Sample records for afferent nerves protect

  1. Pharmacology of airway afferent nerve activity

    Directory of Open Access Journals (Sweden)

    Carr Michael J


    Full Text Available Abstract Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology.

  2. Temperature-dependent variation in afferent nerve discharge in rat jejunum

    DEFF Research Database (Denmark)

    Gregersen, Hans; Yang, Jian; Zhao, Jingbo


    baseline discharge and on distension-induced afferent fibers innervating the rat jejunum. Methods: Multi-unit afferent activity was recorded in vitro from jejunum afferents from 9 Wistar rats. The segments were immersed in oxygenated Krebs solution varied between 21–43 °C. The mesenteric nerve bundle...

  3. Persistence of PAD and presynaptic inhibition of muscle spindle afferents after peripheral nerve crush. (United States)

    Enríquez-Denton, M; Manjarrez, E; Rudomin, P


    Two to twelve weeks after crushing a muscle nerve, still before the damaged afferents reinnervate the muscle receptors, conditioning stimulation of group I fibers from flexor muscles depolarizes the damaged afferents [M. Enriquez, I. Jimenez, P. Rudomin, Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. Exp. Brain Res., 107 (1996), 405-420]. It is not known, however, if this primary afferent depolarization (PAD) is indeed related to presynaptic inhibition. We now show in the cat that 2-12 weeks after crushing the medial gastrocnemius nerve (MG), conditioning stimulation of group I fibers from flexors increases the excitability of the intraspinal terminals of both the intact lateral gastrocnemius plus soleus (LGS) and of the previously damaged MG fibers ending in the motor pool, because of PAD. The PAD is associated with the depression of the pre- and postsynaptic components of the extracellular field potentials (EFPs) evoked in the motor pool by stimulation of either the intact LGS or of the previously damaged MG nerves. These observations indicate, in contrast to what has been reported for crushed cutaneous afferents [K.W. Horch, J.W. Lisney, Changes in primary afferent depolarization of sensory neurones during peripheral nerve regeneration in the cat, J. Physiol., 313 (1981), 287-299], that shortly after damaging their peripheral axons, the synaptic efficacy of group I spindle afferents remains under central control. Presynaptic inhibitory mechanisms could be utilized to adjust the central actions of muscle afferents not fully recovered from peripheral lesions.

  4. The role of the renal afferent and efferent nerve fibers in heart failure. (United States)

    Booth, Lindsea C; May, Clive N; Yao, Song T


    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.

  5. Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. (United States)

    Enríquez, M; Jiménez, I; Rudomin, P


    In the anesthetized cat we have analyzed the changes in primary afferent depolarization (PAD) evoked in single muscle spindle and tendon organ afferents at different times after their axons were crushed in the periphery and allowed to regenerate. Medial gastrocnemius (MG) afferents were depolarized by stimulation of group I fibers in the posterior biceps and semitendinosus nerve (PBSt), as soon as 2 weeks after crushing their axons in the periphery, in some cases before they could be activated by physiological stimulation of muscle receptors. Two to twelve weeks after crushing the MG nerve, stimulation of the PBSt produced PAD in all MG fibers reconnected with presumed muscle spindles and tendon organs. The mean amplitude of the PAD elicited in afferent fibers reconnected with muscle spindles was increased relative to values obtained from Ia fibers in intact (control) preparations, but remained essentially the same in fibers reconnected with tendon organs. Quite unexpectedly, we found that, between 2 and 12 weeks after crushing the MG nerve, stimulation of the bulbar reticular formation (RF) produced PAD in most afferent fibers reconnected with muscle spindle afferents. The mean amplitude of the PAD elicited in these fibers was significantly increased relative to the PAD elicited in muscle spindle afferents from intact preparations (from 0.08 +/- 0.4 to 0.47 +/- 0.34 mV). A substantial recovery was observed between 6 months and 2.5 years after the peripheral nerve injury. Stimulation of the sural (SU) nerve produced practically no PAD in muscle spindles from intact preparations, and this remained so in those afferents reconnected with muscle spindles impaled 2-12 weeks after the nerve crush. The mean amplitude of the PAD produced in afferent fibers reconnected with tendon organs by stimulation of the PBSt nerve and of the bulbar RF remained essentially the same as the PAD elicited in intact afferents. However, SU nerve stimulation produced a larger PAD in afferents

  6. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum. (United States)

    Feng, Bin; Brumovsky, Pablo R; Gebhart, Gerald F


    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception.

  7. Aging impairs afferent nerve function in rat intestine. Reduction of mesenteric hyperemia induced by intraduodenal capsaicin and acid. (United States)

    Seno, K; Lam, K; Leung, J W; Leung, F W


    The high incidence of peptic ulcer disease despite decreased acid secretion in the elderly suggests an impairment of mucosal defense mechanism with aging. Stimulation of the intestinal mucosal afferent nerves by intraduodenal application of capsaicin or hydrochloric acid (HCl) increases superior mesenteric artery (SMA) blood flow and protects the duodenal mucosa against deep damage. We tested the hypothesis that the intestinal hyperemia induced by intraduodenal capsaicin or HCL is significantly reduced in older (12 months) rats compared with younger (2 months) rats. Mesenteric blood flow was measured by pulsed Doppler flowmetry in anesthetized rats with the flow probe around the SMA. Two milliliters per kilogram of 160 microM capsaicin or 0.1 N HCl administered intraduodenally increased SMA blood flow significantly in both age groups. The peak response in SMA blood flow, however, was significantly smaller in the older rats than in the younger rats. These observations support the hypothesis that impairment of afferent nerve function occurs with aging in the rat intestine.

  8. Phrenic nerve afferents elicited cord dorsum potential in the cat cervical spinal cord

    Directory of Open Access Journals (Sweden)

    Davenport Paul W


    Full Text Available Abstract Background The diaphragm has sensory innervation from mechanoreceptors with myelinated axons entering the spinal cord via the phrenic nerve that project to the thalamus and somatosensory cortex. It was hypothesized that phrenic nerve afferent (PnA projection to the central nervous system is via the spinal dorsal column pathway. Results A single N1 peak of the CDP was found in the C4 and C7 spinal segments. Three peaks (N1, N2, and N3 were found in the C5 and C6 segments. No CDP was recorded at C8 dorsal spinal cord surface in cats. Conclusion These results demonstrate PnA activation of neurons in the cervical spinal cord. Three populations of myelinated PnA (Group I, Group II, and Group III enter the cat's cervical spinal segments that supply the phrenic nerve

  9. Intestinal epithelial stem/progenitor cells are controlled by mucosal afferent nerves.

    Directory of Open Access Journals (Sweden)

    Ove Lundgren

    Full Text Available BACKGROUND: The maintenance of the intestinal epithelium is of great importance for the survival of the organism. A possible nervous control of epithelial cell renewal was studied in rats and mice. METHODS: Mucosal afferent nerves were stimulated by exposing the intestinal mucosa to capsaicin (1.6 mM, which stimulates intestinal external axons. Epithelial cell renewal was investigated in the jejunum by measuring intestinal thymidine kinase (TK activity, intestinal (3H-thymidine incorporation into DNA, and the number of crypt cells labeled with BrdU. The influence of the external gut innervation was minimized by severing the periarterial nerves. PRINCIPAL FINDINGS: Luminal capsaicin increased all the studied variables, an effect nervously mediated to judge from inhibitory effects on TK activity or (3H-thymidine incorporation into DNA by exposing the mucosa to lidocaine (a local anesthetic or by giving four different neurotransmitter receptor antagonists i.v. (muscarinic, nicotinic, neurokinin1 (NK1 or calcitonin gene related peptide (CGRP receptors. After degeneration of the intestinal external nerves capsaicin did not increase TK activity, suggesting the involvement of an axon reflex. Intra-arterial infusion of Substance P (SP or CGRP increased intestinal TK activity, a response abolished by muscarinic receptor blockade. Immunohistochemistry suggested presence of M3 and M5 muscarinic receptors on the intestinal stem/progenitor cells. We propose that the stem/progenitor cells are controlled by cholinergic nerves, which, in turn, are influenced by mucosal afferent neuron(s releasing acetylcholine and/or SP and/or CGRP. In mice lacking the capsaicin receptor, thymidine incorporation into DNA and number of crypt cells labeled with BrdU was lower than in wild type animals suggesting that nerves are important also in the absence of luminal capsaicin, a conclusion also supported by the observation that atropine lowered thymidine incorporation into DNA

  10. An in vitro method for recording single unit afferent activity from mesenteric nerves innervating isolated segments of rat ileum. (United States)

    Sharkey, K A; Cervero, F


    A technique has been developed for recording single unit afferent activity from mesenteric nerves in isolated segments of rat distal ileum in vitro. The preparation consists of a 3-cm segment of ileum, containing a single neurovascular bundle, held horizontally in an organ bath. One end of the segment is attached to a tension transducer to record changes in longitudinal tension of the gut muscle and the other is connected to a pressure transducer to record changes in intra-luminal pressure. Electromyographic activity of the smooth muscle is recorded using glass-insulated tungsten microelectrodes inserted in the wall of the gut. Afferent nerve activity is recorded with a monopolar platinum wire electrode from filaments of the mesenteric nerves that run between the artery and vein supplying the segment. This preparation permits the detailed analysis of the electrical activity of intestinal afferent nerve fibres correlated with mechanical and chemical events occurring naturally in the gut or imposed experimentally on it.

  11. Representation of Afferent Signals from Forearm Muscle and Cutaneous Nerves in the Primary Somatosensory Cortex of the Macaque Monkey (United States)

    Yamada, Hiroshi; Yaguchi, Hiroaki; Tomatsu, Saeka; Takei, Tomohiko; Oya, Tomomichi


    Proprioception is one’s overall sense of the relative positions and movements of the various parts of one’s body. The primary somatosensory cortex (SI) is involved in generating the proprioception by receiving peripheral sensory inputs from both cutaneous and muscle afferents. In particular, area 3a receives input from muscle afferents and areas 3b and 1 from cutaneous afferents. However, segregation of two sensory inputs to these cortical areas has not been evaluated quantitatively because of methodological difficulties in distinguishing the incoming signals. To overcome this, we applied electrical stimulation separately to two forearm nerves innervating muscle (deep radial nerve) and skin (superficial radial nerve), and examined the spatiotemporal distribution of sensory evoked potentials (SEPs) in SI of anaesthetized macaques. The SEPs arising from the deep radial nerve were observed exclusively at the bottom of central sulcus (CS), which was identified as area 3a using histological reconstruction. In contrast, SEPs evoked by stimulation of the superficial radial nerve were observed in the superficial part of SI, identified as areas 3b and 1. In addition to these earlier, larger potentials, we also found small and slightly delayed SEPs evoked by cutaneous nerve stimulation in area 3a. Coexistence of the SEPs from both deep and superficial radial nerves suggests that area 3a could integrate muscle and cutaneous signals to shape proprioception. PMID:27701434

  12. Differential presynaptic control of the synaptic effectiveness of cutaneous afferents evidenced by effects produced by acute nerve section. (United States)

    Rudomin, P; Jiménez, I; Chávez, D


    In the anaesthetized cat, the acute section of the saphenous (Saph) and/or the superficial peroneal (SP) nerves was found to produce a long-lasting increase of the field potentials generated in the dorsal horn by stimulation of the medial branch of the sural (mSU) nerve. This facilitation was associated with changes in the level of the tonic primary afferent depolarization (PAD) of the mSU intraspinal terminals. The mSU afferent fibres projecting into Rexed's laminae III-IV were subjected to a tonic PAD that was reduced by the acute section of the SP and/or the Saph nerves. The mSU afferents projecting deeper into the dorsal horn (Rexed's laminae V-VI) were instead subjected to a tonic PAD that was increased after Saph and SP acute nerve section. A differential control of the synaptic effectiveness of the low-threshold cutaneous afferents according to their sites of termination within the dorsal horn is envisaged as a mechanism that allows selective processing of sensory information in response to tactile and nociceptive stimulation or during the execution of different motor tasks.

  13. Efferents and afferents in an intact muscle nerve: background activity and effects of sural nerve stimulation in the cat. (United States)

    Bessou, P; Joffroy, M; Pagès, B


    1. The background activity was observed in gamma and alpha efferent fibres and in group I and II fibres innervating the muscle gastrocnemius lateralis or medialis. The reflex effects of ipsilateral and contralateral sural nerve stimulations on the muscle efferents were analysed together with their consequences upon the afferents of the same muscle. The observations were made in the decerebrated cat without opening the neural loops between the muscle and the spinal cord.2. The multi-unit discharges of each category of fibres were obtained, on line, by an original electronic device (Joffroy, 1975, 1980) that sorted the action potentials from the whole electrical activity of a small branch of gastrocnemius lateralis or medialis nerve according to the direction and velocity of propagation of the potentials.3. The small nerve may be regarded as a representative sample of different functional groups of fibres conducting faster than 12 m.sec(-1) and supplying gastrocnemius muscles.4. Some gamma efferents were always tonically firing except when a transient flaccid state developed. Usually the alpha efferents were silent, probably because the muscle was fixed close to the minimal physiological length.5. Separate and selective stimulations of Abeta, Adelta and C fibres of ipsilateral and contralateral sural nerve showed that each group could induce the excitation of gamma neurones. The reciprocal inhibition period of alpha efferents during a flexor reflex was only once accompanied by a small decrease in gamma-firing.6. The reflex increase of over-all frequency of gamma efferents resulted from an increased firing rate of tonic gamma neurones and from the recruitment of gamma neurones previously silent. When the gamma efferents in the small nerve naturally occurred in two subgroups, the slower-conducting subgroup (mainly composed of tonic gamma axons) was activated before the faster-conducting subgroup (mostly composed by gamma axons with no background discharge). Some rare

  14. Vagal and splanchnic afferent nerves are not essential for anorexia associated with abomasal parasitism in sheep. (United States)

    Fox, M T; Reynolds, G W; Scott, I; Simcock, D C; Simpson, H V


    Heavy burdens of the abomasal nematode, Ostertagia (Telodorsagia) circumcincta, in growing lambs result in a reduction in liveweight gain due largely to a drop in voluntary feed intake. The present study investigated: (1) the role of subdiaphragmatic vagal and non-vagal visceral afferent nerves in mediating a reduction in voluntary feed intake, using subdiaphragmatic vagal deafferentation (vagotomy) either alone or in combination with coeliac-superior mesenteric ganglionectomy (vagotomy and sympathectomy); and (2) the association between appetite, abomasal pH, selected blood values (amidated gastrin (G-17-amide), glycine-extended gastrin (G-17-Gly), pepsinogen and leptin) and worm burden, in sheep experimentally infected with 100,000 O. circumcincta infective larvae per os. Neither vagotomy alone nor vagotomy and sympathectomy in combination adversely affected the establishment or course of development of the parasite burden, when compared with a control group subject to sham surgery. Furthermore, neither surgical procedure prevented the drop in appetite seen 5-10 days post-infection, although combined vagotomy and sympathectomy did reduce voluntary feed intake prior to the start of the study. Ostertagia infection resulted in a significant increase in abomasal pH in all three groups, which was accompanied by an increase in blood G-17-amide and in G-17-Gly, the latter reported for the first time in parasitized ruminants. There were no significant differences in blood leptin, also reported for the first time in parasitized sheep, either between groups or in comparison with pre-infection levels, though weak negative correlations were established between blood leptin and appetite from day 5 to the end of the study in all three groups and a positive correlation with blood G-17-amide in the control group over the same period. These data suggest that neither intact subdiaphragmatic vagal afferent nerves or coeliac-superior mesenteric ganglion fibres, nor changes in

  15. What Protects Certain Nerves from Stretch Injury? (United States)

    Schraut, Nicholas B; Walton, Sharon; Bou Monsef, Jad; Shott, Susan; Serici, Anthony; Soulii, Lioubov; Amirouche, Farid; Gonzalez, Mark H; Kerns, James M


    The human tibial nerves is less prone to injury following joint arthroplasty compared with the peroneal nerves. Besides the anatomical distribution, other features may confer protection from stretch injury. We therefore examined the size, shape and connective tissue distribution for the two nerves. The tibial and peroneal nerves from each side of nine fresh human cadavers we reharvested mid-thigh. Proximal segments manually stretched 20%-25% were fixed in aldehyde, while the adjacent distal segments were fixed in their natural length. Paraffin sections stained by Masson's trichrome method for connective tissue were examined by light microscopy. Tibial nerves had 2X more fascicles compared with the peroneal, but the axonal content appeared similar. Analysis showed that neither nerve had a significant reduction in cross sectional area of the fascicles following stretch. However, fascicles from stretched tibial nerves become significantly more oval compared with those from unstretched controls and peroneal nerves. Tibial nerves had a greater proportion that was extrafascicular tissue (50-55%) compared with peroneal nerves (38%-42%). This epineurium was typically adipose tissue. Perineurial thickness in both nerves was directly related to fascicular size. Tibial nerves have several unique histological features associated with size, shape and tissue composition compared with the peroneal nerve. We suggest that more fascicles with their tightly bound perineurium and more robust epineurium afford protection against stretch injury. Mechanical studies should clarify how size and shape contribute to nerve protection and/or neurapraxia.

  16. Effect of stimulation of afferent renal nerves on plasma levels of vasopressin

    Energy Technology Data Exchange (ETDEWEB)

    Caverson, M.M.; Ciriello, J.


    Experiments were done in ..cap alpha..-chloralose-anesthetized, paralyzed and artificially ventilated cats with vagus, cervical sympathetic, aortic depressor, and carotid sinus nerves cut bilaterally to investigate the effect of afferent renal nerve (ARN) stimulation on circulating levels of vasopressin (AVP). Electrical stimulation of ARN elicited a pressor response that had two components, a primary (1/sup 0/) component locked in time with the stimulus and a secondary (2/sup 0/) component that had a long onset latency and that outlasted the stimulation period. The 1/sup 0/ and 2/sup 0/ components of the pressor response were largest at stimulation frequencies of 30 and 40 Hz, respectively. Autonomic blockage with hexamethonium bromide and atropine methylbromide abolished the 1/sup 0/ component. Administration of the vasopressin V/sub 1/-vascular receptor antagonist d(CH/sub 2/)/sub 5/ VAVP during autonomic blockade abolished the 2/sup 0/C component. Plasma concentrations of AVP measured by radioimmunoassay increased from control levels of 5.2 +/- 0.9 to 53.6 +/- 18.6 pg/ml during a 5-min period of stimulation of ARN. Plasma AVP levels measured 20-40 min after simulation were not significantly different from control values. These data demonstrate that sensory information originating in the kidney alters the release of vasopressin from the neurohypophysis and suggest that ARN are an important component of the neural circuitry involved in homeostatic mechanisms controlling arterial pressure.

  17. Effects of Afferent Stimulation of the Lingual Nerve on Gastrointestinal Motility in the Rat

    Directory of Open Access Journals (Sweden)



    Full Text Available Effects of afferent stimulation of the lingual nerve (LNAS on gastrointestinal motility and the reflex pathways which mediate the response to LNAS were investigated in rats. LNAS induced excitatory, inhibitory or biphasic responses in the stomach, duodenum and proximal colon. These responses continued after bilateral vagotomy, but were abolished after additional bilateral splanchnicotomy or transection of the spinal cord between Th4 and Th5. The inhibitory, excitatory and biphasic responses induced by LNAS were not affected by decerebration. Both after administration of atropine (0.2 mg/kg, i.v. and guanethidine (3-5 mg/kg, i.v., LNAS-induced excitatory and inhibitory responses were abolished in most cases, but the slight inhibitory response in the stomach and duodenum to LNAS remained in a few cases. These results suggest that the reflex centers which cause LNAS-induced excitatory and inhibitory responses are located in the dorsal nucleus of vagus and that the reflex pathways include the vagus and splanchnic nerves.

  18. Effect of synthetic cationic protein on mechanoexcitability of vagal afferent nerve subtypes in guinea pig esophagus. (United States)

    Yu, Shaoyong; Ouyang, Ann


    Eosinophilic esophagitis is characterized by increased infiltration and degranulation of eosinophils in the esophagus. Whether eosinophil-derived cationic proteins regulate esophageal sensory nerve function is still unknown. Using synthetic cationic protein to investigate such effect, we performed extracellular recordings from vagal nodose or jugular neurons in ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Nerve excitabilities were determined by comparing action potentials evoked by esophageal distensions before and after perfusion of synthetic cationic protein poly-L-lysine (PLL) with or without pretreatment with poly-L-glutamic acid (PLGA), which neutralized cationic charges of PLL. Perfusion with PLL did not evoke action potentials in esophageal nodose C fibers but increased their responses to esophageal distension. This potentiation effect lasted for 30 min after washing out of PLL. Pretreatment with PLGA significantly inhibited PLL-induced mechanohyperexcitability of esophageal nodose C fibers. In esophageal nodose Aδ fibers, perfusion with PLL did not evoke action potentials. In contrast to nodose C fibers, both the spontaneous discharges and the responses to esophageal distension in nodose Aδ fibers were decreased by perfusion with PLL, which can be restored after washing out PLL for 30-60 min. Pretreatment with PLGA attenuated PLL-induced decrease in spontaneous discharge and mechanoexcitability of esophageal nodose Aδ fibers. In esophageal jugular C fibers, PLL neither evoked action potentials nor changed their responses to esophageal distension. Collectively, these data demonstrated that synthetic cationic protein did not evoke action potential discharges of esophageal vagal afferents but had distinctive sensitization effects on their responses to esophageal distension.

  19. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus. (United States)

    Yu, Xiaoyun; Hu, Youtian; Ru, Fei; Kollarik, Marian; Undem, Bradley J; Yu, Shaoyong


    Sensory transduction in esophageal afferents requires specific ion channels and receptors. TRPM8 is a new member of the transient receptor potential (TRP) channel family and participates in cold- and menthol-induced sensory transduction, but its role in visceral sensory transduction is still less clear. This study aims to determine TRPM8 function and expression in esophageal vagal afferent subtypes. TRPM8 agonist WS-12-induced responses were first determined in nodose and jugular neurons by calcium imaging and then investigated by whole cell patch-clamp recordings in Dil-labeled esophageal nodose and jugular neurons. Extracellular single-unit recordings were performed in nodose and jugular C fiber neurons using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. TRPM8 mRNA expression was determined by single neuron RT-PCR in Dil-labeled esophageal nodose and jugular neurons. The TRPM8 agonist WS-12 elicited calcium influx in a subpopulation of jugular but not nodose neurons. WS-12 activated outwardly rectifying currents in esophageal Dil-labeled jugular but not nodose neurons in a dose-dependent manner, which could be inhibited by the TRPM8 inhibitor AMTB. WS-12 selectively evoked action potential discharges in esophageal jugular but not nodose C fibers. Consistently, TRPM8 transcripts were highly expressed in esophageal Dil-labeled TRPV1-positive jugular neurons. In summary, the present study demonstrated a preferential expression and function of TRPM8 in esophageal vagal jugular but not nodose neurons and C fiber subtypes. This provides a distinctive role of TRPM8 in esophageal sensory transduction and may lead to a better understanding of the mechanisms of esophageal sensation and nociception.

  20. Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes. (United States)

    Djilas, Milan; Azevedo-Coste, Christine; Guiraud, David; Yoshida, Ken


    In this study, we explored the feasibility of estimating muscle length in passive conditions by interpreting nerve responses from muscle spindle afferents recorded with thin-film longitudinal intrafascicular electrodes. Afferent muscle spindle response to passive stretch was recorded in ten acute rabbit experiments. A newly proposed first-order model of muscle spindle response to passive sinusoidal muscle stretch manages to capture the relationship between afferent neural firing rate and muscle length. We demonstrate that the model can be used to track random motion trajectories with bandwidth from 0.1 to 1 Hz over a range of 4 mm with a muscle length estimation error of 0.3 mm (1.4 degrees of joint angle). When estimation is performed using four-channel ENG there is a 50% reduction in estimate variation, compared to using single-channel recordings.

  1. Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension. (United States)

    Su, X; Sengupta, J N; Gebhart, G F


    The aim of this study was to examine the effects of kappa-opioid receptor selective agonists on responses of mechanosensitive afferent fibers in the pelvic nerve. Single-fiber recordings were made from pelvic nerve afferents in the decentralized S1 dorsal root of the rat. A total of 572 afferent fibers in the S1 dorsal root were identified by electrical stimulation of the pelvic nerve; 252 (44%) responded to noxious colorectal distension (CRD; 80 mmHg). Of these 252 fibers that responded to CRD, 100 were studied further. All 100 fibers gave monotonic increases in firing to increasing pressures of CRD. Eighty-eight fibers had low thresholds for response (mean: 3 mmHg) and 12 fibers had high-thresholds for response (mean: 28 mmHg). Responses of 17 fibers also were tested after instillation of 5% mustard oil (MO) into the colon. The resting activity of 16/17 fibers significantly increased after MO instillation; 13 (77%) also exhibited sensitization of responses to graded CRD when tested 30 min after intracolonic MO instillation. The effects of kappa1-opioid receptor preferring agonists (U50,488H, U69,593 and U62,066), the kappa2-opioid receptor preferring agonist bremazocine, and the kappa3-opioid receptor preferring agonist naloxone benzoylhydrazone (nalBzoH) were tested on responses of 64 mechanosensitive afferent fibers to noxious CRD. All five agonists dose-dependently inhibited afferent fiber responses to noxious CRD. Doses producing inhibition to 50% of the control response to CRD did not differ among the five agonists, ranging from approximately 4 to 15 mg/kg. The effects of kappa1, kappa2, and kappa3 receptor agonists were attenuated by naloxone; two kappa-opioid receptor-selective antagonists were ineffective. There were no differences in the dose-response relationships of these drugs for fibers recorded from untreated and irritant-treated colons. Conduction velocities of the fibers remained unaffected after high doses of all tested agonists. In an in vitro

  2. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara


    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  3. Effect of copper sulphate on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat (United States)

    Niijima, Akira; Jiang, Zheng-Yao; Daunton, Nancy G.; Fox, Robert A.


    The afferent nerve activity was recorded from a nerve filament isolated from the peripheral cut end of the gastric branch of the vagus nerve. The gastric perfusion of 4 ml of two different concentrations (0.04 percent and 0.08 percent) of CuSO4 solution provoked an increase in afferent activity. The stimulating effect of the 0.08 percent solution was stronger than that of the 0.04 percent solution, and lasted for a longer period of time. The observations suggest a possible mechanism by which CuSO4 elicits emesis.

  4. Firing patterns and functional roles of different classes of spinal afferents in rectal nerves during colonic migrating motor complexes in mouse colon. (United States)

    Zagorodnyuk, Vladimir P; Kyloh, Melinda; Brookes, Simon J; Nicholas, Sarah J; Spencer, Nick J


    The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 ± 0.23 Hz (n = 8) under isotonic conditions and 2.52 ± 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 μM). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in naïve mouse colorectum.

  5. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Salter Michael W


    Full Text Available Abstract Background The blood-brain barrier (BBB plays the crucial role of limiting exposure of the central nervous system (CNS to damaging molecules and cells. Dysfunction of the BBB is critical in a broad range of CNS disorders including neurodegeneration, inflammatory or traumatic injury to the CNS, and stroke. In peripheral tissues, the vascular-tissue permeability is normally greater than BBB permeability, but vascular leakage can be induced by efferent discharge activity in primary sensory neurons leading to plasma extravasation into the extravascular space. Whether discharge activity of sensory afferents entering the CNS may open the BBB or blood-spinal cord barrier (BSCB remains an open question. Results Here we show that peripheral nerve injury (PNI produced by either sciatic nerve constriction or transecting two of its main branches causes an increase in BSCB permeability, as assessed by using Evans Blue dye or horseradish peroxidase. The increase in BSCB permeability was not observed 6 hours after the PNI but was apparent 24 hours after the injury. The increase in BSCB permeability was transient, peaking about 24-48 hrs after PNI with BSCB integrity returning to normal levels by 7 days. The increase in BSCB permeability was prevented by administering the local anaesthetic lidocaine at the site of the nerve injury. BSCB permeability was also increased 24 hours after electrical stimulation of the sciatic nerve at intensity sufficient to activate C-fibers, but not when A-fibers only were activated. Likewise, BSCB permeability increased following application of capsaicin to the nerve. The increase in permeability caused by C-fiber stimulation or by PNI was not anatomically limited to the site of central termination of primary afferents from the sciatic nerve in the lumbar cord, but rather extended throughout the spinal cord and into the brain. Conclusions We have discovered that injury to a peripheral nerve and electrical stimulation of C

  6. Variation in response dynamics of regular and irregular vestibular-nerve afferents during sinusoidal head rotations and currents in the chinchilla. (United States)

    Kim, Kyu-Sung; Minor, Lloyd B; Della Santina, Charles C; Lasker, David M


    In mammals, vestibular-nerve afferents that innervate only type I hair cells (calyx-only afferents) respond nearly in phase with head acceleration for high-frequency motion, whereas afferents that innervate both type I and type II (dimorphic) or only type II (bouton-only) hair cells respond more in phase with head velocity. Afferents that exhibit irregular background discharge rates have a larger phase lead re-head velocity than those that fire more regularly. The goal of this study was to investigate the cause of the variation in phase lead between regular and irregular afferents at high-frequency head rotations. Under the assumption that externally applied galvanic currents act directly on the nerve, we derived a transfer function describing the dynamics of a semicircular canal and its hair cells through comparison of responses to sinusoidally modulated head velocity and currents. Responses of all afferents were fit well with a transfer function with one zero (lead term). Best-fit lead terms describing responses to current for each group of afferents were similar to the lead term describing responses to head velocity for regular afferents (0.006 s + 1). This finding indicated that the pre-synaptic and synaptic inputs to regular afferents were likely to be pure velocity transducers. However, the variation in phase lead between regular and irregular afferents could not be explained solely by the ratio of type I to II hair cells (Baird et al 1988), suggesting that the variation was caused by a combination of pre- (type of hair cell) and post-synaptic properties.

  7. Biochemical evidence that L-glutamate is a neurotransmitter of primary vagal afferent nerve fibers

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, M.H. (Cornell Univ., New York (USA). Medical Coll.)


    To determine in rat if vagal afferent fibers projecting into the intermediate one third of the nucleus tractus solitarius (NTS), the site of termination of baroafferents, utilize glutamate as a neurotransmitter, the high-affinity uptake of (/sup 3/H)L-glutamate and content of glutamate were analyzed in micropunches of rat brain stem. The intermediate NTS contains a high-affinity synaptosomal uptake system for (/sup 3/H)L-glutamate that is greater in capacity than that in areas adjacent to the NTS; it is almost two-fold higher than uptake in medial septum and nucleus accumbens and equal to that of hippocampal regions purportedly containing a rich glutamatergic innervation. Unilateral ablation of the nodose ganglion (i.e. cells of origin of vagal afferents) resulted, within 24 h in a prolonged significant reduction, to 56% of control, of (/sup 3/H)L-glutamate uptake, bilaterally in the NTS. The reduction of Na/sup +/-dependent synaptosomal uptake of (/sup 3/H)L-glutamate, resulted from a decrease in Vsub(max) without change in the Ksub(m) of the process, was anatomically restricted to the intermediate NTS, and was not associated with changes in (/sup 3/H)GABA uptake. The content of glutamate in the NTS was significantly (P < 0.01) decreased by 30% 7 days following unilateral extirpation of the nodose ganglion without changes in the concentrations of aspartate, glycine, glutamine, or GABA. A population of vagal afferent fibers projecting to NTS are glutamatergic. The results are consistent with the hypothesis obtained by physiological and pharmacological techniques that glutamate is a neurotransmitter of baroafferents.

  8. [A pharmacological analysis of the central control of the preganglionic sympathetic neurons during stimulation of the afferent nerve fibers of the digestive tract]. (United States)

    Itina, L V; Posniak, V A


    In acute experiments on cats, effect of adrenergic brain neurons on impulse activity of preganglionic fibers of the left splanchnic nerve was studied. Afferent fibers of nerves innervating the stomach, duodenum, ileum and ileocecal angle were electrically stimulated. Phenoxybenzamine, obsidan, amizyl, iprazid, nuredal, dalargine, and morphine were used for pharmacological analysis. Nerves, stimulation at 20 Hz of different segments of the digestive tract was accompanied by different inhibition of preganglionic neurons. Sympathetic-stimulating effects were observed more frequently at 5 Hz stimulation. After vagotomy, alpha- and beta-adrenoreceptor block, central cholinoreceptor and monoamine oxidase (MAO) block, and after dalargine (0.1 and 0.01 mg/kg) nerves stimulation at 20 Hz was followed by sympathetic-stimulating effect. A weak regulatory effect of morphine (1 and 10 mg/kg) on ileal nerve stimulation effects was shown. It is suggested that excitation from afferent neurons of the vagus is transmitted to central cholinergic neurons which, in their turn, excite adrenergic neurons of the brain, and the latter inhibit impulsation of preganglionic fibers. MAO block increased the balance of excitatory effect of serotonin on spinal reflexes. Morphine and dalargine intracentrally may block adrenergic and cholinergic transmissions, as well as decrease the release of substance P from afferent neurons. Their regulatory action is revealed when different frequencies of stimulation are used.

  9. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit (United States)

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.


    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  10. Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity. (United States)

    King, Tamara; Qu, Chaoling; Okun, Alec; Mercado, Ramon; Ren, Jiyang; Brion, Triza; Lai, Josephine; Porreca, Frank


    A predominant complaint in patients with neuropathic pain is spontaneous pain, often described as burning. Recent studies have demonstrated that negative reinforcement can be used to unmask spontaneous neuropathic pain, allowing for mechanistic investigations. Here, ascending pathways that might contribute to evoked and spontaneous components of an experimental neuropathic pain model were explored. Desensitization of TRPV1-positive fibers with systemic resiniferatoxin (RTX) abolished spinal nerve ligation (SNL) injury-induced thermal hypersensitivity and spontaneous pain, but had no effect on tactile hypersensitivity. Ablation of spinal NK-1 receptor-expressing neurons blocked SNL-induced thermal and tactile hypersensitivity as well as spontaneous pain. After nerve injury, upregulation of neuropeptide Y (NPY) is observed almost exclusively in large-diameter fibers, and inactivation of the brainstem target of these fibers in the nucleus gracilis prevents tactile but not thermal hypersensitivity. Blockade of NPY signaling within the nucleus gracilis failed to block SNL-induced spontaneous pain or thermal hyperalgesia while fully reversing tactile hypersensitivity. Moreover, microinjection of NPY into nucleus gracilis produced robust tactile hypersensitivity, but failed to induce conditioned place aversion. These data suggest that spontaneous neuropathic pain and thermal hyperalgesia are mediated by TRPV1-positive fibers and spinal NK-1-positive ascending projections. In contrast, the large-diameter dorsal column projection can mediate nerve injury-induced tactile hypersensitivity, but does not contribute to spontaneous pain. Because inhibition of tactile hypersensitivity can be achieved either by spinal manipulations or by inactivation of signaling within the nucleus gracilis, the enhanced paw withdrawal response evoked by tactile stimulation does not necessarily reflect allodynia.

  11. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats. (United States)

    Makimura, Yukitoshi; Ito, Koichi; Kuwahara, Masayoshi; Tsubone, Hirokazu


    Enteritis has been recognized as a major symptom in domestic animals and human patients suffering from feed and food poisonings. The aim of the present study was to clarify the excitatory mechanism of the pelvic nerve afferent which may influence the occurrence of enteritis in response to nociceptive chemical stimuli of the colon in normal and abnormal rats with colitis induced by dextran sulfate sodium (DSS). The pelvic nerve afferent activity was markedly increased by colonic instillation of solution (0.5 ml) of acetic acid (5-25%) and capsaicin (100 μg/ml). The nerve activity was augmented by colonic instillation of capsaicin to a greater extent in rats with DSS-induced colitis than in normal control rats. This augmented activity by capsaicin was more prominent at one day (DSS-1) than at 8 day (DSS-8) after the administration of DSS. The increased nerve activity caused by capsaicin in DSS-1 and DSS-8 was significantly inhibited by pretreatment with ruthenium red, which is a nonselective inhibitor of TRP channels of unmyelinated C-fibers (nociceptors). In conclusion, it was elucidated that the nociceptive function of the pelvic nerve was largely elevated at one day after DSS-induced colitis and such increased function was mostly mediated by TRP channels.

  12. Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells

    Institute of Scientific and Technical Information of China (English)

    Chengjun Song; Zhenjun Yang; Meirong Zhong; Zhihong Chen


    Sericin from discarded silkworm cocoons of silk reeling has been used in different fields, such as cosmetology, skin care, nutrition, and oncology. The present study established a rat model of type 2 diabetes by consecutive intraperitoneal injections of low-dose (25 mg/kg) streptozotocin. After intragastrical perfusion of sericin for 35 days, blood glucose levels significantly declined, and the expression of neurofilament protein in the sciatic nerve and nerve growth factor in L4–6 spinal ganglion and anterior horn cells significantly increased. However, the expression of neuropeptide Y in spinal ganglion and anterior horn cells significantly decreased in model rats. These findings indicate that sericin protected the sciatic nerve and related nerve cells against injury in a rat type 2 diabetic model by upregulating the expression of neurofilament protein in the sciatic nerve and nerve growth factor in spinal ganglion and anterior horn cells, and downregulating the expression of neuropeptide Y in spinal ganglion and anterior horn cells.

  13. No relation between afferent facilitation induced by digital nerve stimulation and the latency of cutaneomuscular reflexes and somatosensory evoked magnetic fields

    Directory of Open Access Journals (Sweden)

    Sho eKojima


    Full Text Available Primary motor cortex (M1 excitability can be assessed using transcranial magnetic stimulation (TMS and can be modulated by a conditioning electrical stimulus delivered to a peripheral nerve prior to TMS. This is known as afferent facilitation (AF. The aim of this study was to determine whether AF can be induced by digital nerve stimulation and to evaluate the relation between the interstimulus interval (ISI required for AF and the latency of the E2 component of the cutaneomuscular reflex (CMR and the prominent somatosensory evoked field (SEF deflection that occurs approximately 70 ms after digital nerve stimulation (P60m. Stimulation of the digital nerve of the right index finger was followed, at various time intervals, by single-pulse TMS applied to the contralateral hemisphere. The ISI between digital nerve stimulation and TMS was 20, 30, 40, 50, 60, 70, 80, 100, 140, 180, 200, or 220 ms. Single-pulse TMS was performed alone as a control. SEFs were recorded following digital nerve stimulation of the index finger, and the equivalent current dipole of prominent deflections that occurred around 70 ms after the stimulation was calculated. CMRs were recorded following digital nerve stimulation during muscle contraction. Motor evoked potentials were facilitated at an ISI between 50 and 100 ms in 11 of 13 subjects, and the facilitated MEP amplitude was larger than the unconditioned MEP amplitude (p < 0.01. There was no significant correlation between the ISI at which AF was maximal and the latency of the P60m component of the SEF (r = -0.50, p = 0.12 or the E2 component of the CMR (r = -0.54, p = 0.88. These results indicate that the precise ISI required for AF cannot be predicted using SEF or CMR.

  14. Origin and central projections of rat dorsal penile nerve: possible direct projection to autonomic and somatic neurons by primary afferents of nonmuscle origin. (United States)

    Núñez, R; Gross, G H; Sachs, B D


    Cell number, size, and somatotopic arrangement within the spinal ganglia of the cells of origin of the rat dorsal penile nerve (DPN), and their spinal cord projections, were studied by loading the proximal stump of the severed DPN with horseradish peroxidase (HRP). The DPN sensory cells were located entirely in the sixth lumbar (L6) dorsal root ganglia (DRG), in which a mean of 468 +/- 78 cells per side were observed, measuring 26.7 +/- 0.8 microns in their longest axis (range 10-65 microns) and distributed apparently randomly within the ganglia. Within the spinal cord, no retrograde label was found, i.e., no motoneurons were labeled, indicating that in the rat the DPN is formed exclusively of sensory nerve fibers. Although labeled fibers entered the cord only through L6, transganglionically transported HRP was evident in all spinal segments examined, i.e., T13-S2. Labeled fibers projected along the inner edge of the dorsal horn (medial pathway) throughout their extensive craniosacral distribution. However, laminar distribution varied with spinal segment. In the dorsal horn, terminals or preterminal axons were found in the dorsal horn marginal zone (lamina I), the substantia gelatinosa (lamina II), the nucleus proprius (laminae III and IV--the most consistent projection), Clarke's column (lamina VI), and the dorsal gray commissure. In the ventral horn, terminals were found in lamina VII and lamina IX. Label apposed to cell somas and dendrites in lamina VII may represent direct primary afferent projections onto sympathetic autonomic neurons. In lamina IX, labeled terminals delineated the somas and dendrites of cells that appeared to be motoneurons. This is the first description of an apparently monosynaptic contact onto motoneurons by a primary afferent of nonmuscle origin.

  15. Nerve protective effect of Baicalin on newborn HIBD rats

    Institute of Scientific and Technical Information of China (English)

    Xue-Mei Liu; Yi Feng; Ai-Min Li


    Objective:To investigate the nerve protective effect and mechanism of baicalin on newborn rats with hypoxic ischemic brain damage(HIBD).Methods:A total of64SD newborn rats were randomly divided into control group, model group, nerve growth factor group and baicalin group, with16 in each group.Left carotid artery ligation method was adopted to establish theHIBD model except for in control group, which was treated with intraperitoneal injection of salin e10 mL/kg for3 d.After oxygen recovery on hypoxia ischemia rats, intraperitoneal injection of saline10 mL/kg was adopted in model group for3 d.Intraperitoneal injection of nerve growth factor injection 50μg/kg per day was adopted in nerve growth factor group for3 d; intraperitoneal injection of radix scutellariae16 mg/kg per day was adopted in baicalin group for3 d after modeling.Four rats of each group were sacrificed atDay1,2,3,7 for microscopic observation of pathological morphological changes in brain tissue afterHE staining,S-P immunohistochemical method was used for observation ofFas andFasL expression in brain cells.Results:Neat structure of cells was observed in control group; edema cells in disordered arrangement was observed in model group, with some cells necrosis and cavity change; tissue injury in nerve growth factor group and baicalin group was significantly lighter than that in model group;Fas andFasL expression in model group, nerve growth factor group and baicalin group were significantly higher than that in control group at different time points(P0.05).Conclusions:Baicalin can reduce expression ofFas andFasL inHIBD rats, inhibit apoptosis of nerve cells, thus achieve the protective effect onHIBD rat nerves.

  16. Vasopressin content in the cerebrospinal fluid and fluid perfusing cerebral ventricles in rats after the afferent vagus nerve fibres stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska-Majdak, M.; Traczyk, W.Z. [Akademia Medyczna, Lodz (Poland). Katedra Fizjologii


    Experiments were carried out on male rats in urethane anaesthesia. Cerebroventricular system was perfused with McIlwain-Rodniht`s solution from lateral ventricles to cerebellomedullary cistern. Both vagus nerves were cut and the central ends of the nerves were electrically stimulated during the collection of the third 30-min portion of perfusing fluid. Vasopressin (AVP) was determined by radioimmunoassay in samples of the cerebrospinal fluid (CSF) (the first portion) and in five successive samples of the perfusing fluid. AVP concentration in the CSF was several times greater than in the fluid perfusing cerebral ventricles. Alternate electrical stimulation of both vagus nerves did not change considerably the release of AVP into the fluid perfusing the cerebral ventricles in rat, although a certain upward tendency could be observed. It seems that only AVP raised in circulating blood and not in CSF, after vagus nerves stimulation may act on the central nervous structures. (author). 37 refs, 3 figs, 1 tab.

  17. Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury (United States)

    Yagasaki, Yuki; Katayama, Yoko


    Abstract Plastic changes in the CNS in response to peripheral sensory nerve injury are a series of complex processes, ranging from local circuit remodeling to somatotopic reorganization. However, the link between circuit remodeling and somatotopic reorganization remains unclear. We have previously reported that transection of the primary whisker sensory nerve causes the abnormal rewiring of lemniscal fibers (sensory afferents) on a neuron in the mouse whisker sensory thalamus (V2 VPM). In the present study, using transgenic mice whose lemniscal fibers originate from the whisker sensory principle trigeminal nucleus (PrV2) are specifically labeled, we identified that the transection induced retraction of PrV2-originating lemniscal fibers and invasion of those not originating from PrV2 in the V2 VPM. This anatomical remodeling with somatotopic reorganization was highly correlated with the rewiring of lemniscal fibers. Origins of the non-PrV2-origin lemniscal fibers in the V2 VPM included the mandibular subregion of trigeminal nuclei and the dorsal column nuclei (DCNs), which normally represent body parts other than whiskers. The transection also resulted in ectopic receptive fields of V2 VPM neurons and extraterritorial pain behavior on the uninjured mandibular region of the face. The anatomical remodeling, emergence of ectopic receptive fields, and extraterritorial pain behavior all concomitantly developed within a week and lasted more than three months after the transection. Our findings, thus, indicate a strong linkage between these plastic changes after peripheral sensory nerve injury, which may provide a neural circuit basis underlying large-scale reorganization of somatotopic representation and abnormal ectopic sensations.

  18. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways (United States)

    Boyle, R.; Goldberg, J. M.; Highstein, S. M.


    1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs

  19. 5-羟色胺对大鼠膀胱传入神经活动的影响%Effect of 5-hydroxytryptamine on activity of bladder afferent nerves in rats

    Institute of Scientific and Technical Information of China (English)

    孙俏; 孙碧英; 罗萍; 王莹萍; 董莉; 戎伟芳


    Objective To investigate the effect of 5-hydroxytryptamine (5-HT) on the spontaneous and mechanosensitive activity of bladder afferent nerves. Methods The effects of intravesical instillation of different concentrations of 5-HT on the spontaneous and distension-induced pelvic afferent nerve activity were observed in the isolated rat bladder/pelvic nerve preparations. Results At rest, with the bladder empty, there was little background activity ( < 10 imp/s) in the pelvic nerve branch innervating the bladder. During ramp distension, the afferent nerve activity increased progressively as the intravesical pressure rose. Intraluminal instillation of 0. 1 mL 5-HT (1 to 30 |xmol/L) caused an increase of the ongoing afferent discharge and potentiated the low threshold (0 — 15 mmHg) mechanosensory responses in a concentration-dependent manner. Conclusion 5-HT directly activates low threshold bladder afferent fibers in the pelvic nerve, and can potentiate their mechanosensitivity.%目的 观察5-羟色胺(5-HT)对膀胱传入神经自发放电活动和机械敏感性的影响.方法 采用离体大鼠膀胱—盆神经标本,观察膀胱腔内给予不同浓度5-HT后,盆神经自发放电频率及充胀膀胱引起的放电活动的变化.结果 膀胱未充胀时,盆神经仅有少量自发放电活动(< 10 imp/s);充胀时,盆神经放电频率随膀胱内压力递增而升高;膀胱腔内给予5-HT(1~ 30μmol/L,0.1 mL)后,盆神经自发放电频率呈剂量依赖性增加,对0~ 15 mmHg范围(低压区)充胀刺激的反应增强.结论 5-HT能直接激活膀胱低阈值传入神经,并增强其对机械刺激的反应.

  20. Macrophage presence is essential for the regeneration of ascending afferent fibres following a conditioning sciatic nerve lesion in adult rats

    Directory of Open Access Journals (Sweden)

    Smith Malcolm


    Full Text Available Abstract Background Injury to the peripheral branch of dorsal root ganglia (DRG neurons prior to injury to the central nervous system (CNS DRG branch results in the regeneration of the central branch. The exact mechanism mediating this regenerative trigger is not fully understood. It has been proposed that following peripheral injury, the intraganglionic inflammatory response by macrophage cells plays an important role in the pre-conditioning of injured CNS neurons to regenerate. In this study, we investigated whether the presence of macrophage cells is crucial for this type of regeneration to occur. We used a clodronate liposome technique to selectively and temporarily deplete these cells during the conditioning phase of DRG neurons. Results Retrograde and anterograde tracing results indicated that in macrophage-depleted animals, the regenerative trigger characteristic of pre-conditioned DRG neurons was abolished as compared to injury matched-control animals. In addition, depletion of macrophage cells led to: (i a reduction in macrophage infiltration into the CNS compartment even after cellular repopulation, (ii astrocyte up-regulation at rostral regions and down-regulation in brain derived neurotrophic factor (BDNF concentration in the serum. Conclusion Activation of macrophage cells in response to the peripheral nerve injury is essential for the enhanced regeneration of ascending sensory neurons.

  1. 双斑蟋触角传入神经纤维在脑内投射分布研究%The Study on Projecting Distribution of Antennal Afferent Nerve Fibers in Cerebral Ganglion in Gryllus Bimaculatus

    Institute of Scientific and Technical Information of China (English)

    武健文; 那杰; 于有良; 叶迪; 钟侣艳


    目的:研究昆虫触角感受器传入神经末梢在脑内投射的空间布局,揭示触角感觉信息传入的神经结构.方法:使用氯化镍神经元示踪标记技术,对双斑蟋触角感受嚣传入神经纤维进行可视化标记,观察研究触角传入神经末梢在脑内的走行形态及分布规律.结果:双斑蟋触角感受器传入神经纤维进入中脑后大量的神经末梢终止在同侧的触角叶和触角机械感觉运动中枢,部分神经纤维向前走行,其神经末梢终止在前脑,还有部分神经纤维向后下行,经同侧神经索,其神经末梢终止在食道下神经节.结论:双斑蟋触角感受器传入神经纤维进入脑后主要投射到触角叶和触角机械感觉运动中枢,少部分投射到前脑和食道下神经节.这种多重投射模式可能在双斑蟋嗅觉信息传递整合、触角运动调节、味觉和摄食活动等方面发挥重要作用.%Objective: Investigate the projective distribution of antennal receptor afferent nerve fibers in cerebral ganglion in insects, and reveal the neural structure on passing sensory information from the antennae through the brain. Methods: The nickel chloride neuronal tracing technique was used to mark afferent nerve fibers of antennal receptor in Gryllus Bimaculatus. The regularity on morphology and distribution of antennal afferent nerve terminals in the brain was observed. Results: Plenty of nerve endings of antennal receptor afferent nerve fibers, projecting into deutocerebrum in Gryllus Bimaculatus, terminated in the ipsilateral antennal lobe and the ipsilateral antennal mechanosensory and motor center. A part of fibers projected into protocerebrum extending forward. Also, a part of fibers projected into the suboesophageal ganglion extending downward through the ipsilateral nerve cord. Conclusion: Most of antennal afferent nerve fibers projected into the antennal lobe and the antennal mechanosensory and motor center, a few antennal afferent nerve

  2. Gastro-protective action of lafutidine mediated by capsaicin-sensitive afferent neurons without interaction with TRPV1 and involvement of endogenous prostaglandins

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Fukushima; Yoko Aoi; Shinichi Kato; Koji Takeuchi


    AIM: Lafutidine, a histamine H2 receptor antagonist,exhibits gastro-protective action mediated by capsaicinsensitive afferent neurons (CSN). We compared the effect between lafutidine and capsaicin, with respect to the interaction with endogenous prostaglandins (PG), nitric oxide (NO) and the afferent neurons, including transient receptor potential vanilloid subtype 1 (TRPV1).METHODS: Male SD rats and C57BL/6 mice, both wildtype and prostacyclin IP receptor knockout animals, were used after 18 h of fasting. Gastric lesions were induced by the po administration of HCI/ethanol (60% in 150 mmol/L HCI) in a volume of 1 mL for rats or 0.3 mL for mice.RESULTS: Both lafutidine and capsaicin (1-10 mg/kg,po) afforded dose-dependent protection against HCI/ethanol in rats and mice. The effects were attenuated by both the ablation of CSN and pretreatment with NG-nitroL-arginine methyl ester, yet only the effect of capsaicin was mitigated by prior administration of capsazepine, the TRPV1 antagonist, as well as indomethacin. Lafutidine protected the stomach against HCI/ethanol in IP receptor knockout mice, similar to wild-type animals, while capsaicin failed to afford protection in the animals lacking IP receptors. Neither of these agents affected the mucosal PGE2 or 6-keto PGF1α contents in rat stomachs. Capsaicin evoked an increase in [Ca2+]i in rat TRPV1-transfected HEK293 cells while lafutidine did not.CONCLUSION: These results suggest that although both lafutidine and capsaicin exhibit gastro-protective action mediated by CSN, the mode of their effects differs regarding the dependency on endogenous PGs/IP receptors and TRPV1. It is assumed that lafutidine interacts with CSN at yet unidentified sites other than TRPV1.

  3. Protective mechanisms of the common fibular nerve in and around the fibular tunnel: a new concept. (United States)

    El Gharbawy, Ramadan M; Skandalakis, Lee J; Skandalakis, John E


    The most frequent site at which the common fibular nerve is affected by compression, trauma, traction, masses, and surgery is within and around the fibular tunnel. The aim of this study was to determine whether there were protective mechanisms at this site that guard against compression of the nerve. Twenty-six lower limbs of 13 preserved adult cadavers (11 males and two females) were used. Proximal to the entrance of the tunnel, three anatomical configurations seemed to afford the required protection for the nerve: reinforcement of the deep fascia; tethering of the common fibular nerve to both the tendon of the biceps femoris and the reinforced fascia; and the particular arrangement of the deep fascia, fibular head, and soleus and gastrocnemius muscles. At the entrance of the tunnel, contraction of the first segment of fibularis longus muscle could afford the required protection. In the tunnel, contraction of the second and third segments of fibularis longus muscle could guard against compression of the nerve. The tough fascia on the surface of fibularis longus muscle and the fascial band within it, which have long been accused of compression of the nerve, may actually be elements of the protective mechanisms. We conclude that there are innate, anatomical protective mechanisms which should be taken into consideration when decompressing the common fibular nerve. To preserve these mechanisms whenever possible, the technique should be planned and varied according to the underlying etiology.

  4. Intrarenal artery injection of capsaicin activates spontaneous activity of renal afferent nerve fibers%肾动脉内注射辣椒素兴奋肾神经传入纤维的自发活动

    Institute of Scientific and Technical Information of China (English)

    马慧娟; 武宇明; 马会杰; 张丽华; 何瑞荣


    The effects of intrarenal artery injection of capsaicin on multi- and single-unit spontaneous discharges of renal afferent nerve fibers were investigated in anesthetized rabbits. The results obtained are as follows: ( 1 ) intrarenal artery injection of capsaicin (20, 40, and 60 nmol/kg) increased the renal afferent nerve activity (ARNA) in a dose-dependent manner with unchanged arterial pressure; (2) pretreatment with ruthenium red (40 mmol/kg), a capsaicin receptor antagonist, completely abolished the effect of capsaicin; and (3) pretreatment with a nitric oxide synthase inhibitor L-NAME ( N6-nitro-L-arginine methylester, 0. 1 mmol/kg), significantly enhanced the ARNA response to capsaicin. The results suggest that intrarenal artery injection of capsaicin can activate ARNA via capsaicin receptors in anesthetized rabbits and that nitric oxide may be involved in regulating the activity of renal sensory nerve fibers as an inhibitory neurotransmitter.%应用记录肾传入神经多单位和单位放电的方法,观察肾动脉内注射辣椒素对麻醉家兔肾神经传入纤维自发放电活动的影响.结果表明:(1)肾动脉内注射辣椒素20、40和60nmol/kg可呈剂量依赖性地兴奋肾传入纤维的活动,而动脉血压不变;(2)静脉内预先应用辣椒素受体阻断剂钌红(40 mmok/kg),可完全阻断辣椒素对肾传入纤维的兴奋作用.(3)静脉内预先注射一氧化氮合酶抑制剂L-NAME(0.1 mmo/kg),能延长并增强肾传入神经对辣椒素的反应.以上结果提示:肾动脉内应用辣椒素可兴奋肾传入纤维的自发放电活动.一氧化氮作为抑制因素参与辣椒素诱导的肾传入神经兴奋.

  5. A comparison between complete immobilisation and protected active mobilisation in sensory nerve recovery following isolated digital nerve injury.

    LENUS (Irish Health Repository)

    Henry, F P


    Post-operative immobilisation following isolated digital nerve repair remains a controversial issue amongst the microsurgical community. Protocols differ from unit to unit and even, as evidenced in our unit, may differ from consultant to consultant. We undertook a retrospective review of 46 patients who underwent isolated digital nerve repair over a 6-month period. Follow-up ranged from 6 to 18 months. Twenty-four were managed with protected active mobilisation over a 4-week period while 22 were immobilised over the same period. Outcomes such as return to work, cold intolerance, two-point discrimination and temperature differentiation were used as indicators of clinical recovery. Our results showed that there was no significant difference noted in either clinical assessment of recovery or return to work following either post-operative protocol, suggesting that either regime may be adopted, tailored to the patient\\'s needs and resources of the unit.

