WorldWideScience

Sample records for affects understorey plant

  1. Understorey Regeneration of Lophira alata as Affected by Seed Tree Size and Growing Conditions

    Directory of Open Access Journals (Sweden)

    Bongjoh, CA.

    2005-01-01

    Full Text Available Demographic pressure and slash and burn practices are two factors which reduce the number of Lophira alata plants in its natural range where it is more represented by young plants. The hypothesis that its understorey regeneration may be affected by seed tree size and growing conditions was investigated in the tropical moist forest in southern Cameroon using mature trees of various diameter classes for a sustainable management of the species. Biomass partitioning was also examined in regenerating seedlings growing in loading bays and forest understorey. Seedling density was highest when seed tree diameter at breast height (dbh was 100 cm or more. A strong positive correlation was found between seed tree diameter dbh and crown size expressed as mean diameter of projected crown area, but crown size correlated much better with seedling density. Compared with their counterparts of the same height growing in loading bays in full sunlight but devoid of litter and topsoil, seedlings found in understorey exhibited lower root: shoot ratio, indicating that soil-derived resources were more limiting in loading bays than on undisturbed forest floor. Leaf weight per area (leaf dry weight/leaf area (LWA and leaf packing (leaf number/cm shoot height were almost 2-fold greater in loading bays than in understorey. As seedlings seldom grew taller than 50 cm in the latter environment, it may be inferred that root: shoot ratio, LWA, and leaf packing can be used to assess the sustainability of growth and development of this pioneer species at the seedling stage.

  2. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities.

    Science.gov (United States)

    Karlsen, Stein Rune; Jepsen, Jane Uhd; Odland, Arvid; Ims, Rolf Anker; Elvebakk, Arve

    2013-11-01

    The increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak. Prior to the moth outbreak, the plots divided into two oligotrophic and one eutrophic plant community. The moth outbreak caused a vegetation state shift in the two oligotrophic communities, but only minor changes in the eutrophic community. In the spatially most widespread communities, oligotrophic dwarf shrub birch forest, dominance by the allelopathic dwarf shrub Empetrum nigrum ssp. hermaphroditum, was effectively broken and replaced by a community dominated by the graminoid Avenella flexuosa, in a manner qualitatively similar to the effect of wild fires in E. nigrum communities in coniferous boreal forest further south. As dominance by E. nigrum is associated with retrogressive succession the observed vegetation state shift has widespread implications for ecosystem productivity on a regional scale. Our findings reveal that the impact of moth outbreaks on the northern boreal birch forest system is highly initial-state dependent, and that the widespread oligotrophic communities have a low resistance to such disturbances. This provides a case for the notion that climate impacts on arctic and northern boreal vegetation may take place most abruptly when conveyed by changed dynamics of irruptive herbivores. PMID:23568711

  3. Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework

    OpenAIRE

    Soliveres, Santiago; Eldridge, David J.; Maestre, Fernando T.; Bowker, Matthew A.; Tighe, Matthew; Escudero, Adrián

    2011-01-01

    Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously...

  4. Impact of global climate change and fire on the occurrence and function of understorey legumes in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Reverchon, Frederique; Xu, Zhihong; Blumfield, Timothy J.; Chen, Chengrong; Abdullah, Kadum M. [Griffith Univ., Nathan, QLD (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2012-02-15

    The objective of this review was to provide a better understanding of how global climate change and fire influence the occurrence of understorey legumes and thereby biological nitrogen (N) fixation rates in forest ecosystems. Legumes are interesting models since they represent an interface between the soil, plant, and microbial compartments, and are directly linked to nutrient cycles through their ability to fix N. As such, they are likely to be affected by environmental changes. Biological N fixation has been shown to increase under enriched CO{sub 2} conditions, but is constrained by the availability of phosphorus and water. Climate change can also influence the species composition of legumes and their symbionts through warming, altered rainfall patterns, or changes in soil physicochemistry, which could modify the effectiveness of the symbiosis. Additionally, global climate change may increase the occurrence and intensity of forest wildfires thereby further influencing the distribution of legumes. The establishment of leguminous species is generally favored by fire, as is N{sub 2} fixation. This fixed N could therefore replenish the N lost through volatilization during the fire. However, fire may also generate shifts in the associated microbial community which could affect the outcome of the symbiosis. Understorey legumes are important functional species, and even when they cannot reasonably be expected to reestablish the nutrient balance in forest soils, they may be used as indicators to monitor nutrient fluxes and the response of forest ecosystems to changing environmental conditions. This would be helpful to accurately model ecosystem N budgets, and since N is often a limiting factor to plant growth and a major constraint on C storage in ecosystems, would allow us to assess more precisely the potential of these forests for C sequestration. (orig.)

  5. Disturbance in boreal spruce forest - immediate dynamics from stand to understorey level

    OpenAIRE

    Hautala, Harri

    2008-01-01

    The immediate effects of two human-related vegetation disturbances, (1) green tree retention (GTR) patch felling and scarification by harrowing and (2) experimental understorey vegetation layer removal, were examined in boreal forest stands in Finland. Effects of GTR patch felling and scarification on tree uprootings, on coarse woody debris (CWD) and on epixylic plant community were followed in upland and in paludified forest types. Uprootings increased considerably during 2-3 years afte...

  6. Single-tree influence on understorey vegetation in five Chinese subtropical forests

    Directory of Open Access Journals (Sweden)

    Liu H-Y

    2012-08-01

    Full Text Available The aim of this study is to examine the effect of individual canopy tree on the species composition and abundance of understorey vegetation in subtropical forests, by applying a model for tree influence on understorey vegetation of boreal spruce forests developed by Økland et al. (1999, according to the principles of Ecological Field Theory (EFT. The study was based upon five vegetation data sets, each with two subsets (vascular plants species and bryophytes species from subtropical forests in south and southwest China. Optimal value of tree influence model parameters was found by maximizing the eigenvalue of a Constrained Ordination (CO axis, obtained by use of the EFT-based tree influence index as the only constraining variable. One CO method, Redundancy Analysis (RDA, was applied to five vegetation data sets. The results showed that the optimal EFT tree influence models generally accounted for only a small part of the variation in species composition (the eigenvalues of RDA axes were low, amounted to 1-10% of total inertia. The higher eigenvalue-to­total-inertia ratio with RDA was interpreted as due mainly to the low species turnover along the tree influence gradient. Vascular plants and bryophytes species differed with respect to optimal parameters in the tree influence mo­del, especially in a conifer dominated forest. Compositional turnover asso­ciated with tree influence indices was also generally low, although somewhat varies among study areas. Thus, it was concluded that single-tree EFT models may have limited suitability for studied subtropical forests; different optimal parameters in the tree influence model obtained for vascular plants and bryo­phytes species in two studied areas indicates that subtropical trees may impact vascular plants and bryophytes species in different ways; and trees may influence the understorey species composition more in a collective manner than through the influence of single individuals in studied

  7. Sensitivity of understorey vegetation to nitrogen and sulphur deposition in a spruce stand

    Energy Technology Data Exchange (ETDEWEB)

    Maekipaeae, Raisa [Finnish Forest Research Institute, Helsinki (Finland)

    1998-02-01

    The response of understorey vegetation to addition of nitrogen and sulphur was examined in a 60-year-old Norway spruce (Picea abies Karst.) stand in southern Finland. The understorey vegetation was studied on experimental plots receiving nitrogen (25 kg N ha{sup -1}) and sulphur (30 kg S ha{sup -1}) as ammonium sulphate once a year for 4 years. The dominant moss species on the site were Pleurozium schreberi (Mitt.) and Dicranum polysetum (Sw.). The biomass of the dominant moss species was decreased significantly by sulphur and nitrogen deposition during the study period. Due to the addition of nitrogen and sulphur, the biomass of P. schreberi was decreased by 60% and the biomass of D. polysetum by 78%. Over a 4-year study period the responses of vascular plants to addition of nitrogen and sulphur were not significant. Forest-floor mosses seemed to be more sensitive to nitrogen and sulphur deposition than vascular plants. Since bryophytes lack a cuticle and absorb water very rapidly after rain, they are exposed more to the direct effects of acid deposition than other plants. Thus, mosses may indicate changes in forest vegetation due to acid deposition

  8. UNDERSTOREY OF PINE-PLANTATIONS ON DEGRADED SITES IN THE REGION OF DECIDUOUS FORESTS OF RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Franz H. Andrae

    2010-08-01

    Full Text Available In the central part of Rio Grande do Sul State understoreys of 12 stands of Pinus sp. and one of Araucaria angustifolia O.Ktze were studied, all growing on soils, degraded by agriculture. One pine stand, 10 years old, originated from a natural renovation, the others had been planted 25 to 30 years ago, Araucaria was seeded directly. A total of 575 plots were sampled, 25 m² each, distributed systematically within the stands. Measurements included pines overstorey, and all understorey woody species, separeted into layers of more than 1,3 m high and 1,3 to 0,3 m; the layer lower than 0,3 m included only natural renovation of pines. Understoreys were composed by 121 species, ocurring common and high value timber species, ornamental trees, native and exotic fruit tree species. A higher number of species was present with a very few individuals only. The presence of non woody species like grasses, herbs, ferns and lians also was quantified. The number of tree species and the presence of non woody species did not correlat with density of overstorey pines. Abundance and frequency of species showed no significant diferences, when samples were grouped according to their location in the center or close to stands edge. Distribution pattern of understorey trees within stands was quantified, using Cox’ index, species diversity was compared by means of Shannon-index. Similarity of stands was compared by Sörensen-Index. It was concluded, that exotic species planted on poor agricultural soil may not only be of farmers interest because of their high potential for wood production. These plantations also may be considered from conservationist point of view, since they show an unexpected high diversity, so contributing in a longer run to landscape improvement, possibly due to the small extension of stands.

  9. Species-specific adaptations explain resilience of herbaceous understorey to increased precipitation variability in a Mediterranean oak woodland.

    Science.gov (United States)

    Jongen, Marjan; Hellmann, Christine; Unger, Stephan

    2015-10-01

    To date, the implications of the predicted greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on leaf-level physiological responses of five species covering the functional groups grasses, forbs, and legumes in the understorey of a Mediterranean oak woodland, with increasing precipitation variability, without altering total annual precipitation inputs. Although extending the dry period between precipitation events from 3 to 6 weeks led to increased soil moisture deficit, overall treatment effects on photosynthetic performance were not observed in the studied species. This resilience to prolonged water stress was explained by different physiological and morphological strategies to withstand periods below the wilting point, that is, isohydric behavior in Agrostis, Rumex, and Tuberaria, leaf succulence in Rumex, and taproots in Tolpis. In addition, quick recovery upon irrigation events and species-specific adaptations of water-use efficiency with longer dry periods and larger precipitation events contributed to the observed resilience in productivity of the annual plant community. Although none of the species exhibited a change in cover with increasing precipitation variability, leaf physiology of the legume Ornithopus exhibited signs of sensitivity to moisture deficit, which may have implications for the agricultural practice of seeding legume-rich mixtures in Mediterranean grassland-type systems. This highlights the need for long-term precipitation manipulation experiments to capture possible directional changes in species composition and seed bank development, which can subsequently affect ecosystem state and functioning. PMID:26664676

  10. Comparative dynamics of small mammal populations in treefall gaps and surrounding understorey within Amazonian rainforest

    Science.gov (United States)

    Beck, H.; Gaines, M.S.; Hines, J.E.; Nichols, J.D.

    2004-01-01

    Variation in food resource availability can have profound effects on habitat selection and dynamics of populations. Previous studies reported higher food resource availability and fruit removal in treefall gaps than in the understorey. Therefore, gaps have been considered 'keystone habitat' for Neotropical frugivore birds. Here we test if this prediction would also hold for terrestrial small mammals. In the Amazon, we quantified food resource availability in eleven treefall gaps and paired understorey habitats and used feeding experiments to test if two common terrestrial rodents (Oryzomys megacephalus and Proechimys spp.) would perceive differences between habitats. We live-trapped small mammals in eleven gaps and understorey sites for two years, and compared abundance, fitness components (survival and per capita recruitment) and dispersal of these two rodent species across gaps and understorey and seasons (rainy and dry). Our data indicated no differences in resource availability and consumption rate between habitats. Treefall gaps may represent a sink habitat for Oryzomys where individuals had lower fitness, apparently because of habitat-specific ant predation on early life stages, than in the understorey, the source habitat. Conversely, gaps may be source habitat for Proechimys where individuals had higher fitness, than in the understorey, the sink habitat. Our results suggest the presence of source-sink dynamics in a tropical gap-understorey landscape, where two rodent species perceive habitats differently. This may be a mechanism for their coexistence in a heterogeneous and species-diverse system.

  11. The importance of understorey on wildlife in a brazilian eucalypt plantation

    Directory of Open Access Journals (Sweden)

    Jody R. Stallings

    1990-01-01

    Full Text Available Wildlife surveys were conducted in two stands of Eucalyptus, one homogeneous and the other with a native species understorey in the Atlantic forest region of southeastern Brazil Deforestation has reduced the original forested habitat to a patchwork of cultivated fields and mono-specific forestry plantations. Wildlife communities were depauperate in the homogeneous stand, but richer in eucalypt forest with native species understorey. Small mammals, particularly didelphid marsupials, used the understorey rather than the eucalypt emergent trees Primates were absent from both areas. The increasing demand for charcoal for the growing steel industry in the region means that eucalypt plantations will persist until an alternative energy source is found. It is essential that management efforts be directed towards multi-use strategies in these plantations Eucalypt plantations with a native species understorey might provide sufficient habitat to support some wildlife species of the rapidly disappearing Atlantic coastal forest ecosystem.

  12. Understorey fire frequency and the fate of burned forests in southern Amazonia

    OpenAIRE

    D. C. Morton; Le Page, Y.; DeFries, R.; G. J. Collatz; Hurtt, G. C.

    2013-01-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater th...

  13. Counteracting gradients of light and soil nutrients in the understorey of Mediterranean oak forests.

    OpenAIRE

    L. V. García; S. Maltez-Mouro; Pérez-Ramos, I. M.; H. Freitas; Marañón, T.

    2006-01-01

    The forest canopy modifies the availability of resources (light, water, and soil nutrients) in the understorey. In this paper we analyze the relationships between woody canopy density, litter accumulation, and topsoil N and P availability in the understorey of two oak forests: one in southern Portugal and the other in southern Spain. Both forests persist on low-nutrient soils, particularly poor in P. We hypothesize that direct and indirect effects of the canopy overstorey cause opposite grad...

  14. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    Science.gov (United States)

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  15. Plant Hormones: How They Affect Root Formation.

    Science.gov (United States)

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  16. Osmolyte cooperation affects turgor dynamics in plants

    Science.gov (United States)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  17. Micropropagation of phytoplasma-affected Limonium sinuatum Mill. plants

    OpenAIRE

    Eleonora Gabryszewska; Maria Kamińska; Małgorzata Korbin; Anna Rudzińska-Langwald

    2014-01-01

    Healthy and AY-affected plants of L.sinuatum have been propagated in vitro for 12 months on the media with and without cytokinins. In the contrary to the healthy plants the phytoplasma affected statice showed abnormal proliferation of the axillary shoots, shortening of the internodes, smaller leaves and severe chlorosis. On the medium without cytokinins, diseased plants proliferated and formed 7.0 axillary shoots per explant but the healthy ones only formed 2.3 shoots; however, the fresh weig...

  18. Endophytic bacteria affect sugarcane physiology without changing plant growth

    OpenAIRE

    Fernanda Castro Correia Marcos; Raquel de Paula Freitas Iório; Adriana Parada Dias da Silveira; Rafael Vasconcelos Ribeiro; Eduardo Caruso Machado; Ana Maria Magalhães Andrade Lagôa

    2015-01-01

    ABSTRACT The aim of this study was to evaluate if endophytic bacteria inoculants would be beneficial to the sugarcane varieties IACSP94-2094 and IACSP95-5000, promoting changes in photosynthesis and plant growth. The plants, obtained from mini stalks with one bud, were treated with two bacteria mixtures (inoculum I or II) or did not receive any inoculum (control plants). The inocula did not affect shoot and root dry matter accumulation as compared to the control condition (plants with native ...

  19. Plant density affects measures of biodiversity effects

    Czech Academy of Sciences Publication Activity Database

    Stachová, T.; Fibich, P.; Lepš, Jan

    2013-01-01

    Roč. 6, č. 1 (2013), s. 1-11. ISSN 1752-9921 R&D Projects: GA ČR GD206/08/H044 Grant ostatní: GA JU(CZ) 138/2010/P Institutional support: RVO:60077344 Keywords : biodiversity effects * plant density * constant final yield Subject RIV: EH - Ecology, Behaviour Impact factor: 2.284, year: 2013 http://jpe.oxfordjournals.org/content/early/2012/04/27/jpe.rts015.full.pdf+html

  20. Natural regeneration of Pinus pinea L. in Tunisia as influenced by canopy cover, litter biomass and understorey vegetation

    OpenAIRE

    Adili, B.; El Aouni, M.H.; Garchi, S.; Balandier, P.

    2009-01-01

    International audience Pinus pinea is one of the most valuable species used in Tunisia in the reforestation program. This species is shade-intolerant and hence needs light to correctly regenerate. It is also influenced by the understorey vegetation and the litter biomass, both also correlated to light availability. To quantify the importance of these different factors, the natural regeneration and evolution of the biomass of understorey vegetation and litter were studied in artificial fore...

  1. Spatial dynamics of understorey insectivorous birds and arthropods in a southeastern Brazilian Atlantic woodlot.

    Science.gov (United States)

    Manhães, M A; Dias, M M

    2011-02-01

    Spatial distribution and spatial relationships in capture rates of understorey insectivorous birds and density of arthropods were investigated in a patch of upper montane rain forest in Minas Gerais state, southeastern Brazil, from January to December 2004. The composition of the arthropod fauna collected was similar to that reported for other tropical forests, with predominance of Araneae, Coleoptera, Hymenoptera and Hemiptera non-Heteroptera. A total of 26 bird species were captured, among which the more common were Dysithamnus mentalis, Conopophaga lineata, Platyrinchus mystaceus, Basileuterus culicivorus and Sclerurus scansor. Variation in the bird capture rates among sampling net lines were not correlated with arthropod density. Rather, individual analyses of some bird species suggest that spatial distribution of understorey insectivorous birds is better explained by habitat type. PMID:21437393

  2. Subtidal understorey algal community structure in kelp beds around the Cape Peninsula (Western Cape, South Africa)

    OpenAIRE

    Leliaert, F.; Anderson, R J; Bolton, J. J.; Coppejans, E.

    2001-01-01

    The subtidal understorey seaweed communities were studied along a coastal distance of 104 km around the Cape Peninsula, which is situated in an overlap region between two marine provinces and characterized by a considerable temperature gradient. Sampling was carried out at six sites (4 to 10 quadrats per site) around the Cape Peninsula. For each of the quadrats, biomass of each species, grazing, and environmental variables such as temperature, wave exposure and sand cover were determined. The...

  3. Assessing Metrics for Estimating Fire Induced Change in the Forest Understorey Structure Using Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Vaibhav Gupta

    2015-06-01

    Full Text Available Quantifying post-fire effects in a forested landscape is important to ascertain burn severity, ecosystem recovery and post-fire hazard assessments and mitigation planning. Reporting of such post-fire effects assumes significance in fire-prone countries such as USA, Australia, Spain, Greece and Portugal where prescribed burns are routinely carried out. This paper describes the use of Terrestrial Laser Scanning (TLS to estimate and map change in the forest understorey following a prescribed burn. Eighteen descriptive metrics are derived from bi-temporal TLS which are used to analyse and visualise change in a control and fire-altered plot. Metrics derived are Above Ground Height-based (AGH percentiles and heights, point count and mean intensity. Metrics such as AGH50change, mean AGHchange and point countchange are sensitive enough to detect subtle fire-induced change (28%–52% whilst observing little or no change in the control plot (0–4%. A qualitative examination with field measurements of the spatial distribution of burnt areas and percentage area burnt also show similar patterns. This study is novel in that it examines the behaviour of TLS metrics for estimating and mapping fire induced change in understorey structure in a single-scan mode with a minimal fixed reference system. Further, the TLS-derived metrics can be used to produce high resolution maps of change in the understorey landscape.

  4. ADP1 affects plant architecture by regulating local auxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Ruixi Li

    2014-01-01

    Full Text Available Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs.

  5. Foliar responses of understorey Abies lasiocarpa to different degrees of release cutting of Betula papyrifera and conifer mixed species stand

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.R.; Letchford, T. [Ministry of Forests, Prince George, BC (Canada). Red Rock Research Station; Comeau, P.G. [BC Ministry of Forests, Victoria, BC (Canada); Coopersmith, D. [BC Ministry of Forests, Prince George, BC (Canada)

    2000-07-01

    Foliar responses of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) to thinning were studied in a 35-yr-old mixed stand of paper birch (Betula papyrifera Marsh.) and conifers. The stand regenerated naturally after a wildfire with a canopy dominated by paper birch (average height 9.8 m) and an understorey dominated by subalpine fir (average height 1.6 m). The stand was thinned to four densities of birch: 0, 600 and 1200 stems ha{sup -1} and control (Unthinned at 2300-6400 stems ha{sup -1}) in the autumn of 1995. The understorey conifers, mainly subalpine fir, were thinned to 1200 stems ha{sup -1}. The study used a completely randomized split-plot design. Three sample trees were systematically selected from each treatment replicate and each tree stratum (upper, intermediate and lower understorey). One-year-old and older age class needles were collected from one south-facing branch within the fifth whorl from the tree top. Thinning of paper birch significantly (p<0.001) increased leaf area and dry weight per 100 needles for intermediate and short trees except in the 0 birch treatment. Understorey subalpine fir trees in 600 stems ha{sup -1} birch (T3) had the largest leaf area and leaf dry weight per 100 1-yr-old needles. Specific leaf area (SLA) decreased from unthinned (T1) to 0 birch (T4). Lower understorey trees had the largest SLA. One-year-old needles had significantly higher N, P and K concentrations in all the thinning treatments. These responses are consistent with the shade tolerance of subalpine fir. The results suggest that when managing a paper birch-conifers mixed wood forest it may be of benefit to understorey conifers to leave a birch canopy as a nursing crop.

  6. Microhabitat of small mammals at ground and understorey levels in a deciduous, southern Atlantic forest.

    Science.gov (United States)

    Melo, Geruza L; Miotto, Barbara; Peres, Brisa; Cáceres, Nilton C

    2013-01-01

    Each animal species selects specific microhabitats for protection, foraging, or micro-climate. To understand the distribution patterns of small mammals on the ground and in the understorey, we investigated the use of microhabitats by small mammals in a deciduous forest of southern Brazil. Ten trap stations with seven capture points were used to sample the following microhabitats: liana, fallen log, ground litter, terrestrial ferns, simple-trunk tree, forked tree, and Piper sp. shrubs. Seven field phases were conducted, each for eight consecutive days, from September 2006 through January 2008. Four species of rodents (Akodon montensis, Sooretamys angouya, Oligoryzomys nigripes and Mus musculus) and two species of marsupials (Didelphis albiventris and Gracilinanus microtarsus) were captured. Captured species presented significant differences on their microhabitat use (ANOVA, p = 0.003), particularly between ground and understorey sites. Akodon montensis selected positively terrestrial ferns and trunks, S. angouya selected lianas, D. albiventris selected fallen trunks and Piper sp., and G. microtarsus choose tree trunks and lianas. We demonstrated that the local small-mammal assemblage does select microhabitats, with different types of associations between species and habitats. Besides, there is a strong evidence of habitat selection in order to diminish predation. PMID:23828340

  7. Above-ground and below-ground competition between the willow Salix caprea L. and its understorey

    Czech Academy of Sciences Publication Activity Database

    Mudrák, Ondřej; Hermová, M.; Tesnerová, C.; Rydlová, Jana; Frouz, Jan

    2016-01-01

    Roč. 27, č. 1 (2016), s. 156-164. ISSN 1100-9233 R&D Projects: GA ČR GA13-10377S; GA ČR(CZ) GA15-11635S Institutional support: RVO:67985939 ; RVO:60077344 Keywords : Mycorrhizae * Roots * Succession * Understorey * Willow Subject RIV: EH - Ecology, Behaviour Impact factor: 3.709, year: 2014

  8. Light-mediated influence of three understorey species (Calluna vulgaris, Pteridium aquilinum, Molinia caerulea) on growth and morphology of Pinus sylvestris seedlings

    OpenAIRE

    Gaudio, N.; Balandier, P.; Philippe, G.; Dumas, Y.; Jean, F.; Ginisty, C.

    2009-01-01

    Pinus sylvestris is a pioneer species and as such is relatively light-demanding. Therefore, its natural regeneration may be inhibited by some forest understorey species that develop with light and can then reduce light as well as soil resources (i.e. nutrients and water) availability for the pine seedlings. To better quantify these effects, we designed two experiments in a nursery. The first one aimed at studying the influence of density of three common understorey species in temperate forest...

  9. STRESS ETHYLENE EVOLUTION: A MEASURE OF OZONE AFFECTS ON PLANTS

    Science.gov (United States)

    To determine if ethylene evolution by plants is correlated with the ozone stress, a range of plants species and cultivars was exposed to varying ozone concentrations. Following exposure, the plants were encapsulated in plastic bags and incubated for up to 22h. The stress-induced ...

  10. How Planting Density Affects Number and Yield of Potato Minitubers in a Commercial Glasshouse Production System

    NARCIS (Netherlands)

    Veeken, van der A.J.H.; Lommen, W.J.M.

    2009-01-01

    Commercial potato minituber production systems aim at high tuber numbers per plant. This study investigated by which mechanisms planting density (25.0, 62.5 and 145.8 plants/m2) of in vitro derived plantlets affected minituber yield and minituber number per plantlet. Lowering planting density result

  11. Affective imagery and acceptance of replacing nuclear power plants.

    Science.gov (United States)

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. PMID:21977961

  12. Parasitoid load affects plant fitness in a tritrophic system

    OpenAIRE

    Smallegange, R. C.; Loon, van, J.Th.; Blatt, S. E.; Harvey, J. A.; Dicke, M.

    2008-01-01

    Plants attacked by herbivorous insects emit volatile compounds that attract predators or parasitoids of the herbivores. Plant fitness increases when these herbivorous insects are parasitized by solitary parasitoids, but whether gregarious koinobiont parasitoids also confer a benefit to plant fitness has been disputed. We investigated the relationship between parasitoid load of the gregarious Cotesia glomerata (L.) (Hymenoptera: Braconidae), food consumption by larvae of their host Pieris bras...

  13. Irrigation and planting density affect river red gum growth

    OpenAIRE

    Cockerham, Stephen T.

    2004-01-01

    In a 6-year study, production of river red gum, an excellent fuel-wood source, was evaluated for responses to three levels of irrigation, fertilization and planting density. Irrigation and planting density had the greatest influence on tree growth. Irrigation in the fifth and sixth years produced greater wood volume and weight per tree. Tree size was greatest in the wide spacing of the lower planting density. Fertilizer had no effect on any of the treatments. Per acre volume and weight yields...

  14. Effect of industrial pollution on the distribution dynamics of radionuclides in boreal understorey ecosystems (EPORA). Final report

    International Nuclear Information System (INIS)

    The project EPORA 'Effects of Industrial Pollution on Distribution Dynamics of Radionuclides in Boreal Understorey Ecosystems' is a part of the Nuclear Fission Safety Research programme of the European Union. A suitable environment for the study was found in the surroundings of the Cu-Ni smelter in Monchegorsk, in NW Russia where the huge atmospheric emissions from the smelter have polluted the environment since the 1930's. Samples of soil, litter, plants and runoff water were taken. Total concentrations of the main pollutants, Ni and Cu, in the organic soil increased from about 10 mg kg-1 at the reference site in Finland to about 5000 mg kg-1 at the most polluted site in Russia. Similar trends were observed for exchangeable fractions and plant concentrations of the same elements. Concentrations of exchangeable K, Ca, and Mg in the organic soil decreased strongly with increased input of chemical pollutants. The radionuclides studied were 137Cs, 90Sr and 239+240Pu, mainly originating from the atmospheric nuclear weapons tests. The contribution of the Chernobyl derived 137Cs deposition was about 10% but insignificant for the other nuclides. The activity distribution of all three radionuclides in the soil, their corresponding residence half-times as well as their aggregated trencher factors for various plants depended on the degree of pollution: Activity distribution: in the litter layer, the activity of all three radionuclides increased continually from the reference site to the most polluted site. This effect was most pronounced for 239+240Pu and least for 90Sr and could, at least partly, be explained by the increase of the thickness of this layer. In the root zone, the opposite effect was observed: the largest fraction of all radionuclides was found at the reference site. In the organic layer, the exchangeable fractions of 137Cs, 90Sr and 239+240Pu decreased with increasing pollution. Residence half-times: in the root zone, the residence half-times of 90Sr, but

  15. A novel family of small proteins that affect plant development

    Energy Technology Data Exchange (ETDEWEB)

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  16. Composition of hydroponic medium affects thorium uptake by tobacco plants

    OpenAIRE

    Soudek, P. (Petr); Kufner, D. (Daniel); Petrová, Š. (Šárka); Mihaljevič, M.; Vaněk, T. (Tomáš)

    2013-01-01

    The ability of thorium uptake as well as responses to heavy metal stress were tested in tobacco cultivar La Burley 21. Thorium was accumulated preferentially in the root system. The presence of citric, tartaric and oxalic acids in hydroponic medium increased thorium accumulation in all plant organs. On the other hand, the addition of diamines and polyamines, the important antioxidants in plants, resulted in decrease of thorium accumulation, especially in the root system. Negative correlation ...

  17. Plant surface wax affects parasitoid's response to host footprints

    Science.gov (United States)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  18. Fuel breaks affect nonnative species abundance in Californian plant communities

    Science.gov (United States)

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  19. Regression analysis of technical parameters affecting nuclear power plant performances

    International Nuclear Information System (INIS)

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  20. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests

    Czech Academy of Sciences Publication Activity Database

    Verheyen, E.; Baeten, L.; De Frenne, P.; Brnhardt-Römermann, M.; Brunet, J.; Cornelis, J.; Decocq, G.; Dierschke, H.; Eriksson, O.; Hédl, Radim; Heinken, T.; Hermy, M.; Hommel, P.; Kirby, K.; Naaf, T.; Peterken, G.; Petřík, Petr; Pfadenhauer, J.; Van Calster, H.; Walther, G.-R.; Wulf, M.; Verstraeten, G.

    2012-01-01

    Roč. 100, č. 2 (2012), s. 352-365. ISSN 0022-0477 R&D Projects: GA AV ČR IAA600050812 Institutional research plan: CEZ:AV0Z60050516 Keywords : Ellenberg indicator values * forest management * large herbivores Subject RIV: EF - Botanics Impact factor: 5.431, year: 2012

  1. Linkage of plant trait space to successional age and species richness in boreal forest understorey vegetation

    Czech Academy of Sciences Publication Activity Database

    Kumordzi, B. B.; de Bello, Francesco; Freschet, G. T.; Bagousse-Pinguet, Y. L.; Lepš, J.; Wardle, D. A.

    2015-01-01

    Roč. 103, č. 6 (2015), s. 1610-1620. ISSN 0022-0477 Institutional support: RVO:67985939 Keywords : diversity and structure * functional diversity * trait overlap Subject RIV: EH - Ecology, Behaviour Impact factor: 5.521, year: 2014

  2. Cadmium content of plants as affected by soil cadmium concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lehoczky, E. [Pannon Univ. of Agricultural Sciences, Keszthely (Hungary); Szabados, I.; Marth, P. [Plant Health and Soil Conservation Station, Higany (Hungary)

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  3. Feeding Experience of Bemisia tabaci (Hemiptera: Aleyrodidae) Affects Their Performance on Different Host Plants

    OpenAIRE

    Shah, M. Mostafizur Rahman; Liu, Tong-Xian

    2013-01-01

    The sweetpotato whitefly, Bemisia tabaci biotype B is extremely polyphagous with >600 species of host plants. We hypothesized that previous experience of the whitefly on a given host plant affects their host selection and performance on the plants without previous experience. We investigated the host selection for feeding and oviposition of adults and development and survival of immatures of three host-plant-experienced populations of B. tabaci, namely Bemisia-eggplant, Bemisia-tomato and Bem...

  4. Corridors affect plants, animals, and their interactions in fragmented landscapes

    OpenAIRE

    Joshua J Tewksbury; Levey, Douglas J.; Haddad, Nick M.; Sargent, Sarah; Orrock, John L.; Weldon, Aimee; Brent J Danielson; Brinkerhoff, Jory; Damschen, Ellen I.; Townsend, Patricia

    2002-01-01

    Among the most popular strategies for maintaining populations of both plants and animals in fragmented landscapes is to connect isolated patches with thin strips of habitat, called corridors. Corridors are thought to increase the exchange of individuals between habitat patches, promoting genetic exchange and reducing population fluctuations. Empirical studies addressing the effects of corridors have either been small in scale or have ignored confounding effects of increased habitat area creat...

