nerve Syndrome from Thermal Injury

    OpenAIRE

    Singh, Vijay A.; Rami E. Michael; Duy-Bao P. Dinh; Scott Bloom; Michael Cooper

    2014-01-01

    Background. Due to anatomical proximity to bone, the radial nerve is the most frequently injured major nerve of the upper extremity, frequently secondary to fractures (Li et al. (2013)). We describe an incidence when a branch of the radial nerve is injured as a result of a thermal injury. Observation. Radial nerve injury can occur anywhere along the anatomical course with varied etiologies, but commonly related to trauma. The most frequent site is in the proximal forearm involving the posteri...

  14. Detergent-free Decellularized Nerve Grafts for Long-gap Peripheral Nerve Reconstruction

    Directory of Open Access Journals (Sweden)

    Srikanth Vasudevan, PhD

    2014-08-01

    Conclusions: This study describes a detergent-free nerve decellularization technique for reconstruction of long-gap nerve injuries. We compared DFD grafts with an established detergent processing technique and found that DFD nerve grafts are successful in promoting regeneration across long-gap peripheral nerve defects as an alternative to existing strategies.

  15. Secondary digital nerve repair in the foot with resorbable p(DLLA-epsilon-CL) nerve conduits

    NARCIS (Netherlands)

    Meek, MF; Nicolai, JPA; Robinson, PH

    2006-01-01

    Nerve guides are increasingly being used in peripheral nerve repair. In the last decade, Much preclinical research has been undertaken into a resorbable nerve guide composed of p(DLLA-epsilon-CL). This report describes the results of secondary digital nerve reconstruction in the foot in a patient wi

  16. Spinal accessory nerve schwannomas masquerading as a fourth ventricular lesion

    OpenAIRE

    Shyam Sundar Krishnan; Sivaram Bojja; Madabhushi Chakravarthy Vasudevan

    2015-01-01

    Schwannomas are benign lesions that arise from the nerve sheath of cranial nerves. The most common schwannomas arise from the 8 th cranial nerve (the vestibulo-cochlear nerve) followed by trigeminal and facial nerves and then from glossopharyngeal, vagus, and spinal accessory nerves. Schwannomas involving the oculomotor, trochlear, abducens and hypoglossal nerves are very rare. We report a very unusual spinal accessory nerve schwannoma which occupied the fourth ventricle and extended inferior...

  17. TRPA1 in mast cell activation-induced long-lasting mechanical hypersensitivity of vagal afferent C-fibers in guinea pig esophagus.

    Science.gov (United States)

    Yu, Shaoyong; Gao, Guofeng; Peterson, Blaise Z; Ouyang, Ann

    2009-07-01

    Sensitization of esophageal sensory afferents by inflammatory mediators plays an important role in esophageal nociception. We have shown esophageal mast cell activation induces long-lasting mechanical hypersensitivity in vagal nodose C-fibers. However, the roles of mast cell mediators and downstream ion channels in this process are unclear. Mast cell tryptase via protease-activated receptor 2 (PAR2)-mediated pathways sensitizes sensory nerves and induces hyperalgesia. Transient receptor potential A1 (TRPA1) plays an important role in mechanosensory transduction and nociception. Here we tested the hypothesis that mast cell activation via a PAR2-dependent mechanism sensitizes TRPA1 to induce mechanical hypersensitivity in esophageal vagal C-fibers. The expression profiles of PAR2 and TRPA1 in vagal nodose ganglia were determined by immunostaining, Western blot, and RT-PCR. Extracellular recordings from esophageal nodose neurons were performed in ex vivo guinea pig esophageal-vagal preparations. Action potentials evoked by esophageal distention and chemical perfusion were compared. Both PAR2 and TRPA1 expressions were identified in vagal nodose neurons by immunostaining, Western blot, and RT-PCR. Ninety-one percent of TRPA1-positive neurons were of small and medium diameters, and 80% coexpressed PAR2. Esophageal mast cell activation significantly enhanced the response of nodose C-fibers to esophageal distension (mechanical hypersensitivity). This was mimicked by PAR2-activating peptide, which sustained for 90 min after wash, but not by PAR2 reverse peptide. TRPA1 inhibitor HC-030031 pretreatment significantly inhibited mechanical hypersensitivity induced by either mast cell activation or PAR2 agonist. Collectively, our data provide new evidence that sensitizing TRPA1 via a PAR2-dependent mechanism plays an important role in mast cell activation-induced mechanical hypersensitivity of vagal nodose C-fibers in guinea pig esophagus. PMID:19423751

  18. Comparison of nerve graft integration after segmentar resection versus epineural burying in crushed rat sciatic nerves

    OpenAIRE

    Cunha Marco Túlio Rodrigues da; Silva Alcino Lázaro da; Fenelon Sheila Bernardino

    1997-01-01

    The aim of the present paper is to compare and correlate the take of nerve segments in a severely crushed nerve. Forty adult Wistar rats had their right sciatic nerve by a "Péan-Murphy" forceps for 40 minutes. In Group 1 (n=20), a segmentar serection in the crushed sciatic nerve was made. A sural nerve segment from the opposite hindpaw was placed in the gap. In Group 2 (n=20), a lontudinal insision in the epineurium of the lesioned sciatic nerve was made. A sural nerve segment was buried unde...

  19. Ganglioglioma of the trigeminal nerve: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Athale, S.; Jinkins, J.R. [Neuroradiology Section, The University of Texas Health Science Center at San Antonio, 7703 F. Curl Drive, San Antonio, TX 78284-7800 (United States); Hallet, K.K. [Neuropathology Department, The University of Texas Health Science Center at San Antonio, Texas (United States)

    1999-08-01

    Ganglioglioma of the cranial nerves is extremely rare; only a few cases involving the optic nerves have been reported. We present a case of ganglioglioma of the trigeminal nerve, which was isointense with the brain stem on all MRI sequences and showed no contrast enhancement. (orig.) With 2 figs., 6 refs.