  6. Reticulospinal actions on primary afferent depolarization of cutaneous and muscle afferents in the isolated frog neuraxis. (United States)

    González, H; Jiménez, I; Rudomin, P


    The effects of the brainstem reticular formation on the intraspinal excitability of low threshold cutaneous and muscle afferents were studied in the frog neuraxis isolated together with the right hindlimb nerves. Stimulation of low threshold fibers (less than two times threshold) in cutaneous nerves produced short latency, negative field potentials in the ipsilateral dorsal neuropil (200-400 microns depth) that reversed to positivity at deeper regions (500-700 microns). Stimulation of low threshold fibers (less than two times threshold) in muscle nerves produced, instead, negative response that acquired their maximum amplitude in the ventral neuropil (700-900 microns depth). These electrophysiological findings suggest, in agreement with observations in the cat, that low threshold cutaneous and muscle afferents end at different sites in the spinal cord. Intraspinal microstimulation applied within the dorsal neuropil produced antidromic responses in low threshold cutaneous afferents that were increased in size following stimulation of the dorsal or ventral roots, as well as of the brainstem reticular formation. This increase in excitability is interpreted as being due to primary afferent depolarization (PAD) of the intraspinal terminals of cutaneous fibers. Antidromic responses recorded in muscle nerves following intraspinal stimulation within the ventral neuropil were also increased following conditioning stimulation of adjacent dorsal or ventral roots. However, stimulation of the bulbar reticular formation produced practically no changes in the antidromic responses, but was able to inhibit the PAD of low threshold muscle afferents elicited by stimulation of the dorsal or ventral roots. It is suggested that the PAD of low threshold cutaneous and muscle afferents is mediated by independent sets of interneurons. Reticulospinal fibers would have excitatory connections with the interneurons mediating the PAD of cutaneous fibers and inhibitory connections with the

  7. Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. (United States)

    Akassoglou, K; Kombrinck, K W; Degen, J L; Strickland, S


    Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin and can trigger the degradation of extracellular matrix proteins. In the nervous system, under noninflammatory conditions, tPA contributes to excitotoxic neuronal death, probably through degradation of laminin. To evaluate the contribution of extracellular proteolysis in inflammatory neuronal degeneration, we performed sciatic nerve injury in mice. Proteolytic activity was increased in the nerve after injury, and this activity was primarily because of Schwann cell-produced tPA. To identify whether tPA release after nerve damage played a beneficial or deleterious role, we crushed the sciatic nerve of mice deficient for tPA. Axonal demyelination was exacerbated in the absence of tPA or plasminogen, indicating that tPA has a protective role in nerve injury, and that this protective effect is due to its proteolytic action on plasminogen. Axonal damage was correlated with increased fibrin(ogen) deposition, suggesting that this protein might play a role in neuronal injury. Consistent with this idea, the increased axonal degeneration phenotype in tPA- or plasminogen-deficient mice was ameliorated by genetic or pharmacological depletion of fibrinogen, identifying fibrin as the plasmin substrate in the nervous system under inflammatory axonal damage. This study shows that fibrin deposition exacerbates axonal injury, and that induction of an extracellular proteolytic cascade is a beneficial response of the tissue to remove fibrin. tPA/plasmin-mediated fibrinolysis may be a widespread protective mechanism in neuroinflammatory pathologies.

  8. Regenerating sprouts of axotomized cat muscle afferents express characteristic firing patterns to mechanical stimulation. (United States)

    Johnson, R D; Munson, J B


    1. In cats, we studied the physiological properties of regenerating sprouts of muscle afferent fibers and compared them with sprouts from cutaneous afferent fibers. 2. Muscle nerves to the triceps surae and cutaneous sural nerves were axotomized in the popliteal fossa, and the proximal ends were inserted into nerve cuffs. Six days later, we recorded action potentials from single Groups I and II muscle and mostly Group II cutaneous afferents driven by mechanostimulation of the cuff. 3. Most muscle afferent sprouts (91%) had a regular slowly adapting discharge in response to sustained mechanical displacement of the cuff, particularly to sustained stretch stimuli, whereas most cutaneous afferents (92%) did not. Muscle afferents were more likely to have a spontaneous discharge and afterdischarge. 4. Group II muscle afferent sprouts had lower stretch thresholds and a higher incidence of spontaneous discharge compared with Group I fiber sprouts, whereas Group I fibers had a higher incidence of high-frequency afterdischarge to mechanical stimuli. 5. We conclude that, 6 days after axotomy, regenerating sprouts of muscle afferents, particularly Group II afferents, have become mechanosensitive in the absence of a receptor target and exhibit physiological properties similar to those found when innervating their native muscle but significantly different from sprouts of cutaneous afferents. Expression of these native muscle afferent firing patterns after the inappropriate reinnervation of hairy skin may be due to inherent properties of the muscle afferent fiber.

  9. Axonal protection by short-term hyperglycemia with involvement of autophagy in TNF-induced optic nerve degeneration

    Directory of Open Access Journals (Sweden)

    Kana eSase


    Full Text Available Previous reports showed that short-term hyperglycemia protects optic nerve axons in a rat experimental hypertensive glaucoma model. In this study, we investigated whether short-term hyperglycemia prevents tumor necrosis factor (TNF-induced optic nerve degeneration in rats and examined the role of autophagy in this axon change process. In phosphate-buffered saline-treated rat eyes, no significant difference in axon number between the normoglycemic (NG and streptozotocin-induced hyperglycemic (HG groups was seen at 2weeks. Substantial degenerative changes in the axons were noted 2 weeks after intravitreal injection of TNF in the NG group. However, the HG group showed significant protective effects on axons against TNF-induced optic nerve degeneration compared with the NG group. This protective effect was significantly inhibited by 3-methyladenine, an autophagy inhibitor. Immunoblot analysis showed that the LC3-II level in the optic nerve was increased in the HG group compared with the NG group. Increased p62 protein levels in the optic nerve after TNF injection was observed in the NG group, and this increase was inhibited in the HG group. Electron microscopy showed that autophagosomes were increased in optic nerve axons in the HG group. Immunohistochemical study showed that LC3 was colocalized with nerve fibers in the retina and optic nerve in both the NG and HG groups. Short-term hyperglycemia protects axons against TNF-induced optic nerve degeneration. This axonal-protective effect may be associated with autophagy machinery.

  10. Protective Effect of Alpha Lipoic Acid on Rat Sciatic Nerve Ischemia Reperfusion Damage (United States)

    Turamanlar, Ozan; Özen, Oğuz Aslan; Songur, Ahmet; Yağmurca, Murat; Akçer, Sezer; Mollaoğlu, Hakan; Aktaş, Cevat


    Background: Alpha lipoic acid is a potent antioxidant that plays numerous roles in human health. This study examined the effect of ALA on rat sciatic nerve ischemia reperfusion damage. Aims: Protective effect of alpha lipoic acid (ALA) on sciatic nerve following ischemia-reperfusion in rats was investigated by using light microscopy and biochemical methods. Provided that the protective effect of ALA on sciatic nerve is proven, we think the damage to the sciatic nerve that has already occurred or might occur in patients for various reasons maybe prevented or stopped by giving ALA in convenient doses. Study Design: Animal experiment. Methods: Forty-two adult male Sprague-Dawley rats (250–300 grams) were used in this study. Rats were randomly divided into six groups including one control (Group 1), one sham (Group 2), two ischemia-reperfusion (Groups 3 and 4) and two treatment groups (Groups5 and 6). Doses of 60 and 100 mg/kg ALA were given (Group 5 and 6) intra peritoneally twice, 1 and 24 hours before the ischemia to each treatment group. Ischemia was carried out the abdominal aorta starting from the distal part of the renal vein for two hours followed by reperfusion for three hours. In immunohistochemical methods, fibronectin immunoreactivity was analyzed. For biochemical analyses, the tissues were taken in eppendorf microtubes and superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) enzyme activities as well as malondialdehyde (MDA) and nitricoxide (NO) levels were measured. Results: Fibronectin was observed to have increased significantly in the ischemia group; on the other hand, it was observed to have decreased in parallel to the doses in the ALA groups. Biochemical studies showed that SOD and GSHPx declined with ischemia-reperfusion, but the activities of these enzymes were increased in the treatment groups in parallel with the dose. It was found that increased MDA levels with ischemia-reperfusion were decreased in parallel with ALA dose. There were

  11. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    Full Text Available Physiological high frequency activities (HFA are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections, or different terminal layers (layer IV vs. layer II/III affect its frequency, we, in the primary somatosensory cortex (SI, compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response and N80 (late response of somatosensory evoked potentials (HFA(SEP(N20 and HFA(SEP(N80 and compared those overriding N1 and N2 (first and second responses of cortico-cortical evoked potentials (HFA(CCEP(N1 and HFA(CCEP(N2. HFA(SEP(N20 showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1 had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1 and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.

  12. Protective Effect of Interleukin-1β on Motor Neurons after Sciatic Nerve Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    翁雨雄; 巴拉特; 洪光祥; 王发斌; 陈振斌; 黄启顺


    Summary: Protective effect of interleukin-lβ (IL-1β) on motor neurons was studied after peripheral nerve injury. Twenty Wistar rats were divided into 2 groups randomly. The right sciatic nerve of each rat was resected. After silicon tubulization of sciatic nerve in rat, 15 μl 1 ng/ml IL-1β and PBS solution were injected into the silicon capsule respectively. Enzyme histochemistry was performed to show acetyle cholesterase (AchE) and nitric oxide staining (NOS) activity of spinal a motor neurons in spinal segments 2 weeks later. Neurons were counted and the diameter and cross sectional (c/s) area of neurons were analyzed by using computer image analysis system. The results showed that as compared with the normal side, both enzyme activities significantly changed in motor neurons in PBS group. The diameter and c/s area of both neurons changed significantly too (P<0.01). These results suggest that exogenous IL-1β protects a-motor neurons from degeneration and necrosis after peripheral nerve injury.

  13. Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat. (United States)

    Rudomin, P; Lomelí, J


    We have examined in the anesthetized cat the threshold changes produced by sensory and supraspinal stimuli on intraspinal collaterals of single afferents from the posterior articular nerve (PAN). Forty-eight fibers were tested in the L3 segment, in or close to Clarke's column, and 70 fibers in the L6-L7 segments within the intermediate zone. Of these, 15 pairs of L3 and L6-L7 collaterals were from the same afferent. Antidromically activated fibers had conduction velocities between 23 and 74 m/s and peripheral thresholds between 1.1 and 4.7 times the threshold of the most excitable fibers (xT), most of them below 3 xT. PAN afferents were strongly depolarized by stimulation of muscle afferents and by cutaneous afferents, as well as by stimulation of the bulbar reticular formation and the midline raphe nuclei. Stimulation of muscle nerves (posterior biceps and semitendinosus, quadriceps) produced a larger PAD (primary afferent depolarization) in the L6-L7 than in the L3 terminations. Group II were more effective than group I muscle afferents. As with group I muscle afferents, the PAD elicited in PAN afferents by stimulation of muscle nerves could be inhibited by conditioning stimulation of cutaneous afferents. Stimulation of the cutaneous sural and superficial peroneal nerves increased the threshold of few terminations (i.e., produced primary afferent hyperpolarization, PAH) and reduced the threshold of many others, particularly of those tested in the L6-L7 segments. Yet, there was a substantial number of terminals where these conditioning stimuli had minor or no effects. Autogenetic stimulation of the PAN with trains of pulses increased the intraspinal threshold in 46% and reduced the threshold in 26% of fibers tested in the L6-L7 segments (no tests were made with trains of pulses on fibers ending in L3). These observations indicate that PAN afferents have a rather small autogenetic PAD, particularly if this is compared with the effects of heterogenetic stimulation

  14. Genioglossus muscle responses to upper airway pressure changes: afferent pathways. (United States)

    Mathew, O P; Abu-Osba, Y K; Thach, B T


    The afferent pathway of an upper airway reflex in which genioglossus muscle electromyographic (GG EMG) activity is influenced by pharyngeal pressure changes was investigated in 20 anesthetized rabbits. We took advantage of the fact that the upper airway was separated into two compartments by pharyngeal closure occurring when the animals breathe through a tracheostomy. This allowed pressure to be delivered selectively either to the nose and nasopharynx or to the larynx and hypopharynx. Midcervical vagotomy did not eliminate the GG EMG response to pressure stimuli. On the other hand high cervical vagotomy or superior laryngeal nerve section eliminated the response in the laryngeal compartment, but not in the nasopharyngeal compartment. Topical anesthesia of the mucosa of the nose, pharynx, and larynx abolished the response in both compartments. Therefore we conclude that more than one afferent pathway exists for this upper airway pressure reflex; the primary afferent pathway from the laryngeal compartment is the superior laryngeal branch of the vagus nerve, whereas the primary afferent pathway for the nasopharynx is nonvagal. Trigeminal nerve, glossopharyngeal nerve, and/or nervus intermedius carry nonvagal afferents from the nasopharynx and nose. The topical anesthetic and nerve section studies suggest that superficial receptors mediate this response. The occurrence of swallowing in response to upper airway pressure changes and its elimination by topical anesthesia or superior mechanoreceptors may mediate both genioglossus respiratory responses and swallowing responses.

  15. Primary afferent response to signals in the intestinal lumen. (United States)

    Raybould, H


    The first recordings of vagal afferent nerve fibre activity were performed by Paintal in the early 1950s. In these experiments, he showed that phenyldiguanide (later recognized as a 5-HT3 receptor agonist) stimulated the firing of C-fibres innervating the intestine. In the following years, ample physiological and psychological studies have demonstrated the importance of afferent information arising from the gut in the regulation of gastrointestinal function and behaviour. Many stimuli are capable of eliciting these functional effects and of stimulating afferent fibre discharge, including mechanical, chemical, nutrient- and immune-derived stimuli. Studies in the last 10 years have begun to focus on the precise sensory transduction mechanisms by which these visceral primary afferent nerve terminals are activated and, like the contribution by Zhu et al. in this issue of The Journal of Physiology, are revealing some novel and exciting findings.

  16. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not. (United States)

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H


    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  17. Impaired Prosaposin Secretion During Nerve Regeneration in Diabetic Rats and Protection of Nerve Regeneration by a Prosaposin-Derived Peptide (United States)

    Jolivalt, Corinne G.; Vu, Yvonne; Mizisin, Leah M.; Mizisin, Andrew P.; Calcutt, Nigel A.


    Prosaposin is both a precursor of sphingolipid activator proteins and a secreted neurotrophic and myelinotrophic factor. Because peripheral nerve regeneration is impaired in diabetes mellitus, we measured prosaposin protein levels from control and streptozotocin-diabetic rats by collecting endoneurial fluid secreted into a bridging tube connecting the ends of transected sciatic nerve. Prosaposin protein levels were significantly reduced in endoneurial fluid from diabetic rats and increased in the proximal nerve stump compared to controls. To investigate whether a prosaposin-derived peptide could improve nerve regeneration, rats were treated with prosaptide TX14(A) following sciatic nerve crush. In control rats, TX14(A) was without effect in the uninjured nerve but shortened toe spread recovery time after nerve crush. In diabetic rats, efficacy of prosaptide TX14(A) was confirmed by correction of thermal hypoalgesia, formalin-evoked hyperalgesia and conduction slowing in the uninjured nerve. The peptide also prevented diabetes-induced abnormalities in nerve regeneration distance and mean axonal diameter of regenerated axons, whereas delayed recovery of toe spread was not improved. Muscle denervation atrophy was attenuated by TX14(A) in both control and diabetic rats. These results suggest that reduced prosaposin secretion after nerve injury may contribute to impaired regeneration rates in diabetic rats and that prosaptide TX14(A) can improve aspects of nerve regeneration. PMID:18596543

  18. Impaired prosaposin secretion during nerve regeneration in diabetic rats and protection of nerve regeneration by a prosaposin-derived peptide. (United States)

    Jolivalt, Corinne G; Vu, Yvonne; Mizisin, Leah M; Mizisin, Andrew P; Calcutt, Nigel A


    Prosaposin is both a precursor of sphingolipid activator proteins and a secreted neurotrophic and myelinotrophic factor. Because peripheral nerve regeneration is impaired in diabetes mellitus, we measured prosaposin protein levels from control and streptozotocin-diabetic rats by collecting endoneurial fluid secreted into a bridging tube connecting the ends of transected sciatic nerve. Prosaposin protein levels were significantly reduced in endoneurial fluid from diabetic rats and increased in the proximal nerve stump compared to controls. To investigate whether a prosaposin-derived peptide could improve nerve regeneration, rats were treated with prosaptide TX14(A) after sciatic nerve crush. In control rats, TX14(A) was without effect in the uninjured nerve but shortened toe spread recovery time after nerve crush. In diabetic rats, efficacy of prosaptide TX14(A) was confirmed by correction of thermal hypoalgesia, formalin-evoked hyperalgesia, and conduction slowing in the uninjured nerve. The peptide also prevented diabetes-induced abnormalities in nerve regeneration distance and mean axonal diameter of regenerated axons, whereas delayed recovery of toe spread was not improved. Muscle denervation atrophy was attenuated by TX14(A) in both control and diabetic rats. These results suggest that reduced prosaposin secretion after nerve injury may contribute to impaired regeneration rates in diabetic rats, and that prosaptide TX14(A) can improve aspects of nerve regeneration.

  19. The nerve protection and in vivo therapeutic effect of Acalypha indica extract in frogs

    Directory of Open Access Journals (Sweden)

    Ernie H. Purwaningsih


    Full Text Available Aim To demonstrate nerve protection and/or treatment effect of Acalypha indica Linn. extract on nerve paralysis induced by subcutaneus injection of pancuronium bromide on frog’s back.Methods The study was performed on sixty frogs (Bufo melanostictus Schneider that divided into two groups, i.e. the neuro-protection and neuro-therapy group. Each group was divided further into 6 sub-treatment groups: negative control group treated by water and positive control group treated by piracetam, treatment groups received the extracts 200, 300, 400, 500 mg/kgBW. Pancuronium bromide 0.2% (1 : 20 dilutions were injected subcutaneously as muscle relaxant. The protective effect was studied by giving the extract orally, 1 hour prior to injection; while the therapeutic effect of the extract was studied by 10 minute treatment after injecting pancuronium bromide solution. The parameters measured were the onset and duration of paralysis (in minutes and the recovery time (time needed to recover into normal condition.Results The study showed significantly different protective effect of Acalypha indica Linn. root water extract at 400 and 500 mg/KgBW compared to negative control group and positive control group (piracetam (p < 0.05; while the therapeutic effect was obvious at the dose 200-500 mg/KgBW compared to negative control group (p = 0.000. There was no significant difference compared to positive control group (piracetam, except at 300 mg/KgBW (p = 0.012.Conclusion These results have proven that the water extract of Acalypha indica Linn. root has comparable protective and treatment effect on nerves system, as piracetam, but further studies should be performed to provide more evidences particularly pharmacokinetic and pharmacodynamic studies on two animal models that commonly used. (Med J Indones 2010; 19:96-102Keywords: Acalypha indica Linn, Bufo melanostictus Schneider, nerve-protection

  20. PGC-1α Mediated Peripheral Nerve Protection of Tongxinluo in STZ-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Xiaopei Cui


    Full Text Available Aim. To investigate the effect of Tongxinluo (Txl, a Chinese herbal compound, on diabetic peripheral neuropathy (DPN. Methods and Results. Diabetic rat model was established by peritoneal injection of streptozotocin (STZ. Txl ultrafine powder treatment for 16 weeks from the baseline significantly reversed the impairment of motor nerve conductive velocity (MNCV, mechanical hyperalgesia, and nerve structure. We further proved that Tongxinluo upregulates PGC-1α and its downstream factors including COX IV and SOD, which were involved in mitochondrial biogenesis. Conclusion. Our study indicates that the protective effect of Txl in diabetic neuropathy may be attributed to the induction of PGC-1α and its downstream targets. This finding may further illustrate the pleiotropic effect of the medicine.

  1. Protection of Acanthopanax Senticosus Saponin on Free Radical Injury Induced Aging of Nerve Cell

    Institute of Scientific and Technical Information of China (English)

    潘永进; 顾永健; 顾小苏


    Objective: To study the effect of Acanthopanax senticosus saponin (ASS) on free radical injury induced neuron aging. Methods: On day 7 of fetal mice, cortical neuron primary passage cultures were divided into the normal control group, model group and ASS groups. The model group using free radical (FeSO4 plus H2O2) injury mode prepared in vivo cultured ICR mice cortical neuron aging model; ASS groups: 24 hrs before and after treated with H2O2 and FeSO4, different concentration of ASS was added, according to biochemical parameters such as lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA) etc. and histomorphologic change to observe the protection of ASS on aging neurons. Results: The LDH, SOD, MDA of the model group were compared with the normal group, P<0.01; ASS groups added 1.25 mg/100 ml, 2.5 mg/100 ml, 5 mg/100 ml concentration of ASS, their LDH, SOD, MDA compared with the model group P<0.05-0.01, the difference was significant. In medicated groups the SOD activity of oxidization injured nerve cells obviously elevated, LDH activity and MDA content apparently lowered. Microscope and scanning electron microscopic observation showed that supplemented with ASS to protect the nerve cell injury abated, part of the cellular structure tended to normalize. Conclusion: ASS could act against free radical toxic effect, increase the anti-oxidase activity, strengthen the protection of neuron cells. It is assumed that the effect against nerve cell aging was possibly through scavenging oxygen free radical, strengthening the stability of cell membrane, thus delaying the development of aging.

  2. Sensations evoked by microstimulation of single mechanoreceptive afferents innervating the human face and mouth. (United States)

    Trulsson, M; Essick, G K


    Intraneural microneurography and microstimulation were performed on single afferent axons in the inferior alveolar and lingual nerves innervating the face, teeth, labial, or oral mucosa. Using natural mechanical stimuli, 35 single mechanoreceptive afferents were characterized with respect to unit type [fast adapting type I (FA I), FA hair, slowly adapting type I and II (SA I and SA II), periodontal, and deep tongue units] as well as size and shape of the receptive field. All afferents were subsequently microstimulated with pulse trains at 30 Hz lasting 1.0 s. Afferents recordings whose were stable thereafter were also tested with single pulses and pulse trains at 5 and 60 Hz. The results revealed that electrical stimulation of single FA I, FA hair, and SA I afferents from the orofacial region can evoke a percept that is spatially matched to the afferent's receptive field and consistent with the afferent's response properties as observed on natural mechanical stimulation. Stimulation of FA afferents typically evoked sensations that were vibratory in nature; whereas those of SA I afferents were felt as constant pressure. These afferents terminate superficially in the orofacial tissues and seem to have a particularly powerful access to perceptual levels. In contrast, microstimulation of single periodontal, SA II, and deep tongue afferents failed to evoke a sensation that matched the receptive field of the afferent. These afferents terminate more deeply in the tissues, are often active in the absence of external stimulation, and probably access perceptual levels only when multiple afferents are stimulated. It is suggested that the spontaneously active afferents that monitor tension in collagen fibers (SA II and periodontal afferents) may have the role to register the mechanical state of the soft tissues, which has been hypothesized to help maintain the body's representation in the central somatosensory system.

  3. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M


    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...

  4. Impaired Prosaposin Secretion During Nerve Regeneration in Diabetic Rats and Protection of Nerve Regeneration by a Prosaposin-Derived Peptide



    Prosaposin is both a precursor of sphingolipid activator proteins and a secreted neurotrophic and myelinotrophic factor. Because peripheral nerve regeneration is impaired in diabetes mellitus, we measured prosaposin protein levels from control and streptozotocin-diabetic rats by collecting endoneurial fluid secreted into a bridging tube connecting the ends of transected sciatic nerve. Prosaposin protein levels were significantly reduced in endoneurial fluid from diabetic rats and increased in...

  5. In vitro selection and efficacy of topical skin protectants against the nerve agent VX. (United States)

    Millerioux, J; Cruz, C; Bazire, A; Lallement, G; Lefeuvre, L; Josse, D


    Against highly toxic chemicals that are quickly absorbed in the skin, topical formulations could adequately complement specific protective suits and equipments. In this work, we evaluated in vitro and compared the skin protection efficacy against the nerve agent VX of four different topical formulations: oil-in-water and water-in-oil emulsions, a perfluorinated-based cream and a hydrogel. Semi-permeable silicone membrane, pig-ear and human abdominal split-thickness skin samples mounted in diffusion cells were compared as in vitro permeation tests. The results showed that silicone membrane could be used instead of skin samples to screen for potentially effective formulations. However, the results indicated that due to potentially significant interactions between formulations and skin, relevant ranking of formulations according to their protective efficacy could require tests with skin samples. The main phase of emulsions, water or oil, was not found to be critical for skin protective efficacy against VX. Instead, specific film-forming ingredients such as perfluorinated-based polymers and silicones could significantly affect the skin protective efficacy of formulations. We showed that a hydrogel containing specific hydrophilic polymers was by far the most effective of the formulations evaluated against VX skin permeation in vitro.

  6. Theobromine inhibits sensory nerve activation and cough. (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J


    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  7. How to test for a relative afferent pupillary defect (RAPD

    Directory of Open Access Journals (Sweden)

    David C Broadway


    Full Text Available The 'swinging light test' is used to detect a relative afferent pupil defect (RAPD: a means of detecting differences between the two eyes in how they respond to a light shone in one eye at a time. The test can be very useful for detecting unilateral or asymmetrical disease of the retina or optic nerve (but only optic nerve disease that occurs in front of the optic chiasm.

  8. Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    Pan-shi Yan; Shu Tang; Hai-feng Zhang; Yuan-yuan Guo; Zhi-wen Zeng; Qiang Wen


    Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of dia-betes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF signiifcantly attenuated the levels of reactive oxygen species (ROS) and malondialde-hyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 sig-naling pathways.

  9. Chicken (Gallus domesticus) inner ear afferents (United States)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.


    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  10. Protective effect of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Ma Song-Tao


    Full Text Available Mulberry leaves (Morus alba L. are a traditional Chinese medicine for blood serum glucose reduction. This study evaluated the protective effects of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats. In this study, 80 Sprague-Dawley rats were divided into five groups: A (control, B (diabetic treated with saline, C-D (diabetic treated with 0.3, 0.1 g/kg mulberry flavonoids once a day for 8 weeks and E (diabetic treated with 0.3 mg/kg methycobal. The diabetic condition was induced by intraperitoneal injection of 200 mg/kg alloxan dissolved in saline. At the end of the experimental period, blood, and tissue samples were obtained for biochemical and histopathological investigation. Treatment with 0.3 g/kg mulberry flavonoids significantly inhibited the elevated serum glucose (P< 0.01. The increased myelin sheath area (P< 0.01, myelinated fiber cross-sectional area and extramedullary fiber number (P< 0.05 were also reduced in alloxan-induced rats treated with 0.3 g/kg mulberry flavonoids. 0.3 g/kg mulberry flavonoids also markedly decreased onion-bulb type myelin destruction and degenerative changes of mitochondria and Schwann cells. These findings demonstrate that mulberry flavonoids may improve the recovery of a severe peripheral nerve injury in alloxan-induced diabetic rats and is likely to be useful as a potential treatment on peripheral neuropathy (PN in diabetic rats.

  11. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism

    Directory of Open Access Journals (Sweden)

    Yao-xian Xiang


    Full Text Available Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-and interleukin- 6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor- and interleukin-6 expression.

  12. electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-inlfammatory mechanism

    Institute of Scientific and Technical Information of China (English)

    Yao-xian Xiang; Wen-xin Wang; Zhe Xue; Lei Zhu; Sheng-bao Wang; Zheng-hui Sun


    Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimula-tion (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and in-terleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression.

  13. Protection by an oral disubstituted hydroxylamine derivative against loss of retinal ganglion cell differentiation following optic nerve crush.

    Directory of Open Access Journals (Sweden)

    James D Lindsey

    Full Text Available Thy-1 is a cell surface protein that is expressed during the differentiation of retinal ganglion cells (RGCs. Optic nerve injury induces progressive loss in the number of RGCs expressing Thy-1. The rate of this loss is fastest during the first week after optic nerve injury and slower in subsequent weeks. This study was undertaken to determine whether oral treatment with a water-soluble N-hydroxy-2,2,6,6-tetramethylpiperidine derivative (OT-440 protects against loss of Thy-1 promoter activation following optic nerve crush and whether this effect targets the earlier quick phase or the later slow phase. The retina of mice expressing cyan fluorescent protein under control of the Thy-1 promoter (Thy1-CFP mice was imaged using a blue-light confocal scanning laser ophthalmoscope (bCSLO. These mice then received oral OT-440 prepared in cream cheese or dissolved in water, or plain vehicle, for two weeks and were imaged again prior to unilateral optic nerve crush. Treatments and weekly imaging continued for four more weeks. Fluorescent neurons were counted in the same defined retinal areas imaged at each time point in a masked fashion. When the counts at each time point were directly compared, the numbers of fluorescent cells at each time point were greater in the animals that received OT-440 in cream cheese by 8%, 27%, 52% and 60% than in corresponding control animals at 1, 2, 3 and 4 weeks after optic nerve crush. Similar results were obtained when the vehicle was water. Rate analysis indicated the protective effect of OT-440 was greatest during the first two weeks and was maintained in the second two weeks after crush for both the cream cheese vehicle study and water vehicle study. Because most of the fluorescent cells detected by bCSLO are RGCs, these findings suggest that oral OT-440 can either protect against or delay early degenerative responses occurring in RGCs following optic nerve injury.

  14. Modulation of gastrointestinal afferent sensitivity by a novel substituted benzamide (ecabapide). (United States)

    Jiang, W; Grundy, D


    The effects of ecabapide, a novel substituted benzamide compound (3-[2-(3,4-dimethoxyphenyl)ethylcarbamoylmethyl]amino-N-methylb enzamide) that has gastrointestinal prokinetic action, were examined on the discharge of extrinsic afferent nerves supplying the stomach and jejunum in anaesthetized rats. Ecabapide (60 and 180 microg kg(-1), i.v.) had no effect on the baseline discharge of vagal gastric distension-sensitive afferents or the stimulus-response profile to gastric distension. Ecabapide also had no effect on either spontaneous jejunal mesenteric afferent nerve discharge or responses to intestinal distension. Ecabapide (180 microg kg(-1)) significantly inhibited the maximum discharge of jejunal afferents induced by cholecystokinin (CCK8; 50 pmol, i.v.), whereas it failed to inhibit the excitatory action of 2-methyl-5-hydroxytryptamine (2Me-5-HT; 10 microg, i.v.), a selective 5-HT3 receptor agonist. A model of acute focal intestinal ischaemia was used to evaluate the actions of ecabapide on the discharge of activated jejunal afferents. Ischaemia produced a substantial increase in afferent discharge which was reproducible when the duration of ischaemia was limited to less than 10 min and repeated every 15 min. Ecabapide at doses of 60 and 180 microg kg(-1) significantly reduced ischaemia-induced increases in afferent discharge. In addition to its therapeutic efficacy as a gastrointestinal prokinetic agent, these findings show also that ecabapide may also have an inhibitory action on the discharge of intestinal afferents activated by ischaemia.

  15. Primary afferent depolarization and flexion reflexes produced by radiant heat stimulation of the skin. (United States)

    Burke, R E; Rudomin, P; Vyklický, L; Zajac, F E


    1. The reflex effects of pulses of intense radiant heat applied to the skin of the central plantar pad have been studied in unanaesthetized (decerebrate) spinal cats.2. Pad heat pulses produced flexion of the ipsilateral hind limb and increased ipsilateral flexor monosynaptic reflexes, due to post-synaptic excitation of flexor alpha motoneurones. These effects were accompanied by reduction of extensor monosynaptic reflexes and post-synaptic inhibition of extensor motoneurones.3. Ipsilateral (and contralateral) pad heat pulses consistently evoked negative dorsal root potentials (DRPs) as well as increased excitability of both cutaneous and group Ib muscle afferent terminals. The excitability of group Ia afferents was sometimes also increased during pad heat pulses, but to a lesser extent.4. Pad heat pulses produced negative DRPs in preparations in which positive DRP components could be demonstrated following electrical stimulation of both skin and muscle nerves.5. The motor and primary afferent effects of heat pulses always accompanied one another, beginning after the pad surface temperature had reached rather high levels (usually 48-55 degrees C).6. Negative DRPs increased excitability of cutaneous and group Ib afferents, and motoneurone activation produced by pad heat pulses was essentially unmodified when conduction in large myelinated afferents from the central plantar pad was blocked by cooling the posterior tibial nerve trunk.7. It is concluded that adequate noxious activation of cutaneous afferents of small diameter produces primary afferent depolarization in a variety of large diameter afferent fibres, as well as post-synaptic effects in alpha motoneurones.

  16. Patterns of connectivity of spinal interneurons with single muscle afferents. (United States)

    Quevedo, J; Eguibar, J R; Lomeli, J; Rudomin, P


    A technique was developed to measure, in the anesthetized and paralyzed cat under artificial ventilation, changes of excitability to intraspinal stimulation simultaneously in two different afferent fibers or in two collaterals of the same afferent fiber. Intraspinal stimulation reduced the threshold of single muscle afferent fibers ending in the intermediate nucleus. This effect was seen with strengths below those required to activate the afferent fiber tested (1.5-12 microA), occurred at a short latency (1.5-2.0 ms), reached a maximum between 15 and 30 ms, and lasted up to 100 ms. The effects produced by graded stimulation applied at the shortest conditioning-testing stimulus time intervals increased by fixed steps, suggesting recruitment of discrete elements, most likely of last-order interneurons mediating primary afferent depolarization (PAD). The short-latency increases in excitability produced by the weakest effective intraspinal stimuli were usually detected only in the collateral closest to the stimulating micropipette, indicating that the stimulated interneurons mediating PAD have spatially restricted actions. The short-latency PAD produced by intraspinal stimuli, as well as the PAD produced by stimulation of the posterior biceps and semitendinosus (PBSt) nerve or by stimulation of the bulbar reticular formation (RF), was depressed 19-30 min after the i.v. injection of 0.5 mg/kg of picrotoxin, suggesting that all these effects were mediated by GABAergic mechanisms. The PAD elicited by stimulation of muscle and/or cutaneous nerves was depressed following the i.v. injection of (-)-baclofen, whereas the PAD elicited in the same collateral by stimulation of the RF was baclofen-resistant. The short-latency PAD produced by intraspinal stimulation was not always depressed by i.v. injections of (-)-baclofen. Baclofen-sensitive and baclofen-resistant monosynaptic PADs could be produced in different collaterals of the same afferent fiber. The results suggest that

  17. Interneurones in pathways from group II muscle afferents in sacral segments of the feline spinal cord. (United States)

    Jankowska, E; Riddell, J S


    1. Properties of dorsal horn interneurones that process information from group II muscle afferents in the sacral segments of the spinal cord have been investigated in the cat using both intracellular and extracellular recording. 2. The interneurones were excited by group II muscle afferents and cutaneous afferents but not by group I muscle afferents. They were most effectively excited by group II afferents of the posterior biceps, semitendinosus, triceps surae and quadriceps muscle nerves and by cutaneous afferents running in the cutaneous femoris, pudendal and sural nerves. The earliest synaptic actions were evoked monosynaptically and were very tightly locked to the stimuli. 3. EPSPs evoked monosynaptically by group II muscle afferents and cutaneous afferents of the most effective nerves were often cut short by disynaptic IPSPs. As a consequence of this negative feedback the EPSPs gave rise to single or double spike potentials and only a minority of interneurones responded with repetitive discharges. However, the neurones that did respond repetitively did so at a very high frequency of discharges (0.8-1.2 ms intervals between the first 2-3 spikes). 4. Sacral dorsal horn group II interneurones do not appear to act directly upon motoneurones because: (i) these interneurones are located outside the area within which last order interneurones have previously been found and (ii) the latencies of PSPs evoked in motoneurones by stimulation of the posterior biceps and semitendinosus, cutaneous femoris and pudendal nerves (i.e. the main nerves providing input to sacral interneurones) are compatible with a tri- but not with a disynaptic coupling. Spatial facilitation of EPSPs and IPSPs following synchronous stimulation of group II and cutaneous afferents of these nerves shows, however, that sacral interneurones may induce excitation or inhibition of motoneurones via other interneurones. 5. Comparison of the properties of group II interneurones in the sacral segments with

  18. Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord. (United States)

    Rudomin, P


    More than 30 years ago, Frank and Fuortes proposed that the synaptic effectiveness of muscle spindle afferents associated with spinal motoneurones could be diminished by the activation of nerves from flexor muscles. Since that time, research has focused on disclosing the mode of operation and the spinal pathways involved in this presynaptic inhibitory control. Initially, it was assumed that the same last-order interneurones mediated presynaptic inhibition of both muscle spindle and tendon organ afferent fibres. More recent evidence indicates that the synaptic effectiveness of these two groups of afferents is controlled by separate sets of GABAergic interneurones synapsing directly with the intraspinal terminals of the afferent fibres. This unique arrangement allows for selective control of the information on muscle length or muscle tension, despite the convergence of muscle spindle and tendon organ afferents on second-order interneurones.

  19. Characterisation of the primary afferent spinal innervation of mouse uterus

    Directory of Open Access Journals (Sweden)

    Geraldine eHerweijer


    Full Text Available The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP. Using retrograde tracing, injection of 5-10µL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG with peak labelling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labelled cells was 463 µm2 +/- SEM. A significantly greater proportion of labelled neurons consisted of small cell bodies (<300 µm2 in the sacral spinal cord (S2 compared with peak labelling at the lumbar (L2 region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibres located primarily at the border between the circular and longitudinal muscle layers (N=4. The nerve endings were classified into three distinct types: single, branching or complex, that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus.

  20. Can loss of muscle spindle afferents explain the ataxic gait in Riley–Day syndrome?


    Macefield, Vaughan G.; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B.; Kaufmann, Horacio


    The Riley–Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10...

  1. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  2. Opioid Actions in Primary-Afferent Fibers—Involvement in Analgesia and Anesthesia

    Directory of Open Access Journals (Sweden)

    Tsugumi Fujita


    Full Text Available Opioids inhibit glutamatergic excitatory transmission from the periphery by activating G-protein coupled opioid receptors in the central terminals of primary-afferent neurons in the spinal substantia gelatinosa, resulting in antinociception. Opioid receptor activation in the peripheral terminals of primary-afferent neurons inhibits the production of action potentials in response to nociceptive stimuli given to the periphery, leading to antinociception. Opioids also exhibit a local anesthetic effect without opioid receptor activation in peripheral nerve fibers. This review article will focus on analgesia and anesthesia produced by the actions of opioids on primary-afferent fibers.

  3. Specific and potassium components in the depolarization of the la afferents in the spinal cord of the cat. (United States)

    Jiménez, I; Rudomin, P; Solodkin, M; Vyklicky, L


    In the cat spinal cord, primary afferent depolarization (PAD) of group Ia fibers of extensor muscles is produced by high-frequency stimulation (100 Hz) of group I muscle flexor afferents without significant increases in extracellular potassium. On the other hand, the PAD produced by stimulation of mixed and pure cutaneous nerves correlates well with increases in potassium ions. We conclude that the PAD produced by group I muscle afferents results from the activation of specific pathways making axo-axonic synapses with the Ia fiber terminals. The PAD of Ia fibers resulting from activation of cutaneous nerves involves instead unspecific accumulation of potassium ions.

  4. Diverse mechanisms for assembly of branchiomeric nerves


    Cox, Jane A.; LaMora, Angela; Johnson, Stephen L.; Voigt, Mark M.


    The formation of branchiomeric nerves (cranial nerves V, VII, IX and X) from their sensory, motor and glial components is poorly understood. The current model for cranial nerve formation is based on the Vth nerve, in which sensory afferents are formed first and must enter the hindbrain in order for the motor efferents to exit. Using transgenic zebrafish lines to discriminate between motor neurons, sensory neurons and peripheral glia, we show that this model does not apply to the remaining thr...

  5. The Protective Role of Mecobalamin Following Optic Nerve Crush in Adult Rats

    Institute of Scientific and Technical Information of China (English)

    Xiangmei Kong; Xinghuai Sun; Jinjun Zhang


    Purpose: To evaluate the potential for Mecobalamin as a neuroprotective agent in optic nerve crush injury.Methods: Twenty-four adult Sprague-Dawley rats were randomly divided into four groups.One group acted as normal controls, while in the other three groups the right eye was subjected to optic nerve crush injury. Of the three crush injury groups one group received no treatment, while the other two groups received intramuscular injections of VitaminB12 or Mecobalamin (10μg) immediately after crush injury and then every two days. All the rats were sacrificed one month post-treatment, and the eyes attached with optic nerves were removed for histology. The morphological changes of optic nerve axons and retinal ganglion cells (RGCs) were assessed under light microscope (LM) and transmission electromicroscope (TEM). The numbers of axons and RGCs were counted.Results: In this study we demonstrate the potential for Mecobalamin as a neuroprotective agent following optic nerve crush injury. We show here that the axons of optic nerves were loose in structure or destroyed. The mitochondria of the RGCs was swollen, and the Nissel body was less evident after the crush injury. Moreover, the number of axons and RGCs was significantly reduced (P < 0.001). However, these changes were less dramatic after the Mecobalamin-treatment. More axons and RGCs were remained in the group than those in the untreated injury group (P = 0.010 and 0.003 respectively), and those in the VitaminB12-treated group (P=0.037 and 0.035 respectively). More significantly, there were newly formed axons found in the Mecobalamin-treated group.Conclusions: Optic nerve crush injury in rats causes the loss of the axons and RGCs but this may be ameliorated by treatment with Mecobalamin.

  6. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat

    DEFF Research Database (Denmark)

    Bucinskaite, V; Tolessa, T; Pedersen, J


    The vagus nerve plays a role in mediating effects of the two glucagon-like peptides GLP-1 and GLP-2 on gastrointestinal growth, functions and eating behaviour. To obtain electrophysiological and molecular evidence for the contribution of afferent pathways in chemoreception from the gastrointestinal...... tract, afferent mass activity in the ventral gastric branch of the vagus nerve and gene expression of GLP-1 receptors and GLP-2 receptors in the nodose ganglion were examined in Sprague-Dawley rats. Intravenous administration of GLP-1 (30-1000 pmol kg(-1)), reaching high physiological plasma...... afferent nerves mediate sensory input from the gastrointestinal tract or pancreas; either directly or indirectly via the release of another mediator. GLP-2 receptors appear not be functionally expressed on vagal afferents....

  7. Engrafted human induced pluripotent stem cell-derived anterior specified neural progenitors protect the rat crushed optic nerve.

    Directory of Open Access Journals (Sweden)

    Leila Satarian

    Full Text Available BACKGROUND: Degeneration of retinal ganglion cells (RGCs is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs following intravitreal transplantation. METHODOLOGY/PRINCIPAL FINDINGS: NPs were produced under defined conditions from human induced pluripotent stem cells (hiPSCs and transplanted into rats whose optic nerves have been crushed (ONC. hiPSCs were induced to differentiate into anterior specified NPs by the use of Noggin and retinoic acid. The hiPSC-NPs were labeled by green fluorescent protein or a fluorescent tracer 1,1' -dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI and injected two days after induction of ONC in hooded rats. Functional analysis according to visual evoked potential recordings showed significant amplitude recovery in animals transplanted with hiPSC-NPs. Retrograde labeling by an intra-collicular DiI injection showed significantly higher numbers of RGCs and spared axons in ONC rats treated with hiPSC-NPs or their conditioned medium (CM. The analysis of CM of hiPSC-NPs showed the secretion of ciliary neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor. Optic nerve of cell transplanted groups also had increased GAP43 immunoreactivity and myelin staining by FluoroMyelin™ which imply for protection of axons and myelin. At 60 days post-transplantation hiPSC-NPs were integrated into the ganglion cell layer of the retina and expressed neuronal markers. CONCLUSIONS/SIGNIFICANCE: The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages. These NPs possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases.

  8. Tumors of the optic nerve

    DEFF Research Database (Denmark)

    Lindegaard, Jens; Heegaard, Steffen


    A variety of lesions may involve the optic nerve. Mainly, these lesions are inflammatory or vascular lesions that rarely necessitate surgery but may induce significant visual morbidity. Orbital tumors may induce proptosis, visual loss, relative afferent pupillary defect, disc edema and optic...... atrophy, but less than one-tenth of these tumors are confined to the optic nerve or its sheaths. No signs or symptoms are pathognomonic for tumors of the optic nerve. The tumors of the optic nerve may originate from the optic nerve itself (primary tumors) as a proliferation of cells normally present...... in the nerve (e.g., astrocytes and meningothelial cells). The optic nerve may also be invaded from tumors originating elsewhere (secondary tumors), invading the nerve from adjacent structures (e.g., choroidal melanoma and retinoblastoma) or from distant sites (e.g., lymphocytic infiltration and distant...

  9. The organization of primary afferent depolarization in the isolated spinal cord of the frog (United States)

    Carpenter, D. O.; Rudomin, P.


    1. The organization of primary afferent depolarization (PAD) produced by excitation of peripheral sensory and motor nerves was studied in the frog cord isolated with hind limb nerves. 2. Dorsal root potentials from sensory fibres (DR-DRPs) were evoked on stimulation of most sensory nerves, but were largest from cutaneous, joint and flexor muscle afferents. With single shock stimulation the largest cutaneous and joint afferent fibres gave DR-DRPs, but potentials from muscle nerves resulted from activation of sensory fibres with thresholds to electrical stimulation higher than 1·2-1·5 times the threshold of the most excitable fibres in the nerve. This suggests that PAD from muscle afferents is probably due to excitation of extrafusal receptors. 3. Dorsal root potentials produced by antidromic activation of motor fibres (VR-DRPs) were larger from extensor muscles and smaller or absent from flexor muscles. The VR-DRPs were produced by activation of the lowest threshold motor fibres. 4. Three types of interactions were found between test and conditioning DRPs from the same or different nerves. With maximal responses occlusion was usually pronounced. At submaximal levels linear summation occurred. Near threshold the conditioning stimulus frequently resulted in a large facilitation of the test DRP. All three types of interactions were found with two DR-DRPs, two VR-DRPs or one DR-DRP and one VR-DRP. 5. The excitability of sensory nerve terminals from most peripheral nerves was increased during the DR-DRP. The magnitude of the excitability increase varied roughly with the magnitude of the DR-DRP evoked by the conditioning stimulus. 6. There was a marked excitability increase of cutaneous and extensor muscle afferent terminals during the VR-DRP. Flexor muscle afferent terminals often showed no excitability changes to ventral root stimulation. In those experiments where afferent terminals from flexor muscles did show an excitability increase, the effects were smaller than

  10. Segmental and supraspinal control of synaptic effectiveness of functionally identified muscle afferents in the cat. (United States)

    Enríquez, M; Jiménez, I; Rudomin, P


    The present investigation documents the patterns of primary afferent depolarization (PAD) of single, functionally identified muscle afferents from the medial gastrocnemius nerve in the intact, anesthetized cat. Classification of the impaled muscle afferents as from muscle spindles or from tendon organs was made according to several criteria, which comprised measurement of conduction velocity and electrical threshold of the peripheral axons, and the maximal frequency followed by the afferent fibers during vibration, as well as the changes in discharge frequency during longitudinal stretch, the projection of the afferent fiber to the motor pool, and, in unparalyzed preparations, the changes in afferent activity during a muscle twitch. In confirmation of a previous study, we found that most muscle spindle afferents (46.1-66.6%, depending on the combination of criteria utilized for receptor classification) had a type A PAD pattern. That is, they were depolarized by stimulation of group I fibers of the posterior biceps and semitendinosus (PBSt) nerve, but not by stimulation of cutaneous nerves (sural and superficial peroneus) or the bulbar reticular formation (RF), which in many cases inhibited the PBSt-induced PAD. In addition, we found a significant fraction of muscle spindle primaries that were depolarized by stimulation of group I PBSt fibers and also by stimulation of the bulbar RF. Stimulation of cutaneous nerves produced PAD in 9.1-31.2% of these fibers (type B PAD pattern) and no PAD in 8.2-15.4% (type C PAD pattern). In contrast to muscle spindle afferents, only the 7.7-15.4% of fibers from tendon organs had a type A PAD pattern, 23-46.1% had a type B and 50-61.5% a type C PAD pattern. These observations suggest that the neuronal circuitry involved in the control of the synaptic effectiveness of muscle spindles and tendon organs is subjected to excitatory as well as to inhibitory influences from cutaneous and reticulospinal fibers. As shown in the accompanying

  11. P2X2阳性感觉神经末梢在小鼠食管的分布%The Distribution of P2X2 Immunoreactive Afferent Nerve Endings in the Mouse Esophagus

    Institute of Scientific and Technical Information of China (English)

    庞传武; 安淑红; 王昭金


    The distribution of P2X2 immunoreactive afferent endings and the relationship with calcitonin gene-related peptide (CGRP) immunoreactive fibers in the mouse esophagus was studied using double immunofluorescence method combined confocal laser scanning microscope technique. P2X2 immunoreactive endings were seen in sections from all levels of the mouse esophagus. The distribution of P2X2 immunoreactive structures concentrated in the area between outer and inner muscular layers, covered myenteric ganglia totally or partly. The dense clusters of fine varicose P2X2 immunoreactive terminals protruded into myenteric ganglia forming complexes of profuse laminar structures for intraganglionic laminar endings (IGLEs). Double immunofluorescence for P2X2 and CGRP revealed that numerous varicose fibers immunoreactive for CGRP closely surrounded P2X2 immunopositive IGLEs. However, P2X2 immunoreactive terminals never expressed CGRP immunoreactivity. In nodose ganglion, numerous neuronal cell bodies in small- and middle-sized displayed P2X2 immunoreactivity. P2X2/CGRP double-labeling neurons were rare. However, many P2X2 positive neurons in dorsal root ganglion contained CGRP immunoreactivity. These results demonstrated that some afferent endings in mouse esophagus expressed nociceptor P2X2, and formed IGLEs structures.%本文采用免疫荧光组织化学双标方法结合激光共聚焦显微镜技术研究了伤害性受体P2X2阳性感觉纤维末梢在小鼠食管内的分布及与降钙素基因相关肽(CGRP)阳性纤维的关系。结果表明:在食管各水平均可见到P2X2阳性感觉纤维末梢。P2X2阳性纤维集中分布于食管的内、外肌层之间,部分或全部的覆盖在肌间神经节的表面。一些串珠样的纤维深入到肌间神经节内,相互缠绕在一起形成许多结构复杂、形状各异的神经节内板状末稍(IGLEs)。荧光双标显示许多CGRP阳性纤维围绕在P2X2阳性IGLEs周围,没有见到P2X2和CGRP

  12. 甲状腺手术中喉返神经和喉上神经的保护%Protection of recurrent laryngeal nerve and superior laryngeal nerve in thyroid surgery

    Institute of Scientific and Technical Information of China (English)



    目的:探讨喉上神经与喉返神经损伤在甲状腺手术中的保护对策。方法:收治甲状腺手术患者77例,回顾性分析其临床资料。结果:所有患者都没有出现喉上神经受损。1例(1.30%)二次残留腺体的切除与中央区淋巴结清扫术患者,出现短暂喉返神经功能性损伤,手术完成后出现声音嘶哑,术后21 d完全恢复。结论:对甲状腺手术中喉返神经与喉上神经进行有效的保护,必须对喉上神经与喉返神经的解剖进行充分了解,手术技术十分精巧。%Objective:To explore the protection countermeasures of recurrent laryngeal nerve and superior laryngeal nerve in thyroid surgery.Methods:77 patients with thyroid surgery were selected.The clinical data were retrospectively analyzed. Results:None of the patients had superior laryngeal nerve injury.Transient recurrent laryngeal nerve injury occurred in 1 patient(1.30%) with two times residual gland resection and central lymph node dissection.After surgery,the patient developed hoarse voice.21 days after the operation,the patient was completely recovered.Conclusion:We must fully understand the anatomy of the superior laryngeal nerve and the recurrent laryngeal nerve,in order to provide effective protection for recurrent laryngeal nerve and superior laryngeal nerve in thyroid surgery,the operation was very delicate.

  13. Primary afferent depolarization of muscle afferents elicited by stimulation of joint afferents in cats with intact neuraxis and during reversible spinalization. (United States)

    Quevedo, J; Eguibar, J R; Jiménez, I; Schmidt, R F; Rudomin, P


    1. In the anesthetized and artificially ventilated cat, stimulation of the posterior articular nerve (PAN) with low strengths (1.2-1.4 x T) produced a small negative response (N1) in the cord dorsum of the lumbosacral spinal cord with a mean onset latency of 5.2 ms. Stronger stimuli (> 1.4 x T) produced two additional components (N2 and N3) with longer latencies (mean latencies 7.5 and 15.7 ms, respectively), usually followed by a slow positivity lasting 100-150 ms. With stimulus strengths above 10 x T there was in some experiments a delayed response (N4; mean latency 32 ms). 2. Activation of posterior knee joint nerve with single pulses and intensities producing N1 responses only, usually produced no dorsal root potentials (DRPs), or these were rather small. Stimulation with strengths producing N2 and N3 responses produced distinct DRPs. Trains of pulses were clearly more effective than single pulses in producing DRPs, even in the low-intensity range. 3. Cooling the thoracic spinal cord to block impulse conduction, increased the DRPs and the N3 responses produced by PAN stimulation without significantly affecting the N2 responses. Reversible spinalization also increased the DRPs produced by stimulation of cutaneous nerves. In contrast, the DRPs produced by stimulation of group I afferents from flexors were reduced. 4. Conditioning electrical stimulation of intermediate and high-threshold myelinated fibers in the PAN depressed the DRPs produced by stimulation of group I muscle and of cutaneous nerves. 5. Analysis of the intraspinal threshold changes of single Ia and Ib fibers has provided evidence that stimulation of intermediate and high threshold myelinated fibers in the posterior knee joint nerve inhibits the primary afferent depolarization (PAD) of Ia fibers, and may either produce PAD or inhibit the PAD in Ib fibers, in the same manner as stimulation of cutaneous nerves. In 7/16 group I fibers the inhibition of the PAD was increased during reversible

  14. Protective effects of cerebrolysin in a rat model of optic nerve crush. (United States)

    Huang, Tzu-Lun; Huang, Sun-Ping; Chang, Chung-Hsing; Lin, Kung-Hung; Sheu, Min-Muh; Tsai, Rong-Kung


    To investigate the effects of cerebrolysin (Cbl) on optic nerves (ON) and retinal ganglion cells (RGC) in a rat model of ON crush. Rats received intravitreal injection of Cbl (n = 20), intra-ON injection of Cbl (n = 20), intraperitoneal injection (IPI) of Cbl (n = 20), or phosphate buffered saline (PBS; n = 20) every day for 2 weeks after ON crush injury. At 3 weeks post-trauma, RGC density was counted by retrograde labeling with FluoroGold and visual function was assessed by flash visual-evoked potentials. Activities of microglia after insults were quantified by immunohistochemical analysis of the presence of ED1 in the optic nerve. At 3 weeks postcrush, the densities of RGCs in the Cbl-IVI group (1125 ± 166/mm(2)) and in the Cbl-IPI treatment group (1328 ± 119/mm(2)) were significantly higher than those in the PBS group (641 ± 214/mm(2)). The flash visual-evoked potential measurements showed that latency of the P1 wave was significantly shorter in the Cbl-IVI- and Cbl-IPI-treated groups (105 ± 4 ms and 118 ± 26 ms, respectively) than in the PBS-treated group (170 ± 20 ms). However, only Cbl IPI treatment resulted in a significant decrease in the number of ED1-positive cells at the lesion sites of the ON (5 ± 2 cells/vs. 30 ± 4 cells/high-power field in control eyes). Treatment with intra-ON injection of Cbl was harmful to the optic nerve in the crush model. Systemic administration of Cbl had neuroprotective effects on RGC survival and visual function in the optic nerve crush model.

  15. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord. (United States)

    Rudomin, P; Lomelí, J; Quevedo, J


    We examined primary afferent depolarization (PAD) in the anesthetized cat elicited in 109 pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pair ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. Tests for refractoriness were made to assess whether the responses produced by intraspinal stimulation in the L3 and L6 segments were due to activation of collaterals of the same afferent fiber. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. In most fibers, stimulation of the ipsilateral posterior biceps and semitendinosus (PBSt) nerve with trains of pulses maximal for group I afferents had a qualitatively similar effect but produced a larger PAD in the L6 than in the L3 collaterals. Stimulation of cutaneous nerves (sural and superficial peroneus) with single pulses and of the posterior articular nerve, the ipsilateral reticular formation, nucleus raphe magnus and contralateral motor cortex with trains of pulses often had qualitatively different effects. They could produce PAD and/or facilitate the PBSt-induced PAD in one collateral, and produce PAH and/or inhibit the PAD in the other collateral. These patterns could be changed in a differential manner by sensory or supraspinal conditioning stimulation. In summary, the present investigation suggests that the segmental and ascending collaterals of individual afferents are not fixed routes for information transmission, but parts of dynamic systems in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs and funneled to specific targets according to the motor tasks to be performed.

  16. Salvianolic Acid A Protects the Peripheral Nerve Function in Diabetic Rats through Regulation of the AMPK-PGC1α-Sirt3 Axis

    Directory of Open Access Journals (Sweden)

    Guanhua Du


    Full Text Available Salvianolic acid A (SalA is one of the main efficacious, water-soluble constituents of Salvia miltiorrhiza Bunge. This study investigated the protective effects of SalA on peripheral nerve in diabetic rats. Administration of SalA (0.3, 1 and 3 mg/kg, ig was started from the 5th week after strepotozotocin (STZ60 mg/kg intraperitoneal injection and continued for 8 weeks. Paw withdrawal mechanical threshold (PWMT and motor nerve conduction velocity (MNCV were used to assess peripheral nerve function. The western blot methods were employed to test the expression levels of serine-threonine liver kinase B1 (LKB1, AMP-activated protein kinase (AMPK, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α, silent information regulator protein3 (sirtuin 3/Sirt3 and neuronal nitric oxide synthase (nNOS in sciatic nerve. Results showed that SalA administration could increase PWMT and MNCV in diabetic rats; reduce the deterioration of sciatic nerve pathology; increase AMPK phosphorylation level, up-regulate PGC-1α, Sirt3 and nNOS expression, but had no influence on LKB1. These results suggest that SalA has protective effects against diabetic neuropathy. The beneficial effects of SalA on peripheral nerve function in diabetic rats might be attributed to improvements in glucose metabolism through regulation of the AMPK-PGC1α-Sirt3 axis.

  17. Toxicity induced by cumene hydroperoxide in leech Retzius nerve cells: the protective role of glutathione. (United States)

    Jovanovic, Zorica; Jovanovic, Svetlana


    In the present study, we studied the ability of glutathione (GSH) to detoxify exogenously applied cumene hydroperoxide (CHP). Exposure of leech Retzius nerve cells to CHP (1.5 mM) induced a marked prolongation of the spontaneous spike potential of these cells. Early after depolarization, and a cardiac-like action potential with a rapid depolarization followed by a sustained depolarization or plateau, which is terminated by a rapid repolarization were recorded. GSH (0.2 mM) significantly inhibited the effects of CHP on the duration of the action potential and suppressed CHP-induced spontaneous repetitive activity. Voltage-clamp recordings showed that CHP (1.5 mM) caused significant changes in the outward potassium currents. The fast and slow steady part of the potassium outward current was reduced by 46% and 39%, respectively. GSH applied in a concentration of 0.2 mM partially blocked the effect of CHP on the calcium-activated potassium currents. The fast and slow calcium-activated potassium currents were suppressed by about 20% and 15%, respectively. These results suggest that the neurotoxic effect of CHP on spontaneous spike electrogenesis and calcium-activated potassium currents of leech Retzius nerve cells was reduced in the presence of GSH.