  5. Composition of hydroponic medium affects thorium uptake by tobacco plants

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Kufner, Daniel; Petrová, Šárka; Mihaljevič, M.; Vaněk, Tomáš

    2013-01-01

    Roč. 92, č. 9 (2013), s. 1090-1098. ISSN 0045-6535 R&D Projects: GA MŠk LH12162; GA MŠk(CZ) LD13029; GA MPO FR-TI3/778 Institutional research plan: CEZ:AV0Z50380511 Keywords : Thorium * Plant uptake * Polyamines Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.499, year: 2013

  6. Microhabitat of small mammals at ground and understorey levels in a deciduous, southern Atlantic Forest

    Directory of Open Access Journals (Sweden)

    GERUZA L. MELO

    2013-06-01

    Full Text Available Each animal species selects specific microhabitats for protection, foraging, or micro-climate. To understand the distribution patterns of small mammals on the ground and in the understorey, we investigated the use of microhabitats by small mammals in a deciduous forest of southern Brazil. Ten trap stations with seven capture points were used to sample the following microhabitats: liana, fallen log, ground litter, terrestrial ferns, simple-trunk tree, forked tree, and Piper sp. shrubs. Seven field phases were conducted, each for eight consecutive days, from September 2006 through January 2008. Four species of rodents (Akodon montensis, Sooretamys angouya, Oligoryzomys nigripes and Mus musculus and two species of marsupials (Didelphis albiventris and Gracilinanus microtarsus were captured. Captured species presented significant differences on their microhabitat use (ANOVA, p = 0.003, particularly between ground and understorey sites. Akodon montensis selected positively terrestrial ferns and trunks, S. angouya selected lianas, D. albiventris selected fallen trunks and Piper sp., and G. microtarsus choose tree trunks and lianas. We demonstrated that the local small-mammal assemblage does select microhabitats, with different types of associations between species and habitats. Besides, there is a strong evidence of habitat selection in order to diminish predation.Cada espécie animal pode apresentar seletividade por micro-habitats priorizando proteção, forrageio ou microclima. Para compreender os padrões de distribuição de pequenos mamíferos ao nível do solo e de sub-bosque, nós analisamos o uso de micro-habitat por pequenos mamíferos em uma floresta estacional no sul do Brasil. Dez estações amostrais com sete pontos de captura foram usadas para amostragem dos seguintes microhabitats: liana, tronco caído, solo apenas coberto por folhiço, solo coberto por samambaias, árvore com tronco simples, árvore com bifurcações e arbustos do g

  7. The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps

    International Nuclear Information System (INIS)

    Compositional and edaphic gradients were studied in montane forests of the Bavarian Alps (Germany), in which natural mixed deciduous-coniferous tree layers have been altered by past management in favour of Picea abies. Data on species composition and ecological factors were collected in a stratified random sample of 84 quadrats comprising a gradient from pure Picea to pure Fagus sylvatica stands. Data about the understorey composition were subjected to indirect (DCA) and direct gradient analysis (RDA) with the proportion of Picea in the canopy as a constraining variable. Three principal components of a matrix containing seven descriptors of mineral soil, relief and tree layer cover were included as covariables describing the variability of primary ecological factors. Gradients of organic topsoil morphology and chemistry were extracted correspondingly. Responses of individual species, species group and topsoil attributes were studied by simple and partial correlation analysis. Mosses were significantly more abundant and diverse under Picea stands. Few graminoid and herb species were partially associated with Picea, and total understorey richness and cover did not differ systematically by stand type. No relationship between tree layer and understorey diversity was detected at the studied scale. Juvenile Fagus sylvatica was the only woody species significantly less abundant under Picea. In the topsoil lower base saturation, lower pH and larger C/N ratios in the litter layer were partially attributable to the proportion of Picea, only for base saturation a relationship was detected in greater soil depth also. The frequency of broad humus form types did not differ by tree species, nor was overall depth of organic forest floor attributable to canopy composition

  8. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    Directory of Open Access Journals (Sweden)

    Nicole Wäschke

    Full Text Available Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.

  9. A Fungal Endosymbiont Affects Host Plant Recruitment Through Seed- and Litter-mediated Mechanisms

    Science.gov (United States)

    1. Many grass species are associated with maternally transmitted fungal endophytes. Increasing evidence shows that endophytes enhance host plant success under varied conditions, yet studies have rarely considered alternative mechanisms whereby these mutualistic symbionts may affect regeneration from...

  10. Effects of Bamboo Fargesia murielae on Plant Diversity in Fir Forest on Mountain Shennongjia

    Institute of Scientific and Technical Information of China (English)

    Li Zhaohua; Manfred Denich; Thomas Borsch

    2004-01-01

    Simultaneous flowering caused a gregarious dieback of umbrella bamboo (Fargesia murielae) all over the world in 1993-2000. Mountain Shennongjia in Central China's Hubei Province is the only native home of umbrella bamboo, where it dominates the understorey of the farges fir (Abies fargesii) forest between 2 400 and 3 100 m, covering the ground for more than one century before a periodically flowering death. Data from 20 quadrats along a vegetation sequence revealed that the density, coverage, and height of umbrella bamboo negatively affected the species richness, diversity, and evenness of vascular plants in the forest. Local climax community of fir-bamboo was the poorest in species diversity, while the bamboo-free communities (i.e. shrubs and meadows) were bearing a higher species diversity. The simultaneous dieback of umbrella bamboo is an ecological release, which can periodically promote the plant diversity in the fir forest.

  11. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    Science.gov (United States)

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. PMID:26147312

  12. Evaluation of regulatory processes affecting nuclear power plant early site approval and standardization

    International Nuclear Information System (INIS)

    This report presents the results of a survey and evaluation of existing federal, state and local regulatory considerations affecting siting approval of power plants in the United States. Those factors that may impede early site approval of nuclear power plants are identified, and findings related to the removal of these impediments and the general improvement of the approval process are presented. A brief evaluation of standardization of nuclear plant design is also presented

  13. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids.

    Science.gov (United States)

    Weldegergis, Berhane T; Zhu, Feng; Poelman, Erik H; Dicke, Marcel

    2015-03-01

    One of the main abiotic stresses that strongly affects plant survival and the primary cause of crop loss around the world is drought. Drought stress leads to sequential morphological, physiological, biochemical and molecular changes that can have severe effects on plant growth, development and productivity. As a consequence of these changes, the interaction between plants and insects can be altered. Using cultivated Brassica oleracea plants, the parasitoid Microplitis mediator and its herbivorous host Mamestra brassicae, we studied the effect of drought stress on (1) the emission of plant volatile organic compounds (VOCs), (2) plant hormone titres, (3) preference and performance of the herbivore, and (4) preference of the parasitoid. Higher levels of jasmonic acid (JA) and abscisic acid (ABA) were recorded in response to herbivory, but no significant differences were observed for salicylic acid (SA) and indole-3-acetic acid (IAA). Drought significantly impacted SA level and showed a significant interactive effect with herbivory for IAA levels. A total of 55 VOCs were recorded and the difference among the treatments was influenced largely by herbivory, where the emission rate of fatty acid-derived volatiles, nitriles and (E)-4,8-dimethylnona-1,3,7-triene [(E)-DMNT] was enhanced. Mamestra brassicae moths preferred to lay eggs on drought-stressed over control plants; their offspring performed similarly on plants of both treatments. VOCs due to drought did not affect the choice of M. mediator parasitoids. Overall, our study reveals an influence of drought on plant chemistry and insect-plant interactions. PMID:25370387

  14. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Directory of Open Access Journals (Sweden)

    Shmuel Assouline

    Full Text Available Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss. Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d and size (s, and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d, exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  15. Relative floral density of an invasive plant affects pollinator foraging behaviour on a native plant

    OpenAIRE

    Amy Marie Iler; Karen Goodell

    2014-01-01

    Interactions between invasive and native plants for pollinators vary from competition to facilitation of pollination of native plants. Theory predicts that relative floral densities should account for some of this variation in outcomes, with facilitation at low floral densities and competition at high floral densities of the invader. We tested this prediction by quantifying pollination and female reproductive success of a native herb, Geranium maculatum, in three experimental arrays that vari...

  16. Selective pressure along a latitudinal gradient affects subindividual variation in plants.

    Science.gov (United States)

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  17. The Root Herbivore History of the Soil Affects the Productivity of a Grassland Plant Community and Determines Plant Response to New Root Herbivore Attack

    OpenAIRE

    Sonnemann, Ilja; Hempel, Stefan; Beutel, Maria; Hanauer, Nicola; Reidinger, Stefan; Wurst, Susanne

    2013-01-01

    Insect root herbivores can alter plant community structure by affecting the competitive ability of single plants. However, their effects can be modified by the soil environment. Root herbivory itself may induce changes in the soil biota community, and it has recently been shown that these changes can affect plant growth in a subsequent season or plant generation. However, so far it is not known whether these root herbivore history effects (i) are detectable at the plant community level and/or...

  18. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    Science.gov (United States)

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  19. Species Diversity of Understorey Vegetation in Rubber Plantations in Xishuangbanna%西双版纳橡胶林下植被多样性调查研究

    Institute of Scientific and Technical Information of China (English)

    周会平; 岩香甩; 张海东; 张丽谦; 魏丽萍

    2012-01-01

    以西双版纳国营农场和民营胶园的多个不同林龄和高中低不同海拔的橡胶林为研究对象,对橡胶林下植被多样性现状进行调查研究.调查发现,橡胶林下约有87科242属的340余种植物,禾本科(Gramineae)、豆科(Leguminosae)、菊科(Asteraceae)、蕨类(Pteridophyta)、大戟科(Euphorbiaceae)以及茜草科(Rubiaceae)等为出现物种数量、个体数量最多及出现频率最高的植物类群.橡胶林下植被Shannon-Wiener指数、Simpson优势度指数和Pielou均匀度指数的变化范围分别为1.224~3.517,0.558~0.948和0.360~0.778.分析结果表明:橡胶林下植被物种多样性随林龄增加而降低;雨季植被多样性显著高于旱季;植被多样性随海拔升高而降低;国营农场与民营橡胶林植被多样性水平无显著差异;土壤养分可能也与植被多样性水平相关.该研究有助于认清橡胶林下生物多样性以及生态功能现状,为科学管理橡胶林和创建新一代环境友好型生态胶园提供服务.%Species diversity of understorey vegetation of rubber plantations in different ages, at different elevations and with different management modes was studied. Field investigation found that: there were more than 340 plant species from 241 genus 87 families under rubber plantations, and among which, Gramineae, Leguminosae, Asteraceae, Pteridophyta, Euphorbiaceae and Rubiaceae were the taxa often appeared with the richest species, largest individual number and highest frequencies. Biodiversity index analyses indicated that Shannon -Wiener index, Simpson index and Pielou index of rubber plantations separately varied in range 1.224-3.517, 0.558-0.948 and 0.360 -0.778. The result showed that: the understorey species diversity was increased with the increase of plantation ages; the diversity in rainy season was greatly higher than that in dry season; the diversity increased with the elevation increase; and there was no obvious difference in

  20. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci.

    Science.gov (United States)

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  1. A hyperparasite affects the population dynamics of a wild plant pathogen

    OpenAIRE

    Tollenaere, C.; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G.M.; Kiss, L.; Tack, A. J. M.; Laine, A-L

    2014-01-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of ...

  2. Does overhead irrigation with salt affect growth, yield, and phenolic content of lentil plants?

    OpenAIRE

    Giannakoula Anastasia; Ilias I.F.; Dragišić-Maksimović Jelena J.; Maksimović V.M.; Živanović Branka D.

    2012-01-01

    Overhead irrigation of lentil plants with salt (100 mM NaCl) did not have any significant impact on plant growth, while chlorophyll content and chlorophyll fluorescence parameter Fv/Fm were affected. Under such poor irrigation water quality, the malondialdehyde content in leaves was increased due to the lipid peroxidation of membranes. In seeds, the total phenolic content (TPC) was correlated to their total antioxidant capacity (TAC). High performance liquid chromatography-mass spectrom...

  3. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    OpenAIRE

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect pla...

  4. Growth and phosphorus uptake of sorghum plants in salt affected soil as affected by organic materials composted with rock phosphate

    International Nuclear Information System (INIS)

    A field experiment was conducted to determine the influence of different organic materials, Farm yard manure (FYM), Humic acid (HA) and Press mud (PM) and their composts prepared with rock phosphate on the growth and phosphorus (P) uptake of sorghum (Sorghum bicolor L.). The experiment was conducted in Randomized Complete Block design with three replication in salt affected soil at research farm of botanical garden Azakhel Nowshera during kharif 2012. Fertilizers were applied at the rate of 120- 90-60 kg ha/sup -1/ N, P and K, respectively. The source of N was urea and organic materials in composted and non composted form. Single super phosphate, rock phosphate, organic materials and their composts were used as P source, while sulphate of potash was used as source of K. The organic materials were applied before crop sowing at recommended level on the basis of their P content. The maximum and significantly (p=0.05) increased sorghum total dry matter yield of 23733 kg ha/sup -1/, emergence m/sup -2/ of 142 and plant height of 147 cm were observed in the treatment where composts of FYM, HA and PM were applied in combination. Increase in soil organic matter content was recorded by the application of composts of different organic materials, while decreasing trend was found in the values of soil electrical conductivity (ECe) and sodium adsorption ratio (SAR). Maximum plant N uptake of 159 kg ha/sup -1/, P uptake of 62.5 kg ha/sup -1/ and K uptake of 557 kg ha/sup -1/ were noted in the treatment where a combination of composts of FYM, HA and PM were added. Results suggest that the use of composts of different organic materials and RP are environment friendly and have the potential to improve sorghum growth, plants nutrient uptake and ameliorate salt affected soils. (author)

  5. Plant natriuretic peptides: Systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts

    KAUST Repository

    Gehring, Christoph A

    2010-09-01

    Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3′,5′-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apo-ptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs. Copyright © 2013 by The American Federation for Medical Research.

  6. Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill.

    Science.gov (United States)

    Murillo, J M; Marañón, T; Cabrera, F; López, R

    1999-12-01

    The collapse of a pyrite-mining, tailing dam on 25 April 1998 contaminated approximately 2000 ha of croplands along the Agrio and Guadiamar river valleys in southern Spain. This paper reports the accumulation of chemical elements in soil and in two crops--sunflower and sorghum--affected by the spill. Total concentrations of As, Bi, Cd, Cu, Mn, Pb, Sb, Tl and Zn in spill-affected soils were greater than in adjacent, unaffected soils. Leaves of spill-affected crop plants had higher nutrient (K, Ca and Mg for sunflower and N and K for sorghum) concentrations than controls, indicating a 'fertilising' effect caused by the sludge. Seeds of spill-affected sunflower plants did accumulate more As, Cd, Cu and Zn than controls, but values were below toxic levels. Leaves of sorghum plants accumulated more As, Bi, Cd, Mn, Pb, Tl and Zn than controls, but these values were also below toxic levels for livestock consumption. In general, none of the heavy metals studied in both crops reached either phytotoxic or toxic levels for humans or livestock. Nevertheless, a continuous monitoring of heavy metal accumulation in soil and plants must be established in the spill-affected area. PMID:10635586

  7. Nuclear power plant life extension: How aging affects performance of containments & other structures

    Institute of Scientific and Technical Information of China (English)

    Robert A Dameron; Sun Junling

    2013-01-01

    This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP).Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events.Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs.This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.

  8. Quantity and quality of light affect growth and reproduction of the invasive annual plant Impatiens glandulifera

    OpenAIRE

    Strømme, Christian Bianchi

    2012-01-01

    Biological invasions occur worldwide and are among the primary causes of biodiversity loss. Some ecosystems are more prone to biological invasions due to interactions between traits of the invasive species and their new environment. For plants, light quantity and quality affect community invasibility, and previous studies show that the performance of the invasive summer-annual Impatiens glandulifera (Royle) is negatively affected by shade due to reduced light quantity, but effects of light qu...

  9. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  10. Beneath the veil: Plant growth form influences the strength of species richness-productivity relationships in forests

    Science.gov (United States)

    Oberle, B.; Grace, J.B.; Chase, J.M.

    2009-01-01

    Aim: Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness-productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location: We analysed 231 plots ranging from 34.0?? to 48.3?? N latitude and from 75.0?? to 124.2?? W longitude in the United States. Methods: We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light-blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results: Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions: The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species

  11. Effects of past burning frequency on plant species structure and composition in dry dipterocarp forest

    Science.gov (United States)

    Wanthongchai, Dr.; Bauhus, Prof.; Goldammer, Prof.

    2009-04-01

    Anthropogenic burning in dry dipterocarp forests (DDF) has become a common phenomenon throughout Thailand. It is feared that too frequent fires may affect vegetation structure and composition and thus impact on ecosystem productivity. The aim of this study was to quantify the effects of prescribed fires on sites with different past burning regimes on vegetation structure and composition in the Huay Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Fire frequency was determined from satellite images and ranged from frequent, infrequent, rare and unburned with fire occurrences of 7, 2, 1 and 0 out of the past 10 years, respectively. The pre-burn fuel loads, the overstorey and understorey vegetation structure and composition were determined to investigate the effects of the contrasting past burning regimes. The burning experiment was carried out, applying a three-strip head-fire burning technique. The vegetation structure and composition were sampled again one year after the fire to assess the fire impacts. Aboveground fine fuel loads increased with the length of fire-free interval. The woody plant structures of the frequently burned stand differed from those of the other less frequently burned stands. The species composition of the overstorey on the frequently burned site, in particular that of small sized trees (4.5-10 cm dbh), also differed significantly from that of the other sites. Whilst the ground vegetation including shrubs and herbs did not differ between the past burning regimes, frequent burning obviously promoted the proliferation of graminoid vegetation. There was no clear evidence showing that the prescribed fires affected the mortality of trees (dbh> 4.5 cm) on the sites of the different past burning regimes. The effects of prescribed burning on the understorey vegetation structures varied between the past burning regimes and the understorey vegetation type. Therefore, it is recommended that the DDF at HKK should be subjected to a prescribed fire frequency

  12. Poisonous plants affecting the central nervous system of horses in Brazil

    Science.gov (United States)

    Poisoning by Indigofera pascuori was recently reported in horses in the state of Roraima. It causes chronic signs of sleepiness, unsteady gait, severe ataxia, and progressive weight loss. Some animals are blind. Young horses are more affected than adults. After the end of plant consumption the anima...

  13. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    Science.gov (United States)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  14. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra

    International Nuclear Information System (INIS)

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. - Highlights: • We examined the effects of ozone on Pieris brassicae performance and preference. • We studied ozone and herbivore induced changes in the metabolome of Brassica nigra. • The performance of P. brassicae did not correlate with preference of ozonated plants. • Ozone and herbivore-feeding stress changes the phytochemical pools of B. nigra. - Ozone indirectly reduces herbivore performance, which is associated with change in phytochemical pools, but does not correlate with host plant preference

  15. Physical mechanisms of plant roots affecting weathering and leaching of loess soil

    Institute of Scientific and Technical Information of China (English)

    LI; Yong; ZHANG; Qingwen; WAN; Guojiang; HUANG; Ronggui; PIAO; Hechun; BAI; Lingyu; LI; Lu

    2006-01-01

    Plant roots have potential impacts on soil mineral weathering and leaching. Our objective is to understand the physical mechanisms of plant roots affecting weathering and leaching of loess soil. Root densities were measured through the method of a large-size dug profile, and transport fluxes of soil elements were determined using an undisturbed monolith soil infiltration device on the hilly and gully regions of the Chinese Loess Plateau. The results show that the improvement effects of soil environment by plant roots are mainly controlled by the density and weight of the fibrous roots with the diameters less than 1 mm. Plant roots have the stronger effects on soil physical properties than chemical properties. The principal components analysis (PCA) indicates that soil physical properties by plant roots account for 56.7% of variations in soil environment whereas soil chemical properties and pH contribute about 24.2% of the soil variations. The roles of plant roots in controlling soil weathering and leaching increased in the following order: infiltration enhancement > increase of bioactive substance > stabilization of soil structure. The effects of plant roots on soil mineral weathering and leaching can be quantified using the multiple regression models with the high prediction accuracies developed in this study.

  16. Plant sterols: factors affecting their efficacy and safety as functional food ingredients

    Directory of Open Access Journals (Sweden)

    Abumweis Suhad S

    2004-04-01

    Full Text Available Abstract Plant sterols are naturally occurring molecules that humanity has evolved with. Herein, we have critically evaluated recent literature pertaining to the myriad of factors affecting efficacy and safety of plant sterols in free and esterified forms. We conclude that properly solubilized 4-desmetyl plant sterols, in ester or free form, in reasonable doses (0.8–1.0 g of equivalents per day and in various vehicles including natural sources, and as part of a healthy diet and lifestyle, are important dietary components for lowering low density lipoprotein (LDL cholesterol and maintaining good heart health. In addition to their cholesterol lowering properties, plant sterols possess anti-cancer, anti-inflammatory, anti-atherogenicity, and anti-oxidation activities, and should thus be of clinical importance, even for those individuals without elevated LDL cholesterol. The carotenoid lowering effect of plant sterols should be corrected by increasing intake of food that is rich in carotenoids. In pregnant and lactating women and children, further study is needed to verify the dose required to decrease blood cholesterol without affecting fat-soluble vitamins and carotenoid status.

  17. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    OpenAIRE

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compare...

  18. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    OpenAIRE

    Lin Zhou; Hui Xu; Sue Mischke; Meinhardt, Lyndel W.; Dapeng Zhang; Xujun Zhu; Xinghui Li; Wanping Fang

    2014-01-01

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluat...

  19. Vineyard floor management affects soil, plant nutrition, and grape yield and quality

    OpenAIRE

    Smith, Richard; Bettiga, Larry; Cahn, Michael; Baumgartner, K.; L E Jackson; Bensen, Tiffany

    2008-01-01

    Management of the vineyard floor affects soil and crop productivity, as well as runoff and sediment that leave the vineyard. In Monterey County, weed control is typically conducted in a 4-foot-wide area under the vines, while cover crops are planted in the middles between vine rows. This 5-year multidisciplinary study in a low rainfall vineyard evaluated the impact of weed control strategies (cultivation, pre-emergence and post-emergence herbicides) in the vine rows, factorially arranged with...

  20. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    Science.gov (United States)

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities. PMID:26481794

  1. Zn—Cu Interaction Affecting Zn Adsorption and Plant Availability in a Metal—Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    D.L.Rimmer; LuoYongming

    1996-01-01

    In a previous greenhouse experiment,we showed that there was an interaction between cu and Zn,which affected growth and metal uptake by young barley plants grown on soil to which Cd,Cu,Pb,and Zn had been added.We suggested that the underlying mechanism was the control of the amount of plant-available Zn by competitive adsorption between Cu and Zn,In order to test this hypothesis,the adsorption of Zn alone,and in the presence of added Cd,Cu and Pb,has been measured using the same soil.Following adsorption,the extractability of the Zn in CaCl2 solution was measured .The adsorption isotherms showed that of the added metals only Cu had a large effect on Zn adsorption.The effect of Cu was to reduce Zn adsoption and to increase the amount of CaCl2-extractable(i.e.plant-available) Zn,in agreement with the conclusions from the greenhouse experiment.The magnitude of the effect of Cu on plant-avalilable Zn was similar in both experiments.

  2. Plant species richness and functional traits affect community stability after a flood event.

    Science.gov (United States)

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  3. Does overhead irrigation with salt affect growth, yield, and phenolic content of lentil plants?

    Directory of Open Access Journals (Sweden)

    Giannakoula Anastasia

    2012-01-01

    Full Text Available Overhead irrigation of lentil plants with salt (100 mM NaCl did not have any significant impact on plant growth, while chlorophyll content and chlorophyll fluorescence parameter Fv/Fm were affected. Under such poor irrigation water quality, the malondialdehyde content in leaves was increased due to the lipid peroxidation of membranes. In seeds, the total phenolic content (TPC was correlated to their total antioxidant capacity (TAC. High performance liquid chromatography-mass spectrometry (HPLC-MS detection showed that flavonoids (catechin, epicatechin, rutin, p-coumaric acid, quercetin, kaempferol, gallic acid and resveratrol appear to be the compounds with the greatest influence on the TAC values. Catechin is the most abundant phenolic compound in lentil seeds. Overhead irrigation with salt reduced the concentration of almost all phenolic compounds analyzed from lentil seed extracts.

  4. Reduced Particle size of plant material does not stimulate decomposition but affects the microbivorous microfauna

    DEFF Research Database (Denmark)

    Vestergaard, Peter; Rønn, Regin; Christensen, Søren

    2001-01-01

    The influence of the size of plant litter particles on substrate induced respiration (SIR), inorganic N, respiration activity, protozoa and nematodes in soil was analysed. Finely ground (<2 mm sieve) and larger pieces (4×5 mm) of maize leaves (Zea mays L.) (C toN=20) and barley (Hordeum vulgare L...... soils amended with the large pieces on nine out of 10 occasions. Microbial biomass measured as SIR was significantly higher in soils with maize than in those amended with barley, but no effect of particle size was observed (three-way ANOVA, P<0.05). Protozoan numbers were not affected by type of plant...... barley (three-way ANOVA, P<0.05). The different response of protozoa and nematodes to particle size can be related to their life strategies: protozoa are numerous and have restricted mobility whereas nematodes are larger, with more mobility towards resources....

  5. A hyperparasite affects the population dynamics of a wild plant pathogen.

    Science.gov (United States)

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-12-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  6. Radiation balance of dryland grain sorghum as affected by planting geometry

    International Nuclear Information System (INIS)

    The effects of planting geometry on the radiation balance of dryland grain sorghum (Sorghum bicolor L. cv. DK 46) were studied in a field experiment at the USDA-ARS Conservation and Production Research Laboratory at Bushland, TX, in 1984 on a Pullman clay loam (a fine, mixed, thermic Torrertic Paleustoll). The objective was to reduce the radiation load on a crop through manipulation of planting geometry and to determine whether that would affect crop productivity. Net radiation was 5% higher over wide compared to narrow rows (0.76 and 0.38 m, respectively) when averaged over three population levels from 33 to 110 days after sowing. East-west rows had 14% higher net radiation than north-south rows, averaged over two row spacings. The differences in net radiation were due to daytime responses, presumably shortwave albedo differences. Leaf photosynthesis and transpiration rates and stomatal resistance were measured twice during the grain-filling period. These measurements, taken S days after a period of moderate rains, showed no differences in the plant response due to row spacing or direction treatments. Slightly higher leaf temperatures in the high-population plots may have been related to greater depletion of plant available water than in medium and low population plots (72, 66, and 67% depletion, respectively). After 1 weeks of drying, narrow-row and high-population treatments showed greater stress as evidenced by lower transpiration and photosynthesis rates and higher stomatal resistance and leaf temperature. Soil water depletion was 20% less in narrow than wide rows during a 2-week period spanning the leaf transpiration measurement dates. Leaf photosynthesis, transpiration, temperature, and stomatal resistance were not affected by differences in net radiation due to row spacing or row direction

  7. Analysis of chemical factors affecting marine ecosystem around nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Choi, Yoon Dong; Chun, Ki Jeong; Kim, Jin Kyu; Jung, Kyeong Chai; Lee, Yeong Keun; Park, Hyo Kook [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-06-01

    The ecological data of the coastal area of Youngkwang nuclear power plant from 1987 to 1993 were comprehensively analyzed, and various physical and chemical properties of sea water and sediments were measured. Major factors affecting phytoplankton standing crops were suspended substances, nitrate, and silicate. The contents of iron, chromium, copper, and sulfur in sediments sampled from the discharge channel were slightly higher than those in the other areas. In order to qantify the chemical impacts on marine ecosystem, it is desirable that a systematic survey be made through the whole year cycle to assure the consistency and confidence of the related data. (Author).

  8. Analysis of chemical factors affecting marine ecosystem around nuclear power plant

    International Nuclear Information System (INIS)

    The ecological data of the coastal area of Youngkwang nuclear power plant from 1987 to 1993 were comprehensively analyzed, and various physical and chemical properties of sea water and sediments were measured. Major factors affecting phytoplankton standing crops were suspended substances, nitrate, and silicate. The contents of iron, chromium, copper, and sulfur in sediments sampled from the discharge channel were slightly higher than those in the other areas. In order to qantify the chemical impacts on marine ecosystem, it is desirable that a systematic survey be made through the whole year cycle to assure the consistency and confidence of the related data. (Author)

  9. CODIR-PA: presentation of two accident scenarios affecting a French nuclear power plant

    International Nuclear Information System (INIS)

    Within the framework of the CODIRPA, IRSN has to propose scenarios describing an accident affecting a French nuclear power plant (NPP). This scenario must be 'penalizing but not excessively, in particular with regard to the extent of the contaminated territory'. This technical note gathers the bases of the IRSN proposition of two scenarios describing accidents affecting a French NPP: firstly a LOCA accident leading to core FUSION, secondly a SGTR accident. The main sanitary consequences of the scenarios are the exceeding of the sheltering intervention levels within a radius of 2-3 km around the NPP (LOCA) and of stable iodine intake (SGTR). Regarding the agricultural consequences, some contamination levels in the agricultural products are beyond the CFILs until approximately 35 km for leaf vegetables and milk products, and a few kilometers for meat and cereals. (authors)

  10. Appraisal of {sup 15}N enrichment and {sup 15}N natural abundance methods for estimating N{sub 2} fixation by understorey Acacia leiocalyx and A. disparimma in a native forest of subtropical Australia

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Shahla Hosseini; Xu, Zhihong; Blumfield, Timothy J. [Griffith Univ., Nathan, Brisbane, QLD (Australia). School of Biomolecular and Physical Sciences, Environmental Futures Centre; Sun, Fangfang [Guangdong Academy of Agricultural Sciences, Guangzhou (China). Research Centre for Quality, Safety and Standard of Agricultural Products; Chen, Chengrong [Griffith Univ., Nathan, Brisbane, QLD (Australia). School of Environment, Environmental Futures Centre; Wild, Clyde [Griffith Univ., Gold Coast, QLD (Australia). School of Environment, Environmental Futures Centre

    2012-05-15

    Purpose: It is anticipated that global climate change will increase the frequency of wildfires in native forests of eastern Australia. Understorey legumes such as Acacia species play an important role in maintaining ecosystem nitrogen (N) balance through biological N fixation (BNF). This is particularly important in Australian native forests with soils of low nutrient status and frequent disturbance of the nutrient cycles by fires. This study aimed to examine {sup 15}N enrichment and {sup 15}N natural abundance techniques in terms of their utilisation for evaluation of N{sub 2} fixation of understorey acacias and determine the relationship between species ecophysiological traits and N{sub 2} fixation. Materials and methods: A trial was established at sites 1 and 2 located at Toohey Forest, Queensland, Australia, a eucalypt-dominated native forest, to examine the determination of BNF using {sup 15}N enrichment and {sup 15}N natural abundance methods. Toohey Forest is an urban forest and subjected to frequent fuel reduction burns to protect the adjacent properties. Plant physiological status was measured to determine the relationship between physiological and N{sub 2} fixation activities. Results and discussion: Both {sup 15}N enrichment and {sup 15}N natural abundance techniques may be used to estimate N{sub 2} fixation of acacia tree species. The estimation of BNF using {sup 15}N enrichment was higher than those of the {sup 15}N natural abundance method. A grass reference plant, Themeda triandra, as well as tree reference plants provided an appropriate {delta}{sup 15}N signal. Potential B values for Acacia spp. between -0.3 permille and 1.0 permille provided an acceptable BNF estimation. This suburban forest is located nearby a busy highway leading to N deposition over time with consequent negative {delta}{sup 15}N signal. This N deposition may explain the separation between the {delta}{sup 15}N signal of the acacias and that of the reference plants which led to

  11. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Directory of Open Access Journals (Sweden)

    Ming-Wei Chang

    2013-12-01

    Full Text Available The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM, with coarse particles (2.5–10 μm having higher endotoxin levels than did fine particles (0.5–2.5 μm. After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL-6 release and activated epidermal growth factor receptor (EGFR, transforming growth factor (TGF-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1 gene expression, but not of matrix metallopeptidase (MMP-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  12. Soil acidity as affecting micronutrients concentration, nitrato reductase enzyme activity and yield in upland rice plants

    Directory of Open Access Journals (Sweden)

    Edemar Moro

    2013-12-01

    Full Text Available The lowest grain yield of rice under no-tillage system (NTS in relation to the conventional system may be due to the predominance nitrate in the soil and the low nitrate reductase activity. Another reason may be caused by micronutrient deficiency because of superficially soil acidity corrections. Therefore, the objective of this study was to evaluate the changes caused by soil pH in the N forms in the soil, micronutrients concentration in rice plants, nitrate reductase activity, yield of rice and its components. The experiment was performed in a greenhouse conditions. The experimental design was a completely randomized in a factorial three (levels of soil acidity x five (micronutrients sources with four replications. The addition of micronutrients does not affect levels of nitrate and ammonium in the soil; soil acidity significantly affects levels of nitrate and ammonium in the soil, concentration of micronutrients in rice plants and crop yield and its components; medium soil acidity (pH 5.5 result in medium to high levels of Cu and Fe, medium level of Zn and Mn, high nitrate reductase activity, resulting in higher dry matter, tillers, panicles, spikelets, weight of 100 grains and hence grain yield.