  20. Ephaptic coupling of myelinated nerve fibers

    DEFF Research Database (Denmark)

    Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used to...

  1. Bilateral high division of sciatic nerve

    Directory of Open Access Journals (Sweden)

    K. Shwetha

    2014-08-01

    Full Text Available Sciatic nerve is the thickest nerve in the body formed by the sacral plexus from L4 to S3 in the lesser pelvis. It emerges through the greater sciatic foramen below the piriformis and enter the gluteal region. Then the nerve passes on the back of the thigh and at the level of superior angle of popliteal fossa it terminates by dividing into tibial and common peroneal nerve. The knowledge of anatomical variations in the division of nerve is important for various surgical and anaesthetic procedures. During routine dissection in the department of anatomy, Mysore Medical College and Research Institute, Mysore, a rare bilateral high division of sciatic nerve was observed in a female cadaver aged about 40 years. In the present case there was bilateral high division of sciatic nerve. The nerve was seen dividing into two branches before it emerges through the greater sciatic foramen. The tibial nerve was entering the gluteal region below the piriformis muscle and common peroneal nerve was entering by piercing the piriformis. The knowledge of this variation is important as the nerve may get compressed with surrounding anatomical structures resulting in non discogenic sciatica. The awareness of variations is important for surgeons during various procedures like fracture, posterior dislocation of hip joint and hip joint replacement. The anatomical variations are important during deep intramuscular injections in gluteal region and also for anaesthetists during sciatic nerve block. [Int J Res Med Sci 2014; 2(4.000: 1785-1787

  2. Disorders of Cranial Nerves IX and X

    OpenAIRE

    Erman, Audrey B.; Kejner, Alexandra E.; Hogikyan, Norman D.; Eva L Feldman

    2009-01-01

    The glossopharyngeal and vagus nerves mediate the complex interplay between the many functions of the upper aerodigestive tract. Defects may occur anywhere from the brainstem to the peripheral nerve and can result in significant impairment in speech, swallowing, and breathing. Multiple etiologies can produce symptoms. This review will broadly examine the normal functions, clinical examination, and various pathologies of cranial nerves IX and X.

  3. Bilateral median nerve palsy in a cyclist.

    OpenAIRE

    Braithwaite, I J

    1992-01-01

    Cyclists are prone to a number of sport-related musculoskeletal injuries, mainly of the lower limb. Nerve compression injuries are relatively rare, though in the hand ulnar nerve compression is well described. We describe a case of bilateral median nerve compression caused by cycling.

  4. 21 CFR 882.5275 - Nerve cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve cuff. 882.5275 Section 882.5275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5275 Nerve cuff. (a) Identification. A nerve...

  5. A preconditioning nerve lesion inhibits mechanical pain hypersensitivity following subsequent neuropathic injury

    Directory of Open Access Journals (Sweden)

    Wu Ann

    2011-01-01

    Full Text Available Abstract Background A preconditioning stimulus can trigger a neuroprotective phenotype in the nervous system - a preconditioning nerve lesion causes a significant increase in axonal regeneration, and cerebral preconditioning protects against subsequent ischemia. We hypothesized that a preconditioning nerve lesion induces gene/protein modifications, neuronal changes, and immune activation that may affect pain sensation following subsequent nerve injury. We examined whether a preconditioning lesion affects neuropathic pain and neuroinflammation after peripheral nerve injury. Results We found that a preconditioning crush injury to a terminal branch of the sciatic nerve seven days before partial ligation of the sciatic nerve (PSNL; a model of neuropathic pain induced a significant attenuation of pain hypersensitivity, particularly mechanical allodynia. A preconditioning lesion of the tibial nerve induced a long-term significant increase in paw-withdrawal threshold to mechanical stimuli and paw-withdrawal latency to thermal stimuli, after PSNL. A preconditioning lesion of the common peroneal induced a smaller but significant short-term increase in paw-withdrawal threshold to mechanical stimuli, after PSNL. There was no difference between preconditioned and unconditioned animals in neuronal damage and macrophage and T-cell infiltration into the dorsal root ganglia (DRGs or in astrocyte and microglia activation in the spinal dorsal and ventral horns. Conclusions These results suggest that prior exposure to a mild nerve lesion protects against adverse effects of subsequent neuropathic injury, and that this conditioning-induced inhibition of pain hypersensitivity is not dependent on neuroinflammation in DRGs and spinal cord. Identifying the underlying mechanisms may have important implications for the understanding of neuropathic pain due to nerve injury.

  6. Overview of the Cranial Nerves

    Science.gov (United States)

    ... speech Because both the 9th and 10th cranial nerves control swallowing and the gag reflex, they are tested together. The person is asked ... of palate movement). 10th Vagus Swallowing, the gag reflex, and speech ... 11th Accessory Neck turning and shoulder shrugging ...

  7. Cranial nerve palsies in childhood.

    Science.gov (United States)

    Lyons, C J; Godoy, F; ALQahtani, E

    2015-02-01

    We review ocular motor cranial nerve palsies in childhood and highlight many of the features that differentiate these from their occurrence in adulthood. The clinical characteristics of cranial nerve palsies in childhood are affected by the child's impressive ability to repair and regenerate after injury. Thus, aberrant regeneration is very common after congenital III palsy; Duane syndrome, the result of early repair after congenital VI palsy, is invariably associated with retraction of the globe in adduction related to the innervation of the lateral rectus by the III nerve causing co-contraction in adduction. Clinical features that may be of concern in adulthood may not be relevant in childhood; whereas the presence of mydriasis in III palsy suggests a compressive aetiology in adults, this is not the case in children. However, the frequency of associated CNS abnormalities in III palsy and the risk of tumour in VI palsy can be indications for early neuroimaging depending on presenting features elicited through a careful history and clinical examination. The latter should include the neighbouring cranial nerves. We discuss the impact of our evolving knowledge of congenital cranial dysinnervation syndromes on this field. PMID:25572578