    Institute of Scientific and Technical Information of China (English)

    夏晓红; 何瑞荣


    目的和方法:采用电生理学技术观察一氧化氮(NO)和心房钠尿肽(A NP)对肾动脉内注射内皮索(ET)所致麻醉大鼠肾神经传入放电(RANA)的影响。结 果:①肾动脉内注射ET-1后平均动脉压(MAP)先有短暂的降低随后为较显著的持 久增高,RANA明显增加;②肾动脉内分别注射NO前体L-Arg和ANP后,ET-1的上述效应 即被阻抑。结论:肾动脉内注射ET-1引起RANA明显增加,而此效应可 被同一途径注射NO和ANP所消除。%By using electrophysiological technique, the effects of nitric oxide (NO) and atrial natriuretic peptide (ANP) on renal afferent nerve activity (RANA) induced by intrarenal arterial injection of endothelin-1(ET-1) were examined in anesthetized rat. Results: (1) In response to intrarenal arterial injection of ET-1 (1μg/kg)MAP was initially decreased and subsequently increased, and RANA was increased to 208.33±16.60%(P<0.001). ( 2)Pretreatment with L-Arg or ANP could effectively inhibit the above biological actions induced by ET-1. Conclusion: Intrarenal arterial in jection of ET-1 can markedly induce the increase in RANA, an effect which is ab olishd by L-arg or ANP administered by the same route.

  19. 多巴胺对豚鼠听觉传入神经的抑制作用及其频率选择性%Suppressive effect and its frequency selection of dopamine on the cochlear auditory afferent nerve activity in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    侯志强; 余力生; 李兴启; 刘军


    Objective To investigate the suppressive effect and its frequency selection of dopamine on the cochlear auditory afferent nerve activity. To offer an important step in understanding the modulation of dopamine in the inner cell synaptic complex. Methods Forty guinea pigs were randomly divided into four groups and the whole intracochlear perfusions were performed: (1) perfused with artificial perilymph solutions; (2) perfused with artifical perilymph solutions containing 10 mmol/L dopamine; (3) perfused with artificial perilymph solutions containing 30 mmol/L dopamine; (4) perfused with artifical perilymph solutions containing 50 mmol/L dopamine. Compound action potential (CAP)evoked by different frequencies (250 Hz,500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz, 16 000 Hz) and cochlear microphonics (CM) evoked by4000 Hz tone burst were recorded from the roud window of guinea pigs before perfusion and 1 hours, 2 hours after perfusions. Results There was no significant difference in CAP threshold before and after perfusion in the artificial perilymph solutions group (P > 0.05) . An increase of CAP threshold of most detecting frequencies were observed in the three dopamine-perfused groups(P 0.05);灌流多巴胺后大部分频率的CAP阈值提高,与灌流前相比差异具有统计学意义(P值均0.05).结论 多巴胺对豚鼠听觉传入神经具有抑制性作用,而对外毛细胞无影响;这种抑制作用具有频率选择性,对高频纤维的抑制作用较强,而对低频的抑制作用较弱.

  20. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats.

    Directory of Open Access Journals (Sweden)

    Damián Dorfman

    Full Text Available Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm optic nerve (ON could be the first structural change of the visual pathway in streptozotocin (STZ-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE or remained in a standard environment (SE for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity, microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1 immunoreactivity, astrocyte reactivity (glial fibrillary acid protein-immunostaining, myelin (myelin basic protein immunoreactivity, ultrastructure, and brain derived neurotrophic factor (BDNF levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway.

  1. Vagal Nerve Stimulation Evoked Heart Rate Changes and Protection from Cardiac Remodeling. (United States)

    Agarwal, Rahul; Mokelke, Eric; Ruble, Stephen B; Stolen, Craig M


    This study investigated whether vagal nerve stimulation (VNS) leads to improvements in ischemic heart failure via heart rate modulation. At 7 ± 1 days post left anterior descending artery (LAD) ligation, 63 rats with myocardial infarctions (MI) were implanted with ECG transmitters and VNS devices (MI + VNS, N = 44) or just ECG transmitters (MI, N = 17). VNS stimulation was active from 14 ± 1 days to 8 ± 1 weeks post MI. The average left ventricular (LV) end diastolic volumes at 8 ± 1 weeks were MI = 672.40 μl and MI + VNS = 519.35 μl, p = 0.03. The average heart weights, normalized to body weight (± std) at 14 ± 1 weeks were MI = 3.2 ± 0.6 g*kg(-1) and MI + VNS = 2.9 ± 0.3 g*kg(-1), p = 0.03. The degree of cardiac remodeling was correlated with the magnitude of acute VNS-evoked heart rate (HR) changes. Further research is required to determine if the acute heart rate response to VNS activation is useful as a heart failure biomarker or as a tool for VNS therapy characterization.

  2. Protective effect of sodium valproate on motor neurons in the spinal cord following sciatic nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Fei Wu; Danmou Xing; Zhengren Peng; Wusheng Kan


    /total number of cells× 100%) was calculated.MAIN OUTCOME MEASURES: A value of neurons with positive Bcl-2 expression and apoptotic rate in spinal cord of rats in the two groups.RESULTS: A total of 30 SD rats were involved in the result analysis. ①expression of positive Bcl-2 neurons: A value of positive Bcl-2 neurons were 0.71 ±0.02, 0.86±0.04, 1.02±0.06 at days 4, 7 and 14, respectively after operation in the treatment group, which were obviously higher than those in the model group (0.62±0.03, 0.71±0.05, 0.89±0.04, t = 3.10-4.50, P < 0.05). ②apoptotic result of motor neurons: Apoptotic rate of motor neurons in spinal cord was (6.91±0.89)% and (15.12±2.34)% at days 7 and 14 in the treatment group, which was significantly lower than those in the model group [(9.45±1.61)%, (19.35±0.92)%, t= 2.39, 3.03. P< 0.05].CONCLUSION: VPA can increase expression of Bcl-2 in spinal cord and reduce neuronal apoptosis in rats following sciatic nerve injury, and has protective effect on motor neuron in spinal cord of rats.

  3. Tonic and phasic differential GABAergic inhibition of synaptic actions of joint afferents in the cat. (United States)

    Rudomin, P; Hernández, E; Lomelí, J


    The aim of this study was to examine the functional organization of the spinal neuronal networks activated by myelinated afferent fibers in the posterior articular nerve (PAN) of the anesthetized cat. Particular attention was given to the tonic and phasic GABAa inhibitory modulation of these networks. Changes in the synaptic effectiveness of the joint afferents were inferred from changes in the intraspinal focal potentials produced by electrical stimulation of the PAN. We found that conditioning stimulation of cutaneous nerves (sural, superficial peroneus and saphenous) and of the nucleus raphe magnus often inhibited, in a differential manner, the early and late components of the intraspinal focal potentials produced by stimulation of low and high threshold myelinated PAN afferents, respectively. The degree of the inhibition depended on the strength of both the conditioning and test stimuli and on the segmental level of recording. Conditioning stimulation of group I muscle afferents was less effective, but marked depression of the early and late focal potentials was produced by stimuli exceeding 5 xT. The i.v. injection of 1-2.5 mg/kg of picrotoxin, a GABAa blocker, had relatively minor effects on the early components of the PAN focal potentials, but was able to induce a significant increase of the late components. It also reduced the inhibitory effects of cutaneous and joint nerve conditioning on PAN focal responses. Conditioning autogenetic stimulation with high-frequency trains depressed the PAN focal potentials. The late components of the PAN responses remained depressed several minutes after discontinuing the conditioning train, even after picrotoxin administration. The present observations indicate that the neuronal networks activated by the low threshold PAN afferents show a relatively small post-activation depression and appear to be subjected to a minor tonic inhibitory GABAa control. In contrast, the pathways activated by stimulation of high threshold

  4. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice. (United States)

    Peng, Shanshan; Shi, Zhe; Su, Huanxing; So, Kwok-Fai; Cui, Qi


    Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system.

  5. The action of knee joint afferents and the concomitant influence of cutaneous (sural) afferents on the discharge of triceps surae gamma-motoneurones in the cat. (United States)

    Ellaway, P H; Davey, N J; Ferrell, W R; Baxendale, R H


    Electrical stimulation of group II joint afferents of the posterior articular nerve (PAN) to the knee evoked short-latency facilitation and/or inhibition of the background discharge of gastrocnemius-soleus (GS) gamma-motoneurones in decerebrated spinal cats. The latencies of these responses were consistent with mediation via segmental oligosynaptic spinal pathways. In addition, a longer-latency facilitation was frequently observed. Mechanical non-noxious stimulation of the skin within the field of innervation of the sural nerve, on the lateral aspect of the heel, suppressed the short-latency facilitation, but not the inhibition or long-latency facilitation. Brief mechanical indentation of the posterior aspect of the knee joint capsule could elicit facilitation or inhibition of gamma-motoneurones. Facilitation, but not inhibition, was blocked by anaesthesia or section of the PAN. Both actions could be suppressed by mechanical stimulation of the heel. We conclude that GS gamma-motoneurones receive both facilitatory and inhibitory segmental inputs from group II articular afferents arising in the knee joint. Cutaneous afferents from the sural field exert a selective inhibitory influence over the facilitation of fusimotor discharge by articular afferents.


    Institute of Scientific and Technical Information of China (English)

    Hong-mei Zhao; Xin-feng Liu; Xiao-wei Mao; Chun-fu Chen


    Objective To confirmed reliability and feasibility of intranasal nerve growth factor (NGF) bypassing the blood-brain barrier and its potential neuroprotective effects on acute cerebral ischemia.Methods (1) To assay NGF concentrations in different brain regions after middle cerebral artery occlusion (MCAO).Rats were randomly divided into intranasal (IN) NGF, intravenous (Ⅳ) NGF, and untreated group (n =4). The concentrations of NGF of different brain regions in the three groups after MCAO were measured by ELISA. (2) To observe neuroprotective action of NGF on focal cerebral ischemic damage. Rats were randomly assigned to 4 groups: IN vehicle, IN NGF,Ⅳ vehicle, Ⅳ NGF (n = 8). Treatment was initiated 30 minutes after onset of MCAO and given again 24 hours later. Three neurologic behavioral tests were performed 24 and 48 hours following onset of MCAO. Corrected infarct volumes were determined 48 hours after onset of MCAO.Results The olfactory bulb in IN NGF group obtained the highest concentration (3252 pg/g) of NGF among all regions, followed by the hippocumpus. The NGF concentrations in the olfactory bulb and hippocampus in IN NGF group were markedly higher than that in Ⅳ NGF and control groups. The infarct volume in IN NGF group was markedly reduced by 38.8% compared with IN vehicle group. IN NGF group vestibulum function markedly improved compared with IN vehicle group at 24 and 48 hours after onset of MCAO (P24h = 0.02 and P48h = 0.04, respectively).Conclusion Intranasal NGF could pass through the blood-brain barrier, reach the central nervous system, reduce infarct volume, and improve neurologic function in rats following MCAO. Intranasal delivery of NGF may be a promising treatment for stroke.

  7. External QX-314 inhibits evoked cranial primary afferent synaptic transmission independent of TRPV1. (United States)

    Hofmann, Mackenzie E; Largent-Milnes, Tally M; Fawley, Jessica A; Andresen, Michael C


    The cell-impermeant lidocaine derivative QX-314 blocks sodium channels via intracellular mechanisms. In somatosensory nociceptive neurons, open transient receptor potential vanilloid type 1 (TRPV1) receptors provide a transmembrane passageway for QX-314 to produce long-lasting analgesia. Many cranial primary afferents express TRPV1 at synapses on neurons in the nucleus of the solitary tract and caudal trigeminal nucleus (Vc). Here, we investigated whether QX-314 interrupts neurotransmission from primary afferents in rat brain-stem slices. Shocks to the solitary tract (ST) activated highly synchronous evoked excitatory postsynaptic currents (ST-EPSCs). Application of 300 μM QX-314 increased the ST-EPSC latency from TRPV1+ ST afferents, but, surprisingly, it had similar actions at TRPV1- ST afferents. Continued exposure to QX-314 blocked evoked ST-EPSCs at both afferent types. Neither the time to onset of latency changes nor the time to ST-EPSC failure differed between responses for TRPV1+ and TRPV1- inputs. Likewise, the TRPV1 antagonist capsazepine failed to prevent the actions of QX-314. Whereas QX-314 blocked ST-evoked release, the frequency and amplitude of spontaneous EPSCs remained unaltered. In neurons exposed to QX-314, intracellular current injection evoked action potentials suggesting a presynaptic site of action. QX-314 acted similarly at Vc neurons to increase latency and block EPSCs evoked from trigeminal tract afferents. Our results demonstrate that QX-314 blocked nerve conduction in cranial primary afferents without interrupting the glutamate release mechanism or generation of postsynaptic action potentials. The TRPV1 independence suggests that QX-314 either acted extracellularly or more likely entered these axons through an undetermined pathway common to all cranial primary afferents.

  8. Anatomy and physiology of the afferent visual system. (United States)

    Prasad, Sashank; Galetta, Steven L


    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders.

  9. Nerve protective effect of rhTPO and G-CSF on hypoxic ischemic brain damage in rats

    Institute of Scientific and Technical Information of China (English)

    Hong-Xia Zhou; Chun-Lai Zhang; Yue-Hong Li; Yu-Xin Zhang; Zi-Feng Wei; Xi Wang Meng Ling-Li


    Objective:To observe the protection effect of rhTPO and granulocyte colony stimulating factor (G-CSF) on brain nerve after hypoxic ischemic brain damage(HIBD) in neonatal rats, exploring new ways for the laboratory basis of treatment for hypoxic ischemic encephalopathy, and provide for possible.Methods:A total of120 newbornSD rats aging7 d were randomly divided into control group, model group,TPO group andG-CSF group, using the method of blockingleft carotid artery to establishHIBD model.The left carotid artery was only seperated rather than blocked in the control group; after modeling, saline injection, rhTPO treatment andG-CSF treatment were adopted in the model group,TPO group andG-CSF group respectively.Then10 rats of4 groups were executed atDay3,7,14 after modeling, brain tissue was extracted to observe the brain damage;Immunohistochemical method was used to observe the histopathological changes of brain tissue and changes of nest protein(nestin) expression.Results:Injured brain mass of model group,TPO group andG-CSF group were significantly higher than that of control group at corresponding time point(P<0.05).Injured brain mass ofTPO group andG-CSF group were significantly lower than that of model group(P<0.05), and with the increase of age, more significant increasing trend.AtDay3 after modeling, the expression of nestin positive cells in cerebral cortex of model group,TPO group andG-CSF group increased significantly than that of control group(P<0.05); nestin positive cells ofG-CSF group outnumberedTPO group significantly (P<0.05).Conclusions:The earlyTPO,G-CSF treatment ofHIBD rats can improve brain function after hypoxia ischemia by neural protection.G-CSF can promote the differentiation of neural cells proliferation, and reduce degeneration and necrosis of nerve cells.

  10. Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats. (United States)

    Duysens, J


    1. Stimulation of different hindlimb nerves in spontaneously walking premammillary cats was used in order to examine the effects of sensory input on the rhythmic motor output. 2. Stimulation of the tibial or sural nerve at low intensities caused the burst of activity in the triceps surae or semimembranosus to be prolonged if stimuli were given during the extension phase. When applied during the flexion phase, the same stimuli shortened the burst of activity in the pretibial flexors and induced an early onset of the extensor activity, except if stimuli were given at the very beginning of the flexion phase, when flexor burst prolongations or rebounds were observed instead. 3. These effects were related to activation of large cutaneous afferents in these nerves since the results could be duplicated by low-intensity stimulation of the tibial nerve at the ankle or by direct stimulation of the pad. 4. In contrast, activation of smaller afferents by high-intensity stimulation resulted prolongations of the flexor burst and/or shortenings of the extensor burst for stimuli applied before or during these bursts, respectively. 5. It was concluded that the large and small cutaneous afferents make, respectively, inhibitory and excitatory connections with the central structure involved in the generation of flexion during walking.

  11. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary (United States)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.


    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  12. Selective cortical and segmental control of primary afferent depolarization of single muscle afferents in the cat spinal cord. (United States)

    Eguibar, J R; Quevedo, J; Rudomin, P


    This study was primarily aimed at investigating the selectivity of the cortico-spinal actions exerted on the pathways mediating primary afferent depolarization (PAD) of muscle spindle and tendon organ afferents ending within the intermediate nucleus at the L6-L7 segmental level. To this end we analyzed, in the anesthetized cat, the effects produced by electrical stimulation of sensory nerves and of the cerebral cortex on (a) the intraspinal threshold of pairs of single group I afferent fibers belonging to the same or to different hindlimb muscles and (b) the intraspinal threshold of two collaterals of the same muscle afferent fiber. Afferent fibers were classified in three categories, according to the effects produced by stimulation of segmental nerves and of the cerebral cortex. Twenty-five of 40 fibers (62.5%) were depolarized by stimulation of group I posterior biceps and semitendinosus (PBSt) or tibialis (Tib) fibers, but not by stimulation of the cerebral cortex or of cutaneous and joint nerves, which instead inhibited the PBSt- or Tib-induced PAD (type A PAD pattern, usually seen in Ia fibers). The remaining 15 fibers (37.5%) were all depolarized by stimulation of the PBSt or Tib nerves and the cerebral cortex. Stimulation of cutaneous and joint nerves produced PAD in 10 of those 15 fibers (type B PAD pattern) and inhibited the PBSt- or Tib-induced PAD in the 5 remaining fibers (type C PAD pattern). Fibers with a type B or C PAD pattern are likely to be Ib. Not all sites in the cerebral cortex inhibited with the same effectiveness the segmentally induced PAD of group I fibers with a type A PAD pattern. With the weakest stimulation of the cortical surface, the most effective sites that inhibited the PAD of individual fibers were surrounded by less effective sites, scattered all along the motor cortex (area 4gamma and 6) and sensory cortex (areas 3, 2 and 1), far beyond the area of projection of group I fibers from the hindlimb. With higher strengths of

  13. Chronic Trigeminal Nerve Stimulation Protects Against Seizures, Cognitive Impairments, Hippocampal Apoptosis, and Inflammatory Responses in Epileptic Rats. (United States)

    Wang, Qian-Qian; Zhu, Li-Jun; Wang, Xian-Hong; Zuo, Jian; He, Hui-Yan; Tian, Miao-Miao; Wang, Lei; Liang, Gui-Ling; Wang, Yu


    Trigeminal nerve stimulation (TNS) has recently been demonstrated effective in the treatment of epilepsy and mood disorders. Here, we aim to determine the effects of TNS on epileptogenesis, cognitive function, and the associated hippocampal apoptosis and inflammatory responses. Rats were injected with pilocarpine to produce status epilepticus (SE) and the following chronic epilepsy. After SE induction, TNS treatment was conducted for 4 consecutive weeks. A pilocarpine re-injection was then used to induce a seizure in the epileptic rats. The hippocampal neuronal apoptosis induced by seizure was assessed by TUNEL staining and inflammatory responses by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). The spontaneous recurrent seizure (SRS) number was counted through video monitoring, and the cognitive function assessed through Morris Water Maze (MWM) test. TNS treatment attenuated the SRS attacks and improved the cognitive impairment in epileptic rats. A pilocarpine re-injection resulted in less hippocampal neuronal apoptosis and reduced level of interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α), and microglial activation in epileptic rats with TNS treatment in comparison to the epileptic rats without TNS treatment. It is concluded that TNS treatment shortly after SE not only protected against the chronic spontaneous seizures but also improved cognitive impairments. These antiepileptic properties of TNS may be related to its attenuating effects on hippocampal apoptosis and pro-inflammatory responses.

  14. Maslinic Acid Protected PC12 Cells Differentiated by Nerve Growth Factor against β-Amyloid-Induced Apoptosis. (United States)

    Yang, Yu-wan; Tsai, Chia-wen; Mong, Mei-chin; Yin, Mei-chin


    β-Amyloid peptide (Abeta) was used to induce apoptosis in PC12 cells differentiated by nerve growth factor, and the protective activities of maslinic acid (MA) at 2-16 μM were examined. Abeta treatment lowered Bcl-2 expression, raised Bax expression, and decreased cell viability. MA pretreatments decreased Bax expression, raised the Bcl-2/Bax ratio, and increased cell viability. MA pretreatments retained glutathione content and decreased subsequent Abeta-induced release of reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Abeta treatment up-regulated protein expression of p47(phox), gp91(phox), mitogen-activated protein kinase, advanced glycation end product receptor (RAGE), and nuclear factor-κ B (NF-κB). MA pretreatments at 2-16 μM suppressed the expression of proteins including gp91(phox), p47(phox), p-p38, and NF-κB p65, at 4-16 μM down-regulated RAGE and NF-κB p50 expression, and at 8 and 16 μM reduced p-ERK1/2 expression. These novel findings suggest that maslinic acid is a potent compound against Abeta-induced cytotoxicity.

  15. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study. (United States)

    Wardman, Daniel L; Gandevia, Simon C; Colebatch, James G


    Abstract We compared the brain areas that showed significant flow changes induced by selective stimulation of muscle and cutaneous afferents using fMRI BOLD imaging. Afferents arising from the right hand were studied in eight volunteers with electrical stimulation of the digital nerve of the index finger and over the motor point of the FDI muscle. Both methods evoked areas of significant activation cortically, subcortically, and in the cerebellum. Selective muscle afferent stimulation caused significant activation in motor-related areas. It also caused significantly greater activation within the contralateral precentral gyrus, insula, and within the ipsilateral cerebellum as well as greater areas of reduced blood flow when compared to the cutaneous stimuli. We demonstrated separate precentral and postcentral foci of excitation with muscle afferent stimulation. We conclude, contrary to the findings with evoked potentials, that muscle afferents evoke more widespread cortical, subcortical, and cerebellar activation than do cutaneous afferents. This emphasizes the importance, for studies of movement, of matching the kinematic aspects in order to avoid the results being confounded by alterations in muscle afferent activation. The findings are consistent with clinical observations of the movement consequences of sensory loss and may also be the basis for the contribution of disturbed sensorimotor processing to disorders of movement.

  16. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. (United States)

    Raybould, Helen E; Glatzle, Jorg; Robin, Carla; Meyer, James H; Phan, Thomas; Wong, Helen; Sternini, Catia


    Intestinal perfusion with carbohydrates inhibits gastric emptying via vagal and spinal capsaicin-sensitive afferent pathways. The aim of the present study was to determine the role of 1) 5-hydroxytryptamine (5-HT)(3) receptors (5-HT(3)R) in mediating glucose-induced inhibition of gastric emptying and 2) 5-HT(3)R expression in vagal and spinal afferents in innervating the duodenum. In awake rats fitted with gastric and duodenal cannulas, perfusion of the duodenum with glucose (50 and 100 mg) inhibited gastric emptying. Intestinal perfusion of mannitol inhibited gastric emptying only at the highest concentration (990 mosm/kgH(2)O). Pretreatment with the 5-HT(3)R antagonist tropisetron abolished both glucose- and mannitol-induced inhibition of gastric emptying. Retrograde labeling of visceral afferents by injection of dextran-conjugated Texas Red into the duodenal wall was used to identify extrinsic primary afferents. Immunoreactivity for 5-HT(3)R, visualized with an antibody directed to the COOH terminus of the rat 5-HT(3)R, was found in >80% of duodenal vagal and spinal afferents. These results show that duodenal extrinsic afferents express 5-HT(3)R and that the receptor mediates specific glucose-induced inhibition of gastric emptying. These findings support the hypothesis that enterochromaffin cells in the intestinal mucosa release 5-HT in response to glucose, which activates 5-HT(3)R on afferent nerve terminals to evoke reflex changes in gastric motility. The primary glucose sensors of the intestine may be mucosal enterochromaffin cells.

  17. Changes in nerve microcirculation following peripheral nerve compression

    Institute of Scientific and Technical Information of China (English)

    Yueming Gao; Changshui Weng; Xinglin Wang


    Following peripheral nerve compression, peripheral nerve microcirculation plays important roles in regulating the nerve microenvironment and neurotrophic substances, supplying blood and oxygen and maintaining neural conduction and axonal transport. This paper has retrospectively analyzed the articles published in the past 10 years that addressed the relationship between peripheral nerve compression and changes in intraneural microcirculation. In addition, we describe changes in different peripheral nerves, with the aim of providing help for further studies in peripheral nerve microcirculation and understanding its protective mechanism, and exploring new clinical methods for treating peripheral nerve compression from the perspective of neural microcirculation.

  18. Intraganglionic laminar endings act as mechanoreceptors of vagal afferent nerve in guinea pig esophagus%神经节内板状末梢是豚鼠食道迷走传入神经末梢的机械敏感性受体

    Institute of Scientific and Technical Information of China (English)

    杨霞; 刘然


    IGLEs acted as the mechano-sensitive receptors of the vagal afferent nerves. At the same time, the special structure of IGLEs displayed by FM1-43 was further confirmed by neurobiotin anterograde labeling technique. To further investigate the characteristics of IGLEs as mechanosensitive receptors, different drugs were used to block or stimulate IGLEs activation. Our results indicated that only in the stretched preparation could FM 1-43 enter the IGLEs and completely display their specialized structure, which was consistent with that shown by neurobiotin. The amount of IGLEs shown by stretch-evoked FM1-43 staining was much more than that shown without stretch stimulation [(90.4±9.5)% vs (10.7+2.1)%, P<0.05]. Ca2+, TTX (0.6 μmol/L), atropine (0.6 μmol/L), SKF (50 μmol/L), and gadolium (100 μmol/L)had no effect on the IGLEs activation. But for benzamil (100 μmol/L), an epithelial sodium channel blocker, activation of IGLEs by stretch stimulation was significantly blocked. The potent ATP analogue, α,β-methylene ATP (100 μmol/L) could not activate FM1-43staining without stretch. These results indicate that IGLEs are sensitive to mechanical stimulation. This could lead to the deduction that IGLEs act as the mechanoreceptors of vagal afferent nerve. IGLEs could transmit mechanical stimuli directly through ion channels,independent of neurotransmitter release and action potential propagation. The stretch-sensitive channels on IGLEs probably belong to the epithelial sodium channel family rather than voltage-gated sodium ion channels. Furthermore, styryl dye FM1-43 is a useful activity-dependent marker to demonstrate the structure and function of IGLEs in guinea pig esophagus.

  19. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor. (United States)

    Iwasaki, Yusaku; Dezaki, Katsuya; Kumari, Parmila; Kakei, Masafumi; Yada, Toshihiko


    Vagal afferent nerves sense meal-related gastrointestinal and pancreatic hormones and convey their information to the brain, thereby regulating brain functions including feeding. We have recently demonstrated that postprandial insulin directly acts on the vagal afferent neurons. Plasma concentrations of orexigenic ghrelin and anorexigenic insulin show reciprocal dynamics before and after meals. The present study examined interactive effects of ghrelin and insulin on vagal afferent nerves. Cytosolic Ca(2+) concentration ([Ca(2+)]i) in isolated nodose ganglion (NG) neurons was measured to monitor their activity. Insulin at 10(-7)M increased [Ca(2+)]i in NG neurons, and the insulin-induced [Ca(2+)]i increase was inhibited by treatment with ghrelin at 10(-8)M. This inhibitory effect of ghrelin was attenuated by [D-Lys(3)]-GHRP-6, an antagonist of growth hormone-secretagogue receptor (GHSR). Des-acyl ghrelin had little effect on insulin-induced [Ca(2+)]i increases in NG neurons. Ghrelin did not affect [Ca(2+)]i increases in response to cholecystokinin (CCK), a hormone that inhibits feeding via vagal afferent neurons, indicating that ghrelin selectively counteracts the insulin action. These results demonstrate that ghrelin via GHSR suppresses insulin-induced activation of NG neurons. The action of ghrelin to counteract insulin effects on NG might serve to efficiently inform the brain of the systemic change between fasting-associated ghrelin-dominant and fed-associated insulin-dominant states for the homeostatic central regulation of feeding and metabolism.

  20. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS. (United States)

    Andresen, Michael C; Hofmann, Mackenzie E; Fawley, Jessica A


    Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

  1. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline. (United States)

    Ro, J Y; Capra, N F


    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  2. Is human muscle spindle afference dependent on perceived size of error in visual tracking? (United States)

    Kakuda, N; Wessberg, J; Vallbo, A B


    Impulses of 16 muscle spindle afferents from finger extensor muscles were recorded from the radial nerve along with electromyographic (EMG) activity and kinematics of joint movement. Twelve units were classified as Ia and 4 as II spindle afferents. Subjects were requested to perform precision movements at a single metacarpophalangeal joint in an indirect visual tracking task. Similar movements were executed under two different conditions, i.e. with high and low error gain. The purpose was to explore whether different precision demands were associated with different spindle firing rates. With high error gain, a small but significantly higher impulse rate was found in pooled data from Ia afferents during lengthening movements but not during shortening movements, nor with II afferents. EMG was also significantly higher with high error gain in recordings with Ia afferents. When the effect of EMG was factored out, using partial correlation analysis, the significant difference in Ia firing rate vanished. The findings suggest that fusimotor drive as well as skeletomotor activity were both marginally higher when the precision demand was higher, whereas no indication of independent fusimotor adjustments was found. These results are discussed with respect to data from behaving animals and the role of fusimotor independence in various limb muscles proposed.

  3. Rescue of neuronal function by cross-regeneration of cutaneous afferents into muscle in cats. (United States)

    Nishimura, H; Johnson, R D; Munson, J B


    1. This study investigates the relation between the peripheral innervation of low-threshold cutaneous afferents and the postsynaptic potentials elicited by electrical stimulation of those afferents. 2. In cats deeply anesthetized with pentobarbital sodium, cord dorsum potentials (CDPs) and postsynaptic potentials (PSPs) in spinal motoneurons were elicited by stimulation of the caudal cutaneous sural nerve (CCS), the lateral cutaneous sural nerve (LCS), and the medial gastrocnemius (MG) muscle nerve. We tested 1) unoperated cats, and cats in which CCS has been 2) chronically axotomized and ligated, 3) cut and self-reunited, 4) cut and cross-united with LCS, or 5) cut and cross-united with the MG. Terminal experiments were performed 3-36 mo after initial surgery. 3. In cats in which the CCS had been self-reunited or cross-united distally with LCS, tactile stimulation of the hairy skin normally innervated by the distal nerve activated afferents in the CCS central to the coaptation, indicating that former CCS afferents had regenerated into native or foreign skin, respectively. 4. In cats in which the CCS had been cross-united distally with the MG, both stretch and contraction of the MG muscle activated the former CCS afferents. 5. In unoperated cats, CDPs elicited by stimulation of CCS and of LCS exhibited a low-threshold N1 wave and a higher-threshold N2 wave. These waves were greatly delayed and appeared to merge after chronic axotomy of CCS. Regeneration of CCS into itself, into LCS, or into MG restored the normal latencies and configurations of these potentials. 6. In unoperated cats, stimulation of CCS, of LCS, and of MG each produced PSPs of characteristic configurations in the various subpopulations of motoneurons of the triceps surae. CDPs and PSPs elicited by the CCS cross-regenerated into LCS or MG were typical of those generated by the normal CCS, i.e., there was no evidence of respecification of central synaptic connections to bring accord between center

  4. Imaging of the facial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Veillon, F. [Service de Radiologie I, Hopital de Hautepierre, 67098 Strasbourg Cedex (France)], E-mail:; Ramos-Taboada, L.; Abu-Eid, M. [Service de Radiologie I, Hopital de Hautepierre, 67098 Strasbourg Cedex (France); Charpiot, A. [Service d' ORL, Hopital de Hautepierre, 67098 Strasbourg Cedex (France); Riehm, S. [Service de Radiologie I, Hopital de Hautepierre, 67098 Strasbourg Cedex (France)


    The facial nerve is responsible for the motor innervation of the face. It has a visceral motor function (lacrimal, submandibular, sublingual glands and secretion of the nose); it conveys a great part of the taste fibers, participates to the general sensory of the auricle (skin of the concha) and the wall of the external auditory meatus. The facial mimic, production of tears, nasal flow and salivation all depend on the facial nerve. In order to image the facial nerve it is mandatory to be knowledgeable about its normal anatomy including the course of its efferent and afferent fibers and about relevant technical considerations regarding CT and MR to be able to achieve high-resolution images of the nerve.

  5. 不同传入神经损伤对大鼠神经病理性痛形成的影响及其与脊髓和背根神经节BDNF的关系%Effects of different afferent nerve injury on development of neuropathic pain and its relationship with brain-derived neurotrophic factor in spinal cord and dorsal root ganglion in rats

    Institute of Scientific and Technical Information of China (English)

    杨涛; 叶西就; 王志; 彭书凌


    Objective To investigate the effects of different afferent nerve injury on development of neuropathic pain and its relationship with brain-derived neurotrophic factor (BDNF) in spinal cord and dorsal root ganglion (DRG) in rats. Methods Twenty-four male SD rats aged 2 months weighing 200-250 g were randomly divided into 3 groups:group Ⅰ sham operation (group S); group Ⅱ sural nerve injury (group SUR) and group Ⅲ gastrocnemius-soleus nerve injury (group GS). Sural nerve and gastrocnemius-soleus nerve were transected in group SUR and GS respectively. Paw withdrawal threshold to von Frey filament stimulation was measured the day before and at day 3 and 7 after operation. The animals were killed at postoperative day 7 after the measurement of paw withdrawal threshold. The ipsllateral L5 DRG and L5 segment of the spinal cord were removed. BDNF expression in the spinal dorsal horn was determined. The percentage of BDNF positive neurons and ATF-3 positive neurons in the total DRG neurons and the percentage of BDNF positive neurons in the damaged neurons (ATF-3 positive) were calculated. Results Mechanical hyperalgesia developed after transection of gastrocnemius-soleus muscle in group GS. Mechanical pain threshold was sinificantly lower, while BDNF expression in the spinal dorsal horn and the percentage of BDNF positive neurons in total DRG neurons were significantly higher in group GS than in group S and SUR (P < 0.01). There was no significant difference in all variables between group SUR and S (P>0.05). There was no significant difference in the percentage of ATF-3 positive neurons in the total DRG neurons between group GS and SUR (P > 0.05), but the percentage of BDNF positive neurons in the damaged neurons (ATF-3 positive) was significantly higher in group GS than in group SUR (P < 0.05). Conclusion Transection of the afferent nerve innervating muscle can produce neuropathic pain through up-regulation of BDNF expression in spinal dorsal horn and DRG in

  6. Meningeal afferent signaling and the pathophysiology of migraine. (United States)

    Burgos-Vega, Carolina; Moy, Jamie; Dussor, Gregory


    Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.

  7. Relief of fecal incontinence by sacral nerve stimulation linked to focal brain activation

    DEFF Research Database (Denmark)

    Lundby, Lilli; Møller, Arne; Buntzen, Steen;


    This study aimed to test the hypothesis that sacral nerve stimulation affects afferent vagal projections to the central nervous system associated with frontal cortex activation in patients with fecal incontinence....

  8. Effects of PAD on conduction of action potentials within segmental and ascending branches of single muscle afferents in the cat spinal cord. (United States)

    Lomelí, J; Castillo, L; Linares, P; Rudomin, P


    In anesthetized and paralyzed cats under artificial respiration, we examined the extent to which primary afferent depolarization (PAD) might affect invasion of action potentials in intraspinal axonal and/or terminal branches of single muscle afferents. To this end, one stimulating micropipette was placed at the L6 spinal level within the intermediate or motor nucleus, and another one at the L3 level, in or close to Clarke's column. Antidromically conducted responses produced in single muscle afferents by stimulation at these two spinal levels were recorded from fine lateral gastrocnemius nerve filaments. In all fibers examined, stimulation of one branch, with strengths producing action potentials, increased the intraspinal threshold of the other branch when applied at short conditioning testing stimulus intervals (<1.5-2.0 ms), because of the refractoriness produced by the action potentials invading the tested branch. Similar increases in the intraspinal threshold were found in branches showing tonic PAD and also during the PAD evoked by stimulation of group I afferent fibers in muscle nerves. It is concluded that during tonic or evoked PAD, axonal branches in the dorsal columns and myelinated terminals of muscle afferents ending deep in the L6 and L3 segmental levels continue to be invaded by action potentials. These findings strengthen the view that presynaptic inhibition of muscle afferents produced by activation of GABAergic mechanisms is more likely to result from changes in the synaptic effectiveness of the afferent terminals than from conduction failure because of PAD.

  9. Vagus nerve stimulation for epilepsy: A review of central mechanisms


    Krahl, Scott E.; Clark, Kevin B.


    In a previous paper, the anatomy and physiology of the vagus nerve was discussed in an attempt to explain which vagus nerve fibers and branches are affected by clinically relevant electrical stimulation. This companion paper presents some of vagus nerve stimulation's putative central nervous system mechanisms of action by summarizing known anatomical projections of vagal afferents and their effects on brain biogenic amine pathways and seizure expression.

  10. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  11. Diverse mechanisms for assembly of branchiomeric nerves. (United States)

    Cox, Jane A; Lamora, Angela; Johnson, Stephen L; Voigt, Mark M


    The formation of branchiomeric nerves (cranial nerves V, VII, IX and X) from their sensory, motor and glial components is poorly understood. The current model for cranial nerve formation is based on the Vth nerve, in which sensory afferents are formed first and must enter the hindbrain in order for the motor efferents to exit. Using transgenic zebrafish lines to discriminate between motor neurons, sensory neurons and peripheral glia, we show that this model does not apply to the remaining three branchiomeric nerves. For these nerves, the motor efferents form prior to the sensory afferents, and their pathfinding show no dependence on sensory axons, as ablation of cranial sensory neurons by ngn1 knockdown had no effect. In contrast, the sensory limbs of the IXth and Xth nerves (but not the Vth or VIIth) were misrouted in gli1 mutants, which lack hindbrain bmn, suggesting that the motor efferents are crucial for appropriate sensory axon projection in some branchiomeric nerves. For all four nerves, peripheral glia were the intermediate component added and had a critical role in nerve integrity but not in axon guidance, as foxd3 null mutants lacking peripheral glia exhibited defasciculation of gVII, gIX, and gX axons. The bmn efferents were unaffected in these mutants. These data demonstrate that multiple mechanisms underlie formation of the four branchiomeric nerves. For the Vth, sensory axons initiate nerve formation, for the VIIth the sensory and motor limbs are independent, and for the IXth/Xth the motor axons initiate formation. In all cases the glia are patterned by the initiating set of axons and are needed to maintain axon fasciculation. These results reveal that coordinated interactions between the three neural cell types in branchiomeric nerves differ according to their axial position.

  12. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents. (United States)

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M


    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  13. Origin and chemical coding of primary afferent neurones supplying the prostate of the dog. (United States)

    Arciszewski, M B; Zacharko, A


    Retrograde tracing technique combined with the double-fluorescent immunohistochemistry were used to investigate the distribution and chemical coding of primary afferent neurones supplying the canine prostate. After the injection of Fast Blue (FB) into the prostatic tissue retrogradely-labelled (FB(+)) primary afferent neurones were localized in bilateral L(1)-Ca(1) dorsal root ganglia (DRG). Statistical analysis using anova test showed that there are two major sources of afferent prostate innervation. The vast majority of prostate-supplying primary afferent neurones were located in bilateral L(2)-L(4) DRG (56.9 +/- 0.6%). The second source of the afferent innervation of canine prostate were bilateral S(1)-Ca(1) DRG (40.6 +/- 1.0%). No statistically significant differences were found between average number of FB(+) neurones localized in the left and right DRG (49.5 +/- 1.7 and 50.5 +/- 1.7%, respectively). Immunohistochemistry revealed that FB(+) primary afferent neurones contain several neuropeptides in various combinations. In the prostate-supplying neurones of lumbar and sacro-caudal DRG the immunoreactivity to substance P (SP) and calcitonin gene-related peptide (CGRP) was found most frequently (50 +/- 3.7 and 37.3 +/- 1.9%, respectively). Both in the lumbar and sacro-caudal DRG, considerable population of FB(+) neurones immunoreactive neither to SP nor CGRP were also found (23 +/- 2.6 and 32.8 +/- 2.3%, respectively). In the lumbar DRG 10.7 +/- 1.1% of SP-immunoreactive FB(+) neurones also contained galanin (GAL). In 9.2 +/- 2.2% of the prostate-supplying primary afferent neurones located in the sacro-caudal DRG the co-localization of SP and GAL was also reported. Results of the retrograde tracing experiment demonstrated for the first time sources of afferent innervation of the canine prostate. Double immunohistochemistry revealed that many of the prostate-supplying primary afferent neurones express some of sensory neuropeptides which presumably may be involved

  14. TRPA1 Mediates Amplified Sympathetic Responsiveness to Activation of Metabolically Sensitive Muscle Afferents in Rats with Femoral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Jihong eXing


    Full Text Available Autonomic responses to stimulation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1 has been reported to contribute to sympathetic nerve activity (SNA and arterial blood pressure (BP responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves’ TRPA1plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 hrs of femoral artery occlusion 1 upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG tissues; 2 selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV; and 3 enhances renal SNA and BP responses to AITC (a TRPA1 agonist injected into the arterial blood supply of the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves’TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

  15. Lack of central sprouting of primary afferent fibers after ricin deafferentation. (United States)

    Pubols, L M; Bowen, D C


    A new deafferentation technique, the application of ricin to peripheral nerves, was used to test for collateral sprouting of undamaged primary afferent fibers within the adult mammalian spinal cord dorsal horn. The right sciatic nerves in rats were injected with ricin 14 to 57 days prior to bilateral labelling of dorsal rootlets with horseradish peroxidase. To equate the number of surviving dorsal root fibers on the two sides, the left sciatic nerves were injected 5 days prior to labelling. In each animal, horseradish peroxidase was applied to a bilateral pair of lumbar or low thoracic dorsal rootlets 18 hours prior to sacrifice to test for sprouting by labelling primary afferent fibers and terminals in the right (experimental) and left (control) dorsal horns. Although there is overlap of degenerated and intact primary afferent fields in this preparation, a postulated precondition for sprouting (Murray and Goldberger: J. Neurosci. 6:3205-3217, '86), we found no evidence for sprouting of undamaged, myelinated afferent fibers in the experimental dorsal horns. The pattern of labelling was symmetrical in all animals, and the density of labelling was not consistently greater on the experimental side. These results support the conclusions of Rodin et al. (J. Comp. Neurol. 215:187-198, '83) and Rodin and Kruger (Somatosens. Res. 2:171-192, '84), who also found no sprouting in the rat's dorsal horn after surgical deafferentation, and do not support the assertion that the difference between the results of those studies and earlier studies in cats was due to a lack of overlap of degenerated and intact dorsal roots in the rat.

  16. Effects of electrical and natural stimulation of skin afferents on the gamma-spindle system of the triceps surae muscle. (United States)

    Johansson, H; Sjölander, P; Sojka, P; Wadell, I


    The aim of the present study was to investigate the extent to which skin receptors might influence the responses of primary muscle spindle afferents via reflex actions on the fusimotor system. The experiments were performed on 43 cats anaesthetized with alpha-chloralose. The alterations in fusimotor activity were assessed from changes in the responses of the muscle spindle afferents to sinusoidal stretching of their parent muscles (triceps surae and plantaris). The mean rate of firing and the modulation of the afferent response were determined. Control measurements were made in absence of any cutaneous stimulation. Tests were made (a) during physiological stimulation of skin afferents of the ipsilateral pad or of the contralateral hindlimb, or (b) during repetitive electrical stimulation of the sural nerve in the ipsilateral hindlimb, or of sural or superficial peroneal nerve in the contralateral hindlimb. Of the total number of 113 units tested with repetitive electrical stimulation of the ipsilateral sural nerve (at 20 Hz), 24.8% exhibited predominantly dynamic fusimotor reflexes, 5.3% mixed or predominantly static fusimotor reflexes. One unit studied in a preparation with intact spinal cord exhibited static reflexes at low stimulation intensities and dynamic ones at higher stimulation strengths. The remaining units (69%) were uninfluenced. When the receptor-bearing muscle was held at constant length and a train of stimuli (at 20 Hz) was applied to the ipsilateral sural nerve, the action potentials in the primary muscle spindle afferent could be stimulus-locked to the 3rd or 4th pulse in the train (and to the pulses following thereafter), with a latency of about 24 ms from the effective pulse. This 1:1 pattern of driving seemed to be mediated via static and/or dynamic fusimotor neurons. Natural stimulation influenced comparatively few units (3 of 65 units tested from the ipsilateral pad and 10 of 98 tested from the contralateral hindlimb), but when the effects

  17. Nerve biopsy (United States)

    Biopsy - nerve ... A nerve biopsy is most often done on a nerve in the ankle, forearm, or along a rib. The health care ... feel a prick and a mild sting. The biopsy site may be sore for a few days ...

  18. Adenoviral-mediated glial cell line-derived neurotrophic factor gene transfer has a protective effect on sciatic nerve following constriction-induced spinal cord injury. (United States)

    Chou, An-Kuo; Yang, Ming-Chang; Tsai, Hung-Pei; Chai, Chee-Yin; Tai, Ming-Hong; Kwan, Aij-Li; Hong, Yi-Ren


    Neuropathic pain due to peripheral nerve injury may be associated with abnormal central nerve activity. Glial cell-line-derived neurotrophic factor (GDNF) can help attenuate neuropathic pain in different animal models of nerve injury. However, whether GDNF can ameliorate neuropathic pain in the spinal cord dorsal horn (SCDH) in constriction-induced peripheral nerve injury remains unknown. We investigated the therapeutic effects of adenoviral-mediated GDNF on neuropathic pain behaviors, microglial activation, pro-inflammatory cytokine expression and programmed cell death in a chronic constriction injury (CCI) nerve injury animal model. In this study, neuropathic pain was produced by CCI on the ipsilateral SCDH. Mechanical allodynia was examined with von Frey filaments and thermal sensitivity was tested using a plantar test apparatus post-operatively. Target proteins GDNF-1, GDNFRa-1, MMP2, MMP9, p38, phospho-p38, ED1, IL6, IL1β, AIF, caspase-9, cleaved caspase-9, caspase-3, cleaved caspase-3, PARP, cleaved PARP, SPECTRIN, cleaved SPECTRIN, Beclin-1, PKCσ, PKCγ, iNOS, eNOS and nNOS were detected. Microglial activity was measured by observing changes in immunoreactivity with OX-42. NeuN and TUNEL staining were used to reveal whether apoptosis was attenuated by GDNF. Results showed that administrating GDNF began to attenuate both allodynia and thermal hyperalgesia at day 7. CCI-rats were found to have lower GDNF and GDNFRa-1 expression compared to controls, and GDNF re-activated their expression. Also, GDNF significantly down-regulated CCI-induced protein expression except for MMP2, eNOS and nNOS, indicating that the protective action of GDNF might be associated with anti-inflammation and prohibition of microglia activation. Immunocytochemistry staining showed that GDNF reduced CCI-induced neuronal apoptosis. In sum, GDNF enhanced the neurotrophic effect by inhibiting microglia activation and cytokine production via p38 and PKC signaling. GDNF could be a good

  19. Inhibitory mechanisms following electrical stimulation of tendon and cutaneous afferents in the lower limb. (United States)

    Khan, Serajul I; Burne, John A


    Electrical stimulation of the Achilles tendon (TES) produced strong reflex depression (duration>250 ms) of a small background contraction in both heads of gastrocnemius (GA) via large diameter electrodes localized to the tendon. The inhibitory responses were produced without electrical (M wave) or mechanical (muscle twitch) signs of direct muscle stimulation. In this study, the contribution of presynaptic and postsynaptic mechanisms to the depression was investigated by studying conditioning effects of tendon afferent stimulation on the mechanical tendon reflex (TR) and magnetic motor evoked potential (MEP). TES completely inhibited the TR over an ISI of 300 ms that commenced before and continued during and after the period of voluntary EMG depression. Tendon afferent conditioning stimuli also partially inhibited the MEP, but over a short time course confined to the period of voluntary EMG depression. The strength and extended time course of tendon afferent conditioning of the TR and its failure to produce a similar depression of the MEP are consistent with a mechanism involving presynaptic inhibition of Ia terminals. Cutaneous (sural nerve) afferent conditioning partially inhibited the TR and MEP over a short time course (ISI voluntary EMG. This was consistent with the postsynaptic origin of cutaneous inhibition of the motoneurons.

  20. Transgenic inhibition of astroglial NF-κB protects from optic nerve damage and retinal ganglion cell loss in experimental optic neuritis

    Directory of Open Access Journals (Sweden)

    Brambilla Roberta


    Full Text Available Abstract Background Optic neuritis is an acute, demyelinating neuropathy of the optic nerve often representing the first appreciable symptom of multiple sclerosis. Wallerian degeneration of irreversibly damaged optic nerve axons leads to death of retinal ganglion cells, which is the cause of permanent visual impairment. Although the specific mechanisms responsible for triggering these events are unknown, it has been suggested that a key pathological factor is the activation of immune-inflammatory processes secondary to leukocyte infiltration. However, to date, there is no conclusive evidence to support such a causal role for infiltrating peripheral immune cells in the etiopathology of optic neuritis. Methods To dissect the contribution of the peripheral immune-inflammatory response versus the CNS-specific inflammatory response in the development of optic neuritis, we analyzed optic nerve and retinal ganglion cells pathology in wild-type and GFAP-IκBα-dn transgenic mice, where NF-κB is selectively inactivated in astrocytes, following induction of EAE. Results We found that, in wild-type mice, axonal demyelination in the optic nerve occurred as early as 8 days post induction of EAE, prior to the earliest signs of leukocyte infiltration (20 days post induction. On the contrary, GFAP-IκBα-dn mice were significantly protected and showed a nearly complete prevention of axonal demyelination, as well as a drastic attenuation in retinal ganglion cell death. This correlated with a decrease in the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, as well as a prevention of NAD(PH oxidase subunit upregulation. Conclusions Our results provide evidence that astrocytes, not infiltrating immune cells, play a key role in the development of optic neuritis and that astrocyte-mediated neurotoxicity is dependent on activation of a transcriptional program regulated by NF-κB. Hence, interventions targeting the NF-κB transcription

  1. Is the vagus nerve stimulation a way to decrease body weight in humans? (United States)

    Bugajski, Andrzej; Gil, Krzysztof


    Obesity and its complications constitute an important health problem in growing number of people. Behavioral and pharmacological treatment is not much effective and surgical treatment carries too many threats. Promising method to be used is pharmacological or electric manipulation of vagus nerves. Regulation of food intake and energy utilization is a complex process regulated by centers in hypothalamus and brainstem which are receiving information from the peripheral via afferent neural pathways and sending peripherally adequate instructions by efferent neural pathways. In these signals conduction an important role plays vagus nerve. Additionally central nervous system stays under influence of endocrine, paracrine and neuroendocrine signals taking part in these regulations, functioning directly onto the centre or on the afferent neural endings. 80-90% fibers of vagus nerve are afferent fibers, so their action is mainly afferent, but possible contribution of the efferent fibers cannot be excluded. Efferent stimulation induces motility and secretion in the intestinal tract. Afferent unmyelinated C-type fibres of the vagus nerve are more sensitive and easily electrically stimulated. Information from vagus nerve is transmitted to nucleus tractus solitarius, which has projections to nucleus arcuate of the medio-basal hypothalamus, involved in the control of feeding behavior. It is suggested, that interaction onto the vagus nerve (stimulation or blocking) can be an alternative for other ways of obesity treatment. Through the manipulation of the vagus nerve activity the goal is achieved by influence on central nervous system regulating the energy homeostasis.

  2. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang


    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  3. Comparison of the inhibitory response to tendon and cutaneous afferent stimulation in the human lower limb. (United States)

    Rogasch, Nigel C; Burne, John A; Türker, Kemal S


    A powerful early inhibition is seen in triceps surae after transcutaneous electrical stimulation of the Achilles tendon [tendon electrical stimulation (TES)]. The aim of the present study was to confirm results from surface electromyogram (SEMG) recordings that the inhibition is not wholly or partly due to stimulation of cutaneous afferents that may lie within range of the tendon electrodes. Because of methodological limitations, SEMG does not reliably identify the time course of inhibitory and excitatory reflex components. This issue was revisited here with an analysis of changes in single motor unit (SMU) firing rate [peristimulus frequencygram (PSF)] and probability [peristimulus time histogram (PSTH)] to reexamine the time course of inhibitory SMU events that follow purely cutaneous (superficial sural) nerve stimulation. Results were then compared with similar data from TES. When compared with the reflex response to TES, sural nerve stimulation resulted in a longer onset latency of the primary inhibition and a weaker effect on SMU firing probability and rate. PSF also revealed that decreased SMU firing rates persisted during the excitation phase in SEMG, suggesting that the initial inhibition was more prolonged than previously reported. In a further study, the transcutaneous SEMG Achilles tendon response was compared with that from direct intratendon stimulation with insulated needle electrodes. This method should attenuate the SEMG response if it is wholly or partly dependent on cutaneous afferents. However, subcutaneous stimulation of the tendon produced similar components in the SEMG, confirming that cutaneous afferents made little or no contribution to the initial inhibition following TES.

  4. The oxime pro-2-PAM provides minimal protection against the CNS effects of the nerve agents sarin, cyclosarin, and VX in guinea pigs. (United States)

    Shih, Tsung-Ming; Guarisco, John A; Myers, Todd M; Kan, Robert K; McDonough, John H


    This study examined whether pro-2-PAM, a pro-drug dihydropyridine derivative of the oxime 2-pralidoxime (2-PAM) that can penetrate the brain, could prevent or reverse the central toxic effects of three nerve agents; sarin, cyclosarin, and VX. The first experiment tested whether pro-2-PAM could reactivate guinea pig cholinesterase (ChE) in vivo in central and peripheral tissues inhibited by these nerve agents. Pro-2-PAM produced a dose-dependent reactivation of sarin- or VX-inhibited ChE in both peripheral and brain tissues, but with substantially greater reactivation in peripheral tissues compared to brain. Pro-2-PAM produced 9-25% reactivation of cyclosarin-inhibited ChE in blood, heart, and spinal cord, but no reactivation in brain or muscle tissues. In a second experiment, the ability of pro-2-PAM to block or terminate nerve agent-induced electroencephalographic seizure activity was evaluated. Pro-2-PAM was able to block sarin- or VX-induced seizures (16-33%) over a dose range of 24-32 mg/kg, but was ineffective against cyclosarin-induced seizures. Animals that were protected from seizures showed significantly less weight loss and greater behavioral function 24 h after exposure than those animals that were not protected. Additionally, brains were free from neuropathology when pro-2-PAM prevented seizures. In summary, pro-2-PAM provided modest reactivation of sarin- and VX-inhibited ChE in the brain and periphery, which was reflected by a limited ability to block or terminate seizures elicited by these agents. Pro-2-PAM was able to reactivate blood, heart, and spinal cord ChE inhibited by cyclosarin, but was not effective against cyclosarin-induced seizures.

  5. Short-latency tachycardia evoked by stimulation of muscle and cutaneous afferents. (United States)

    Gelsema, A J; Bouman, L N; Karemaker, J M


    The short-latency effect on heart rate of peripheral nerve stimulation was studied in decerebrate cats. Selective activation (17-40 microA, 100 Hz, 1 s long) of low-threshold fibers in the nerves to the triceps surae muscle yielded isometric contractions of maximal force that were accompanied by a cardiac cycle length shortening within 0.4 s from the start of stimulation. This effect was abolished by pharmacologically induced neuromuscular blockade. The cardiac cycle length shortening during paralysis reappeared after a 6- to 10-fold increase of the stimulation strength. Cutaneous (sural) nerve stimulation (15-25 microA, 100 Hz, 1 s long) elicited reflex contractions in the stimulated limb, which were also accompanied by a cardiac acceleration with similar latency. Paralysis prevented the reflex contractions and reduced the cardiac response in some cats and abolished it in others. The response reappeared in either case after a 5- to 10-fold increase of the stimulus strength. It is concluded that muscle nerve and cutaneous nerve activity both cause a similar cardiac acceleration with a latency of less than 0.4 s. The response to muscle nerve stimulation is elicited by activity in group III afferents. It is excluded that the cardiac response to nerve stimulation is secondary to a change in the respiratory pattern.