  13. Nitrogen fixed by wheat plants as affected by nitrogen fertilizer levels and Non-symbiotic bacteria

    International Nuclear Information System (INIS)

    Inorganic nitrogen is required for all egyptian soils for wheat. Free living and N 2-fixing microorganisms are able associate closely related with the roots of geraminacae. Pot experiment studies were carried out to examine the response of wheat plants to inoculation with Azospirillum Brasilense and Azotobacter Chroococcum, single or in combination, under various levels of ammonium sulfate interaction between both the inoculants increased straw or grain yield as well as N-uptake by wheat plants with increasing N levels. Results showed that grains of wheat plants derived over 19,24 and 15% of its N content from the atmospheric - N 2 (Ndfa) with application of 25,50 and 75 mg N kg-1 soil in the presence of + Azospirillum + azotobacter. The final amount of N 2-fixers. The highest values of N 2-fixed were observed with mixed inoculants followed by inoculation with Azospirillum and then azotobacter. The recovery of applied ammonium sulfate-N was markedly increased by inoculation with combined inoculants, but less in uninoculated treatments. Seeds inoculated with non-symbiotic fixing bacteria could be saved about 25 kg N without much affecting the grain yield. i fig., 4 tabs

  14. Host plant affects the sexual attractiveness of the female white-spotted longicorn beetle, Anoplophora malasiaca.

    Science.gov (United States)

    Yasui, Hiroe; Fujiwara-Tsujii, Nao

    2016-01-01

    Anoplophora malasiaca (Coleoptera: Cerambycidae) is a serious pest that destroys various landscape and crop trees in Japan. We evaluated the precopulatory responses of three different A. malasiaca populations collected from mandarin orange, willow and blueberry trees. Most of the males accepted mates from within the same host plant population as well as females from the willow and blueberry populations. However, significant number of males from the blueberry and willow populations rejected females from the mandarin orange population immediately after touching them with their antennae. Because all three of the female populations produced contact sex pheromones on their elytra, the females of the mandarin orange population were predicted to possess extra chemicals that repelled the males of the other two populations. β-Elemene was identified as a key component that was only found in mandarin orange-fed females and induced a rejection response in willow-fed males. Our results represent the first example of a female-acquired repellent against conspecific males of different host plant populations, indicating that the host plant greatly affects the female's sexual attractiveness. PMID:27412452

  15. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies

    Science.gov (United States)

    Gerofotis, Christos D.; Ioannou, Charalampos S.; Nakas, Christos T.; Papadopoulos, Nikos T.

    2016-01-01

    Food quality shapes life history traits either directly or through response of individuals to additional environmental factors, such as chemical cues. Plant extracts used as food additives modulate key life history traits; however little is known regarding such effects for olfactory chemical cues. Exploiting an interesting experimental system that involves the olive fly (Bactrocera oleae) and the plant metabolite α-pinene we asked whether exposure of adults to this compound modulates adult longevity and female reproduction in similar manner in a stressful – dietary (protein) restricted (DR) and in a relaxed- full diet (FD) feeding environment. Accordingly, we exposed males and females to the aroma of α-pinene and measured lifespan and age-specific fecundity in the above two dietary contexts. Our results demonstrate that exposure to α-pinene increased longevity in males and fecundity in females only under dietary restricted conditions. In relaxed food conditions, females exposed to α-pinene shifted high egg-laying towards younger ages compared to non-exposed ones. This is the first report demonstrating that a plant compound affects key life history traits of adult olive flies through olfaction. These effects are sex-specific and more pronounced in dietary restricted adults. Possible underlying mechanisms and the ecological significance are discussed. PMID:27339862

  16. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies.

    Science.gov (United States)

    Gerofotis, Christos D; Ioannou, Charalampos S; Nakas, Christos T; Papadopoulos, Nikos T

    2016-01-01

    Food quality shapes life history traits either directly or through response of individuals to additional environmental factors, such as chemical cues. Plant extracts used as food additives modulate key life history traits; however little is known regarding such effects for olfactory chemical cues. Exploiting an interesting experimental system that involves the olive fly (Bactrocera oleae) and the plant metabolite α-pinene we asked whether exposure of adults to this compound modulates adult longevity and female reproduction in similar manner in a stressful - dietary (protein) restricted (DR) and in a relaxed- full diet (FD) feeding environment. Accordingly, we exposed males and females to the aroma of α-pinene and measured lifespan and age-specific fecundity in the above two dietary contexts. Our results demonstrate that exposure to α-pinene increased longevity in males and fecundity in females only under dietary restricted conditions. In relaxed food conditions, females exposed to α-pinene shifted high egg-laying towards younger ages compared to non-exposed ones. This is the first report demonstrating that a plant compound affects key life history traits of adult olive flies through olfaction. These effects are sex-specific and more pronounced in dietary restricted adults. Possible underlying mechanisms and the ecological significance are discussed. PMID:27339862

  17. SOIL SEEDBANK FROM THE UNDERSTOREY OF Pinus AND Eucalyptus IN THE FLONA DE BRASÍLIA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Augusta Rosa Gonçalves

    2008-03-01

    Full Text Available An analysis of the soil seedbank from the understory of Pinus and Eucalyptus in the Floresta Nacional de Brasília wasperformed, these plantations were established in the 1980s, and since 1987 have not had adequate management. Two stands of each genuswere chosen, with and without gaps. In each one of these stands 15 plots of 2 x 2 m were implanted, where a sample of 0,30 m x 0,30 mof soil and two sub-sample of 0,125 x 0,15 m of litter were collected for a quantative and qualitative analyzis of the seedbank. The mediumdensity of seedlings emergence in the Pinus stand was 3.098,19 seeds.m-2 while for the Eucalyptus it was of 2.077,19 seeds.m-2, whichmeans that the seedbank from the Pinus understory area has a higher regeneration potential than the Eucalyptus plantations. The Pinusplantations contained in the understorey: 12 families, 25 genus and 39 species, while in the Eucalyptus: 14 families, 31 genus and 48species, proving more richness in the Eucalyptus seedbank. In both genuses the most important families were Poaceae and Asteraceae.Both Pinus and Eucalyptus seedbanks populations, with or without openings, proved that the more interference in its population higheris the number of seeds from herbaceous species in comparison to tree species. The Sørensen similarity índex applied to analyze theseedbanks in the four areas, both for soil fractions and litter, was low, 0,5 and 0, 486, respectively.

  18. Long-term evolution of understorey plant species composition after logging in chestnut coppice stands (Cevennes Mountains, southern France)

    OpenAIRE

    Gondard, Hélène; Romane, François

    2005-01-01

    Évolution sur le long terme de la composition végétale de la strate herbacée après coupe forestière de taillis de châtaignier dans les Cévennes dans le sud de la France. Dans les Cévennes, de nombreux vergers de châtaigniers abandonnés sont transformés en taillis. Il a été clairement montré que la diversité végétale diminue après abandon. Toutefois, la coupe forestière pourrait être une solution pour maintenir un certain niveau de diversité. L'objectif de l'étude était d'analyser les changeme...

  19. Characterization of 10 microsatellite markers for the understorey Amazonian herb Heliconia acuminata.

    Science.gov (United States)

    Côrtes, M C; Gowda, V; Kress, W J; Bruna, E M; Uriarte, M

    2009-07-01

    We characterized 10 microsatellite loci for the plant Heliconia acuminata from the Biological Dynamics of Forest Fragments Project (Manaus, Brazil). Markers were screened in 61 individuals from one population and were found to be polymorphic with an average of eight alleles per locus. We found moderate to high levels of polymorphic information content, and observed and expected heterozygosities. All 10 markers are suitable for spatial genetic structure and parentage analyses and will be used for understanding H. acuminata dynamics across a fragmented landscape. PMID:21564896

  20. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    Science.gov (United States)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    arsenic extracted by HCl, with the oxidizable-organic matter and sulfides fraction and with the arsenic extracted by Mehra-Jackson extraction. According to our results, As is accumulated in the leaves of the plants and is linked with iron oxides of these soils affected by mining activities.

  1. Herbivory Differentially Affects Plant Fitness in Three Populations of the Perennial Herb Lythrum salicaria along a Latitudinal Gradient

    OpenAIRE

    Lina Lehndal; Jon Ågren

    2015-01-01

    Herbivory can negatively and selectively affect plant fitness by reducing growth, survival and reproductive output, thereby influencing plant population dynamics and evolution. Latitudinal variation in intensity of herbivory is common, but the extent to which it translates into corresponding variation in effects on plant performance is still poorly known. We tested the hypothesis that variation in the fitness-consequences of herbivory mirror differences in intensity of herbivory among three n...

  2. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats. PMID

  3. Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.

    Science.gov (United States)

    Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas

    2016-06-01

    Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds. PMID:27344162

  4. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    Science.gov (United States)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  5. Flowering timing prediction in Australian native understorey species ( Acrotriche R.Br Ericaceae) using meteorological data

    Science.gov (United States)

    Schneemilch, Melanie; Kokkinn, Michael; Williams, Craig R.

    2012-01-01

    The aim of this study was to determine the climatic influences on floral development for five members of the Australian native plant genus Acrotriche R. Br (Ericaceae). An observed period of summer floral dormancy suggests temperature is involved in flowering regulation in these species. Models were developed to determine temperature requirements associated with the likelihood of flowering occurring on any one day. To this end, the timing of flowering and meteorological data were collated for several sites, and multivariate logistic regressions performed to identify variables with a significant influence on flowering timing. The resultant models described a large amount of variation in flowering presence/absence, with r 2 values ranging from 0.72 to 0.79. Temperature was identified as influential on both floral development and flowering timing in each of the study species. The positive influence of short photoperiods on flowering in three of the winter flowering species was not surprising. However, the reporting here of a significant association between interdiurnal temperature and flowering in one species is novel. The predictive power of the models was validated through a jackknife sequential recalculation approach, revealing strong positive and negative predictive ability for flowering for four of the five species. Applications of the models include assisting in determination of the suitability of areas for vegetation restoration and identifying the possible effects of climate change on flowering in the study species.

  6. Seasonal variation in N uptake strategies in the understorey of a beech-dominated N-limited forest ecosystem depends on N source and species.

    Science.gov (United States)

    Li, Xiuyuan; Rennenberg, Heinz; Simon, Judy

    2016-05-01

    In forest ecosystems, species use different strategies to increase their competitive ability for nitrogen (N) acquisition. The acquisition of N by trees is regulated by tree internal and environmental factors including mycorrhizae. In this study, we investigated the N uptake strategies of three co-occurring tree species [European beech (Fagus sylvatica L.), sycamore maple (Acer pseudoplatanus L.) and Norway maple (Acer platanoides L.)] in the understorey of a beech-dominated, N-limited forest on calcareous soil over two consecutive seasons. For this purpose, we studied (15)N uptake capacity as well as the allocation to N pools in the fine roots. Our results show that European beech had a higher capacity for both inorganic and organic N acquisition throughout the whole growing season compared with sycamore maple and Norway maple. The higher capacity of N acquisition in beech indicates a better adaption of beech to the understorey conditions of beech forests compared with the seedlings of other tree competitors under N-limited conditions. Despite these differences, all three species preferred organic over inorganic N sources throughout the growing season and showed similar seasonal patterns of N acquisition with an increased N uptake capacity in summer. However, this pattern varied with N source and year indicating that other environmental factors not assessed in this study further influenced N acquisition by the seedlings of the three tree species. PMID:26786538

  7. High-Level Accumulation of Exogenous Small RNAs Not Affecting Endogenous Small RNA Biogenesis and Function in Plants

    Institute of Scientific and Technical Information of China (English)

    SHEN Wan-xia; Neil A Smith; ZHOU Chang-yong; WANG Ming-bo

    2014-01-01

    RNA silencing is a fundamental plant defence and gene control mechanism in plants that are directed by 20-24 nucleotide (nt) small interfering RNA (siRNA) and microRNA (miRNA). Infection of plants with viral pathogens or transformation of plants with RNA interference (RNAi) constructs is usually associated with high levels of exogenous siRNAs, but it is unclear if these siRNAs interfere with endogenous small RNA pathways and hence affect plant development. Here we provide evidence that viral satellite RNA (satRNA) infection does not affect siRNA and miRNA biogenesis or plant growth despite the extremely high level of satRNA-derived siRNAs. We generated transgenic Nicotiana benthamiana plants that no longer develop the speciifc yellowing symptoms generally associated with infection by Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat). We then used these plants to show that CMV Y-Sat infection did not cause any visible phenotypic changes in comparison to uninfected plants, despite the presence of high-level Y-Sat siRNAs. Furthermore, we showed that the accumulation of hairpin RNA (hpRNA)-derived siRNAs or miRNAs, and the level of siRNA-directed transgene silencing, are not signiifcantly affected by CMV Y-Sat infection. Taken together, our results suggest that the high levels of exogenous siRNAs associated with viral infection or RNAi-inducing transgenes do not saturate the endogenous RNA silencing machineries and have no signiifcant impact on normal plant development.

  8. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    Science.gov (United States)

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  9. The Gastropod Menace: Slugs on Brassica Plants Affect Caterpillar Survival through Consumption and Interference with Parasitoid Attraction.

    Science.gov (United States)

    Desurmont, Gaylord A; Zemanova, Miriam A; Turlings, Ted C J

    2016-03-01

    Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids. PMID:27002323

  10. How does Labour Mobility affect the Performance of Plants? The importance of relatedness and geographical proximity

    OpenAIRE

    Ron Boschma; Eriksson, R; Lindgren, U.

    2008-01-01

    This paper analyses the impact of skill portfolios and labour mobility on plant performance by means of a unique database that connects attributes of individuals to features of plants for the whole Swedish economy. We found that a portfolio of related competences at the plant level increases significantly productivity growth of plants, in contrast to plant portfolios consisting of either similar or unrelated competences. Based on the analysis of 101,093 job moves, we found that inflows of ski...

  11. Distribution of radiocesium and radiostrontium in undisturbed soil affected by Fukushima nuclear power plant accident

    International Nuclear Information System (INIS)

    The nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) triggered by earthquake generated tsunami in March 2011, caused massive contamination of radionuclides in Japan. In the environment, radiocesium isotopes (134,137Cs) and 90Sr have long-lasting presence due to their long-lived half-life. Long lived radionuclides deposited on soil can cause an enhanced radiation exposure even after many years and depending upon environmental conditions can be mobilized to aquatic systems. Therefore the assessment of the fate and transfer of these radionuclides in the soil water system is very important for radiation protection and dose assessment. Similarly the study of the vertical migration process of radiocesium is important as it allows us to evaluate the external irradiation from gamma-emitters in soil and to estimate the plant root uptake. With the understanding of the migration process downwards into the soil it is possible to establish a vertical profile as a function of time. In the present study emphasis has been given on the estimation of cesium radioisotopes in soil and their geochemical behavior in the respective site. Gamma spectrometry has been used for estimation of radio cesium. High Cs activity has been observed in the areas in the plume direction observed during the accident. Strontium as an alkaline earth metal shows similar chemical behavior to calcium, thus it can be accumulated by bone tissue causing internal radiation exposure. Therefore the environmental monitoring of 90Sr is one of the important tasks in Japan after the Fukushima accident. The 90Sr (T1/2 28.8y) is a man-made radionuclide so-called fission product produced in nuclear reaction (235U (n, f)90Sr) and released into the environment by nuclear weapon tests, nuclear facilities (accident or normal operation), reprocessing plants. The activity of 90Sr was determined with liquid scintillation counter (LSC). Owing to the atmospheric nuclear weapon tests, the soil in Japan is

  12. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Moreau Hervé

    2008-10-01

    Full Text Available Abstract Background The Wuschel related homeobox (WOX family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most

  13. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    Science.gov (United States)

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  14. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field.

    Science.gov (United States)

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-03-29

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits inArabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana. PMID:26979961

  15. Patterns of woody plant species diversity in Lebanon as affected by climatic and soil properties

    International Nuclear Information System (INIS)

    Lebanese biodiversity is threatened by tourist and urban development, political instability, over-collection of medicinal and aromatic plants, lack of compliance to the regulations prohibiting over-exploitation from the wild, over-grazing and forest fires. A large number of the native species have unexplored economic potential for either medicinal or ornamental use. One way to preserve these species is by propagation and reintroduction into appropriate habitats. However, this requires an understanding of the species biology and environment. The relationship of nine species to the soil and climatic conditions in eight sites along an altitudinal gradient was studied. Individual species were counted and identified within transects at each site. Climatic data were collected and soil samples were taken and analyzed for soil texture, soil pH, EC, CaCO3, organic matter content and the following nutrients: Ca, Mn, Na, Fe, P, K, Cu, Mg, and Zn. Each ecosystem had a unique environment that could be described using the first two factors (70.3 % of variation) in a Factor Analysis of the six most important variables. Some species densities were affected by soil conditions (the first factor) while climatic conditions (the second factor) explained the densities of other species. Recommendations are made for the in-situ and ex-situ preservations of the nine species and their ecosystems.(author)

  16. Distribution and retention of Cs radioisotopes in soil affected by Fukushima nuclear plant accident

    International Nuclear Information System (INIS)

    There was a large release of radio cesium (134Cs and 137Cs) to the atmosphere during Fukushima Daiichi Nuclear Power Plant (FDNPP) accident and contaminated soil over a vast area, due to fallout activity. Therefore, studies on the behavior of radio cesium especially migration in soil and its retention on soil particles is very important for external dose assessment and root uptake. We have determined the sorption coefficient (Kd) for Cs using laboratory batch method in soil samples collected from a contaminated area affected by FDNPP accident and the effect of various soil parameters on the Kd value has been studied. We have noticed that Cs sorption is mostly influenced by cation exchange process and sorbed on the surface of clay particles. From vertical depth profile of Cs in soil shows most of it is retained on the top layer within 5cm thickness. Sequential extraction of soil using various reagents may be helpful to understand better on the mechanism of Cs retention. (author)

  17. How does a change in the control room design affect diagnostic strategies in nuclear power plants?

    International Nuclear Information System (INIS)

    Recently, main control rooms have been considerably changed by modern computer techniques. Some of the features that distinguish digital control rooms from conventional, analog rooms in nuclear power plants include advanced alarm systems, graphic information display systems, computerized procedure systems, and soft control. These features can bring changes in operator tasks, changing the characteristics of tasks or creating new tasks for operators. It is especially expected that these features may bring out changes in the operator's diagnostic tasks and strategies in a digital control room as compared with an analog control room. This study investigates the differences in the operator's diagnostic tasks and strategies in analog and digital control rooms. This study also attempts to evaluate how new systems in a digital control room affect diagnostic strategies. Three different approaches, which are complementary, are used to identify diagnostic strategies in the digital control room and in the analog control room: (1) observation in the simulator, (2) interview with operators, and (3) a literature review. The results show that the digital control room introduces new diagnosis strategies compared with the analog control room while also changing the characteristics of the strategies, mostly by gaining more support from the computerized system. (author)

  18. Identification of viral and phytoplasmal agents responsible for diseases affecting plants of Gaillardia Foug. in Lithuania

    Science.gov (United States)

    Gaillardia plants exhibiting symptoms characteristic of viral and phytoplasmal diseases were collected at botanical gardens and floriculture farms in Lithuania. Cucumber mosaic virus was isolated from diseased plants exhibiting symptoms characterized stunting, color breaking and malformation of flo...

  19. Does the use of biofuels affect respiratory health among male Danish energy plant workers?

    DEFF Research Database (Denmark)

    Schlünssen, Vivi; Madsen, Anne Mette; Skov, Simon;

    2011-01-01

    Objectives To study asthma, respiratory symptoms and lung function among energy plant employees working with woodchip, straw or conventional fuel. Methods Respiratory symptoms in 138 woodchip workers, 94 straw workers and 107 control workers from 85 heating- or combined heating and power plants...... symptoms among conventional plant and biofuel plant workers was comparable, except for asthma symptoms among non-smokers, which were higher among straw workers compared with controls (9.4 vs 0%, p... filters (straw plants) or slit samplers (woodchip plants); the average personal exposures were 5.230×103 (118 to 1.85×104) and 1.03×103 (364 to 5.01×103) colony-forming units/m3 respectively. Exposure levels were increased in biofuel plants compared with conventional plants. The prevalence of respiratory...

  20. Plant quantity affects development and survival of a gregarious insect herbivore and its endoparasitoid wasp.

    OpenAIRE

    Minghui Fei; Rieta Gols; Feng Zhu; Harvey, Jeffrey A.

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semifield experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation...

  1. Visual and odours cues: plant responses to pollination and herbivory affect the behaviour of flower visitors

    NARCIS (Netherlands)

    Lucas-Barbosa, D.; Sun, P.; Hakman, A.; Beek, van T.A.; Loon, van J.J.A.; Dicke, M.

    2015-01-01

    Plants evolved strategies to attract pollinators that are essential for reproduction. However, plant defence against herbivores may trade off with pollinator attraction. Here, we investigated the role of inducible plant secondary metabolites in such a trade-off. Our objective was to reveal the mecha

  2. Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren

    2012-01-01

    Wet flue gas desulphurization (FGD) plants with forced oxidation, installed at coal and oil fired power plants for removal of SO2(g), must produce gypsum of high quality. However, quality issues such as an excessive moisture content, due to poor gypsum dewatering properties, may occur from time...... of impurities (0.002 M Al2F6; 50 g quartz/L; 0.02 M Al3+, and 0.040 M Mg2+) were investigated. In addition, slurry from a full-scale wet FGD plant, experiencing formation of flat shaped crystals and poor gypsum dewatering properties, was transferred to the pilot plant to test if the plant would now start...... to produce low quality gypsum. The crystals formed in the pilot plant, on the basis of the full-scale slurry did, however, show acceptable filtration rates and crystal morphologies closer to the prismatic crystals from after pilot plant experiments with demineralized water. The gypsum slurry filtration rates...

  3. The impact of global warming on floral traits that affect the selfing rate in a high-altitude plant

    Science.gov (United States)

    Changes in the abiotic environment, as those expected under global warming, can influence plant mating systems through changes in floral traits that affect selfing. Herkogamy (spatial separation of male and female functions within a flower), dichogamy (temporal separation) and total flower number af...

  4. Corn Response as Affected by Planting Distance from the Center of Strip-Till Fertilized Rows.

    Science.gov (United States)

    Adee, Eric; Hansel, Fernando D; Ruiz Diaz, Dorivar A; Janssen, Keith

    2016-01-01

    Strip-till has been used at a large scale in east central Kansas as an alternative to earlier planting dates under a no-till system. To determine the effects of planting corn (Zea mays) under previously established strip-tilled fertilized rows, experiments were conducted on an Osage silty clay loam soil in 2006 and 2008 and on a Woodson silt loam soil in 2009, 2010, and 2011 using three different planting distances from the strip-tilled fertilized rows (0, 10, 20, and 38 cm) with a strip-till operation performed between 1 and 73 days before planting. The depth of the strip-till fertilizer application was 13-15 cm below the soil surface. Corn that was planted 10 cm from the fertilized row showed greater early season growth, higher plant population, and grain yield. Planting 20 and 38 cm from the center of the fertilized rows showed none of the benefits that are typically associated with strip-tillage system. Enough time should be allowed between the strip-till operation and planting to reach satisfactory soil conditions (e.g., moist and firm seedbed). Our results suggest that the best location for planting strip-tilled fertilized corn vary depending on soil and climatic conditions as well as the time between fertilizer application with the strip-till operation and planting. With fewer number of days, planting directly on the center of fertilized strip-till resulted in decreased plant population and lower grain yield. However, the greatest yield benefit across different planting conditions was attained when planting within 10 cm of the strip. PMID:27588024

  5. The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth.

    Science.gov (United States)

    Liu, Yongbo; Stewart, C Neal; Li, Junsheng; Huang, Hai; Zhang, Xitao

    2015-12-01

    The adventitious presence of transgenic plants in wild plant populations is of ecological and regulatory concern, but the consequences of adventitious presence are not well understood. Here, we introduced Bacillus thuringiensis Cry1Ac (Bt)-transgenic oilseed rape (Bt OSR, Brassica napus) with various frequencies into wild mustard (Brassica juncea) populations. We sought to better understand the adventitious presence of this transgenic insecticidal crop in a wild-relative plant population. We assessed the factors of competition, resource availability and diamondback moth (Plutella xylostella) infestation on plant population dynamics. As expected, Bt OSR performed better than wild mustard in mixed populations under herbivore attack in habitats with enough resources, whereas wild mustard had higher fitness when Bt OSR was rarer in habitats with limited resources. Results suggest that the presence of insect-resistant transgenic plants could decrease the growth of wild mustard and Bt OSR plants and their populations, especially under high herbivore pressure. PMID:26338267

  6. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    OpenAIRE

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric...

  7. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    Science.gov (United States)

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition. PMID:25203485

  8. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. PMID:24100190

  9. UV-B radiation affects plant volatile emissions and shade avoidance responses

    NARCIS (Netherlands)

    Gankema, P.

    2015-01-01

    Plants detect and integrate an assortment of signals from their environment, and use these signals to maximise their performance by adjusting their growth and development as well as their secondary metabolite production. In this thesis, we investigated how plants integrate visual and olfactory signa

  10. Sugar transport and nitrate reductase activity rate in roots affect plant adaptation to cold and warm climate plants

    OpenAIRE

    Kafkafi, Uzi

    2009-01-01

    Nitrogen metabolism in the root is controlled by 2 fluxes: 1) nitrate intake from the external solution. 2) Transport of sugar from the leaves. Nitrate reduction to ammonium or direct ammonium uptake produce ammonia in the root cell. When the rate of sugar transport to root cells is slower than their sugar consumption for respiration, ammonia will accumulate and the root cells will die from ammonia toxicity. In nature, plants can be defined with regard to the activity of their root nitrate re...

  11. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions.

    Science.gov (United States)

    D'Alessandro, Marco; Erb, Matthias; Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C J

    2014-04-01

    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community. PMID:24127750

  12. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp.

    Science.gov (United States)

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  13. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp

    Science.gov (United States)

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A.

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  14. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism.

    Science.gov (United States)

    Fitzpatrick, Ginny; Lanan, Michele C; Bronstein, Judith L

    2014-09-01

    Mutualism is an often complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and, in exchange, protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40 °C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0 °C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species. PMID:25012597

  15. Plant Trait Assembly Affects Superiority of Grazer's Foraging Strategies in Species-Rich Grasslands.

    Czech Academy of Sciences Publication Activity Database

    Mládek, J.; Mladonický, P.; Hejcmanová, P.; Dvorský, M.; Pavlů, V.; de Bello, Francesco; Duchoslav, M.; Hejcman, M.; Pakeman, R. J.

    2013-01-01

    Roč. 8, č. 7 (2013), e69800. E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : species-rich grasslands * plant functional traits * grazing Subject RIV: EF - Botanics Impact factor: 3.534, year: 2013

  16. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  17. Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation.

    Science.gov (United States)

    Astolfi, S; Zuchi, S; Neumann, G; Cesco, S; Sanità di Toppi, L; Pinton, R

    2012-02-01

    Both Fe deficiency and Cd exposure induce rapid changes in the S nutritional requirement of plants. The aim of this work was to characterize the strategies adopted by plants to cope with both Fe deficiency (release of phytosiderophores) and Cd contamination [production of glutathione (GSH) and phytochelatins] when grown under conditions of limited S supply. Experiments were performed in hydroponics, using barley plants grown under S sufficiency (1.2 mM sulphate) and S deficiency (0 mM sulphate), with or without Fe(III)-EDTA at 0.08 mM for 11 d and subsequently exposed to 0.05 mM Cd for 24 h or 72 h. In S-sufficient plants, Fe deficiency enhanced both root and shoot Cd concentrations and increased GSH and phytochelatin levels. In S-deficient plants, Fe starvation caused a slight increase in Cd concentration, but this change was accompanied neither by an increase in GSH nor by an accumulation of phytochelatins. Release of phytosiderophores, only detectable in Fe-deficient plants, was strongly decreased by S deficiency and further reduced after Cd treatment. In roots Cd exposure increased the expression of the high affinity sulphate transporter gene (HvST1) regardless of the S supply, and the expression of the Fe deficiency-responsive genes, HvYS1 and HvIDS2, irrespective of Fe supply. In conclusion, adequate S availability is necessary to cope with Fe deficiency and Cd toxicity in barley plants. Moreover, it appears that in Fe-deficient plants grown in the presence of Cd with limited S supply, sulphur may be preferentially employed in the pathway for biosynthesis of phytosiderophores, rather than for phytochelatin production. PMID:22090437

  18. Uptake and Bioaccumulation of Heavy Metals in Rice Plants as Affect by Water Saving Irrigation

    OpenAIRE

    Linxian Liao; Junzeng Xu; Shizhang Peng; Zhenfang Qiao; Xiaoli Gao

    2013-01-01

    To reveal the impact of Non-Flooding controlled Irrigation (NFI) on the bioavailability and bioaccumulation of metals (Cu, Pb, Cd and Cr) in rice fields, metals concentration in different organs of rice plant growing under both Flooding Irrigation (FI) and NFI were measured. It indicated that metals concentrations in root are always the highest one among all the plant organs and in the spike is the lowest. Compared with FI rice, NFI resulted in higher metal concentrations, bioaccumulation fac...

  19. Spatial Heterogeneity in Light Supply Affects Intraspecific Competition of a Stoloniferous Clonal Plant

    OpenAIRE

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensit...

  20. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  1. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    Science.gov (United States)

    De La Fuente, Leonardo; Parker, Jennifer K; Oliver, Jonathan E; Granger, Shea; Brannen, Phillip M; van Santen, Edzard; Cobine, Paul A

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  2. Construction of power plants from the affected citizens' point of view - experience with citizens' committees

    International Nuclear Information System (INIS)

    On the occasion of the VGB-Conference Power plants and Environment 1977, Eiteneyer presented a lecture on power plant construction and public relation. He had hopefully drawn attention to the at last productive dispute between power plant advocates and power plant opponents, without finding ideal solutions. His conclusion, that power plant planning today is to a much greater extent an enterprising activity than a while ago, still carries weight, probably even more. It expresses itself mainly in the dialogue with citizens' committees, which according to experience appear at nearly every power plant building project today. Representatives of our corporation have asked themselves the question at this dialogue, whether these citizens' committees are really representing the population, as they often affirm. This situation induced us to entrust an independent institute in two cases with the questioning of the people concerned in those areas, in which the new constructions are planned. How this questioning was performed, its scope and the partial surprising results will be reported. The received objective information basis on the existing level of public opinion, made it possible to develop a realistic communication strategy. (orig.)

  3. Factors affecting callus and protoplast production and regeneration of plants from garlic tissue cultures

    International Nuclear Information System (INIS)

    Five cultivars of garlic, two explants, six callusing media, six regeneration media, two kinds of light and several doses of gamma irradiation were used to determine the best conditions for callus induction and plant regeneration from garlic tissue cultures. Also, some experiments were conducted to study the possibility to isolate protoplast and regenerate plants. The experiment showed that medium MS9 was good for regenerating plant directly from basal plate without going through callus phase. ANOVA exhibited significant differences among used cultivars in their ability to form callus. No significant difference was observed between 16 hr light and complete darkness in callus growth. However, appearance of callus was generally better on darkness. Cultivar varied in their ability to regenerate and interaction between cultivars and media was observed. Cultivar kisswany was the best in regeneration (38%) and medium MS47 was the best among used media (35%). Light type played a significant role in regeneration of plants where red light was much better than white light in inducing regeneration (68% vs 36%). ANOVA revealed significant effect of low doses of gamma irradiation on stimulation regeneration of plant whereas high doses prevented regeneration. Many experiments were conducted to isolate protoplast and regenerate plants. The best method for culturing was the droplet and the best conditions for incubation were complete darkness at 25 Degreed centigrade. This lead to formation of cell wall but no cell division was observed (author)

  4. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. PMID:27317970

  5. Microbial composition in a deep saline aquifer in the North German Basin -microbiologically induced corrosion and mineral precipitation affecting geothermal plant operation and the effects of plant downtime

    Science.gov (United States)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2013-04-01

    The microbial composition in fluids of a deep saline geothermal used aquifer in the North German Basin was characterized over a period of five years. The genetic fingerprinting techniques PCR-SSCP and PCR-DGGE revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of Bacteria and sulfate reducing bacteria (SRB) in cold fluids compared to warm fluids. Predominating SRB in the cold well probably accounted for corrosion damage to the submersible well pump, and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to a lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favoured growth of hydrogenotrophic SRB. Plant downtime significantly influenced the microbial biocenosis in fluids. Samples taken after plant restart gave indications about the processes occurring downhole during those phases. High DNA concentrations in fluids at the beginning of the restart process with a decreasing trend over time indicated a higher abundance of microbes during plant downtime compared to regular plant operation. It is likely that a gradual drop in temperature as well as stagnant conditions favoured the growth of microbes and maturation of biofilms at the casing and in pores of the reservoir rock in the near wellbore area. Furthermore, it became obvious that the microorganisms were more associated to particles then free-living. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. Those processes may favourably occur during plant downtime due to enhanced

  6. Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide.