  8. Intraoral myxoid nerve sheath tumour

    NARCIS (Netherlands)

    Schortinghuis, J; Hille, JJ; Singh, S

    2001-01-01

    A case of an intraoral myxoid nerve sheath tumour of the dorsum of the tongue in a 73-year-old Caucasian male is reported. This case describes the oldest patient with this pathology to date. Immunoperoxidase staining for neuronspecific enolase (NSE) and epithelial membrane antigen (EMA) expression d

  9. Nerve injury associated with orthognathic surgery. Part 1: UK practice and motor nerve injuries.

    Science.gov (United States)

    Bowe, D C; Gruber, E A; McLeod, N M H

    2016-05-01

    The head and neck is anatomically complex, and several nerves are at risk during orthognathic operations. Some injuries to nerves are reported more commonly than others. To find out what consultant surgeons tell their patients about the prevalence of common nerve injuries before orthognathic operations, we did a postal survey of fellows of the British Association of Oral and Maxillofacial Surgeons (BAOMS). We also reviewed published papers to find out the reported incidence of injuries to cranial motor nerves during orthognathic operations. Only injuries to the facial nerve were commonly reported, and we found only case reports about injuries to the oculomotor, abducens, and trochlear nerves. The risk of temporary facial nerve palsy reported was 0.30/100 nerves (95% CI 0.23 to 0.50) and permanent facial nerve palsy was 0.06/100 nerves (95% CI 0.02 to 0.15). PMID:26935213

  10. The Diagnostic Value of Nerve Ultrasound in an Atypical Palmar Cutaneous Nerve Lesion.

    Science.gov (United States)

    Zanette, Giampietro; Tamburin, Stefano

    2016-07-01

    Detailed knowledge of the fascicular anatomy of peripheral nerves is important for microsurgical repair and functional electrostimulation.We report a patient with a lesion on the left palmar cutaneous branch of the median nerve (PCBMN) and sensory signs expanding outside the PCBMN cutaneous innervation territory. Nerve conduction study showed the absence of left PCBMN sensory nerve action potential, but apparently, no median nerve (MN) involvement. Nerve ultrasound documented a neuroma of the left PCBMN and a coexistent lateral neuroma of the left MN in the carpal tunnel after the PCBMN left the main nerve trunk.Nerve ultrasound may offer important information in patients with peripheral nerve lesions and atypical clinical and/or nerve conduction study findings. The present case may shed some light on the somatotopy of MN fascicles at the wrist. PMID:26945219

  11. Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla

    Science.gov (United States)

    Fernandez, C.; Lysakowski, A.; Goldberg, J. M.

    1995-01-01

    1. The numbers of type I and type II hair cells were estimated by dissector techniques applied to semithin, stained sections of the horizontal, superior, and posterior cristae in the squirrel monkey and the chinchilla. 2. The crista in each species was divided into concentrically arranged central, intermediate, and peripheral zones of equal areas. The three zones can be distinguished by the sizes of individual hair cells and calyx endings, by the density of hair cells, and by the relative frequency of calyx endings innervating single or multiple type I hair cells. 3. In the monkey crista, type I hair cells outnumber type II hair cells by a ratio of almost 3:1. The ratio decreases from 4-5:1 in the central and intermediate zones to under 2:1 in the peripheral zone. For the chinchilla, the ratio is near 1:1 for the entire crista and decreases only slightly between the central and peripheral zones. 4. Nerve fibers supplying the cristae in the squirrel monkey were labeled by extracellular injections of horseradish peroxidase (HRP) into the vestibular nerve. Peripheral terminations of individual fibers were reconstructed and related to the zones of the cristae they innervated and to the sizes of their parent axons. Results were similar for the horizontal, superior, and posterior cristae. 5. Axons seldom bifurcate below the neuroepithelium. Most fibers begin branching shortly after crossing the basement membrane. Their terminal arbors are compact, usually extending no more than 50-100 microns from the parent exon. A small number of long intraepithelial fibers enter the intermediate and peripheral zones of the cristae near its base, then run unbranched for long distances through the neuroepithelium to reach the central zone. 6. There are three classes of afferent fibers innervating the monkey crista. Calyx fibers terminate exclusively on type I hair cells, and bouton fibers end only on type II hair cells. Dimorphic fibers provide a mixed innervation, including calyx

  12. Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation

    Science.gov (United States)

    Angelaki, D. E.; Perachio, A. A.; Mustari, M. J.; Strunk, C. L.

    1992-01-01

    1. During constant velocity off-vertical axis rotations (OVAR) in the dark a compensatory ocular nystagmus is present throughout rotation despite the lack of a maintained signal from the semicircular canals. Lesion experiments and canal plugging have attributed the steady-state ocular nystagmus during OVAR to inputs from the otolith organs and have demonstrated that it depends on an intact velocity storage mechanism. 2. To test whether irregularly discharging otolith afferents play a crucial role in the generation of the steady-state eye nystagmus during OVAR, we have used anodal (inhibitory) currents bilaterally to selectively and reversibly block irregular vestibular afferent discharge. During delivery of DC anodal currents (100 microA) bilaterally to both ears, the slow phase eye velocity of the steady-state nystagmus during OVAR was reduced or completely abolished. The disruption of the steady-state nystagmus was transient and lasted only during the period of galvanic stimulation. 3. To distinguish a possible effect of ablation of the background discharge rates of irregular vestibular afferents on the velocity storage mechanism from specific contributions of the dynamic responses from irregular otolith afferents to the circuit responsible for the generation of the steady-state nystagmus, bilateral DC anodal galvanic stimulation was applied during optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN). No change in OKN and OKAN was observed.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Ultrasonography as a tool to study afferent feedback from the muscle-tendon complex during human walking

    DEFF Research Database (Denmark)

    Cronin, Neil J.; Klint, Richard af; Grey, Michael James;

    2011-01-01

    behaviour of afferent receptors, which may in turn affect the motor control. In this review we first summarise research that has incorporated the use of ultrasound-based techniques to study muscle-tendon interaction, predominantly during walking. We then review recent research that has combined this method...