  6. Protection of the recurrent laryngeal nerve and the superior laryngeal nerve in the thyroidectomy%甲状腺手术中对喉返神经和喉上神经保护的临床研究

    Institute of Scientific and Technical Information of China (English)

    张海东; 龚单春; 刘亚群; 张庆翔; 何双八; 于振坤


    目的:探讨甲状腺手术中喉返神经(RLN)、喉上神经(SLN)的保护方法,以避免或减少术后永久性神经损伤的发生率。方法对东南大学医学院附属南京同仁医院耳鼻咽喉头颈外科,2013年6月—2014年11月行甲状腺精细化操作手术治疗141例患者的临床资料进行回顾性分析。其中男37例、女104例,年龄9~78岁。行甲状腺全切54例,甲状腺腺叶切除58例,甲状腺腺叶切除+对侧部分切除29例;其中二次手术者10例,行Ⅵ区清扫者18例。术中 RLN 显露者121例,未显露者20例。结果本组141例均顺利完成手术。术后并发 RLN 暂时性损伤5侧,占2.56%(5/195),给予激素、神经营养药物治疗,并配合发音训练,3个月内神经功能均恢复正常;其中 RLN 显露组占2.5%(3/121),未显露组占5%(1/20),组间比较差异无统计学意义(χ2=0.396, P >0.05)。无一例并发 RLN 永久性损伤和 SLN 损伤。结论熟悉 RLN、SLN 与甲状腺的正常解剖与变异情况,应用被膜解剖技术精细操作,术后可以避免神经的永久性损伤。一旦发生神经损伤,及时给予对症处理,提高患者的生活质量。%Objective To investigate how to correctly protect the recurrent laryngeal nerve (RLN) and the superior laryngeal nerve( SLN) in the thyroidectomy, to avoid and reduce permanent neurologic injury postoperation. Methods One hundred and forty-one cases who underwent thyroidectomy (37 male, 104 female, aged 9 - 78) were retrospectively analyzed from June 2013 to Nov. 2014 in Nanjing Tongren Hospital, including total thyroidwctomy (54 patiens), lobectomy (58 patiens), thyroid lobectomy with contralateral partial thyroidectomy (29 patiens), among them, 10 cases of secondary surgery, and Ⅵ area lymph nodes cleaning 18 patiens. Intraoperative RLN revealed 121 patiens, 20 patients did not show. Results All 141 patients were successfully completed surgery. The RLN transitory injury was occurred in 5 sides (2. 56% , 5

  7. PAD patterns of physiologically identified afferent fibres from the medial gastrocnemius muscle. (United States)

    Jiménez, I; Rudomin, P; Solodkin, M


    Intracellular recordings were made in the barbiturate-anesthetized cat from single afferent fibres left in continuity with the medial gastrocnemius muscle to document the transmembrane potential changes produced in functionally identified fibres by stimulation of sensory nerves and of the contralateral red nucleus (RN). Fifty five fibres from muscle spindles had conduction velocities above 70 m/s and were considered as from group Ia. Stimulation of group I afferent fibres of the posterior biceps and semitendinosus nerve (PBSt) produced primary afferent depolarization (PAD) in 30 (54%) Ia fibres. Stimulation of the sural (SU) nerve produced no transmembrane potential changes in 39 (71%) group Ia fibres and dorsal root reflex-like activity (DRRs) in 16 (29%) fibres. In 17 out of 28 group Ia fibres (60.7%) SU conditioning inhibited the PAD generated by stimulation of the PBSt nerve. Facilitation of the PBSt-induced PAD by SU conditioning was not seen. Repetitive stimulation of the RN had mixed effects: it produced PAD in 1 out of 8 fibres and inhibited the PAD induced by PBSt stimulation in 2 other fibres. Nine fibres connected to muscle spindles had conduction velocities below 70 m/s and were considered to be group II afferents. No PAD was produced in these fibres by SU stimulation but DRRs were generated in 5 of them. In 23 out of 31 fibres identified as from tendon organs group I PBSt volleys produced PAD. However, stimulation of the SU nerve produced PAD only in 3 out of 34 fibres, no transmembrane potential changes in 30 fibres and DRRs in 1 fibre. The effects of SU conditioning on the PAD produced by PBSt stimulation were tested in 19 Ib fibres and were inhibitory in 12 of them. In 9 of these fibres SU alone produced no transmembrane potential changes. Repetitive stimulation of the RN produced PAD in 3 out of 9 Ib fibres. SU conditioning inhibited the RN-induced PAD. The present findings support the existence of an alternative inhibitory pathway from cutaneous

  8. Identification of multisegmental nociceptive afferents that modulate locomotor circuits in the neonatal mouse spinal cord. (United States)

    Mandadi, Sravan; Hong, Peter; Tran, Michelle A; Bráz, Joao M; Colarusso, Pina; Basbaum, Allan I; Whelan, Patrick J


    Compared to proprioceptive afferent collateral projections, less is known about the anatomical, neurochemical, and functional basis of nociceptive collateral projections modulating lumbar central pattern generators (CPG). Quick response times are critical to ensure rapid escape from aversive stimuli. Furthermore, sensitization of nociceptive afferent pathways can contribute to a pathological activation of motor circuits. We investigated the extent and role of collaterals of capsaicin-sensitive nociceptive sacrocaudal afferent (nSCA) nerves that directly ascend several spinal segments in Lissauer's tract and the dorsal column and regulate motor activity. Anterograde tracing demonstrated direct multisegmental projections of the sacral dorsal root 4 (S4) afferent collaterals in Lissauer's tract and in the dorsal column. Subsets of the traced S4 afferent collaterals expressed transient receptor potential vanilloid 1 (TRPV1), which transduces a nociceptive response to capsaicin. Electrophysiological data revealed that S4 dorsal root stimulation could evoke regular rhythmic bursting activity, and our data suggested that capsaicin-sensitive collaterals contribute to CPG activation across multiple segments. Capsaicin's effect on S4-evoked locomotor activity was potent until the lumbar 5 (L5) segments, and diminished in rostral segments. Using calcium imaging we found elevated calcium transients within Lissauer's tract and dorsal column at L5 segments when compared to the calcium transients only within the dorsal column at the lumbar 2 (L2) segments, which were desensitized by capsaicin. We conclude that lumbar locomotor networks in the neonatal mouse spinal cord are targets for modulation by direct multisegmental nSCA, subsets of which express TRPV1 in Lissauer's tract and the dorsal column. J. Comp. Neurol. 521:2870-2887, 2013. © 2013 Wiley Periodicals, Inc.

  9. Distinct target cell-dependent forms of short-term plasticity of the central visceral afferent synapses of the rat

    Directory of Open Access Journals (Sweden)

    Watabe Ayako M


    Full Text Available Abstract Background The visceral afferents from various cervico-abdominal sensory receptors project to the dorsal vagal complex (DVC, which is composed of the nucleus of the solitary tract (NTS, the area postrema and the dorsal motor nucleus of the vagus nerve (DMX, via the vagus and glossopharyngeal nerves and then the solitary tract (TS in the brainstem. While the excitatory transmission at the TS-NTS synapses shows strong frequency-dependent suppression in response to repeated stimulation of the afferents, the frequency dependence and short-term plasticity at the TS-DMX synapses, which also transmit monosynaptic information from the visceral afferents to the DVC neurons, remain largely unknown. Results Recording of the EPSCs activated by paired or repeated TS stimulation in the brainstem slices of rats revealed that, unlike NTS neurons whose paired-pulse ratio (PPR is consistently below 0.6, the distribution of the PPR of DMX neurons shows bimodal peaks that are composed of type I (PPR, 0.6-1.5; 53% of 120 neurons recorded and type II (PPR, Conclusions These two general types of short-term plasticity might contribute to the differential activation of distinct vago-vagal reflex circuits, depending on the firing frequency and type of visceral afferents.

  10. Anatomy of the carotid sinus nerve and surgical implications in carotid sinus syndrome

    NARCIS (Netherlands)

    Toorop, Raechel J.; Scheltinga, Marc R.; Moll, Frans L.; Bleys, Ronald L.


    Background: The carotid sinus syndrome (CSS) is characterized by syncope and hypotension due to a hypersensitive carotid sinus located in the carotid bifurcation. Some patients ultimately require surgical sinus denervation, possibly by transection of its afferent nerve (carotid sinus nerve [CSN]). T

  11. Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat. (United States)

    Glatzle, Jörg; Wang, Yuhua; Adelson, David W; Kalogeris, Theodore J; Zittel, Tilman T; Tso, Patrick; Wei, Jen-Yu; Raybould, Helen E


    Nutrients in the intestine initiate changes in secretory and motor function of the gastrointestinal (GI) tract. The nature of the 'sensors' in the intestinal wall is not well characterized. Intestinal lipid stimulates the release of cholecystokinin (CCK) from mucosal entero-endocrine cells, and it is proposed that CCK activates CCK A receptors on vagal afferent nerve terminals. There is evidence that chylomicron components are involved in this lipid transduction pathway. The aim of the present study was to determine (1) the pathway mediating reflex inhibition of gastric motility and (2) activation of duodenal vagal afferents in response to chylomicrons. Mesenteric lymph was obtained from awake rats fitted with lymph fistulas during intestinal perfusion of lipid (Intralipid, 170 micromol h(-1), chylous lymph) or a dextrose and/or electrolyte solution (control lymph). Inhibition of gastric motility was measured manometrically in urethane-anaesthetized recipient rats in response to intra-arterial injection of lymph close to the upper GI tract. Chylous lymph was significantly more potent than control lymph in inhibiting gastric motility. Functional vagal deafferentation by perineural capsaicin or CCK A receptor antagonist (devazepide, 1 mg kg(-1), i.v.) significantly reduced chylous lymph-induced inhibition of gastric motility. The discharge of duodenal vagal afferent fibres was recorded from the dorsal abdominal vagus nerve in an in vitro preparation of the duodenum. Duodenal vagal afferent nerve fibre discharge was significantly increased by close-arterial injection of CCK (1-100 pmol) in 43 of 83 units tested. The discharge of 88% of CCK-responsive fibres was increased by close-arterial injection of chylous lymph; devazepide (100 microg, i.a.) abolished the afferent response to chylous lymph in 83% of these units. These data suggest that in the intestinal mucosa, chylomicrons or their products release endogenous CCK which activates CCK A receptors on vagal afferent

  12. Neuromedin B Restores Erectile Function by Protecting the Cavernous Body and the Nitrergic Nerves from Injury in a Diabetic Rat Model.

    Directory of Open Access Journals (Sweden)

    Hiroaki Nishimatsu

    Full Text Available Erectile dysfunction (ED is a major health problem worldwide and affects approximately 75% of diabetic patients, likely due to severely damaged cavernous body. While screening for cytokines produced by adipose tissue-derived stem cells, we detected neuromedin B (NMB. To explore a potential treatment option for ED, we examined whether NMB was capable of restoring erectile function. We also examined the potential mechanism by which NMB could restore erectile function. Male Wistar rats were injected with streptozotocin (STZ to induce diabetes. An adenovirus expressing NMB (AdNMB was injected into the penis 6 weeks after STZ administration. Four weeks after the injection of AdNMB, erectile function, penile histology, and protein expression were analyzed. As assessed by the measurement of intracavernous pressure, AdNMB injection significantly restored erectile function compared with the injection of an adenovirus expressing green fluorescent protein. This restoration was associated with conservation of the cavernous body structure and neural nitric oxide synthase (nNOS-expressing nerves, together with recovery of α-smooth muscle actin, vascular endothelial-cadherin, and nNOS expression. Furthermore, NMB significantly stimulated the survival of SH-SY5Y cells derived from human neuroblastoma tissue with characteristics similar to neurons. Collectively, these results suggested that NMB restored erectile function via protection of the cavernous body from injury and stimulation of the survival of the associated nerves. NMB may be useful to treat ED patients with a severely damaged cavernous body.

  13. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    Directory of Open Access Journals (Sweden)

    Wang Cong-Yi


    Full Text Available Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograde labeling, immunostaining, calcium imaging, and electrophysiological recordings, here we show that a subpopulation of airway vagal afferent nerves express TRPM8 receptors and that activation of TRPM8 receptors by cold excites these airway autonomic nerves. Thus activation of TRPM8 receptors may provoke autonomic nerve reflex to increase airway resistance. This putative autonomic response may be associated with cold-induced exacerbation of asthma and other pulmonary disorders, making TRPM8 receptors a possible target for prevention of cold-associated respiratory disorders.

  14. Pain processing by spinal microcircuits: afferent combinatorics. (United States)

    Prescott, Steven A; Ratté, Stéphanie


    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn.

  15. Role of capsaicin-sensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala

    Directory of Open Access Journals (Sweden)

    Nakao Ayano


    Full Text Available Abstract Background Neurons in the capsular part of the central nucleus of the amygdala (CeC, a region also called "nociceptive amygdala," receive nociceptive information from the dorsal horn via afferent pathways relayed from the lateral parabrachial nucleus (LPB. As the central amygdala is known to be involved in the acquisition and expression of emotion, this pathway is thought to play central roles in the generation of affective responses to nociceptive inputs. Excitatory synaptic transmission between afferents arising from the LPB and these CeC neurons is potentiated in arthritic, visceral, neuropathic, inflammatory and muscle pain models. In neuropathic pain models following spinal nerve ligation (SNL, in which we previously showed a robust LPB-CeC potentiation, the principal behavioral symptom is tactile allodynia triggered by non-C-fiber low-threshold mechanoreceptor afferents. Conversely, recent anatomical studies have revealed that most of the spinal neurons projecting to the LPB receive C-fiber afferent inputs. Here, we examined the hypothesis that these C-fiber-mediated inputs are necessary for the full establishment of robust synaptic potentiation of LPB-CeC transmission in the rats with neuropathic pain. Results Postnatal capsaicin treatment, which has been shown to denervate the C-fibers expressing transient receptor potential vanilloid type-1 (TRPV1 channels, completely abolished eye-wiping responses to capsaicin eye instillation in rats, but this treatment did not affect mechanical allodynia in the nerve-ligated animals. However, the postnatal capsaicin treatment prevented LPB-CeC synaptic potentiation after SNL, unlike in the vehicle-treated rats, primarily due to the decreased incidence of potentiated transmission by elimination of TRPV1-expressing C-fiber afferents. Conclusions C-fiber-mediated afferents in the nerve-ligated animals may be a required facilitator of the establishment of nerve injury-evoked synaptic

  16. Vagal afferents from the uterus and cervix provide direct connections to the brainstem. (United States)

    Collins, J J; Lin, C E; Berthoud, H R; Papka, R E


    Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in "vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.

  17. Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans. (United States)

    Helmich, R C G; Bäumer, T; Siebner, H R; Bloem, B R; Münchau, A


    A conditioning electrical stimulus to a digital nerve can inhibit the motor-evoked potentials (MEPs) in adjacent hand muscles elicited by transcranial magnetic stimulation (TMS) to the contralateral primary motor cortex (M1) when given 25-50 ms before the TMS pulse. This is referred to as short-latency afferent inhibition (SAI). We studied inter-hemispheric differences (Experiment 1) and within-limb somatotopy (Experiment 2) of SAI in healthy right-handers. In Experiment 1, conditioning electrical pulses were applied to the right or left index finger (D2) and MEPs were recorded from relaxed first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscles ipsilateral to the conditioning stimulus. We found that SAI was more pronounced in right hand muscles. In Experiment 2, electrical stimulation was applied to the right D2 and MEPs were recorded from ipsilateral FDI, extensor digitorum communis (EDC) and biceps brachii (BB) muscles. The amount of SAI did not differ between FDI, EDC and BB muscles. These data demonstrate inter-hemispheric differences in the processing of cutaneous input from the hand, with stronger SAI in the dominant left hemisphere. We also found that SAI occurred not only in hand muscles adjacent to electrical digital stimulation, but also in distant hand and forearm and also proximal arm muscles. This suggests that SAI induced by electrical D2 stimulation is not focal and somatotopically specific, but a more widespread inhibitory phenomenon.

  18. A DSP for sensing the bladder volume through afferent neural pathways. (United States)

    Mendez, Arnaldo; Belghith, Abrar; Sawan, Mohamad


    In this paper, we present a digital signal processor (DSP) capable of monitoring the urinary bladder volume through afferent neural pathways. The DSP carries out real-time detection and can discriminate extracellular action potentials, also known as on-the-fly spike sorting. Next, the DSP performs a decoding method to estimate either three qualitative levels of fullness or the bladder volume value, depending on the selected output mode. The proposed DSP was tested using both realistic synthetic signals with a known ground-truth, and real signals from bladder afferent nerves recorded during acute experiments with animal models. The spike sorting processing circuit yielded an average accuracy of 92% using signals with highly correlated spike waveforms and low signal-to-noise ratios. The volume estimation circuits, tested with real signals, reproduced accuracies achieved by offline simulations in Matlab, i.e., 94% and 97% for quantitative and qualitative estimations, respectively. To assess feasibility, the DSP was deployed in the Actel FPGA Igloo AGL1000V2, which showed a power consumption of 0.5 mW and a latency of 2.1 ms at a 333 kHz core frequency. These performance results demonstrate that an implantable bladder sensor that perform the detection, discrimination and decoding of afferent neural activity is feasible.

  19. Activation of gastric afferents increases noradrenaline release in the paraventricular nucleus and plasma oxytocin level. (United States)

    Ueta, Y; Kannan, H; Higuchi, T; Negoro, H; Yamaguchi, K; Yamashita, H


    Effects of electrical stimulation of the gastric vagal nerves on plasma levels of oxytocin (OXT) and arginine vasopressin (AVP) were examined in rats anesthetized with urethane. Electrical stimulation of the gastric vagal nerves increased the plasma levels of OXT, but not AVP. The concentrations of extracellular noradrenaline (NA) in the paraventricular nucleus (PVN) were measured by in vivo microdialysis in rats anesthetized with urethane. Electrical stimulation of the gastric vagal nerves evoked an increase followed by a slight decrease in the concentrations of NA. The responses of spontaneous firing magnocellular neurosecretory neurons in the PVN to both electrical stimulation of the gastric vagal nerves and intravenous (i.v.) administration of CCK-8 were examined. Most of the putative OXT-secreting cells recorded were excited by both electrical stimulation of gastric vagal nerves and i.v. administration of CCK-8. These results suggest that gastric vagal afferents activate the central noradrenergic system from the brainstem to the PVN and secretion of OXT.

  20. Transcutaneous Vagus Nerve Stimulation: A Promising Method for Treatment of Autism Spectrum Disorders


    Jin, Yu; Kong, Jian


    Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain region...

  1. Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending intraspinal collaterals of single group I muscle afferents in the cat spinal cord. (United States)

    Rudomin, P; Lomelí, J; Quevedo, J


    We compared in the anesthetized cat the effects of reversible spinalization by cold block on primary afferent depolarization (PAD) and primary afferent hyperpolarization (PAH) elicited in pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pairs ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. The results indicate that the segmental and ascending collaterals of individual afferents are subjected to a tonic PAD of descending origin affecting in a differential manner the excitatory and inhibitory actions of cutaneous and joint afferents on the pathways mediating the PAD of group I fibers. The PAD-mediating networks appear to function as distributed systems whose output will be determined by the balance of the segmental and supraspinal influences received at that moment. It is suggested that the descending differential modulation of PAD enables the intraspinal arborizations of the muscle afferents to function as dynamic systems, in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs, and funneled to specific targets according to the motor tasks to be performed.

  2. Adenovirus-mediated human β-nerve growth factor gene transfer has a protective effect on cochlear spiral ganglion after blast exposure

    Institute of Scientific and Technical Information of China (English)


    Objective: To study whether adenovirus-mediated human β-nerve growth factor (Ad-hNGFβ) gene has any protective effect on blast hearing impairment. Methods:Deafness was induced by blast exposure (172. 0 dB) in 30 healthy guinea pigs. On day 7 of blast exposure, Ad-hNGFβ was infused into the perilymphatic space of 20 animals as the study group (hNGFβ group), and artificial perilymph fluid (APF) was infused into the perilymphatic space of the other 10 animals as the control group. At weeks 1, 4 and 8 after blast exposure, the animals were sacrificed and the cochleae were removed for immunohis-tochemical and HE stainings. Results: Expression of Ad-hNGFβ protein was detected in each turn of the cochlea at the 1st week, with almost equal intensity in all turns. At the 4th week, the reactive intensity of the expression of Ad-hNGFβ protein decreased. At the 8th week, no expression was detectable. The results of HE staining showed that the amount of spiral ganglions in hNGFβ group was significantly greater than that of the control group at week 4 (F<0. 01). Conclusion: Ad-hNGFβ can be expressed at a high level and for a relatively long period in the blast impaired cochlea, suggesting that Ad-hNGFβ has a protective effect on cochlear spiral ganglion cells after blast exposure and the efficient gene transfer into cochlea had been achieved without toxicity.

  3. Progesterone and peripheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Fei Fan; Haichao Li; Yuwei Wang; Yanglin Zheng; Lianjun Jia; Zhihui Wang


    OBJECTIVE: To explore the effect of progesterone on peripheral nerve regeneration.DATA SOURCES: An online search of Medline and OVID databases was under taken to identify articles about progesterone and peripheral nerve regeneration published in English between January 1990 and June 2004 by using the keywords of "peripheral nerve, injury, progesterone, regeneration".STUDY SELECTION: The data were primarily screened, those correlated with progesterone and peripheral nerve regeneration were involved, and their original articles were further searched, the repetitive studies or reviews were excluded.DATA EXTRACTION: Totally 59 articles about progesterone and peripheral nerve regeneration were collected, and 26 of them were involved, the other 33 excluded ones were the repetitive studies or reviews.DATA SYNTHESIS: Recent researches found that certain amount of progesterone could be synthetized in peripheral nervous system, and the expression of progesterone receptor could be found in sensory neurons and Schwann cells. After combined with the receptor, endogenous and exogenous progesterone can accelerate the formation of peripheral nerve myelin sheath, also promote the axonal regeneration.CONCLUSION: Progesterone plays a role in protecting neurons, increasing the sensitivity of nerve tissue to nerve growth factor, and accelerating regeneration of nerve in peripheral nerve regeneration, which provides theoretical references for the treatment of demyelinated disease and nerve injury, as well as the prevention of neuroma, especially that the in vivo level of progesterone should be considered for the elderly people accompanied by neuropathy and patients with congenital luteal phase defect, which is of positive significance in guiding the treatment.

  4. Responses of intact and injured sural nerve fibers to cooling and menthol. (United States)

    Teliban, Alina; Bartsch, Fabian; Struck, Marek; Baron, Ralf; Jänig, Wilfrid


    Intact and injured cutaneous C-fibers in the rat sural nerve are cold sensitive, heat sensitive, and/or mechanosensitive. Cold-sensitive fibers are either low-threshold type 1 cold sensitive or high-threshold type 2 cold sensitive. The hypothesis was tested, in intact and injured afferent nerve fibers, that low-threshold cold-sensitive afferent nerve fibers are activated by the transient receptor potential melastatin 8 (TRPM8) agonist menthol, whereas high-threshold cold-sensitive C-fibers and cold-insensitive afferent nerve fibers are menthol insensitive. In anesthetized rats, activity was recorded from afferent nerve fibers in strands isolated from the sural nerve, which was either intact or crushed 6-12 days before the experiment distal to the recording site. In all, 77 functionally identified afferent C-fibers (30 intact fibers, 47 injured fibers) and 34 functionally characterized A-fibers (11 intact fibers, 23 injured fibers) were tested for their responses to menthol applied to their receptive fields either in the skin (10 or 20%) or in the nerve (4 or 8 mM). Menthol activated all intact (n = 12) and 90% of injured (n = 20/22) type 1 cold-sensitive C-fibers; it activated no intact type 2 cold-sensitive C-fibers (n = 7) and 1/11 injured type 2 cold-sensitive C-fibers. Neither intact nor injured heat- and/or mechanosensitive cold-insensitive C-fibers (n = 25) and almost no A-fibers (n = 2/34) were activated by menthol. These results strongly argue that cutaneous type 1 cold-sensitive afferent fibers are nonnociceptive cold fibers that use the TRPM8 transduction channel.

  5. In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. (United States)

    Ford, Anthony P


    a realistic chance that this novel mechanism to inhibit afferent nerve sensitization may find its place in the sun and bring some merciful relief to the torment of persistent discomfort and pain. The development philosophy at Afferent is to conduct proof of concept patient studies and best identify target patient groups that may benefit from this new intervention.

  6. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing


    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  7. Immune derived opioidergic inhibition of viscerosensory afferents is decreased in Irritable Bowel Syndrome patients. (United States)

    Hughes, Patrick A; Moretta, Melissa; Lim, Amanda; Grasby, Dallas J; Bird, Daniel; Brierley, Stuart M; Liebregts, Tobias; Adam, Birgit; Blackshaw, L Ashley; Holtmann, Gerald; Bampton, Peter; Hoffmann, Peter; Andrews, Jane M; Zola, Heddy; Krumbiegel, Doreen


    Alterations in the neuro-immune axis contribute toward viscerosensory nerve sensitivity and symptoms in Irritable Bowel Syndrome (IBS). Inhibitory factors secreted from immune cells inhibit colo-rectal afferents in health, and loss of this inhibition may lead to hypersensitivity and symptoms. We aimed to determine the immune cell type(s) responsible for opioid secretion in humans and whether this is altered in patients with IBS. The β-endorphin content of specific immune cell lineages in peripheral blood and colonic mucosal biopsies were compared between healthy subjects (HS) and IBS patients. Peripheral blood mononuclear cell (PBMC) supernatants from HS and IBS patients were applied to colo-rectal sensory afferent endings in mice with post-inflammatory chronic visceral hypersensitivity (CVH). β-Endorphin was identified predominantly in monocyte/macrophages relative to T or B cells in human PBMC and colonic lamina propria. Monocyte derived β-endorphin levels and colonic macrophage numbers were lower in IBS patients than healthy subjects. PBMC supernatants from healthy subjects had greater inhibitory effects on colo-rectal afferent mechanosensitivity than those from IBS patients. The inhibitory effects of PBMC supernatants were more prominent in CVH mice compared to healthy mice due to an increase in μ-opioid receptor expression in dorsal root ganglia neurons in CVH mice. Monocyte/macrophages are the predominant immune cell type responsible for β-endorphin secretion in humans. IBS patients have lower monocyte derived β-endorphin levels than healthy subjects, causing less inhibition of colonic afferent endings. Consequently, altered immune function contributes toward visceral hypersensitivity in IBS.

  8. Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension. (United States)

    Xiong, Xiao-Qing; Chen, Wei-Wei; Han, Ying; Zhou, Ye-Bo; Zhang, Feng; Gao, Xing-Ya; Zhu, Guo-Qing


    We recently found that adipose afferent reflex (AAR) induced by chemical stimulation of white adipose tissue (WAT) increased sympathetic outflow and blood pressure in normal rats. The study was designed to test the hypothesis that AAR contributes to sympathetic activation in obesity hypertension. Male rats were fed with a control diet (12% kcal as fat) or high-fat diet (42% kcal as fat) for 12 weeks to induce obesity hypertension. Stimulation of WAT with capsaicin increased renal sympathetic nerve activity and mean arterial pressure. Both AAR and WAT afferent activity were enhanced in obesity hypertension (OH) compared with obesity nonhypertension (ON) and in ON compared with obesity-resistant or control diet rats. WAT sensory denervation induced by resiniferatoxin caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in OH than ON and in ON than obesity-resistant or control. The depressor effect of resiniferatoxin lasted ≥ 3 weeks in OH. Leptin antagonist in WAT reduced renal sympathetic nerve activity and mean arterial pressure in OH. WAT injection of capsaicin increased plasma renin, angiotensin II, and norepinephrine levels in OH and caused more c-fos expression in paraventricular nucleus in OH than ON and in ON than obesity-resistant or control rats. Inhibiting paraventricular nucleus neurons with lidocaine attenuated renal sympathetic nerve activity in OH and ON, decreased mean arterial pressure in OH, and abolished the capsaicin-induced AAR in all groups. The results indicate that enhanced AAR contributes to sympathetic activation in OH, and paraventricular nucleus plays an important role in the enhanced AAR and sympathetic activation in OH.

  9. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics

    Directory of Open Access Journals (Sweden)

    Ying Liu


    Full Text Available Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ′excellent′ and ′good′ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.

  10. Hair-Cell Versus Afferent Adaptation in the Semicircular Canals


    Rabbitt, R. D.; Boyle, R.; Holstein, G. R.; Highstein, S. M.


    The time course and extent of adaptation in semicircular canal hair cells was compared to adaptation in primary afferent neurons for physiological stimuli in vivo to study the origins of the neural code transmitted to the brain. The oyster toadfish, Opsanus tau, was used as the experimental model. Afferent firing-rate adaptation followed a double-exponential time course in response to step cupula displacements. The dominant adaptation time constant varied considerably among afferent fibers an...

  11. Organ-specific activation of the gastric branch of the efferent vagus nerve by ghrelin in urethane-anesthetized rats. (United States)

    Habara, Hiromi; Hayashi, Yujiro; Inomata, Norio; Niijima, Akira; Kangawa, Kenji


    Ghrelin plays multiple physiological roles such as growth hormone secretion and exerting orexigenic actions; however, its physiological roles in the electrical activity of autonomic nerves remain unclear. Here, we investigated the effects of human ghrelin on several autonomic nerve activities in urethane-anesthetized rats using an electrophysiological method. Intravenous injection of ghrelin at 3 μg/kg significantly and transiently potentiated the efferent activity of the gastric vagus nerve; however, it did not affect the efferent activity of the hepatic vagus nerve. The activated response to ghrelin in the gastric efferent vagus nerve was not affected by the gastric afferent vagotomy, suggesting that this effect was not induced via the gastric afferent vagus nerve. Ghrelin did not affect the efferent activity of the brown adipose tissue, adrenal gland sympathetic nerve, and the renal sympathetic nerve. In addition, rectal temperature and the plasma concentrations of norepinephrine, corticosterone, and renin were also not changed by ghrelin. These findings demonstrate that ghrelin stimulates the gastric efferent vagus nerve in an organ-specific manner without affecting the gastric afferent vagus nerve and that ghrelin does not acutely affect the efferent basal activity of the sympathetic nerve in rats.

  12. Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. (United States)

    Defourny, Jean; Poirrier, Anne-Lise; Lallemend, François; Mateo Sánchez, Susana; Neef, Jakob; Vanderhaeghen, Pierre; Soriano, Eduardo; Peuckert, Christiane; Kullander, Klas; Fritzsch, Bernd; Nguyen, Laurent; Moonen, Gustave; Moser, Tobias; Malgrange, Brigitte


    Hearing requires an optimal afferent innervation of sensory hair cells by spiral ganglion neurons in the cochlea. Here we report that complementary expression of ephrin-A5 in hair cells and EphA4 receptor among spiral ganglion neuron populations controls the targeting of type I and type II afferent fibres to inner and outer hair cells, respectively. In the absence of ephrin-A5 or EphA4 forward signalling, a subset of type I projections aberrantly overshoot the inner hair cell layer and invade the outer hair cell area. Lack of type I afferent synapses impairs neurotransmission from inner hair cells to the auditory nerve. By contrast, radial shift of type I projections coincides with a gain of presynaptic ribbons that could enhance the afferent signalling from outer hair cells. Ephexin-1, cofilin and myosin light chain kinase act downstream of EphA4 to induce type I spiral ganglion neuron growth cone collapse. Our findings constitute the first identification of an Eph/ephrin-mediated mutual repulsion mechanism responsible for specific sorting of auditory projections in the cochlea.

  13. Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking (United States)

    Gervasio, Sabata; Voigt, Michael; Kersting, Uwe G.; Farina, Dario; Sinkjær, Thomas


    A constant coordination between the left and right leg is required to maintain stability during human locomotion, especially in a variable environment. The neural mechanisms underlying this interlimb coordination are not yet known. In animals, interneurons located within the spinal cord allow direct communication between the two sides without the need for the involvement of higher centers. These may also exist in humans since sensory feedback elicited by tibial nerve stimulation on one side (ipsilateral) can affect the muscles activation in the opposite side (contralateral), provoking short-latency crossed responses (SLCRs). The current study investigated whether contralateral afferent feedback contributes to the mechanism controlling the SLCR in human gastrocnemius muscle. Surface electromyogram, kinematic and kinetic data were recorded from subjects during normal walking and hybrid walking (with the legs moving in opposite directions). An inverse dynamics model was applied to estimate the gastrocnemius muscle proprioceptors’ firing rate. During normal walking, a significant correlation was observed between the magnitude of SLCRs and the estimated muscle spindle secondary afferent activity (P = 0.04). Moreover, estimated spindle secondary afferent and Golgi tendon organ activity were significantly different (P ≤ 0.01) when opposite responses have been observed, that is during normal (facilitation) and hybrid walking (inhibition) conditions. Contralateral sensory feedback, specifically spindle secondary afferents, likely plays a significant role in generating the SLCR. This observation has important implications for our understanding of what future research should be focusing on to optimize locomotor recovery in patient populations. PMID:28060839

  14. Drug Delivery for Peripheral Nerve Regeneration (United States)


    compared functional recovery between an autograft, PLGA nerve conduit, and PLGA nerve conduit that releases NGF in a rat sciatic nerve gap model...and scope of the research. Combat gear for the modern day warrior has greatly improved protection for the head and body, but limbs are still...and non-combat veterans peripheral nerve injuries affect 2-3% of trauma patients and vastly more subsequent to tumor extirpation or iatrogenic

  15. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin B subunit by nociceptive C-fiber primary afferent neurons. (United States)

    Oszlács, O; Jancsó, G; Kis, G; Dux, M; Sántha, P


    The distribution of spinal primary afferent terminals labeled transganglionically with the choleratoxin B subunit (CTB) or its conjugates changes profoundly after perineural treatment with capsaicin. Injection of CTB conjugated with horseradish peroxidase (HRP) into an intact nerve labels somatotopically related areas in the ipsilateral dorsal horn with the exceptions of the marginal zone and the substantia gelatinosa, whereas injection of this tracer into a capsaicin-pretreated nerve also results in massive labeling of these most superficial layers of the dorsal horn. The present study was initiated to clarify the role of C-fiber primary afferent neurons in this phenomenon. In L5 dorsal root ganglia, analysis of the size frequency distribution of neurons labeled after injection of CTB-HRP into the ipsilateral sciatic nerve treated previously with capsaicin or resiniferatoxin revealed a significant increase in the proportion of small neurons. In the spinal dorsal horn, capsaicin or resiniferatoxin pretreatment resulted in intense CTB-HRP labeling of the marginal zone and the substantia gelatinosa. Electron microscopic histochemistry disclosed a dramatic, ∼10-fold increase in the proportion of CTB-HRP-labeled unmyelinated dorsal root axons following perineural capsaicin or resiniferatoxin. The present results indicate that CTB-HRP labeling of C-fiber dorsal root ganglion neurons and their central terminals after perineural treatment with vanilloid compounds may be explained by their phenotypic switch rather than a sprouting response of thick myelinated spinal afferents which, in an intact nerve, can be labeled selectively with CTB-HRP. The findings also suggest a role for GM1 ganglioside in the modulation of nociceptor function and pain.

  16. Effects of stimulation of vesical afferents on colonic motility in cats. (United States)

    Bouvier, M; Grimaud, J C; Abysique, A


    The effects of distension and isovolumetric contraction of urinary bladder on colonic motility were studied in anesthetized cats. Distension and contraction of the urinary bladder induced an inhibition of spontaneous colonic electromyographic activity and a decrease in the amplitudes of the excitatory junction potentials evoked in the colon by stimulation of the distal end of the parasympathetic nerve fibers. This inhibition was blocked by guanethidine and phentolamine. Reversely, vesical emptying resulted in an increase in colonic motility, abolished by atropine, and an increase in the amplitude of the excitatory junction potentials. Both excitatory and inhibitory reflexes disappeared after hexamethonium. The inhibitory effects of bladder distension were abolished by bilateral section of the lumbar ventral or dorsal spinal roots and after bilateral section of the lumbar colonic or hypogastric nerves. These results indicate (a) that the vesical afferents responsible for the inhibitory and excitatory reflexes run in the hypogastric and pelvic nerves respectively and (b) that the inhibitory and excitatory effects are caused by the activation of sympathetic and parasympathetic efferent nerve fibers, respectively. The supraspinal nervous structures were not implicated in these reflexes because they persisted in spinal cats.

  17. Uterine contractility and blood flow are reflexively regulated by cutaneous afferent stimulation in anesthetized rats. (United States)

    Hotta, H; Uchida, S; Shimura, M; Suzuki, H


    The effects of cutaneous mechanical afferent stimulation of various skin areas on uterine contractility and blood flow were examined in anesthetized non-pregnant rats. The contractility of the uterus was measured by the balloon method in the uterus. The uterine blood flow was measured by laser Doppler flowmetry. Noxious pinching stimulation of the perineum for 1 min induced an abrupt contraction of the uterus during stimulation. Pinching of a hindpaw or perineum and innocuous brushing of the perineum for 1 min increased uterine blood flow. Stimulation of other skin areas produced no changes in uterine contractility or blood flow. Most uterine responses were abolished by severance of the pelvic nerves, which innervated the uterus. The activity of pelvic parasympathetic efferent nerves to the uterus increased following perineal pinching. All these cutaneous stimulation-induced responses of uterine contractility, blood flow and pelvic efferent nerve activity still existed, and were even augmented, after acute spinalization. These results indicate that cutaneous mechanical sensory stimulation can regulate uterine contractility and blood flow by a segmental spinal reflex mechanism via uterine parasympathetic efferent nerves.

  18. SH2-B beta upregulates the expression of interleukin-1 beta in lung and visceral primary afferent neurons in asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    Jinping Qi; Xiaojie Wang; Yun Jin


    A previous study by our research group showed that nerve growth factor is involved in the onset of asthma through regulating SH2-Bβ expression in the lung and visceral primary afferent neurons of asthmatic mice. This study sought to assess the expression level of interleukin-1β in primary afferent neurons in C7-T5 spinal ganglia, spinal cord and lung in asthmatic mice after blockage of SH2-Bβ. The levels of interleukin-1β protein in primary afferent neurons in the C7-T5 spinal ganglia and lung were decreased, and interleukin-1β mRNA expression also down-regulated in the spinal cord, medulla oblongata and lung tissue after blockage of SH2-Bβ. Our findings indicate that SH2-Bβ can upregulate the expression of interleukin-1β in C7-T5 spinal ganglia, spinal cord and lung of asthmatic mice.

  19. Assessing Protection Against OP Pesticides and Nerve Agents Provided by Wild-Type HuPON1 Purified from Trichoplusia ni Larvae or Induced via Adenoviral Infection (United States)


    times the median lethal dose (LD50) of the OP nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF), or chlorpyrifos oxon, the toxic...Doctor, M.P. Nambiar, Efficient hydrolysis of the chemical warfare nerve agent tabun by recombinant and purified human and rabbit serum paraoxonase

  20. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus. (United States)

    Yu, Xiaoyun; Hu, Youtian; Yu, Shaoyong


    Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases.

  1. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi


    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  2. Changes in synaptic effectiveness of myelinated joint afferents during capsaicin-induced inflammation of the footpad in the anesthetized cat. (United States)

    Rudomin, P; Hernández, E


    The present series of experiments was designed to examine, in the anesthetized cat, the extent to which the synaptic efficacy of knee joint afferents is modified during the state of central sensitization produced by the injection of capsaicin into the hindlimb plantar cushion. We found that the intradermic injection of capsaicin increased the N2 and N3 components of the focal potentials produced by stimulation of intermediate and high threshold myelinated fibers in the posterior articular nerve (PAN), respectively. This facilitation lasted several hours, had about the same time course as the paw inflammation and was more evident for the N2 and N3 potentials recorded within the intermediate zone in the L6 than in the L7 spinal segments. The capsaicin-induced facilitation of the N2 focal potentials, which are assumed to be generated by activation of fibers signaling joint position, suggests that nociception may affect the processing of proprioceptive and somato-sensory information and, probably also, movement. In addition, the increased effectiveness of these afferents could activate, besides neurons in the intermediate region, neurons located in the more superficial layers of the dorsal horn. As a consequence, normal joint movements could produce pain representing a secondary hyperalgesia. The capsaicin-induced increased efficacy of the PAN afferents producing the N3 focal potentials, together with the reduced post-activation depression that follows high frequency autogenetic stimulation of these afferents, could further contribute to the pain sensation from non-inflamed joints during skin inflammation in humans. The persistence, after capsaicin, of the inhibitory effects produced by stimulation of cutaneous nerves innervating non-inflamed skin regions may account for the reported reduction of the articular pain sensations produced by trans-cutaneous stimulation.

  3. Hyperpolarization-activated cyclic nucleotide-gated cation channel subtypes differentially modulate the excitability of murine small intestinal afferents

    Institute of Scientific and Technical Information of China (English)

    Ying-Ping Wang; Bi-Ying Sun; Qian Li; Li Dong; Guo-Hua Zhang; David Grundy; Wei-Fang Rong


    AIM: To assess the role of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels in regulating the excitability of vagal and spinal gut afferents.METHODS: The mechanosensory response of mesen-teric afferent activity was measured in an ex vivo murine jejunum preparation. HCN channel activity was recorded through voltage and current clamp in acutely dissociated dorsal root ganglia (DRG) and nodose ganglia (NG) neurons retrogradely labeled from the small intestine through injection of a fluorescent marker (DiI). The isoforms of HCN channels expressed in DRG and NG neurons were examined by immunohistochemistry.RESULTS: Ramp distension of the small intestine evoked biphasic increases in the afferent nerve activity, reflecting the activation of low- and high-threshold fibers.HCN blocker CsCl (5 mmol/L) preferentially inhibited the responses of low-threshold fibers to distension and showed no significant effects on the high-threshold responses. The effect of CsCl was mimicked by the more selective HCN blocker ZD7288 (10 ?mol/L). In 71.4% of DiI labeled DRG neurons (n = 20) and 90.9% of DiI labeled NG neurons (n = 10), an inward current (Ih current) was evoked by hyperpolarization pulses which was fully eliminated by extracellular CsCl. In neurons expressing Ih current, a typical "sag" was observed upon injection of hyperpolarizing current pulses in current-clamp recordings. CsCl abolished the sag entirely. In some DiI labeled DRG neurons, the Ih current was potentiated by 8-Br-cAMP, which had no effect on the Ih current of DiI labeled NG neurons. Immunohistochemistry revealed differential expression of HCN isoforms in vagal and spinal afferents, and HCN2 and HCN3 seemed to be the dominant isoform in DRG and NG, respectively.CONCLUSION: HCNs differentially regulate the excitability of vagal and spinal afferent of murine small intestine.

  4. Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea. (United States)

    Yi, Eunyoung; Roux, Isabelle; Glowatzki, Elisabeth


    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (I(h)), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1-35 mV) were found with 10-90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current-voltage relations recorded in afferent dendrites revealed I(h). The pharmacological profile and reversal potential (-45 mV) indicated that I(h) is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of I(h) and shifted the half activation voltage (V(half)) to more positive values (-104 +/- 3 to -91 +/- 2 mV). Blocking I(h) with 50 microM ZD7288 resulted in hyperpolarization of the resting membrane potential (approximately 4 mV) and slowing the decay of the EPSP by 47%, suggesting that I(h) is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway.

  5. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons


    Alvarez, Francisco J.; Titus-Mitchell, Haley E.; Bullinger, Katie L.; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C.


    Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped fro...

  6. Gait phase detection from sciatic nerve recordings in functional electrical stimulation systems for foot drop correction. (United States)

    Chu, Jun-Uk; Song, Kang-Il; Han, Sungmin; Lee, Soo Hyun; Kang, Ji Yoon; Hwang, Dosik; Suh, Jun-Kyo Francis; Choi, Kuiwon; Youn, Inchan


    Cutaneous afferent activities recorded by a nerve cuff electrode have been used to detect the stance phase in a functional electrical stimulation system for foot drop correction. However, the implantation procedure was difficult, as the cuff electrode had to be located on the distal branches of a multi-fascicular nerve to exclude muscle afferent and efferent activities. This paper proposes a new gait phase detection scheme that can be applied to a proximal nerve root that includes cutaneous afferent fibers as well as muscle afferent and efferent fibers. To test the feasibility of this scheme, electroneurogram (ENG) signals were measured from the rat sciatic nerve during treadmill walking at several speeds, and the signal properties of the sciatic nerve were analyzed for a comparison with kinematic data from the ankle joint. On the basis of these experiments, a wavelet packet transform was tested to define a feature vector from the sciatic ENG signals according to the gait phases. We also propose a Gaussian mixture model (GMM) classifier and investigate whether it could be used successfully to discriminate feature vectors into the stance and swing phases. In spite of no significant differences in the rectified bin-integrated values between the stance and swing phases, the sciatic ENG signals could be reliably classified using the proposed wavelet packet transform and GMM classification methods.

  7. Changes of norepinephrine and tumor necrosis factor in submandibular gland of rats with sympathetic nerve injury and the protective effect of 17 beta-estradiol

    Institute of Scientific and Technical Information of China (English)

    Yagao Feng; Suya Deng; Zhenqi Liu; Min Hu; Houjun Yan; Qiusheng Wang


    and TNF levels in submandibular glands of rats in each group were observed.RESULTS: All the 50 rats were involved in the analysis of results. ① The NE content was obviously lower in the ovariectomy+6-OHDA+saline group than in the sham-operated group [(1 035±196), (1 823±314) ng/g,P < 0.05], there were no significant differences between the ovariectomy+6-OHDA+17β-estradiol 50 μg/kg group and ovariectomy+6-OHDA+saline group [(1 004±253), (1 035±196) ng/g, P > 0.05], but obviously higher in the ovariectomy+6-OHDA+17β-estradiol 200 and 500 μg/kg groups than in the ovariectomy+6-0-ously higher in the ovariectomy+6-OHDA+saline group than in the sham-operated group [(3.498±0.792),(1.893±0.533) ng/g, P < 0.05], there were no significant differences between the ovariectomy+6-OHDA+17β-estradiol 50 μg/kg group and ovariectomy+6-OHDA+saline group [(3.328 ±0.712),(3.498±0.792) ng/g, P > 0.05], but obviously lower in the ovariectomy+6-OHDA+17β-estradiol 200 and 500 μg/kg groups than in the ovariectomy+6-OHDA+saline group [(2.639±0.438), (2.016±0.619),(3.498±0.792) ng/g, P < 0.05].CONCLUSION: Estrogen has obvious protective effect dose-dependently on 6-OHDA induced chemical sympathetic nerve terminal injury in rats, and it may play its protective role by reducing TNF level and ameliorating inflammatory reaction.

  8. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog (United States)

    Cochran, S. L.


    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  9. Distinct afferent innervation patterns within the human proximal and distal esophageal mucosa. (United States)

    Woodland, Philip; Aktar, Rubina; Mthunzi, Engelbert; Lee, Chung; Peiris, Madusha; Preston, Sean L; Blackshaw, L Ashley; Sifrim, Daniel


    Little is known about the mucosal phenotype of the proximal human esophagus. There is evidence to suggest that the proximal esophagus is more sensitive to chemical and mechanical stimulation compared with the distal. This may have physiological relevance (e.g., in prevention of aspiration of gastroesophageal refluxate), but also pathological relevance (e.g., in reflux perception or dysphagia). Reasons for this increased sensitivity are unclear but may include impairment in mucosal barrier integrity or changes in sensory innervation. We assessed mucosal barrier integrity and afferent nerve distribution in the proximal and distal esophagus of healthy human volunteers. In 10 healthy volunteers baseline proximal and distal esophageal impedance was measured in vivo. Esophageal mucosal biopsies from the distal and proximal esophagus were taken, and baseline transepithelial electrical resistance (TER) was measured in Ussing chambers. Biopsies were examined immunohistochemically for presence and location of calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers. In a further four healthy volunteers we investigated for colocalization of CGRP and protein gene product (PGP) 9.5 immunoreactivity in nerve fibers. Baseline impedance was higher in the proximal than in the distal esophagus [2,936 Ω (SD578) vs. 2,229 Ω (SD821); P = 0.03], however, baseline TER was not significantly different between them. Mucosal CGRP-immunoreactive nerves were found in the epithelium of both proximal and distal esophagus, but were located more superficially in the proximal mucosa compared with the distal [11.5 (SD7) vs. 21.7 (SD5) cell layers from lumen, P = 0.002] 19% of proximal, and 10% of distal mucosal PGP-immunoreactive fibers colocalized with CGRP. PGP-immunoreactive fibers were also significantly closer to the luminal surface in the proximal compared with the distal esophagus (P integrity is similar in proximal and distal esophagus, but proximal mucosal afferent nerves are in

  10. Evidence for restricted central convergence of cutaneous afferents on an excitatory reflex pathway to medial gastrocnemius motoneurons. (United States)

    LaBella, L A; McCrea, D A


    1. We previously reported that excitatory postsynaptic potentials (EPSPs) produced by low-threshold electrical stimulation of the caudal cutaneous sural nerve (CCS) occur preferentially and with the shortest central latencies in the medial gastrocnemius (MG) portion of the triceps surae motor nuclei. The present study employs the spatial facilitation technique to assess interneuronal convergence on the short-latency excitatory pathway from CCS to MG by several other ipsilateral hindlimb afferents [the lateral cutaneous sural (LCS), caudal cutaneous femoral (CCF), saphenous (SAPH), superficial peroneal (SP), posterior tibial (TIB), and posterior articular (Joint) nerves]. 2. Spatial facilitation of CCF EPSPs in MG motoneurons was demonstrated with conditioning stimulation of the LCS, CCF, SAPH, SP, and TIB nerves, but was most readily and consistently observed with CCF conditioning. Facilitation of CCS and CCF EPSPs was obtained in individual MG motoneurons with a wide range of condition-test intervals. 3. CCF EPSPs in MG motoneurons produced by twice threshold (2T) afferent stimulation had a mean latency of 4.8 ms and often appeared as slowly rising, asynchronous potentials. On the other hand, 2T CCS EPSPs had a mean latency of 2.8 ms and appeared as sharper rising, less variable depolarizations. The optimum condition-test interval for facilitation of CCS and CCF EPSPs was found to be 5.2 ms on average, with CCS stimulation delayed from that of CCF. The longer latency of CCF EPSPs and the finding that the minimum condition-test interval was on the order of 3.9 ms suggests that convergence occurs late in the excitatory CCF pathway to MG motoneurons. 4. Convergence between excitatory pathways to MG from CCF and CCS afferents is discussed with regard to the original observations of Hagbarth on the location of cutaneous receptive fields and excitation of ankle extensors. In addition, evidence for the segregation of these specialized reflex pathways from those involved

  11. Research Status of Astragali Radix on Nerve Cells and Nerve System Diseases

    Institute of Scientific and Technical Information of China (English)

    LUAN Zeng-qiang; ZHAO Ping-li; CAO Wen-fu


    Astragali Radix has a wide application in the nerve system diseases because of its obvious nerve cell protection and recovery effects.Astragali Radix has good clinical effects both in acute and chronic cerebrovascular diseases and neurological degenerative diseases.This paper reviews the experimental and clinical research status of Astragali Radix on nerve system and nerve system diseases,which may promote its experimental research and clinical application.

  12. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways. (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario


    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions.

  13. Influences of laryngeal afferent inputs on intralaryngeal muscle activity during vocalization in the cat. (United States)

    Shiba, K; Yoshida, K; Nakajima, Y; Konno, A


    The present study was undertaken to elucidate the possible role of the laryngeal afferent inputs in the regulation of intralaryngeal muscle activity during vocalization. We studied the influences of airflow and/or pressure applied to the larynx on intralaryngeal muscle activity during vocalization in ketamine-anesthetized cats. Vocalization was induced by airflow applied to the upper airway, which was isolated from the lower airway, during pontine call site stimulation. When the upper airway was open to the atmosphere through the nostrils and mouth, the airflow increased not only the vocal fold adductor and tensor activities but also the duration of these activities. The adductor and tensor activities were increased suddenly at a critical subglottic pressure level equivalent to the subglottic pressure threshold for vocalization. These effects were significantly reduced by sectioning of the internal branch of the superior laryngeal nerve or by lidocaine application to the laryngeal mucosa. Sustained pressure applied to the isolated upper airway, when the mouth and nostrils were occluded, did not affect adductor or tensor activities. These results indicate that the afferent inputs evoked by vocal fold stretching or vibration play an important role in the motor control of intralaryngeal and respiratory muscles during vocalization.

  14. Reliability of clinical tests to evaluate nerve function and mechanosensitivity of the upper limb peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Bachmann Lucas M


    Full Text Available Abstract Background Clinical tests to assess peripheral nerve disorders can be classified into two categories: tests for afferent/efferent nerve function such as nerve conduction (bedside neurological examination and tests for increased mechanosensitivity (e.g. upper limb neurodynamic tests (ULNTs and nerve palpation. Reliability reports of nerve palpation and the interpretation of neurodynamic tests are scarce. This study therefore investigated the intertester reliability of nerve palpation and ULNTs. ULNTs were interpreted based on symptom reproduction and structural differentiation. To put the reliability of these tests in perspective, a comparison with the reliability of clinical tests for nerve function was made. Methods Two experienced clinicians examined 31 patients with unilateral arm and/or neck pain. The examination included clinical tests for nerve function (sensory testing, reflexes and manual muscle testing (MMT and mechanosensitivity (ULNTs and palpation of the median, radial and ulnar nerve. Kappa statistics were calculated to evaluate intertester reliability. A meta-analysis determined an overall kappa for the domains with multiple kappa values (MMT, ULNT, palpation. We then compared the difference in reliability between the tests of mechanosensitivity and nerve function using a one-sample t-test. Results We observed moderate to substantial reliability for the tests for afferent/efferent nerve function (sensory testing: kappa = 0.53; MMT: kappa = 0.68; no kappa was calculated for reflexes due to a lack of variation. Tests to investigate mechanosensitivity demonstrated moderate reliability (ULNT: kappa = 0.45; palpation: kappa = 0.59. When compared statistically, there was no difference in reliability for tests for nerve function and mechanosensitivity (p = 0.06. Conclusion This study demonstrates that clinical tests which evaluate increased nerve mechanosensitivity and afferent/efferent nerve function have comparable moderate to

  15. Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Seifert, Thomas; Hartwich, Doreen


    Isolated activation of metabolically sensitive skeletal muscle afferents (muscle metaboreflex) using post-exercise ischaemia (PEI) following handgrip partially maintains exercise-induced increases in arterial blood pressure (BP) and muscle sympathetic nerve activity (SNA), while heart rate (HR......) declines towards resting values. Although masking of metaboreflex-mediated increases in cardiac SNA by parasympathetic reactivation during PEI has been suggested, this has not been directly tested in humans. In nine male subjects (23 +/- 5 years) the muscle metaboreflex was activated by PEI following...... moderate (PEI-M) and high (PEI-H) intensity isometric handgrip performed at 25% and 40% maximum voluntary contraction, under control (no drug), parasympathetic blockade (glycopyrrolate) and beta-adrenergic blockade (metoprolol or propranalol) conditions, while beat-to-beat HR and BP were continuously...

  16. Normal Distribution of VGLUT1 Synapses on Spinal Motoneuron Dendrites and Their Reorganization after Nerve Injury


    Rotterman, Travis M.; Nardelli, Paul; Cope, Timothy C.; Alvarez, Francisco J.


    Peripheral nerve injury induces permanent alterations in spinal cord circuitries that are not reversed by regeneration. Nerve injury provokes the loss of many proprioceptive IA afferent synapses (VGLUT1-IR boutons) from motoneurons, the reduction of IA EPSPs in motoneurons, and the disappearance of stretch reflexes. After motor and sensory axons successfully reinnervate muscle, lost IA VGLUT1 synapses are not re-established and the stretch reflex does not recover; however, electrically evoked...

  17. Vagus nerve stimulation regulates hemostasis in swine. (United States)

    Czura, Christopher J; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M; Pavlov, Valentin A; Redl, Heinz; Tracey, Kevin J


    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses proinflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre-electrical vagus nerve stimulation = 1033 +/- 210 s versus post-electrical vagus nerve stimulation = 585 +/- 111 s; P vagus nerve stimulation = 48.4 +/- 6.8 mL versus post-electrical vagus nerve stimulation = 26.3 +/- 6.7 mL; P vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity.

  18. Biliary stone causing afferent loop syndrome and pancreatitis

    Institute of Scientific and Technical Information of China (English)

    André Roncon Dias; Roberto Iglesias Lopes


    We report the case of an 84-year-old female who had a partial gastrectomy with Billroth-Ⅱ anastomosis 24years ago for a benign peptic ulcer who now presented an acute pancreatitis secondary to an afferent loop syndrome. The syndrome was caused by a gallstone that migrated through a cholecystoenteric fistula. This is the first description in the literature of a biliary stone causing afferent loop syndrome.

  19. Visceral perception: sensory transduction in visceral afferents and nutrients. (United States)

    Raybould, H E


    The possible mechanisms that may be involved in nutrient detection in the wall of the gastrointestinal tract are reviewed. There is strong functional and electrophysiological evidence that both intrinsic and extrinsic primary afferent neurones mediate mechano- and chemosensitive responses in the gastrointestinal tract. This review focuses on the extrinsic afferent pathways as these are the ones that convey information to the central nervous system which is clearly necessary for perception to occur.

  20. Presynaptic selection of afferent inflow in the spinal cord. (United States)

    Rudomin, P


    The synaptic effectiveness of sensory fibers ending in the spinal cord of vertebrates can be centrally controlled by means of specific sets of GABAergic interneurons that make axo-axonic synapses with the terminal arborizations of the afferent fibers. In the steady state, the intracellular concentration of chloride ions in these terminals is higher than that predicted from a passive distribution, because of an active transport mechanism. Following the release of GABA by spinal interneurons and activation of GABA(A) receptors in the afferent terminals, there is an outwardly directed efflux of chloride ions that produces primary afferent depolarization (PAD) and reduces transmitter release (presynaptic inhibition). Studies made by intrafiber recording of PAD, or by measuring changes in the intraspinal threshold of single afferent terminals (which is reduced during PAD), have further indicated that muscle and cutaneous afferents have distinctive, but modifiable PAD patterns in response to segmental and descending stimuli. This has suggested that PAD and presynaptic inhibition in the various types of afferents is mediated by separate sets of last-order GABAergic interneurons. Direct activation, by means of intraspinal microstimulation, of single or small groups of last-order PAD-mediating interneurons shows that the monosynaptic PAD elicited in Ia and Ib afferents can remain confined to some sets of the intraspinal collaterals and not spread to nearby collaterals. The local character of PAD allows cutaneous and descending inputs to selectively inhibit the PAD of segmental and ascending intraspinal collaterals of individual muscle spindle afferents. It thus seems that the intraspinal branches of the sensory fibers are not hard wired routes that diverge excitation to spinal neurons, but are instead dynamic pathways that can be centrally controlled to address information to selected neuronal targets. This feature appears to play an important role in the selection of

  1. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome? (United States)

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio


    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  2. Cutaneous nerve entrapment syndrome

    Institute of Scientific and Technical Information of China (English)



    The cutaneous nerve entrapment syndrome is named that, the cutaneous nerve's functional disorder caused by some chronic entrapment, moreover appears a series of nerve's feeling obstacle,vegetative nerve function obstacle, nutrition obstacle, even motor function obstacle in various degree.

  3. Nerve biopsy (image) (United States)

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  4. Vagus Nerve Stimulation (United States)

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  5. Ulnar nerve dysfunction (United States)

    Neuropathy - ulnar nerve; Ulnar nerve palsy; Mononeuropathy; Cubital tunnel syndrome ... neuropathy occurs when there is damage to the ulnar nerve. This ... syndrome may result. When damage destroys the nerve covering ( ...

  6. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury:electrophysiological characteristics

    Institute of Scientific and Technical Information of China (English)

    Ying Liu; Xun-cheng Xu; Yi Zou; Su-rong Li; Bin Zhang; Yue Wang


    Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we per-formed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduc-tion function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regener-ated potentials ifrst appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ‘ex-cellent’ and ‘good’ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The func-tional recovery of a transplanted nerve can be dynamically observed after the surgery.

  7. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons. (United States)

    Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E


    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.