    Science.gov (United States)

    Niklaus, Pascal A; Le Roux, Xavier; Poly, Franck; Buchmann, Nina; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Barnard, Romain L

    2016-07-01

    Plant diversity effects on ecosystem functioning can potentially interact with global climate by altering fluxes of the radiatively active trace gases nitrous oxide (N2O) and methane (CH4). We studied the effects of grassland species richness (1-16) in combination with application of fertilizer (nitrogen:phosphorus:potassium = 100:43.6:83 kg ha(-1) a(-1)) on N2O and CH4 fluxes in a long-term field experiment. Soil N2O emissions, measured over 2 years using static chambers, decreased with species richness unless fertilizer was added. N2O emissions increased with fertilization and the fraction of legumes in plant communities. Soil CH4 uptake, a process driven by methanotrophic bacteria, decreased with plant species numbers, irrespective of fertilization. Using structural equation models, we related trace gas fluxes to soil moisture, soil inorganic N concentrations, nitrifying and denitrifying enzyme activity, and the abundance of ammonia oxidizers, nitrite oxidizers, and denitrifiers (quantified by real-time PCR of gene fragments amplified from microbial DNA in soil). These analyses indicated that plant species richness increased soil moisture, which in turn increased N cycling-related activities. Enhanced N cycling increased N2O emission and soil CH4 uptake, with the latter possibly caused by removal of inhibitory ammonium by nitrification. The moisture-related indirect effects were surpassed by direct, moisture-independent effects opposite in direction. Microbial gene abundances responded positively to fertilizer but not to plant species richness. The response patterns we found were statistically robust and highlight the potential of plant biodiversity to interact with climatic change through mechanisms unrelated to carbon storage and associated carbon dioxide removal. PMID:27038993

  7. Agave salmiana Plant Communities in Central Mexico as Affected by Commercial Use

    Science.gov (United States)

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal ( Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha-1) in the short-use areas and less (892 plants ha-1) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha-1) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  8. Nitrogen Recovered By Sorghum Plants As Affected By Saline Irrigation Water And Organic/Inorganic Resources Using 15N Technique

    International Nuclear Information System (INIS)

    A pot experiment was conducted in the green house of Soil and Water Department, Nuclear Research Centre, Atomic Energy Authority, Egypt, to follow up the effect of saline irrigation water, inorganic and organic fertilizers on sorghum growth and N fractions that recovered by plant organs. Two types of artificial water salinity were used; one has 3 dS m-1 salinity level with 4 and 8 SAR and the second one has 3 and 6 dS m-1 salinity levels with 6 SAR . Leucenae residue and chicken manure were applied as organic sources at rate of 2% v/v. Sorghum was fertilized with recommended doses of super phosphate and potassium sulfate at rate of 150 kg P and 50 kg K per feddan, respectively. Labelled ammonium sulfate with 5% 15N atom excess was applied to sorghum at rate of 100 kg N fed-1. Dry matter yield (stalks and roots) was negatively affected by increasing water salinity levels or SAR ratios. Similar trend was recorded with N uptake by either stalks or roots of sorghum plants. On the other hand, both the dry matter yield and N uptake were positively and significantly affected by incorporation of organic sources in comparison to the untreated control. In this regard, the dry matter yield and N uptake induced by incorporation of chicken manure was superior over those recorded with leucenae residues. It means, in general, that the incorporation of organic sources into the soil may maximize the plant ability to combat the hazards effects caused by irrigation with saline water. Nitrogen derived from fertilizer (% Ndff), soil (% Ndfs) and organic resources (% Ndfr) showed frequent trends as affected by water salinity and organic resources but in most cases, severe reduction of these values was recorded when plants were irrigated with saline water. In the same time, plants were more dependent on N derived from organic sources than those derived from mineral fertilizer. Superiority of one organic source over the other was related to water salinity levels and SAR ratios applied in

  9. Performance of 'Rocha' and 'Santa Maria' pears as affected by planting density

    OpenAIRE

    Mateus da Silveira Pasa; José Carlos Fachinello; Horacy Fagundes da Rosa Júnior; Émerson De Franceschi; Juliano Dutra Schmitz; André Luiz Kulkamp de Souza

    2015-01-01

    The objective of this work was to evaluate the performance of 'Rocha' and 'Santa Maria' pears at two planting densities. The experiment was carried out during the 2011/2012, 2012/2013, and 2013/2014 growing seasons, in one-year-old orchards (2011/2012) of 'Rocha' and 'Santa Maria' pears, trained in a central-leader system and planted in two densities (2,000 and 4,000 trees per hectare). The assessed parameters were: production per hectare, production per tree, yield efficiency, number of frui...

  10. Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate

    OpenAIRE

    Månsson, Katarina F; Olsson, Magnus O; Falkengren-Grerup, Ursula; Bengtsson, Göran

    2014-01-01

    We tested whether the presence of plant roots would impair the uptake of ammonium ( ), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short-term (24-h) experiment. The uptake of 15NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by...

  11. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-You [Harvard Univ., Cambridge, MA (United States)

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  12. Mercury Concentrations in Plant Tissues as Affected by FGDG Application to Soil

    Science.gov (United States)

    Flue Gas Desulfurization Gypsum (FGDG) is produced by reducing sulfur dioxide emissions from themo-electric coal-fired power plants. The most common practice of FGDG production may trap some of the Mercury (Hg) present in the coal that normally would escape as vapor in the stack gases. Concern for t...

  13. Applications of Fertilizer Cations Affect Cadmium and Zinc Concentrations in Soil Solutions and Uptake by Plants

    DEFF Research Database (Denmark)

    Lorenz, S. E.; Hamon, R. E.; McGrath, S. P.; Holm, Peter Engelund; Christensen, Thomas Højlund

    1994-01-01

    A pot experiment was conducted to study changes over time of Cd and Zn in soil solution and in plants. Radish was grown in a soil which had been contaminated with heavy metals prior to 1961. Constant amounts of a fertilizer solution (NH4N03, KN03) were added daily. Soil solution was obtained at i...

  14. Activated carbon addition affects substrate pH and germination of six plant species

    NARCIS (Netherlands)

    Kabouw, P.; Nab, M.; Dam, van M.

    2010-01-01

    Activated carbon (AC) is widely used in ecological studies for neutralizing allelopathic compounds. However, it has been suggested that AC has direct effects on plants because it alters substrate parameters such as nutrient availability and pH. These side-effects of AC addition may interfere with al

  15. Molecular analyses of nuclear-cytoplasmic interactions affecting plant growth and yield. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Newton, K.J.

    1998-11-01

    Mitochondria have a central role in the production of cellular energy. The biogenesis and functioning of mitochondria depends on the expression of both mitochondrial and nuclear genes. One approach to investigating the role of nuclear-mitochondrial cooperation in plant growth and development is to identify combinations of nuclear and mitochondrial genomes that result in altered but sublethal phenotypes. Plants that have certain maize nuclear genotypes in combination with cytoplasmic genomes from more distantly-related teosintes can exhibit incompatible phenotypes, such as reduced plant growth and yield and cytoplasmic male sterility, as well as altered mitochondrial gene expression. The characterization of these nuclear-cytoplasmic interactions was the focus of this grant. The authors were investigating the effects of two maize nuclear genes, RcmI and Mct, on mitochondrial function and gene expression. Plants with the teosinte cytoplasms and homozygous for the recessive rcm allele are small (miniature) and-slow-growing and the kernels are reduced in size. The authors mapped this locus to molecular markers on chromosome 7 and attempted to clone this locus by transposon tagging. The effects of the nuclear-cytoplasmic interaction on mitochondrial function and mitochondrial protein profiles were also studied.

  16. Will global warming affect soil-to-plant transfer of radionuclides?

    International Nuclear Information System (INIS)

    Recent assessments of global climate/environmental change are reaching a consensus that global climate change is occurring but there is significant uncertainty over the likely magnitude of this change and its impacts. There is little doubt that all aspects of the natural environment will be impacted to some degree. Soil-to-plant transfer of radionuclides has long been a significant topic in radioecology, both for the protection of humans and the environment from the effects of ionising radiation. Even after five decades of research considerable uncertainty exists as to the interplay of key environmental processes in controlling soil-plant transfer. As many of these processes are, to a lesser or greater extent, climate-dependent, it can be argued that climate/environmental change will impact soil-to-plant transfer of radionuclides and subsequent transfers in specific environments. This discussion attempts to highlight the possible role of climatic and climate-dependent variables in soil-to-plant transfer processes within the overall predictions of climate/environmental change. The work is speculative, and intended to stimulate debate on a theme that radioecology has either ignored or avoided in recent years

  17. Grassland cutting regimes affect soil properties, and consequently vegetation composition and belowground plant traits

    NARCIS (Netherlands)

    Schrama, Maarten J. J.; Cordlandwehr, Verena; Visser, Eric J. W.; Elzenga, Theo M.; de Vries, Yzaak; Bakker, Jan P.

    2013-01-01

    Machine mowing, mimicking the traditional hand mowing, is often used as a successful management tool to maintain grassland biodiversity, but few studies have investigated the long-term effects of traditional versus mechanical mowing of plant communities. Machine mowing as opposed to hand mowing caus

  18. Ion distribution and gas exchange of hydroponically grown sunflower plants as affected by salinity

    Directory of Open Access Journals (Sweden)

    Anna Rita Rivelli

    Full Text Available This paper reports the results of a trial carried out on sunflower plants (Helianthus annuus L., Romsun HS90 grown in the greenhouse using inert substrate and two automatic and closed hydroponic systems: one of them hosting the control (C with plants grown under optimal conditions on Hoagland nutrient solution, the other one, the salt treatment (S, with plants exposed to constant salt stress through adding 150 mM of NaCl to the nutrient solution. Salt supply caused a sharp reduction in leaf area development and dry matter production, especially in the first 4 weeks when leaves showed to be more sensitive than stem and roots. Such a reduction is attributable to the drop in net CO2 assimilation rate, transpiration and stomatal conductance and it was, on average, equal to 30, 26 and 40%, respectively, with respect to the control. The investigated genotype was not able to exclude Cl- and Na+ and considerable amounts accumulated in leaves, stem and roots. Concentration increased in leaves in the basipetal direction. Though sunflower has an efficient endogenous adaptation system by which it redistributes ions in the whole plant, with greater accumulation in older leaves, growth inhibition could be attributed to specific ion toxicity effects, and of chlorine in particular, on metabolic processes and thus on photosynthesis.

  19. Physiological integration affects growth form and competitive ability in clonal plants

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš

    2004-01-01

    Roč. 18, - (2004), s. 493-520. ISSN 0269-7653 R&D Projects: GA ČR(CZ) GA206/02/0953 Institutional research plan: CEZ:AV0Z6005908 Keywords : competitive ability * Physiological integration * clonal plant s Subject RIV: EF - Botanics Impact factor: 3.215, year: 2004

  20. Does insect netting affect the containment of airborne pollen from (GM-) plants in greenhouses?

    NARCIS (Netherlands)

    T. van Hengstum; D.A.P. Hooftman; H.C.M. den Nijs; P.H. van Tienderen

    2012-01-01

    Greenhouses are a well-accepted containment strategy to grow and study genetically modified plants (GM) before release into the environment. Various containment levels are requested by national regulations to minimize GM pollen escape. We tested the amount of pollen escaping from a standard greenhou

  1. Factors Affecting Embryogenic Callus Production and Plant Regeneration in Anther Culture of Bupleurum chinense

    Institute of Scientific and Technical Information of China (English)

    YANG Cheng-min; ZHAO Yu-kai; WEI Jian-he; ZHAO Li-zi; SUI Chun; ZHANG Zheng; CUI Lu-ying

    2011-01-01

    Objective To evaluate the influences of the genotypes,anther developmental stages,and cultural conditions on the efficiency of embryogenic callus induction and plant regeneration in the anthers culture of Bupleurum chinense.Methods The different effects such as four genotypes,plant growth regulators,and temperature condition were compared in the experiments.The histological study was performed with the process of the anther culture.Results The highest inducing rate of embryogenic calli were achieved for the genotypes Zhongcaiyihao(ZCYH),Z4,and Z5 at the early-to middle-uninucleate stages,except for genotype ZPM1 at the tetrad stage.Cold pretreatment increased the production of the embryogenic callus,in which 4-day cold pretreatment improved the production of embryogenic callus from 0% to 2.2% and 5.0% for genotypes ZPM1 and ZCYH,respectively.No embryogenic callus was induced in the medium containing less than 0.75 mg/L 2,4-dichlorophenoxyacetic acid(2,4-D).The highest regeneration rate (34.6%)was obtained in 1/2 MS salts regeneration medium supplemented with 0.1 mg/L 6-benzylmaminopurine (BA).The low concentration of BA was able to promote the embryogenic callus formation and subsequent plantlet regeneration via somatic embryogenesis.Chromosome counting of regenerated plantlets showed mostly diploid plant (2n = 12)with only one haploid plant(n = 6).Because of the low rate of microspore embryo formation,we only tracked the process of embryogenesis from the connective tissue,instead of microspore by histological observations.Conclusion This study establishes an efficient system for embryogenic callus induction and plant regeneration system.This is the first report on the haploid plantlet through the anther culture orB.chinense.

  2. New Source Review and coal plant efficiency gains: How new and forthcoming air regulations affect outcomes

    International Nuclear Information System (INIS)

    Forthcoming carbon dioxide (CO2) regulations for existing power plants in the United States have heightened interest in thermal efficiency gains for coal-fired power plants. Plant modifications to improve thermal efficiency can trigger New Source Review (NSR), a Clean Air Act requirement to adopt of state-of-the-art pollution controls. This article explores whether existing coal plants would likely face additional pollution control requirements if they undertake modifications that trigger NSR. Despite emissions controls that are or will be installed under the Mercury and Air Toxics Standards (MATS) and Clean Air Interstate Rule (CAIR) or its replacement, 80% of coal units (76% of capacity) that are expected to remain in operation are not projected to meet the minimum NSR requirements for at least one pollutant: nitrogen oxides or sulfur dioxide. This is an important consideration for the U.S. Environmental Protection Agency and state policymakers as they determine the extent to which CO2 regulation will rely on unit-by-unit thermal efficiency gains versus potential flexible compliance strategies such as averaging, trading, energy efficiency, and renewable energy. NSR would likely delay and add cost to thermal efficiency projects at a majority of coal units, including projects undertaken to comply with forthcoming CO2 regulation. - Highlights: • We explore the status of the U.S. coal-fired fleet relative to New Source Review (NSR) requirements. • Modifications to improve thermal efficiency can trigger NSR. • Thermal efficiency gains may also be an important strategy for forthcoming CO2 regulation. • 80% Of non-retiring coal-fired units are projected not to meet minimum NSR requirements. • NSR is an important consideration for the design of CO2 regulations for existing plants

  3. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    Science.gov (United States)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  4. Maize production as affected by sowing date, plant density and row spacing in the Bolivian Amazon

    Directory of Open Access Journals (Sweden)

    Paolo Casini

    2012-12-01

    Full Text Available The traditional cropping system widespread in the Department of Pando (Bolivian Amazon is the slash and burn methodology. The main crops sowed soon after the slash are maize, rice, cassava and common beans. Two separate field experiments (carried out in 2008-2009 were carried out to determine the agronomic responses of maize to sowing date, plant population and row width. For the first experiment a split-plot design was used. Maize cultivar (Bayo Blando and Perla Pandino was considered as main plots and the date of sowing as subplots. For the second experiment a split-split-plot design was used. Row spacing (0.5, 0.7 and 0.9 m was considered as main plot, maize cultivar (Cubano Amrarillo and Perla Pandino as subplots, and plant density (5.0, 7.5 and 10 plant m-2 as sub-subplots. A significant reduction of grain yield was observed as the date of sowing (DS delayied. Yield reduction of the second DS compared to the first, was 85 and 45% for Perla Pandino and Bayo Blando. The importance of plant density as a function of the correct row spacing is clearly shown. With the row spacing in use in the considered area (0.9 m and with the narrowest (0.5 m, the best yields were obtained with 10 plants m-2 (5.5 t ha-1. The following conclusions can be drawn from the present study: 1. A delay in the sowing date for maize by 15-20 days (compared to sowing ??immediately after the cutting of the virgin forest or the secondary forest strongly reduces grain production. The cultivar Perla Pandino was the most susceptible with a reduction of 85%. Late sowing of maize (mais de socorro, is suitable only if intercropped with other crops in order to protect the soil from erosion. Traditionally, rice and cassava are intercropped with maize, even if common beans or a legume cover crop would be more advisable. 2. The density of maize may be increased up until 10 m-2 in order to achieve the most productive results by using row spacings of 0.5 e 0.9 m, respectively

  5. The assessment of pollution in the area of Turnu Magurele affected by the fertilizer plant

    International Nuclear Information System (INIS)

    The fertilizer industry related to the whole chain of production, storage, transport and use causes a potential pollution of air, water, soil and vegetation. A local sampling monitoring network was developed around Turnu Magurele fertilizer plant in Romania. Samples of mosses, soil, tree leaves and crops were analyzed by neutron activation analysis for more than 35 chemical components. This paper reports the distribution of 39 trace elements in the moss-biomonitor Hypnum cupresiforme used to study atmospheric deposition in the examined area. The results obtained evidence a local pollution of the area exposed to the emissions of the phosphate fertilizer local industry, following a gradient along the Danube River wind rose profile. The vegetation input of trace elements from soil is compared with inputs from atmospheric deposition, and these inputs were evaluated in relation to the vegetation content. The study established that cadmium, strontium and rare earth are the major elements as the fertilizer plant input is regarded. (authors)

  6. Barium uptake by maize plants as affected by sewage sludge in a long-term field study.

    Science.gov (United States)

    Nogueira, Thiago Assis Rodrigues; deMelo, Wanderley José; Fonseca, Ivana Machado; Marques, Marcos Omir; He, Zhenli

    2010-09-15

    A long-term experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the concentration of Ba in soil and in maize plants grown in a soil treated with sewage sludge for nine consecutive years. During 2005/2006, maize was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. Treatments consisted of: 0.0, 45.0, 90.0 and 127.5 t ha(-1) sewage sludge (dry basis). Sewage sludge application increased soil Ba concentration. Barium accumulated in the parts of maize plants were generally affected by the successive applications of sewage sludge to the soil. However, the concentration of Ba in maize grain did not exceed the critical levels of Ba for human consumption. Sewage sludge applied to soil for a long time did not affect dry matter and grain production, nevertheless had the similar effect of mineral fertilization. PMID:20579810

  7. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    OpenAIRE

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a repl...

  8. Adaptation to altitude affects the senescence response to chilling in the perennial plant Arabis alpina

    OpenAIRE

    Wingler, Astrid; Juvany, Marta; Cuthbert, Caroline; Munné-Bosch, Sergi

    2014-01-01

    In annual plants with determinate growth, sugar accumulation signals high carbon availability once growth has ceased, resulting in senescence-dependent nutrient recycling to the seeds. However, this senescence-inducing effect of sugars is abolished at cold temperature, where sugar accumulation is important for protection. Here, natural variation was exploited to analyse the effect of chilling on interactions between leaf senescence, sugars, and phytohormones in Arabis alpina, a perennial plan...

  9. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    OpenAIRE

    Moreau Hervé; Laufs Patrick; Morin Halima; Thareau Vincent; Claisse Gaelle; Toffano-Nioche Claire; Deveaux Yves; Kreis Martin; Lecharny Alain

    2008-01-01

    Abstract Background The Wuschel related homeobox (WOX) family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distan...

  10. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    OpenAIRE

    Jeremy Lundholm; J Scott Macivor; Zachary Macdougall; Melissa Ranalli

    2010-01-01

    BACKGROUND: Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. METHODOLOGY/PRINCIPAL FINDINGS: We used a re...

  11. Soil acidity as affecting micronutrients concentration, nitrato reductase enzyme activity and yield in upland rice plants

    OpenAIRE

    Edemar Moro; Carlos Alexandre Costa Crusciol; Heitor Cantarella; Adriano Stephan Nascente; Adriana Lima Moro; Fernando Broetto

    2013-01-01

    The lowest grain yield of rice under no-tillage system (NTS) in relation to the conventional system may be due to the predominance nitrate in the soil and the low nitrate reductase activity. Another reason may be caused by micronutrient deficiency because of superficially soil acidity corrections. Therefore, the objective of this study was to evaluate the changes caused by soil pH in the N forms in the soil, micronutrients concentration in rice plants, nitrate reductase activity, yield of ric...

  12. Spatial heterogeneity in light supply affects intraspecific competition of a stoloniferous clonal plant.

    Directory of Open Access Journals (Sweden)

    Pu Wang

    Full Text Available Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition or nine ramets (with intraspecific competition of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity and two heterogeneous ones differing in patch size (large and small patch treatments. The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants.

  13. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    Science.gov (United States)

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. PMID:26467257

  14. Spatial heterogeneity in light supply affects intraspecific competition of a stoloniferous clonal plant.

    Science.gov (United States)

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity) and two heterogeneous ones differing in patch size (large and small patch treatments). The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length) of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants. PMID:22720041

  15. Applications of Fertilizer Cations Affect Cadmium and Zinc Concentrations in Soil Solutions and Uptake by Plants

    DEFF Research Database (Denmark)

    Lorenz, S. E.; Hamon, R. E.; McGrath, S. P.;

    1994-01-01

    A pot experiment was conducted to study changes over time of Cd and Zn in soil solution and in plants. Radish was grown in a soil which had been contaminated with heavy metals prior to 1961. Constant amounts of a fertilizer solution (NH4N03, KN03) were added daily. Soil solution was obtained at...... intervals by displacement with water. The cumulative additions of small amounts of fertilizers were made equal to the plants' requirements at the final harvest but were found to exceed them during most of the experiment. Excess fertilizers caused substantial increases of major (K, Ca, Mg) and heavy......-metal (Cd, Zn) ions in soil solutions and a decrease in soil pH, probably due to ion-exchange mechanisms and the dissolution of carbonates. Uptake of Cd and Zn into leaves was correlated with the mass flow of Cd (adjusted r2 = 0.798) and Zn (adjusted r2=0.859). Uptake of K, Ca and Mg by the plants was...

  16. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process

    Directory of Open Access Journals (Sweden)

    Yuying Jia

    2015-08-01

    Full Text Available The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman, which showed a relatively weak susceptibility. Gibberellin (GA levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA. Higher zeatin riboside (ZR content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA content, polyphenol oxidase (PPO and peroxidase (POD activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  17. Solubility and Plant Availability of Nutrients as Affected by Soil Drainage Conditions

    Science.gov (United States)

    Corn growth is affected due to oxygen deficiency and root death in a perched water table (PWT). The study objective was to evaluate a surface application of FGD gypsum (FGDG) and glyphosate (GLY) on nutrient uptake in corn with different drainage conditions. The experiment was conducted in greenhous...

  18. The community structure of endophytic bacteria in different parts of Huanglongbing-affected citrus plants

    Science.gov (United States)

    The analyses methods of Pearson correlation coefficient (PCC), hierarchical cluster analysis and diversity index were used to study the relevance between citrus huanglongbing (HLB) and the endophytic bacteria in different branches and leaves as well as roots of huanglongbing (HLB)-affected citrus tr...

  19. Quality of medicinal plants traditionally used in Sudan as affected by ionizing radiation treatments

    International Nuclear Information System (INIS)

    This investigation was conducted to study the effect of gamma-radiation doses of 5, 10 and 15 KGy on the microbial and chemical quality as well as antioxidant activity of nine medical plants from 8 plant species grown in Sudan. The plant materials were collected from the country-side of Khartoum State as well as from local markets. Plant parts were selected according to their traditional uses as medicinal plants. Irradiation treatment was carried out or dried ground samples using doses of 5,10, 15 KGy from experimental cobalt-60 gamma source. Plants extracts were prepared using 80% methanol. The control and irradiated samples were analyzed for total bacterial count (cfu/g), secondary compounds, tannin content, total phenol, and antioxidant activity. Tannins, flavonoids, glycosides, anthraquinones, saponin and phenols were evaluated through major compounds in extracts. The total bacterial count indicated that the non- irradiated samples of Trigonella foenum-graecum L., Cassia senna (pods), Cassia senna (leaves), Acacia nilotica L., Brassica nigra L. Koch, Lepidium sativum L., Cymbopogon citratus and Hibiscus sabdariffa L. were highly contaminated with bacteria. The sample of Cymbopogon schoenanthus L. showed a lower count of bacteria (9x10'' 3 Cfu/g), which did not exceed the acceptable level. The samples irradiated with 5, 10 and 15 KGy of gamma radiation dose had significantly lower bacterial counts than the non-irradiated control. The highest sensitivity to gamma rays at 5 KGy dose was observed in Trigonella foenum-graecum L. and Acacia nilotica L. while the lowest sensitivity was in Cymbopogon schoenanthus L. At 15 KGy dose Hibiscus sabdariffa L. and Cymbopogon citratus showed complete absence of microorganisms. The highest reduction in tannin content (mg/L catechin) due to irradiation with 15 KGy dose was observed in Cymbopogon citratus, followed by Cymbopogon schoenanthus L., Cassia senna L. leaves Acacia nilotica L. and Hibiscus sabdariffa L.. Irradiation

  20. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    Science.gov (United States)

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  1. Plant species and functional group combinations affect green roof ecosystem functions.

    Directory of Open Access Journals (Sweden)

    Jeremy Lundholm

    Full Text Available BACKGROUND: Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. METHODOLOGY/PRINCIPAL FINDINGS: We used a replicated modular extensive (shallow growing- medium green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. CONCLUSIONS/SIGNIFICANCE: Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or

  2. Biochemical attributes, plant growth and yield of tomato as affected by boron application rates

    International Nuclear Information System (INIS)

    A glass house pot experiment, with two tomato cultivars VCT-1 and Riogrande, was 1) in carried out to assess the effects of four levels of soil application of B (0, 0.5, 1.0 and 1.5 mg kg/sup -1/ in the form of borax on plant growth, biochemical content, antioxidant activity and fruit yield. Higher -1 plant growth and fruit yield in both cultivars were achieved by the B 1.0 and 1.5 mg kg/sup -1/ soil application respectively. Application of 0.5 mg B kg/sup -1/ had lower dry matter production as well as fruit yield when compared with B 1.0 and 1.5 mg kg/sup -1/. The percent increase of fruit yield at 0.5 mg B kg/sup -1/ was 12 and 10, in VCT-1 and Riogrande respectively. In the same cultivars, B application at the rate of 1.0 mg B kg/sup -1/ caused fruit yield by 23 and 21% while 1.5 mg B kg/sup -1/ enhanced by 22 and 20% respectively. Boron concentration in leaf, fruit and root increased with the increasing level of B. Boron application at 1.0 and 1.5 mg kg/sup -1/ significantly increased chlorophyll, sugar and protein content in both cultivars. Superoxide dismutase and catalase activity was significantly increased by the soil application of 1.5 mg B kg/sup -1/ in both cultivars of tomato. Results showed that soil application of 1.0 mg B kg soil have a positive effect on plant growth, yield and biochemical attributes of both the tomato cultivars. (author)

  3. Reproduction of Heterodera zeae and Its Suppression of Corn Plant Growth as Affected by Temperature

    OpenAIRE

    Hashmi, Sarwar; Krusberg, Lorin R.; Sardanelli, Sandra

    1993-01-01

    Reproduction of the corn cyst nematode (Heterodera zeae) and its effect on growth of corn (Zea mays) was studied in plant growth chambers at 24, 27, 30, 33, and 36 C. Reproduction of H. zeae increased directly with increase in temperature from 24 to 36 C. Fifteen-cm-d pots of corn seedlings inoculated with a mixture of 5,000 eggs + J2 and maintained for 8 weeks in growth chambers contained an average of 7,042 cysts + females at 36 C, but only 350 cysts + females at 24 C. Fresh weights of plan...

  4. Significant factors affecting the economic sustainability of closed aquaponic systems. Part II: fish and plant growth

    OpenAIRE

    Palm, Harry W.; Karl Bissa; Ulrich Knaus

    2014-01-01

    Two identical closed ebb-flow substrate aquaponic systems for warm-water fish were tested for fish and plant productivity. Each system contained 3.7 m3 water, and the relationship of the water volume in the aquaculture tank to the settling basin (sedimenter, clarifier), the biofilter and the hydroponic units was 2.25:1:0.075:0.6 (fish tank:hydroponic unit = 3.75). The comparative batch cultivation of African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) at ...

  5. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression.

    Science.gov (United States)

    Vallianou, Ioanna; Hadzopoulou-Cladaras, Margarita

    2016-01-01

    The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect. PMID:26784701

  6. Population variation affects interactions between two California salt marsh plant species more than precipitation

    OpenAIRE

    Noto, AE; Shurin, JB

    2016-01-01

    © 2015 Springer-Verlag Berlin Heidelberg Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interac...

  7. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression.

    Directory of Open Access Journals (Sweden)

    Ioanna Vallianou

    Full Text Available The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect.

  8. ENERGY SOURCES AFFECT IN VITRO PROPAGATION AND SUBSEQUENT ACCLIMATIZATION OF ANANAS COMOSUS, VAR. SMOOTH CAYENNE PLANTS

    Directory of Open Access Journals (Sweden)

    Ayelign Mengesha

    2013-06-01

    Full Text Available Plant tissue culture is an inevitable technique to overcome healthy and limited planting materials problems using suitable energy sources. Different carbohydrates have diverse effect on in vitro growing plantlets in terms of growth performance, acclimatization and cost used for micro-propagation. Hence, this paper reports the effects of sucrose, fructose, glucose, table sugar and starch on pineapple in vitro mass propagation and acclimatization as well as the analysis of energy source required cost per a medium. A complete randomized design was used to compare analytic grade sucrose with other four energy sources at 2 and 3 % (w/v. The results revealed that the energy sources with varied concentration strongly influenced the in vitro growth and subsequent acclimatization of pineapple plantlets. Analytic grade sucrose and table sugar at 3 % performed well for in vitro survival rate (100%, shoot amplification (15.3-16.5 shoots, rooting ability (2.5cm long and 12 roots and acclimatization (95.4-97%. However, fructose and glucose required high importation cost (229.1% and 121.9% over analytic grade sucrose, respectively, and have low growth and acclimatization performance next to starch and energy free medium. Thus, table sugar has found to be a suitable alternative energy source for pineapple mass propagation, which saved about 95-97% cost from that of laboratory grade sucrose.

  9. Nitrogen metabolism of young barley plants as affected by NaCl - salinity and potassium

    International Nuclear Information System (INIS)

    In a solution culture experiment with 31 days old barley plants (var. Miura) the influence of NaCl-salinization (80 mM) and KCl addition (5 and 10 mM) on the uptake and turnover of labelled nitrogen (15NH415NO3) was studied. Labelled N was applied for 24h at the end of a 20 days salinization period. Salinization impaired growth and incorporation of labelled N into the protein fraction paralleled by accumulation of labelled inorganic N. All salt effects were much more pronounced in the shoots than in the roots. Potassium addition enhanced N uptake (total 15N-content) and incorporation into protein, reduced the accumulation of inorganic N and improved the growth of salinized plants. The presented data support the point of view that impairment of protein (enzyme) metabolism is an important aspect of salt stress which is probably induced by the disturbance of the K/Na balance of the tissues under saline conditions. (Auth.)

  10. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    Science.gov (United States)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  11. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.