  14. Experience of septic shock after percutaneous management of obstructed afferent loop with obstructive Jaundice: 3 cases report

    Energy Technology Data Exchange (ETDEWEB)

    You, Jin Jong; Na, Jae Boem; Ahn, In Oak; Chung, Sung Hoon [Gyeongsang National University College of Medicine, Chinju (Korea, Republic of)

    1999-02-01

    Percutaneous transhepatico-biliary duodenal drainage (PTBDD) (n=2) and percutaneous transhepatic duodenal drainage (PTDD) (n=1) were performed as palliative treatment of obstructed afferent loop in patients whom obstructive jaundice had occurred after surgery for malignant tumors. All three patients experienced septic shock after PTBDD or PTDD. We describe these cases and review the literature.

  15. Nerve Transfers for Adult Traumatic Brachial Plexus Palsy (Brachial Plexus Nerve Transfer)

    OpenAIRE

    Rohde, Rachel S.; Wolfe, Scott W.

    2006-01-01

    Adult traumatic brachial plexus injuries can have devastating effects on upper extremity function. Although neurolysis, nerve repair, and nerve grafting have been used to treat injuries to the plexus, nerve transfer makes use of an undamaged nerve to supply motor input over a relatively short distance to reinnervate a denervated muscle. A review of several recent innovations in nerve transfer surgery for brachial plexus injuries is illustrated with surgical cases performed at this institution.

  16. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    OpenAIRE

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft com...

  17. Electroretinogram changes associated with retinal upregulation of trophic factors: observations following optic nerve section.

    Science.gov (United States)

    Gargini, C; Bisti, S; Demontis, G C; Valter, K; Stone, J; Cervetto, L

    2004-01-01

    The purpose of the present work was to assess whether upregulation of trophic factors and protection from damage induced in the retina by optic nerve section are associated with changes in the flash electroretinogram (ERG). We have examined the ERG in adult pigmented rat at different survival times over a period of 3 months following section of the optic nerve. The a-wave was analyzed using the Lamb-Pugh model and the parameters of best fit were estimated in control animals and at successive survival times. The amplitudes of the a- and b-waves were reduced over the first 7 days after nerve section. The a-wave recovered its relative amplitude by 21 days, but the b-wave remained depressed 5 weeks following nerve section. Analysis of the a-wave indicated a 20-30% reduction in the dark current of sectioned eyes at 7 days survival. A significant reduction of the amplification constant was observed in both nerve-sectioned and nerve-intact eyes, relative to normal and sham-operated controls. This reduction persisted to the longest survival time examined. The reduction of the a-wave at 7 days after nerve section coincides with a period of upregulation of ciliary nerve trophic factor. The amplification factor is influenced over a longer time course, which corresponds with a period of up-regulation of basic fibroblast growth factor. These changes in growth factor expression and ERG parameters are in turn associated with protection of photoreceptors against light damage. Present results suggest that the sensitivity of the retina to light may be regulated by mechanisms which protect photoreceptors against stress. PMID:15183525

  18. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles

    DEFF Research Database (Denmark)

    Uhrenholt, Torben Rene; Schjerning, J; Vanhoutte, Paul M. G.;

    2007-01-01

    Vasoconstriction and increase in the intracellular calcium concentration ([Ca(2+)](i)) of vascular smooth muscle cells may cause an increase of endothelial cell [Ca(2+)](i), which, in turn, augments nitric oxide (NO) production and inhibits smooth muscle cell contraction. This hypothesis was tested...... in microperfused rabbit renal afferent arterioles, using fluorescence imaging microscopy with the calcium-sensitive dye fura-2 and the NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorescein. Both dyes were loaded into smooth muscle and endothelium. Depolarization with 100 mmol/l KCl led to a...... transient vasoconstriction which was converted into a sustained response by N-nitro-l-arginine methyl ester (l-NAME). Depolarization increased smooth muscle cell [Ca(2+)](i) from 162 +/- 15 nmol/l to a peak of 555 +/- 70 nmol/l (n = 7), and this response was inhibited by 80% by the l-type calcium channel...

  19. Gastroesophageal Variceal Filling and Drainage Pathways: An Angiographic Description of Afferent and Efferent Venous Anatomic Patterns

    Directory of Open Access Journals (Sweden)

    Ron C Gaba

    2015-01-01

    Full Text Available Varices commonly occur in liver cirrhosis patients and are classified as esophageal (EV, gastroesophageal (GEV, or isolated gastric (IGV varices. These vessels may be supplied and drained by several different afferent and efferent pathways. A working knowledge of variceal anatomy is imperative for Interventional Radiologists performing transjugular intrahepatic portosystemic shunt and embolization/obliteration procedures. This pictorial essay characterizes the angiographic anatomy of varices in terms of type and frequency of venous filling and drainage, showing that different varices have distinct vascular anatomy. EVs typically show left gastric vein filling and “uphill” drainage, and GEVs and IGVs exhibit additional posterior/short gastric vein contribution and “downhill” outflow. An understanding of these variceal filling and drainage pathways can facilitate successful portal decompression and embolization/obliteration procedures.

  20. Gastroesophageal Variceal Filling and Drainage Pathways: An Angiographic Description of Afferent and Efferent Venous Anatomic Patterns.