  8. Betahistine produces post-synaptic inhibition of the excitability of the primary afferent neurons in the vestibular endorgans. (United States)

    Soto, E; Chávez, H; Valli, P; Benvenuti, C; Vega, R


    Betahistine has been used to treat several vestibular disorders of both central and peripheral origin. The objective of this work was to study the action of betahistine in the vestibular endorgans. Experiments were done in wild larval axolotl (Ambystoma tigrinum). Multiunit extracellular recordings were obtained from the semicircular canal nerve using a suction electrode. Betahistine (10 microM to 10 mM; n = 32) inhibited the basal spike discharge of the vestibular afferent neurons with an IC50 of 600 microM. To define the site of action of betahistine, its interactions with the nitric oxide synthase inhibitor NG-nitro-L-arginine (3 microM) and with the cholinergic antagonists atropine (10 microM; n = 3) and d-tubocurarine (10 microM; n = 3) were studied. The action of betahistine when co-administered with these drugs was the same as that in control experiments, indicating that its effects did not include nitric oxide production or the activation of cholinergic receptors. In contrast, 0.01-1 mM betahistine reduced the excitatory action of kainic acid (10 microM; n = 6) and quiscualic acid (1 microM; n = 13). These results indicate that the action of betahistine on the spike discharge of afferent neurons seems to be due to a post-synaptic inhibitory action on the primary afferent neuron response to the hair cell neurotransmitter.

  9. Afferent innervation of the utricular macula in pigeons (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David


    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  10. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia (United States)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.


    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  11. Transient inflammation-induced ongoing pain is driven by TRPV1 sensitive afferents

    Directory of Open Access Journals (Sweden)

    Mercado Ramon


    Full Text Available Abstract Background Tissue injury elicits both hypersensitivity to evoked stimuli and ongoing, stimulus-independent pain. We previously demonstrated that pain relief elicits reward in nerve-injured rats. This approach was used to evaluate the temporal and mechanistic features of inflammation-induced ongoing pain. Results Intraplantar Complete Freund's Adjuvant (CFA produced thermal hyperalgesia and guarding behavior that was reliably observed within 24 hrs and maintained, albeit diminished, 4 days post-administration. Spinal clonidine produced robust conditioned place preference (CPP in CFA treated rats 1 day, but not 4 days following CFA administration. However, spinal clonidine blocked CFA-induced thermal hyperalgesia at both post-CFA days 1 and 4, indicating different time-courses of ongoing and evoked pain. Peripheral nerve block by lidocaine administration into the popliteal fossa 1 day following intraplantar CFA produced a robust preference for the lidocaine paired chamber, indicating that injury-induced ongoing pain is driven by afferent fibers innervating the site of injury. Pretreatment with resiniferatoxin (RTX, an ultrapotent capsaicin analogue known to produce long-lasting desensitization of TRPV1 positive afferents, fully blocked CFA-induced thermal hypersensitivity and abolished the CPP elicited by administration of popliteal fossa lidocaine 24 hrs post-CFA. In addition, RTX pretreatment blocked guarding behavior observed 1 day following intraplantar CFA. In contrast, administration of the selective TRPV1 receptor antagonist, AMG9810, at a dose that reversed CFA-induced thermal hyperalgesia failed to reduce CFA-induced ongoing pain or guarding behavior. Conclusions These data demonstrate that inflammation induces both ongoing pain and evoked hypersensitivity that can be differentiated on the basis of time course. Ongoing pain (a is transient, (b driven by peripheral input resulting from the injury, (c dependent on TRPV1 positive



    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A; Redl, Heinz; Tracey, Kevin J.


    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and aft...

  13. Variant position of the medial plantar nerve


    Astik RB; Dave UH; Gajendra KS


    Knowledge of variation of position of the medial plantar nerve is important for the forefoot surgeon for plantar reconstruction, local injection therapy and an excision of interdigital neuroma. During routine dissection of 50-year-old female cadaver, we found the medial plantar nerve and vessels variably located between plantar aponeurosis and the muscles of the first layer of the sole of the right foot. Due to this variant position, the medial plantar nerve and vessels lose their protection ...

  14. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse. (United States)

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A


    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations.

  15. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology

    Directory of Open Access Journals (Sweden)

    Tetsade Piermartiri


    Full Text Available α-Linolenic acid (ALA is a nutraceutical found in vegetable products such as flax and walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB, brain-derived neurotrophic factor (BDNF, a major neuroprotective protein in brain, and downstream signaling pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review, we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman. Organophosphate (OP nerve agents are highly toxic chemical warfare agents and a threat to military and civilian populations. Once considered only for battlefield use, these agents are now used by terrorists to inflict mass casualties. OP nerve agents inhibit the critical enzyme acetylcholinesterase (AChE that rapidly leads to a cholinergic crisis involving multiple organs. Status epilepticus results from the excessive accumulation of synaptic acetylcholine which in turn leads to the overactivation of muscarinic receptors; prolonged seizures cause the neuropathology and long-term consequences in survivors. Current countermeasures mitigate symptoms and signs as well as reduce brain damage, but must be given within minutes after exposure to OP nerve agents supporting interest in newer and more effective therapies. The pleiotropic properties of ALA result in a coordinated molecular and cellular program to restore neuronal networks and improve cognitive function in soman-exposed animals. Collectively, ALA should be brought to the clinic to treat the long-term consequences of nerve agents in survivors. ALA may be an effective therapy for other acute and chronic neurodegenerative disorders.

  16. The impaired activity of sensory afferent nerves in diabetes mellitus of rats in acute myocardial ischemia and reperfusion%糖尿病诱发大鼠神经退化及其对心肌缺血-再灌注神经反应性病理改变的影响

    Institute of Scientific and Technical Information of China (English)

    刘超杰; 李兔平; 郭政


    myocardial ischemia-reper-fusion,indicating impairment of adaptive reactivity of neuro-endocrine function of cardiac sensory nerves.%目的:通过观察分析糖尿病大鼠心脏感觉神经病变及其在心肌缺血-再灌注中上胸段背根神经节(DRG)内 P 物质(SP)、降钙素基因相关肽(CGRP)表达的变化,探讨糖尿病诱发感觉神经退化及其对心肌缺血-再灌注神经反应性病理改变的影响。方法雄性 SD 大鼠32只,180~200 g,其中16只以高糖高脂饲料喂养14周,并于喂养高糖高脂饲料4周后腹腔注射小剂量链脲佐菌素(STZ,35 mg/kg)制作糖尿病大鼠(DM 组)模型;另外16只采用一般饲料喂养作为对照组(C 组)。实验中每周测量一次甩尾潜伏期。DM 组注射 STZ 10周后随机分为糖尿病缺血-再灌注组(DM-IR组)、糖尿病假手术组(DM-Sham 组)两个亚组,采用结扎左冠状动脉前降支30 min 再灌注120 min的方法制备心脏缺血-再灌注模型。C 组随机分为缺血-再灌注组(C-IR 组)和假手术组(C-Sham 组)两个亚组。取 T1~5 DRG,采用免疫荧光技术和 ELISA 检测 SP 和 CGRP 的表达。结果与 C 组比较,第5~10周 DM 组大鼠甩尾潜伏期明显延长(P <0.01)。与 C-Sham 组比较,DM-Sham 组 DRG内 CGRP 和 SP 含量明显降低(P <0.01和 P <0.05)。与 C-IR 组比较,DM-IR 组 DRG 内 CGRP 和SP 含量均明显降低(P <0.01)。与 DM-Sham 组比较,DM-IR 组 DRG 内 CGRP 含量明显升高(P <0.01)。结论糖尿病诱发显著感觉神经功能退化;糖尿病大鼠在心肌缺血-再灌注中支配心脏的感觉神经细胞内 CGRP 和 SP 显著低于非糖尿病大鼠,提示神经细胞的反应性减退。

  17. Gut vagal afferents differentially modulate innate anxiety and learned fear. (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs


    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  18. The correlated blanching of synaptic bodies and reduction in afferent firing rates caused by transmitter-depleting agents in the frog semicircular canal (United States)

    Guth, P.; Norris, C.; Fermin, C. D.; Pantoja, M.


    Synaptic bodies (SBs) associated with rings of synaptic vesicles and well-defined, pre- and post-synaptic membrane structures are indicators of maturity in most hair cell-afferent nerve junctions. The role of the SBs remains elusive despite several experiments showing that they may be involved in storage of neurotransmitter. Our results demonstrate that SBs of the adult posterior semicircular canal (SCC) cristae hair cells become less electron dense following incubation of the SCC with the transmitter-depleting drug tetrabenazine (TBZ). Objective quantification and comparison of the densities of the SBs in untreated and TBZ-treated frog SCC demonstrated that TBZ significantly decreased the electron density of SBs. This reduction in electron density was accompanied by a reduction in firing rates of afferent fibers innervating the posterior SCC. A second transmitter-depleting drug, guanethidine, previously shown to reduce the electron density of hair cell SBs, also reduced the firing rates of afferent fibers innervating the posterior SCC. In contrast, the electron density of dense granules (DG), similar in size and shape to synaptic bodies (SB) in hair cells, did not change after incubation in TBZ, thus indicating that granules and SBs are not similar in regard to their electron density. The role of SBs in synaptic transmission and the transmitter, if any, stored in the SBs remain unknown. Nonetheless, the association of the lessening of electron density with a reduction in afferent firing rate provides impetus for the further investigation of the SB's role in neurotransmission.

  19. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    Directory of Open Access Journals (Sweden)

    Catalina Valdés-Baizabal

    Full Text Available The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs. Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.

  20. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat. (United States)

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario


    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.

  1. Role of the vagus nerve in the development and treatment of diet-induced obesity. (United States)

    de Lartigue, Guillaume


    This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie-rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high-fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade-induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity.

  2. Task-dependent effects evoked by foot muscle afferents on leg muscle activity in humans. (United States)

    Abbruzzese, M; Rubino, V; Schieppati, M


    The effect of low intensity electrical stimulation of the posterior tibial nerve (PTN) at the ankle on the active triceps surae (TS) muscles was studied in normal subjects, both in a prone position and while standing. PTN stimulation regularly evoked the H-reflex in the flexor digitorum brevis and, in the prone position, a short-latency facilitatory effect in the soleus muscle. During standing, the facilitatory effect was preceded by a clear-cut reduction in electromyograph (EMG) activity. The inhibition-facilitation sequence was evoked in the gastrocnemii under both conditions, on average, though individual differences were present. An EMG modulation similar to that observed under standing conditions was present also in the prone position when subjects pressed the sole of the foot against the wall. Stimulation of sural or digital nerves did not evoke similar effects. It is concluded that foot muscle afferents establish oligosynaptic connections transmitting mixed effects to the TS motoneuronal pool, and that contact with the sole of the foot plays an enabling role for the inhibitory pathway directed to the soleus muscle.

  3. Presence of neuropeptide FF receptors on primary afferent fibres of the rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Zajac, J.-M. [Laboratoire de Pharmacologie et de Toxicologie Fondamentales, C.N.R.S., 205 Route de Narbonne, 31077 Toulouse Cedex (France); Kar, S. [Douglas Hospital Research Centre and Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Verdun, Quebec H4H1R3 (Canada); Gouarderes, C. [Laboratoire de Pharmacologie et de Toxicologie Fondamentales, C.N.R.S., 205 Route de Narbonne, 31077 Toulouse Cedex (France)


    A radioiodinated analogue of neuropeptide FF, [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF, was used as a selective probe to label neuropeptide FF receptors in the rat spinal cord. Following neonatal capsaicin treatment, dorsal rhizotomy or sciatic nerve section, the distribution and possible alterations of spinal cord specific [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF binding sites were evaluated using in vitro quantitative receptor autoradiography. In normal rats, the highest densities of sites were observed in the superficial layers of the dorsal horn (laminae I-II) whereas moderate to low amounts of labelling were seen in the deeper (III-VI) laminae, around the central canal, and in the ventral horn. Capsaicin-treated rats showed a bilateral decrease (47%) in [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF binding in all spinal areas. Unilateral sciatic nerve section and unilateral dorsal rhizotomy induced significant depletions (15-27%) in [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF labelling in the ipsilateral dorsal horn.These results suggest that a proportion of neuropeptide FF receptors is located on primary afferent terminals of the dorsal horn and could thus play a role in the modulation of nociceptive transmission. (Copyright (c) 1996 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. 促红细胞生成素及其受体与视神经视网膜疾病%The protective effects of erythropoietin/erythropoietin receptor system on optic nerve and retinal diseases

    Institute of Scientific and Technical Information of China (English)

    解正高; 庄朝荣


    Erythropoietin(EPO) has an anti-apoptotic effect,and promotes the proliferation and differentiation of erythroid progenitor cells. Several studies have indicated that EPO can protect photoreceptor cells from the lightinduced retinal degeneration ;protect retinal neurons from ischemia-reperfusion injury and retinal ganglion cells after acute and chronic ocular hypertension; promote ganglion cell survival and axonal regeneration after optic nerve transaction; attenuate inflammation in multiple sclerosis optic neuritis; reduce the permeability of the retinal barrier and protect retinal neurons in diabetic retinopathy; enhance the stability of hypoxic retinal vessels in retinopathy of prematurity. Herein,we review the distribution of EPO and its receptor in retina,their expression in animal model of retinal diseases,and their effects and mechanisms in protection of retinal neurons and optic nerve.%促红细胞生成素(EPO)具有促进红系祖细胞增生和分化的作用,其在光诱导性视网膜变性、视网膜缺血-再灌注损伤、急慢性高眼压、视神经损伤、多发性硬化性视神经炎、糖尿病视网膜病变(DR)、早产儿视网膜病变(ROP)等视神经视网膜疾病模型中的神经保护作用也受到了关注.就EPO及其受体在视网膜的分布、其在视神经视网膜病变模型中的表达情况及其对视网膜神经元的保护作用和机制方面的研究进展进行综述.

  5. Polycystic Ovary Syndrome: Aggressive or Protective Factor for the Retina? Evaluation of Macular Thickness and Retinal Nerve Fiber Layers Using High-Definition Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    José Edvan de Souza-Júnior


    Full Text Available Objective. To compare macular thickness (MT and retinal nerve fiber layers (RNFL between women with polycystic ovary syndrome (PCOS and healthy women. Materials and Methods. The study included 45 women with PCOS and 47 ovulatory women undergoing clinical-gynecological and ophthalmic evaluations, including measurement of MT, RNFL, and optic disc parameters using optical coherence tomography. Results. The superior RNFL around the optic nerve was significantly thicker in PCOS than in healthy volunteers (P=0.036. After stratification according to insulin resistance, the temporal inner macula (TIM, the inferior inner macula (IIM, the nasal inner macula (NIM, and the nasal outer macula (NOM were significantly thicker in PCOS group than in control group (P<0.05. Both the presence of obesity associated with insulin resistance (P=0.037 and glucose intolerance (P=0.001 were associated with significant increase in the PC1 mean score, relative to MT. A significant increase in the PC2 mean score occurred when considering the presence of metabolic syndrome (P<0.0001. There was a significant interaction between obesity and inflammation in a decreasing mean PC2 score relative to macular RNFL thickness (P=0.034. Conclusion. Decreased macular RNFL thickness and increased total MT are associated with metabolic abnormalities, while increased RNFL thickness around the optic nerve is associated with hormonal changes inherent in PCOS.

  6. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O


    . The results show that K+-induced contraction of smooth muscle cells in the afferent arteriole is highly sensitive to chloride, whereas neurotransmitter release and ensuing contraction is not dependent on chloride. Thus, there are different activation pathways for depolarizing vasoconstrictors......-Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...

  7. Adipose afferent reflex: sympathetic activation and obesity hypertension. (United States)

    Xiong, X-Q; Chen, W-W; Zhu, G-Q


    Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.


    Zhilyaev, S Yu; Moskvin, A N; Platonova, T F; Demchenko, I T


    The activation of autonomic afferents (achieved through the vagus nerve (VN) electrical stimulation) on CNS O2 toxicity and cardiovascular function was investigated. In conscious rabbits at 5 ATA 02, prodromal signs of CNS O2 toxicity and convulsion latency were determined with and without vagus nerve (VN) stimulation. EEG, ECG and respiration were also recorded. In rabbits at 5 ATA, sympathetic overdrive and specific patterns on the EEG (synchronization of slow-waves), ECG (tachycardia) and respiration (respiratory minute volume increase) preceded motor convulsions. Vagus nerve stimulation increased parasympathetic component of autonomic drive and significantly delayed prodromal signs of oxygen toxicity and convulsion latency. Autonomic afferent input to the brain is a novel target for preventing CNS toxicity in HBO2.

  9. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure (United States)

    Lu, Jian


    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  10. 施普善对HSV-1感染乳鼠脑神经细胞保护作用研究%Study of Cerebrolysin protection on HSV - 1 infected fetal mice cerebral nerve cell

    Institute of Scientific and Technical Information of China (English)

    倪坤; 杨世炳; 唐久来; 吴德; 杨李; 段军; 张玲


    目的 探讨施普善对HSV-1感染小鼠神经细胞保护作用.方法 建立HSV-1感染神经系统的小鼠模型,将模型分为未治疗和施普善治疗组,同时设正常对照组,比较各组小鼠病死率、血清NO、IL-lβ水平变化和电镜下小鼠神经细胞形态结构变化.结果 施普善治疗组小鼠病死率、血清NO及IL-1β水平均比未治疗组明显降低,差异有统计学意义(P<0.01);电镜下施普善治疗组小鼠神经细胞,髓鞘病变均较轻.结论 施普善可能通过降低HSV-1感染小鼠血清NO、IL-1β水平,减轻神经细胞的炎症反应及细胞因子引起的神经毒性作用,达到对神经细胞的保护作用.%Objective To study Cerebrolysin protection on the mice cerebral nerve cells which were infected HSV - 1. Methods The HSV-1 infectod rats model were built, then the rats were divided into two groups:cerebrolysin -treated group and untreated group, meanwhile the normal control group was set. The mortality rate, NO and IL - 1β levels in serum were detected, and the variations of nerve cells were examined under microscope. Results The mortality rate, NO and IL - lβ levels in blood in Cerebrolysin - treated group were obviously lower than those in untreated group (P <0.01 ). Nerve cells were damaged slightly and myelin sheath changed gently under microscope in Cerebrolysin - treated group. Conclusion The protective mechanism of Cerebrolysin for nerve cell can cut down NO and IL - 1β levels in serum of rats with HSV - 1 infection and lessen inflammatory reaction in neurocytes and the neurotoxic action caused by cytokines.

  11. 颈部迷走神经副节瘤术中的神经保护和功能修复%Protection and functional repair of vagus nerve during the operation of cervical vagal paraganglioma

    Institute of Scientific and Technical Information of China (English)

    李文; 陈哲; 吴瑞卿; 张文燕; 鲁昌立


    Objective:To explore the clinical anatomy and the methods to protect or reconstruct the continuity and function of vagus nerve during the operation of cervical vagal paraganglioma. Method:Six cases of vagal paraganglioma were reviewed. All tumors were identified to wrap the cervical vagus nerve stem and excised during surgery. The operative modality was to trace the vagus nerve stem inside the tumor as far as possible, to reconstruct the continuity by way of vagus nerve anastamosis (3/6) or alternatively, other motor nerve transplantation (3/6). Postoperative treatment included steroid, neurotrophic medication and voice and swallowing rehabilitation. Result: Two cases of the recurrent paraganglioma experienced aspiration during swallowing preoperatively and no aspiration after surgery. Choking was gradually reduced in four recurrent cases half to one year postoperatively. Hoarseness was improved in five cases (5/6) half to one year postoperatively, while one case remained prolonged obvious hoarseness. Three months postoperatively, the vocal cord fibrillation at the tumor-related side was observed during pronunciation in the end-to-end anastamosis cases(3/6) , sublingual nerve-transplanted case(l/6) and deep cervical nerve-transplanted cases(l/6) under fiberoptic laryngoscope, and the mobility was even more obvious at the time of half an year postoperatively. While in another deep cervical nerve-transplanted case(l/6), the vocal cord demonstrated no obvious fibrillation. Conclusion:To carefully identify and preserve the vagus nerve fibers as much as possible during the operation of cervical vagal paraganglioma could significantly eliminate postoperative hoarseness and aspiration. End-to-end anastamosis, deep cervical nerve or sublingual nerve transplantation to resume the continuity of vagus nerve may improve the mobility of vocal cord thus the quality of voice and swallowing.%目的:探讨颈部迷走神经副节瘤的临床解剖特点、术中保护神经或神

  12. Comparison of safety and efficiency of microendoscopic discectomy with automatic nerve retractor and with nerve hook


    Yin, He-Ping; Wang, Yu-Peng; Qiu, Zhi-Ye; Du, Zhi-Cai; Wu, Yi-Min; Li, Shu-Wen


    This study compares the safety and efficiency of two techniques in microendoscopic discectomy (MED) for lumbar disc herniation. The two techniques are MED with automatic nerve retractor and MED with nerve hook which had been widely used for many years. The former involves a newly developed MED device which contains three parts to protect nerve roots during operation. Four hundred and twenty-eight patients underwent MED treatments between October 2010 and September 2015 were recruited and rand...

  13. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. (United States)

    Raybould, Helen E


    Chemosensing in the gastrointestinal tract is less well understood than many aspects of gut mechanosensitivity; however, it is important in the overall function of the GI tract and indeed the organism as a whole. Chemosensing in the gut represents a complex interplay between the function of enteroendocrine (EEC) cells and visceral (primarily vagal) afferent neurons. In this brief review, I will concentrate on a new data on endocrine cells in chemosensing in the GI tract, in particular on new findings on glucose-sensing by gut EEC cells and the importance of incretin peptides and vagal afferents in glucose homeostasis, on the role of G protein coupled receptors in gut chemosensing, and on the possibility that gut endocrine cells may be involved in the detection of a luminal constituent other than nutrients, the microbiota. The role of vagal afferent pathways as a downstream target of EEC cell products will be considered and, in particular, exciting new data on the plasticity of the vagal afferent pathway with respect to expression of receptors for GI hormones and how this may play a role in energy homeostasis will also be discussed.

  14. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms (United States)

    Travo, Cécile; Saleur, Aurélie; Broussy, Audrey; Brugeaud, Aurore; Chabbert, Christian


    ABSTRACT Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. PMID:27483344

  15. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms

    Directory of Open Access Journals (Sweden)

    Sophie Gaboyard-Niay


    Full Text Available Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms.

  16. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons. (United States)

    Alvarez, Francisco J; Titus-Mitchell, Haley E; Bullinger, Katie L; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C


    Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75-95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons.

  17. Brain imaging signatures of the relationship between epidermal nerve fibers and heat pain perception. (United States)

    Tseng, Ming-Tsung; Kong, Yazhuo; Chiang, Ming-Chang; Chao, Chi-Chao; Tseng, Wen-Yih I; Hsieh, Sung-Tsang


    Although the small-diameter primary afferent fibers in the skin promptly respond to nociceptive stimuli and convey sensory inputs to the central nervous system, the neural signatures that underpin the relationship between cutaneous afferent fibers and pain perception remain elusive. We combined skin biopsy at the lateral aspect of the distal leg, which is used to quantify cutaneous afferent fibers, with fMRI, which is used to assess brain responses and functional connectivity, to investigate the relationship between cutaneous sensory nerves and the corresponding pain perception in the brain after applying heat pain stimulation to the dorsum of the right foot in healthy subjects. During painful stimulation, the degree of cutaneous innervation, as measured by epidermal nerve fiber density, was correlated with individual blood oxygen level-dependent (BOLD) signals of the posterior insular cortex and of the thalamus, periaqueductal gray, and rostral ventromedial medulla. Pain perception was associated with the activation of the anterior insular cortex and with the functional connectivity from the anterior insular cortex to the primary somatosensory cortex during painful stimulation. Most importantly, both epidermal nerve fiber density and activity in the posterior insular cortex showed a positive correlation with the strength of coupling under pain between the anterior insular cortex and the primary somatosensory cortex. Thus, our findings support the notion that the neural circuitry subserving pain perception interacts with the cerebral correlates of peripheral nociceptive fibers, which implicates an indirect role for skin nerves in human pain perception.

  18. Mechanisms involved in the depolarization of cutaneous afferents produced by segmental and descending inputs in the cat spinal cord. (United States)

    Jiménez, I; Rudomin, P; Solodkin, M


    The relative contribution of specific and unspecific (potassium) components involved in the generation of primary afferent depolarization (PAD) of cutaneous fibres was analyzed in the spinal cord of the anesthetized cat. To this end we examined the correlation between the intraspinal threshold changes of single afferent fibres in the sural nerve produced by segmental and descending inputs and the negative DC potential shifts produced by these same stimuli at the site of excitability testing, the latter taken as indicators of the changes in extracellular concentration of potassium ions. Stimulation of the ipsilateral brain-stem reticular formation and of the contralateral red nucleus with 100-200 Hz trains reduced very effectively the intraspinal threshold of sural nerve fibres ending in the dorsal horn practically without producing any negative DC potential shifts at the site of excitability testing. However, negative DC potential shifts were produced more ventrally, in the intermediate nucleus and/or motor nucleus. Stimulation of the sural and superficial peroneus nerves with pulses at 2 Hz and strengths below 2 xT, also reduced the intraspinal threshold of single SU fibres without producing significant DC potential changes at the site of excitability testing. On the other hand, 100 Hz trains with strengths above 2 xT produced negative DC potential shifts and a proportional reduction of the intraspinal threshold of the SU fibres. The PAD of sural fibres produced by stimulation of rubro-spinal and reticulo-spinal fibres as well as by stimulation of sensory nerves with low frequency trains was unaffected or slightly increased, by i.v. injection of strychnine (0.2 mg/kg), but was readily abolished 5-10 min after the i.v. injection of picrotoxin (2 mg/kg). The results suggest that activation of reticulo-spinal and rubro-spinal fibres, as well as stimulation of cutaneous nerves with low frequencies and low strengths, produce PAD of cutaneous fibres involving activation

  19. Short-interval intracortical inhibition is modulated by high-frequency peripheral mixed nerve stimulation. (United States)

    Murakami, Takenobu; Sakuma, Kenji; Nomura, Takashi; Nakashima, Kenji


    Cortical excitability can be modulated by manipulation of afferent input. We investigated the influence of peripheral mixed nerve stimulation on the excitability of the motor cortex. Motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the right abductor pollicis brevis (APB), extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles were evaluated using paired-pulse transcranial magnetic stimulation (TMS) before and after high-frequency peripheral mixed nerve stimulation (150 Hz, 30 min) over the right median nerve at the wrist. The MEP amplitude and SICI of the APB muscle decreased transiently 0-10 min after the intervention, whereas the ICF did not change. High-frequency peripheral mixed nerve stimulation reduced the excitability of the motor cortex. The decrement in the SICI, which reflects the function of GABA(A)ergic inhibitory interneurons, might compensate for the reduced motor cortical excitability after high-frequency peripheral mixed nerve stimulation.

  20. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report

    Directory of Open Access Journals (Sweden)

    De Cicco Vincenzo


    Full Text Available Abstract Introduction A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. Case presentation A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. Conclusions A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be

  1. Characteristics of rostral solitary tract nucleus neurons with identified afferent connections that project to the parabrachial nucleus in rats. (United States)

    Suwabe, Takeshi; Bradley, Robert M


    Afferent information derived from oral chemoreceptors is transmitted to second-order neurons in the rostral solitary tract nucleus (rNST) and then relayed to other CNS locations responsible for complex sensory and motor behaviors. Here we investigate the characteristics of rNST neurons sending information rostrally to the parabrachial nucleus (PBN). Afferent connections to these rNST-PBN projection neurons were identified by anterograde labeling of the chorda tympani (CT), glossopharyngeal (IX), and lingual (LV) nerves. We used voltage- and current-clamp recordings in brain slices to characterize the expression of both the transient A-type potassium current, IKA and the hyperpolarization-activated inward current, Ih, important determinants of neuronal repetitive discharge characteristics. The majority of rNST-PBN neurons express IKA, and these IKA-expressing neurons predominate in CT and IX terminal fields but were expressed in approximately half of the neurons in the LV field. rNST-PBN neurons expressing Ih were evenly distributed among CT, IX and LV terminal fields. However, expression patterns of IKA and Ih differed among CT, IX, and LV fields. IKA-expressing neurons frequently coexpress Ih in CT and IX terminal fields, whereas neurons in LV terminal field often express only Ih. After GABAA receptor block all rNST-PBN neurons responded to afferent stimulation with all-or-none excitatory synaptic responses. rNST-PBN neurons had either multipolar or elongate morphologies and were distributed throughout the rNST, but multipolar neurons were more often encountered in CT and IX terminal fields. No correlation was found between the biophysical and morphological characteristics of the rNST-PBN projection neurons in each terminal field.

  2. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing


    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  3. Protective

    Directory of Open Access Journals (Sweden)

    Wessam M. Abdel-Wahab


    Full Text Available Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH and the activity of superoxide dismutase (SOD, catalase (CAT, glutathione S-transferase (GST and glutathione peroxidase (GPx were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

  4. Presynaptic inhibition of soleus Ia afferents does not vary with center of pressure displacements during upright standing. (United States)

    Johannsson, J; Duchateau, J; Baudry, S


    The present work was designed to investigate the presynaptic modulation of soleus Ia afferents with the position and the direction of the displacement of the center of pressure (CoP) during unperturbed upright standing and exaggerated CoP displacements in young adults. Hoffmann (H) reflex was evoked in the soleus by stimulating the tibial nerve at the knee level. Modulation of Ia presynaptic inhibition was assessed by conditioning the H reflex with fibular nerve (D1 inhibition) and femoral nerve (heteronymous facilitation) stimulation. Leg muscle activity was assessed by electromyography (EMG). The results indicate that in unperturbed standing and exaggerated CoP displacements, the H-reflex amplitude was greater during forward than backward CoP direction (pEMG was greater during forward than backward CoP direction and during anterior than posterior position in both experimental conditions (pmodulation of the unconditioned H reflex with CoP direction was positively associated with the corresponding changes in soleus EMG (r(2)>0.34). The tibialis anterior EMG did not change during unperturbed standing, but was greater for backward than forward CoP direction during exaggerated CoP displacements. In this experimental condition, soleus EMG was negatively associated with tibialis anterior EMG (r(2)=0.81). These results indicate that Ia presynaptic inhibition is not modulated with CoP direction and position, but rather suggest that CoP displacements induced changes in excitability of the soleus motor neuron pool.

  5. A role for uninjured afferents in neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    Richard A. Meyer; Matthias Ringkamp


    Diseases and injuries to the nervous system can lead to a devastating chronic pain condition called neuropathic pain. We review changes that occur in the peripheral nervous system that may play a role in this disease. Common animal models for neuropathic pain involve an injury to one or more peripheral nerves. Following such an injury, the nerve fibers that have been injured exhibit many abnormal properties including the development of spontaneous neural activity as well as a change in the expression of certain genes in their cell body. Recent data indicate that adjacent, uninjured nerve fibers also exhibit significant changes. These changes are thought to be driven by injury-induced alterations in the milieu surrounding the uninjured nerve and nerve terminals. Thus, alteration in neural signaling in both injured and uninjured neurons play a role in the development of neuropathic pain after peripheral nerve injury.

  6. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    Energy Technology Data Exchange (ETDEWEB)

    AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman, Av. Roca 2200, PC 4000 (Argentina); Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina)


    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  7. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity (United States)

    Albarracín, A. L.; Farfán, F. D.; Felice, C. J.


    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  8. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis

    DEFF Research Database (Denmark)

    Roos, Ewa M.; Herzog, Walter; Block, Joel A


    Lower-extremity muscle strength and afferent sensory dysfunction, such as reduced proprioceptive acuity, are potentially modifiable putative risk factors for knee osteoarthritis (OA). Findings from current studies suggest that muscle weakness is a predictor of knee OA onset, while there is confli...... with previous knee injuries) are easily identified, and may benefit from exercise interventions to prevent or delay OA onset....... there is conflicting evidence regarding the role of muscle weakness in OA progression. In contrast, the literature suggests a role for afferent sensory dysfunction in OA progression but not necessarily in OA onset. The few pilot exercise studies performed in patients who are at risk of incident OA indicate...... a possibility for achieving preventive structure or load modifications. In contrast, large randomized controlled trials of patients with established OA have failed to demonstrate beneficial effects of strengthening exercises. Subgroups of individuals who are at increased risk of knee OA (such as those...

  9. Distinct recurrent versus afferent dynamics in cortical visual processing. (United States)

    Reinhold, Kimberly; Lien, Anthony D; Scanziani, Massimo


    How intracortical recurrent circuits in mammalian sensory cortex influence dynamics of sensory representation is not understood. Previous methods could not distinguish the relative contributions of recurrent circuits and thalamic afferents to cortical dynamics. We accomplish this by optogenetically manipulating thalamus and cortex. Over the initial 40 ms of visual stimulation, excitation from recurrent circuits in visual cortex progressively increased to exceed direct thalamocortical excitation. Even when recurrent excitation exceeded thalamic excitation, upon silencing thalamus, sensory-evoked activity in cortex decayed rapidly, with a time constant of 10 ms, which is similar to a neuron's integration time window. In awake mice, this cortical decay function predicted the time-locking of cortical activity to thalamic input at frequencies thalamocortical synapses disrupted the fidelity of sensory transmission. Thus, we determine dynamics intrinsic to cortical recurrent circuits that transform afferent input in time.

  10. Effect of somatic nerve stimulation on the kidney in intact, vagotomized and carotid sinus-denervated rats. (United States)

    Davis, G; Johns, E J


    1. The influence of cardiopulmonary and arterial baroreceptors on the renal nerve-dependent functional responses of the kidney to electrical stimulation of somatic afferent nerves was studied in pentobarbitone-anaesthetized rats. 2. Electrical stimulation of the left brachial nerve plexus at 3 Hz, 0.2 ms and 15 V in the intact animals increased blood pressure by 22%, and while renal perfusion pressure was maintained at pre-stimulus levels, renal blood flow and glomerular filtration rate decreased by 14 and 22% respectively. At the same time urine flow rate and absolute and fractional sodium excretion decreased by 36, 42 and 27% respectively. In animals subjected to acute renal nerve section these renal functional responses could not be elicited. 3. Following bilateral vagotomy the systemic and renal haemodynamic responses to brachial nerve stimulation were similar to the intact group. However, urine flow rate and absolute and fractional sodium excretions decreased by 50, 59 and 47% respectively, responses which were significantly greater than in the intact group. 4. In a group of rats in which the carotid sinus nerves had been sectioned, stimulation of the brachial plexus caused reductions of renal blood flow and glomerular filtration rate of the same magnitude as in the intact group; however, urine flow rate and absolute and fractional sodium excretion fell by 51, 60 and 48%, respectively, which were significantly larger than in the intact group. 5. These results demonstrate that the afferent nerve information arising from muscle joints and skin and carried via the brachial plexus caused reflex renal nerve-dependent reductions in renal haemodynamics and an antidiuresis and antinatriuresis. The cardiopulmonary and carotid sinus baroreceptors exert a tonic inhibitory action on these reflex renal responses insofar as they appeared to attenuate the antidiuretic and antinatriuretic responses to somatic afferent nerve stimulation.

  11. Enhanced Muscle Afferent Signals during Motor Learning in Humans. (United States)

    Dimitriou, Michael


    Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning.


    Institute of Scientific and Technical Information of China (English)

    Luo Pifu; Zhang Jingdong; Li Jishuo


    Neural pathways and synaptic connections from the trigeminal mesencephalic nucleus (Vme) neurons to the cranial motor nuclei were studied in the rat using double labelling methodologies of intracellular Neurobiotin staining combined with retrograde horseradish peroxidase (HRP) transport, anterograde biotinylated dextran amine (BDA) tracing combined with retrograde HRP transport, and a dual fluorescent labelling of BDA anterograde combined tracing with Cholera Toxin B (CTB) retrograde transport. Direct projections and synapses were demonstrated from Vme neuronal boutons to motoneurons (MNs) of the trigeminal motor nucleus (Vmo), the hypoglossal nucleus (Ⅻ) and the ambiguus nucleus (Amb). Indirect projections and pathways from Vme neurons to the cranial motor nuclei including Vmo, Ⅻ, the facial nucleus (Ⅶ) and the cervical spinal cord (C1~5) were seen to relay on their premotor neurons. The premotor neurons of above cranial motor nuclei were overlapped in bilateral premotor neuronal pool including the parvocellular reticular formation (PCRt) and its alpha division (PCRtA), the dorsomedial part of the spinal trigeminal nucleus oralis (Vodm), and interpolaris (Vidm), the medullary reticular nucleus dorsal division (MdD), the supratrigeminal region (Vsup) and the dorsomedial part of the principal trigeminal sensory nucleus (Vpdm).Synapses between Vme neuronal boutons and Vmo and Ⅻ MNs and Ⅻ premotor neurons were predominantly asymmetric.There were four types of synaptic organizations, i.e. synaptic convergence; synaptic divergence presynaptic inhibition and afferent feedforward inhibition seen between Vme boutons and Vmno, Ⅻ MNs and between Vme boutons and Ⅻ premotor neurons.The results of present studies have demonstrated direct pathways from the trigeminal proprioceptive afferents to Vmo, Ⅻ and Amb MNs, and indirect pathways from the trigeminal proprioceptive afferents to bilateral Vmno, Ⅻ, Ⅶ and C1~s via their premotor neurons. It provides

  13. Electrical Stimulation at the ST36 Acupoint Protects against Sepsis Lethality and Reduces Serum TNF Levels through Vagus Nerve- and Catecholamine-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Albino Villegas-Bastida


    Full Text Available Electrical vagus nerve (VN stimulation during sepsis attenuates tumor necrosis factor (TNF production through the cholinergic anti-inflammatory pathway, which depends on the integrity of the VN and catecholamine production. To characterize the effect of electroacupuncture at ST36 (EA-ST36 on serum TNF, IL-6, nitrite, and HMGB1 levels and survival rates, based on VN integrity and catecholamine production, a sepsis model was induced in rats using cecal ligation and puncture (CLP. The septic rats were subsequently treated with EA-ST36 (CLP+ST36, and serum samples were collected and analyzed for cytokines levels. The serum TNF, IL-6, nitrite, and HMGB1 levels in the CLP+ST36 group were significantly lower compared with the group without treatment, the survival rates were significantly higher (P<0.05, and the acute organ injury induced by CLP was mitigated by EA-ST36; however, when subdiaphragmatic vagotomy was performed, the serum levels of TNF in the CLP+ST36 group did not show a significant difference compared with the group without electrostimulation, and, similarly, no significant difference in serum TNF levels was found under the pharmacological blockade of catecholamines. These results suggest that in rats with CLP sepsis models EA-ST36 reduces serum TNF levels through VN- and atecholamine-dependent mechanisms.

  14. Electrical Stimulation at the ST36 Acupoint Protects against Sepsis Lethality and Reduces Serum TNF Levels through Vagus Nerve- and Catecholamine-Dependent Mechanisms (United States)

    Villegas-Bastida, Albino; Torres-Rosas, Rafael; Arriaga-Pizano, Lourdes Andrea; Flores-Estrada, Javier; Gustavo-Acosta, Altamirano; Moreno-Eutimio, Mario Adan


    Electrical vagus nerve (VN) stimulation during sepsis attenuates tumor necrosis factor (TNF) production through the cholinergic anti-inflammatory pathway, which depends on the integrity of the VN and catecholamine production. To characterize the effect of electroacupuncture at ST36 (EA-ST36) on serum TNF, IL-6, nitrite, and HMGB1 levels and survival rates, based on VN integrity and catecholamine production, a sepsis model was induced in rats using cecal ligation and puncture (CLP). The septic rats were subsequently treated with EA-ST36 (CLP+ST36), and serum samples were collected and analyzed for cytokines levels. The serum TNF, IL-6, nitrite, and HMGB1 levels in the CLP+ST36 group were significantly lower compared with the group without treatment, the survival rates were significantly higher (P < 0.05), and the acute organ injury induced by CLP was mitigated by EA-ST36; however, when subdiaphragmatic vagotomy was performed, the serum levels of TNF in the CLP+ST36 group did not show a significant difference compared with the group without electrostimulation, and, similarly, no significant difference in serum TNF levels was found under the pharmacological blockade of catecholamines. These results suggest that in rats with CLP sepsis models EA-ST36 reduces serum TNF levels through VN- and atecholamine-dependent mechanisms. PMID:25057275

  15. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura

    Directory of Open Access Journals (Sweden)

    Oksana eTuchina


    Full Text Available The Coenobitidae (Decapoda, Anomura, Paguroidea is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans.

  16. Modulation of short-latency afferent inhibition depends on digit and task-relevance. (United States)

    Asmussen, Michael J; Zapallow, Christopher M; Jacobs, Mark F; Lee, Kevin G H; Tsang, Philemon; Nelson, Aimee J


    Short-latency afferent inhibition (SAI) occurs when a single transcranial magnetic stimulation (TMS) pulse delivered over the primary motor cortex is preceded by peripheral electrical nerve stimulation at a short inter-stimulus interval (∼ 20-28 ms). SAI has been extensively examined at rest, but few studies have examined how this circuit functions in the context of performing a motor task and if this circuit may contribute to surround inhibition. The present study investigated SAI in a muscle involved versus uninvolved in a motor task and specifically during three pre-movement phases; two movement preparation phases between a "warning" and "go" cue and one movement initiation phase between a "go" cue and EMG onset. SAI was tested in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles in twelve individuals. In a second experiment, the origin of SAI modulation was investigated by measuring H-reflex amplitudes from FDI and ADM during the motor task. The data indicate that changes in SAI occurred predominantly in the movement initiation phase during which SAI modulation depended on the specific digit involved. Specifically, the greatest reduction in SAI occurred when FDI was involved in the task. In contrast, these effects were not present in ADM. Changes in SAI were primarily mediated via supraspinal mechanisms during movement preparation, while both supraspinal and spinal mechanisms contributed to SAI reduction during movement initiation.

  17. Modulation of short-latency afferent inhibition depends on digit and task-relevance.

    Directory of Open Access Journals (Sweden)

    Michael J Asmussen

    Full Text Available Short-latency afferent inhibition (SAI occurs when a single transcranial magnetic stimulation (TMS pulse delivered over the primary motor cortex is preceded by peripheral electrical nerve stimulation at a short inter-stimulus interval (∼ 20-28 ms. SAI has been extensively examined at rest, but few studies have examined how this circuit functions in the context of performing a motor task and if this circuit may contribute to surround inhibition. The present study investigated SAI in a muscle involved versus uninvolved in a motor task and specifically during three pre-movement phases; two movement preparation phases between a "warning" and "go" cue and one movement initiation phase between a "go" cue and EMG onset. SAI was tested in the first dorsal interosseous (FDI and abductor digiti minimi (ADM muscles in twelve individuals. In a second experiment, the origin of SAI modulation was investigated by measuring H-reflex amplitudes from FDI and ADM during the motor task. The data indicate that changes in SAI occurred predominantly in the movement initiation phase during which SAI modulation depended on the specific digit involved. Specifically, the greatest reduction in SAI occurred when FDI was involved in the task. In contrast, these effects were not present in ADM. Changes in SAI were primarily mediated via supraspinal mechanisms during movement preparation, while both supraspinal and spinal mechanisms contributed to SAI reduction during movement initiation.

  18. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. (United States)

    Hennig, R M


    Ascending auditory interneurons of the cricket, Teleogryllus commodus (Walker), were investigated using simultaneous intracellular and extracellular recording in order to identify units which had previously been characterized only by extracellular recording. The morphology and physiology of the large adapting unit (LAU: Fig. 1) and of the small tonic unit (STU: Fig. 2) of Teleogryllus correspond well to those of the ascending neuron 2 (AN2) and the ascending neuron 1 (AN1) of Gryllus (Figs. 1, 2), respectively. A summary of the ascending auditory interneurons described by various authors in 5 species of crickets is presented in order to establish common identities. Physiological evidence for direct connections between auditory afferents and the ascending auditory interneurons AN1 (STU) and AN2 (LAU) is presented. Simultaneous intracellular recordings from receptors and interneurons in response to sound as well as the activity of auditory interneurons upon electrical stimulation of the tympanal nerve reveal short and constant latencies of receptor-evoked synaptic activity in AN1 (STU) and AN2 (LAU).

  19. KCa1.1 is potential marker for distinguishing Ah-type baroreceptor neurons in NTS and contributes to sex-specific presynaptic neurotransmission in baroreflex afferent pathway. (United States)

    Zhang, Yu-Yao; Yan, Zhen-Yu; Qu, Mei-Yu; Guo, Xin-Jing; Li, Guo; Lu, Xiao-Long; Liu, Yang; Ban, Tao; Sun, Hong-Li; Qiao, Guo-Fen; Li, Bai-Yan


    Sexual-dimorphic neurocontrol of circulation has been described in baroreflex due largely to the function of myelinated Ah-type baroreceptor neurons (BRNs, 1st-order) in nodose. However, it remains unclear if sex- and afferent-specific neurotransmission could also be observed in the central synapses within nucleus of solitary track (NTS, 2nd-order). According to the principle of no mixed neurotransmission among afferents and differentiation of Ah- and A-types to iberiotoxin (IbTX) observed in nodose, the 2nd-order Ah-type BRNs are highly expected. To test this hypothesis, the excitatory post-synaptic currents (EPSCs) were recorded in identified 2nd-order BRNs before and after IbTX using brain slice and whole-cell patch. These results showed that, in male rats, the dynamics of EPSCs in capsaicin-sensitive C-types were dramatically altered by IbTX, but not in capsaicin-insensitive A-types. Interestingly, near 50% capsaicin-insensitive neurons in females showed similar effects to C-types, suggesting the existence of Ah-types in NTS, which may be the likely reason why the females had lower blood pressure and higher sensitivity to aortic depressor nerve stimulation via KCa1.1-mediated presynaptic glutamate release from Ah-type afferent terminals.

  20. Variant position of the medial plantar nerve

    Directory of Open Access Journals (Sweden)

    Astik RB


    Full Text Available Knowledge of variation of position of the medial plantar nerve is important for the forefoot surgeon for plantar reconstruction, local injection therapy and an excision of interdigital neuroma. During routine dissection of 50-year-old female cadaver, we found the medial plantar nerve and vessels variably located between plantar aponeurosis and the muscles of the first layer of the sole of the right foot. Due to this variant position, the medial plantar nerve and vessels lose their protection from the muscles of the first layer of the sole of the foot and became vulnerable for compression.

  1. Effect of hypergravity on the development of vestibulocerebellar afferent fibers (United States)

    Bruce, L. L.

    Gravity is a critical factor in the normal development of the vestibular system, as prolonged prenatal exposures to either micro- or hypergravity will alter the pattern of projections from specific vestibular organs to specific targets in the vestibular nuclei. This study addresses the effect of gravity on the development of vestibulocerebellar projections. In adult rats the semicircular canal afferents project mainly to the cerebellar nodulus whereas the otolith maculae project mainly to the ventral uvula of the cerebellum. To determine if the distribution pattern of these afferents is altered by exposures to altered gravity, 10 pregnant rats were exposed to hypergravity (1.5g) from embryonic day 12 (before vestibular ganglion neurons contact vestibular nuclei) to embryonic day 21 (near the time when the vestibular system becomes functional). Controls were exposed to Earth's gravity but otherwise received the same treatment. At the end of the exposure the embryos were deeply anesthetized and fixed by transcardiac perfusion with 4% paraformaldehyde in 0.1 M phosphate buffer (pH7.4). Filter strips coated with DiI and PTIR were implanted into the saccule (gravistatic vestibular receptor) or into the posterior vertical canal (angular acceleration receptor), and allowed to diffuse for 2 weeks at 37°C. Then the brains were dissected and sectioned for fluorescent confocal imaging. Examination of the control cerebella revealed that the canal and otolith afferents have reached the nodulus and uvula, and axons extend into the internal granular, Purkinje, and molecular layers. Projections from the saccule and posterior vertical canal were partially segregated into their respective domains, the uvula and nodulus. In contrast, in hypergravity-exposed rat fetuses the saccule and posterior vertical canal projections were poorly segregated, and both organs contributed labeled fibers to all layers of the nodulus and uvula. This contrasts with the increased afferent segregation

  2. Indirect optic nerve injury in two-wheeler riders in northeast India

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Harsha


    Full Text Available Purpose: To investigate the association of posterior indirect traumatic optic neuropathy and superior temporal orbital rim injury in two-wheeler riders and documentation of the clinical profile of such cases. Design: Retrospective observational study. Materials and Methods: Records of all patients reporting with cranio-orbital injury and vision loss following road traffic accidents between October 1994 and April 2006 were reviewed and from them cases with vision loss solely from indirect optic nerve injury were taken up for study. The prognostic significance of different presenting features, role of intravenous methyl prednisolone (IVMP and relative risk of superior orbital rim injury to posterior indirect traumatic optic neuropathy (at 95% confidence interval was calculated. Results: Out of 129 consecutive cases of cranio-orbital injury, 35 had posterior indirect traumatic optic neuropathy with minor ipsilateral superior temporal orbital rim trauma and none used any protective headwear. Presenting clinical features like relative afferent pupillary defect ( P = 0.365, optic disc status ( P = 0.518 and visual evoked potential (VEP ( P = 0.366 were disproportionate to visual loss. Only VEP had prognostic significance. The IVMP did not provide any added therapeutic benefit. The remaining 94 cases sustained direct blinding ocular trauma and 28 of them had associated intracranial pathology. The relative risk of superior temporal orbital rim injury to posterior indirect optic nerve trauma was 2.25. Conclusion: Superior temporal orbital rim injury, even when minor, carries a potential risk for development of blindness from indirect posterior indirect traumatic optic neuropathy in two-wheeler drivers. Presenting signs do not correlate with visual status. Only VEP has prognostic significance and the condition is untreatable.

  3. Bilateral sensory deprivation of trigeminal afferent fibres on corticomotor control of human tongue musculature: a preliminary study. (United States)

    Kothari, M; Baad-Hansen, L; Svensson, P


    Transcranial magnetic stimulation (TMS) has demonstrated changes in motor evoked potentials (MEPs) in human limb muscles following modulation of sensory afferent inputs. The aim of this study was to determine whether bilateral local anaesthesia (LA) of the lingual nerve affects the excitability of the tongue motor cortex (MI) as measured by TMS. The effect on MEPs after bilateral LA of the lingual nerve was studied, while the first dorsal interosseous (FDI) muscle served as a control in ten healthy participants. MEPs were measured on the right side of the tongue dorsum in four different conditions: (i) immediately prior to anaesthesia (baseline), (ii) during bilateral LA block of the lingual nerve, (iii) after anaesthesia had subjectively subsided (recovery) and (iv) 3 h after bilateral lingual block injection. MEPs were assessed using stimulus-response curves in steps of 10% of motor threshold (T). Eight stimuli were given at each stimulus level. The amplitudes of the tongue MEPs were significantly influenced by the stimulus intensity (P < 0·001) but not by condition (P = 0·186). However, post hoc tests showed that MEPS were statistically significantly higher during bilateral LA block condition compared with baseline at T + 40%, T + 50% and T + 60% (P < 0·028) and also compared with recovery at T + 60% (P = 0·010) as well as at 3 h after injection at T + 50% and T + 60% (P < 0·029). Bilateral LA block of the lingual nerve seems to be associated with a facilitation of the corticomotor pathways related to the tongue musculature.

  4. Nerve conduction velocity (United States)

    ... to measure the speed of the nerve signals. Electromyography (recording from needles placed into the muscles) is ... Often, the nerve conduction test is followed by electromyography (EMG). In this test, needles are placed into ...

  5. Common peroneal nerve dysfunction (United States)

    ... toe-out movements Tests of nerve activity include: Electromyography (EMG, a test of electrical activity in muscles) Nerve ... Peroneal neuropathy. In: Preston DC, Shapiro BE, eds. Electromyography and Neuromuscular Disorders . 3rd ed. Philadelphia, PA: Elsevier; ...

  6. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. (United States)

    Affleck, V S; Coote, J H; Pyner, S


    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine - BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold - FG or cholera toxin B subunit - CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS-PVN pathways.

  7. On the identification of sensory information from mixed nerves by using single-channel cuff electrodes

    Directory of Open Access Journals (Sweden)

    Udina Esther


    Full Text Available Abstract Background Several groups have shown that the performance of motor neuroprostheses can be significantly improved by detecting specific sensory events related to the ongoing motor task (e.g., the slippage of an object during grasping. Algorithms have been developed to achieve this goal by processing electroneurographic (ENG afferent signals recorded by using single-channel cuff electrodes. However, no efforts have been made so far to understand the number and type of detectable sensory events that can be differentiated from whole nerve recordings using this approach. Methods To this aim, ENG afferent signals, evoked by different sensory stimuli were recorded using single-channel cuff electrodes placed around the sciatic nerve of anesthetized rats. The ENG signals were digitally processed and several features were extracted and used as inputs for the classification. The work was performed on integral datasets, without eliminating any noisy parts, in order to be as close as possible to real application. Results The results obtained showed that single-channel cuff electrodes are able to provide information on two to three different afferent (proprioceptive, mechanical and nociceptive stimuli, with reasonably good discrimination ability. The classification performances are affected by the SNR of the signal, which in turn is related to the diameter of the fibers encoding a particular type of neurophysiological stimulus. Conclusions Our findings indicate that signals of acceptable SNR and corresponding to different physiological modalities (e.g. mediated by different types of nerve fibers may be distinguished.

  8. Angiotensin II, sympathetic nerve activity and chronic heart failure. (United States)

    Wang, Yutang; Seto, Sai-Wang; Golledge, Jonathan


    Sympathetic nerve activity has been reported to be increased in both humans and animals with chronic heart failure. One of the mechanisms believed to be responsible for this phenomenon is increased systemic and cerebral angiotensin II signaling. Plasma angiotensin II is increased in humans and animals with chronic heart failure. The increase in angiotensin II signaling enhances sympathetic nerve activity through actions on both central and peripheral sites during chronic heart failure. Angiotensin II signaling is enhanced in different brain sites such as the paraventricular nucleus, the rostral ventrolateral medulla and the area postrema. Blocking angiotensin II type 1 receptors decreases sympathetic nerve activity and cardiac sympathetic afferent reflex when therapy is administered to the paraventricular nucleus. Injection of an angiotensin receptor blocker into the area postrema activates the sympathoinhibitory baroreflex. In peripheral regions, angiotensin II elevates both norepinephrine release and synthesis and inhibits norepinephrine uptake at nerve endings, which may contribute to the increase in sympathetic nerve activity seen in chronic heart failure. Increased circulating angiotensin II during chronic heart failure may enhance the sympathoexcitatory chemoreflex and inhibit the sympathoinhibitory baroreflex. In addition, increased circulating angiotensin II can directly act on the central nervous system via the subfornical organ and the area postrema to increase sympathetic outflow. Inhibition of angiotensin II formation and its type 1 receptor has been shown to have beneficial effects in chronic heart failure patients.

  9. Optic Nerve Injury in a Patient with Chronic Allergic Conjunctivitis

    Directory of Open Access Journals (Sweden)

    Ribhi Hazin


    Full Text Available Manipulation of the optic nerve can lead to irreversible vision changes. We present a patient with a past medical history of skin allergy and allergic conjunctivitis (AC who presented with insidious unexplained unilateral vision loss. Physical exam revealed significant blepharospasm, mild lid edema, bulbar conjunctival hyperemia, afferent pupillary defect, and slight papillary hypertrophy. Slit lamp examination demonstrated superior and inferior conjunctival scarring as well as superior corneal scarring but no signs of external trauma or neurological damage were noted. Conjunctival cultures and cytologic evaluation demonstrated significant eosinophilic infiltration. Subsequent ophthalmoscopic examination revealed optic nerve atrophy. Upon further questioning, the patient admitted to vigorous itching of the affected eye for many months. Given the presenting symptoms, history, and negative ophthalmological workup, it was determined that the optic nerve atrophy was likely secondary to digital pressure from vigorous itching. Although AC can be a significant source of decreased vision via corneal ulceration, no reported cases have ever described AC-induced vision loss of this degree from vigorous itching and chronic pressure leading to optic nerve damage. Despite being self-limiting in nature, allergic conjunctivitis should be properly managed as extreme cases can result in mechanical compression of the optic nerve and compromise vision.

  10. Degeneration of primary afferent terminals following brachial plexus extensive avulsion injury in rats


    Muñetón-Gómez, Vilma; Taylor, Julian S.; Averill, Sharon; Priestley, John V.; Nieto-Sampedro, Manuel


    Important breakthroughs in the understanding regeneration failure in an injured CNS have been made by studies of primary afferent neurons. Dorsal rhizotomy has provided an experimental model of brachial plexus (BP) avulsion. This is an injury in which the central branches of primary afferents are disrupted at their point of entry into the spinal cord, bringing motor and sensory dysfunction to the upper limbs. In the present work, the central axonal organization of primary afferents was examin...

  11. The future of GI and liver research: editorial perspectives. IV. Visceral afferents: an update. (United States)

    Raybould, Helen E


    The number of articles published in American Journal of Physiology Gastrointestinal and Liver Physiology over the last 15 years on visceral afferents has increased dramatically. This reflects our growing ability to study the characteristics and function of visceral afferents and also the recognition of their importance in the maintenance of homeostasis and also in a number of pathophysiological conditions. However, there are several key unanswered questions concerning the function of visceral afferents that await further investigation.

  12. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.

    Directory of Open Access Journals (Sweden)

    James H Peters

    Full Text Available TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS. TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 µs that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5 direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.