    Science.gov (United States)

    Jones, D L; Quilliam, R S

    2014-07-15

    Pyrolysis or combustion of waste wood can provide a renewable source of energy and produce byproducts which can be recycled back to land. To be sustainable requires that these byproducts pose minimal threat to the environment or human health. Frequently, reclaimed waste wood is contaminated by preservative-treated timber containing high levels of heavy metals. We investigated the effect of feedstock contamination from copper-preservative treated wood on the behaviour of pyrolysis-derived biochar and combustion-derived ash in plant-soil systems. Biochar and wood ash were applied to soil at typical agronomic rates. The presence of preservative treated timber in the feedstock increased available soil Cu; however, critical Cu guidance limits were only exceeded at high rates of feedstock contamination. Negative effects on plant growth and soil quality were only seen at high levels of biochar contamination (>50% derived from preservative-treated wood). Negative effects of wood ash contamination were apparent at lower levels of contamination (>10% derived from preservative treated wood). Complete removal of preservative treated timber from wood recycling facilities is notoriously difficult and low levels of contamination are commonplace. We conclude that low levels of contamination from Cu-treated wood should pose minimal environmental risk to biochar and ash destined for land application. PMID:24915641

  12. Rooting of healthy and CVC-affected 'Valência' sweet orange stem cuttings, through the use of plant regulators

    Directory of Open Access Journals (Sweden)

    Gustavo Habermann

    2006-01-01

    Full Text Available Citrus variegated chlorosis (CVC is a disease caused by Xylella fastidiosa. Using different concentrations of plant regulators, such as auxins (indole-3-butyric acid and gibberellic acid biosynthesis-inhibitor (paclobutrazol, physiological rooting capacity of healthy and CVC-affected stem cuttings were evaluated in order to investigate the importance of plant hormone imbalance and xylem occlusion in plants with CVC. The percentages of dead, alive and rooted cuttings, cuttings with callus and mean number of roots per cuttings did not show statistical differences in response to the distinct concentrations of synthetic plant regulators. There were differences only between healthy and CVC-affected cuttings. This showed the importance of xylem occlusion and diffusive disturbances in diseased plants, in relation to root initiation capacity and hormonal translocation in the plant tissue.Clorose variegada dos citros (CVC é uma doença causada por Xylella fastidiosa, podendo determinar oclusão do xilema e desbalanço hormonal, o que por fim está relacionado ao processo de iniciação radicial em estacas. Usando diferentes concentrações de fitorreguladores, como auxinas (ácido 3-indol butírico e inibidores da biossíntese de ácido giberélico (paclobutrazol, que são promotores do enraizamento de estacas, verificou-se a capacidade fisiológica de enraizamento de estacas sadias e com CVC, a fim de investigar a importância do desbalanço hormonal e oclusão do xilema em plantas doentes. As porcentagens de estacas mortas, vivas, enraizadas e com calo e o número médio de raízes por estaca não mostraram diferenças estatísticas em resposta às diferentes concentrações dos reguladores vegetais sintéticos. Houve diferenças apenas entre estacas sadias e doentes. Isto aponta a importância da oclusão do xilema e distúrbios difusivos em plantas doentes, em relação à capacidade de iniciação radicial e à translocação hormonal no tecido

  13. Shorter Fallow Cycles Affect the Availability of Noncrop Plant Resources in a Shifting Cultivation System

    Directory of Open Access Journals (Sweden)

    Sylvie de Blois

    2006-12-01

    Full Text Available Shifting cultivation systems, one of the most widely distributed forms of agriculture in the tropics, provide not only crops of cultural significance, but also medicinal, edible, ritual, fuel, and forage resources, which contribute to the livelihoods, health, and cultural identity of local people. In many regions across the globe, shifting cultivation systems are undergoing important changes, one of the most pervasive being a shortening of the fallow cycle. Although there has been much attention drawn to declines in crop yields in conjunction with reductions in fallow times, little if any research has focused on the dynamics of noncrop plant resources. In this paper, we use a data set of 26 fields of the same age, i.e., ~1.5 yr, but differing in the length and frequency of past fallow cycles, to examine the impact of shorter fallow periods on the availability of noncrop plant resources. The resources examined are collected in shifting cultivation fields by the Yucatec Maya in Quintana Roo, Mexico. These included firewood, which is cut from remnant trees and stumps spared at the time of felling, and 17 forage species that form part of the weed vegetation. Firewood showed an overall decrease in basal area with shorter fallow cycles, which was mostly related to the smaller diameter of the spared stumps and trees in short-fallow milpas. In contrast, forage species showed a mixed response. Species increasing in abundance in short-fallow milpas tended to be short-lived herbs and shrubs often with weedy habits, whereas those declining in abundance were predominantly pioneer trees and animal-dispersed species. Coppicing tree species showed a neutral response to fallow intensity. Within the cultural and ecological context of our study area, we expect that declines in firewood availability will be most significant for livelihoods because of the high reliance on firewood for local fuel needs and the fact that the main alternative source of firewood, forest

  14. The assessment of pollution in the area of Turnu Magurele affected by fertilizer plant

    International Nuclear Information System (INIS)

    The fertilizer industry related to the whole chain of production, storage, transport and use causes a potential pollution of air, water, soil and vegetation. A local sampling monitoring network was developed around Turnu Magurele fertilizer plant in Romania. Samples of mosses, soil, tree leaves and crops were analyzed by neutron activation analysis for more than 35 chemical components. This paper reports the distribution of 39 trace elements in the moss-bio monitor Hypnum cuppresiforme used to study atmospheric deposition in the examined area. The results obtained evidence for a local pollution of the area exposed to the emissions of the phosphate fertilizer local industry, following a gradient along the Danube River wind rose profile. The vegetation input of trace elements from soil is compared with inputs from atmospheric deposition, and these inputs were evaluated in relation to the vegetation content. The study established that cadmium, strontium and rare earths are the major elements as regards fertilizer input. (authors)

  15. Distribution of Pseudomonas species in a dairy plant affected by occasional blue discoloration

    Directory of Open Access Journals (Sweden)

    Francesco Chiesa

    2014-12-01

    Full Text Available During 2010 many cases of discoloration in mozzarella, popularly termed as blue mozzarella, have been reported to the attention of public opinion. Causes of the alteration were bacteria belonging to the genus Pseudomonas. The strong media impact of such cases has created confusion, not only among consumers, but also among experts. In order to help improving the knowledge on microbial ecology of this microorganism a study has been set up with the collaboration of a medium-sized dairy plant producing fresh mozzarella cheese, with occasional blue discoloration, conducting surveys and sampling in the pre-operational, operational and post-operational process phase, milk before and after pasteurization, water (n=12, environmental surfaces (n=22 and the air (n=27. A shelf life test was conducted on finished products stored at different temperatures (4-8°C. Among the isolates obtained from the microbiological analysis of the samples, 60 were subjected to biomolecular tests in order to confirm the belonging to Pseudomonas genus and to get an identification at species level by the amplification and sequencing of the gyrB gene. The results of microbiological tests demonstrated the presence of microorganisms belonging to the genus Pseudomonas along the entire production lane; molecular tests showed 7 different species among the 40 isolates identified. One particular species (Pseudomonas koreensis was isolated from blue discolored mozzarella cheese and was indicated as the most relevant for the production plant, both for the distribution along the processing chain and for the consequences on the finished product.

  16. Plant Pathogenic Microbial Communication Affected by Elevated Temperature in Pectobacterium carotovorum subsp. carotovorum.

    Science.gov (United States)

    Saha, N D; Chaudhary, A; Singh, S D; Singh, D; Walia, S; Das, T K

    2015-11-01

    Gram-negative plant pathogenic bacteria regulate specific gene expression in a population density-dependent manner by sensing level of Acyl-Homoserine Lactone (HSL) molecules which they produce and liberate to the environment, called Quorum Sensing (QS). The production of virulence factors (extracellular enzyme viz. cellulase, pectinase, etc.) in Pectobacterium carotovorum subsp. carotovorum (Pcc) is under strong regulation of QS. The QS signal molecule, N-(3-oxohexanoyl)-L-Homoserine Lactone (OHHL) was found as the central regulatory system for the virulence factor production in Pcc and is also under strict regulation of external environmental temperature. Under seven different incubation temperatures (24, 26, 28, 30, 33, 35, and 37 °C) in laboratory condition, highest amount of OHHL (804 violacein unit) and highest (79 %) Disease Severity Index (DSI) were measured at 33 °C. The OHHL production kinetics showed accumulation of highest concentration of OHHL at late log phase of the growth but diminution in the concentration occurred during stationary phase onwards to death phase. At higher temperature (35 and 37 °C) exposure, OHHL was not at detectable range. The effect of temperature on virulence factor production is the concomitant effect of HSL production and degradation which justifies less disease severity index in cross-inoculated tomato fruits incubated at 35 and 37 °C. The nondetection of the OHHL in the elevated temperature may because of degradation as these signal molecules are quite sensitive and prone to get degraded under different physical factors. This result provides the rationale behind the highest disease severity up to certain elevated temperature and leaves opportunities for investigation on mutation, co-evolution of superior plant pathogen with more stable HSL signals-mediated pathogenesis under global warming context. PMID:26271295

  17. Nanosecond electric pulses affect a plant-specific kinesin at the plasma membrane.

    Science.gov (United States)

    Kühn, Sebastian; Liu, Qiong; Eing, Christian; Frey, Wolfgang; Nick, Peter

    2013-12-01

    Electric pulses with high field strength and durations in the nanosecond range (nsPEFs) are of considerable interest for biotechnological and medical applications. However, their actual cellular site of action is still under debate--due to their extremely short rise times, nsPEFs are thought to act mainly in the cell interior rather than at the plasma membrane. On the other hand, nsPEFs can induce membrane permeability. We have revisited this issue using plant cells as a model. By mapping the cellular responses to nsPEFs of different field strength and duration in the tobacco BY-2 cell line, we could define a treatment that does not impinge on short-term viability, such that the physiological responses to the treatment can be followed. We observe, for these conditions, a mild disintegration of the cytoskeleton, impaired membrane localization of the PIN1 auxin-efflux transporter and a delayed premitotic nuclear positioning followed by a transient mitotic arrest. To address the target site of nsPEFs, we made use of the plant-specific KCH kinesin, which can assume two different states with different localization (either near the nucleus or at the cell membrane) driving different cellular functions. We show that nsPEFs reduce cell expansion in nontransformed cells but promote expansion in a line overexpressing KCH. Since cell elongation and cell widening are linked to the KCH localized at the cell membrane, the inverted response in the KCH overexpressor provides evidence for a direct action of nsPEFs, also at the cell membrane. PMID:24062185

  18. Biomass and biomass and biogas yielding potential of sorghum as affected by planting density, sowing time and cultivar

    International Nuclear Information System (INIS)

    Biogas from biomass is a promising renewable energy source whose importance is increasing in European as well as in other countries. A field experiment at one location (Experimental Station Giessen, Justus Liebig University of Giessen, Germany) over two years was designed to study the effect of altering sowing time (ST), planting density and cultivar on the biomass yield and chemical composition of biomass sorghum, and its potential for methane production. Of the two cultivars tested, cv. Goliath (intraspecific hybrid) was more productive with respect to biomass yield than cv. Bovital (S. bicolor x S. sudanense hybrid). ST also influenced biomass yield and most of the quality parameters measured. Delayed sowing was in general advantageous. The choice of cultivar had a marked effect on biogas and methane yield. The highest biogas and methane yields were produced by late sown cv. Bovital. Sub-optimal planting densities limited biomass accumulation of the crop, however neither the chemical composition nor the methane yield was affected by planting density. (author)

  19. From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands.

    Science.gov (United States)

    Olsen, Siri L; Töpper, Joachim P; Skarpaas, Olav; Vandvik, Vigdis; Klanderud, Kari

    2016-05-01

    Biotic interactions are often ignored in assessments of climate change impacts. However, climate-related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co-occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad-scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population-level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate

  20. Human factors affecting the performance of inspection personnel in nuclear power plants: Final report

    International Nuclear Information System (INIS)

    This study investigates the problem of poor performance among nuclear power plant inspection personnel both in training and in the field. First, a systems perspective is employed to explore the psychological processes and relevant human factors that may be associated with workers' inadequate performance. Second, two separate yet related approaches are used to clarify the definition of competence: (1) a theory-based (or ''top-down'') approach, in which effective performance is construed as a product of a skillful, motivated person interacting with a responsive environment; and (2) an empirical (or ''bottom-up'') approach, in which key persons and context characteristics are generated based on the opinions of experts in the industry. Using a series of semi-structured interviews, two empirical studies were conducted in the latter approach. Overall, the results of both studies converged with the theoretical analysis emphasizing (1) the reciprocal and dynamic interplay of contextual and motivational factors influencing performance, and (2) the salient role of supervisory practices in terms of support, cooperation, and efficiency in contributing to the outcome of performance. 53 refs., 14 figs., 7 tabs

  1. Environmental Parameters Affecting the Algal Diversity in a Sewage Water Treatment Plant

    International Nuclear Information System (INIS)

    The present investigation was carried out at a tertiary sewage water treatment plant located at El-Kattameya city, Cairo, Egypt, for a duration period of 12 months during 2004. The present work aimed to study the algal diversity (phyto benthos and phytoplankton) of the different tanks (collector, oxidation, settling and effluent) included in the tertiary sewage treatment system with respect to changes in physico-chemical characteristics of sewage water during the different seasons to be used for golf course irrigation. The treatment system is of the physico-biological type. Representing data of the physico-chemical parameters are air and water temperatures, ph, electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended salts (TSS), total alkalinity, nutrients (nitrate, ammonia, phosphate, ortho-phosphorus, phosphorus and silicate), as well as major ions (calcium, potassium, sodium, magnesium, sulfate and chloride). In addition, the treatment efficiency of the system was evaluated and the suitability of using the effluent in irrigation purposes was discussed

  2. Whole genome duplication affects evolvability of flowering time in an autotetraploid plant.

    Directory of Open Access Journals (Sweden)

    Sara L Martin

    Full Text Available Whole genome duplications have occurred recurrently throughout the evolutionary history of eukaryotes. The resulting genetic and phenotypic changes can influence physiological and ecological responses to the environment; however, the impact of genome copy number on evolvability has rarely been examined experimentally. Here, we evaluate the effect of genome duplication on the ability to respond to selection for early flowering time in lines drawn from naturally occurring diploid and autotetraploid populations of the plant Chamerion angustifolium (fireweed. We contrast this with the result of four generations of selection on synthesized neoautotetraploids, whose genic variability is similar to diploids but genome copy number is similar to autotetraploids. In addition, we examine correlated responses to selection in all three groups. Diploid and both extant tetraploid and neoautotetraploid lines responded to selection with significant reductions in time to flowering. Evolvability, measured as realized heritability, was significantly lower in extant tetraploids (^b(T =  0.31 than diploids (^b(T =  0.40. Neotetraploids exhibited the highest evolutionary response (^b(T  =  0.55. The rapid shift in flowering time in neotetraploids was associated with an increase in phenotypic variability across generations, but not with change in genome size or phenotypic correlations among traits. Our results suggest that whole genome duplications, without hybridization, may initially alter evolutionary rate, and that the dynamic nature of neoautopolyploids may contribute to the prevalence of polyploidy throughout eukaryotes.

  3. Understanding plant-to-plant interactions for soil resources in multilayered Iberian dehesas

    Science.gov (United States)

    Moreno, G.; Rolo, V.; Cubera, E.; López-Díaz, L.

    2009-04-01

    environment much more than understorey usually can, but tree characteristics often confer them a clear competitive advantage and they can strongly out-compete understorey. The net balance of positive-negative interactions varies with the age of trees: while the balance can favor grasses face to seedlings, the contrary can be expected when tree grows. Similarly, while shrubs could favor seedling recruitment, shrubs could affect negatively tree growth and productivity. These changes should be taken into account for defining dehesa structure and determining management practices in order to optimize the use of physical and chemical resources that are spatially and temporally patchy. From our results, it is described how generally holm-oak trees favor understorey forage production through a direct positive effect of shade and improved soil fertility (facilitation). The rooting system together the slow-growing attitude of many oak species could determine a low competitive potential of oaks with herbaceous layer. Its low competitiveness together with its capacity to thrive in poor soils make oaks genre very suitable for long-term agroforestry systems in Iberian Peninsula. However, although a certain complementary uses of soil resources seems occur for trees and native grasses (very distinct root system profile), the potential benefit of trees has a small actual facilitative effect because the competitive use of soil water by trees overrides its positive effects, especially under semi-arid conditions. As consequence, the net balance of trees on pasture yield is very variably with situations where pasture yield is widely increased in the vicinity of the trees and others where the contrary is found. Tree clearance practiced in dehesas affects positively the development of the understory pasture, but also the single tree functions which take advantage of the low tree density characteristic of dehesas. Tree roots access water through a large volume of soil resources (especially water

  4. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil

  5. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Munier-Lamy, C. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: colette.munier@limos.uhp-nancy.fr; Deneux-Mustin, S. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France); Mustin, C. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: christian.mustin@limos.uhp-nancy.fr; Merlet, D. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: denis.merlet@limos.uhp-nancy.fr; Berthelin, J. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: jacques.berthelin@limos.uhp-nancy.fr; Leyval, C. [LIMOS, UMR 7137 CNRS-Nancy University, Faculty of Sciences, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)], E-mail: corinne.leyval@limos.uhp-nancy.fr

    2007-10-15

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil.

  6. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    Science.gov (United States)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N

  7. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts.

    Science.gov (United States)

    Ott, Karl-Heinz; Araníbar, Nelly; Singh, Bijay; Stockton, Gerald W

    2003-03-01

    The biochemical mode-of-action (MOA) for herbicides and other bioactive compounds can be rapidly and simultaneously classified by automated pattern recognition of the metabonome that is embodied in the 1H NMR spectrum of a crude plant extract. The ca. 300 herbicides that are used in agriculture today affect less than 30 different biochemical pathways. In this report, 19 of the most interesting MOAs were automatically classified. Corn (Zea mays) plants were treated with various herbicides such as imazethapyr, glyphosate, sethoxydim, and diuron, which represent various biochemical modes-of-action such as inhibition of specific enzymes (acetohydroxy acid synthase [AHAS], protoporphyrin IX oxidase [PROTOX], 5-enolpyruvylshikimate-3-phosphate synthase [EPSPS], acetyl CoA carboxylase [ACC-ase], etc.), or protein complexes (photosystems I and II), or major biological process such as oxidative phosphorylation, auxin transport, microtubule growth, and mitosis. Crude isolates from the treated plants were subjected to 1H NMR spectroscopy, and the spectra were classified by artificial neural network analysis to discriminate the herbicide modes-of-action. We demonstrate the use and refinement of the method, and present cross-validated assignments for the metabolite NMR profiles of over 400 plant isolates. The MOA screen also recognizes when a new mode-of-action is present, which is considered extremely important for the herbicide discovery process, and can be used to study deviations in the metabolism of compounds from a chemical synthesis program. The combination of NMR metabolite profiling and neural network classification is expected to be similarly relevant to other metabonomic profiling applications, such as in drug discovery. PMID:12590124

  8. A locus in Drosophila sechellia affecting tolerance of a host plant toxin.

    Science.gov (United States)

    Hungate, Eric A; Earley, Eric J; Boussy, Ian A; Turissini, David A; Ting, Chau-Ti; Moran, Jennifer R; Wu, Mao-Lien; Wu, Chung-I; Jones, Corbin D

    2013-11-01

    Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their host's defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host specialization, is an island endemic that has adapted to chemical toxins present in the fruit of its host plant, Morinda citrifolia. Its sibling species, D. simulans, and many other Drosophila species do not tolerate these toxins and avoid the fruit. Earlier work found a region with a strong effect on tolerance to the major toxin, octanoic acid, on chromosome arm 3R. Using a novel assay, we narrowed this region to a small span near the centromere containing 18 genes, including three odorant binding proteins. It has been hypothesized that the evolution of host specialization is facilitated by genetic linkage between alleles contributing to host preference and alleles contributing to host usage, such as tolerance to secondary compounds. We tested this hypothesis by measuring the effect of this tolerance locus on host preference behavior. Our data were inconsistent with the linkage hypothesis, as flies bearing this tolerance region showed no increase in preference for media containing M. citrifolia toxins, which D. sechellia prefers. Thus, in contrast to some models for host preference, preference and tolerance are not tightly linked at this locus nor is increased tolerance per se sufficient to change preference. Our data are consistent with the previously proposed model that the evolution of D. sechellia as a M. citrifolia specialist occurred through a stepwise loss of aversion and gain of tolerance to M. citrifolia's toxins. PMID:24037270

  9. Changes of the soil environment affected by fly ash dumping site of the electric power plant

    Science.gov (United States)

    Weber, Jerzy; Gwizdz, Marta; Jamroz, Elzbieta; Debicka, Magdalena; Kocowicz, Andrzej

    2014-05-01

    In this study the effect of fly ash dumping site of the electric power plant on the surrounding soil environment was investigated. The fly ash dumping site collect wastes form brown coal combustion of Belchatow electric power station, central Poland. The dumping site is surrounding by forest, where pine trees overgrow Podzols derived from loose quartz sands. The soil profiles under study were located at a distance of 50, 100, 400 and 500 m from the dumping site, while control profiles were located 8 km away from the landfill. In all horizons of soil profiles the mpain hysico-chemical and chemical properties were determined. The humic substances were extracted from ectohumus horizons by Shnitzer's method, purified using XAD resin and freeze-dried. The fulvic acids were passed through a cation exchange column and freeze-dried. Optical density, elemental composition and atomic ratios were determined in the humic and fulvic acids. Organic carbon by KMnO4 oxidation was also determined in the organic soil horizons. The fly ash from the landfill characterized by high salinity and strong alkaline reaction (pH=10), which contributed significantly to the changes of the pH values in soils horizons. The alkalization of soils adjacent to the landfill was found, which manifested in increasing of pH values in the upper soil horizons. The impact of the landfill was also noted in the changes of the soil morphology of Podzols analysed. As a result of the alkalization, Bhs horizons have been converted into a Bs horizons. Leaching of low molecular humus fraction - typical for podzolization - has been minimized as a result of pH changes caused by the impact of the landfill, and originally occurring humic substances in the Bhs horizon (present in the control profiles) have been probably transported out of the soil profile and then into the groundwater.

  10. Do non-native plant species affect the shape of productivity-diversity relationships?

    Science.gov (United States)

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  11. Factors affecting choice of plant species for revegetation on the Hanford Site

    International Nuclear Information System (INIS)

    This study was conducted to evaluate three sites with vegetative communities whose dominant perennial grass species were Siberian wheatgrass-thickspike wheatgrass (Agropyron sibiricum-Agropyron dasytachyum), Indian ricegrass (Oryzopsis hymenoides), and Sandberg's bluegrass (Poa sandbergii), respectively. The principal objectives of the study were to determine the following: whether soil conditions influenced the establishment of these stands; the extent of these perennial grass species as members of the vegetation community on the Hanford Site prior to human influences, e.g., animal grazing, fire, construction, and excavation; and whether these perennial grasses could be established on other sites to be stabilized. The information obtained from this study has resulted in the following conclusions and recommendations: The depth of the soil to coarse sediments, the soil texture, and the percentage of gravel in the soil appear to affect the vegetation community on a site. It is recommended that Siberian, thickspike, and crested wheatgrass (Agropyron cristatum) be utilized for revegetation purposes on deep fine-textured soils of low gravel content. It is recommended that for revegetation purposes on shallow, coarse-textured or high gravel content soils, Indian ricegrass, needle and thread grass (Stipa comata), Sandberg's bluegrass, and sand dropseed (Sporobolus cryptandrus) be utilized. Greater success in stabilization/revegetation programs will be achieved if deep, fine-textured soils are utilized

  12. Measurement of 14C/12C ratios in plant samples that were affected by the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Chiba and Niigata samples. The delta 14C values in the old leaves (grown before the accident) of Japanese cedar collected from Okuma and Namie were higher than those in the new leaves (grown after the accident). Since delta 14C values in the new leaves are similar to those in background samples collected from outside of Fukushima Prefecture. These results suggest that delta 14C values in plants grown near FDNPP were affected by 14C released from FDNPP, although the levels were not so high. It is not known whether 14C was absorbed as a gaseous form (CO2) by plants or it was deposited as a particulate form. To examine this, we are planning to wash the contaminated cedar leaves with water for removing particulate matters deposited on the leaf surface. (author

  13. Varying plant protein sources in the diet of sea bass Dicentrarchus labrax differently affects lipid metabolism and deposition

    Directory of Open Access Journals (Sweden)

    E. Tibaldi

    2010-04-01

    Full Text Available The liver activity of lipogenic enzymes, the lipid content in various tissues, and plasma lipid levels of major, were measured in sea bass (D. labrax fed over 96 days either a, fish meal-based control diet or preparations where 70% of fish meal protein was replaced by wheat gluten singly or in combination with pea or soybean meals. Relative to the controls, sea bass fed the wheat gluten-based diet resulted in stimulated lipogenesis in liver and increased lipid deposition in muscle. The opposite occurred when a substantial amount of soybean meal was included in the diet. Mesenteric fat depots were apparently insensitive to major changes in dietary protein source in fish showing similar intakes of digestible protein, energy and lipid. These results confirm that varying plant protein source in the diet differently affects lipid metabolism and deposition in sea bass.

  14. Ultrastructural changes in aster yellows phytoplasma affected Limonium sinuatum Mill. plants II. Pathology of cortex parenchyma cells

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-02-01

    Full Text Available In Limonium sinuatum Mill, plants with severe symptoms of aster yellows infection phytoplasmas were present not only in the phloem but also in some cortex parenchymas cells. These parenchyma cells were situated at some distance from the conducting bundles. The phytoplasmas were observed directly in parenchyma cells cytoplasm. The number of phytoplasmas present in each selected cell varies. The cells with a small number of phytoplasmas show little pathological changes compared with the unaffected cells of the same zone of the stem as well with the cells of healthy plants. The cells filled with a number of phytoplasmas had their protoplast very much changed. The vacuole was reduced and in the cytoplasm a reduction of the number of ribosomes was noted and regions of homogenous structure appeared. Mitochondria were moved in the direction of the tonoplast and plasma membrane. Compared to the cells unaffected by phytoplasma, the mitochondria were smaller and had an enlarged cristae internal space. The chloroplasts from affected cells had a very significant reduction in size and the tylacoids system had disappeared. The role of these changes for creating phytoplasma friendly enviroment is discused.

  15. The movement and distribution of Helicoverpa armigera (Hübner) larvae on pea plants is affected by egg placement and flowering.

    Science.gov (United States)

    Perkins, L E; Cribb, B W; Hanan, J; Zalucki, M P

    2010-10-01

    The distribution and movement of 1st instar Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae on whole garden pea (Pisum sativum L.) plants were determined in glasshouse trials. This economically-important herbivore attacks a wide variety of agricultural, horticultural and indigenous plants. To investigate the mechanisms underlying larval intra-plant movement, we used early-flowering and wild-type plant genotypes and placed eggs at different vertical heights within the plants, one egg per plant. Leaf water and nitrogen content and cuticle hardness were measured at the different plant heights. Of 92 individual larvae, 41% did not move from the node of eclosion, 49% moved upwards and 10% moved downwards with the distance moved being between zero and ten plant nodes. Larvae from eggs placed on the lower third of the plant left the natal leaf more often and moved further than larvae from eggs placed in the middle or upper thirds. The low nutritive value of leaves was the most likely explanation for more movement away from lower plant regions. Although larvae on flowering plants did not move further up or down than larvae on non-flowering plants, they more often departed the leaflet (within a leaf) where they eclosed. The final distribution of larvae was affected by plant genotype, with larvae on flowering plants found less often on leaflets and more often on stipules, tendrils and reproductive structures. Understanding intra-plant movement by herbivorous insects under natural conditions is important because such movement determines the value of economic loss to host crops. Knowing the behaviour underlying the spatial distribution of herbivores on plants will assist us to interpret field data and should lead to better informed pest management decisions. PMID:20504381

  16. Wheat productivity in sandy soil as affected by plant residues, irrigation and nitrogen rates using nuclear techniques

    International Nuclear Information System (INIS)

    Increasing population in Egypt is becoming a major problem for agricultural production. The Egyptian Government must manage to increase the land productivity quickly and at low coasts. The best way to increase land productivity is the addition of organic matter to the sandy soils, to reduce the losses of water and fertilizers. The use of organic matter is considered as a good tool for maximizing soil fertility. Most of the farmers are interested with the effective use of crop residues and other recycled organic materials. The role of plant residues in modern agricultural systems has become a topic of major interest for the scientific research and agricultural authorities through improving water use efficiency. It could be concluded that the main and most effective factor affecting soil fertility, especially in sandy soils, is the organic matter content. So the main objective of the present work is to study the impact of the application of crop residues, as a source of organic matter, to sandy soils, with different nitrogen and water levels, for maximizing the input use efficiency and as well the output of wheat yield. Two field experiments were conducted at the Experimental Farm of Inshas, Nuclear Research Center, Atomic Energy Authority through 1997/1998 and 1998/1999 growing seasons. Wheat (Triticum aestivum L.) c.v. Sakha-69 was cultivated on a sandy soil to investigate: 1- the effect of different plant residues, i.e., corn ash and casourina leaves applied to sandy soils, at the rate of 10 t Fed-1, in a circle lines, 30 cm depth and 60 cm apart around the irrigation system (sprinkler); 2- two different irrigation levels namely, irrigation after 50 and 70% loss of the soil water holding capacity (SWHC) and with irrigation based on moisture depletion as measured by the Neutron Moisture Gauge; 3- two nitrogen rates as ammonium sulphate, i.e., 60 and 120 kg N /Fed, as well as the control. Nitrogen was applied in five equal splitting doses, starting 15 days after

  17. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    Science.gov (United States)

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. PMID:27448724

  18. Plant endophyte PLFAs polymorphism in Huanglongbing-affected red pomelo plant%柑橘黄龙病植株内生菌PLFAs多态性研究

    Institute of Scientific and Technical Information of China (English)

    郑雪芳; 刘波; 孙大光; 朱育菁; 段永平; 夏育陆; 阮传清; 肖荣凤

    2012-01-01

    Huanglongbing (HLB, a yellow shoot disease) is the most destructive citrus disease in the world. Plant endophyte communities of red pomelo have been associated with HLB. It was therefore important to investigate the endophyte community of red pomelo plant in relation to HLB. In this paper, endophyte community structures in different spatial positions and healthy conditions of HLB-affected red pomelo plants were analyzed using phospholipid fatty acids [PLFAs biomarkers based at Sherlock MIS (MIDI Inc.)]. Based on the results, 42 PLFAs were detected and 9 of them had wild distributions across all the samples while the other 33 were mainly distributed in different leaf orientations. Cluster analysis showed that PLFAs in different leaves in space existed into two community groups. While PLFAs in the group I belonged to an incomplete distribution, PLFAs in group II were distributed almost in all samples. There existed some differences in PLFAs content and composition in leaves of HLB-affected red pomelo plants in different spatial positions and health conditions. When compared among each other, it was noted that PLFAs content in east-oriented leaves were maximum among different orientations. The same was true for lower parts leaf in PLFAs content. Healthy leaves contain more PLFAs than HLB-affected leaves. Furthermore, south-oriented leaves had the highest fungi/bacteria PLFAs ratio and also higher G+/G- (gram-positive bacteria/gram-negative bacteria) PLFAs ratio than north/west-oriented leaves. There was no significant difference in fungi-to-bacteria PLFAs ratio at different leaf levels. However, significant differences existed in PLFAs G+/G-ratio in different height leaves. While the highest ratio occurred in the leaves at the upper parts of plant, the lowest ratio was in leaves at the middle parts of plant. Fungi-to-bacteria PLFAs ratio was higher in healthy leaves than that in HLB-affected leaves. Diversity indexes of Shannon, Simpson and Pielou of endophyte

  19. Ergonomics as aid tool to identify and to analyze factors that can affect the operational performance of nuclear power plants

    International Nuclear Information System (INIS)

    The study of ergonomics has evolved around the world as one of the keys to understand human behavior in interaction with complex systems as nuclear power plant and to achieve the best match between the system and its users in the context of task to be performed. Increasing research efforts have yielded a considerable body of knowledge concerning the design of workstations, workplace, control rooms, human-system interfaces, user-interface interaction and organizational design to prevent worker discomfort, illness and also to improve productivity, product quality, ease of use and safety. The work ergonomics analysis consists of gathering a series of observation in order to better understand the work done and to propose changes and improvements in the working conditions. The work ergonomics analysis implies both the correction of existing situations (safety, reliability and production problems) and the development of new work system. Operator activity analysis provides a useful tool for the ergonomics approach, based on work ergonomics analysis. The operators will be systematically observed in their real work environment (control room) or in simulators. The focus is on description of the distributed regulated mechanisms (in the sense that operators work in crew), both in nominal and degraded situations, observing how operators regulate collectively their work during an increase in workload or when confronted with situations where incidents or accidents occur. Audio, video recorders and field notes can be used to collect empirical data, conversations and interactions that occur naturally within the work environment. Our research develops an applied ergonomics methodology, based on field studies, that permits to identify and analyze situations, factors that may affect the operational performance of nuclear power plants. Our contribution is related to the following technical topic: How best to learn from and share operational safety experience and manage changes during

  20. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment

    International Nuclear Information System (INIS)

    Reductive dechlorination is a crucial pathway for HCB degradation, the applications of organic materials and nitrogen can alter microbial activity and redox potential of soils, thus probably influence HCB dechlorination. To evaluate hexachlorobenzene (HCB) dechlorination as affected by organic fertilizer (OF) and urea applications in planted paddy soils, a pot experiment was conducted in two types of soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). After 18 weeks of experiment, HCB residues decreased by 28.2-37.5% of the initial amounts in Ac, and 42.1-70.9% in An. The amounts of HCB metabolites showed that dechlorination rates in An were higher than in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. Both in Ac and An, the additions of 1% and 2% OF had negative effect on HCB dechlorination, which was probably because excessive nitrogen in OF decreased degraders' activity and the degradation of organic carbon in OF accepted electrons. The application of 0.03% urea could enhance HCB dechlorination rates slightly, while 0.06% urea accelerated HCB dechlorination significantly both in Ac and An. It could be assumed that urea served as an electron donor and stimulated degraders to dechlorinate HCB. In addition, the methanogenic bacteria were involved in dechlorination process, and reductive dechlorination in planted paddy soil might be impeded for the aerenchyma and O2 supply into the rhizosphere. Results indicated that soil types, rice root system, methanogenic bacteria, OF and urea applications all had great effects on dechlorination process.