    Science.gov (United States)

    Gaba, Ron C; Couture, Patrick M; Lakhoo, Janesh

    2015-01-01

    Varices commonly occur in liver cirrhosis patients and are classified as esophageal (EV), gastroesophageal (GEV), or isolated gastric (IGV) varices. These vessels may be supplied and drained by several different afferent and efferent pathways. A working knowledge of variceal anatomy is imperative for Interventional Radiologists performing transjugular intrahepatic portosystemic shunt and embolization/obliteration procedures. This pictorial essay characterizes the angiographic anatomy of varices in terms of type and frequency of venous filling and drainage, showing that different varices have distinct vascular anatomy. EVs typically show left gastric vein filling and "uphill" drainage, and GEVs and IGVs exhibit additional posterior/short gastric vein contribution and "downhill" outflow. An understanding of these variceal filling and drainage pathways can facilitate successful portal decompression and embolization/obliteration procedures. PMID:26713177

  1. Vagal afferents are essential for maximal resection-induced intestinal adaptive growth in orally fed rats

    DEFF Research Database (Denmark)

    Nelson, David W; Liu, Xiaowen; Holst, Jens Juul; Raybould, Helen E; Ney, Denise M

    2006-01-01

    in mucosal mass, protein, DNA, and histology. Both systemic and perivagal capsaicin significantly attenuated by 48-100% resection-induced increases in ileal mucosal mass, protein, and DNA in rats fed orally. Villus height was significantly reduced in resected rats given capsaicin compared with...... of bioactive GLP-2 resulting from resection in orally fed rats. Ablation of spinal/splanchnic innervation by ganglionectomy failed to attenuate resection-induced adaptive growth. In TPN rats, capsaicin did not attenuate resection-induced mucosal growth. We conclude that vagal afferents are not...... essential for maximal resection-induced intestinal growth. Rats received systemic or perivagal capsaicin or ganglionectomy before 70% midjejunoileal resection or transection and were fed orally or by total parenteral nutrition (TPN) for 7 days after surgery. Growth of residual bowel was assessed by changes...

  2. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair.

    Science.gov (United States)

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-07-15

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  3. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Yanru Zhang; Hui Zhang; Kaka Katiella; Wenhua Huang

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune re-jection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regenera-tion. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anasto-mosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.

  4. 胍丁胺抑制大鼠颈动脉窦压力感受器活动%Agmatine inhibits the afferent activity of carotid baroreceptor in rats

    Institute of Scientific and Technical Information of China (English)

    秦晓梅; 范振中; 何瑞荣

    2001-01-01

    在麻醉大鼠隔离灌流颈动脉窦区条件下, 记录窦神经传入放电, 观察胍丁胺(agmatine, Agm)对动脉压力感受器活动的影响。结果如下: (1) 以1 mmol/L Agm隔离灌流大鼠颈动脉窦区时, 窦内压-窦神经传入放电积分(ISP-ISNA)关系曲线向右下方移位, 曲线的最大斜率(PS)降低, 窦神经传入放电最大积分值(PIV)减小。再分别以5、10 mmol/L Agm灌流时, 机能曲线向右下方移位更为明显, PS及PIV降低更加明显, 从而表明Agm抑制压力感受器活动且呈剂量依赖性。(2) α2-肾上腺素受体(α2-adrenoceptor, α2-AR)和咪唑啉受体(IR)的阻断剂咪唑克生(0.1 mmol/L)可阻断Agm的上述效应。(3) 预先灌流α2-AR阻断剂育亨宾(15 μmol/L)可部分阻断Agm的抑制效应。(4) 预先灌流Ca2+通道激动剂Bay K 8644 (500 nmol/L)亦可取消Agm对窦神经传入放电的影响。以上结果表明, Agm对颈动脉窦压力感受器活动有抑制作用, 此作用由IR和α2-AR介导, 并与颈动脉窦压力感受器活动时Ca2+内流减少有关。%The effect of agmatine (Agm) on the carotid baroreceptor activity was examined in 24 anesthetized rats with perfused isolated carotid sinus by recording sinus nerve afferent discharges. The results are as follows. (1) By perfusing with 1 mmol/L Agm, the functional curve for the intrasinus pressure (ISP)integral of sinus nerve activiy (ISNA) relation was shifted to the right and downward with decreases in peak slope (PS) and peak integral value of carotid sinus afferent discharge (PIV). By perfusing with high concentrations of Agm (5 and 10 mmol/L), the curves were shifted to the right and downward further with marked decreases of PS and PIV. These results showed that Agm exerted an inhibitory action on the baroreceptor activity in a dose-dependent manner. (2) The Agm-induced decrease in sinus nerve afferent activity was eliminated by pretreatment with IR and α2-AR blocker idazoxan (0.1 mmol/L). (3) Selective

  5. Reduction of follistatin-like 1 in primary afferent neurons contributes to neuropathic pain hypersensitivity

    Institute of Scientific and Technical Information of China (English)

    Kai-Cheng Li; Feng Wang; Yan-Qing Zhong; Ying-Jin Lu; Qiong Wang; Fang-Xiong Zhang; Hua-Sheng Xiao; Lan Bao; Xu Zhang

    2011-01-01

    @@ Dear Editor, Nerve injury-induced neuropathic pain is difficult to treat in clinic.Lack of comprehensive understanding of the mechanism underlying such chronic pain hypersensitivity delays the development of more effective therapy.Accumulated evidence shows that peripheral nerve injury alters the expression of many neurotransmitters, receptors, ion channels and signaling molecules in the dorsal root ganglion (DRG) and the dorsal horn of spinal cord [1].Some of these molecular changes in the pain pathway are correlated with the current therapy for neuropathic pain.