    Institute of Scientific and Technical Information of China (English)

    于泓波; 于泓淼; 张锦


    目的:应用大鼠急性内脏炎症疼痛模型,研究胆碱能抗炎通路对急性内脏炎症疼痛的保护作用.方法:SD大鼠32只,随机分为4组.(1)假手术组(Sham);(2)疼痛模型组(EIP);(3)迷走神经切断疼痛模型组(VGX);(4)迷走神经电刺激疼痛模型组(STM),术毕即刻持续电刺激20min.各组模型制备完毕,电刺激后0,1,2h检测TNF-α,并每15min进行疼痛学评分,连续记录2h.结果:Sham组与EIP,VGX,STM组比较,在1h,2h时TNF-α有显著性差异,疼痛评分在120min内有显著性差异,EIP与VGX组比较TNF-α在1,2h时无差异,疼痛评分无差异.STM与VGX组及EIP组比较,TNF-α在1,2h时有显著性差异,疼痛评分在90min内有显著性差异.结论:电刺激迷走神经可以减轻急性内脏炎性疼痛,减轻TNF-α的释放,对急性内脏炎性疼痛具有保护作用.%Objective:To investigate the protective effect of electrical stimulation of efferent vagus on the acute inflammatory visceral pain of rats.Methods: 32 male Sprague-Dawley rats were randomly divided into four groups: Sham operation group; EIP gorup( acute inflammatory visceral pain model and bilateral cervical vagus nerve isolation), VGX group (bilateral cervical vagotomy after acute inflammatory visceral pain model) and STM group( after bilateral cervical vagus nerve isolation and acute inflammatory visceral pain model, the distal end of left vagus nerve trunk was stimulated by a stimulation module with constant voltage for 20 min immediately).Blood samples were collected at 0, 1, 2h after operation and pain scores were recorded every 15 minutes for 2 hours.Serum TNF-α was determined 0, 1, 2h after vagal stimulation.Results: Concentration of serum TNF-α significantly increased after establishment of acute inflammatory pain model ( P < 0.01 ).In STM group the serum TNF-α level and pain score were significantly decreased.Conclusion: Direct electrical stimulation of the peripheral vagus nerve can significantly attenuate peak

  14. The Physics of Nerves

    CERN Document Server

    Heimburg, Thomas


    The accepted model for nerve pulse propagation in biological membranes seems insufficient. It is restricted to dissipative electrical phenomena and considers nerve pulses exclusively as a microscopic phenomenon. A simple thermodynamic model that is based on the macroscopic properties of membranes allows explaining more features of nerve pulse propagation including the phenomenon of anesthesia that has so far remained unexplained.

  15. [The inflammatory reflex: the role of the vagus nerve in regulation of immune functions]. (United States)

    Mravec, B


    Experimental studies published in past years have shown an important role of the vagus nerve in regulating immune functions. Afferent pathways of this cranial nerve transmit signals related to tissue damage and immune reactions to the brain stem. After central processing of these signals, activated efferent vagal pathways modulate inflammatory reactions through inhibiting the synthesis and secretion of pro-inflammatory cytokines by immune cells. Therefore, pathways localized in the vagus nerve constitute the afferent and efferent arms of the so-called "inflammatory reflex" that participates in negative feedback regulation of inflammation in peripheral tissues. Activation of efferent pathways of the vagus nerve significantly reduces tissue damage in several models of diseases in experimental animals. Clinical studies also indicate the importance of the vagus nerve in regulating inflammatory reactions in humans. It is suggested that alteration of the inflammatory reflex underlies the etiopathogenesis of diseases characterized by exaggerated production of pro-inflammatory mediators. Therefore, research into the inflammatory reflex may create the basis for developing new approaches in the treatment of diseases with inflammatory components.

  16. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus. (United States)

    Lo, Fu-Sun; Erzurumlu, Reha S


    Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.

  17. Afferent-mediated modulation of the soleus muscle activity during the stance phase of human walking

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; do Nascimento, Omar Feix


    -mediated contribution from muscle group II afferents, cutaneous and proprioceptive afferents from the foot, and load-sensitive afferents to the soleus EMG. Slow-velocity, small-amplitude ankle trajectory modifications were combined with the pharmaceutical depression of group II polysynaptic pathways with tizanidine...... hydrochloride, anaesthetic blocking of sensory information from the foot with injections of lidocaine hydrochloride, and modulation of load feedback by increasing and decreasing the body load. The depression of the group II afferents significantly reduced the soleus response to the ankle trajectory...

  18. C-tactile afferent stimulating touch carries a positive affective value (United States)

    Pawling, Ralph; Cannon, Peter R.; McGlone, Francis P.; Walker, Susannah C.


    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major—smile muscle, positive affect & corrugator supercilii—frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other

  19. Sympathetic modulation of muscle spindle afferent sensitivity to stretch in rabbit jaw closing muscles. (United States)

    Roatta, S; Windhorst, U; Ljubisavljevic, M; Johansson, H; Passatore, M


    Previous reports showed that sympathetic stimulation affects the activity of muscle spindle afferents (MSAs). The aim of the present work is to study the characteristics of sympathetic modulation of MSA response to stretch: (i) on the dynamic and static components of the stretch response, and (ii) on group Ia and II MSAs to evaluate potentially different effects. In anaesthetised rabbits, the peripheral stump of the cervical sympathetic nerve (CSN) was stimulated at 10 impulses s(-1) for 45-90 s. The responses of single MSAs to trapezoidal displacement of the mandible were recorded from the mesencephalic trigeminal nucleus. The following characteristic parameters were determined from averaged trapezoidal responses: initial frequency (IF), peak frequency at the end of the ramp (PF), and static index (SI). From these, other parameters were derived: dynamic index (DI = PF - SI), dynamic difference (DD = PF - IF) and static difference (SD = SI - IF). The effects of CSN stimulation were also evaluated during changes in the state of intrafusal muscle fibre contraction induced by succinylcholine and curare. In a population of 124 MSAs, 106 units (85.4 %) were affected by sympathetic stimulation. In general, while changes in resting discharge varied among different units (Ia vs. II) and experimental conditions (curarised vs. non-curarised), ranging from enhancement to strong depression of firing, the amplitude of the response to muscle stretches consistently decreased. This was confirmed and detailed in a quantitative analysis performed on 49 muscle spindle afferents. In both the non-curarised (23 units) and curarised (26 units) condition, stimulation of the CSN reduced the response amplitude in terms of DD and SD, but hardly affected DI. The effects were equally present in both Ia and II units; they were shown to be independent from gamma drive and intrafusal muscle tone and not secondary to muscle hypoxia. Sympathetic action on the resting discharge (IF) was less

  20. Regulation of the renal sympathetic nerves in heart failure

    Directory of Open Access Journals (Sweden)

    Rohit eRamchandra


    Full Text Available Heart failure (HF is a serious debilitating condition with poor survival rates and an increasing level of prevalence. Heart failure is associated with an increase in renal norepinephrine spillover, which is an independent predictor of mortality in HF patients. The excessive sympatho-excitation that is a hallmark of heart failure has long-term effects that contribute to disease progression. An increase in directly recorded renal sympathetic nerve activity has also been recorded in animal models of heart failure. This review will focus on the mechanisms controlling sympathetic nerve activity to the kidney during normal conditions and alterations in these mechanisms during heart failure. In particular the roles of afferent reflexes and central mechanisms will be discussed.

  1. Kv1 channels and neural processing in vestibular calyx afferents

    Directory of Open Access Journals (Sweden)

    Frances L Meredith


    Full Text Available Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space.

  2. Low-dose levodopa protects nerve cells from oxidative stress and up-regulates expression of pCREB and CD39.

    Directory of Open Access Journals (Sweden)

    Shi-Ying Zhong

    Full Text Available OBJECTIVE: This study aimed to investigate the influence of low-dose levodopa (L-DOPA on neuronal cell death under oxidative stress. METHODS: PC12 cells were treated with L-DOPA at different concentrations. We detected the L-DOPA induced reactive oxygen species (ROS. Meanwhile, MTT and LDH assay were performed to determine the proliferation and growth of PC12 cells with or without ROS scavenger. In addition, after pretreatment with L-DOPA at different concentrations alone or in combination with CD39 inhibitor, PC12 cells were incubated with hydrogen peroxide (H2O2 and the cell viability was evaluated by MTT and LDH assay. In addition, the expression of pCREB and CD39 was detected by immunofluorescence staining and Western blot assay in both cells and rat's brain after L-DOPA treatment. RESULTS: After treatment with L-DOPA for 3 days, the cell proliferation and growth were promoted when the L-DOPA concentration was 30 µM. Low dose L-DOPA could protect the PC12 cells from H2O2 induced oxidative stress, which was compromised by CD39 inhibitor. In addition, the expression of CD39 and pCREB increased in both PC12 cells and rats' brain after L-DOPA treatment. CONCLUSIONS: L-DOPA at different concentrations has distinct influence on proliferation and growth of PC12 cells, and low dose (<30 µM L-DOPA protects PC12 cells against oxidative stress which might be related to the up-regulation of CD39 and pCREB expression.

  3. Study on Clinical Application of Nerve Monitor in Parotid Tumor Surgery

    Institute of Scientific and Technical Information of China (English)

    XU Liang-peng; JIA Bao-jun; AO Jian-hua; QU Dan-yang; SHENG Yan-jiao


    Objective The purpose of the study is to explore the application value of the nerve monitor adopted to pinpoint facial nerves before anatomization during a parotid tumor surgery. Methods Facial nerves of 36 patients were pinpointed by N800 nerve monitor produced by Shandong Weigao Group Medical Polymer Co. Ltd before being anatomized and exposed in parotid surgeries in order to protect the corresponding facial nerve branch and complete the related surgery. Results All the facial nerves of the 36 patients were located precisely and 108 related facial nerves were suc-cessfully anatomized and protected without any damage. Conclusion Pinpointing the facial nerve branch with a nerve monitor before anatomization pro-motes not only the efficiency of the surgery but also the safety of it and is proved to be more significant in a secondary surgery.

  4. Hippocampal plasticity after a vagus nerve injury in the rat

    Institute of Scientific and Technical Information of China (English)

    Giulia Ronchi; Vitaly Ryu; ong ling; Krzysztof Czaja


    Stimulation of the vagus nerve has been previously reported to promote neural plasticity and neurogenesis in the brain. Several studies also revealed plastic changes in the spinal cord after injuries to somatosensory nerves originating from both the brachial and lumbo-sacral plexuses. However, the neurogenic responses of the brain to the injury of the viscerosensory innervation are not as yet well understood. In the present study, we investigated whether cells in the dentate gyrus of the hippocampus respond to a chemical and physical damage to the vagus nerve in the adult rat. Intraperitoneal capsaicin administration was used to damage non-myelinated vagal afferents while subdiaphragmatic vagotomy was used to damage both the myelinated and non-myelinated vagal afferents. The 5-bromo-2-deoxyuridine (BrdU) incorporation together with cell-specific markers was used to study neural proliferation in subgranular zone, granule cell layer, molecular layer and hilus of the dentate gyrus. Microglia activation was determined by quantifying changes in the intensity of fluorescent staining with a primary antibody against ionizing calcium adapter-binding molecule 1. Results revealed that vagotomy decreased BrdU incorporation in the hilus 15 days after injury compared to the capsaicin group. Capsaicin administration decreased BrdU incorporation in the granular cell layer 60 days after the treatment. Capsaicin decreased the number of doublecortin-expressing cells in the dentate gyrus, whereas vagotomy did not alter the expression of doublecortin in the hippocampus. Both the capsaicin- and the vagotomy-induced damage to the vagus nerve decreased microglia activation in the hippocampus at 15 days after the injury. At 30 days post injury, capsaicin-treated and vagotomized rats revealed significantly more activated microglia. Our findings show that damage to the subdiaphragmatic vagus in adult rats is followed by microglia activation and long-lasting changes in the dentate gyrus

  5. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch;


    -oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen...

  6. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch;


    at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen......-oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical...

  7. VGLUT2-dependent glutamatergic transmission in primary afferents is required for intact nociception in both acute and persistent pain modalities. (United States)

    Rogoz, Katarzyna; Lagerström, Malin C; Dufour, Sylvie; Kullander, Klas


    Glutamate is an essential transmitter in pain pathways. However, its broad usage in the central and peripheral nervous system prevents us from designing efficient glutamate-based pain therapies without causing harmful side effects. The discovery of vesicular glutamate transporters (VGLUT1-3) has been a crucial step in describing specific glutamatergic neuronal subpopulations and glutamate-dependent pain pathways. To assess the role of VGLUT2-mediated glutamatergic contribution to pain transmission from the entire primary sensory population, we crossed our Vglut2(f/f) line with the Ht-Pa-Cre line. Such Vglut2-deficient mice showed significantly decreased, but not completely absent, acute nociceptive responses. The animals were less prone to develop an inflammatory-related state of pain and were, in the partial sciatic nerve ligation chronic pain model, much less hypersensitive to mechanical stimuli and did not develop cold allodynia or heat hyperalgesia. To take advantage of this neuropathic pain-resistant model, we analyzed Vglut2-dependent transcriptional changes in the dorsal spinal cord after nerve injury, which revealed several novel candidate target genes potentially relevant for the development of neuropathic pain therapeutics. Taken together, we conclude that VGLUT2 is a major mediator of nociception in primary afferents, implying that glutamate is the key somatosensory neurotransmitter.

  8. Task-dependent modulation of primary afferent depolarization in cervical spinal cord of monkeys performing an instructed delay task. (United States)

    Seki, Kazuhiko; Perlmutter, Steve I; Fetz, Eberhard E


    Task-dependent modulation of primary afferent depolarization (PAD) was studied in the cervical spinal cord of two monkeys performing a wrist flexion and extension task with an instructed delay period. We implanted two nerve cuff electrodes on proximal and distal parts of the superficial radial nerve (SR) and a recording chamber over a hemi-laminectomy in the lower cervical vertebrae. Antidromic volleys (ADVs) in the SR were evoked by intraspinal microstimuli (ISMS, 3-10 Hz, 3-30 microA) applied through a tungsten microelectrode, and the area of each ADV was measured. In total, 434 ADVs were evoked by ISMS in two monkeys, with onset latency consistently shorter in the proximal than distal cuffs. Estimated conduction velocity suggest that most ADVs were caused by action potentials in cutaneous fibers originating from low-threshold tactile receptors. Modulation of the size of ADVs as a function of the task was examined in 281 ADVs induced by ISMS applied at 78 different intraspinal sites. The ADVs were significantly facilitated during active movement in both flexion and extension (Pmodulation of PAD. This facilitation started 400-900 ms before the onset of EMG activity. Such pre-EMG modulation is hard to explain by movement-induced reafference and probably is associated with descending motor commands.

  9. A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex. (United States)

    Noda, Yoshihiro; Cash, Robin F H; Zomorrodi, Reza; Dominguez, Luis Garcia; Farzan, Faranak; Rajji, Tarek K; Barr, Mera S; Chen, Robert; Daskalakis, Zafiris J; Blumberger, Daniel M


    Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) enables noninvasive neurophysiological investigation of the human cortex. A TMS paradigm of short-latency afferent inhibition (SAI) is characterized by attenuation of the motor-evoked potential (MEP) and modulation of N100 of the TMS-evoked potential (TEP) when TMS is delivered to motor cortex (M1) following median nerve stimulation. SAI is a marker of cholinergic activity in the motor cortex; however, the SAI has not been tested from the prefrontal cortex. We aimed to explore the effect of SAI in dorsolateral prefrontal cortex (DLPFC). SAI was examined in 12 healthy subjects with median nerve stimulation and TMS delivered to M1 and DLPFC at interstimulus intervals (ISIs) relative to the individual N20 latency. SAI in M1 was tested at the optimal ISI of N20 + 2 ms. SAI in DLPFC was investigated at a range of ISI from N20 + 2 to N20 + 20 ms to explore its temporal profile. For SAI in M1, the attenuation of MEP amplitude was correlated with an increase of TEP N100 from the left central area. A similar spatiotemporal neural signature of SAI in DLPFC was observed with a marked increase of N100 amplitude. SAI in DLPFC was maximal at ISI N20 + 4 ms at the left frontal area. These findings establish the neural signature of SAI in DLPFC. Future studies could explore whether DLPFC-SAI is neurophysiological marker of cholinergic dysfunction in cognitive disorders.

  10. Interactions between visceral afferent signaling and stimulus processing

    Directory of Open Access Journals (Sweden)

    Hugo D Critchley


    Full Text Available Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed.

  11. Imaging the trigeminal nerve

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Radiology Department, Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Rua Prof. Lima Basto, 1093, Lisboa (Portugal)], E-mail:; Casselman, Jan [Department of Radiology, A. Z. St Jan Brugge and A. Z. St Augustinus Antwerpen Hospitals (Belgium)


    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  12. Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla. (United States)

    Hirvonen, Timo P; Minor, Lloyd B; Hullar, Timothy E; Carey, John P


    Gentamicin is toxic to vestibular hair cells, but its effects on vestibular afferents have not been defined. We treated anesthetized chinchillas with one injection of gentamicin (26.7 mg/ml) into the middle ear and made extracellular recordings from afferents after 5-25 (early) or 90-115 days (late). The relative proportions of regular, intermediate, and irregular afferents did not change after treatment. The spontaneous firing rate of regular afferents was lower (P galvanic currents was unaffected for all afferents. Intratympanic gentamicin treatment reduced the histological density of all hair cells by 57% (P = 0.04). The density of hair cells with calyx endings was reduced by 99% (P = 0.03), although some remaining hair cells had other features suggestive of type I morphology. Type II hair cell density was not significantly reduced. These findings suggest that a single intratympanic gentamicin injection causes partial damage and loss of vestibular hair cells, particularly type I hair cells or their calyceal afferent endings, does not damage the afferent spike initiation zones, and preserves enough hair cell synaptic activity to drive the spontaneous activity of vestibular afferents.

  13. CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents

    NARCIS (Netherlands)

    van de Wall, EHEM; Duffy, P; Ritter, RC


    Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhanc

  14. Total Reconstruction of the Afferent Loop for Treatment of Radiation-Induced Afferent Loop Obstruction with Segmental Involvement after Pancreaticoduodenectomy with Roux-en-Y Reconstruction

    Directory of Open Access Journals (Sweden)

    Konstantinos Blouhos


    Full Text Available As the literature on afferent loop obstruction (ALO after pancreaticoduodenectomy (PD is very limited, standardized rules for its management do not exist. Herein, we report the case of a 65-year-old male patient with chronic ALO who had undergone PD with single Roux-en-Y limb reconstruction and adjuvant chemoradiation therapy for pancreatic head adenocarcinoma 2 years earlier. The patient was brought to the operating room with the diagnosis of radiation enteritis of the afferent loop with segmental involvement and concurrent hepaticojejunostomy (HJ and pancreaticojejunostomy (PJ stricture. Complete mobilization of the afferent loop, removal of the affected segment and reconstruction were performed. Reconstruction of the afferent loop was a one-way option for the surgeons because the Roux-en-Y reconstruction limited endoscopic access to the afferent loop, and the segmental radiation injury of the afferent loop ruled out bypass surgery. However, mobilization of the affected segment through a field of dense adhesions and revision of the HJ and PJ were technically demanding.

  15. Bulbospinal inhibition of PAD elicited by stimulation of afferent and motor axons in the isolated frog spinal cord and brainstem. (United States)

    González, H; Jiménez, I; Rudomin, P


    1. In the isolated spinal cord and brainstem of the frog, stimulation of the brainstem (BS) with trains of 3-4 pulses at 60-400 Hz produced dorsal root potentials (DRPs). The lowest threshold sites eliciting DRPs were located at the level of the obex up to about 2.5 mm rostrally, 0.5-1.2 mm laterally, between 0.5 and 1.6 mm depth. This region corresponds to the bulbar reticular formation (RF). 2. Stimulation of the RF with strengths below those required to produce DRPs, very effectively inhibited the DRPs produced by stimulation of a neighboring dorsal root (DR-DRPs) as well as the DRPs produced by antidromic stimulation of the central end of motor nerves (VR-DRPs). The inhibition was detectable 20 ms after the first pulse of the conditioning train, attained maximal values between 50 and 100 ms and lasted more than 250 ms. 3. Stimulation of the bulbar RF increased the negative response (N1 response) produced in the motor pool by antidromic activation of motoneurons. The time course of the facilitation of the N1 response resembled that of the reticularly-induced inhibition of the VR-DRPs and DR-DRPs. 4. The present series of observations supports the existence of reticulo-spinal pathways that are able to inhibit the depolarization elicited in afferent fibers by stimulation of other afferent fibers or by antidromic activation of motor axons. This inhibition appears to be exerted on the PAD mediating interneurons and is envisaged as playing an important role in motor control.

  16. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure. (United States)

    Wang, Wei-Zhong; Gao, Lie; Wang, Han-Jun; Zucker, Irving H; Wang, Wei


    Several sympathoexcitatory reflexes, such as the cardiac sympathetic afferent reflex (CSAR) and arterial chemoreflex, are significantly augmented and contribute to elevated sympathetic outflow in chronic heart failure (CHF). This study was undertaken to investigate the interaction between the CSAR and the chemoreflex in CHF and to further identify the involvement of angiotensin II type 1 receptors (AT1Rs) in the nucleus of the tractus solitarius (NTS) in this interaction. CHF was induced in rats by coronary ligation. Acute experiments were performed in anesthetized rats. The chemoreflex-induced increase in cardiovascular responses was significantly greater in CHF than in sham-operated rats after either chemical or electrical activation of the CSAR. The inhibition of the CSAR by epicardial lidocaine reduced the chemoreflex-induced effects in CHF rats but not in sham-operated rats. Bilateral NTS injection of the AT1R antagonist losartan (10 and 100 pmol) dose-dependently decreased basal sympathetic nerve activity in CHF but not in sham-operated rats. This procedure also abolished the CSAR-induced enhancement of the chemoreflex. The discharge and chemosensitivity of NTS chemosensitive neurons were significantly increased following the stimulation of the CSAR in sham-operated and CHF rats, whereas CSAR inhibition by epicardial lidocaine significantly attenuated chemosensitivity of NTS neurons in CHF but not in sham-operated rats. Finally, the protein expression of AT1R in the NTS was significantly higher in CHF than in sham-operated rats. These results demonstrate that the enhanced cardiac sympathetic afferent input contributes to an excitatory effect of chemoreflex function in CHF, which is mediated by an NTS-AT1R-dependent mechanism.

  17. Differential roles of galanin on mechanical and cooling responses at the primary afferent nociceptor

    Directory of Open Access Journals (Sweden)

    Hulse Richard P


    Full Text Available Abstract Background Galanin is expressed in a small percentage of intact small diameter sensory neurons of the dorsal root ganglia and in the afferent terminals of the superficial lamina of the dorsal horn of the spinal cord. The neuropeptide modulates nociception demonstrating dose-dependent pro- and anti-nociceptive actions in the naïve animal. Galanin also plays an important role in chronic pain, with the anti-nociceptive actions enhanced in rodent neuropathic pain models. In this study we compared the role played by galanin and its receptors in mechanical and cold allodynia by identifying individual rat C-fibre nociceptors and characterising their responses to mechanical or acetone stimulation. Results Mechanically evoked responses in C-fibre nociceptors from naive rats were sensitised after close intra-arterial infusion of galanin or Gal2-11 (a galanin receptor-2/3 agonist confirming previous data that galanin modulates nociception via activation of GalR2. In contrast, the same dose and route of administration of galanin, but not Gal2-11, inhibited acetone and menthol cooling evoked responses, demonstrating that this inhibitory mechanism is not mediated by activation of GalR2. We then used the partial saphenous nerve ligation injury model of neuropathic pain (PSNI and the complete Freund’s adjuvant model of inflammation in the rat and demonstrated that close intra-arterial infusion of galanin, but not Gal2-11, reduced cooling evoked nociceptor activity and cooling allodynia in both paradigms, whilst galanin and Gal2-11 both decreased mechanical activation thresholds. A previously described transgenic mouse line which inducibly over-expresses galanin (Gal-OE after nerve injury was then used to investigate whether manipulating the levels of endogenous galanin also modulates cooling evoked nociceptive behaviours after PSNI. Acetone withdrawal behaviours in naive mice showed no differences between Gal-OE and wildtype (WT mice. 7-days after

  18. Immunity to nerve growth factor and the effect on motor unit reinnervation in the rabbit. (United States)

    Finkelstein, D I; Luff, A R; Schuijers, J A


    The trophic effects of nerve growth factor (NGF) on sympathetic, peripheral afferent, and other neural crest-derived cells have been intensively investigated. More recently, NGF has been shown to have an influence on motoneurons. This study was undertaken to investigate whether NGF had any influence on the mechanical or histological properties of reinnervated motor units. Three groups of rabbits were used: normal rabbits, rabbits in which the nerve to medial gastrocnemius (MG) was cut and allowed to reinnervate for 56 days, and rabbits in which the MG nerve reinnervated in the presence of immunity to NGF. Immunity to NGF did not affect the ability of motor axons to reinnervate a muscle, nor were the contractile characteristics of the motor units altered. The size of horseradish peroxidase-labeled motoneurons was not influenced by immunization against NGF; however, the distribution of afferent neuron sizes was altered. Conduction velocity of motor axons proximal to the neuroma was significantly faster after immunization against NGF. Transection and subsequent reinnervation by a peripheral nerve normally causes an increase in myelin thickness proximal to the neuroma. However, immunization against NGF appeared to decrease the magnitude of myelin thickening. It was concluded that immunization against NGF affects motor axonal conduction velocity via an influence on the neural crest-derived Schwann cells.

  19. Effects of periodontal afferent inputs on corticomotor excitability in humans

    DEFF Research Database (Denmark)

    Zhang, Yang; Boudreau, Shellie; Wang, M.;


    The aim of the present study was to determine in humans whether local anaesthesia (LA) or nociceptive stimulation of the periodontal ligaments affects the excitability of the face primary motor cortex (MI) related to the tongue and jaw muscles, as measured by transcranial magnetic stimulation (TMS......). Twelve healthy volunteers (11 men, 1 woman, 25.3 +/- 4.2 years) participated in two 3-h sessions separated by 7 days. The LA carbocain or the nociceptive irritant capsaicin was randomly injected into the periodontal ligament of the lower right central incisor. In both sessions, TMS-motor evoked potential......-injection for the LA (anovas: P > 0.22) or capsaicin (anovas: P > 0.16) sessions. These findings suggest that a transient loss or perturbation in periodontal afferent input to the brain from a single incisor is insufficient to cause changes in corticomotor excitability of the face MI, as measured by TMS in humans....

  20. The blood-nerve barrier: structure and functional significance. (United States)

    Weerasuriya, Ananda; Mizisin, Andrew P


    The blood-nerve barrier (BNB) defines the physiological space within which the axons, Schwann cells, and other associated cells of a peripheral nerve function. The BNB consists of the endoneurial microvessels within the nerve fascicle and the investing perineurium. The restricted permeability of these two barriers protects the endoneurial microenvironment from drastic concentration changes in the vascular and other extracellular spaces. It is postulated that endoneurial homeostatic mechanisms regulate the milieu intérieur of peripheral axons and associated Schwann cells. These mechanisms are discussed in relation to nerve development, Wallerian degeneration and nerve regeneration, and lead neuropathy. Finally, the putative factors responsible for the cellular and molecular control of BNB permeability are discussed. Given the dynamic nature of the regulation of the permeability of the perineurium and endoneurial capillaries, it is suggested that the term blood-nerve interface (BNI) better reflects the functional significance of these structures in the maintenance of homeostasis within the endoneurial microenvironment.

  1. Imaging the hypoglossal nerve

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Pedro [Department of Radiology, Centro Hospitalar de Lisboa Central-Hospital de Sao Jose, Rua Jose Antonio Serrano, 1150-199 Lisboa Codex (Portugal)], E-mail:


    The hypoglossal nerve is a pure motor nerve. It provides motor control to the intrinsic and extrinsic tongue muscles thus being essential for normal tongue movement and coordination. In order to design a useful imaging approach and a working differential diagnosis in cases of hypoglossal nerve damage one has to have a good knowledge of the normal anatomy of the nerve trunk and its main branches. A successful imaging evaluation to hypoglossal diseases always requires high resolution studies due to the small size of the structures being studied. MRI is the preferred modality to directly visualize the nerve, while CT is superior in displaying the bony anatomy of the neurovascular foramina of the skull base. Also, while CT is only able to detect nerve pathology by indirect signs, such as bony expansion of the hypoglossal canal, MRI is able to visualize directly the causative pathological process as in the case of small tumors, or infectious/inflammatory processes affecting the nerve. The easiest way to approach the study of the hypoglossal nerve is to divide it in its main segments: intra-axial, cisternal, skull base and extracranial segment, tailoring the imaging technique to each anatomical area while bearing in mind the main disease entities affecting each segment.

  2. Suprascapular nerve palsy. (United States)

    Moskowitz, E; Rashkoff, E S


    Isolated traumatic suprascapular nerve palsy without associated fracture is a rare occurrence. Localized segmental muscle atrophy limited to the supraspinatus and infraspinatus muscles associated with weakness in initiating abduction and in external rotation of the shoulder should suggest the diagnosis. Electromyography will confirm the diagnosis by excluding nerve root and brachial plexus involvement with denervation potentials limited to the supraspinatus and infraspinatus muscles.

  3. Local control of information flow in segmental and ascending collaterals of single afferents. (United States)

    Lomelí, J; Quevedo, J; Linares, P; Rudomin, P


    In the vertebrate spinal cord, the activation of GABA(gamma-amino-butyric acid)-releasing interneurons that synapse with intraspinal terminals of sensory fibres leading into the central nervous system (afferent fibres) produces primary afferent depolarization and presynaptic inhibition. It is not known to what extent these presynaptic mechanisms allow a selective control of information transmitted through specific sets of intraspinal branches of individual afferents. Here we study the local nature of the presynaptic control by measuring primary afferent depolarization simultaneously in two intraspinal collaterals of the same muscle spindle afferent. One of these collaterals ends at the L6-L7 segmental level in the intermediate nucleus, and the other ascends to segment L3 within Clarke's column, the site of origin of spinocerebellar neurons. Our results indicate that there are central mechanisms that are able to affect independently the synaptic effectiveness of segmental and ascending collaterals of individual muscle spindle afferents. Focal control of presynaptic inhibition thus allows the intraspinal branches of afferent fibres to function as a dynamic assembly that can be fractionated to convey information to selected neuronal targets. This may be a mechanism by which different spinal postsynaptic targets that are coupled by sensory input from a common source could be uncoupled.

  4. Distribution of presumptive chemosensory afferents with FMRFamide- or substance P-like immunoreactivity in decapod crustaceans. (United States)

    Schmidt, M


    In five species of decapod crustaceans--Cherax destructor (crayfish), Carcinus maenas (crab), Homarus americanus (clawed lobster), Eriocheir sinensis (crab), Macrobrachium rosenbergii (shrimp)--immunocytochemical stainings revealed the presence of sensory afferents with FMRFamide-like immunoreactivity in the central nervous system. These afferents were extremely thin, very numerous, and innervated all sensory neuropils except the optic and olfactory lobes. In their target neuropils they gave rise to condensed net- or ball-like terminal structures. Only in Homarus americanus but not in any other studied species immunocytochemistry revealed a separate, non-overlapping class of sensory afferents with substance P-like immunoreactivity. Also the afferents with substance P-like immunoreactivity were very thin and numerous, innervated all sensory neuropils except optic and olfactory lobes, and gave rise to condensed terminal structures. From their morphological characteristics it can be concluded that likely both classes of afferents are chemosensory. The substance P-like immunoreactivity suggests a link with the nociceptor afferents of vertebrates, with which both classes of afferents share several other morphological features.

  5. Primary afferent depolarization evoked by a painful stimulus. (United States)

    Vyklický, L; Rudomin, P; Zajac, F E; Burke, R E


    Pulses of intense radiant heat applied to the plantar pad of unanesthetized spinal cats produced negative dorsal root potentials, increased excitability of cutaneous A fibers, and marked activation of ipsilateral flexor motoneurons. The same effects were obtained during cold block of A fiber conduction in the appropriate peripheral nerve. We conclude that adequate noxious activation of cutaneous C fibers depolarizes cutaneous A fibers.

  6. Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber. (United States)

    Eguibar, J R; Quevedo, J; Jiménez, I; Rudomin, P


    We have analyzed in the anesthetized cat the effects of electrical stimulation of the cerebral cortex on the intraspinal threshold of two collaterals belonging to the same muscle spindle or tendon organ afferent fiber. The results obtained provide, for the first time, direct evidence showing that the motor cortex is able to modify, in a highly selective manner, the synaptic effectiveness of individual collaterals of the same primary afferent fiber. This presynaptic control could function as a mechanism that allows funneling of information to specific groups of spinal neurons in the presence of extensive intraspinal branching of the afferent fibers.

  7. Biological and artificial nerve conduit for repairing peripheral nerve defect

    Institute of Scientific and Technical Information of China (English)

    Xuetao Xie; Changqing Zhang


    OBJECTIVE: Recently, with the development of biological and artificial materials, the experimental and clinical studies on application of this new material-type nerve conduit for treatment of peripheral nerve defect have become the hotspot topics for professorial physicians.DATA SOURCES: Using the terms "nerve conduits, peripheral nerve, nerve regeneration and nerve transplantation" in English, we searched Pubmed database, which was published during January 2000 to June 2006, for the literatures related to repairing peripheral nerve defect with various materials. At the same time, we also searched Chinese Technical Scientific Periodical Database at the same time period by inputting" peripheral nerve defect, nerve repair, nerve regeneration and nerve graft" in Chinese.STUDY SELECTION: The materials were firstly selected, and literatures about study on various materials for repairing peripheral nerve defect and their full texts were also searched. Inclusive criteria: nerve conduits related animal experiments and clinical studies. Exclusive criteria: review or repetitive studies.DATA EXTRACTION: Seventy-nine relevant literatures were collected and 30 of them met inclusive criteria and were cited.DATA SYNTHESTS: Peripheral nerve defect, a commonly seen problem in clinic, is difficult to be solved. Autogenous nerve grafting is still the gold standard for repairing peripheral nerve defect, but because of its application limitation and possible complications, people studied nerve conduits to repair nerve defect. Nerve conduits consist of biological and artificial materials.CONCLUSION: There have been numerous reports about animal experimental and clinical studies of various nerve conduits, but nerve conduit, which is more ideal than autogenous nerve grafting, needs further clinical observation and investigation.

  8. Neuronal changes resulting in up-regulation of alpha-1 adrenoceptors after peripheral nerve injury

    Institute of Scientific and Technical Information of China (English)

    Peter D.Drummond


    Under normal conditions, the sympathetic neurotransmitter noradrenaline inhibits the pro-duction and release of pro-inlfammatory cytokines. However, after peripheral nerve and tissue injury, pro-inflammatory cytokines appear to induce the expression of the alpha1A-adreno-ceptor subtype on immune cells and perhaps also on other cells in the injured tissue. In turn, noradrenaline may act on up-regulated alpha1-adrenoceptors to increase the production of the pro-inflammatory cytokine interleukin-6. In addition, the release of inflammatory mediators and nerve growth factor from keratinocytes and other cells may augment the expression of al-pha1-adrenoceptors on peripheral nerve ifbers. Consequently, nociceptive afferents acquire an abnormal excitability to adrenergic agents, and inlfammatory processes build. These mechanisms could contribute to the development of sympathetically maintained pain in conditions such as post-herpetic neuralgia, cutaneous neuromas, amputation stump pain and complex regional pain syndrome.

  9. Transcutaneous Vagus Nerve Stimulation: A Promising Method for Treatment of Autism Spectrum Disorders. (United States)

    Jin, Yu; Kong, Jian


    Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain regions associated with Autism Spectrum Disorder (ASD), trigger neuroimmune modulation and produce treatment effects for comorbid disorders of ASD such as epilepsy and depression. We thus hypothesize that tVNS may be a promising treatment for ASD, not only for comorbid epilepsy and depression, but also for the core symptoms of ASD. The goal of this manuscript is to summarize the findings and rationales for applying tVNS to treat ASD and propose potential parameters for tVNS treatment of ASD.

  10. Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation. (United States)

    Bain, J R; Veltri, K L; Chamberlain, D; Fahnestock, M


    Prolonged muscle denervation results in poor functional recovery after nerve repair. The possible protective effect of temporary sensory innervation of denervated muscle, prior to motor nerve repair, has been examined in the rat. Soleus and gastrocnemius muscles were denervated by cutting the tibial nerve, and the peroneal nerve was then sutured to the transected distal tibial nerve stump either immediately or after two, four or six months. In half of the animals with delayed repair, the saphenous (sensory) nerve was temporarily attached to the distal nerve stump. Muscles were evaluated three months after the peroneal-to-tibial union, and were compared with each other, with unoperated control muscles and with untreated denervated muscles. After four to six months of sensory "protection", gastrocnemius muscles weighed significantly more than unprotected muscles, and both gastrocnemius and soleus muscles exhibited better preservation of their structure, with less fiber atrophy and connective tissue hyperplasia. The maximum compound action potentials were significantly larger in gastrocnemius and soleus muscles following sensory protection, irrespective of the delay in motor nerve union. Isometric force, although less than in control animals and in those with immediate nerve repair, remained reasonably constant after sensory protection, while in unprotected muscles there was a progressive and significant decline as the period of denervation lengthened. We interpret these results as showing that, although incapable of forming excitable neuromuscular junctions, sensory nerves can nevertheless exert powerful trophic effects on denervated muscle fibers. We propose that these findings indicate a useful strategy for improving the outcome of peripheral nerve surgery.

  11. Research progress of myocardial ischemia and sympathetic afferent%心肌缺血与交感神经传入的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘俊; 梁尚栋


    心脏的自主神经包括交感神经与副交感神经.支配心脏的交感神经不仅有传出轴突,也有传递心脏感受的传入神经.心肌缺血可激活心交感传入神经并将信息传递到大脑心血管中枢,通过兴奋交感传出神经引起交感兴奋性反射,出现心率加快和血压升高等现象使心肌缺血、缺氧和心绞痛加重.因此,交感神经功能变化可加重心肌缺血损伤.%The heart autonomic nervous system consists of both sympathetic and parasympathetic nerves. The heart sympathetic nerves contain not only efferent axons, but also the afferentnerve( transmitting messages to the heart ). Myocardial ischemia activates cardiac sympathetic afferent nerve and transmits the information to the brain and cardiovascular centre, which resultsin sympathetic reflex excitability by excitatory sympathetic efferent. This causes an increase in heart rate and blood pressure, leading to the development of myocardial ischemia, hypoxia and angina pain. Therefore, the change in sympathetic function is acontributing factor to myocardial ischemia.

  12. Restoration of contralateral representation in the mouse somatosensory cortex after crossing nerve transfer.

    Directory of Open Access Journals (Sweden)

    Haruyoshi Yamashita

    Full Text Available Avulsion of spinal nerve roots in the brachial plexus (BP can be repaired by crossing nerve transfer via a nerve graft to connect injured nerve ends to the BP contralateral to the lesioned side. Sensory recovery in these patients suggests that the contralateral primary somatosensory cortex (S1 is activated by afferent inputs that bypassed to the contralateral BP. To confirm this hypothesis, the present study visualized cortical activity after crossing nerve transfer in mice through the use of transcranial flavoprotein fluorescence imaging. In naïve mice, vibratory stimuli applied to the forepaw elicited localized fluorescence responses in the S1 contralateral to the stimulated side, with almost no activity in the ipsilateral S1. Four weeks after crossing nerve transfer, forepaw stimulation in the injured and repaired side resulted in cortical responses only in the S1 ipsilateral to the stimulated side. At eight weeks after crossing nerve transfer, forepaw stimulation resulted in S1 cortical responses of both hemispheres. These cortical responses were abolished by cutting the nerve graft used for repair. Exposure of the ipsilateral S1 to blue laser light suppressed cortical responses in the ipsilateral S1, as well as in the contralateral S1, suggesting that ipsilateral responses propagated to the contralateral S1 via cortico-cortical pathways. Direct high-frequency stimulation of the ipsilateral S1 in combination with forepaw stimulation acutely induced S1 bilateral cortical representation of the forepaw area in naïve mice. Cortical responses in the contralateral S1 after crossing nerve transfer were reduced in cortex-restricted heterotypic GluN1 (NMDAR1 knockout mice. Functional bilateral cortical representation was not clearly observed in genetically manipulated mice with impaired cortico-cortical pathways between S1 of both hemispheres. Taken together, these findings strongly suggest that activity-dependent potentiation of cortico

  13. Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity (United States)

    Ding, Lei; Zhang, Feng; Zhao, Ming-Xia; Ren, Xing-Sheng; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing


    Chemical stimulation of white adipose tissue (WAT) causes adipose afferent reflex (AAR) and sympathetic activation. This study is to investigate the effects of AAR on lipolysis and the mechanisms of attenuated lipolysis response to enhanced AAR in obesity. Obesity was caused by high-fat diet for 12 weeks in rats. AAR was induced by injection of capsaicin into inguinal WAT or electrical stimulation of epididymal WAT afferent nerve. AAR caused sympathetic activation, which was enhanced in obesity rats. AAR increased cAMP levels and PKA activity, promoted hormone sensitive lipase (HSL) and perilipin phosphorylation, and increased lipolysis in WAT, which were attenuated in obesity rats. PKA activity, cAMP, perilipin and β-adrenoceptor levels were reduced, while HSL was upregulated in adipocytes from obesity rats. In primary adipocytes, isoproterenol increased cAMP levels and PKA activity, promoted HSL and perilipin phosphorylation, and increased lipolysis, which were attenuated in obesity rats. The attenuated effects of isoproterenol in adipocytes from obesity rats were prevented by a cAMP analogue dbcAMP. The results indicate that reduced lipolysis response to enhanced AAR in obesity is attributed to the impaired activation of β-adrenoceptor-cAMP-PKA-HSL pathway. Increased cAMP level in adipocytes rectifies the attenuated lipolysis in obesity. PMID:27694818


    Institute of Scientific and Technical Information of China (English)

    高云芳; 樊小力


    Objective In drugs for invigorating blood circulation, to find a herb that can stimulate afferent discharge of muscle spindle. Methods A single muscle spindle was isolated from sartorial muscle of toad. Using air-gap technique, afferent discharge of the muscle spindle was recorded. Effects of Angelica Sinensis, Salvia Miltiorrhiza, and Safflower on afferent discharge of the muscle spindle were observed. Results Angelica Sinensis could distinctly increase afferent discharge frequency of the muscle spindle, and this increase was dose-dependent. But Salvia Miltiorrhiza and Safflower had no this excitatory effect. Conclusion It is known that Angelica Sinensis can invigorate blood circulation, and we have found its excitatory effect on muscle spindle which makes it possible to serve people with muscle atrophy if more evidences from clinical experiments are available.

  15. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. (United States)

    de Lartigue, Guillaume; de La Serre, Claire Barbier; Raybould, Helen E


    The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the CNS and influences both GI function and feeding behavior. Vagal afferent neurons (VAN) express receptors for many of the regulatory peptides and molecules released from the intestinal wall, pancreas, and adipocytes that influence GI function, glucose homeostasis, and regulate food intake and body weight. As such, they play a critical role in both physiology and pathophysiology, such as obesity, where there is evidence that vagal afferent function is altered. This review will summarize recent findings on changes in vagal afferent function in response to ingestion of high fat diets and explore the hypothesis that changes in gut microbiota and integrity of the epithelium may not only be important in inducing these changes but may be the initial events that lead to dysregulation of food intake and body weight in response to high fat, high energy diets.

  16. Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission. (United States)

    Bagnall, Martha W; Hull, Court; Bushong, Eric A; Ellisman, Mark H; Scanziani, Massimo


    Thalamic afferents supply the cortex with sensory information by contacting both excitatory neurons and inhibitory interneurons. Interestingly, thalamic contacts with interneurons constitute such a powerful synapse that even one afferent can fire interneurons, thereby driving feedforward inhibition. However, the spatial representation of this potent synapse on interneuron dendrites is poorly understood. Using Ca imaging and electron microscopy we show that an individual thalamic afferent forms multiple contacts with the interneuronal proximal dendritic arbor, preferentially near branch points. More contacts are correlated with larger amplitude synaptic responses. Each contact, consisting of a single bouton, can release up to seven vesicles simultaneously, resulting in graded and reliable Ca transients. Computational modeling indicates that the release of multiple vesicles at each contact minimally reduces the efficiency of the thalamic afferent in exciting the interneuron. This strategy preserves the spatial representation of thalamocortical inputs across the dendritic arbor over a wide range of release conditions.

  17. Lipopolysaccharide-induced hyperalgesia of intracranial capsaicin sensitive afferents in conscious rats

    NARCIS (Netherlands)

    Kemper, RHA; Spoelstra, MB; Meijler, WJ; Ter Horst, GJ


    Migraineous and non-migraineous headache is reported to be at highest intensity after an infection. This study investigated whether activation of the immune system can induce hyperalgesia in intracranial capsaicin sensitive afferents. The effects of intraperitoneal injected lipopolysaccharides (LPS)

  18. Sciatic nerve repair using adhesive bonding and a modiifed conduit

    Institute of Scientific and Technical Information of China (English)

    Xiangdang Liang; Hongfei Cai; Yongyu Hao; Geng Sun; Yaoyao Song; Wen Chen


    When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not ifx the nerve ends well and allows glue to easily invade the nerve ends. In this study, we established a rat model of completely transected sciatic nerve injury and re-paired it using a modiifed 1 cm-length conduit with inner diameter of 1.5 mm. Each end of the cylindrical conduit contains a short linear channel, while the enclosed central tube protects the nerve ends well. Nerves were repaired with 2-octyl-cyanoacrylate and suture, which complement the function of the modiifed conduit. The results demonstrated that for the same conduit, the av-erage operation time using the adhesive method was much shorter than with the suture method. No signiifcant differences were found between the two groups in sciatic function index, motor evoked potential latency, motor evoked potential amplitude, muscular recovery rate, number of medullated nerve fibers, axon diameter, or medullary sheath thickness. Thus, the adhesive method for repairing nerves using a modiifed conduit is feasible and effective, and reduces the operation time while providing an equivalent repair effect.

  19. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine. (United States)

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D


    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.

  20. Computed tomographic features of afferent loop syndrome: pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Zissin, R. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Hertz, M. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Paran, H. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Surgery ' A' , Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Osadchy, A. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Gayer, G. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Assaf Harofe Medical Center, Zrifin, Sackler Faculty of Medicine, Tel Aviv (Israel)


    This pictorial essay reviews the computed tomography (CT) findings of afferent loop syndrome (ALS) in various pathological conditions to demonstrate the contribution of a common imaging modality-that is, abdominal CT, used nowadays for various abdominal complaints-to the diagnosis of ALS. ALS is caused by obstruction of the duodenum and jejunum proximal to a gastrojejunostomy anastomosis. It is a rare complication after Billroth II subtotal gastrectomy and even more rare after total or subtotal gastrectomy with Roux-en-Y reconstruction. Although currently advanced medical treatment and endoscopic interventions have dramatically decreased the necessity of surgery for peptic ulcer disease, ALS may appear years after previously common operations. Alternatively, the use of surgical resection for early gastric cancer nowadays leads to an increasing rate of malignancy-related ALS. Clinically, ALS may be difficult to diagnose as its presentation may be vague and nonspecific, but it has a characteristic appearance on CT. Clinicians and radiologists should therefore be familiar with this rare complication. Prompt recognition and correct diagnosis of this syndrome and its probable etiology are important as a guide for treatment. This review illustrates the CT features of ALS in various conditions. (author)

  1. Dynamic GABAergic afferent modulation of AgRP neurons (United States)

    Garfield, Alastair S; Shah, Bhavik P; Burgess, Christian R; Li, Monica M; Li, Chia; Steger, Jennifer S; Madara, Joseph C; Campbell, John N; Kroeger, Daniel; Scammell, Thomas E; Tannous, Bakhos A; Myers, Martin G; Andermann, Mark L; Krashes, Michael J; Lowell, Bradford B


    Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) promote homeostatic feeding at times of caloric insufficiency, yet they are rapidly suppressed by food-related sensory cues prior to ingestion. Here we identify a highly selective inhibitory afferent to AgRP neurons that serves as a neural determinant of this rapid modulation. Specifically, GABAergic projections arising from the ventral compartment of the dorsomedial nucleus of the hypothalamus (vDMH) contribute to the pre-consummatory modulation of ARCAgRP neurons. In a manner reciprocal to ARCAgRP neurons, ARC-projecting leptin receptor (LepR)-expressing GABAergic DMH neurons exhibit rapid activation upon availability of food that additionally reflects the relative value of the food. Thus, DMHLepR neurons form part of the sensory network that relays real-time information about the nature and availability of food to dynamically modulate ARCAgRP neuron activity and feeding behavior. PMID:27643429

  2. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T


    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  3. Degenerative Nerve Diseases (United States)

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  4. Diabetes and nerve damage (United States)

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  5. Diabetic Nerve Problems (United States)

    ... at the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get ... you change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. ...

  6. Damaged axillary nerve (image) (United States)

    Conditions associated with axillary nerve dysfunction include fracture of the humerus (upper arm bone), pressure from casts or splints, and improper use of crutches. Other causes include systemic disorders that cause neuritis (inflammation of ...

  7. Sacral nerve stimulation. (United States)

    Matzel, K E; Stadelmaier, U; Besendörfer, M


    The current concept of recruiting residual function of an inadequate pelvic organ by electrostimulation involves stimulation of the sacral spinal nerves at the level of the sacral canal. The rationale for applying SNS to fecal incontinence was based on clinical observations of its effect on bowel habits and anorectal continence function in urologic patients (increased anorectal angulation and anal canal closure pressure) and on anatomic considerations: dissection demonstrated a dual peripheral nerve supply of the striated pelvic floor muscles that govern these functions. Because the sacral spinal nerve site is the most distal common location of this dual nerve supply, stimulating here can elicit both functions. Since the first application of SNS in fecal incontinence in 1994, this technique has been improved, the patient selection process modified, and the spectrum of indications expanded. At present SNS has been applied in more than 1300 patients with fecal incontinence limited.

  8. Impaired excitability of renal afferent innervation after exposure to the inflammatory chemokine CXCL1. (United States)

    Ditting, Tilmann; Freisinger, Wolfgang; Rodionova, Kristina; Schatz, Johannes; Lale, Nena; Heinlein, Sonja; Linz, Peter; Ott, Christian; Schmieder, Roland E; Scrogin, Karie E; Veelken, Roland


    Recently, we showed that renal afferent neurons exhibit a unique firing pattern, i.e., predominantly sustained firing, upon stimulation. Pathological conditions such as renal inflammation likely alter excitability of renal afferent neurons. Here, we tested whether the proinflammatory chemokine CXCL1 alters the firing pattern of renal afferent neurons. Rat dorsal root ganglion neurons (Th11-L2), retrogradely labeled with dicarbocyanine dye, were incubated with CXCL1 (20 h) or vehicle before patch-clamp recording. The firing pattern of neurons was characterized as tonic, i.e., sustained action potential (AP) firing, or phasic, i.e., renal afferents treated with vehicle, 58.9% exhibited a tonic firing pattern vs. 7.8%, in unlabeled, nonrenal neurons (P renal neurons; hence the occurrence of tonic neurons with sustained firing upon electrical stimulation decreased (35.6 vs. 58.9%, P renal afferents from a predominantly tonic to a more phasic firing pattern, suggesting that CXCL1 reduced the sensitivity of renal afferent units upon stimulation.

  9. Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: a 5-year bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Yuan Gao


    Full Text Available With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and large-gap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "pe-ripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany, Washington University (USA, and Nantong University (China. The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad-ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.

  10. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin (United States)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.


    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  11. Conjoined lumbosacral nerve roots

    Directory of Open Access Journals (Sweden)

    Atila Yılmaz


    Full Text Available Lumbosacral nerve root anomalies are a rare group ofcongenital anatomical anomalies. Various types of anomaliesof the lumbosacral nerve roots have been documentedin the available international literature. Ttheseanomalies may consist of a bifid, conjoined structure, ofa transverse course or of a characteristic anastomizedappearance. Firstly described as an incidental findingduring autopsies or surgical procedures performed forlumbar disk herniations and often asymptomatic, lumbosacralnerve root anomalies have been more frequentlydescribed in the last years due to the advances made inradiological diagnosis.

  12. Excessive activation of ionotropic glutamate receptors induces apoptotic hair-cell death independent of afferent and efferent innervation (United States)

    Sheets, Lavinia


    Accumulation of excess glutamate plays a central role in eliciting the pathological events that follow intensely loud noise exposures and ischemia-reperfusion injury. Glutamate excitotoxicity has been characterized in cochlear nerve terminals, but much less is known about whether excess glutamate signaling also contributes to pathological changes in sensory hair cells. I therefore examined whether glutamate excitotoxicity damages hair cells in zebrafish larvae exposed to drugs that mimic excitotoxic trauma. Exposure to ionotropic glutamate receptor (iGluR) agonists, kainic acid (KA) or N-methyl-D-aspartate (NMDA), contributed to significant, progressive hair cell loss in zebrafish lateral-line organs. To examine whether hair-cell loss was a secondary effect of excitotoxic damage to innervating neurons, I exposed neurog1a morphants—fish whose hair-cell organs are devoid of afferent and efferent innervation—to KA or NMDA. Significant, dose-dependent hair-cell loss occurred in neurog1a morphants exposed to either agonist, and the loss was comparable to wild-type siblings. A survey of iGluR gene expression revealed AMPA-, Kainate-, and NMDA-type subunits are expressed in zebrafish hair cells. Finally, hair cells exposed to KA or NMDA appear to undergo apoptotic cell death. Cumulatively, these data reveal that excess glutamate signaling through iGluRs induces hair-cell death independent of damage to postsynaptic terminals. PMID:28112265

  13. Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. (United States)

    Groff, J Alan; Liberman, M Charles


    The olivocochlear (OC) efferent innervation of the mammalian inner ear consists of two subdivisions, medial (MOC) and lateral (LOC), with different peripheral terminations on outer hair cells and cochlear afferent terminals, respectively. The cochlear effects of electrically activating MOC efferents are well known, i.e., response suppression effected by reducing outer hair cells' contribution to cochlear amplification. LOC peripheral effects are unknown, because their unmyelinated axons are difficult to electrically stimulate. Here, stimulating electrodes are placed in the inferior colliculus (IC) to indirectly activate the LOC system, while recording cochlear responses bilaterally from anesthetized guinea pigs. Shocks at some IC sites produced novel cochlear effects attributable to activation of the LOC system: long-lasting (5-20 min) enhancement or suppression of cochlear neural responses (compound action potentials and round window noise), without changes in cochlear responses dominated by outer hair cells (otoacoustic emissions and cochlear microphonics). These novel effects also differed from classic MOC effects in their lack of dependence on the level and frequency of the acoustic stimulus. These effects disappeared on sectioning the entire OC bundle, but not after selective lesioning of the MOC tracts or the cochlea's autonomic innervation. We conclude that the LOC pathway comprises two functional subdivisions, capable of inducing slow increases or decreases in response magnitudes in the auditory nerve. Such a system may be useful in maintaining accurate binaural comparisons necessary for sound localization in the face of slow changes in interaural sensitivity.

  14. Functional role of lumbar sympathetic nerves and supraspinal mechanism in the defecation reflex of the cat.

    Directory of Open Access Journals (Sweden)



    Full Text Available The role of the lumbar sympathetic nerves and supraspinal mechanism in the defecation reflex was investigated in 30 adult cats and 6 kittens. One or two propulsive contractions, whose mean pressure evoked was more than about 90 cmH2O (adult cats and 50 cmH2O (kittens, were induced in the rectum of all animals by rectal distension. These propulsive contractions could be generated at the descending and the transverse colons. The removal of the supraspinal influence by spinal transection at T13 or removal of pelvic afferents to the supraspinal center by spinal transection at L abolished the propulsive contractions. Successive lumbar sympathectomy restored the contractions. Lumbar sympathectomy and the successive removal of the supraspinal influence did not affect the propulsive contractions. In both cases, the final exclusion of the sacral segments by pithing of the spinal cord abolished the propulsive contractions. These results suggest that the sacral excitatory reflex mediated via pelvic nerves and the lumbar inhibitory reflex mediated via lumbar sympathetic nerves can function during rectal distension in spinal cats and that the lumbar inhibitory reflex is suppressed by the supraspinal sympathetic inhibitory reflex activated by pelvic afferents in intact cats, as in guinea pigs, resulting in propulsive contractions.

  15. Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat. (United States)

    Quevedo, J; Eguibar, J R; Jiménez, I; Rudomin, P


    1. In the anaesthetized cat, electrical stimulation of the bulbar reticular formation produced a short latency (2.1 +/- 0.3 ms) positive potential in the cord dorsum. In contrast, stimulation of the nucleus raphe magnus with strengths below 50 microA evoked a slow negative potential with a mean latency of 5.5 +/- 0.6 ms that persisted after sectioning the contralateral pyramid and was abolished by sectioning the ipsilateral dorsolateral funiculus. 2. The field potentials evoked by stimulation of the bulbar reticular formation and of the nucleus raphe magnus had a different intraspinal distribution, suggesting activation of different sets of segmental interneurones. 3. Stimulation of these two supraspinal nuclei produced primary afferent depolarization (PAD) in single Ib fibres and inhibited the PAD elicited by group I volleys in single Ia fibres. The inhibition of the PAD of Ia fibres produced by reticulospinal and raphespinal inputs appears to be exerted on different interneurones along the PAD pathway. 4. It is concluded that, although reticulospinal and raphespinal pathways have similar inhibitory effects on PAD of Ia fibres, and similar excitatory effects on the PAD of Ib fibres, their actions are conveyed by partly independent pathways. This would allow their separate involvement in the control of posture and movement.