  1. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y. [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Jiang, X., E-mail: jiangxin@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yang, X.L.; Song, Y. [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2010-01-15

    Reductive dechlorination is a crucial pathway for HCB degradation, the applications of organic materials and nitrogen can alter microbial activity and redox potential of soils, thus probably influence HCB dechlorination. To evaluate hexachlorobenzene (HCB) dechlorination as affected by organic fertilizer (OF) and urea applications in planted paddy soils, a pot experiment was conducted in two types of soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). After 18 weeks of experiment, HCB residues decreased by 28.2-37.5% of the initial amounts in Ac, and 42.1-70.9% in An. The amounts of HCB metabolites showed that dechlorination rates in An were higher than in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. Both in Ac and An, the additions of 1% and 2% OF had negative effect on HCB dechlorination, which was probably because excessive nitrogen in OF decreased degraders' activity and the degradation of organic carbon in OF accepted electrons. The application of 0.03% urea could enhance HCB dechlorination rates slightly, while 0.06% urea accelerated HCB dechlorination significantly both in Ac and An. It could be assumed that urea served as an electron donor and stimulated degraders to dechlorinate HCB. In addition, the methanogenic bacteria were involved in dechlorination process, and reductive dechlorination in planted paddy soil might be impeded for the aerenchyma and O{sub 2} supply into the rhizosphere. Results indicated that soil types, rice root system, methanogenic bacteria, OF and urea applications all had great effects on dechlorination process.

  2. Radiation monitoring using imaging plate technology: A case study of leaves affected by the Chernobyl nuclear power plant and JCO criticality accidents

    OpenAIRE

    Kimura Shinzo; Sahoo Sarata K.; Shiraishi Kunio; Watanabe Yoshito; Ban-Nai Tadaaki; Los Ivan P.; Korzun Vitaly N.; Tsygankov Nikolay Y.; Zamostyan Pavlo V.; Shevchuk Valery E.

    2006-01-01

    This paper describes the use of a photostimulable phosphor screen imaging technique to detect radioactive contamination in the leaves of wormwood (Artemisia vulgaris L) and fern (Dryopteris filix-max CL. Schoff) plants affected by the Chernobyl nuclear power plant accident. The imaging plate technology is well known for many striking performances in two-dimensional radiation detection. Since imaging plate comprises an integrated detection system, it has been extensively applied to surface con...

  3. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    Science.gov (United States)

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. PMID:26708650

  4. Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Ning; Xie, Yong-Dun; Guo, Hui-Jun; Zhao, Lin-Shu; Xiong, Hong-Chun; Gu, Jia-Yu; Li, Jun-Hui; Kong, Fu-Quan; Sui, Li; Zhao, Zi-Wei; Zhao, Shi-Rong; Liu, Lu-Xiang

    2016-10-01

    Gibberellin (GA) is essential for determining plant height. Alteration of GA content or GA signaling results in a dwarf or slender phenotype. Here, we characterized a novel wheat mutant, quick development (qd), in which GA regulates stem elongation but does not affect mature plant height. qd and wild-type plants did not exhibit phenotypic differences at the seedling stage. From jointing to heading stage, qd plants were taller than wild-type plants due to elongated cells. However, wild-type and qd plants were the same height at heading. Unlike wild-type plants, qd plants were sensitive to exogenous GA due to mutation of Rht-B1. With continuous GA stimulation, qd seedlings and adult plants were taller than wild-type. Thus, the GA content of qd plants might differ from that of wild-type during the growth process. Analysis of GA biosynthetic gene expression verified this hypothesis and showed that TaKAO, which is involved in catalyzing the early steps of GA biosynthesis, was differentially expressed in qd plants compared with wild-type. The bioactive GA associated gene TaGA20ox was downregulated in qd plants during the late growth stages. Measurements of endogenous GA content were consistent with the gene-expression analysis results. Consistent with the GA content variation, the first three basal internodes were longer and the last two internodes were shorter in qd than in wild-type plants. The qd mutant might be useful in dissecting the mechanism by which GA regulates stem-growing process, and it may be serve as a GA responsive semi-dwarf germplasm in breeding programs. PMID:27317908

  5. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    Science.gov (United States)

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes-fungi living asymptomatically within plants-to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities. PMID:26626912

  6. Body Condition Affects Blood Alkaloid and Monoterpene Kinetics and Voluntary Intake of Chemically-Defended Plants by Livestock

    Science.gov (United States)

    Poisonous plants are a substantial component of grazinglands worldwide. Higher losses to poisonous plants are often observed in times of drought or at high stocking rates. Increased incidences of fatal poisoning may occur because plants can be more toxic under these conditions or because limited acc...

  7. Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth.

    Directory of Open Access Journals (Sweden)

    Tomonori Tsunoda

    Full Text Available We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae seedlings were grown at one per pot under different combinations of water volume (large or small volume and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae. The larva was confined in different vertical distributions to top feeding zone (top treatment, middle feeding zone (middle treatment, or bottom feeding zone (bottom treatment; alternatively no larva was introduced (control treatment or larval movement was not confined (free treatment. Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment. Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

  8. Determination of the thermal loadings affecting the auxiliary lines of the reactor coolant system in French PWR plants

    International Nuclear Information System (INIS)

    The various incidents, imputed to thermal fatigue, which occurred throughout the world on the auxiliary lines of Reactor Coolant System (SIS, RHR, CVC), led EDF to urge a research program in order to determine the origins and the consequences of these problems for the French nuclear power plants. In 1992, following the crossing crack discovered at Dampierre 2 on the un-isolable part of a Safety Injection System pipe, a program of instrumentation was defined and is described in this paper. Among the objectives, two of the principal goals were to determine the thermal loadings really supported by the various lines and to highlight the thermal hydraulic phenomena affecting them. Indeed, in order to explain the discovered damages, it was essential to know the real thermal loadings to compare them with those of design and to carry out mechanical calculations of resistance to thermal fatigue. The instrumentations installed on the 900 MW units enabled to check the resistance with the fatigue of all the auxiliary lines in spite of significant differences between the real loadings and those envisaged at the design. They contributed to the knowledge improvement on the local thermal hydraulic phenomena but the incidents at Dampierre 1 showed that this knowledge is still imperfect. The results of these instrumentations are also used for the design of the future units by the use of the feedback of several cycles of acquisition on the 900 MW units, but also 1300 MW and 1450 MW since similar instrumentations were installed on the auxiliary lines in Golfech 2 and Chooz B1

  9. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation.

    Science.gov (United States)

    Joshi, Janak Raj; Burdman, Saul; Lipsky, Alexander; Yariv, Shaked; Yedidia, Iris

    2016-05-01

    Several studies have reported effects of the plant phenolic acids cinnamic acid (CA) and salicylic acid (SA) on the virulence of soft rot enterobacteria. However, the mechanisms involved in these processes are not yet fully understood. Here, we investigated whether CA and SA interfere with the quorum sensing (QS) system of two Pectobacterium species, P. aroidearum and P. carotovorum ssp. brasiliense, which are known to produce N-acyl-homoserine lactone (AHL) QS signals. Our results clearly indicate that both phenolic compounds affect the QS machinery of the two species, consequently altering the expression of bacterial virulence factors. Although, in control treatments, the expression of QS-related genes increased over time, the exposure of bacteria to non-lethal concentrations of CA or SA inhibited the expression of QS genes, including expI, expR, PC1_1442 (luxR transcriptional regulator) and luxS (a component of the AI-2 system). Other virulence genes known to be regulated by the QS system, such as pecS, pel, peh and yheO, were also down-regulated relative to the control. In agreement with the low levels of expression of expI and expR, CA and SA also reduced the level of the AHL signal. The effects of CA and SA on AHL signalling were confirmed in compensation assays, in which exogenous application of N-(β-ketocaproyl)-l-homoserine lactone (eAHL) led to the recovery of the reduction in virulence caused by the two phenolic acids. Collectively, the results of gene expression studies, bioluminescence assays, virulence assays and compensation assays with eAHL clearly support a mechanism by which CA and SA interfere with Pectobacterium virulence via the QS machinery. PMID:26177258

  10. Consequences of the trans-Atlantic slave trade on medicinal plant selection: plant use for cultural bound syndromes affecting children in Suriname and Western Africa.

    Directory of Open Access Journals (Sweden)

    Tessa Vossen

    Full Text Available Folk perceptions of health and illness include cultural bound syndromes (CBS, ailments generally confined to certain cultural groups or geographic regions and often treated with medicinal plants. Our aim was to compare definitions and plant use for CBS regarding child health in the context of the largest migration in recent human history: the trans-Atlantic slave trade. We compared definitions of four CBS (walk early, evil eye, atita and fontanels and associated plant use among three Afro-Surinamese populations and their African ancestor groups in Ghana, Bénin and Gabon. We expected plant use to be similar on species level, and assumed the majority to be weedy or domesticated species, as these occur on both continents and were probably recognized by enslaved Africans. Data were obtained by identifying plants mentioned during interviews with local women from the six different populations. To analyse differences and similarities in plant use we used Detrended Component Analysis (DCA and a Wald Chi-square test. Definitions of the four cultural bound syndromes were roughly the same on both continents. In total, 324 plant species were used. There was little overlap between Suriname and Africa: 15 species were used on two continents, of which seven species were used for the same CBS. Correspondence on family level was much higher. Surinamese populations used significantly more weedy species than Africans, but equal percentages of domesticated plants. Our data indicate that Afro-Surinamers have searched for similar plants to treat their CBS as they remembered from Africa. In some cases, they have found the same species, but they had to reinvent the largest part of their herbal pharmacopeia to treat their CBS using known plant families or trying out new species. Ideas on health and illness appear to be more resilient than the use of plants to treat them.

  11. Consequences of the Trans-Atlantic slave trade on medicinal plant selection: plant use for cultural boud syndromes affecting children in Suriname and Western Africa.

    NARCIS (Netherlands)

    Vossen, T.; Towns, A.M.; Ruysschaert, S.; Quiroz Villarreal, D.K.; Andel, van T.

    2014-01-01

    Folk perceptions of health and illness include cultural bound syndromes (CBS), ailments generally confined to certain cultural groups or geographic regions and often treated with medicinal plants. Our aim was to compare definitions and plant use for CBS regarding child health in the context of the l

  12. Radiation monitoring using imaging plate technology: A case study of leaves affected by the Chernobyl nuclear power plant and JCO criticality accidents

    Directory of Open Access Journals (Sweden)

    Kimura Shinzo

    2006-01-01

    Full Text Available This paper describes the use of a photostimulable phosphor screen imaging technique to detect radioactive contamination in the leaves of wormwood (Artemisia vulgaris L and fern (Dryopteris filix-max CL. Schoff plants affected by the Chernobyl nuclear power plant accident. The imaging plate technology is well known for many striking performances in two-dimensional radiation detection. Since imaging plate comprises an integrated detection system, it has been extensively applied to surface contamination distribution studies. In this study, plant samples were collected from high- and low-contaminated areas of Ukraine and Belarus, which were affected due to the Chernobyl accident and exposed to imaging technique. Samples from the highly contaminated areas revealed the highest photo-stimulated luminescence on the imaging plate. Moreover, the radio nuclides detected in the leaves by gamma and beta ray spectroscopy were 137Cs and 90Sr, respectively. Additionally, in order to assess contamination, a comparison was also made with leaves of plants affected during the JCO criticality accident in Japan. Based on the results obtained, the importance of imaging plate technology in environmental radiation monitoring has been suggested.

  13. Radiation monitoring using imaging plate technology: a case study of leaves affected by the Chernobyl nuclear power plant and JCO criticality accidents

    International Nuclear Information System (INIS)

    This paper describes the use of a photostimulable phosphor screen imaging technique to detect radioactive contamination in the leaves of wormwood (Artemisia vulgaris L.) and fern (Dryopteris filix-max CL. Schoff) plants affected by the Chernobyl nuclear power plant accident. The imaging plate technology is well known for many striking performances in two-dimensional radiation detection. Since imaging plate comprises an integrated detection system, it has been extensively applied to surface contamination distribution studies. In this study, plant samples were collected from high- and low-contaminated areas of Ukraine and Belarus, which were affected due to the Chernobyl accident and exposed to imaging technique. Samples from the highly contaminated areas revealed the highest photo-stimulated luminescence on the imaging plate. Moreover, the radionuclides detected in the leaves by gamma and beta ray spectroscopy were 137Cs and 90Sr, respectively. Additionally, in order to assess contamination, a comparison was also made with leaves of plants affected during the JCO criticality accident in Japan. Based on the results obtained, the importance of imaging plate technology in environmental radiation monitoring has been suggested. (author)

  14. WHEAT LEAF RUST SEVERITY AS AFFECTED BY PLANT DENSITY AND SPECIES PROPORTION IN SIMPLE COMMUNITIES OF WHEAT AND WILD OATS

    Science.gov (United States)

    While it is generally accepted that dense stands of plants exacerbate epidemics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and exp...

  15. Mycorrhizal symbiosis in leeks increases plant growth under low phosphorus and affects the levels of specific flavonoid glycosides

    Science.gov (United States)

    Introduction- Mycorrhizae symbiosis is a universal phenomenon in nature that promotes plant growth and food quality in most plants, especially, under phosphorus deficiency and water stress. Objective- The objective of this study was to assess the effects of mycorrhizal symbiosis on changes in the le...

  16. General characterisation of study area and definition of experimental protocols. WP 1 in the project 'Effect of industrial pollution on the distribution dynamics of radionuclides in boreal understorey ecosystems'

    International Nuclear Information System (INIS)

    The research project EPORA (Effects of Industrial Pollution on the Distribution Dynamics of Radionuclides in Boreal Understorey Ecosystems) is part of the EU Nuclear Fission Safety Programme 1994 - 1998. The main purpose of EPORA is to study the influence of strong chemical pollution on the behaviour of artificial radionuclides (137Cs,90Sr, 239,240Pu) in a northern boreal ecosystem and subsequently to assess the significance of the findings to the radiation exposure of the population in such areas. The present report is a documentation of the selection of study areas based on the assessment of available information on pollution in the Kola Peninsula and Northern Fennoscandia and of sampling and analysing methods. (orig.)

  17. General characterisation of study area and definition of experimental protocols. WP 1 in the project 'Effect of industrial pollution on the distribution dynamics of radionuclides in boreal understorey ecosystems'

    Energy Technology Data Exchange (ETDEWEB)

    Rahola, T. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Albers, B. [National Research Center for Environmental and Health (Georgia); Bergman, R. [National Defence Research Establishment (Germany)] [and others

    1999-08-01

    The research project EPORA (Effects of Industrial Pollution on the Distribution Dynamics of Radionuclides in Boreal Understorey Ecosystems) is part of the EU Nuclear Fission Safety Programme 1994 - 1998. The main purpose of EPORA is to study the influence of strong chemical pollution on the behaviour of artificial radionuclides ({sup 137}Cs,{sup 90}Sr, {sup 239},{sup 240}{sub Pu}) in a northern boreal ecosystem and subsequently to assess the significance of the findings to the radiation exposure of the population in such areas. The present report is a documentation of the selection of study areas based on the assessment of available information on pollution in the Kola Peninsula and Northern Fennoscandia and of sampling and analysing methods. (orig.)

  18. Volatiles induced by the larvae of the Asian corn borer (Ostrinia furnacalis) in maize plants affect behavior of conspecific larvae and female adults

    Institute of Scientific and Technical Information of China (English)

    Cui-Hong Huang; Feng-Ming Yan; John A.Byers; Rong-Jiang Wang; Chong-Ren Xu

    2009-01-01

    Effects of maize (Zea mays L.) volatiles induced by larvae of the Asian corn borer, Ostrinia furnacalis (Guenee), on the orientation behaviors of Asian corn borer larvae and oviposition of the females were investigated. Nineteen volatile chemicals, with terpenes being the major components, were identified from maize plants attacked by third instar Asian corn borer larvae. Coupled gas chromatographic-electroantennographic detection (GC-EAD) analyses revealed some electroantennographic differences between female and male Asian corn borer antennae in response to larvae-induced maize volatiles; female responded to (E)-2-hexenal, nonanal, (Z)-3-hexen-1-ol and three unknown compounds while the male only responded to (E)-2-hexenal, nonanal and one unknown compound. In laboratory orientation bioassays, Asian corn borer neonate larvae were attracted to extracts collected from Asian corn borer-damaged plants as well as to synthetic famesene, but were repelled by (Z)-3-hexen- 1-ol. In laboratory oviposition bioassays, gravid females laid fewer eggs on plants damaged by larvae than on mechanically damaged plants or undamaged plants. Adult Asian corn borer females deposited fewer eggs on wax paper treated with (E)-2-hexenal or (Z)-3-hexen-l-ol than on wax paper treated with hexane (control). The results suggest that Asian corn borer can affect the behaviors of conspecific larvae and adults by changing host plant volatiles.

  19. Soil chemical properties as affected by plant derived ash to replace potassium fertilizer and its conversion value

    Directory of Open Access Journals (Sweden)

    John Bako Baon

    2011-08-01

    Full Text Available Potassium chloride (KCl presently used as main source of K, tends to become more expensive, therefore, there is a need for a breakthrough in finding alternative materials to replace KCl. The aim of this paper is to present recent research on the use of plant derived ash to replace KCl fertilizer, especially in relation with soil chemical characteristics and its conversion value. Plant derived ash coming from palm sugar processing unit which use farm waste as main fuel was used in this experiment. Treatments investigated were no K2O application (control, applied with K2O in forms of both KCl and plant derived ash in dosages of 100, 200, 300, 400, 500 and 600 mg kg-1 air dry soil. The mixture of soil with those treatments were then incubated for one year. After incubation period, the soil in pots were divided into two parts, first part was added with 2g urea, while other part was added with 2 g SP 36. Both parts were incubated for two months. Results of this experiment showed that plant derived ash can be used to replaced KCl. To obtain similar soil K content, the amount of K2O in form of plant derived ash needed to be added or its conversion value is 1.44 times the amount of K2O in form of KCl. Use of plant derived ash also increased the content of soil Ca, available P, ratio of Ca/Mg and pH. Plant derived ash did not caused nitrogen loss. Key words: Potassium, fertilizer, plant derived ash, pH, soil.

  20. Soil chemical properties as affected by plant derived ash to replace potassium fertilizer and its conversion value

    OpenAIRE

    John Bako Baon; Sugiyanto Sugiyanto

    2011-01-01

    Potassium chloride (KCl) presently used as main source of K, tends to become more expensive, therefore, there is a need for a breakthrough in finding alternative materials to replace KCl. The aim of this paper is to present recent research on the use of plant derived ash to replace KCl fertilizer, especially in relation with soil chemical characteristics and its conversion value. Plant derived ash coming from palm sugar processing unit which use farm waste as main fuel was used in this experi...

  1. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil

    International Nuclear Information System (INIS)

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time

  2. The mycorrhizal fungus (¤Glomus intraradices¤) affects microbial activity in the rhizosphere of pea plants (¤Pisum sativum¤)

    DEFF Research Database (Denmark)

    Wamberg, C.; Christensen, S.; Jakobsen, I.;

    2003-01-01

    Pea plants were grown in gamma-irradiated soil in pots with and without addition of the AM fungus Glomus intraradices at sufficient N and limiting P. Depending on the growth phase of the plant presence of AM had negative or positive effect on rhizosphere activity. Before flowering during nutrient...... acquisition AM decreased rhizosphere respiration and number of protozoa but did not affect bacterial number suggesting top-down regulation of bacterial number by protozoan grazing. In contrast, during flowering and pod formation AM stimulated rhizosphere respiration and the negative effect on protozoa...... decreased. AM also affected the composition of the rhizosphere bacterial community as revealed from DNA analysis (DGGE). With or without mycorrhiza, rhizosphere respiration was P-limited on very young roots, not nutrient limited at more mature roots and C-limited at withering. This suggests changes in the...

  3. Availability and Temporal Heterogeneity of Water Supply Affect the Vertical Distribution and Mortality of a Belowground Herbivore and Consequently Plant Growth

    OpenAIRE

    Tsunoda, Tomonori; Kachi, Naoki; Suzuki, Jun-Ichirou

    2014-01-01

    We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowgr...

  4. Assessment of Habitat Suitability Is Affected by Plant-Soil Feedback: Comparison of Field and Garden Experiment.

    Directory of Open Access Journals (Sweden)

    Lucie Hemrová

    Full Text Available Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern.In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment.In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two

  5. Fertilizer 15N Accumulation, Recovery and Distribution in Cotton Plant as Affected by N Rate and Split

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-zheng; CHU Kun-yan; TANG Hao-yue; NIE Yi-chun; ZHANG Xian-long

    2013-01-01

    N fertilization of 300 kg N ha-1 is normally applied to cotton crops in three splits:pre-plant application (PPA, 30%), first bloom application (FBA, 40%) and peak bloom application (PBA, 30%) in the Yangtze River Valley China. However, low fertilizer N plant recovery (NPR) (30-35%) causes problems such as cotton yield stagnation even in higher N rate, low profit margin of cotton production and fertilizer release to the environment. Therefore, it is questioned:Are these three splits the same significance to cotton N uptake and distribution? An outdoor pot trial was conducted with five N rates and 15N labeled urea to determine the recovery and distribution of 15N from different splits in cotton (Gossypium hirsutum L. cv. Huazamian H318) plant. The results showed that, cotton plant absorbed fertilizer 15N during the whole growing period, the majority during flowering for 18-20 d regardless of N rates (150-600 kg ha-1). Fertilizer 15N proportion to the total N accumulated in cotton plant increased with N rates, and it was the highest in reproductive organs (88%averaged across N rates) among all the plant parts. FBA had the highest NPR (70%), the lowest fertilizer N lose (FNL, 19%), and the highest contribution to the fertilizer 15N proportion to the total N (46%) in cotton plant, whereas PPA had the reverse effect. It suggests that FBA should be the most important split for N absorption and yield formation comparatively and allocating more fertilizer N for late application from PPA should improve the benefit from fertilizer.

  6. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007–2010

    Directory of Open Access Journals (Sweden)

    Christopher J. Cifelli

    2016-07-01

    Full Text Available Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES 2007–2010 for persons two years and older (n = 17,387 were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i plant-based foods; (ii protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy; and (iii milk, cheese and yogurt. Scenarios (i and (ii had commensurate reductions in animal product intake. In both children (2–18 years and adults (≥19 years, the percent not meeting the Estimated Average Requirement (EAR decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that

  7. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007-2010.

    Science.gov (United States)

    Cifelli, Christopher J; Houchins, Jenny A; Demmer, Elieke; Fulgoni, Victor L

    2016-01-01

    Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 for persons two years and older (n = 17,387) were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i) plant-based foods; (ii) protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy); and (iii) milk, cheese and yogurt. Scenarios (i) and (ii) had commensurate reductions in animal product intake. In both children (2-18 years) and adults (≥19 years), the percent not meeting the Estimated Average Requirement (EAR) decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that increasing plant

  8. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development.

    Science.gov (United States)

    Liu, Xiaozhu; Zhang, Yan; Yang, Chao; Tian, Zhihong; Li, Jianxiong

    2016-01-01

    Plants transport photoassimilates from source organs to sink tissues through the phloem translocation pathway. In the transport phloem, sugars that escape from the sieve tubes are released into the apoplasmic space between the sieve element/companion cell complex (SE/CC) and phloem parenchyma cells (PPCs) during the process of long-distance transport. The competition for sugar acquisition between SE/CC and adjoining PPCs is mediated by plasma membrane translocators. YFP-tagged AtSWEET4 protein is localized in the plasma membrane, and PromoterAtSWEET4-GUS analysis showed that AtSWEET4 is expressed in the stele of roots and veins of leaves and flowers. Overexpression of AtSWEET4 in Arabidopsis increases plant size and accumulates more glucose and fructose. By contrast, knock-down of AtSWEET4 by RNA-interference leads to small plant size, reduction in glucose and fructose contents, chlorosis in the leaf vein network, and reduction in chlorophyll content in leaves. Yeast assays demonstrated that AtSWEET4 is able to complement both fructose and glucose transport deficiency. Transgenic plants of AtSWEET4 overexpression exhibit higher freezing tolerance and support more growth of bacterium Pseudomonas syringae pv. phaseolicola NPS3121. We conclude that AtSWEET4 plays an important role in mediating sugar transport in axial tissues during plant growth and development. PMID:27102826

  9. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration.

    Directory of Open Access Journals (Sweden)

    Youssef Chebli

    Full Text Available Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions.

  10. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis1[OPEN

    Science.gov (United States)

    Magnin-Robert, Maryline; Le Bourse, Doriane; Markham, Jonathan; Dorey, Stéphan; Clément, Christophe; Baillieul, Fabienne; Dhondt-Cordelier, Sandrine

    2015-01-01

    Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids. PMID:26378098

  11. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis.

    Science.gov (United States)

    Magnin-Robert, Maryline; Le Bourse, Doriane; Markham, Jonathan; Dorey, Stéphan; Clément, Christophe; Baillieul, Fabienne; Dhondt-Cordelier, Sandrine

    2015-11-01

    Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids. PMID:26378098

  12. Characterization of plant growth promoting rhizobacteria isolated from root system of sunflower (helianthus annus l) grown under salt affected area of pakistan

    International Nuclear Information System (INIS)

    Plant growth promoting rhizobacteria (PGPR) directly promote plant growth by providing indole-3-acetic acid (IAA), solubilization of inorganic phosphates, nitrogen fixation and siderophores and other organic acid production, whereas indirectly support plant growth by suppressing plant pathogens. The objective of this study was isolation and characterization of bacterial strains from rhizosphere, endosphere and rhizoplane of sunflower. Thirty six bacterial strains were selected out of 44 from plant root samples along with rhizospheric soil, collected from different salt affected areas of Central Punjab (Pakistan). Selected bacterial strains were characterized morphologically as well as biochemically at National Agricultural Research Centre, Islamabad during 2011-13. It was observed that all isolates produced IAA, whereas 14 strains were declared as phosphate solubilizing bacteria (PSB), eight isolates exhibited antifungal characteristics, 30 were nitrogen fixer and all of them were gram -ve. During biochemical characterization of bacterial isolates KS 15 and KS 8 produced the highest indole acetic acid whereas KS 15 and KS 17 indicated maximum phosphate solubilization (PS) among all isolated strains. The bacterial strains KS 10 and KS 44 showed maximum bio-control activity (fungal growth inhibition) than other isolated strains. (author)

  13. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    Science.gov (United States)

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. PMID:25764537

  14. Weather and plant age affect the levels of steroidal saponin and Pithomyces chartarum spores in Brachiaria grass

    Science.gov (United States)

    Brachiaria species are cultivated worldwide in tropical and subtropical climates as the main forage source for ruminants. Numerous tropical and warm-season grasses cause hepatogenous photosensitization, among them several species of Brachiaria. Steroidal saponins present in these plants may be respo...

  15. Soil Organic Matter Quality of an Oxisol Affected by Plant Residues and Crop Sequence under No-Tillage

    Science.gov (United States)

    Cora, Jose; Marcelo, Adolfo

    2013-04-01

    Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.

  16. Zinc Concentration in Rice (Oryza sativa L.) Grains and Allocation in Plants as Affected by Different Zinc Fertilization Strategies

    NARCIS (Netherlands)

    Yin, Hong Juan; Gao, Xiao Peng; Stomph, Tjeerd Jan; Li, Lu Jiu; Zhang, Fu Suo; Zou, Chun Qin

    2016-01-01

    Concern over the food chain transfer of zinc (Zn) is increasing because of its importance in human health. A field experiment was conducted on a low Zn soil to determine the effect of different Zn fertilization strategies on grain Zn concentration and Zn allocation in different plant tissues of r

  17. Tomato root growth and phosphorus absorption kinetics by tomato plants as affected by phosphorus concentration in nutrient solution

    International Nuclear Information System (INIS)

    To evaluate the effects P concentrations in nutrient solution on root growth and on root physiological characteristics involved in P uptake by tomato Lycopersicon esculentum Mill plants, six seedlings were grown in nutrient solution at initial concentrations of 48.5, 97, 194 and 388 μMP until one day before harvest. They were then transferred to solutions with P at 20 μM and 30 μM, and the depletion curves and Michaelis-Menten parameters were determined. The conclusions were that as P supply increased and as the plant P contents are sufficient for maximum growth, the rate of P uptake tends to be lower. The results also indicate that total P uptake by tomato seedlings depends on the amount of root surface area exposed to P. (M.A.C.)

  18. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice

    Institute of Scientific and Technical Information of China (English)

    Deyong Ren; Li Zhu; Zhenyu Gao; Guojun Dong; Guangheng Zhang; Longbiao Guo; Dali Zeng; and Qian Qian; Yuchun Rao; Liwen Wu; Qiankun Xu; Zizhuang Li; Haiping Yu; Yu Zhang; Yujia Leng; Jiang Hu

    2016-01-01

    Moderate plant height and successful establish-ment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was ex-pressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes.

  19. Salinity and Salicylic Acid Interactions in Affecting Nitrogen Assimilation, Enzyme Activity, Ions Content and Translocation Rate of Maize Plants

    International Nuclear Information System (INIS)

    This study was carried out to establish the relationship between nitrogen metabolism, enzyme activity, ions concentration as well as the translocation rate (TR) of carbohydrates and salicylic acid (SA) in salt-stressed maize (Zea mays L). Salicylic acid plus salinity treatment highly significantly increased: nucleic acids (DNA and RNA), protein content, phosphoenolpyruvate carboxylase (PEPCase) and nitrate reductase (NR) and inhibited nucleases (DNase and RNase) activities compared with Na CI-treated plants. In addition, the ionic levels of potassium (K), phosphorus (P), nitrate (NO3) and the translocation rate of the labelled photo assimilates have also been stimulated while sodium (Na) ions content was decreased. It is concluded that, salinazid maize plants might show an enhancement in their growth pattern upon salicylic acid application

  20. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants

    OpenAIRE

    Cabello, Susana; Lorenz, Cindy; Crespo, Sara; Cabrera, Javier; Ludwig, Roland; Escobar, Carolina; Hofmann, Julia

    2013-01-01

    Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant’s circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the p...

  1. Bio-physicochemical characterization and applied studies of carotovoricin na5 (crna5) on blb affected rice plants

    International Nuclear Information System (INIS)

    Erwinia carotovora is a common soil borne plant pathogen, which generally infects plants of family Solanacea. In the present study, bacteriocin (CrNA5), produced by an indigenously isolated E. carotovora NA5 has been characterized and its possible anti phytopathogenic potential was shown in the field studies. CrNA5 showed its antimicrobial activity against many gram-positive and gram-negative bacteria including those associated with the plant diseases. The bacteriocin showed substantial stability against wide range of temperatures and pH. Additionally, it was also found resistant to the treatment of metal ions, organic solvents and non-proteolytic enzymes. Conversely, its inactivation by proteinase K and protease suggested its protein nature. Mode of action studies revealed that CrNA5 is bactericidal, particularly against Xanthomonas oryzae oryzae. The electron micrograph of CrNA5 revealed spherical particle (empty head) like structures implicating the vestigial bacteriophage based origin of carotovoricin. In silico analyses were also conducted in order to deduce the plausible ratio of the amino acids present in the protein. The In vivo experiments showed the efficacy of CrNA5 against X. oryzae oryzae (Xoo), the causative agent of bacterial leaf blight (BLB) of rice, both in controlled conditions (green house) as well as in field trials. To the best of our knowledge, the present study is the first of its kind with the bacteriocin of Erwinia origin (tested against the BLB infected plants in the field). It is expected that the present study will help visit new insights of the bacteriocins produced by Erwinia carotovora and their potential (application) as anti phytopathogenic agent. (author)

  2. The phosphomimetic mutation of an evolutionarily conserved serine residue affects the signaling properties of Rho of plants (ROPs)

    Czech Academy of Sciences Publication Activity Database

    Fodor-Dunai, C.; Fricke, I.; Potocký, Martin; Dorjgotov, D.; Domoki, M.; Jurca, M. E.; Oetvoes, K.; Žárský, Viktor; Berken, A.; Feher, A.