  6. Phenylpyrazolone derivatives inhibit gastric emptying in rats by a capsaicin-sensitive afferent pathway

    Directory of Open Access Journals (Sweden)

    A.M. Vinagre

    2009-11-01

    Full Text Available Dipyrone (Dp, 4-aminoantipyrine (AA and antipyrine (At administered iv and Dp administered icv delay gastric emptying (GE in rats. The participation of capsaicin (Cps-sensitive afferent fibers in this phenomenon was evaluated. Male Wistar rats were pretreated sc with Cps (50 mg/kg or vehicle between the first and second day of life and both groups were submitted to the eye-wiping test. GE was determined in these animals at the age of 8/9 weeks (weight: 200-300 g. Ten minutes before the study, the animals of both groups were treated iv with Dp, AA or At (240 μmol/kg, or saline; or treated icv with Dp (4 μmol/animal or saline. GE was determined 10 min after treatment by measuring % gastric retention (GR of saline labeled with phenol red 10 min after orogastric administration. Percent GR (mean ± SEM, N = 8 in animals pretreated with Cps and treated with Dp, AA or At (35.8 ± 3.2, 35.4 ± 2.2, and 35.6 ± 2%, respectively did not differ from the GR of saline-treated animals pretreated with vehicle (36.8 ± 2.8% and was significantly lower than in animals pretreated with vehicle and treated with the drugs (52.1 ± 2.8, 66.2 ± 4, and 55.8 ± 3%, respectively. The effect of icv administration of Dp (N = 6 was not modified by pretreatment with Cps (63.3 ± 5.7% compared to Dp-treated animals pretreated with vehicle (62.3 ± 2.4%. The results suggest the participation of capsaicin-sensitive afferent fibers in the delayed GE induced by iv administration of Dp, AA and At, but not of icv Dp.

  7. Comparative pharmacology of cholecystokinin induced activation of cultured vagal afferent neurons from rats and mice.

    Directory of Open Access Journals (Sweden)

    Dallas C Kinch

    Full Text Available Cholecystokinin (CCK facilitates the process of satiation via activation of vagal afferent neurons innervating the upper gastrointestinal tract. Recent findings indicate CCK acts on these neurons via a ruthenium red (RuR sensitive pathway that involves members of the vanilloid (V subfamily of transient receptor potential (TRP channels. To further test this mechanism, the mouse provides an ideal model in which genetic tools could be applied. However, whether CCK acts by similar mechanism(s in mice has not been determined. In the present study we explored the actions of CCK on nodose neurons isolated from Sprague Dawley (SD rat and two strains of mice; C57BL/6 and BalbC using fluorescence-based calcium imaging. With minor exceptions nodose neurons isolated from all species/strains behaved similarly. They all respond to brief depolarization with a large calcium transient. A significant subset of neurons responded to capsaicin (CAP, a TRPV1 agonist, although neurons from C57BL/6 were 10-fold more sensitive to CAP than SD rats or BalbC mice, and a significantly smaller fraction of neurons from BalbC mice responded to CAP. CCK-8 dose-dependently activated a subpopulation of neurons with similar dose dependency, percent responders, and overlap between CCK and CAP responsiveness. In all species/strains CCK-8 induced activation was significantly attenuated (but not completely blocked by pretreatment with the TRPV channel blocker RuR. Surprisingly, the CCK analogue JMV-180, which is reported to have pure antagonistic properties in rat but mixed agonist/antagonist properties in mice, behaved as a pure antagonist to CCK in both rat and mouse neurons. The pure antagonistic action of JMV-180 in this in vitro preparation suggests that prior reported differential effects of JMV-180 on satiation in rats versus mouse must be mediated by a site other than vagal afferent activation.

  8. Loss of Afferent Vestibular Input Produces Central Adaptation and Increased Gain of Vestibular Prosthetic Stimulation.

    Science.gov (United States)

    Phillips, Christopher; Shepherd, Sarah J; Nowack, Amy; Nie, Kaibao; Kaneko, Chris R S; Rubinstein, Jay T; Ling, Leo; Phillips, James O

    2016-02-01

    Implanted vestibular neurostimulators are effective in driving slow phase eye movements in monkeys and humans. Furthermore, increases in slow phase velocity and electrically evoked compound action potential (vECAP) amplitudes occur with increasing current amplitude of electrical stimulation. In intact monkeys, protracted intermittent stimulation continues to produce robust behavioral responses and preserved vECAPs. In lesioned monkeys, shorter duration studies show preserved but with somewhat lower or higher velocity behavioral responses. It has been proposed that such changes are due to central adaptive changes in the electrically elicited vestibulo-ocular reflex (VOR). It is equally possible that these differences are due to changes in the vestibular periphery in response to activation of the vestibular efferent system. In order to investigate the site of adaptive change in response to electrical stimulation, we performed transtympanic gentamicin perfusions to induce rapid changes in vestibular input in monkeys with long-standing stably functioning vestibular neurostimulators, disambiguating the effects of implantation from the effects of ototoxic lesion. Gentamicin injection was effective in producing a large reduction in natural VOR only when it was performed in the non-implanted ear, suggesting that the implanted ear contributed little to the natural rotational response before injection. Injection of the implanted ear produced a reduction in the vECAP responses in that ear, suggesting that the intact hair cells in the non-functional ipsilateral ear were successfully lesioned by gentamicin, reducing the efficacy of stimulation in that ear. Despite this, injection of both ears produced central plastic changes that resulted in a dramatically increased slow phase velocity nystagmus elicited by electrical stimulation. These results suggest that loss of vestibular afferent activity, and a concurrent loss of electrically elicited vestibular input, produces an

  9. Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice.