  16. Anatomical study of sciatic nerve and common peroneal nerve compression

    Institute of Scientific and Technical Information of China (English)

    Mingzhao Jia; Qing Xia; Jinmin Sun; Qiang Zhou; Weidong Wang


    BACKGROUND: Many diseases of the common peroneal nerve are a result of sciatic nerve injury. The present study addresses whether anatomical positioning of the sciatic nerve is responsible for these injuries. OBJECTIVE: To analyze anatomical causes of sciatic nerve and common peroneal nerve injury by studying the relationship between the sciatic nerve and piriformis. DESIGN, TIME AND SETTING: Observe and measure repeatedly. The experiment was conducted in the Department of Anatomy, Tianjin Medical College between January and June 2005. MATERIALS: Fifty-two adult cadavers 33 males and 19 females, with a total of 104 hemispheres, and fixed with formaldehyde, were provided by Tianjin Medical College and Tianjin Medical University. METHODS: A posterior cut was made from the lumbosacral region to the upper leg, fully exposing the piriformis and path of the sciatic nerve. MAIN OUTCOME MEASURES: (1) Anatomical characteristics of the tibial nerve and common peroneal nerve. (2) According to different areas where the sciatic nerve crosses the piriformis, the study was divided into two types--normal and abnormal. Normal is considered to be when the sciatic nerve passes through the infrapiriform foramen. Remaining pathways are considered to be abnormal. (3) Observe the relationship between the suprapiriform foramen, infrapiriform foramen, as well as the superior and inferior space of piriformis. RESULTS: (1) The nerve tract inside the common peroneal nerve is smaller and thinner, with less connective tissue than the tibial nerve. When pathological changes or variations of the piriformis, or over-abduction of the hip joint, occur, injury to the common peroneal nerve often arises due to blockage and compression. (2) A total of 76 hemispheres (73.08%) were normal, 28 were abnormal (26.92%). The piriformis can be injured, and the sciatic nerve can become compressed, when the hip joint undergoes intorsion, extorsion, or abduction. (3) The structures between the infrapiriform and

  17. Protective effect of HSV-mediated gene transfer of nerve growth factor in pyridoxine neuropathy demonstrates functional activity of trkA receptors in large sensory neurons of adult animals. (United States)

    Chattopadhyay, Munmun; Goss, James; Lacomis, David; Goins, William C; Glorioso, Joseph C; Mata, Marina; Fink, David J


    The distinct distribution of trkA receptors on small neurons and trkC receptors on large neurons in the dorsal root ganglion correlates with the dependence of these two classes of neurons on nerve growth factor and neurotrophin-3, respectively, for survival during development. In adult animals, the distribution of high affinity neurotrophin (trk) is complex and overlapping; neurotrophins are not required for cell survival, but may influence cell phenotype and the response to injury. In order to test the functional activity of trkA receptors in the sensory ganglia of adult animals in vivo, we examined the ability of a nerve growth factor-expressing recombinant replication-defective herpes simplex virus-based vector to prevent the selective degeneration of large sensory fibres caused by intoxication with pyridoxine. Transduction of dorsal root ganglion neurons in vivo by subcutaneous inoculation of the nerve growth factor-expressing vector prevented the development of pyridoxine-induced neuropathy measured by electrophysiological, morphological and behavioural measures. These results demonstrate a functional activity of trkA receptors expressed on large neurons in the dorsal root ganglion in mature animals; this observation has important implications for the choice of neurotrophic factors for treatment of peripheral nerve disease.

  18. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system. (United States)

    Elson, R C; Sillar, K T; Bush, B M


    1. In crayfish, Pacifastacus leniusculus, remotion of a walking leg stretches the thoraco-coxal (TC) muscle receptor organ (TCMRO), located at the leg's articulation with the thorax. In vitro, alternate stretch and release of the fourth leg's TCMRO entrained the centrally generated rhythmic motor output to that leg, with the remotor phase of the rhythm entraining to TCMRO stretch, the promoter phase to release. This coordination of motor bursts to afferent input corresponds to that of active, rhythmic movements in vivo. 2. Entrainment was rapid in onset (stable coordination resulting within the first or second stimulus cycle) and was relatively phase-constant (whatever the stimulus frequency, during 1:1 entrainment, remotor bursts began near the onset of stretch and promotor bursts began near the onset of release). Outside the range of 1:1 entrainment, 2:1, 1:2, and 1:3 coordination ratios (rhythm:stimulus) were encountered. Resetting by phasic stimulation of the TCMRO was complete and probabilistic: effective stimuli triggered rapid transitions between the two burst phases. 3. The TCMRO is innervated by two afferents, the nonspiking S and T fibers, which generate graded depolarizing receptor potentials in response to stretch. During proprioceptive entrainment, the more phasic T fiber depolarized and hyperpolarized more rapidly or in advance of the more tonic S fiber. These receptor potentials were modified differently in the two afferents by interaction with central synaptic inputs that were phase-locked to the entrained motor rhythm. 4. Injecting slow sinusoidal current into either afferent alone could entrain motor rhythms: promoter phase bursts were entrained to depolarization of the S fiber or hyperpolarization of the T fiber, whereas the converse response was obtained for remotor phase bursts. 5. During proprioceptive entrainment, tonic hyperpolarization of the S fiber weakened entrained promotor bursts and allowed remotor burst durations to increase

  19. 感觉神经(元)对失神经骨骼肌超微结构保护作用的实验研究%Experimental study of the influence of sensory nerve (neuron) protection on the ultrastructure of denervated skeletal muscles

    Institute of Scientific and Technical Information of China (English)

    王欢; 李继峰; 钟慈声; 顾玉东


    Objective To observe the influence of sensory nerve (neuron)protection on the ultrastructure of denervated skeletal muscle. Methods 60 SD rats were randomly divided into 10 groups, with 6 each. Group A of simple complete denervation of biceps brachii served as control. Groups B ~ E were experimental groups which standed for complete denervation with sensory nerve implantation, complete denervation with sensory nerve “ baby - sitting”, complete denervation with dorsal root ganglia implantation, and complete denervation with implantation of preganglionically avulsed sensory nerve respectively. 1 month and 3 months postoperatively, electron microscopic observation of the muscles was done. Results Compared to the control, less degenerated nucleus, minor mitochondria edema and sarcoplasmic reticulum enlargement, higher capillary/myofiber ratio, less interstitial fibroblast and collagen fibers, better oriented myomere and myofilament were seen in the experimental groups. Conclusions Sensory nerves or neurons can protect the ultrastructure of denervated skeletal muscle.%目的观察感觉神经(元)对失神经骨骼肌超微结构的保护作用。方法60只SD大鼠,按手术先后顺序随机分成10组,每组6只。A组(对照组):肱二头肌完全失神经支配。B~E组(实验组):B组为失神经支配加感觉神经种植组,C组为失神经支配加感觉神经寄养组,D组为失神经支配加背根神经节种植组,E组为节前撕脱的感觉神经种植组。术后1、3个月取材,各组又分为二个时间组。用透射电镜观察肌肉超微结构的变化。结果与对照组相比,各实验组肌肉退变核数少、线粒体肿胀及肌质网扩张程度轻、毛细血管/肌纤维数比值大、间质胶原纤维和成纤维细胞少、肌丝肌节排列整齐。结论感觉神经(元)对失神经骨骼肌超微结构有保护作用。

  20. Modeling the Afferent Dynamics of the Baroreflex Control System

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Mahdi, Adam; Sturdy, Jacob;


    of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential......-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis and parameter estimation can be used to test and compare models. Finally, we...

  1. Isolated long thoracic nerve paralysis - a rare complication of anterior spinal surgery: a case report

    Directory of Open Access Journals (Sweden)

    Ameri Ebrahim


    Full Text Available Abstract Introduction Isolated long thoracic nerve injury causes paralysis of the serratus anterior muscle. Patients with serratus anterior palsy may present with periscapular pain, weakness, limitation of shoulder elevation and scapular winging. Case presentation We present the case of a 23-year-old woman who sustained isolated long thoracic nerve palsy during anterior spinal surgery which caused external compressive force on the nerve. Conclusion During positioning of patients into the lateral decubitus position, the course of the long thoracic nerve must be attended to carefully and the nerve should be protected from any external pressure.

  2. Protective Effect of Mouse Nerve Growth Factor on Amikacin -Induced Ototoxicity%鼠神经生长因子对丁胺卡那霉素耳毒性的保护作用

    Institute of Scientific and Technical Information of China (English)

    蔡琴芳; 蒋立新


    目的:探讨鼠神经生长因子(nerve growth factor ,NGF)对丁胺卡那霉素(amikacin ,AK)致豚鼠听力损伤的保护作用。方法45只豚鼠随机分为对照组、中毒组、治疗组三组,每组15只。对照组不予药物处理;中毒组腹腔注射AK400 mg · kg -1· d-1,连续10天;治疗组同法注射AK 的同时肌肉注射 NGF 1500 AU · kg -1· d-1,连续14天。各组于给药前1天、给药结束后第10、20天分别行ABR测试,最后一次测试结束后处死所有豚鼠并取出听泡,行基底膜硝酸银染色铺片,观察耳蜗毛细胞形态结构的变化及毛细胞缺失率。结果给药前三组豚鼠ABR反应阈差异无统计学意义(P>0.05),给药结束后第10、20天中毒组ABR阈值均高于治疗组及对照组(P<0.05),治疗组ABR阈值高于对照组(P<0.05)。耳蜗基底膜硝酸银染色铺片显示对照组耳蜗基底膜内毛细胞(IHC)、外毛细胞(OHC)排列整齐、偶有缺失;中毒组OHC广泛缺失;治疗组毛细胞损伤相对较轻,毛细胞缺失率较中毒组低(P<0.05)。结论鼠神经生长因子对丁胺卡那霉素所致听损伤有保护作用。%Objective To investigate the effects of mouse nerve growth factor on amikacin (AK)-induced ototoxicity in guinea pigs .Methods 45 guinea pigs were randomly divided into three groups with 15 guinea pigs in each group .The control group received no drug treatment ,the poisoning group received an intraperitoneal injection of AK (400 mg · kg -1 · d-1 ) for 10 days ,and the treatment group received an intraperitoneal injection of AK (400 mg · kg -1 · d-1 ) for 10 days and an intramuscular injection of NGF (1 500 AU · kg -1 · d-1 ) for 14 consecutive days .Auditory brainstem responses were tested on the day before administration ,the 10th day and 20th day after administration .All the guinea pigs were sacrificed when the last ABR test was finished on the 20th day

  3. Dog sciatic nerve gap repaired by artificial tissue nerve graft

    Institute of Scientific and Technical Information of China (English)

    GU Xiaosong; ZHANG Peiyun; WANG Xiaodong; DING Fei; PENG Luping; CHENG Hongbing


    The feasibility of repairing dog sciatic nerve damage by using a biodegradable artificial tissue nerve graft enriched with neuroregenerating factors is investigated. The artificial nerve graft was implanted to a 30 mm gap of the sciatic nerve damage in 7 dogs. The dogs with the same nerve damage that were repaired by interposition of the autologous nerve or were given no treatment served as control group 1 or 2, respectively. The observations include gross and morphological observations, immune reaction, electrophysiological examination, fluorescence tracing of the neuron formation and the number of the neurons at the experimental sites, etc. Results showed that 6 months after the implantation of the graft, the regenerated nerve repaired the damage of the sciatic nerve without occurrence of rejection and obvious inflammatory reaction in all 7 dogs, and the function of the sciatic nerve recovered with the nerve conduction velocity of (23.91±11.35)m/s. The regenerated neurons and the forming of axon could be observed under an electron microscope. This proves that artificial tissue nerve graft transplantation can bridge the damaged nerve ends and promote the nerve regeneration.

  4. Repair of sciatic nerve defects using tissue engineered nerves*

    Institute of Scientific and Technical Information of China (English)

    Caishun Zhang; Gang Lv


    In this study, we constructed tissue-engineered nerves with acel ular nerve al ografts in Sprague-Dawley rats, which were prepared using chemical detergents-enzymatic digestion and mechanical methods, in combination with bone marrow mesenchymal stem cel s of Wistar rats cultured in vitro, to repair 15 mm sciatic bone defects in Wistar rats. At postoperative 12 weeks, electrophysiological detection results showed that the conduction velocity of regenerated nerve after repair with tis-sue-engineered nerves was similar to that after autologous nerve grafting, and was higher than that after repair with acel ular nerve al ografts. Immunohistochemical staining revealed that motor endplates with acetylcholinesterase-positive nerve fibers were orderly arranged in the middle and superior parts of the gastrocnemius muscle;regenerated nerve tracts and sprouted branches were connected with motor endplates, as shown by acetylcholinesterase histochemistry combined with silver staining. The wet weight ratio of the tibialis anterior muscle at the affected contralateral hind limb was similar to the sciatic nerve after repair with autologous nerve grafts, and higher than that after repair with acel ular nerve al ografts. The hind limb motor function at the affected side was significantly improved, indicating that acel ular nerve al ografts combined with bone marrow me-senchymal stem cel bridging could promote functional recovery of rats with sciatic nerve defects.

  5. Intraoperative peripheral nerve injury in colorectal surgery. An update. (United States)

    Colsa Gutiérrez, Pablo; Viadero Cervera, Raquel; Morales-García, Dieter; Ingelmo Setién, Alfredo


    Intraoperative peripheral nerve injury during colorectal surgery procedures is a potentially serious complication that is often underestimated. The Trendelenburg position, use of inappropriately padded armboards and excessive shoulder abduction may encourage the development of brachial plexopathy during laparoscopic procedures. In open colorectal surgery, nerve injuries are less common. It usually involves the femoral plexus associated with lithotomy position and self-retaining retractor systems. Although in most cases the recovery is mostly complete, treatment consists of physical therapy to prevent muscular atrophy, protection of hypoesthesic skin areas and analgesics for neuropathic pain. The aim of the present study is to review the incidence, prevention and management of intraoperative peripheral nerve injury.

  6. Effects of transcutaneous electrical nerve stimulation on the H-reflex of muscles of different fibre type composition. (United States)

    Goulet, C G; Arsenault, A B; Bourbonnais, D; Levin, M F


    Differential effects of repetitive stimulation of low threshold afferents on both the recruitment threshold and motoneuronal excitability of type I and type II motor units have been demonstrated. The present study was aimed at further investigating the differential effects of 30 minutes of transcutaneous electrical nerve stimulation (TENS) on the H-reflex amplitude (Hmax/2) of the Soleus (SO), gastrocnemius lateralis (GL) and medialis (GM) muscles. Eleven healthy subjects were tested in order to evaluate the effects of TENS on either the common peroneal (CPN), saphenous or sural nerve. The experimental session consisted of three consecutive 45 min periods. Within each of these periods, H-reflexes were recorded before, during and after the TENS was applied. It was hypothesized that repetitive low threshold afferent stimulation would either have inhibitory or facilitatory effects on the H-reflex amplitude of the SO or gastrocnemii muscles respectively. Non-parametric Friedman ANOVAs revealed a significant tendency (p sural nerve, as well as that of the GM during repetitive stimulation of the saphenous nerve. Although the present study failed to reveal any differential effects of TENS on the H-reflex amplitude of muscle on different fibre type content, the significant decrease in H-reflex observed on the triceps surae muscles during TENS applied over the CPN might have promising clinical outcomes for hyperreflexive subjects.

  7. Serotonin, Dopamine and Noradrenaline Adjust Actions of Myelinated Afferents via Modulation of Presynaptic Inhibition in the Mouse Spinal Cord


    García-Ramírez, David L.; Calvo, Jorge R.; Shawn Hochman; Jorge N Quevedo


    Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD). PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT), dopamine (DA) and noradrenaline...

  8. Neuromuscular ultrasound of cranial nerves. (United States)

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S


    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  9. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut. (United States)

    Riley, T P; Neal-McKinney, J M; Buelow, D R; Konkel, M E; Simasko, S M


    Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first determined if selective lesions of capsaicin-sensitive vagal afferents altered c-Fos expression in the nucleus of the solitary tract (nTS) after mice were inoculated with either Campylobacter jejuni or Salmonella typhimurium. Our results demonstrate that the activation of nTS neurons by intraluminal pathogenic bacteria is dependent on intact, capsaicin sensitive vagal afferents. We next determined if inflammatory mediators could cause the observed increase in c-Fos expression in the nTS by a direct action on vagal afferents. This was tested by the use of single-cell calcium measurements in cultured vagal afferent neurons. We found that tumor necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) directly activate cultured vagal afferent neurons and that almost all TNFα and LPS responsive neurons were sensitive to capsaicin. We conclude that activation of the afferent arm of the parasympathetic neuroimmune reflex by pathogenic bacteria in the gut is dependent on capsaicin sensitive vagal afferent neurons and that the release of inflammatory mediators into intestinal tissue can be directly sensed by these neurons.

  10. Afferent Visual Pathway Affection in Patients with PMP22 Deletion-Related Hereditary Neuropathy with Liability to Pressure Palsies (United States)

    Rinnenthal, Jan Leo; Zimmermann, Hanna; Mikolajczak, Janine; Oberwahrenbrock, Timm; Papazoglou, Sebastian; Pfüller, Caspar F.; Schinzel, Johann; Tackenberg, Björn; Paul, Friedemann; Hahn, Katrin; Bellmann-Strobl, Judith


    Background The PMP22 gene encodes a protein integral to peripheral myelin. Its deletion leads to hereditary neuropathy with liability to pressure palsies (HNPP). PMP22 is not expressed in the adult central nervous system, but previous studies suggest a role in CNS myelin development. The objective of this study was to identify potential structural and functional alterations in the afferent visual system in HNPP patients. Methods Twenty HNPP patients and 18 matched healthy controls (HC) were recruited in a cross-sectional study. Participants underwent neurological examination including visual acuity, visual evoked potential (VEP) examination, optical coherence tomography (OCT), and magnetic resonance imaging with calculation of brain atrophy, regarding grey and white matter, and voxel based morphometry (VBM), in addition answered the National Eye Institute’s 39-item Visual Functioning Questionnaire (NEI-VFQ). Thirteen patients and 6 HC were additionally examined with magnetic resonance spectroscopy (MRS). Results All patients had normal visual acuity, but reported reduced peripheral vision in comparison to HC in the NEI-VFQ (p = 0.036). VEP latency was prolonged in patients (P100 = 103.7±5.7 ms) in comparison to healthy subjects (P100 = 99.7±4.2 ms, p = 0.007). In OCT, peripapillary retinal nerve fiber layer thickness RNFL was decreased in the nasal sector (90.0±15.5 vs. 101.8±16.5, p = 0.013), and lower nasal sector RNFL correlated with prolonged VEP latency (Rho = -0.405, p = 0.012). MRS revealed reduced tNAA (731.4±45.4 vs. 814.9±62.1, p = 0.017) and tCr (373.8±22.2 vs. 418.7±31.1, p = 0.002) in the visual cortex in patients vs. HC. Whole brain volume, grey and white matter volume, VBM and metabolites in a MRS sensory cortex control voxel did not differ significantly between patients and HC. Conclusion PMP22 deletion leads to functional, metabolic and macro-structural alterations in the afferent visual system of HNPP patients. Our data suggest a

  11. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O


    A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses to norepineph......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular...... chloride. We conclude that norepinephrine and ANG II use different mechanisms for contraction and that extracellular chloride is essential for contraction in afferent arterioles after activation of voltage-dependent calcium channels. We suggest that a chloride influx pathway is activated concomitantly...

  12. [Peripheral facial nerve palsy]. (United States)

    Pons, Y; Ukkola-Pons, E; Ballivet de Régloix, S; Champagne, C; Raynal, M; Lepage, P; Kossowski, M


    Facial palsy can be defined as a decrease in function of the facial nerve, the primary motor nerve of the facial muscles. When the facial palsy is peripheral, it affects both the superior and inferior areas of the face as opposed to central palsies, which affect only the inferior portion. The main cause of peripheral facial palsies is Bell's palsy, which remains a diagnosis of exclusion. The prognosis is good in most cases. In cases with significant cosmetic sequelae, a variety of surgical procedures are available (such as hypoglossal-facial anastomosis, temporalis myoplasty and Tenzel external canthopexy) to rehabilitate facial aesthetics and function.

  13. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Directory of Open Access Journals (Sweden)

    Holzer Peter


    Full Text Available Abstract Background Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Methods Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg or cimetidine (10 mg/kg, and 30 min later their stomachs were exposed to exogenous HCl (0.25 M. During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Results Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. Conclusion These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect

  14. Bilateral eventration of sciatic nerve

    Directory of Open Access Journals (Sweden)

    T Sharma


    Full Text Available During routine dissection of a 60 years male cadaver, it was observed that the two divisions of sciatic nerve were separate in the gluteal region on both the sides with the tibial nerve passing below the piriformis and the common peroneal nerve piercing the piriformis muscle. The abnormal passage of the sciatic nerve (SN, the common peroneal nerve (CPN, and the tibial nerve (TN, either through the piriformis or below the superior gemellus may facilitate compression of these nerves. Knowledge of such patterns is also important for surgeons dealing with piriformis syndrome which affects 5-6% of patients referred for the treatment of back and leg pain. A high division may also account for frequent failures reported with the popliteal block. Keywords: eventration, piriformis muscle, piriformis syndrome, sciatic nerve

  15. Nerve Injuries of the Upper Extremity (United States)

    ... nerves do both of these things. Injury to nerves that carry motor signals causes some amount of weakness. Pain : This is frequently a symptom after nerve injury. The pain present after a nerve injury ...

  16. Disappearance of click-evoked potentials on the neck of the guinea pig by pharmacological and surgical destruction of the peripheral vestibular afferent system. (United States)

    Matsuzaki, Masaki; Murofushi, Toshihisa


    In order to establish an animal model of acoustically evoked vestibulo-collic reflex, the so-called vestibular evoked myogenic potential in humans, potentials evoked by loud clicks on the neck of the guinea pig were recorded using subjects whose peripheral vestibular endorgans or vestibular afferents had been damaged. Four normal control guinea pigs, four guinea pigs that received an intramuscular injection of gentamicin for 20 days (90 mg/kg/day) and five guinea pigs whose vestibular nerves were surgically sectioned were used in this study. Under general anesthesia with an intraperitoneal injection of pentobarbital sodium (40 mg/kg), auditory brainstem responses (ABRs) were recorded. Then, potentials evoked by loud clicks on the pre-vertebral muscle at the level of the third cervical vertebral bone were recorded using silver ball electrodes. As a result, a distinctive negative peak (NP) with a latency of 6-8 ms was recorded in all animals in the control group. NP was not observed in the gentamicin-administered group while ABR was preserved. After sectioning the vestibular nerve, NP was abolished while ABR was preserved. From these results, NP could be of vestibular origin. These results are in agreement with a previous report of NP using subjects whose cochlea had been damaged pharmacologically.

  17. Monosynaptic convergence of somatic and visceral C-fiber afferents on projection and local circuit neurons in lamina I: a substrate for referred pain. (United States)

    Luz, Liliana L; Fernandes, Elisabete C; Sivado, Miklos; Kokai, Eva; Szucs, Peter; Safronov, Boris V


    Referred pain is a phenomenon of feeling pain at a site other than the site of the painful stimulus origin. It arises from a pathological mixing of nociceptive processing pathways for visceral and somatic inputs. Despite numerous studies based on unit recordings from spinal and supraspinal neurons, the exact mechanism and site of this mixing within the central nervous system are not known. Here, we selectively recorded from lamina I neurons, using a visually guided patch-clamp technique, in thoracic spinal cord preparation with preserved intercostal (somatic) and splanchnic (visceral) nerves. We show that somatic and visceral C fibers converge monosynaptically onto a group of lamina I neurons, which includes both projection and local circuit neurons. Other groups of lamina I neurons received inputs from either somatic or visceral afferents. We have also identified a population of lamina I local circuit neurons showing overall inhibitory responses upon stimulation of both nerves. Thus, the present data allow us to draw two major conclusions. First, lamina I of the spinal cord is the first site in the central nervous system where somatic and visceral pathways directly converge onto individual projection and local circuit neurons. Second, the mechanism of somatovisceral convergence is complex and based on functional integration of monosynaptic and polysynaptic excitatory as well as inhibitory inputs in specific groups of neurons. This complex pattern of convergence provides a substrate for alterations in the balance between visceral and somatic inputs causing referred pain.

  18. Comparison of safety and efficiency of microendoscopic discectomy with automatic nerve retractor and with nerve hook (United States)

    Yin, He-Ping; Wang, Yu-Peng; Qiu, Zhi-Ye; Du, Zhi-Cai; Wu, Yi-Min; Li, Shu-Wen


    This study compares the safety and efficiency of two techniques in microendoscopic discectomy (MED) for lumbar disc herniation. The two techniques are MED with automatic nerve retractor and MED with nerve hook which had been widely used for many years. The former involves a newly developed MED device which contains three parts to protect nerve roots during operation. Four hundred and twenty-eight patients underwent MED treatments between October 2010 and September 2015 were recruited and randomized to either intraoperative utilization of automatic nerve retractor (n = 315, group A) or application of nerve hook during surgery (n = 113, group B). Operation time and intraoperative bleeding volume were evaluated. Simultaneously, Visual Analogue Scales (VAS) and muscle strength grading were performed preoperatively, and 1, 2, 3 days, 1, 2 weeks, 3 and 6 months postoperatively. No dramatic difference of pain intensity was observed between the two groups before surgery and 6 months after surgery (P > 0.05). The operation time was shorter in group A (30.30 ± 1.89 min) than that in group B (59.41 ± 3.25 min). Group A (67.83 ± 13.14 ml) experienced a significant decrease in the amount of blood loss volume when compared with group B (100.04 ± 15.10 ml). There were remarkable differences of VAS score and muscle strength grading after postoperative 1, 2, 3 days, 1, 2 weeks and 3 months between both groups (P ≤ 0.05). MED with automatic nerve retractor effectively shortened operation time, decreased the amount of bleeding, down-regulated the incidence of nerve traction injury. PMID:27699062

  19. High division of sciatic nerve

    Directory of Open Access Journals (Sweden)

    Tripti Shrivastava


    Results: In all except two cadavers, the nerve divided at the apex of the popliteal fossa. In two cadavers the sciatic nerve divided bilaterally in the upper part of thigh. Conclusion: The high division presented in this study can make popliteal nerve blocks partially ineffective. The high division of sciatic nerve must always be borne in mind as they have important clinical implications. [Int J Res Med Sci 2014; 2(2.000: 686-688

  20. Cyclosarin-An Organophosphate Nerve Agent

    Directory of Open Access Journals (Sweden)

    G. Krejcova


    Full Text Available Organophosphorus compounds ascribed to as nerve agents (sarin, soman, tabun, cyclosarin are highly toxic, and are considered to be the most dangerous chemical compounds. All apparently share a common mechanism of cholinesterase inhibition and can cause similar sv.m .ot oms. The standard therapy, in the case of organophosphorus poisoning, has the prophylactic use of reversibly acting AChE inhibitors and antidotal administration of AChE reactivators-oximes. Unfortunately, none of these oximes can be regarded as a broad spectrum antidote, ie, effective against all nerve agents. While the presently available oximes (pralidoxime, ohidoxime are not considered to be sufficiently effective against nerve agents, especially in the case of soman poisoning, the H oximes (HI-6, HLo7 appear to,be very promising antidotes against nerve agents because these are able to protect the experimental animals from toxic effects and improve survival of animals poisoned with supralethal doses. A lot of research has been pursued on the treatment of sarin, soman, and tabun, but cyclosarin was not considered for such a study for a long time. Recently, attention of researchers has also turned to cyclosarin because of its potential use as a chemical warfare agent. Cyclosarin is highly toxic organophosphorus compound which is resistant to conventional oxime therapy. This paper reviews the latest positionof cyclosarin in standpoint of medical treatment by various reactivators considering the ability of various oximes, HI-6, HS-6, BI-6, and KO33 of their reactivation potency.

  1. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E


    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...... revealed the occurrence of axosomatic and axodendritic contacts between labeled boutons and giant neurons. The synaptic nature of these contacts has been confirmed by use of electron microscope procedures involving the partial three-dimensional reconstruction of identified giant neurons. Intracellular...... recording in spinal cord slices provided functional evidence indicating the monosynaptic connections between dorsal root afferents and giant neurons. The recorded neurons were morphologically identified by means of biocytin injection and with avidin conjugates. Electrical stimulation of the ipsilateral...

  2. Management of afferent loop obstruction from recurrent metastatic pancreatic cancer using a venting gastrojejunostomy. (United States)

    Bakes, Debbie; Cain, Christian; King, Michael; Dong, Xiang Da Eric


    Pancreatic cancer is an aggressive malignancy potentially curable with surgical intervention. Following pancreaticoduodenectomy for suspected pancreatic head malignancy, patients have a high risk for both immediate and delayed problems due to surgical complications and recurrent disease. We report here a patient with pancreatic cancer treated with pancreaticoduodenectomy who developed recurrent disease resulting in obstruction of the afferent limb. The patient developed biliary obstruction and cholangitis at presentation. Her biliary tree failed to dilate which precluded safe percutaneous biliary decompression. During surgical exploration, she was found to have a dilated afferent limb at the level of the transverse mesocolon. The patient underwent decompression of the afferent limb as well as the biliary tree using a venting gastrojejunostomy to the blind loop. This represents a novel surgical approach for management of this complicated and difficult problem.

  3. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T


    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta block...

  4. Progress of peripheral nerve repair

    Institute of Scientific and Technical Information of China (English)



    Study on repair of peripheral nerve injury has been proceeding over a long period of time. With the use of microsurgery technique since 1960s,the quality of nerve repair has been greatly improved. In the past 40 years, with the continuous increase of surgical repair methods, more progress has been made on the basic research of peripheral nerve repair.

  5. Imaging the ocular motor nerves.

    NARCIS (Netherlands)

    Ferreira, T.; Verbist, B.M.; Buchem, M. van; Osch, T. van; Webb, A.


    The ocular motor nerves (OMNs) comprise the oculomotor, trochlear and the abducens nerves. According to their course, they are divided into four or five anatomic segments: intra-axial, cisternal, cavernous and intra-orbital and, for the abducens nerve, an additional interdural segment. Magnetic reso

  6. Nerve growth factor and injured peripheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Endong Shi; Bingchen Wang; Qingshan Sun


    Nerve growth factor (NGF) exhibits many biological activities, such as supply of nutrients, neuroprotection, and the generation and rehabilitation of injured nerves. The neuroprotective and neurotrophic qualities of NGF are generally recognized. NGF may enhance axonal regeneration and myelination of peripheral nerves, as well as cooperatively promote functional recovery of injured nerves and limbs. The clinical efficacy of NGF and its therapeutic potentials are reviewed here. This paper also reviews the latest NGF research developments for repairing injured peripheral nerve, thereby providing scientific evidence for the appropriate clinical application of NGF.

  7. Botulinum toxin in migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents. (United States)

    Ramachandran, Roshni; Lam, Carmen; Yaksh, Tony L


    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi)-SO capsaicin (20 μl of 0.5mM solution) or meningeal capsaicin (4 μl of 0.35 μM). Pre-treatment with ipsi-SO BoNT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; and vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent.

  8. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus

    Directory of Open Access Journals (Sweden)

    Michael C. Andresen


    Full Text Available The brainstem nucleus of the solitary tract (NTS holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current (EPSC often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g. hypothalamus neuron sources. Presynaptic receptors for angiotensin (AT1, vasopressin (V1a, oxytocin (OT, opioid (MOR, ghrelin (GHSR1 and cholecystokinin (CCK differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 (TRPV1 and the cannabinoid receptor (CB1 that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.

  9. Differential action of (-)-baclofen on the primary afferent depolarization produced by segmental and descending inputs. (United States)

    Quevedo, J; Eguibar, J R; Jiménez, I; Rudomin, P


    The purpose of the present series of experiments was to analyze, in anesthetized and paralyzed cats, the effects of (-)-baclofen and picrotoxin on the primary afferent depolarization (PAD) generated in single Ib afferent fibers by either intraspinal microstimulation or stimulation of the segmental and descending pathways. PAD was estimated by recording dorsal root potentials and by measuring the changes in the intraspinal activation threshold of single Ib muscle afferent fibers. The PAD elicited by stimulation of group I muscle or cutaneous afferents was readily depressed and often abolished 20-40 min after the intravenous injection of 1-2 mg/kg (-)-baclofen. In contrast, the same amounts of (-)-baclofen produced a relatively small depression of the PAD elicited by stimulation of the brainstem reticular formation (RF). The monosynaptic PAD produced in single Ib fibers by intraspinal microstimulation within the intermediate nucleus was depressed and sometimes abolished following the i.v. injections of 1-2 mg/kg (-)-baclofen. Twenty to forty minutes after the i.v. injection of picrotoxin (0.5-1 mg/kg), there was a strong depression of the PAD elicited by stimulation of muscle and cutaneous afferents as well as of the PAD produced by stimulation of the RF and the PAD produced by intraspinal microstimulation. The results obtained suggest that, in addition to its action on primary afferents, (-)-baclofen may depress impulse activity and/or transmitter release in a population of last-order GABAergic interneurons that mediate the PAD of Ib fibers. The existence of GABAb autoreceptors in last-order interneurons mediating the PAD may function as a self-limiting mechanism controlling the synaptic efficacy of these interneurons.

  10. Direct and indirect regulation of spinal cord Ia afferent terminal formation by the γ-Protocadherins

    Directory of Open Access Journals (Sweden)

    Tuhina ePrasad


    Full Text Available The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons, do not undergo excessive apoptosis in Pcdh-γdel/del null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants are expanded, clumped, and fill the space between individual motor neurons; quantitative analysis shows a ~2.5 fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons, many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of ventral interneurons, which act as intermediate Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for ventral interneurons; Hb9-Cre for motor neurons also revealed a direct requirement for the γ-Pcdhs in Ia neurons and ventral interneurons, but not in motor neurons themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of ventral interneurons that act as intermediate Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target ventral interneurons.

  11. Do sensory calcitonin gene-related peptide nerve fibres in the rat pelvic plexus supply autonomic neurons projecting to the uterus and cervix? (United States)

    Houdeau, E; Barranger, E; Rossano, B


    Sensory nerve fibres containing calcitonin gene-related peptide (CGRP) innervate neurons of the paracervical ganglion (PCG) in the female rat pelvic plexus. We have combined retrograde tracing with immunocytochemistry to investigate whether CGRP-immunoreactive (-IR) fibres supply neurons targeting the genital tract. Of the total neurons projecting to either the uterine horns or the cervix, 38 and 41% received CGRP-IR innervation, respectively. All these neurons displayed choline acetyltransferase-IR, thus are cholinergic. They were found throughout the PCG and other pelvic plexus ganglia, namely accessory ganglia (AG) and hypogastric plexus (HP). Pelvic nerve section showed that afferent fibres in these nerves provided most of the CGRP-IR fibres supplying uterine- or cervical-related neurons in the PCG/AG, none in HP. It is suggested that such sensory-motor network may provide a local pathway for reflex control of genital tract activity, acting through cholinergic nerve projections.

  12. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice

    DEFF Research Database (Denmark)

    Oppermann, Mona; Hansen, Pernille B; Castrop, Hayo;


    Loop diuretics like furosemide have been shown to cause renal vasodilatation in dogs and humans, an effect thought to result from both a direct vascular dilator effect and from inhibition of tubuloglomerular feedback. In isolated perfused afferent arterioles preconstricted with angiotensin II or N...... that furosemide, despite its direct vasodilator potential in isolated afferent arterioles, causes a marked increase in flow resistance of the vascular bed of the intact mouse kidney. We suggest that generation of angiotensin II and/or a vasoconstrictor prostaglandin combined with compression of peritubular...

  13. Pathology of the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    De Foer, Bert [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail:; Kenis, Christoph [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail:; Van Melkebeke, Deborah [Department of Neurology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail:; Vercruysse, Jean-Philippe [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail:; Somers, Thomas [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail:; Pouillon, Marc [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail:; Offeciers, Erwin [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail:; Casselman, Jan W. [Department of Radiology, AZ Sint-Jan AV Hospital, Ruddershove 10, Bruges (Belgium); Consultant Radiologist, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium); Academic Consultent, University of Ghent (Belgium)], E-mail:


    There is a large scala of pathology affecting the vestibulocochlear nerve. Magnetic resonance imaging is the method of choice for the investigation of pathology of the vestibulocochlear nerve. Congenital pathology mainly consists of agenesis or hypoplasia of the vestibulocochlear nerve. Tumoral pathology affecting the vestibulocochlear nerve is most frequently located in the internal auditory canal or cerebellopontine angle. Schwannoma of the vestibulocochlear nerve is the most frequently found tumoral lesion followed by meningeoma, arachnoid cyst and epidermoid cyst. The most frequently encountered pathologies as well as some more rare entities are discussed in this chapter.

  14. Normal distribution of VGLUT1 synapses on spinal motoneuron dendrites and their reorganization after nerve injury. (United States)

    Rotterman, Travis M; Nardelli, Paul; Cope, Timothy C; Alvarez, Francisco J


    Peripheral nerve injury induces permanent alterations in spinal cord circuitries that are not reversed by regeneration. Nerve injury provokes the loss of many proprioceptive IA afferent synapses (VGLUT1-IR boutons) from motoneurons, the reduction of IA EPSPs in motoneurons, and the disappearance of stretch reflexes. After motor and sensory axons successfully reinnervate muscle, lost IA VGLUT1 synapses are not re-established and the stretch reflex does not recover; however, electrically evoked EPSPs do recover. The reasons why remaining IA synapses can evoke EPSPs on motoneurons, but fail to transmit useful stretch signals are unknown. To better understand changes in the organization of VGLUT1 IA synapses that might influence their input strength, we analyzed their distribution over the entire dendritic arbor of motoneurons before and after nerve injury. Adult rats underwent complete tibial nerve transection followed by microsurgical reattachment and 1 year later motoneurons were intracellularly recorded and filled with neurobiotin to map the distribution of VGLUT1 synapses along their dendrites. We found in control motoneurons an average of 911 VGLUT1 synapses; ~62% of them were lost after injury. In controls, VGLUT1 synapses were focused to proximal dendrites where they were grouped in tight clusters. After injury, most synaptic loses occurred in the proximal dendrites and remaining synapses were declustered, smaller, and uniformly distributed throughout the dendritic arbor. We conclude that this loss and reorganization renders IA afferent synapses incompetent for efficient motoneuron synaptic depolarization in response to natural stretch, while still capable of eliciting EPSPs when synchronously fired by electrical volleys.

  15. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. (United States)

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew


    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy.

  16. Thin-fiber mechanoreceptors reflexly increase renal sympathetic nerve activity during static contraction. (United States)

    Kim, Jong Kyung; Hayes, Shawn G; Kindig, Angela E; Kaufman, Marc P


    The renal vasoconstriction induced by the sympathetic outflow during exercise serves to direct blood flow from the kidney toward the exercising muscles. The renal circulation seems to be particularly important in this regard, because it receives a substantial part of the cardiac output, which in resting humans has been estimated to be 20%. The role of group III mechanoreceptors in causing the reflex renal sympathetic response to static contraction remains an open question. To shed some light on this question, we recorded the renal sympathetic nerve responses to static contraction before and after injection of gadolinium into the arterial supply of the statically contracting triceps surae muscles of decerebrate unanesthetized and chloralose-anesthetized cats. Gadolinium has been shown to be a selective blocker of mechanogated channels in thin-fiber muscle afferents, which comprise the afferent arm of the exercise pressor reflex arc. In decerebrate (n = 15) and chloralose-anesthetized (n = 12) cats, we found that gadolinium (10 mM; 1 ml) significantly attenuated the renal sympathetic nerve and pressor responses to static contraction (60 s) after a latent period of 60 min; both responses recovered after a latent period of 120 min. We conclude that thin-fiber mechanoreceptors supplying contracting muscle are involved in some of the renal vasoconstriction evoked by the exercise pressor reflex.

  17. Tissue engineering and peripheral nerve regeneration (III) -- Sciatic nerve regeneration with PDLLA nerve guide

    Institute of Scientific and Technical Information of China (English)


    The biodegradation rate and biocompatibility of poly(d, l -lactide) (PDLLA) in vivo were evaluated. The aim of this study was to establish a nerve guide constructed by the PDLLA with 3-D microenvironment and to repair a 10 mm of sciatic nerve gap in rats. The process of the nerve regeneration was investigated by histological assessment, electrophysiological examination, and determination of wet weight recovery rate of the gastrocnemius muscle. After 3 weeks, the nerve guide had changed from a transparent to an opaque status. The conduit was degraded and absorbed partly and had lost their strength with breakage at the 9th week of postoperation. At the conclusion of 12 weeks, proximal and distal end of nerves were anastomosed by nerve regeneration and the conduit vanished completely. The results suggest that PDLLA conduits may serve for peripheral nerve regeneration and PDLLA is a sort of hopeful candidate for tissue engineering.

  18. Optic nerve hypoplasia

    Directory of Open Access Journals (Sweden)

    Savleen Kaur


    Full Text Available Optic nerve hypoplasia (ONH is a congenital anomaly of the optic disc that might result in moderate to severe vision loss in children. With a vast number of cases now being reported, the rarity of ONH is obviously now refuted. The major aspects of ophthalmic evaluation of an infant with possible ONH are visual assessment, fundus examination, and visual electrophysiology. Characteristically, the disc is small, there is a peripapillary double-ring sign, vascular tortuosity, and thinning of the nerve fiber layer. A patient with ONH should be assessed for presence of neurologic, radiologic, and endocrine associations. There may be maternal associations like premature births, fetal alcohol syndrome, maternal diabetes. Systemic associations in the child include endocrine abnormalities, developmental delay, cerebral palsy, and seizures. Besides the hypoplastic optic nerve and chiasm, neuroimaging shows abnormalities in ventricles or white- or gray-matter development, septo-optic dysplasia, hydrocephalus, and corpus callosum abnormalities. There is a greater incidence of clinical neurologic abnormalities in patients with bilateral ONH (65% than patients with unilateral ONH. We present a review on the available literature on the same to urge caution in our clinical practice when dealing with patients with ONH. Fundus photography, ocular coherence tomography, visual field testing, color vision evaluation, neuroimaging, endocrinology consultation with or without genetic testing are helpful in the diagnosis and management of ONH. (Method of search: MEDLINE, PUBMED.

  19. Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development. (United States)

    Flores, A; Manilla, S; Huidobro, N; De la Torre-Valdovinos, B; Kristeva, R; Mendez-Balbuena, I; Galindo, F; Treviño, M; Manjarrez, E


    The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development.

  20. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Nielsen, Jens Bo


    maximal voluntary plantar- and dorsiflexion torque (MVC) was significantly reduced and the maximal SOL H-reflex amplitude increased with no changes in Mmax. Decreased presynaptic inhibition of the Ia afferents likely contributed to the increase of the H-reflex size, since we observed a significant...

  1. Afferent contribution to locomotor muscle activity during unconstrained overground human walking

    DEFF Research Database (Denmark)

    Klint, Richard Albin Ivar af; Cronin, Neil Joseph; Ishikawa, M.;


    Plantar flexor series elasticity can be used to dissociate muscle fascicle and muscle tendon behaviour and, therefore, afferent feedback during human walking. We used electromyography (EMG) and high speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behaviour in ni...

  2. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. (United States)

    de La Serre, Claire B; de Lartigue, Guillaume; Raybould, Helen E


    Bacterially derived factors are implicated in the causation and persistence of obesity. Ingestion of a high fat diet in rodents and obesity in human subjects is associated with chronic elevation of low plasma levels of lipopolysaccharide (LPS), a breakdown product of Gram-negative bacteria. The terminals of vagal afferent neurons are positioned within the gut mucosa to convey information from the gut to the brain to regulate food intake and are responsive to LPS. We hypothesized that chronic elevation of LPS could alter vagal afferent signaling. We surgically implanted osmotic mini-pumps that delivered a constant, low-dose of LPS into the intraperitoneal cavity of rats (12.5 μg/kg/hr for 6 weeks). LPS-treated rats developed hyperphagia and showed marked changes in vagal afferent neuron function. Chronic LPS treatment reduced vagal afferent leptin signaling, characterized by a decrease in leptin-induced STAT3 phosphorylation. In addition, LPS treatment decreased cholecystokinin-induced satiety. There was no alteration in leptin signaling in the hypothalamus. These findings offer a mechanism by which a change in gut microflora can promote hyperphagia, possibly leading to obesity.

  3. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells. (United States)

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J


    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.

  4. Vagal afferents are essential for maximal resection-induced intestinal adaptive growth in orally fed rats

    DEFF Research Database (Denmark)

    Nelson, David W; Liu, Xiaowen; Holst, Jens Juul


    Small bowel resection stimulates intestinal adaptive growth by a neuroendocrine process thought to involve both sympathetic and parasympathetic innervation and enterotrophic hormones such as glucagon-like peptide-2 (GLP-2). We investigated whether capsaicin-sensitive vagal afferent neurons are es...

  5. Afferent loop syndrome - a case report; Sindrome da alca aferente - relato de um caso

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Ana Karina Nascimento; Pinheiro, Marco Antonio Lopes; Galvao, Cristine Norwig [Fundacao Pio XII - Hospital do Cancer de Barretos, SP (Brazil)


    The afferent loop syndrome occurs in patients with previous gastric surgery for tumor, when there is anastomotic edema, use of inappropriate reconstruction technique for gastro jejunostomy or recurrent gastric cancer. Complaints such jaundice, intermittent abdominal distension associated with pain, and vomiting should be investigated in order to rule out this syndrome. (author)

  6. Nesfatin-1 modulates murine gastric vagal afferent mechanosensitivity in a nutritional state dependent manner. (United States)

    Kentish, Stephen J; Li, Hui; Frisby, Claudine L; Page, Amanda J


    Food intake is regulated by vagal afferent signals from the stomach. Nesfatin-1 is an anorexigenic peptide produced within the gastrointestinal tract and has well defined central effects. We aimed to determine if nesfatin-1 can modulate gastric vagal afferent signals in the periphery and further whether this is altered in different nutritional states. Female C57BL/6J mice were fed either a standard laboratory diet (SLD) or a high fat diet (HFD) for 12 weeks or fasted overnight. Plasma nucleobindin-2 (NUCB2; nesfatin-1 precursor)/nesfatin-1 levels were assayed, the expression of NUCB2 in the gastric mucosa and adipose tissue was assessed using real-time quantitative reverse-transcription polymerase chain reaction. An in vitro preparation was used to determine the effect of nesfatin-1 on gastric vagal afferent mechanosensitivity. HFD mice exhibited an increased body weight and adiposity. Plasma NUCB2/nesfatin-1 levels were unchanged between any of the groups of mice. NUCB2 mRNA was detected in the gastric mucosa and gonadal fat of SLD, HFD and fasted mice with no difference in mRNA abundance between groups in either tissue. In SLD and fasted mice nesfatin-1 potentiated mucosal receptor mechanosensitivity, an effect not observed in HFD mice. Tension receptor mechanosensitivity was unaffected by nesfatin-1 in SLD and fasted mice, but was inhibited in HFD mice. In conclusion, Nesfatin-1 modulates gastric vagal afferent mechanosensitivity in a nutritional state dependent manner.

  7. Afferent and Efferent Connections of the Optic Tectum in the Carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Luiten, P.G.M.


    The afferent and efferent connections of the tectum opticum in the carp (Cyprinus carpio L.) were studied with the HRP method. Following iontophoretic peroxidase injections in several parts of the rectum anterograde transport of the enzyme revealed tectal projections to the lateral geniculate nucleu

  8. Synaptic transmission of baro- and chemoreceptors afferents in the NTS second order neurons. (United States)

    Accorsi-Mendonça, Daniela; Machado, Benedito H


    Second order neurons in the nucleus tractus solitarius (NTS) process and integrate the afferent information from arterial baroreceptors with high fidelity and precise timing synaptic transmission. Since 2nd-order NTS neurons receiving baroreceptors inputs are relatively well characterized, their electrophysiological profile has been accepted as a general characteristic for all 2nd-order NTS neurons involved with the processing of different sensorial inputs. On the other hand, the synaptic properties of other afferent systems in NTS, such as the peripheral chemoreceptors, are not yet well understood. In this context, in previous studies we demonstrated that in response to repetitive afferents stimulation, the chemoreceptors 2nd-order NTS neurons also presented high fidelity of synaptic transmission, but with a large variability in the latency of evoked responses. This finding is different in relation to the precise timing transmission for baroreceptor 2nd-order NTS neurons, which was accepted as a general characteristic profile for all 2nd order neurons in the NTS. In this brief review we discuss this new concept as an index of complexity of the sensorial inputs to NTS with focus on the synaptic processing of baro- and chemoreceptor afferents.

  9. Local translation in primary afferent fibers regulates nociception.

    Directory of Open Access Journals (Sweden)

    Lydia Jiménez-Díaz

    Full Text Available Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage--a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states.

  10. Modeling the afferent dynamics of the baroreflex control system.

    Directory of Open Access Journals (Sweden)

    Adam Mahdi

    Full Text Available In this study we develop a modeling framework for predicting baroreceptor firing rate as a function of blood pressure. We test models within this framework both quantitatively and qualitatively using data from rats. The models describe three components: arterial wall deformation, stimulation of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential strain. The mechanoreceptor stimulation model, uses circumferential strain as an input, predicting receptor deformation as an output. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as an output. Our results show that nonlinear dependence of firing rate on pressure can be accounted for by taking into account the nonlinear elastic properties of the artery wall. This was observed when testing the models using multiple experiments with a single set of parameters. We find that to model the response to a square pressure stimulus, giving rise to post-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis and parameter estimation can be used to test and compare models. Finally, we demonstrate that our preferred model can exhibit all known dynamics and that it is advantageous to combine qualitative and quantitative analysis methods.

  11. Neurotrophic factor changes in the rat thick skin following chronic constriction injury of the sciatic nerve

    Directory of Open Access Journals (Sweden)

    Peleshok Jennifer C


    Full Text Available Abstract Background Cutaneous peripheral neuropathies have been associated with changes of the sensory fiber innervation in the dermis and epidermis. These changes are mediated in part by the increase in local expression of trophic factors. Increase in target tissue nerve growth factor has been implicated in the promotion of peptidergic afferent and sympathetic efferent sprouting following nerve injury. The primary source of nerve growth factor is cells found in the target tissue, namely the skin. Recent evidence regarding the release and extracellular maturation of nerve growth factor indicate that it is produced in its precursor form and matured in the extracellular space. It is our hypothesis that the precursor form of nerve growth factor should be detectable in those cell types producing it. To date, limitations in available immunohistochemical tools have restricted efforts in obtaining an accurate distribution of nerve growth factor in the skin of naïve animals and those with neuropathic pain lesions. It is the objective of this study to delineate the distribution of the precursor form of nerve growth factor to those cell types expressing it, as well as to describe its distribution with respect to those nerve fibers responsive to it. Results We observed a decrease in peptidergic fiber innervation at 1 week after the application of a chronic constriction injury (CCI to the sciatic nerve, followed by a recovery, correlating with TrkA protein levels. ProNGF expression in CCI animals was significantly higher than in sham-operated controls from 1-4 weeks post-CCI. ProNGF immunoreactivity was increased in mast cells at 1 week post-CCI and, at later time points, in keratinocytes. P75 expression within the dermis and epidermis was significantly higher in CCI-operated animals than in controls and these changes were localized to neuronal and non-neuronal cell populations using specific markers for each. Conclusions We describe proNGF expression by

  12. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang


    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  13. [Electrical nerve stimulation for plexus and nerve blocks]. (United States)

    Birnbaum, J; Klotz, E; Bogusch, G; Volk, T


    Despite the increasing use of ultrasound, electrical nerve stimulation is commonly used as the standard for both plexus and peripheral nerve blocks. Several recent randomized trials have contributed to a better understanding of physiological and clinical correlations. Traditionally used currents and impulse widths are better defined in relation to the distance between needle tip and nerves. Commercially available devices enable transcutaneous nerve stimulation and provide new opportunities for the detection of puncture sites and for training. The electrically ideal position of the needle usually is defined by motor responses which can not be interpreted without profound anatomical knowledge. For instance, interscalene blocks can be successful even after motor responses of deltoid or pectoral muscles. Infraclavicular blocks should be aimed at stimulation of the posterior fascicle (extension). In contrast to multiple single nerve blocks, axillary single-shot blocks more commonly result in incomplete anaesthesia. Blockade of the femoral nerve can be performed without any nerve stimulation if the fascia iliaca block is used. Independently of the various approaches to the sciatic nerve, inversion and plantar flexion are the best options for single-shot blocks. Further clinical trials are needed to define the advantages of stimulating catheters in continuous nerve blocks.

  14. Acellular nerve allograft promotes selective regeneration

    Institute of Scientific and Technical Information of China (English)

    Haili Xin; Guanjun Wang; Xinrong He; Jiang Peng; Quanyi Guo; Wenjing Xu


    Acellular nerve allograft preserves the basilar membrane tube and extracellular matrix, which pro-motes selective regeneration of neural defects via bridging. In the present study, a Sprague Dawley rat sciatic nerve was utilized to prepare acellular nerve allografts through the use of the chemical extraction method. Subsequently, the allograft was transplanted into a 10-mm sciatic nerve defect in Wistar rats, while autologous nerve grafts from Wistar rats served as controls. Compared with autologous nerve grafts, the acellular nerve allografts induced a greater number of degenerated nerve fibers from sural nerves, as well as a reduced misconnect rate in motor fibers, fewer acetyl-choline esterase-positive sural nerves, and a greater number of carbonic anhydrase-positive senso-ry nerve fibers. Results demonstrated that the acellular nerve allograft exhibited significant neural selective regeneration in the process of bridging nerve defects.


    Institute of Scientific and Technical Information of China (English)


    Objective To investigate the role of NRM in the antinociceptive effect of muscle spindle afferents, the influence of NRM lesion on the inhibitory effect of muscle spindle afferents on the nociceptive responses of wide dynamic range (WDR) neurons and the effects of the muscle spindle afferents on the NRM neuronal activities were observed. Methods The single units of WDR neurons in the spinal dorsal horn were recorded extracellularly, and the inhibitory effects of activating muscle spindle afferents by intravenous administration of succinyicholine (SCH) on the C-fibers evoked responses (C-responses) of WDR neurons were tested before and after lesion of NRM. The ef- fects of the muscle spindle afferents activated by administrating SCH on the single NRM neurons were also examined. Results ①lt was found that the C-responses of WDR neurons were significantly inhibited by intravenously adminis- tration of SCH, and the inhibitory effect was reduced after lesion of NRM ;②The activities of most of the NRM neu- rons could be changed significantly by administrating SCH. According to their responses, NRM neurons could be classified into three types:excitatory, inhibitory and non-responsive neurons, and the responses were dose-depen- dent. Conclusion These results suggest that the muscle spindle afferents evoked by SCH may activate the NRM neu- rons, which plays an important role in the antinociception of muscle spindle afferents.

  16. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses. (United States)

    Fenwick, Axel J; Wu, Shaw-Wen; Peters, James H


    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  17. Operative Management of Sciatic Nerve Palsy due to Impingement on the Metal Cage after Total Hip Revision: Case Report

    Directory of Open Access Journals (Sweden)

    Alessandro Bistolfi


    Full Text Available This paper discusses a sciatic nerve palsy developed after a right total hip revision with a Burch-Schneider metal cage. A sciatalgic nerve pain appeared after surgery, while the palsy developed in about fifteen days. An electromyography showed the delay of the nerve impulse gluteal level. During the surgical exploration of the hip, a compression of the nerve on the metal cage was observed. The nerve was isolated, released from the fibrotic tissue and from the impingement, and was protected with a muscular flap. The recover from the pain was immediate, while the palsy recovered one month later.

  18. Altered neuronatin expression in the rat dorsal root ganglion after sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    Wu Chih-Hsien


    Full Text Available Abstract Background Several molecular changes occur following axotomy, such as gene up-regulation and down-regulation. In our previous study using Affymetrix arrays, it was found that after the axotomy of sciatic nerve, there were many novel genes with significant expression changes. Among them, neuronatin (Nnat was the one which expression was significantly up-regulated. Nnat was identified as a gene selectively expressed in neonatal brains and markedly reduced in adult brains. The present study investigated whether the expression of Nnat correlates with symptoms of neuropathic pain in adult rats with transected sciatic nerve. Methods Western blotting, immunohistochemistry, and the Randall and Selitto test were used to study the protein content, and subcellular localization of Nnat in correlation with pain-related animal behavior. Results It was found that after nerve injury, the expression of Nnat was increased in total protein extracts. Unmyelinated C-fiber and thinly myelinated A-δ fiber in adult dorsal root ganglions (DRGs were the principal sub-population of primary afferent neurons with distributed Nnat. The increased expression of Nnat and its subcellular localization were related to mechanical hyperalgesia. Conclusions The results indicated that there was significant correlation between mechanical hyperalgesia in axotomy of sciatic nerve and the increased expression of Nnat in C-fiber and A-δ fiber of adult DRG neurons.

  19. Role of capsaicin-sensitive nerve fibers in uterine contractility in the rat. (United States)

    Klukovits, Anna; Gaspar, Robert; Santha, Peter; Jancso, Gabor; Falkay, George


    The possible participation of capsaicin-sensitive sensory nerves in the modulation of neurogenic contractions was studied in nonpregnant and term pregnant rat uteri. Neurogenic contractions were elicited by electric field stimulation (40 V, 1-70 Hz, 0.6 msec) in intact uteri and uteri that were previously exposed to capsaicin in vitro. In capsaicin pretreated preparations obtained both from nonpregnant and term pregnant rats, a dose-dependent increase in the amplitude of uterine contractions was detected. Prior systemic treatment of the rats with capsaicin (130 mg/kg, s.c.) abolished the effect of in vitro capsaicin administration on the amplitude of neurogenic contractions. Use of a specific antagonist of calcitonin gene-related peptide revealed that depletion of this peptide, which normally elicits uterine smooth muscle relaxation, may be responsible for the increased responsiveness of the uterus to low-frequency stimulation. Experiments on the localization of calcitonin gene-related peptide in uterine tissue specimens exposed to capsaicin revealed dose-dependent depletion of calcitonin-gene related peptide-immunoreactive nerves innervating blood vessels and the myometrium. The findings indicate that capsaicin-sensitive afferent nerves, by the release of sensory neuropeptides, significantly contribute to the modulation of uterine contractility both in nonpregnant and term pregnant rats. It is suggested that uterine sensory nerve activation may be part of a trigger mechanism leading to preterm contractions evoked by, for example, inflammation.

  20. Membrane properties in small cutaneous nerve fibers in humans

    DEFF Research Database (Denmark)

    Hennings, Kristian; Frahm, Ken Steffen; Petrini, Laura;


    than large fibers (rmANOVA, Bonferroni, P=0.006). CONCLUSION: This study is a reliable method to investigate the membrane properties of small cutaneous nerve fibers in humans and may be used in clinical settings as a diagnostic or profiling tool. This article is protected by copyright. All rights...