    2011-01-01

    Roč. 66, č. 4 (2011), s. 669-679. ISSN 0960-7412 R&D Projects: GA ČR GP522/09/P299 Institutional research plan: CEZ:AV0Z50380511 Keywords : Rho GTPase * plant-specific ROP nucleotide exchanger * ROP guanine nucleotide exchange factor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.160, year: 2011

  3. Growth and yield performance of maize (zea mays L.) as affected by planting methods and NPK levels

    International Nuclear Information System (INIS)

    Two year research was conducted to find out the best combination of sowing geometry and levels of N, P and K fertilizers for maize hybrid 32-W-86. Four N-P-K levels viz., 0-0-0, 200-100-100, 250-125-125 and 300-150-150 kg ha-1 were tested in combination with 3 planting geometries viz., flat sowing in 75 cm spaced rows, ridge sowing on 75 cm spaced ridges and bed sowing (120 cm wide beds separated by 30 cm furrows) in randomized complete block design with factorial arrangement. During both years, treatment with 250-125-125 kg ha/sup -1/ NPK and 75 cm apart ridge sowing was found to be superior as it showed significantly higher grain yield (10.02 to 10.54 t ha/sup -1/), number of cobs per plant (1.80 to 1.87), number of grains per cob (359.33 to 378.67), 1000-grain weight (306.46 to 320.62 g), biological yield (24.01 to 24.36 t ha/sup -1/) and harvest index (41.76 to 43.51 %). Contrastingly, 0-0-0 NPK kg ha/sup -1/ fertilizer treatment in combination with all 3 planting geometries remained at lowest position with respect to grain yield. Grain yield showed significant positive relationship with number of cobs per plant, number of grains per cob, 1000-grain weight, biological yield and harvest index of maize. (author)

  4. Factors affecting in vitro plant regeneration of the critically endangered Mediterranean knapweed ( Centaurea tchihatcheffii Fisch et. Mey)

    Science.gov (United States)

    Ozel, Cigdem Alev; Khawar, Khalid Mahmood; Mirici, Semra; Ozcan, Sebahattin; Arslan, Orhan

    2006-10-01

    Habitat destruction has resulted in the extinction of many plant species from the earth, and many more face extinction. Likely, the annual endemic Mediterranean knapweed ( Centaurea tchihatcheffii) growing in the Golbasi district of Ankara, Turkey is facing extinction and needs urgent conservation. Plant tissue culture, a potentially useful technique for ex situ multiplication, was used for the restoration of this ill-fated plant through seed germination, micropropagation from stem nodes, and adventitious shoot regeneration from immature zygotic embryos. The seeds were highly dormant and very difficult to germinate. No results were obtained from the micropropagation of stem nodes. However, immature zygotic embryos showed the highest adventitious shoot regeneration on Murashige and Skoog (MS) medium, containing 1 mg l-1 kinetin and 0.25 mg l-1 NAA. Regenerated shoots were best rooted on MS medium containing 1 mg l-1 IBA and transferred to the greenhouse for flowering and seed set. As such, the present work is the first record of in vitro propagation of critically endangered C. tchihatcheffii, using immature zygotic embryos, and is a step forward towards conservation of this indigenous species.

  5. Water, Nitrogen and Plant Density Affect the Response of Leaf Appearance of Direct Seeded Rice to Thermal Time

    Institute of Scientific and Technical Information of China (English)

    Maite MART(I)NEZ-EIXARCH; ZHU De-feng; Maria del Mar CATAL(A)-FORNER; Eva PLA-MAYOR; Nuria TOM(A)S-NAVARRO

    2013-01-01

    Field experiments were conducted in the Ebro Delta area (Spain),from 2007 to 2009 with two rice varieties:Gleva and Tebre.The experimental treatments included a series of seed rates,two different water management systems and two different nitrogen fertilization times.The number of leaves on the main stems and their emergence time were periodically tagged.The results indicated that the final leaf number on the main stems in the two rice varieties was quite stable over a three-year period despite of the differences in their respective growth cycles.Interaction between nitrogen fertilization and water management influenced the final leaf number on the main stems.Plant density also had a significant influence on the rate of leaf appearance by extending the phyllochron and postponing the onset of intraspecific competition after the emergence of the 7th leaf on the main stems.Final leaf number on the main stems was negatively related to plant density.A relationship between leaf appearance and thermal time was established with a strong nonlinear function.In direct-seeded rice,the length of the phyllochron increases exponentially in line with the advance of plant development.A general model,derived from 2-year experimental data,was developed and satisfactorily validated; it had a root mean square error of 0.3 leaf.An exponential model can be used to predict leaf emergence in direct-seeded rice.

  6. Genetic Factors in Rhizobium Affecting the Symbiotic Carbon Costs of N2 Fixation and Host Plant Biomass Production

    DEFF Research Database (Denmark)

    Skøt, L.; Hirsch, P. R.; Witty, J. F.

    1986-01-01

    The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different...... the lowest carbon costs of N2 fixation (7.10–8.10 μmol C/μmol N2), but shoot dry weight of those plants was also smaller than that of plants nodulated by strains with the background of B151 or JI8400. Nodules formed by these two strain types had carbon costs of N2 fixation varying between 11.26 and 13.......95 μmol C/μmol N2. The effect of symbiotic plasmids on the carbon costs was relatively small. A time-course experiment demonstrated that nodules formed by a strain derived from JI6015 were delayed in the onset of nitrogenase activity and had a lower rate of activity compared to nodules induced by a strain...

  7. Factors affecting the initial adhesion and retention of the plant pathogen Xylella fastidiosa in the foregut of an insect vector.

    Science.gov (United States)

    Killiny, Nabil; Almeida, Rodrigo P P

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design. PMID:24185853

  8. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Trevorrow, L. E.; Warner, D. L.; Steindler, M. J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10/sup -4/ mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method.

  9. Modulation of Root Signals in Relation to Stomatal Sensitivity to Root-sourced Abscisic Acid in Drought-affected Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely central role in root to shoot signaling. pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status. pH itself can be modified by several factors, among which the chemical compositions In the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH,more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastlc pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se.The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots If a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles In the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.

  10. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10-4 mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method

  11. Flavonoids Affect the Light Reaction of Photosynthesis in Vitro and in Vivo as Well as the Growth of Plants.

    Science.gov (United States)

    Morales-Flores, Félix; Olivares-Palomares, Karen Susana; Aguilar-Laurents, María Isabel; Rivero-Cruz, José Fausto; Lotina-Hennsen, Blas; King-Díaz, Beatriz

    2015-09-23

    Flavonoids retusin (5-hydroxy-3,7,3',4'-tetramethoxyflavone) (1) and pachypodol (5,4'-dihydroxy-3,7,3'-trimethoxyflavone) (2) were isolated from Croton ciliatoglanduliferus Ort. Pachypodol acts as a Hill reaction inhibitor with its target on the water splitting enzyme located in PSII. In the search for new herbicides from natural compounds, flavonoids 1 and 2 and flavonoid analogues quercetin (3), apigenin (4), genistein (5), and eupatorin (6) were assessed for their effect in vitro on the photosynthetic electron transport chain and in vivo on the germination and growth of the plants Physalis ixocarpa, Trifolium alexandrinum and Lolium perenne. Flavonoid 3 was the most active inhibitor of the photosynthetic uncoupled electron flow (I50 = 114 μM) with a lower log P value (1.37). Results in vivo suggest that 1, 2, 3, and 5 behave as pre- and postemergent herbicides, with 3 and 5 being more active. PMID:26322527

  12. Effective antibiotics against 'Candidatus Liberibacter asiaticus' in HLB-affected citrus plants identified via the graft-based evaluation.

    Directory of Open Access Journals (Sweden)

    Muqing Zhang

    Full Text Available Citrus huanglongbing (HLB, caused by three species of fastidious, phloem-limited 'Candidatus Liberibacter', is one of the most destructive diseases of citrus worldwide. To date, there is no established cure for this century-old and yet, newly emerging disease. As a potential control strategy for citrus HLB, 31 antibiotics were screened for effectiveness and phytotoxicity using the optimized graft-based screening system with 'Candidatus Liberibacter asiaticus' (Las-infected citrus scions. Actidione and Oxytetracycline were the most phytotoxic to citrus with less than 10% of scions surviving and growing; therefore, this data was not used in additional analyses. Results of principal component (PCA and hierarchical clustering analyses (HCA demonstrated that 29 antibiotics were clustered into 3 groups: highly effective, partly effective, and not effective. In spite of different modes of actions, a number of antibiotics such as, Ampicillin, Carbenicillin, Penicillin, Cefalexin, Rifampicin and Sulfadimethoxine were all highly effective in eliminating or suppressing Candidatus Liberibacter asiaticus indicated by both the lowest Las infection rate and titers of the treated scions and inoculated rootstock. The non-effective group, including 11 antibiotics alone with three controls, such as Amikacin, Cinoxacin, Gentamicin, Kasugamycin, Lincomycin, Neomycin, Polymixin B and Tobramycin, did not eliminate or suppress Las in the tested concentrations, resulting in plants with increased titers of Las. The other 12 antibiotics partly eliminated or suppressed Las in the treated and graft-inoculated plants. The effective and non-phytotoxic antibiotics could be potential candidates for control of citrus HLB, either for the rescue of infected citrus germplasm or for restricted field application.

  13. performance of sorghum grown on a salt affected soil manured with dhaincha plant residues using a 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    A field experiment was conducted on a salt-affected soil to determine the effect of application of three types of Dhaincha (Sesbania aculeata pers.) residues (R, roots; L, shoots; L+R, shoots plus roots) of on the performance of sorghum (Sorghum bicolor L.) using the indirect 15N isotopic dilution technique. Results indicated that Sesbania residues (L and L+R), used as green manures significantly increased grain yield, dry matter production, N uptake, and water use efficiency of sorghum. Percentages of N derived from residues (%Ndfr) in sorghum ranged from 6.4 to 28%. The N recoveries in sorghum were 52, 19. and 19.7% of the total amount contained in Sesbania roots, shoots and roots plus shoots, respectively. The beneficial effects of Sesbania residues are attributed not only to the additional N availability to the plants, but also to effects on the enhancement of soil N uptake, particularly in the L+R treatment. The findings suggest that the use of Sesbania aculeata residues, as a green manure, can provide a substantial portion of total N in sorghum. In addition, the use of Sesbania green manure in salt-affected soils, as a bio-reclaiming material, can be a promising approach for enhancing plant growth on a sustainable basis. (author)

  14. Critical rearing parameters of Tetrastichus planipennisi (Hymenoptera: Eulophidae) as affected by host plant substrate and host-parasitoid group structure.

    Science.gov (United States)

    Duan, Jian J; Oppel, Craig

    2012-06-01

    In laboratory assays, we evaluated the potential impact of host plant substrate types, host-parasitoid group sizes (densities), and parasitoid-to-host ratios on select fitness parameters of the larval endoparasitoid Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae), newly introduced for biological control of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in the United States. Results from our study showed that offspring production and critical fitness parameters (body size and sex ratio) of T. planipennisi from parasitized emerald ash borer larvae are significantly influenced by host plant substrate type, host-parasitoid group size, parasitoid-to-host ratio, or a combination in the primary exposure assay. The number of both female and male T. planipennisi progeny was significantly greater when emerald ash borer larvae were inserted into tropical ash [Fraxinus uhdei (Wenz.) Lingelsh.] logs rather than green ash (Fraxinus pensylvanica Marshall). When maintained at a constant 1:1 parasitoid-to-host ratio, assays with larger host-parasitoid group sizes (3:3-12:12) produced significantly greater numbers of both male and female offspring per parental wasp compared with those with the single host-parasitoid (1:1) group treatment. As the parasitoid-to-host ratio increased from 1:1 to 8:1 in the assay, the average brood size (number of offspring per parasitized emerald ash borer larva) increased significantly, whereas the average brood sex ratio (female to male) changed from being female-biased (6:1) to male-biased (1:2); body size of female offspring as measured by the length of ovipositor and left hind tibia also was reduced significantly. Based on these findings, we suggest that the current method of rearing T. planipennisi with artificially infested-emerald ash borer larvae use the tropical ash logs for emerald ash borer insertion, a larger (> or = 3:3) host-parasitoid group size and 1:1 parasitoid-to-host ratio in the primary

  15. Using Native Plants in the Reclamation of Areas Affected of Mining Activities in the Rodrigatos River Valley (El Bierzo, Leon, Spain)

    International Nuclear Information System (INIS)

    It is difficult for sites affected by mining to be colonized by vegetation and thus they suffer a slow recovery to a healthy ecosystem and, as a result, restoration work is necessary. The aim of this report is to propose a set of native species which are conducive to establishing a stable and self-sufficient plant community that will protect the soil and contribute to the rapid integration into the landscape of the areas affected by mining in the upper basin of the river Rodrigatos in the region of El Bierzo (Leon) An analysis of plant communities was undertaken using the phyto sociological method of Braun-Blanquet in order to subsequently select, using ecological criteria, the most suitable species for revegetation. Plant mapping using ortho photos was also developed in order to identify and delineate the location of the different landscape units. Among candidate species, in the first revegetation phase, we suggest a variety of herbs that are able to fix soils and protect them from erosion; species of the genus Cytisus and Genista in areas of moderate slope and species such as Rumex induratus Boiss and Reuter, Erysimum linifolium (Pourr. Ex Pers .) Jay in steeper areas because of their rooting ability. In later stages, the introduction of tree species characteristic for each formation is recommended. Furthermore, in the riverside areas species such as Carex elata subsp.reuteriana (Boiss.) Lucen and Aedo, Alnus glutinosa (L.) and Salix atrocinerea Brot. are proposed for introduction from the fi rst stage onwards. The species proposed in this study include some not commonly used in restoration, so a subsequent more detailed study would be required in order to assess their degree of suitability for this use. (Author) 65 refs.

  16. Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment.

    Science.gov (United States)

    Thomashow, M F; Karlinsey, J E; Marks, J R; Hurlbert, R E

    1987-07-01

    We have identified a new virulence locus in Agrobacterium tumefaciens. Strains carrying Tn5 inserts at this locus could not incite tumors on Kalanchoe daigremontiana, Nicotiana rustica, tobacco, or sunflower and had severely attenuated virulence on carrot disks. We termed the locus pscA, because the mutants that defined the locus were initially isolated as having an altered polysaccharide composition; they were nonfluorescent on media containing Leucophor or Calcofluor, indicating a defect in the production of cellulose fibrils. Further analysis showed that the pscA mutants produced little, if any, of the four species of exopolysaccharide synthesized by the wild-type strain. DNA hybridization analysis and genetic complementation experiments indicated that the pscA locus is not encoded by the Ti plasmid and that it is distinct from the previously described chromosomal virulence loci chvA and chvB. However, like chvA and chvB mutants, the inability of the pscA mutants to form tumors is apparently due to a defect in plant cell attachment. Whereas we could demonstrate binding of the wild-type strain to tobacco suspension cells, attachment of the pscA mutants was drastically reduced or completely absent. PMID:3597321

  17. Tree litter and forest understorey vegetation: a conceptual framework to understand the effects of tree litter on a perennial geophyte, Anemone nemorosa

    OpenAIRE

    Baltzinger, M; Archaux, F.; Dumas, Y.

    2012-01-01

    BACKGROUND AND AIMS: Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions betwe...

  18. Evaluation of dose from external irradiation for individuals living in areas affected by the Fukushima Daiichi nuclear plant accident

    International Nuclear Information System (INIS)

    In order to effectively and appropriately manage external radiation doses in the affected areas of Fukushima, it is important to identify when, where and how much exposure occurred. It is also necessary to quantitatively measure external exposure and air dose rates for different activity patterns in individuals living and working in Japanese-style buildings. The authors used a new personal dosemeter (D-shuttle) along with a global positioning system and geographical information system to relate personal dose rate with activity patterns and air dose rate. Hourly individual doses obtained by D-shuttle can provide an effective communication tool for those who want to identify when and how much exposure occurs. Personal monitoring of 26 volunteers showed that personal doses obtained from D-shuttle were ∼30 % of cumulative air dose estimated by data from the airborne monitoring survey. This analysis showed that, for most study volunteers, the exposure from staying at home represented about half of the total cumulative dose. This suggests that even though the peak exposure doses may be observed outside of working hours, to develop appropriate countermeasures for external dose reduction, it is thus important to identify the contributions of individuals' time-activities. This study provides a valuable basis for developing a realistic and pragmatic method to estimate external doses of individuals in Fukushima. (authors)

  19. Comparative radiation impact on biota and man in the area affected by the accident at the Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S.V. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation) and International Atomic Energy Agency, Agency' s Laboratories, Seibersdorf A-2444 (Austria)]. E-mail: s.fesenko@iaea.org; Alexakhin, R.M. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Geras' kin, S.A. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Sanzharova, N.I. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Spirin, Ye.V. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Spiridonov, S.I. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Gontarenko, I.A. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Strand, P. [Norwegian Radiation Protection Authority, Oesteras (Norway)

    2005-07-01

    A methodological approach for a comparative assessment of ionising radiation effects on man and non-human species, based on the use of Radiation Impact Factor (RIF) - ratios of actual exposure doses to biota species and man to critical dose is described. As such doses, radiation safety standards limiting radiation exposure of man and doses at which radiobiological effects in non-human species were not observed after the Chernobyl accident, were employed. For the study area within the 30 km ChNPP zone dose burdens to 10 reference biota groups and the population (with and without evacuation) and the corresponding RIFs were calculated. It has been found that in 1986 (early period after the accident) the emergency radiation standards for man do not guarantee adequate protection of the environment, some species of which could be affected more than man. In 1991 RIFs for man were considerably (by factor of 20.0-1.1 x 10{sup 5}) higher compared with those for selected non-human species. Thus, for the long term after the accident radiation safety standards for man are shown to ensure radiation safety for biota as well.

  20. Comparative radiation impact on biota and man in the area affected by the accident at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    A methodological approach for a comparative assessment of ionising radiation effects on man and non-human species, based on the use of Radiation Impact Factor (RIF) - ratios of actual exposure doses to biota species and man to critical dose is described. As such doses, radiation safety standards limiting radiation exposure of man and doses at which radiobiological effects in non-human species were not observed after the Chernobyl accident, were employed. For the study area within the 30 km ChNPP zone dose burdens to 10 reference biota groups and the population (with and without evacuation) and the corresponding RIFs were calculated. It has been found that in 1986 (early period after the accident) the emergency radiation standards for man do not guarantee adequate protection of the environment, some species of which could be affected more than man. In 1991 RIFs for man were considerably (by factor of 20.0-1.1 x 105) higher compared with those for selected non-human species. Thus, for the long term after the accident radiation safety standards for man are shown to ensure radiation safety for biota as well

  1. Use of mutations to improve cotton plants as an oil and protein source without affecting the seed cotton yield

    International Nuclear Information System (INIS)

    In Egypt, cotton seed is a very important source of oil. In 1988, it accounted for about 35% of the national consumption of edible oil. Cotton seed meal provides a considerable amount of the protein used for feeding non-ruminant animals. Therefore, efforts are being made to improve the oil and protein contents of the seed without affecting the seed cotton yield in order to close the gap between the production and consumption of edible oil as food and protein for animals. Twenty-one lines were selected in the M5 generation after treating the seeds of three local cultivars with up to 150 Gy of gamma rays. The results show that breeders can increase the oil and/or protein content of the seed without any loss in the seed cotton yield and percentage lint. This could be of value in overcoming the deficiency in oil production that exists in many developing countries which cultivate cotton for lint or as a cash crop, and may also be valid for seed protein in cakes or meals for feeding animals. However, further investigations will have to be made on the fibre properties. (author). 6 refs, 1 tab

  2. Evaluation of dose from external irradiation for individuals living in areas affected by the Fukushima Daiichi Nuclear Plant accident.

    Science.gov (United States)

    Naito, Wataru; Uesaka, Motoki; Yamada, Chie; Ishii, Hideki

    2015-02-01

    In order to effectively and appropriately manage external radiation doses in the affected areas of Fukushima, it is important to identify when, where and how much exposure occurred. It is also necessary to quantitatively measure external exposure and air dose rates for different activity patterns in individuals living and working in Japanese-style buildings. The authors used a new personal dosemeter (D-shuttle) along with a global positioning system and geographical information system to relate personal dose rate with activity patterns and air dose rate. Hourly individual doses obtained by D-shuttle can provide an effective communication tool for those who want to identify when and how much exposure occurs. Personal monitoring of 26 volunteers showed that personal doses obtained from D-shuttle were ∼30% of cumulative air dose estimated by data from the airborne monitoring survey. This analysis showed that, for most study volunteers, the exposure from staying at home represented about half of the total cumulative dose. This suggests that even though the peak exposure doses may be observed outside of working hours, to develop appropriate countermeasures for external dose reduction, it is thus important to identify the contributions of individuals' time-activities. This study provides a valuable basis for developing a realistic and pragmatic method to estimate external doses of individuals in Fukushima. PMID:24982262

  3. Integration of Andrographis paniculata as Potential Medicinal Plant in Chir Pine (Pinus roxburghii Sarg. Plantation of North-Western Himalaya

    Directory of Open Access Journals (Sweden)

    Chandra Shekher Sanwal

    2016-01-01

    Full Text Available The integration of Andrographis paniculata under Pinus roxburghii (Chir pine plantation has been studied to evaluate the growth and yield for its economic viability and conservation. It was grown on three topographical aspects, namely, northern, north-western, and western, at a spacing of 30 cm × 30 cm, followed by three tillage depths, namely, minimum (0 cm, medium (up to 10 cm, and deep (up to 15 cm tillage. The growth parameters, namely, plant height and number of branches per plant, were recorded as significantly higher on western aspect and lowest on northern aspect except for leaf area index which was found nonsignificant. However under all tillage practices all the growth parameters in both understorey and open conditions were found to be nonsignificant except for plant height which was found to be significantly highest under deep tillage and lowest under minimum tillage. The study of net returns for Andrographis paniculata revealed that it had positive average annual returns even in understorey conditions which indicate its possible economic viability under integration of Chir pine plantations. Hence net returns can be enhanced by integrating Andrographis paniculata and this silvimedicinal system can be suggested which will help utilizing an unutilized part of land and increase total productivity from such lands besides conservation of the A. paniculata in situ.

  4. Integration of Andrographis paniculata as Potential Medicinal Plant in Chir Pine (Pinus roxburghii Sarg.) Plantation of North-Western Himalaya.

    Science.gov (United States)

    Sanwal, Chandra Shekher; Kumar, Raj; Bhardwaj, S D

    2016-01-01

    The integration of Andrographis paniculata under Pinus roxburghii (Chir pine) plantation has been studied to evaluate the growth and yield for its economic viability and conservation. It was grown on three topographical aspects, namely, northern, north-western, and western, at a spacing of 30 cm × 30 cm, followed by three tillage depths, namely, minimum (0 cm), medium (up to 10 cm), and deep (up to 15 cm) tillage. The growth parameters, namely, plant height and number of branches per plant, were recorded as significantly higher on western aspect and lowest on northern aspect except for leaf area index which was found nonsignificant. However under all tillage practices all the growth parameters in both understorey and open conditions were found to be nonsignificant except for plant height which was found to be significantly highest under deep tillage and lowest under minimum tillage. The study of net returns for Andrographis paniculata revealed that it had positive average annual returns even in understorey conditions which indicate its possible economic viability under integration of Chir pine plantations. Hence net returns can be enhanced by integrating Andrographis paniculata and this silvimedicinal system can be suggested which will help utilizing an unutilized part of land and increase total productivity from such lands besides conservation of the A. paniculata in situ. PMID:27563482

  5. Factors affecting in vitro seed germination and shoot multiplication of a pitcher plant (Nepenthes mirabilis (Lour. Druce

    Directory of Open Access Journals (Sweden)

    Tokhao, W

    2007-03-01

    Full Text Available Mature seeds of a pitcher plant (Nepenthes mirabilis (Lour. Druce were cultured in liquid and solid MS medium (Murashige and Skoog, 1962 supplemented with BA (6-benzyladenine at 1, 3 or 5 mg/l or withcoconut water (20% v/v. The cultures were incubated under light and dark conditions. Seeds germinated only under light incubation and BA supplemented to both types of media, and solid medium with 3 mg/l BAresulted the highest seed germination (26% with good development of seedlings. On the contrary, the addition of coconut water to the basal medium produced poor seed germination and seedling growth. Moreover,all cultures in liquid medium terminated their growth after 6 weeks of culture. Young seedlings were subsequently transferred to fresh media of the same treatments after 15 weeks of seed culture. Multipleshoots were proliferated in all levels of BA after 6 weeks of transferring and more shoots were produced as BA level was increased. However, at high BA level of 5 mg/l, rosetting of shoots occurred while lowering BA level to 3 mg/l, fewer shoots were produced but they were vigorous, larger shoots with complete leaves. Rootdevelopment finally occurred in all BA treatments except the addition of coconut water.To evaluate the potential of shoot multiplication in different strengths of MS macromutrient, two types of explants, viz. shoot explants and stem explants (both approx. 1.5 cm long from in vitro seedlings,were cultured on full-strength MS macronutrient medium, 1/2 MS, 1/4 MS and 1/8 MS medium. Following 16 weeks of culture, shoot production (number/ explant increased in both explant types as the macronutrientstrength decreased. However, when lowering to 1/8 MS, the fewest shoots were produced and exhibited nutrient deficiency of leaf chlorosis. The optimum strength of MS macronutrient for the maximumproduction of normal shoots with complete leaves was 1/2 MS medium while 1/4 MS medium produced the highest shoot number from stem explants but

  6. Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai-ichi nuclear power plant accident

    Science.gov (United States)

    Konoplev, A. V.; Golosov, V. N.; Yoschenko, V. I.; Nanba, K.; Onda, Y.; Takase, T.; Wakiyama, Y.

    2016-05-01

    Presented are results of the study of radiocesium vertical distribution in the soils of the irrigation pond catchments in the near field 0.25 to 8 km from the Fukushima Dai-ichi NPP, on sections of the Niida River floodplain, and in a forest ecosystem typical of the territory contaminated after the accident. It is shown that the vertical migration of radiocesium in undisturbed forest and grassland soils in the zone affected by the Fukushima accident is faster than it was in the soils of the 30-km zone of the Chernobyl NPP for a similar time interval after the accident. The effective dispersion coefficients in the Fukushima soils are several times higher than those for the Chernobyl soils. This may be associated with higher annual precipitation (by about 2.5 times) in Fukushima as compared to the Chernobyl zone. In the forest soils the radiocesium dispersion is faster as compared to grassland soils, both in the Fukushima and Chernobyl zones. The study and analysis of the vertical distribution of the Fukushima origin radiocesium in the Niida gawa floodplain soils has made it possible to identify areas of contaminated sediment accumulation on the floodplain. The average accumulation rate for sediments at the study locations on the Niida gawa floodplain varied from 0.3 to 3.3 cm/year. Taking into account the sediments accumulation leading to an increase in the radiocesium inventory in alluvial soils is key for predicting redistribution of radioactive contamination after the Fukushima accident on the river catchments, as well as for decision-making on contaminated territories remediation and clean-up. Clean-up of alluvial soils does not seem to be worthwhile because of the following accumulation of contaminated sediments originating from more contaminated areas, including the exclusion zone.

  7. Measurement of {sup 14}C/{sup 12}C ratios in plant samples that were affected by the Fukushima nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Risa; Inoue, Aki; Muramatsu, Yasuyuki [Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588 (Japan); Matsuzaki, Hiroyuki [The University of Tokyo, Micro Analysis Laboratory, Tandem Accelerator, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan)

    2014-07-01

    Okuma and Namie were considerably higher than the background values measured in Chiba and Niigata samples. The delta {sup 14}C values in the old leaves (grown before the accident) of Japanese cedar collected from Okuma and Namie were higher than those in the new leaves (grown after the accident). Since delta {sup 14}C values in the new leaves are similar to those in background samples collected from outside of Fukushima Prefecture. These results suggest that delta {sup 14}C values in plants grown near FDNPP were affected by {sup 14}C released from FDNPP, although the levels were not so high. It is not known whether {sup 14}C was absorbed as a gaseous form (CO{sub 2}) by plants or it was deposited as a particulate form. To examine this, we are planning to wash the contaminated cedar leaves with water for removing particulate matters deposited on the leaf surface. (authors)

  8. Factors Affecting the Optimum Seeding Level of Coal or Char-Fired, Open-Cycle MHD Power Plants

    International Nuclear Information System (INIS)

    separation temperature of the bulk of the liquid slag from the combustion products. This temperature should be just above the seed condensation initiation temperature for minimum silica recycle with minimum seed loss. Data are presented which illustrate the above factors for a bituminous coal at sulphur levels of 0.5 and 4 wt% sulphur and a bituminous coal char. Seeding materials, considered are potassium carbonate and potassium sulphate. A combustor pressure of 5 atm is assumed with the air-preheat temperature used as a parameter. The results show an increase in electrical conductivity of the combustion products when the sulphur level of the system is reduced. One way of effecting this reduction is to remove the sulphur from the spent seed-silica mixture before its return to the combustor. In addition to increased conductivity, this reduced sulphur mode of operation also allows an MHD/steam power plant to be operated free of sulphur oxide effluent gases. (author)

  9. Temperature and Plant Genotype Alter Alkaloid Concentrations in Ryegrass Infected with an Epichloë Endophyte and This Affects an Insect Herbivore

    Science.gov (United States)

    Hennessy, Louise M.; Popay, Alison J.; Finch, Sarah C.; Clearwater, Michael J.; Cave, Vanessa M.

    2016-01-01

    Asexual Epichloë endophytes colonize agricultural forage grasses in a relationship which is mutually beneficial and provides the host plant with protection against herbivorous insects. The endophyte strain AR37 (Epichloë festucae var. lolii) produces epoxy-janthitrem alkaloids and is the only endophyte known to provide ryegrass with resistance against porina larvae (Wiseana cervinata (Walker)), a major pasture pest in cooler areas of New Zealand. This study examined the effect of temperature on concentrations of epoxy-janthitrems in AR37-infected ryegrass and determined how the resulting variations in concentration affected consumption, growth and survival of porina larvae. Twenty replicate pairs of perennial (Lolium perenne L.) and Italian ryegrass (L. multiflorum Lam.) plants with and without endophyte were prepared by cloning, with one of each pair grown at either high (20°C) or low (7°C) temperature. After 10 weeks, herbage on each plant was harvested, divided into leaf and pseudostem, then freeze dried and ground. Leaf and pseudostem material was then incorporated separately into semi-synthetic diets which were fed to porina larvae in a bioassay over 3 weeks. Epoxy-janthitrem concentrations within the plant materials and the semi-synthetic diets were analyzed by high performance liquid chromatography. AR37-infected ryegrass grown at high temperature contained high in planta concentrations of epoxy-janthitrem (30.6 μg/g in leaves and 83.9 μg/g in pseudostems) that had a strong anti-feedant effect on porina larvae when incorporated into their diets, reducing their survival by 25–42% on pseudostems. In comparison, in planta epoxy-janthitrem concentrations in AR37-infected ryegrass grown at low temperature were very low (0.67 μg/g in leaves and 7.4 μg/g in pseudostems) resulting in a small anti-feedant effect in perennial but not in Italian ryegrass. Although alkaloid concentrations were greatly reduced by low temperature this reduction did not occur

  10. A comprehensive dose evaluation project concerning animals affected by the Fukushima Daiichi Nuclear Power Plant accident: its set-up and progress

    Science.gov (United States)

    Takahashi, Shintaro; Inoue, Kazuya; Suzuki, Masatoshi; Urushihara, Yusuke; Kuwahara, Yoshikazu; Hayashi, Gohei; Shiga, Soichiro; Fukumoto, Motoi; Kino, Yasushi; Sekine, Tsutomu; Abe, Yasuyuki; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Fukumoto, Manabu

    2015-01-01

    It is not an exaggeration to say that, without nuclear accidents or the analysis of radiation therapy, there is no way in which we are able to quantify radiation effects on humans. Therefore, the livestock abandoned in the ex-evacuation zone and euthanized due to the Fukushima Daiichi Nuclear Power Plant (FNPP) accident are extremely valuable for analyzing the environmental pollution, its biodistribution, the metabolism of radionuclides, dose evaluation and the influence of internal exposure. We, therefore, sought to establish an archive system and to open it to researchers for increasing our understanding of radiation biology and improving protection against radiation. The sample bank of animals affected by the FNPP accident consists of frozen tissue samples, formalin-fixed paraffin-embedded specimens, dose of radionuclides deposited, etc., with individual sampling data. PMID:26687285

  11. A comprehensive dose evaluation project concerning animals affected by the Fukushima Daiichi Nuclear Power Plant accident: its set-up and progress.