    Science.gov (United States)

    Maklad, Adel; Kamel, Suzan; Wong, Elaine; Fritzsch, Bernd

    2010-05-01

    A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears. PMID:20424840

  10. Vanilloids selectively sensitize thermal glutamate release from TRPV1 expressing solitary tract afferents.

    Science.gov (United States)

    Hofmann, Mackenzie E; Andresen, Michael C

    2016-02-01

    Vanilloids, high temperature, and low pH activate the transient receptor potential vanilloid type 1 (TRPV1) receptor. In spinal dorsal root ganglia, co-activation of one of these gating sites on TRPV1 sensitized receptor gating by other modes. Here in rat brainstem slices, we examined glutamate synaptic transmission in nucleus of the solitary tract (NTS) neurons where most cranial primary afferents express TRPV1, but TRPV1 sensitization is unknown. Electrical shocks to the solitary tract (ST) evoked EPSCs (ST-EPSCs). Activation of TRPV1 with capsaicin (100 nM) increased spontaneous EPSCs (sEPSCs) but inhibited ST-EPSCs. High concentrations of the ultra-potent vanilloid resiniferatoxin (RTX, 1 nM) similarly increased sEPSC rates but blocked ST-EPSCs. Lowering the RTX concentration to 150 pM modestly increased the frequency of the sEPSCs without causing failures in the evoked ST-EPSCs. The sEPSC rate increased with raising bath temperature to 36 °C. Such thermal responses were larger in 150 pM RTX, while the ST-EPSCs remained unaffected. Vanilloid sensitization of thermal responses persisted in TTX but was blocked by the TRPV1 antagonist capsazepine. Our results demonstrate that multimodal activation of TRPV1 facilitates sEPSC responses in more than the arithmetic sum of the two activators, i.e. co-activation sensitizes TRPV1 control of spontaneous glutamate release. Since action potential evoked glutamate release is unaltered, the work provides evidence for cooperativity in gating TRPV1 plus a remarkable separation of calcium mechanisms governing the independent vesicle pools responsible for spontaneous and evoked release at primary afferents in the NTS. PMID:26471418

  11. Contribution of Primary Afferent Input to Trigeminal Astroglial Hyperactivity, Cytokine Induction and NMDA Receptor Phosphorylation.

    Science.gov (United States)

    Wang, H; Guo, W; Yang, K; Wei, F; Dubner, R; Ren, K

    2010-03-01

    We tested the hypothesis that primary afferent inputs play a role in astroglial hyperactivity after tissue injury. We first injected complete Freund's adjuvant (CFA, 0.05 ml, 1:1 oil/saline) into the masseter muscle, which upregulated glial fibrillary acidic protein (GFAP), a marker of astrocytes, interleukin (IL)-1β an inflammatory cytokine, and phosphorylation of serine896 of the NR1 subunit (P-NR1) of the NMDA receptor in the subnuclei interpolaris/caudalis (Vi/Vc) transition zone, an important structure for processing trigeminal nociceptive input. Local anesthetic block with lidocaine (2%) of the masseter muscle at 10 min prior to injection of CFA into the same site significantly reduced the CFA-induced increase in GFAP, IL-1β and P-NR1 (pstimulation (ES). The ES protocol was burst stimulation consisting of trains of 4 square pulses (10-100 Hz, 0.1-3 mA, 0.5 ms pulse width). Under pentobarbital anesthesia, an ES was delivered every 0.2 s for a total of 30 min. The Vi/Vc tissues were processed for immunohistochemistry or western blot analysis at 10-120 min after ES. Compared to naive and SHAM-treated rats, there was increased immunoreactivity against GFAP, IL-1β and P-NR1 in the Vi/Vc in rats receiving ES. Double staining showed that IL-1β was selectively localized in GFAP-positive astroglia, and P-NR1-immunoreactivity was localized to neurons. These findings indicate that primary afferent inputs are necessary and sufficient to induce astroglial hyperactivity and upregulation of IL-1β, as well as neuronal NMDA receptor phosphorylation. PMID:21170295

  12. An unusual formation of sciatic nerve

    OpenAIRE

    Sandhya Gunnal; Rajendra Wabale

    2013-01-01

    Sciatic nerve is the largest nerve and a branch of sacral plexus that controls hamstrings and all muscles of the lower limb below the knee. We are reporting a bilateral variant formation of the sciatic nerve found in a male human cadaver. The commencement of single sciatic nerve trunk formation was found to be in the lower gluteal region instead of the pelvic region. All the roots of the sciatic nerve, namely, the lumbosacral trunk (L4, L5), S1, S2, and S3 were observed to remain separate up ...

  13. Bilateral high division of sciatic nerve

    OpenAIRE

    K. Shwetha; Dakshayani KR

    2014-01-01

    Sciatic nerve is the thickest nerve in the body formed by the sacral plexus from L4 to S3 in the lesser pelvis. It emerges through the greater sciatic foramen below the piriformis and enter the gluteal region. Then the nerve passes on the back of the thigh and at the level of superior angle of popliteal fossa it terminates by dividing into tibial and common peroneal nerve. The knowledge of anatomical variations in the division of nerve is important for various surgical and anaesthetic procedu...

  14. Peroneal nerve palsy caused by intraneural ganglion

    International Nuclear Information System (INIS)

    A case of peroneal nerve palsy caused by an intraneural ganglion is presented. The cystic mass was located posterolateral to the lateral femoral condyle and extended along the common peroneal nerve distal to the origin of the peroneus longus muscle. The nerve was compressed in the narrow fibro-osseous tunnel against the fibula neck and the tight origin of the peroneus longus muscle. The nerve was decompressed by complete tumor excision and transection of the origin of the peroneus longus muscle. Full recovery of nerve function was obtained in 6 months. (orig.)