  1. [Techniques of autonomic nerve preservation in laparoscopic radical resection for rectal cancer]. (United States)

    Wei, Hongbo; Zheng, Zongheng


    Pelvic autonomic nerve is a three-dimensional structure surrounding the rectum. There are several key points related to nerve injury during laparoscopic radical resection for rectal cancer. Hypogastric nerve has close relation with the upper and middle part of the rectum. Combined with S2-S4 pelvic splanchnic nerve, hypogastric nerve forms pelvic plexus. Incorrect operation in pelvic parietal peritoneum during dissection of upper rectum will lead to nerve injury. When performing dissection of inferior mesenteric artery, bilateral nerve tracts should be pushed to posterior abdominal wall and anterior fascia of the abdominal aorta should be well protected to avoid nerve injury. Pelvic plexus fibers located lateral to the rectum of pelvic floor, as well as neurovascular bundle closed to Denonvillier's fascia, also have close relations with nerve injury. Dissection of either lateral or anterior wall of rectum should be performed behind the Denonvillier's fascia and in front of the proper fascia of rectum. Sharp dissection should be performed closed to the mesorectum to protect branches of pelvic plexus.

  2. Management of peripheral facial nerve palsy. (United States)

    Finsterer, Josef


    Peripheral facial nerve palsy (FNP) may (secondary FNP) or may not have a detectable cause (Bell's palsy). Three quarters of peripheral FNP are primary and one quarter secondary. The most prevalent causes of secondary FNP are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immunological disorders, or drugs. The diagnosis of FNP relies upon the presence of typical symptoms and signs, blood chemical investigations, cerebro-spinal-fluid-investigations, X-ray of the scull and mastoid, cerebral MRI, or nerve conduction studies. Bell's palsy may be diagnosed after exclusion of all secondary causes, but causes of secondary FNP and Bell's palsy may coexist. Treatment of secondary FNP is based on the therapy of the underlying disorder. Treatment of Bell's palsy is controversial due to the lack of large, randomized, controlled, prospective studies. There are indications that steroids or antiviral agents are beneficial but also studies, which show no beneficial effect. Additional measures include eye protection, physiotherapy, acupuncture, botulinum toxin, or possibly surgery. Prognosis of Bell's palsy is fair with complete recovery in about 80% of the cases, 15% experience some kind of permanent nerve damage and 5% remain with severe sequelae.

  3. Stability of long term facilitation and expression of zif268 and Arc in the spinal cord dorsal horn is modulated by conditioning stimulation within the physiological frequency range of primary afferent fibers. (United States)

    Haugan, F; Wibrand, K; Fiskå, A; Bramham, C R; Tjølsen, A


    Long term facilitation (LTF) of C-fiber-evoked firing of wide dynamic range neurons in the spinal dorsal horn in response to conditioning stimulation (CS) of afferent fibers is a widely studied cellular model of spinal nociceptive sensitization. Although 100 Hz CS of primary afferent fibers is commonly used to induce spinal cord LTF, this frequency exceeds the physiological firing range. Here, we examined the effects of electrical stimulation of the sciatic nerve within the physiological frequency range on the magnitude and stability of the C-fiber-evoked responses of wide dynamic range neurons and the expression of immediate early genes (c-fos, zif268, and Arc) in anesthetized rats. Stimulation frequencies of 3, 30 and 100 Hz all induced facilitation of similar magnitude as recorded at 1 h post-CS. Strikingly, however, 3 Hz-induced potentiation of the C-fiber responses was decremental, whereas both 30 and 100 Hz stimulation resulted in stable, non-decremental facilitation over 3 h of recording. The number of dorsal horn neurons expressing c-fos, but not zif268 or Arc, was significantly elevated after 3 Hz CS and increased proportionally with stimulation rate. In contrast, a stable LTF of C-fiber responses was obtained at 30 and 100 Hz CS, and at these frequencies there was a sharp increase in zif268 expression and appearance of Arc-positive neurons. The results show that response facilitation can be induced by stimulation frequencies in the physiological range (3 and 30 Hz). Three hertz stimulation induced the early phase of LTF, but the responses were decremental. Arc and zif268, two genes previously coupled to LTP of synaptic transmission in the adult brain, are upregulated at the same frequencies that give stable LTF (30 and 100 Hz). This frequency-dependence is important for understanding how the afferent firing pattern affects neuronal plasticity and nociception in the spinal dorsal horn.

  4. L-carnitine alleviates sciatic nerve crush injury in rats:functional and electron microscopy assessments

    Institute of Scientific and Technical Information of China (English)

    Ümmü Zeynep Avsar; Umit Avsar; Ali Aydin; Muhammed Yayla; Berna Ozturkkaragoz; Harun Un; Murat Saritemur; Tolga Mercantepe


    Several studies have demonstrated that L-carnitine exhibits neuroprotective effects on injured sciatic nerve of rats with diabetes mellitus. It is hypothesized that L-carnitine exhibits neuro-protective effects on injured sciatic nerve of rats. Rat sciatic nerve was crush injured by a forceps and exhibited degenerative changes. After intragastric administration of 50 and 100 mg/kg L-carnitine for 30 days, axon area, myelin sheath area, axon diameter, myelin sheath diameter, and numerical density of the myelinated axons of injured sciatic nerve were similar to normal, and the function of injured sciatic nerve also improved signiifcantly. These ifndings suggest that L-carnitine exhibits neuroprotective effects on sciatic nerve crush injury in rats.

  5. High fat diet induced changes in gastric vagal afferent response to adiponectin. (United States)

    Kentish, Stephen J; Ratcliff, Kyle; Li, Hui; Wittert, Gary A; Page, Amanda J


    Food intake is regulated by vagal afferent signals from the stomach. Adiponectin, secreted primarily from adipocytes, also has a role in regulating food intake. However, the involvement of vagal afferents in this effect remains to be established. We aimed to determine if adiponectin can modulate gastric vagal afferent (GVA) satiety signals and further whether this is altered in high fat diet (HFD)-induced obesity. Female C57BL/6J mice were fed either a standard laboratory diet (SLD) or a HFD for 12weeks. Plasma adiponectin levels were assayed, and the expression of adiponectin in the gastric mucosa was assessed using real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The location of adiponectin protein within the gastric mucosa was determined by immunohistochemistry. To evaluate the direct effect of adiponectin on vagal afferent endings we determined adiponectin receptor expression in whole nodose ganglia (NDG) and also specifically in GVA neurons using retrograde tracing and qRT-PCR. An in vitro preparation was used to determine the effect of adiponectin on GVA response to mechanical stimulation. HFD mice exhibited an increased body weight and adiposity and showed delayed gastric emptying relative to SLD mice. Plasma adiponectin levels were not significantly different in HFD compared to SLD mice. Adiponectin mRNA was detected in the gastric mucosa of both SLD and HFD mice and presence of protein was confirmed immunohistochemically by the detection of adiponectin immunoreactive cells in the mucosal layer of the stomach. Adiponectin receptor 1 (ADIPOR1) and 2 (ADIPOR2) mRNA was present in both the SLD and HFD whole NDG and also specifically traced gastric mucosal and muscular neurons. There was a reduction in ADIPOR1 mRNA in the mucosal afferents of the HFD mice relative to the SLD mice. In HFD mice adiponectin potentiated gastric mucosal afferent responses to mucosal stroking, an effect not observed in SLD mice. Adiponectin reduced

  6. Differential effects of superoxide and hydrogen peroxide on myogenic signaling, membrane potential, and contractions of mouse renal afferent arterioles. (United States)

    Li, Lingli; Lai, En Yin; Wellstein, Anton; Welch, William J; Wilcox, Christopher S


    Myogenic contraction is the principal component of renal autoregulation that protects the kidney from hypertensive barotrauma. Contractions are initiated by a rise in perfusion pressure that signals a reduction in membrane potential (Em) of vascular smooth muscle cells to activate voltage-operated Ca(2+) channels. Since ROS have variable effects on myogenic tone, we investigated the hypothesis that superoxide (O2 (·-)) and H2O2 differentially impact myogenic contractions. The myogenic contractions of mouse isolated and perfused single afferent arterioles were assessed from changes in luminal diameter with increasing perfusion pressure (40-80 mmHg). O2 (·-), H2O2, and Em were assessed by fluorescence microscopy during incubation with paraquat to increase O2 (·-) or with H2O2 Paraquat enhanced O2 (·-) generation and myogenic contractions (-42 ± 4% vs. -19 ± 4%, P contractions (-10 ± 1% vs. -19 ± 2%, P contractions with paraquat without preventing the reduction in Em Myogenic contractions were independent of the endothelium and largely independent of nitric oxide. We conclude that O2 (·-) and H2O2 activate different signaling pathways in vascular smooth muscle cells linked to discreet membrane channels with opposite effects on Em and voltage-operated Ca(2+) channels and therefore have opposite effects on myogenic contractions.

  7. Ultrasonographic Evaluation of Peripheral Nerves. (United States)

    Ali, Zarina S; Pisapia, Jared M; Ma, Tracy S; Zager, Eric L; Heuer, Gregory G; Khoury, Viviane


    There are a variety of imaging modalities for evaluation of peripheral nerves. Of these, ultrasonography (US) is often underused. There are several advantages of this imaging modality, including its cost-effectiveness, time-efficient assessment of long segments of peripheral nerves, ability to perform dynamic maneuvers, lack of contraindications, portability, and noninvasiveness. It can provide diagnostic information that cannot be obtained by electrophysiologic or, in some cases, magnetic resonance imaging studies. Ideally, the neurosurgeon can use US as a diagnostic adjunct in the preoperative assessment of a patient with traumatic, neoplastic, infective, or compressive nerve injury. Perhaps its most unique use is in intraoperative surgical planning. In this article, a brief description of normal US nerve anatomy is presented followed by a description of the US appearance of peripheral nerve disease caused by trauma, tumor, infection, and entrapment.

  8. Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Lan Bao


    μ-opioid receptor (MOR) agonists such as morphine are powerful analgesics used for pain therapy.However,the use of these drugs is limited by their side-effects,which include antinociceptive tolerance and dependence.Earlier studies reported that MOR analgesic tolerance is reduced by blockade of δ-opioid receptors (DORs) that interact with MORs.Recent studies show that the MOR/DOR interaction in nociceptive afferent neurons in the dorsal root ganglion may contribute to morphine analgesic tolerance.Further analysis of the mechanisms for regulating the trafficking of receptors,ion channels and signaling molecules in nociceptive afferent neurons would help to understand the nociceptive mechanisms and improve pain therapy.

  9. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O


    arterioles with the chloride channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Renin secretion was equally enhanced by omission of extracellular calcium and by addition of 0.5 mM DIDS. The inhibitory effect of calcium was blocked by DIDS. The stimulatory effects of low calcium [with....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...... the duration of the contractile response to norepinephrine. The results support the hypothesis that DIDS-sensitive calcium-activated chloride channels are involved in regulation of renin release and in the afferent arteriolar contraction after angiotensin II but do not play a pivotal role in the response...

  10. Activation of kinetically distinct synaptic conductances on inhibitory interneurons by electrotonically overlapping afferents. (United States)

    Walker, Harrison C; Lawrence, J Josh; McBain, Chris J


    Mossy fiber (MF) and CA3 collateral (CL) axons activate common interneurons via synapses comprised of different AMPA receptors to provide feedforward and feedback inhibitory control of the CA3 hippocampal network. Because synapses potentially occur over variable electrotonic distances that distort somatically recorded synaptic currents, it is not known whether the underlying afferent-specific synaptic conductances are associated with different time courses. Using a somatic voltage jump technique to alter the driving force at the site of the synapse, we demonstrate that MF and CL synapses overlap in electrotonic location yet differ in conductance time course. Thus, afferent-specific conductance time courses allow single interneurons to differentially integrate feedforward and feedback information without the need to segregate distinct AMPA receptor subunits to different electrotonic domains.

  11. Blocking of periodontal afferents with anesthesia and its influence on elevator EMG activity. (United States)

    Manns, A E; Garcia, C; Miralles, R; Bull, R; Rocabado, M


    The effect of anesthetic blocking of the periodontal afferents of the canine teeth was studied in order to determine its influence on any changes in the jaw elevation activity. Unilateral integrated EMG recordings were made of the masseter and anterior temporal muscles during maximal voluntary clenching in centric occlusion and laterotrusive position with canine contact. After anesthetic blocking of the periodontal afferents of one or both ipsilateral canines, a significant increase was observed of the EMG activity of both jaw elevator muscles studied, in centric occlusion as well as with canine contact. The elevator activity increase was of a greater magnitude when antagonistic canines were anesthetized. These findings thus support the hypothesis that high threshold periodontal receptors exert an inhibitory effect on jaw elevator muscular activity.

  12. Adipose derived stem cells and nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Alessandro Faroni; Richard JP Smith; Adam J Reid


    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  13. Peripheral nerve lengthening as a regenerative strategy

    Institute of Scientific and Technical Information of China (English)

    Kenneth M.Vaz; Justin M.Brown; Sameer B.Shah


    Peripheral nerve injury impairs motor, sensory, and autonomic function, incurring substantial ifnancial costs and diminished quality of life. For large nerve gaps, proximal lesions, or chronic nerve injury, the prognosis for recovery is particularly poor, even with autografts, the current gold standard for treating small to moderate nerve gaps. In vivo elongation of intact proximal stumps towards the injured distal stumps of severed peripheral nerves may offer a promising new strategy to treat nerve injury. This review describes several nerve lengthening strategies, in-cluding a novel internal ifxator device that enables rapid and distal reconnection of proximal and distal nerve stumps.

  14. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part I. (United States)

    Yuan, Hsiangkuo; Silberstein, Stephen D


    The vagus nerve (VN), the "great wondering protector" of the body, comprises an intricate neuro-endocrine-immune network that maintains homeostasis. With reciprocal neural connections to multiple brain regions, the VN serves as a control center that integrates interoceptive information and responds with appropriate adaptive modulatory feedbacks. While most VN fibers are unmyelinated C-fibers from the visceral organs, myelinated A- and B-fiber play an important role in somatic sensory, motor, and parasympathetic innervation. VN fibers are primarily cholinergic but other noncholinergic nonadrenergic neurotransmitters are also involved. VN has four vagal nuclei that provide critical controls to the cardiovascular, respiratory, and alimentary systems. Latest studies revealed that VN is also involved in inflammation, mood, and pain regulation, all of which can be potentially modulated by vagus nerve stimulation (VNS). With a broad vagal neural network, VNS may exert a neuromodulatory effect to activate certain innate "protective" pathways for restoring health.

  15. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique


    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  16. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. (United States)

    Vallbo, A B; Olausson, H; Wessberg, J


    Impulses were recorded from unmyelinated afferents innervating the forearm skin of human subjects using the technique of microneurography. Units responding to innocuous skin deformation were selected. The sample (n = 38) was split into low-threshold units (n = 27) and high-threshold units (n = 11) on the basis of three distinctive features, i.e., thresholds to skin deformation, size of response to innocuous skin deformation, and differential response to sharp and blunt stimuli. The low-threshold units provisionally were denoted tactile afferents on the basis of their response properties, which strongly suggest that they are coding some feature of tactile stimuli. They exhibited, in many respects, similar functional properties as described for low-threshold C-mechanoreceptive units in other mammals. However, a delayed acceleration, not previously demonstrated, was observed in response to long-lasting innocuous indentations. It was concluded that human hairy skin is innervated by a system of highly sensitive mechanoreceptive units with unmyelinated afferents akin to the system previously described in other mammals. The confirmation that the system is present in the forearm skin and not only in the face area where it first was identified suggests a largely general distribution although there are indications that the tactile C afferents may be lacking in the very distal parts of the limbs. The functional role of the system remains to be assessed although physiological properties of the sense organs invite to speculations that the slow tactile system might have closer relations to limbic functions than to cognitive and motor functions.

  17. Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin?


    Fyffe, R E; Perl, E R


    The possibility that ATP acts as a synaptic mediator at the central terminals of primary afferent fibers was examined by applying it iontophoretically to neurons of the outer layers of the cat spinal cord in vivo. ATP proved to be selectively excitatory for a limited subset of spinal neurons. Those units consistently excited by ATP iontophoresis with very small currents (2-15 nA) responded to gentle mechanical stimulation of the skin and usually evidenced excitatory input from unmyelinated pr...

  18. Population coding of forelimb joint kinematics by peripheral afferents in monkeys.

    Directory of Open Access Journals (Sweden)

    Tatsuya Umeda

    Full Text Available Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates.

  19. Presynaptic α2-GABAA Receptors in Primary Afferent Depolarization and Spinal Pain Control



    Spinal dorsal horn GABAA receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution of ...

  20. Presynaptic {alpha}2-GABAA receptors in primary afferent depolarization and spinal pain control



    Spinal dorsal horn GABA(A) receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution o...

  1. Cholinergic modulation of primary afferent glutamatergic transmission in rat medullary dorsal horn neurons. (United States)

    Jeong, Seok-Gwon; Choi, In-Sun; Cho, Jin-Hwa; Jang, Il-Sung


    Although muscarinic acetylcholine (mACh) receptors are expressed in trigeminal ganglia, it is still unknown whether mACh receptors modulate glutamatergic transmission from primary afferents onto medullary dorsal horn neurons. In this study, we have addressed the cholinergic modulation of primary afferent glutamatergic transmission using a conventional whole cell patch clamp technique. Glutamatergic excitatory postsynaptic currents (EPSCs) were evoked from primary afferents by electrical stimulation of trigeminal tract and monosynaptic EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices. Muscarine and ACh reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, muscarine reduced the frequency of miniature EPSCs without affecting the current amplitude, suggesting that muscarine acts presynaptically to decrease the probability of glutamate release onto medullary dorsal horn neurons. The muscarine-induced decrease of glutamatergic EPSCs was significantly occluded by methoctramine or AF-DX116, M2 receptor antagonists, but not pirenzepine, J104129 and MT-3, selective M1, M3 and M4 receptor antagonists. The muscarine-induced decrease of glutamatergic EPSCs was highly dependent on the extracellular Ca2+ concentration. Physostigmine and clinically available acetylcholinesterase inhibitors, such as rivastigmine and donepezil, significantly shifted the concentration-inhibition relationship of ACh for glutamatergic EPSCs. These results suggest that muscarine acts on presynaptic M2 receptors to inhibit glutamatergic transmission by reducing the Ca2+ influx into primary afferent terminals, and that M2 receptor agonists and acetylcholinesterase inhibitors could be, at least, potential targets to reduce nociceptive transmission from orofacial tissues.

  2. Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation


    Katafuchi Toshihiko; Takaki Atsushi; Rashid Md Harunor; Furue Hidemasa; Koga Kohei; Yoshimura Megumu


    Abstract Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer) are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs) generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG) preparations using intracellular recordings. We also measured e...

  3. Intercostal muscles and purring in the cat: the influence of afferent inputs. (United States)

    Kirkwood, P A; Sears, T A; Stagg, D; Westgaard, R H


    Feline purring has previously been reported as originating in a central oscillator, independent of afferent inputs, and also as not involving expiratory muscles. Here we show, via electromyographic recordings from intercostal muscles, quantified by cross-correlation, that expiratory muscles can be involved and that even if the oscillator is central, reflex components nevertheless play a considerable part in the production of the periodic pattern of muscle activation seen during purring.

  4. Electron microscopic observations of terminals of functionally identified afferent fibers in cat spinal cord. (United States)

    Egger, M D; Freeman, N C; Malamed, S; Masarachia, P; Proshansky, E


    Using the method of intra-axonal injection of horseradish peroxidase, functionally identified afferent fibers from three slowly adapting (Type I) receptors and one Pacinian corpuscle in the glabrous skin of the hind paw of the cat were stained. Electron microscopic observation of the terminals of these fibers revealed predominantly axodendritic asymmetric synapses containing round, clear vesicles. Multiple synapses on a single dendrite were observed, separated by as little as 900 mm from one another.

  5. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation (United States)

    Andrews, Russell J.


    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  6. Nerve Growth Factor: A Focus on Neuroscience and Therapy (United States)

    Aloe, Luigi; Rocco, Maria Luisa; Omar Balzamino, Bijorn; Micera, Alessandra


    Nerve growth factor (NGF) is the firstly discovered and best characterized neurotrophic factor, known to play a critical protective role in the development and survival of sympathetic, sensory and forebrain cholinergic neurons. NGF promotes neuritis outgrowth both in vivo and in vitro and nerve cell recovery after ischemic, surgical or chemical injuries. Recently, the therapeutic property of NGF has been demonstrated on human cutaneous and corneal ulcers, pressure ulcer, glaucoma, maculopathy and retinitis pigmentosa. NGF eye drops administration is well tolerated, with no detectable clinical evidence of systemic or local adverse effects. The aim of this review is to summarize these biological properties and the potential clinical development of NGF. PMID:26411962

  7. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. (United States)

    Jiang, Xu; Mi, Ruifa; Hoke, Ahmet; Chew, Sing Yian


    Fibre structures represent a potential class of materials for the formation of synthetic nerve conduits due to their biomimicking architecture. Although the advantages of fibres in enhancing nerve regeneration have been demonstrated, in vivo evaluation of fibre size effect on nerve regeneration remains limited. In this study, we analyzed the effects of fibre diameter of electrospun conduits on peripheral nerve regeneration across a 15-mm critical defect gap in a rat sciatic nerve injury model. By using an electrospinning technique, fibrous conduits comprised of aligned electrospun poly (ε-caprolactone) (PCL) microfibers (981 ± 83 nm, Microfiber) or nanofibers (251 ± 32 nm, Nanofiber) were obtained. At three months post implantation, axons regenerated across the defect gap in all animals that received fibrous conduits. In contrast, complete nerve regeneration was not observed in the control group that received empty, non-porous PCL film conduits (Film). Nanofiber conduits resulted in significantly higher total number of myelinated axons and thicker myelin sheaths compared to Microfiber and Film conduits. Retrograde labeling revealed a significant increase in number of regenerated dorsal root ganglion sensory neurons in the presence of Nanofiber conduits (1.93 ± 0.71 × 10(3) vs. 0.98 ± 0.30 × 10(3) in Microfiber, p regeneration. These results could provide useful insights for future nerve guide designs.

  8. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut



    Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first d...

  9. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat. (United States)

    Manjarrez, E; Rojas-Piloni, J G; Jimenez, I; Rudomin, P


    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.

  10. An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord. (United States)

    Semba, K; Masarachia, P; Malamed, S; Jacquin, M; Harris, S; Yang, G; Egger, M D


    The intra-axonal horseradish peroxidase technique was used to examine the central terminals of 7 A beta primary afferent fibers from rapidly adapting (RA) mechanoreceptors in the glabrous skin of the cat's hindpaw. At the light microscopic level, labelled collaterals were seen to bear occasional boutonlike swellings, mostly (75-82%) of the en passant type. These swellings were distributed more or less uniformly from lamina III to a dorsal part of lamina VI in the dorsal horn, over a maximum longitudinal extent of about 4 mm. At the electron microscopic level, we observed that labelled boutons of RA afferent fibers were 1.0 to 3.3 micrometers in longest sectional dimension, and contained clear, round synaptic vesicles. They frequently formed asymmetric axospinous and axodendritic synapses and commonly appeared to receive contacts from unlabelled structures containing flattened or pleomorphic vesicles plus occasional large dense-cored vesicles. The examination of synaptic connectivity over the entire surface of individual boutons indicated that RA afferent boutons each made contacts with an average of one spine and one dendrite and, in addition, appeared to be postsynaptic to an average of two unlabelled vesicle-containing structures. This synaptic organization was, in general, more complex than that we had seen previously in Pacinian corpuscle (PC) and slowly adapting (SA) type I mechanoreceptive afferent fibers. Our findings indicate that RA, SA, and PC afferent terminals, while displaying some differential synaptic organizations, have many morphological and synaptological characteristics in common. These afferent terminals, in turn, seem to be generally distinguishable from the terminals of muscle spindle Ia afferents or unmyelinated primary afferents.

  11. The Organization of Submodality-Specific Touch Afferent Inputs in the Vibrissa Column

    Directory of Open Access Journals (Sweden)

    Katsuyasu Sakurai


    Full Text Available The rodent tactile vibrissae are innervated by several different types of touch sensory neurons. The central afferents of all touch neurons from one vibrissa collectively project to a columnar structure called a barrelette in the brainstem. Delineating how distinct types of sensors connect to second-order neurons within each barrelette is critical for understanding tactile information coding and processing. Using genetic and viral techniques, we labeled slowly adapting (SA mechanosensory neurons, rapidly adapting (RA mechanosensory neurons, afferent synapses, and second-order projection neurons with four different fluorescent markers to examine their connectivity. We discovered that within each vibrissa column, individual sensory neurons project collaterals to multiply distributed locations, inputs from SA and RA afferents are spatially intermixed without any discernible stereotypy or topography, and second-order projection neurons receive convergent SA and RA inputs. Our findings reveal a “one-to-many and many-to-one” connectivity scheme and the circuit architecture for tactile information processing at the first-order synapses.

  12. Peripheral relays in stress-induced activation of visceral afferents in the gut. (United States)

    van den Wijngaard, René M; Klooker, Tamira K; de Jonge, Wouter J; Boeckxstaens, Guy E


    Multiple organs are targeted by the stress response, but the focus of this article is on stress-induced activation of visceral afferents in the gut. During recent years it became apparent that mast cells are pivotal in this response. Peripheral corticotrophin releasing factor (CRF) induces their degranulation whereupon mast cell mediators activate visceral afferents. In addition, these mediators are responsible for gut barrier dysfunction and subsequent influx of luminal antigens and bacteria. Some research groups have begun to investigate the possible importance of barrier dysfunction for enhanced visceral sensitivity. After reviewing the current knowledge on CRF-induced mast cell degranulation we will discuss these groundbreaking papers in a more elaborate way. They form the basis for a hypothesis in which not only CRF-induced but also antigen-mediated mast cell degranulation is relevant to stress-related afferent activation. Part of this hypothesis is certainly speculative and needs further investigation. At the end of this article we sum up some of the unanswered questions raised by others and during this review.

  13. Superoxide enhances Ca2+ entry through L-type channels in the renal afferent arteriole. (United States)

    Vogel, Paul A; Yang, Xi; Moss, Nicholas G; Arendshorst, William J


    Reactive oxygen species regulate cardiovascular and renal function in health and disease. Superoxide participates in acute calcium signaling in afferent arterioles and renal vasoconstriction produced by angiotensin II, endothelin, thromboxane, and pressure-induced myogenic tone. Known mechanisms by which superoxide acts include quenching of nitric oxide and increased ADP ribosyl cyclase/ryanodine-mediated calcium mobilization. The effect(s) of superoxide on other calcium signaling pathways in the renal microcirculation is poorly understood. The present experiments examined the acute effect of superoxide generated by paraquat on calcium entry pathways in isolated rat afferent arterioles. The peak increase in cytosolic calcium concentration caused by KCl (40 mmol/L) was 99±14 nmol/L. The response to this membrane depolarization was mediated exclusively by L-type channels because it was abolished by nifedipine but was unaffected by the T-type channel blocker mibefradil. Paraquat increased superoxide production (dihydroethidium fluorescence), tripled the peak response to KCl to 314±68 nmol/L (Psuperoxide and not of hydrogen peroxide. Unaffected by paraquat and superoxide was calcium entry through store-operated calcium channels activated by thapsigargin-induced calcium depletion of sarcoplasmic reticular stores. Also unresponsive to paraquat was ryanodine receptor-mediated calcium-induced calcium release from the sarcoplasmic reticulum. Our results provide new evidence that superoxide enhances calcium entry through L-type channels activated by membrane depolarization in rat cortical afferent arterioles, without affecting calcium entry through store-operated entry or ryanodine receptor-mediated calcium mobilization.


    Institute of Scientific and Technical Information of China (English)


    Objective To analyse the antinociceptive effect of muscle spindle afferents and the involved mechanism.Methods The single unit of wide dynamic range(WDR) neurons in the spinal cord dorsal horn were recorded extracelluarly.The effects of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on nociceptive responses (C-fibres-evoked responses,C-responses) of WDR neurons were observed before and after bilateral lesions of ventrolateral periaqueduct gray (PAG).And the effects of muscle spindle afferents on the spontaneous discharge of the tail-flick related cell in the rostral ventro medial medulla (RVM) and on the spontaneous discharge of the PAG neurons were observed.Results The C-responses of WDR neurons were significantly inhibited by muscle spindle afferents,and the inhibitory effects were reduced by bilateral lesions of ventrolateral PAG.The spontaneous discharge of the off-cell in the RVM was excited while the on-cell was inhibited by intravenous administration of Sch.The spontaneous discharge of the PAG neurons were excited by muscle spindle afferents.Conclusion Muscle spindle afferents show a distinct effect of antinociception.PAG-RVM descending inhibitory system may play an important role in this nociceptive modulative mechanism.


    Institute of Scientific and Technical Information of China (English)

    唐斌; 樊小力; 吴苏娣


    Objective To analyse the antinociceptive effect of red nucleus (RN) and its role in the antinociceptive effect of muscle spindle afferents. Methods The single units of RN or wide dynamic range (WDR) neuron in the spinal cord dorsal horn were extracelluarly recorded. The effects of RN stimulation on nociceptive responses (C-fibers-evoked responses, C-responses) of WDR neurons were observed. The influence of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on the spontaneous discharge of RN neurons and on C-responses of WDR neurons were observed. The effect of muscle spindle afferents on C-responses of WDR neurons after unilateral lesions of RN was also observed. Results Electrical stimulation of the RN produced a significantly inhibitory effect on the nociceptive responses of WDR neurons. RN neurons were excited by muscle spindle afferents. Muscle spindle afferents significantly inhibited C-response of WDR neurons and this inhibitory effect was reduced by lesions of RN. Conclusion RN neurons have a significant antinociceptive effect and might be involved in the antinociceptive effects elicited by muscle spindle afferents.

  16. Sensory nerve conduction studies in neuralgic amyotrophy. (United States)

    van Alfen, Nens; Huisman, Willem J; Overeem, S; van Engelen, B G M; Zwarts, M J


    Neuralgic amyotrophy is a painful, episodic peripheral nerve disorder localized to the brachial plexus. Sensory symptoms occur in 80% of the patients. We assessed the frequency of abnormalities in sensory nerve conduction studies of the lateral and medial antebrachial cutaneous, radial sensory, median sensory, and ulnar sensory nerves in 112 patients. Sensory nerve conduction studies showed abnormalities in nerves, even when the nerve was clinically affected. The lateral and medial antebrachial cutaneous nerves were most often abnormal, in 15% and 17% of nerves. No correlation with the presence or localization of clinical deficits was found. Brachial plexus sensory nerve conduction studies seem to be of little diagnostic value in neuralgic amyotrophy. Our findings also indicate that some sensory lesions may be in the nerve roots instead of the plexus. An examination of normal sensory nerve conduction studies does not preclude neuralgic amyotrophy as a diagnosis.

  17. Closed-loop afferent electrical stimulation for recovery of hand function in individuals with motor incomplete spinal injury: early clinical results. (United States)

    Schildt, Christopher J; Thomas, Sarah H; Powell, Elizabeth S; Sawaki, Lumy; Sunderam, Sridhar


    Afferent electrical stimulation is known to augment the effect of rehabilitative therapy through use-dependent cortical plasticity. Experiments pairing transcranial magnetic stimulation (TMS) with peripheral nerve stimulation (PNS) have shown a timing-dependent effect on motor evoked potential (MEP) amplitude suggesting that PNS applied in closed-loop (CL) mode could augment this effect through positive reinforcement. We present early results from a clinical trial in which an EEG brain-machine interface (BMI) was used to apply PNS to two subjects in response to motor intent detected from sensorimotor cortex in a cue-driven hand grip task. Both subjects had stable incomplete cervical spinal cord injury (SCI) with impaired upper limb function commensurate with the injury level. Twelve sessions of CL-PNS applied over a 4-6 week period yielded results suggesting improved hand grip strength and increased task-related modulation of the EEG in one hand of both subjects, and increased TMS-measured motor map area in one. These observations suggest that rehabilitation using such interactive therapies could benefit affected individuals.

  18. Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Juan Carlos López-Ramos


    Full Text Available Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex is identified in rodents by its dense connectivity with the mediodorsal thalamus, and because of its inputs from other sites, such as hippocampus and amygdala. The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the mediodorsal thalamus, the hippocampal CA1 area, or the basolateral amygdala, and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. Field postsynaptic potentials evoked at the medial prefrontal cortex from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals’ avoidance of the reward. Field postsynaptic potentials collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations.

  19. Histological modifications of the rat prostate following transection of somatic and autonomic nerves

    Directory of Open Access Journals (Sweden)

    Rosaura Diaz


    Full Text Available It is known that hormones influence significantly the prostate tissue. However, we reported that mating induces an increase in androgen receptors, revealing a neural influence on the gland. These data suggested that somatic afferents (scrotal and genitofemoral nerves and autonomic efferents (pelvic and hypogastric nerves could regulate the structure of the prostate. Here we assessed the role of these nerves in maintaining the histology of the gland. Hence, afferent or efferent nerves of male rats were transected. Then, the ventral and dorsolateral regions of the prostate were processed for histology. Results showed that afferent transection affects prostate histology. The alveoli area decreased and increased in the ventral and dorsolateral prostate, respectively. The epithelial cell height increased in both regions. Efferent denervation produced dramatic changes in the prostate gland. The tissue lost its configuration, and the epithelium became scattered and almost vanished. Thus, afferent nerves are responsible for spinal processes pertaining to the trophic control of the prostate, activating its autonomic innervation. Hence, our data imply that innervation seems to be synergic with hormones for the healthy maintenance of the prostate. Thus, it is suggested that some prostate pathologies could be due to the failure of the autonomic neural pathways regulating the gland.Sabe-se que os hormônios influenciam significativamente o tecido prostático. Entretanto, nós demonstramos que o acasalamento induz um aumento nos receptores androgênicos, revelando uma influência neural sobre a glândula. Esses dados sugerem que os aferentes somáticos (nervos escrotal e genito-femural e os eferentes autonômicos (nervos pélvicos e hipo-gástricos poderiam regular a estrutura da próstata. Neste trabalho, avaliou-se a função destes nervos na manutenção da histologia da glândula. Dessa forma, os nervos aferentes e eferentes de ratos machos foram

  20. [Microneural reconstruction after iatrogenic lesions of the lingual nerve and the inferior alveolar nerve. Critical evaluation]. (United States)

    Cornelius, C P; Roser, M; Ehrenfeld, M


    As microneural repair techniques of the sensory mandibular branches enter the third decade of their clinical use, there are but a few long-term investigations into the value of these procedures in the treatment of iatrogenic injury to the lingual (LN), inferior alveolar (IAN) or mental (MN) nerve. To establish the efficacy of microneural repair in lesions of the LN, IAN or MN with loss of continuity, the outcome of sensory recovery was evaluated in a series of 92 patients (LN: direct coaptation n = 39, coaptation + sural nerve grafting n = 23; IAN: direct coaptation n = 11 coaptation + sural nerve grafting n = 10; MN: direct coaptation n = 11). The minimum duration of follow-up was 14 months postoperatively. The persistent sensory deficit was assessed using standardized neurosensory testing and gustometric stimuli. In addition the patients answered a multiple-choice questionnaire containing a list of complaints. To obtain a numeric estimate for interindividual and intergroup comparison the information from clinical measurements and patient reports was condensed into a 'neurological score' and a 'complaint score', respectively. Furthermore, adequate items from both scores were combined to affirm or deny the return of sensory function in terms of protective and discriminative sensation. The overall results show a broad range of variation in the scores, sometimes reflecting severe degrees of persistent sensory impairment. The lowest scores, corresponding to the best regeneration, were found after direct coaptation of the LN, IAN and NM, but even the best results did not provide sensory recovery to a preinjury level. After direct coaptation of LN 69% of the patients exhibited protective sensation and 41% regained discriminative function. In contrast, LN grafting was ensued from restoration of protective function in 39% and discriminative function in 17% of the patients. More striking differences were found between coaptation and grafting of the IAN (IAN coaptation: 91

  1. Functional assessment of sciatic nerve reconstruction : Biodegradable poly (DLLA-epsilon-CL) nerve guides versus autologous nerve grafts

    NARCIS (Netherlands)

    Meek, MF; Dijkstra, [No Value; Den Dunnen, WFA; Ijkema-Paassen, J; Schakenraad, JM; Gramsbergen, A; Robinson, PH


    The aim of this study was to compare functional nerve recovery after reconstruction with a biodegradable p(DLLA-epsilon-CL) nerve guide filled with modified denatured muscle tissue (MDMT), or an autologous nerve graft. We evaluated nerve recovery using walking track analysis (measurement of the scia

  2. Sensory nerve function and auto-mutilation after reconstruction of various gap lengths with nerve guides and autologous nerve grafts

    NARCIS (Netherlands)

    den Dunnen, WFA; Meek, MF


    The aim of this study was to evaluate sensory nerve recovery and auto-mutilation after reconstruction of various lengths of nerve gaps in the sciatic nerve of the rat, using different techniques. Group 4, in which the longest nerve gap (15 mm) was reconstructed with a thin-walled p(DL-lactide-y-capr

  3. Schwannomatosis of the sciatic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tetsuji; Maruyama, Shigeki; Mizuno, Kosaku [Dept. of Orthopaedic Surgery, Kobe University School of Medicine (Japan)


    A 52-year-old woman with schwannomatosis in the left sciatic nerve is presented. The patient had no stigmata of neurofibromatosis (NF) type 1 or 2. Cutaneous or spinal schwannomas were not detected. Magnetic resonance (MR) imaging of the sciatic nerve revealed more than 15 tumors along the course of the nerve. Histological examination revealed schwannomas consisting of Antoni A and B areas. Immunohistochemical study showed most cells reacting intensely for S-100 protein. The patient underwent conservative follow-up treatment due to the minimal symptoms. The relationship of the disease with NF-2 and plexiform schwannoma is discussed. (orig.)

  4. Task-dependent changes in the responses to low-threshold cutaneous afferent volleys in the human lower limb. (United States)

    Burke, D; Dickson, H G; Skuse, N F


    1. In seven human subjects who were standing without support the sural nerves were stimulated electrically using trains of non-painful stimuli (five pulses at 300 Hz), designed to activate afferents from cutaneous mechanoreceptors. The reflex effects of the stimulus train on different muscles of the ipsilateral and contralateral legs were sought in post-stimulus averages of rectified EMG. Changes in the pattern of reflex influence were investigated when the subjects maintained different postures. 2. Clear reflex responses were seen in ipsilateral tibialis anterior, soleus, biceps femoris and vastus lateralis, but only when the muscles were actively contracting. In each muscle, inhibition was the dominant reflex response within the first 100 ms. In four of the seven subjects, reflex changes were detectable in the contralateral tibialis anterior and soleus, the peak-to-peak modulation within the first 200 ms being 25-50% of that for the homologous ipsilateral muscle. 3. When subjects attempted to stand on a tilted platform, an unstable platform or on one leg with the other flexed, different combinations of muscles were active, involving both flexors and extensors or predominantly flexors or predominantly extensors. In each posture the reflex effects were demonstrable only in the active muscles. 4. With ipsilateral tibialis anterior, there were task-dependent changes in the short-latency components of the EMG response, approximately 60 ms and 80 ms after the stimulus. When seated performing voluntary contractions these components were difficult to define, and when standing on a platform tilted toe-up they were small. When the ipsilateral leg was flexed or when standing on an unstable base, these early components were more prominent in each subject. With contralateral tibialis anterior, the dominant reflex pattern was inhibition when seated and contracting voluntarily, and facilitation during bipedal stance tilted toe-up. These changes in reflex pattern could not be

  5. A Cadaveric Study of the Communication Patterns Between the Buccal Trunks of the Facial Nerve and the Infraorbital Nerve in the Midface. (United States)

    Tansatit, Tanvaa; Phanchart, Piyaporn; Chinnawong, Dawinee; Apinuntrum, Prawit; Phetudom, Thavorn; Sahraoui, Yasmina M E


    Most nerve communications reported in the literature were found between the terminal branches. This study aimed to clarify and classify patterns of proximal communications between the buccal branches (BN) of the facial nerve and the infraorbital nerve (ION).The superficial musculoaponeurotic system protects any communication sites from conventional dissections. Based on this limitation, the soft tissues of each face were peeled off the facial skull and the facial turn-down flap specimens were dissected from the periosteal view. Dissection was performed in 40 hemifaces to classify the communications in the sublevator space. Communication site was measured from the ala of nose.A double communication was the most common type found in 62.5% of hemifaces. Triple and single communications existed in 25% and 10% of 40 hemiface specimens, respectively. One hemiface had no communication. The most common type of communication occurred between the lower trunk of the BN of the facial nerve and the lateral labial (fourth) branch of the ION (70% in 40 hemifaces). Communication site was deep to the levator labii superioris muscle at 16.2 mm from the nasal ala. Communications between the motor and the sensory nerves in the midface may be important to increase nerve endurance and to compensate functional loss from injury.Proximal communications between the main trunks of the facial nerve and the ION in the midface exist in every face. This implies some specific functions in normal individuals. Awareness of these nerves is essential in surgical procedure in the midface.

  6. Cranial nerves in the Australian lungfish, Neoceratodus forsteri, and in fossil relatives (Osteichthyes: Dipnoi). (United States)

    Kemp, A


    Three systems, two sensory and one protective, are present in the skin of the living Australian lungfish, Neoceratodus forsteri, and in fossil lungfish, and the arrangement and innervation of the sense organs is peculiar to lungfish. Peripheral branches of nerves that innervate the sense organs are slender and unprotected, and form before any skeletal structures appear. When the olfactory capsule develops, it traps some of the anterior branches of cranial nerve V, which emerged from the chondrocranium from the lateral sphenotic foramen. Cranial nerve I innervates the olfactory organ enclosed within the olfactory capsule and cranial nerve II innervates the eye. Cranial nerve V innervates the sense organs of the snout and upper lip, and, in conjunction with nerve IX and X, the sense organs of the posterior and lateral head. Cranial nerve VII is primarily a motor nerve, and a single branch innervates sense organs in the mandible. There are no connections between nerves V and VII, although both emerge from the brain close to each other. The third associated system consists of lymphatic vessels covered by an extracellular matrix of collagen, mineralised as tubules in fossils. Innervation of the sensory organs is separate from the lymphatic system and from the tubule system of fossil lungfish.

  7. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Directory of Open Access Journals (Sweden)

    Huang Dongyue


    Full Text Available Abstract Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir and isolectin B4 (IB4 binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent

  8. Factors that influence peripheral nerve regeneration

    DEFF Research Database (Denmark)

    Krarup, Christian; Archibald, Simon J; Madison, Roger D


    median nerve lesions (n = 46) in nonhuman primates over 3 to 4 years, a time span comparable with such lesions in humans. Nerve gap distances of 5, 20, or 50mm were repaired with nerve grafts or collagen-based nerve guide tubes, and three electrophysiological outcome measures were followed: (1) compound...

  9. Solitary fibrous tumour of the vagus nerve. (United States)

    Scholsem, Martin; Scholtes, Felix


    We describe the complete removal of a foramen magnum solitary fibrous tumour in a 36-year-old woman. It originated on a caudal vagus nerve rootlet, classically described as the 'cranial' accessory nerve root. This ninth case of immunohistologically confirmed cranial or spinal nerve SFT is the first of the vagus nerve.

  10. Clinical significance of suprascapular nerve mobilization. (United States)

    Bodily, Kale D; Spinner, Robert J; Shin, Alexander Y; Bishop, Allen T


    The anatomy of the suprascapular nerve is important to surgeons when focal nerve lesions necessitate surgical repair. Recent experience with a patient who had a complete suprascapular nerve lesion in the retroclavicular region (combined with axillary and musculocutaneous nerve lesions) is presented to illustrate that successful direct nerve repair is possible despite resection of a neuroma. Specifically, we found that neurolysis and mobilization of the suprascapular nerve and release of the superior transverse scapular ligament provided the necessary nerve length to achieve direct nerve repair after the neuroma was removed. A combined supraclavicular and infraclavicular approach to the suprascapular nerve provided excellent visualization, especially in the retroclavicular region. Postoperatively, the patient recovered complete shoulder abduction and external rotation with the direct repair, an outcome uncommonly achieved with interpositional grafting. Based on our operative experience, we set out to quantify the length that the suprascapular nerve could be mobilized with neurolysis. Mobilization of the nerve and release of the superior transverse scapular ligament generated an average of 1.6 cm and 0.7 cm of extra nerve length respectively, totaling 2.3 cm of additional usable nerve length overall. The ability to expose the suprascapular nerve in the retroclavicular/infraclavicular region and to mobilize the suprascapular nerve for possible direct repair has not been previously emphasized and is clinically important. This surgical approach and technique permits direct nerve repair after resection of a focal neuroma in the retroclavicular or infraclavicular region, thus avoiding interpositional grafting, and improving outcomes.

  11. Does the epidermal nerve fibre density measured by skin biopsy in patients with peripheral neuropathies correlate with neuropathic pain? (United States)

    Truini, A; Biasiotta, A; Di Stefano, G; Leone, C; La Cesa, S; Galosi, E; Piroso, S; Pepe, A; Giordano, C; Cruccu, G


    The different neuropathic pain types (e.g., ongoing burning pain and allodynia) are frequent and disabling complaints in patients with peripheral neuropathies. Although the reference standard technique for diagnosing painful small-fibre neuropathies is nerve fibre density assessment by skin biopsy, the relationship between the epidermal nerve fibre (ENF) density and neuropathic pain is still unclear. In a clinical and skin biopsy study designed to investigate whether changes in ENF density are directly related to pain, we enrolled 139 consecutive patients with distal symmetric peripheral neuropathy. All patients underwent clinical examination. The Neuropathic Pain Symptom Inventory was used to distinguish the different neuropathic pain types. A skin biopsy was conducted, and ENFs were immunostained with the antiprotein gene product 9.5, and their linear density was quantified with bright-field microscopy. No difference was found in ENF density between patients with and without neuropathic pain, nor between patients with and without ongoing burning pain. Conversely, ENF density was higher in patients with provoked pains (including mechanical dynamic allodynia) than in those without. The variable association between ENF density and symptoms of neuropathic pain supports the idea that neuropathic pain symptoms arise through distinct underlying mechanisms. The lack of relationship between ongoing burning pain and ENF density suggests that this type of pain reflects factors other than loss of nociceptive afferents. The association between ENF density and provoked pain (including mechanical dynamic allodynia) suggests that this type of pain might be mediated by spared and sensitised nociceptive afferents.

  12. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff (United States)

    Schuettler, Martin; Donaldson, Nick; Seetohul, Vipin; Taylor, John


    Objective. We investigate the ability of the method of velocity selective recording (VSR) to determine the fibre types that contribute to a compound action potential (CAP) propagating along a peripheral nerve. Real-time identification of the active fibre types by determining the direction of action potential propagation (afferent or efferent) and velocity might allow future neural prostheses to make better use of biological sensor signals and provide a new and simple tool for use in fundamental neuroscience. Approach. Fibre activity was recorded from explanted Xenopus Laevis frog sciatic nerve using a single multi-electrode cuff that records whole nerve activity with 11 equidistant ring-shaped electrodes. The recorded signals were amplified, delayed against each other with variable delay times, added and band-pass filtered. Finally, the resulting amplitudes were measured. Main Result. Our experiments showed that electrically evoked frog CAP was dominated by two fibre populations, propagating at around 20 and 40 m/s, respectively. The velocity selectivity, i.e. the ability of the system to discriminate between individual populations was increased by applying band-pass filtering. The method extracted an entire velocity spectrum from a 10 ms CAP recording sample in real time. Significance. Unlike the techniques introduced in the 1970s and subsequently, VSR requires only a single nerve cuff and does not require averaging to provide velocity spectral information. This makes it potentially suitable for the generation of highly-selective real-time control-signals for future neural prostheses. In our study, electrically evoked CAPs were analysed and it remains to be proven whether the method can reliably classify physiological nerve traffic. The work presented here was carried out at the laboratories of the Implanted Devices Group, Department of Medical Physics and Bioengineering, University College London, UK.

  13. Poly(DL-lactide-epsilon-caprolactone) nerve guides perform better than autologous nerve grafts

    NARCIS (Netherlands)

    DenDunnen, WFA; VanderLei, B; Schakenraad, JM; Stokroos, [No Value; Blaauw, E; Pennings, AJ; Robinson, PH; Bartels, H.


    The aim of this study was to compare the speed and quality of nerve regeneration after reconstruction using a biodegradable nerve guide or an autologous nerve graft. We evaluated nerve regeneration using light microscopy, transmission electron microscopy and morphometric analysis. Nerve regeneration

  14. GRP nerves in pig antrum

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier


    We extracted gastrin-releasing peptide (GRP) and its C-terminal decapeptide corresponding to 6.4 and 6.8 pmol/g from pig antrum mucosa. By immunohistochemistry GRP was localized to mucosal, submucosal, and myenteric nerve fibers. A few nerve cell bodies were also identified. Using isolated perfused...... pig antrum with intact vagal innervation, we found concomitant, atropine-resistant release of GRP and gastrin during electrical stimulation of the vagal nerves. Intra-arterial GRP at 10(-11)-10(-10) mol/l caused up to fivefold, dose-dependent increases in gastrin secretion; higher doses were less...... response to GRP and abolished the effect of vagal stimulation. The available evidence strongly suggests that GRP nerves are responsible for the stimulatory vagal effects on gastrin secretion in the pig....

  15. Effects of high-frequency oscillatory ventilation on vagal and phrenic nerve activities. (United States)

    Man, G C; Man, S F; Kappagoda, C T


    This study was undertaken to define the mechanism for the respiratory inhibition observed during high-frequency oscillatory ventilation (HFOV). The effects of HFOV on the activities of single units in the vagus (Vna) and phrenic nerves (Pna) were examined in pentobarbital-anesthetized dogs. The animals were either ventilated by intermittent positive-pressure ventilation (IPPV) with and without positive end-expiratory pressure (PEEP), or by HFOV at a frequency of 25 Hz and pump displacement volume of 3 ml/kg. In 13 vagal units the Vna was much higher during HFOV than during IPPV or airway occlusion at a matched airway pressure. Ten units in the phrenic nerves were examined, and Pna (expressed as bursts/min) was attenuated by HFOV in all of them. In four of them, the effect of cooling the vagi to 8-10 degrees C on Pna was examined, and it was found that HFOV failed to alter the Pna. We conclude that 1) HFOV stimulates the pulmonary vagal afferent fibers continuously and to a degree greater than that due to static lung inflation and increased airway pressure and 2) the increased vagal activity during HFOV probably causes phrenic nerve activity inhibition.

  16. Flexible adaptation to an artificial recurrent connection from muscle to peripheral nerve in man. (United States)

    Kato, Kenji; Sasada, Syusaku; Nishimura, Yukio


    Controlling a neuroprosthesis requires learning a novel input-output transformation; however, how subjects incorporate this into limb control remains obscure. To elucidate the underling mechanisms, we investigated the motor adaptation process to a novel artificial recurrent connection (ARC) from a muscle to a peripheral nerve in healthy humans. In this paradigm, the ulnar nerve was electrically stimulated in proportion to the activation of the flexor carpi ulnaris (FCU), which is ulnar-innervated and monosynaptically innervated from Ia afferents of the FCU, defined as the "homonymous muscle," or the palmaris longus (PL), which is not innervated by the ulnar nerve and produces similar movement to the FCU, defined as the "synergist muscle." The ARC boosted the activity of the homonymous muscle and wrist joint movement during a visually guided reaching task. Participants could control muscle activity to utilize the ARC for the volitional control of wrist joint movement and then readapt to the absence of the ARC to either input muscle. Participants reduced homonymous muscle recruitment with practice, regardless of the input muscle. However, the adaptation process in the synergist muscle was dependent on the input muscle. The activity of the synergist muscle decreased when the input was the homonymous muscle, whereas it increased when it was the synergist muscle. This reorganization of the neuromotor map, which was maintained as an aftereffect of the ARC, was observed only when the input was the synergist muscle. These findings demonstrate that the ARC induced reorganization of neuromotor map in a targeted and sustainable manner.

  17. An experimental study of retrograde axonal plasmatic flow in the peripheral nerves of rats. (United States)

    Sanguinetti, C; Tranquilli Leali, P; Grispigni, C


    Retrograde axonal flow (R.A.F.) in the sciatic nerve of Sprague Dowley rats was studied by injecting horseradish peroxidase (H.R.P.) peripherally and identifying its appearance in the related segment of the spinal cord. This called for a precise identification of the vertebro-medullary topography, the afferant root levels of the sciatic nerve, and the transport velocity of the H.R.P. Our study revealed a clear difference of neuromuscular end plate permeability as between new-born and adult animals. The vertebral column of the rat consists of 8 cervical metameres, 13 dorsal, 6 lumbar, 4 sacral, and 3 coccygeal. The sciatic nerve is derived principally from the roots L4, L5, L6 and in part from L3 and S1. The injection of H.R.P. in the sural triceps of the new-born rat produced granules in the anterior horn cells as early as 12 hours later. In similar experiments with adult rats H.R.P. in the motorneurons was never detected. In our experimental model the transport velocity of H.R.P. from the point of injection to the anterior horn cells was approximately 68 mm per day. These findings provide a foundation on which to base future studies of retrograde flows in conditions of induced pathology.

  18. Morphological changes in the frog cerebellar cortex after unilateral section of the statoacustic nerve

    Directory of Open Access Journals (Sweden)

    D. Necchi


    Full Text Available To investigate a possible role of the cerebellum in vestibular compensation that follows a lesion to the vestibular apparatus, the morphological changes of the cerebellar cortex of adult frogs following unilateral statoacustic nerve section was analyzed by means of electron microscopy starting from 3 days after the neurectomy for up to 6 months. On the ipsilateral side, massive abnormality was found in all layers at early postsurgical intervals. This involved both nerve fibers and cell bodies. Fibers often appeared condensed or vacuolated with poorly compacted myelin sheath. Cells had electronlucent and vacuolated cytoplasm to varying extent. Alterations became less conspicuous after 30 days and after 60 days altered nerve cells were no longer present. On the contralateral side, only a few Purkinje and granule cells were affected at early postsurgical stages. This may derive from the fact that, in the frog, some of the vestibular primary afferents reach contralateral cerebellar cortex. At 30 days, alterations had substantially progressed, and at 60 days they involved all the cortical layers. Fiber debris was present in the granular and molecular layers and numerous 317 Purkinje cells were electrondense and shrunken. This lateness in alteration may be a consequence of the prolonged silence of the vestibular nucleus contralateral to the lesion. At 4 and 6 months the tissue architecture was normal.

  19. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia. (United States)

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio


    Familial dysautonomia (Riley-Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement.

  20. Large Extremity Peripheral Nerve Repair (United States)


    human amnion membrane and periosteal autograft on tendon healing: experimental study in rabbits. J Hand Surg Eur Vol 2010;35:262e8. 674 N.G. Fairbairn...SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg. 1989;83:129...complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plastic and reconstructive surgery. 1989 Jan;83(1):129-38. PubMed PMID: 2909054

  1. Storage and allogeneic transplantation of peripheral nerve using a green tea polyphenol solution in a canine model

    Directory of Open Access Journals (Sweden)

    Noguchi Takashi


    Full Text Available Abstract Background In our previous study, allogeneic-transplanted peripheral nerve segments preserved for one month in a polyphenol solution at 4°C could regenerate nerves in rodents demonstrated the same extent of nerve regeneration as isogeneic fresh nerve grafts. The present study investigated whether the same results could be obtained in a canine model. Methods A sciatic nerve was harvested from a male beagle dog, divided into fascicules of Sry and β-actin to investigate whether cells of donor origin remained in the allogeneic nerve segments. FK506 concentration was measured in blood samples taken before the animals were killed. Results The total myelinated axon numbers and amplitudes of the muscle action potentials correlated significantly with the blood FK506 concentration. Few axons were observed in the allogeneic-transplanted nerve segments in the PA0.025 group. PCR showed clear Sry-specific bands in specimens from the PA0.1 and PA0.05 groups but not from the PA0.025 group. Conclusions Successful nerve regeneration was observed in the polyphenol-treated nerve allografts when transplanted in association with a therapeutic dose of FK506. The data indicate that polyphenols can protect nerve tissue from ischemic damage for one month; however, the effects of immune suppression seem insufficient to permit allogeneic transplantation of peripheral nerves in a canine model.

  2. 肾交感神经消融对快速起搏心衰犬左室收缩功能的保护作用研究%Study on protective effect of renal sympathetic nerve ablation on the systolic function of left ventricular during the pro- gression of heart failure in dogs

    Institute of Scientific and Technical Information of China (English)

    徐晓宇; 谭晓东


    Objective To investigate whether renal sympathetic nerve ablation can protect the systolic function of left ventricular (LV) during the progression of heart failure (HF). Methods 19 beagle dogs were randomly divided into three groups:sham-operated group (n=6), control group (n=7) and ablation group (n=6). Sham-operated group were implanted with pacemakers without pacing. Control group were implanted with pacemakers and underwent 3 weeks of rapid right ventricular pacing, and ablation group bilateral renal sympathetic nerve ablation first, at the same time implanted with pacemakers. 3 days after the rapid right ventricular pacing. Left ventricular strain were analyzed by two-dimensional speckle traching imaging Re-sults After 3 weeks, all the dogs in the control group and ablation group showed greater LV end-diastolic volume compared with the sham-operated group, however, the dogs in the ablation group had a higher LV ejection fraction (LVEF) than the con-trol group (P<0.05). The LV systolic strains were higher in the ablation group than in the control group (P<0.05) for longitudi-nal, circumferential and radial strain, respectively. Conclusion Renal sympathetic nerve ablation can protect the systolic function of left ventricular during the progression of heart failure in dogs.%目的:观察肾交感神经消融是否可以保护心衰犬左室收缩功能。方法19只比格犬随机分为3组:假手术组(n=6)、对照组(n=7)和消融组(n=6)。假手术组犬装起搏器,但不开启;对照组装好起搏器后开始快速右室起搏3周;消融组先对双侧肾交感神经消融,同时植入起搏器,3d后开启快速右室起搏。左室应变通过超声二维斑点追踪技术来评价。结果3周后,对照组和消融组犬左室舒张末期容积较假手术组大;但是,消融组犬左室射血分数高于对照组(P<0.05)。长径方向、圆周方向和径向方向上左室收缩期应变消

  3. Effect of PACAP in Central and Peripheral Nerve Injuries

    Directory of Open Access Journals (Sweden)

    Andras Buki


    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and tr