  15. Pulp nerve fibers distribution of human carious teeth: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2010-12-01

    Full Text Available Background: Human dental pulp is richly innervated by trigeminal afferent axons that subserve nociceptive function. Accordingly, they respond to stimuli that induce injury to the pulp tissue. An injury to the nerve terminals and other tissue components in the pulp stimulate metabolic activation of the neurons in the trigeminal ganglion which result in morphological changes in the peripheral nerve terminals. Purpose: The aim of the study was to observe caries-related changes in the distribution of human pulpal nerve. Methods: Under informed consents, 15 third molars with caries at various stages of decay and 5 intact third molars were extracted because of orthodontic or therapeutic reasons. All samples were observed by micro-computed tomography to confirm the lesion condition 3-dimensionally, before decalcifying with 10% EDTA solution (pH 7.4. The specimens were then processed for immunohistochemistry using anti-protein gene products (PGP 9.5, a specific marker for the nerve fiber. Results: In normal intact teeth, PGP 9.5 immunoreactive nerve fibers were seen concentrated beneath the odontoblast cell layer. Nerve fibers exhibited an increased density along the pulp-dentin border corresponding to the carious lesions. Conclusion: Neural density increases throughout the pulp chamber with the progression of caries. The activity and pathogenicity of the lesion as well as caries depth, might influence the degree of neural sprouting.Latar belakang: Pulpa gigi manusia diinervasi oleh serabut saraf trigeminal yang berespon terhadap stimuli penyebab perlukaan dengan menimbulkan rasa sakit. Perlukaan pada akhiran saraf dan komponen lain dari pulpa akan menstimulasi aktivasi metabolik dari neuron pada ganglion trigeminal sehingga mengakibatkan perubahan morfologi pada akhiran saraf perifer. Tujuan: Penelitian ini bertujuan untuk mengamati perubahan distribusi saraf pada pulpa gigi manusia yang disebabkan oleh proses karies. Metode: Penelitian ini menggunakan

  16. Microsurgical anatomy of the abducens nerve.

    Science.gov (United States)

    Joo, Wonil; Yoshioka, Fumitaka; Funaki, Takeshi; Rhoton, Albert L

    2012-11-01

    The aim of this study is to demonstrate and review the detailed microsurgical anatomy of the abducens nerve and surrounding structures along its entire course and to provide its topographic measurements. Ten cadaveric heads were examined using ×3 to ×40 magnification after the arteries and veins were injected with colored silicone. Both sides of each cadaveric head were dissected using different skull base approaches to demonstrate the entire course of the abducens nerve from the pontomedullary sulcus to the lateral rectus muscle. The anatomy of the petroclival area and the cavernous sinus through which the abducens nerve passes are complex due to the high density of critically important neural and vascular structures. The abducens nerve has angulations and fixation points along its course that put the nerve at risk in many clinical situations. From a surgical viewpoint, the petrous tubercle of the petrous apex is an intraoperative landmark to avoid damage to the abducens nerve. The abducens nerve is quite different from the other nerves. No other cranial nerve has a long intradural path with angulations and fixations such as the abducens nerve in petroclival venous confluence. A precise knowledge of the relationship between the abducens nerve and surrounding structures has allowed neurosurgeon to approach the clivus, petroclival area, cavernous sinus, and superior orbital fissure without surgical complications. PMID:22334502

  17. Tractography of lumbar nerve roots: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne [Hopital Roger Salengro, Service de Radiologie et d' Imagerie musculo-squelettique, Lille Cedex (France); Duhamel, Alain [Universite de Lille 2, UDSL, Lille (France); Bera-Louville, Anne [Service de Rhumatologie, Hopital Roger Salengro, Lille (France)

    2011-06-15

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  18. Cranial nerves XIII and XIV: nerves in the shadows

    OpenAIRE

    Bordoni, Bruno

    2013-01-01

    Bruno Bordoni,1 Emiliano Zanier21Don Carlo Gnocchi IRCCS, Department of Cardiology, Milan, 2Xamar Institute, Rosà, Vicenza, ItalyAbstract: It has been known for over a century that these cranial nerves exist, and that they are not typographical errors nor a sensational event reported in the medical literature. A number of scientific articles on anatomy highlight how textbooks on descriptive anatomy do not always consider variables such as differences related to the geographical are...

  19. Factors that influence peripheral nerve regeneration

    DEFF Research Database (Denmark)

    Krarup, Christian; Archibald, Simon J; Madison, Roger D

    2002-01-01

    median nerve lesions (n = 46) in nonhuman primates over 3 to 4 years, a time span comparable with such lesions in humans. Nerve gap distances of 5, 20, or 50mm were repaired with nerve grafts or collagen-based nerve guide tubes, and three electrophysiological outcome measures were followed: (1) compound...... as outcome predictors. Thus, nerve gap distance and repair type exert their influence through time to muscle reinnervation. These findings emphasize that factors that control early axonal outgrowth influence the final level of recovery attained years later. They also highlight that a time window...... muscle action potentials in the abductor pollicis brevis muscle, (2) the number and size of motor units in reinnervated muscle, and (3) compound sensory action potentials from digital nerve. A statistical model was used to assess the influence of three variables (repair type, nerve gap distance, and time...

  20. Continuous peripheral nerve blocks in children.

    Science.gov (United States)

    Dadure, C; Capdevila, X

    2005-06-01

    In recent years, regional anaesthesia in children has generated increasing interest. Continuous peripheral nerve blocks have an important role in the anaesthetic arsenal, allowing effective, safe and prolonged postoperative pain management. Indications for continuous peripheral nerve blocks depend on benefits/risks analysis of each technique for each patient. The indications include surgery associated with intense postoperative pain, surgery requiring painful physical therapy, and complex regional pain syndrome. Continuous peripheral nerve blocks are usually performed under general anaesthesia or sedation, and require appropriate equipment in order to decrease the risk of nerve injury. New techniques, such as transcutaneous stimulation or ultrasound guidance, appear to facilitate nerve and plexus identification in paediatric patients. Nevertheless, continuous peripheral nerve block may mask compartment syndrome in certain surgical procedure or trauma. Finally, ropivacaine appears to be the best local anaesthetic for continuous peripheral nerve blocks in children, requiring low flow rate with low concentration of the local anaesthetic. PMID:15966500