    Science.gov (United States)

    Takahashi, Shintaro; Inoue, Kazuya; Suzuki, Masatoshi; Urushihara, Yusuke; Kuwahara, Yoshikazu; Hayashi, Gohei; Shiga, Soichiro; Fukumoto, Motoi; Kino, Yasushi; Sekine, Tsutomu; Abe, Yasuyuki; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Fukumoto, Manabu

    2015-12-01

    It is not an exaggeration to say that, without nuclear accidents or the analysis of radiation therapy, there is no way in which we are able to quantify radiation effects on humans. Therefore, the livestock abandoned in the ex-evacuation zone and euthanized due to the Fukushima Daiichi Nuclear Power Plant (FNPP) accident are extremely valuable for analyzing the environmental pollution, its biodistribution, the metabolism of radionuclides, dose evaluation and the influence of internal exposure. We, therefore, sought to establish an archive system and to open it to researchers for increasing our understanding of radiation biology and improving protection against radiation. The sample bank of animals affected by the FNPP accident consists of frozen tissue samples, formalin-fixed paraffin-embedded specimens, dose of radionuclides deposited, etc., with individual sampling data. PMID:26687285

  12. Assessment of committed effective dose due to the ingestion of 210Po and 210Pb in consumed Lebanese fish affected by a phosphate fertilizer plant

    International Nuclear Information System (INIS)

    Ingestion of radionuclides through seafood intake is a one of the sources contributing to the internal effective dose in the human organism. In order to evaluate the internal exposure and potential risks due to 210Po and 210Pb associated with fish consumption, these radionuclides were measured in commonly consumed fish species from a clean area and an area subjected to the impact of a Lebanese phosphate fertilizer plant. The highest concentration of 210Pb was 98.7 Bq/kg fresh weight while 210Po activity concentrations varied from 3.6 Bq/kg to 140 Bq/kg. A supplementary radiation exposure was detected; the highest committed effective dose due to 210Po and 210Pb was found to be 1110 μSv/y and 450 μSv/y, respectively. Moreover, the average mortality and morbidity risks due to the fish consuming were estimated. - Highlights: • Enrichment in 210Po and 210Pb in fish affected by a phosphate fertilizer plant. • Significant human exposure associated with the ingestion of fish. • Estimation of potential risks due to 210Po and 210Pb via fish consumption

  13. Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions

    International Nuclear Information System (INIS)

    Salinity is one of the most critical constraints hampering agricultural production throughout the world, including Pakistan. Some plant growth promoting rhizobacteria (PGPR) have the ability to reduce the deleterious effect of salinity on plants due to the presence of ACC-deaminase enzyme along with some other mechanisms. The integrated use of organic, chemical and biofertilizers can reduce dependence on expensive chemical inputs. To sustain high crop yields without deterioration of soil fertility, it is important to work out optimal combination of chemical and biofertilizers, and manures in the cropping system. A pot trial was conducted to study the effect of integrated use of PGPR, chemical nitrogen, and biogas slurry for sustainable production of maize under salt-stressed conditions and for good soil health. Results showed that sole application of PGPR, chemical nitrogen and biogas slurry enhanced maize growth but their combined application was more effective. Maximum improvement in maize growth, yield, ionic concentration in leaves and nutrient concentration in grains was observed in the treatment where PGPR and biogas slurry was used in the presence of 100% recommended nitrogen as chemical fertilizer. It also improved the soil pH, ECe, and available N, P and K contents. It is concluded that integrated use of PGPR, biogas slurry and chemical nitrogen not only enhanced maize growth, yield and quality but also improved soil health. So, it may be evaluated under field conditions to get sustained yield of maize from salt-affected soils. (author)

  14. Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer.

    Science.gov (United States)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2013-03-01

    The microbial diversity of a deep saline aquifer used for geothermal heat storage in the North German Basin was investigated. Genetic fingerprinting analyses revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of bacteria and sulfate reducing bacteria (SRB) in cold fluids compared with warm fluids. The operation-dependent temperature increase at the warm well probably enhanced organic matter availability, favoring the growth of fermentative bacteria and SRB in the topside facility after the reduction of fluid temperature. In the cold well, SRB predominated and probably accounted for corrosion damage to the submersible well pump and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favored growth of hydrogenotrophic SRB. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. PMID:23358731

  15. Evaluation of Geostatistical Techniques for Mapping Spatial Distribution of Soil PH, Salinity and Plant Cover Affected by Environmental Factors in Southern Iran

    Directory of Open Access Journals (Sweden)

    Mohammad ZARE-MEHRJARDI

    2010-12-01

    Full Text Available The study presented in this paper attempts to evaluate some interpolation techniques for mapping spatial distribution of soil pH, salinity and plant cover in Hormozgan province, Iran. The relationships among environmental factors and distribution of vegetation types were also investigated. Plot sampling was applied in the study area. Landform parameters of each plot were recorded and canopy cover percentages of each species were measured while stoniness and browsing damage were estimated. Results indicated that there was a significant difference in vegetation cover for high and low slope steepness. Also, vegetation cover was greater than other cases in the mountains with calcareous lithology. In general, there were no significant relationships among vegetation cover and soil properties such as pH, EC, and texture. Other soil properties, such as soil depth and gravel percentage were significantly affected by vegetation cover. Moreover, the geostatistical results showed that kriging and cokriging methods were better than inverse distance weighting (IDW method for prediction of the spatial distribution of soil properties. Also, the results indicated that all the concerned soil and plant parameters were better determined by means of a cokriging method. Land elevation, which was highly correlated with studied parameters, was used as an auxiliary parameter.

  16. Identification of detoxification pathways in plants that are regulated in response to treatment with organic compounds isolated from oil sands process-affected water.

    Science.gov (United States)

    Widdup, Ellen E; Chatfield-Reed, Kate; Henry, Darren; Chua, Gordon; Samuel, Marcus A; Muench, Douglas G

    2015-11-01

    Bitumen mining in the Athabasca oil sands region of northern Alberta results in the accumulation of large volumes of oil sands process-affected water (OSPW). The acid-extractable organic (AEO) fraction of OSPW contains a variety of compounds, including naphthenic acids, aromatics, and sulfur- and nitrogen-containing compounds that are toxic to aquatic and terrestrial organisms. We have studied the effect of AEO treatment on the transcriptome of root and shoot tissues in seedlings of the model plant, Arabidopsis thaliana. Several genes encoding enzymes involved in the xenobiotic detoxification pathway were upregulated, including cytochrome P450s (CYPs), UDP-dependent glycosyltransferases (UGTs), glutathione-S-transferases (GSTs), and membrane transporters. In addition, gene products involved in oxidative stress, β-oxidation, and glucosinolate degradation were also upregulated, indicating other potential mechanisms of the adaptive response to AEO exposure. These results provide insight into the pathways that plants use to detoxify the organic acid component of OSPW. Moreover, this study advances our understanding of genes that could be exploited to potentially develop phytoremediation and biosensing strategies for AEO contaminants resulting from oil sands mining. PMID:26052061

  17. Distribution of polychlorinated biphenyls in an urban riparian zone affected by wastewater treatment plant effluent and the transfer to terrestrial compartment by invertebrates.

    Science.gov (United States)

    Yu, Junchao; Wang, Thanh; Han, Shanlong; Wang, Pu; Zhang, Qinghua; Jiang, Guibin

    2013-10-01

    In this study, we investigated the distribution of polychlorinated biphenyls (PCBs) in a riparian zone affected by the effluent from a wastewater treatment plant (WWTP). River water, sediment, aquatic invertebrates and samples from the surrounding terrestrial compartment such as soil, reed plants and several land based invertebrates were collected. A relatively narrow range of δ(13)C values was found among most invertebrates (except butterflies, grasshoppers), indicating a similar energy source. The highest concentration of total PCBs was observed in zooplankton (151.1 ng/g lipid weight), and soil dwelling invertebrates showed higher concentrations than phytophagous insects at the riparian zone. The endobenthic oligochaete Tubifex tubifex (54.28 ng/g lw) might be a useful bioindicator of WWTP derived PCBs contamination. High bioaccumulation factors (BAFs) were observed in collected aquatic invertebrates, although the biota-sediment/soil accumulation factors (BSAF) remained relatively low. Emerging aquatic insects such as chironomids could carry waterborne PCBs to the terrestrial compartment via their lifecycles. The estimated annual flux of PCBs for chironomids ranged from 0.66 to 265 ng⋅m(-2)⋅y(-1). Although a high prevalence of PCB-11 and PCB-28 was found for most aquatic based samples in this riparian zone, the mid-chlorinated congeners (e.g. PCB-153 and PCB-138) became predominant among chironomids and dragonflies as well as soil dwelling invertebrates, which might suggest a selective biodriven transfer of different PCB congeners. PMID:23811358

  18. Growth and N-uptake in sorghum plants manured with different amounts of Leucaena Leucocephala shoots as affected by time of application

    International Nuclear Information System (INIS)

    A pot experiment was conducted throughout two successive years to determine the impact of adding four rates of nitrogen (0, 60, 120 and 180 kg N/ha) in the form of Leucaena leucocephala (lam.) de Wit green manure as affected by different time (T0, T15 and T30) of application (just before sowing, 15 and 30 days before sowing, respectively) on the performance of sorghum (Sorghum bicolor L.) using the indirect N-15 isotopic dilution technique. Results showed that leucaena leaves, used as a green manure, significantly increased dry matter production and N yield of sorghum. The effect was more pronounced in panicles than shoots. In the first year, N recoveries in sorghum of the total N contained in leucaena green manure ranged between 17-24% in T0, 14-24% in T15 and 15-19% in T30. The highest N recovery value was obtained in lowest rate of n treatment (N60). Moreover, soil incorporated with leucaena green manure one month before planting enhanced both soil and mineral N fertilizer in sorghum plants. In the second year, total N uptake in sorghum (eg., panicles and the entire plant) increased with increasing amounts of N added as a leucaena green manure. N recoveries in sorghum ranged between 26-47% in T0, about 24% in T15 and 23-325 in T30 of the total N contained in leucaena green manure (LGM). As shown in the first year, the highest value of N recovery was obtained in lowest rate of N treatment. The beneficial effects of leucaena green manure on dry matter and N yield in sorghum was attributed not only to the additional N availability to the plant, but also to effects on the enhancement of soil N uptake, particularly when the incorporation was made before a sufficient time from sowing. The beneficial effect of green manuring with leucaena leaves at T15 and T30 was mainly resulted from enhancement of N uptake from this added material, as well as from soil and fertilizer N; whereas, it was only attributed to N uptake from green manure in the T0 treatment. Incorporation

  19. Cultivares de milho e população de plantas que afetam a produtividade de espigas verdes = Maize cultivars and plant population affecting green ear yield

    Directory of Open Access Journals (Sweden)

    Marcelo de Andrade Vieira

    2010-01-01

    Full Text Available O produtor de milho verde busca a profissionalização de sua produção, a fim de fornecer produtos de alta qualidade e em quantidade suficiente para suprir os mercados mais exigentes. Para se alcançar esse objetivo, devem ser adotadas técnicas de manejo que proporcionem altas produtividades sem que sejam afetadas negativamente as características comerciais. Com o objetivo de avaliar a aptidão de cultivares e o efeito da população de plantas na produção de milho verde, foi conduzido um experimento em Ponta Grossa, Estado do Paraná.Adotou-se o delineamento de blocos ao acaso, em esquema de parcelas subdivididas, sendo os tratamentos principais as cultivares (Penta, 30P34, DKB 214 e SWB 551 e os secundários as populações de plantas (3,5; 5,0; 6,5; 8,0 e 9,5 plantas m-2. Foram caracterizados a forma da espiga, o comprimento da espiga empalhada, o comprimento de granação, o diâmetro da espiga despalhada, a massa fresca da espiga despalhada, a profundidade de grãos, a porcentagem de espigas comerciais e o número de espigas comerciais. Os resultados demonstraram que as cultivares 30P34, DKB 214 e SWB 551 são aptas à produção de espigas verdes, suas maiores produtividades são esperadas nas populações de 38.983, 59.866 e 43.591 plantas ha-1, e o aumentoda população de 3,5 para 9,5 plantas m-2 influencia negativamente todas as características da espiga que foram avaliadas, excetuando-se a forma. Entre as cultivares, a DKB 214 apresentou a maior porcentagem e o maior número de espigas comerciais ha-1. The producers of green corn aim at the professionalization of their production, providing highquality products and in sufficient quantity to supply the most demanding markets. To achieve this goal, management techniques must be adopted to provide high yields without negatively affecting commercial traits. Aiming at evaluate the aptitude of cultivars and plant population effect on green corn yield, an assay was carried out in

  20. Growth and N-uptake in sorghum plants manured with different amounts of Leucaena Leucocephala shoots as affected by time of application

    International Nuclear Information System (INIS)

    A pot experiment was conducted throughout two successive years to determine the impact of adding four rates of nitrogen (0, 60, 120 and 180 kg N/ha) in the form of Leucaena leucocephala (lam.) de Wit green manure as affected by different time (T0, T15 and T30) of application (just before sowing, 15 and 30 days before sowing, respectively) on the performance of sorghum (Sorghum bicolor L.) using the indirect N-15 isotopic dilution technique. Results showed that leucaena leaves, used as a green manure, significantly increased dry matter production and N yield of sorghum. The effect was more pronounced in panicles than shoots. In the first year, N recoveries in sorghum of the total N contained in leucaena green manure ranged between 17-24% in T0, 14-24% in T15 and 15-19% in T30. The highest N recovery value was obtained in lowest rate of n treatment (N60). Moreover, soil incorporated with leucaena green manure one month before planting enhanced both soil and mineral N fertilizer in sorghum plants. In the second year, total N uptake in sorghum (eg., panicles and the entire plant) increased with increasing amounts of N added as a leucaena green manure. N recoveries in sorghum ranged between 26-47% in T0, about 24% in T15 and 23-325 in T30 of the total N contained in leucaena green manure (LGM). As shown in the first year, the highest value of N recovery was obtained in lowest rate of N treatment. The beneficial effects of leucaena green manure on dry matter and N yield in sorghum was attributed not only to the additional N availability to the plant, but also to effects on the enhancement of soil N uptake, particularly when the incorporation was made before a sufficient time from sowing. The beneficial effect of green manuring with leucaena leaves at T15 and T30 was mainly resulted from enhancement of N uptake from this added material, as well as from soil and fertilizer N. Whereas, it was only attributed to N uptake from green manure in the T0 treatment. Incorporation

  1. Low Night Temperature Affects the Phloem Ultrastructure of Lateral Branches and Raffinose Family Oligosaccharide (RFO) Accumulation in RFO-Transporting Plant Melon (Cucumismelo L.) during Fruit Expansion.

    Science.gov (United States)

    Hao, Jinghong; Gu, Fengying; Zhu, Jie; Lu, Shaowei; Liu, Yifei; Li, Yunfei; Chen, Weizhi; Wang, Liping; Fan, Shuangxi; Xian, Cory J

    2016-01-01

    Due to the importance and complexity of photo assimilate transport in raffinose family oligosaccharide (RFO)-transporting plants such as melon, it is important to study the features of the transport structure (phloem) particularly of the lateral branches connecting the source leaves and the sink fruits, and its responses to environmental challenges. Currently, it is unclear to what extents the cold environmental temperature stress would alter the phloem ultrastructure and RFO accumulation in RFO-transporting plants. In this study, we firstly utilized electron microscopy to investigate the changes in the phloem ultrastructure of lateral branches and RFO accumulation in melons after being subjected to low night temperatures (12°C and 9°C). The results demonstrated that exposure to 9°C and 12°C altered the ultrastructure of the phloem, with the effect of 9°C being more obvious. The most obvious change was the appearance of plasma membrane invaginations in 99% companion cells and intermediary cells. In addition, phloem parenchyma cells contained chloroplasts with increased amounts of starch grains, sparse cytoplasm and reduced numbers of mitochondria. In the intermediary cells, the volume of cytoplasm was reduced by 50%, and the central vacuole was present. Moreover, the treatment at 9°C during the night led to RFO accumulation in the vascular bundles of the lateral branches and fruit carpopodiums. These ultrastructural changes of the transport structure (phloem) following the treatment at 9°C represented adaptive responses of melons to low temperature stresses. Future studies are required to examine whether these responses may affect phloem transport. PMID:27501301

  2. Ectopic expression of foxtail millet zip-like gene,SiPf40,in transgenic rice plants causes a pleiotropic phenotype affecting tillering,vascular distribution and root development

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Plant architecture determines grain production in rice(Oryza sativa) and is affected by important agronomic traits such as tillering,plant height,and panicle morphology.Many key genes involved in controlling the initiation and outgrowth of axillary buds,the elongation of stems,and the architecture of inflorescences have been isolated and analyzed.Previous studies have shown that SiPf40,which was identified from a foxtail millet(Setaria italica) immature seed cDNA library,causes extra branches and tillers in SiPf40-transgenic tobacco and foxtail millet,respectively.To reconfirm its function,we generated transgenic rice plants overexpressing SiPf40 under the control of the ubiquitin promoter.SiPf40-overexpressing transgenic plants have a greater tillering number and a wider tiller angle than wild-type plants.Their root architecture is modified by the promotion of lateral root development,and the distribution of xylem and phloem in the vascular bundle is affected.Analysis of hormone levels showed that the ratios of indole-3-acetic acid/zeatin(IAA/ZR) and IAA/gibberellic acid(IAA/GA) decreased in SiPf40-transgenic plants compared with wild-type plants.These findings strongly suggest that SiPf40 plays an important role in plant architecture.

  3. Distribution of polychlorinated biphenyls in an urban riparian zone affected by wastewater treatment plant effluent and the transfer to terrestrial compartment by invertebrates

    International Nuclear Information System (INIS)

    In this study, we investigated the distribution of polychlorinated biphenyls (PCBs) in a riparian zone affected by the effluent from a wastewater treatment plant (WWTP). River water, sediment, aquatic invertebrates and samples from the surrounding terrestrial compartment such as soil, reed plants and several land based invertebrates were collected. A relatively narrow range of δ13C values was found among most invertebrates (except butterflies, grasshoppers), indicating a similar energy source. The highest concentration of total PCBs was observed in zooplankton (151.1 ng/g lipid weight), and soil dwelling invertebrates showed higher concentrations than phytophagous insects at the riparian zone. The endobenthic oligochaete Tubifex tubifex (54.28 ng/g lw) might be a useful bioindicator of WWTP derived PCBs contamination. High bioaccumulation factors (BAFs) were observed in collected aquatic invertebrates, although the biota-sediment/soil accumulation factors (BSAF) remained relatively low. Emerging aquatic insects such as chironomids could carry waterborne PCBs to the terrestrial compartment via their lifecycles. The estimated annual flux of PCBs for chironomids ranged from 0.66 to 265 ng⋅m−2⋅y−1. Although a high prevalence of PCB-11 and PCB-28 was found for most aquatic based samples in this riparian zone, the mid-chlorinated congeners (e.g. PCB-153 and PCB-138) became predominant among chironomids and dragonflies as well as soil dwelling invertebrates, which might suggest a selective biodriven transfer of different PCB congeners. Highlights: • The distribution of PCBs in an urban riparian zone around a wastewater effluent affected river was investigated. • Relatively high abundances of PCB-11 and PCB-28 were found for most samples. • Mid-chlorinated congeners (PCB-153 and PCB-138) were more accumulated in chironomids and dragonflies as well as soil dwelling invertebrates. • Emerging invertebrates can carry waterborne PCBs to the terrestrial

  4. Distribution of polychlorinated biphenyls in an urban riparian zone affected by wastewater treatment plant effluent and the transfer to terrestrial compartment by invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Junchao [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Environment Research Institute, Shandong University, Jinan, 250100 (China); Wang, Thanh, E-mail: bswang@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Han, Shanlong [Environment Research Institute, Shandong University, Jinan, 250100 (China); Wang, Pu; Zhang, Qinghua; Jiang, Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)

    2013-10-01

    In this study, we investigated the distribution of polychlorinated biphenyls (PCBs) in a riparian zone affected by the effluent from a wastewater treatment plant (WWTP). River water, sediment, aquatic invertebrates and samples from the surrounding terrestrial compartment such as soil, reed plants and several land based invertebrates were collected. A relatively narrow range of δ{sup 13}C values was found among most invertebrates (except butterflies, grasshoppers), indicating a similar energy source. The highest concentration of total PCBs was observed in zooplankton (151.1 ng/g lipid weight), and soil dwelling invertebrates showed higher concentrations than phytophagous insects at the riparian zone. The endobenthic oligochaete Tubifex tubifex (54.28 ng/g lw) might be a useful bioindicator of WWTP derived PCBs contamination. High bioaccumulation factors (BAFs) were observed in collected aquatic invertebrates, although the biota-sediment/soil accumulation factors (BSAF) remained relatively low. Emerging aquatic insects such as chironomids could carry waterborne PCBs to the terrestrial compartment via their lifecycles. The estimated annual flux of PCBs for chironomids ranged from 0.66 to 265 ng⋅m{sup −2}⋅y{sup −1}. Although a high prevalence of PCB-11 and PCB-28 was found for most aquatic based samples in this riparian zone, the mid-chlorinated congeners (e.g. PCB-153 and PCB-138) became predominant among chironomids and dragonflies as well as soil dwelling invertebrates, which might suggest a selective biodriven transfer of different PCB congeners. Highlights: • The distribution of PCBs in an urban riparian zone around a wastewater effluent affected river was investigated. • Relatively high abundances of PCB-11 and PCB-28 were found for most samples. • Mid-chlorinated congeners (PCB-153 and PCB-138) were more accumulated in chironomids and dragonflies as well as soil dwelling invertebrates. • Emerging invertebrates can carry waterborne PCBs to the

  5. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells

    Science.gov (United States)

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease.

  6. Preliminary identification of scenarios that may affect the escape and transport of radionuclides from the Waste Isolation Pilot Plant, Southeastern New Mexico

    International Nuclear Information System (INIS)

    The Waste Isolation Pilot Plant is being evaluated as a location for the disposal of defense-generated transuranic waste. One of the criteria to be used to determine the suitability of the disposal system is compliance with the Containment Requirements established by the U.S. Environmental Protection Agency. One step in determining compliance is to identify the combinations of events and processes (scenarios) defining possible future states of the disposal system that may affect the escape of radionuclides from the repository and transport to the accessible environment. A list of previously identified events and processes was adapted to a scenario-selection procedure that develops a comprehensive set of mutually exclusive scenarios through the use of a logic diagram. Four events resulted in the development of 16 scenarios. Preliminary analyses indicate that four scenarios result in no releases. Six scenarios consist of combinations of drilling into a room, drilling into a room and a brine reservoir, and emplacement of withdrawal wells downgradient from the repository. Six additional scenarios consist of these same six combinations with the addition of potash mining and the associated surface subsidence. The 12 retained scenarios will be screened based on consequence and/or probability of occurrence. During the course of performance assessment, additional data and information will be used to revise and update these preliminary scenarios where appropriate. (author)

  7. Boron affects the growth and ultrastructure of castor bean plants Boro afeta o crescimento e a ultra-estrutura da mamoneira

    Directory of Open Access Journals (Sweden)

    Denis Herisson da Silva

    2008-12-01

    Full Text Available The cultivation of oleaginous plants like the castor bean guarantees employment for agricultural families and can contribute in energy and chemical sectors, especially in the northeastern semi-arid regions of Brazil. Boron (B deficiency is a widespread nutritional disorder despite the fact that various anthropogenic sources with high B content may increase soil B to toxic levels for plants. The present study was designed to investigate the ultrastructural effects of boron deficiency and toxicity on castor bean plants which were grown under greenhouse condition using plastic containers with 10 L of nutrient solution. Boron treatments comprised: control (no B; 0.27 mg L-1, 5.40 mg L-1 B pots (one plant per pot, tested in a completely randomized design with three replicates. The dry matter of all plant parts and B concentration were determined. Cellular ultrastructure was evaluated by transmission and scanning electron microscopy on samples of leaves and petioles. Dry matter yield was affected by the B absence treatment but there was no difference for the 5.4 mg L-1 B (toxic conditions treatment. A marginal leaf burn at edge and tips of oldest leaves and absence of starch granules in chloroplasts were noted for the B toxicity treatment. The deformation of the youngest leaves, the death of the apical meristem as well as the swelling of the middle lamella, absence of starch granules in chloroplasts and petiole vessels untidily were observed in the B absent treatment. It is concluded that the production and development of castor bean plants is affected by boron deficiency, but not for boron toxicity conditions.A mamoneira é uma oleaginosa com grande potencial para a geração de renda na agricultura familiar e para produção de matéria prima para a indústria química e setor energético brasileiro, especialmente em regiões do semi-árido nordestino. A deficiência de boro (B ocorre de forma generalizada no Brasil e a aplicação excessiva deste

  8. The tep1 gene of Sinorhizobium meliloti coding for a putative transmembrane efflux protein and N-acetyl glucosamine affect nod gene expression and nodulation of alfalfa plants

    Directory of Open Access Journals (Sweden)

    Soto María

    2009-01-01

    Full Text Available Abstract Background Soil bacteria collectively known as Rhizobium, characterized by their ability to establish beneficial symbiosis with legumes, share several common characteristics with pathogenic bacteria when infecting the host plant. Recently, it was demonstrated that a fadD mutant of Sinorhizobium meliloti is altered in the control of swarming, a type of co-ordinated movement previously associated with pathogenicity, and is also impaired in nodulation efficiency on alfalfa roots. In the phytopathogen Xanthomonas campestris, a fadD homolog (rpfB forms part of a cluster of genes involved in the regulation of pathogenicity factors. In this work, we have investigated the role in swarming and symbiosis of SMc02161, a S. meliloti fadD-linked gene. Results The SMc02161 locus in S. meliloti shows similarities with members of the Major Facilitator Superfamily (MFS of transporters. A S. meliloti null-mutant shows increased sensitivity to chloramphenicol. This indication led us to rename the locus tep1 for transmembrane efflux protein. The lack of tep1 does not affect the appearance of swarming motility. Interestingly, nodule formation efficiency on alfalfa plants is improved in the tep1 mutant during the first days of the interaction though nod gene expression is lower than in the wild type strain. Curiously, a nodC mutation or the addition of N-acetyl glucosamine to the wild type strain lead to similar reductions in nod gene expression as in the tep1 mutant. Moreover, aminosugar precursors of Nod factors inhibit nodulation. Conclusion tep1 putatively encodes a transmembrane protein which can confer chloramphenicol resistance in S. meliloti by expelling the antibiotic outside the bacteria. The improved nodulation of alfalfa but reduced nod gene expression observed in the tep1 mutant suggests that Tep1 transports compounds which influence nodulation. In contrast to Bradyrhizobium japonicum, we show that in S. meliloti there is no feedback regulation

  9. Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants.

    Directory of Open Access Journals (Sweden)

    Angela P Van de Wouw

    Full Text Available Brassica napus (canola cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a 'gene for gene' manner whereby plant resistance (R genes are complementary to pathogen avirulence (Avr genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6 also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans.

  10. 137Cs and 90Sr mobility in soils and transfer in soil-plant systems in the Novozybkov district affected by the Chernobyl accident

    International Nuclear Information System (INIS)

    The Chernobyl radionuclides distribution and mobility in soils and uptake by plants have been studied in seminatural and agricultural moraine and in fluvioglacial landscapes typical for the areas of the Bryansk region affected by the accident.The major part of the Chernobyl 137Cs accumulated in the topsoil is insoluble in water, 40 to 93% of this radionuclide is strongly fixed by soil, while 70 to 90% of the 90Sr is present in water soluble, exchangeable and weak-acid soluble forms. Radionuclide vertical migration is most pronounced in local depressions with organic and gley soils in which both radionuclides are detected to the depth of 30-40 cm.In woodlands, most of the 137grasses. Transfer to grasses in local depressions is usually higher compared with the dry levees. Observed exclusions are assumed to be due to comparatively low mobility of 137Cs and relatively high K content in soil. 137Cs accumulation in potato tubers grown on sandy soddy podzolic watershed soils mainly corresponds to its total amount in soils; uptake of 90Sr depends upon the percentage of its most mobile fraction.Pronounced relief is proved to cause different patterns in distribution and migration of radionuclides in soils and local food chains. The study showed it to be true for private farms situated in different landscape positions within the same settlement.The forest litter, topsoil and products, and flood plain pastures, especially localities in depressions are critical materials for the long-term radioecological monitoring of the contaminated landscapes of the study area and those of similar conditions. Population of the areas within the zone of contamination exceeding 15Ci/km2 (555kBq/m2) should be recommended to exclude local forest products from their diets and to avoid cattle grazing on wet flood plain meadows without remediation. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China.

    Science.gov (United States)

    Pang, Long; Yuan, Yiting; He, Han; Liang, Kang; Zhang, Hongzhong; Zhao, Jihong

    2016-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants. In this study, the occurrence and distribution of six OPEs were investigated in sewage sludge from 24 wastewater treatment plants (WWTPs) in 18 cities of Henan province, Central China. The results indicated that all target OPEs were detected in the sludge samples with the detection rate of 95.8%, except tris(dichloropropyl)phosphate (TDCP). The total concentration of the six OPEs ranged from 38.6 to 508 μg kg(-1). Tris(2-chloroethyl)phosphate (TCEP), tris(2-butoxyethyl)phosphate (TBEP), and tris(2-chloroiso-propyl)phosphate (TCPP) were found to be predominant, with concentrations ranging from 2.50 to 203, 1.60 to 383, and 6.70-161 μg kg(-1), respectively. The potential factors affecting OPE levels in sewage sludge, such as wastewater source, sludge characteristics, operational conditions, treatment techniques, and total organic carbon (TOC) of sludge in WWTPs were investigated. The results indicated that the total concentration of OPEs in sewage sludge has no significant relationship with the individual parameters (p > 0.05). However, significant correlations were found between triphenyl phosphate (TPhP) level and treatment capacity (R = 0.484, p < 0.05), processing volume (R = 0.495, p < 0.05), and serving population (R = 0.591, p < 0.05). Furthermore, the relationship between treatment techniques and the total concentration of OPEs in sewage sludge was also investigated in this study, and the results illustrated that the levels of OPEs in sludge were independent of the solid retention time (SRT). PMID:26974479

  12. Leaf senescence of common bean plants as affected by soil phosphorus supply Senescência foliar do feijoeiro afetada pelo suprimento de fósforo no solo

    Directory of Open Access Journals (Sweden)

    Adelson Paulo Araújo

    2007-06-01

    Full Text Available Responses of leaf senescence to P supply could constitute adaptive mechanisms for plant growth under P-limiting conditions. The aim of this study was to evaluate the effects of soil P supply on leaf senescence of common bean (Phaseolus vulgaris L.. Eight P levels, ranging from 5 to 640 mg kg-1 P, were applied to pots containing four bean plants of cultivar Carioca in 10 kg of an Oxic Haplustult soil. Attached leaves were counted weekly, abscised leaves were collected every other day, and seeds were harvested at maturity. The number of live leaves increased until 48 days after emergence (DAE and decreased afterwards, irrespective of applied P levels. At lower applied P levels, the initial increase and the final decrease of leaf number was weak, whereas at higher applied P levels the leaf number increased intensively at the beginning of the growth cycle and decreased strongly after 48 DAE. Dry matter and P accumulated in senesced leaves increased as soil P levels increased until 61 DAE, but differences between P treatments narrowed thereafter. The greatest amounts of dry mass and P deposited by senesced leaves were observed at 48-54 DAE for high P levels, at 62-68 DAE for intermediate P levels and at 69-76 DAE for low P levels. These results indicate that soil P supply did not affect the stage of maximal leaf number and the beginning of leaf senescence of common bean plants, but the stage of greatest deposition of senesced leaves occurred earlier in the growth cycle as the soil P supply was raised.As respostas da senescência foliar ao suprimento de P podem constituir estratégias adaptativas para o crescimento vegetal sob condições limitantes do nutriente. O objetivo deste trabalho foi avaliar os efeitos do suprimento de P no solo na senescência foliar do feijoeiro (Phaseolus vulgaris L.. Oito doses de P, variando entre 5 e 640 mg kg-1 de P, foram aplicadas em vasos com 10 kg de Argissolo óxico, onde foram crescidas quatro plantas da cultivar

  13. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies.

    Science.gov (United States)

    Du, Shaoting; Zhang, Ranran; Zhang, Peng; Liu, Huijun; Yan, Minggang; Chen, Ni; Xie, Huaqiang; Ke, Shouwei

    2016-02-01

    CO2 elevation often alters the plant's nitrate reductase (NR) activity, the first enzyme acting in the nitrate assimilation pathway. However, the mechanism underlying this process remains unknown. The association between elevated CO2-induced alterations of NR activity and nitric oxide (NO) was examined in Col-0 Arabidopsis fed with 0.2-10 mM nitrate, using NO donors, NO scavenger, and NO synthase (NOS) inhibitor. The noa1 mutant, in which most NOS activity was lost, and the NR activity-null mutant nia1 nia2 were also used to examine the above association. In response to CO2 elevation, NR activity increased in low-nitrate Col-0 plants but was inhibited in high-nitrate Col-0 plants. NO scavenger and NOS inhibitor could eliminate these two responses, whereas the application of NO donors mimicked these distinct responses in ambient CO2-grown Col-0 plants. Furthermore, in both low- and high-nitrate conditions, elevated CO2 increased NOS activity and NO levels in Col-0 and nia1 nia2 plants but had little effect on NO level and NR activity in noa1 plants. Considering all of these findings, this study concluded that, in response to CO2 elevation, either the NR activity induction in low-nitrate plants or the NR activity inhibition in high-nitrate plants is regulated by NOS-generated NO. PMID:26608644

  14. Relationship between Individual External Doses, Ambient Dose Rates and Individuals’ Activity-Patterns in Affected Areas in Fukushima following the Fukushima Daiichi Nuclear Power Plant Accident

    Science.gov (United States)

    Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki

    2016-01-01

    The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding

  15. Uptake of some radionuclides by woody plants growing in the rainforest of Western Ghats in India

    International Nuclear Information System (INIS)

    Transfer of the naturally occurring radionuclides 238U, 232Th, and 40K, and the fallout radionuclide 210Po to different wild plant species in the rainforest of Western Ghats was analyzed. A number of physiologically different plants from the top storey and understorey, such as shrubs and epiphytes, were compared. The concentrations of these radionuclides in the plants and soil were measured using a gamma ray spectrometer and an alpha counter, and were found to vary widely within plants and between species. The soil-plant ratios also varied between species while Elaeocarpus oblongus and epiphytic plants exhibited preferential uptake of these radionuclides. As a result, the dust particles trapped in the root systems of epiphytes could be used as bioindicators of fallout radionuclides in the Western Ghats. - Highlights: • Predominant plants species of the region were selected for analysis. • CR Model was employed to these plants spices. • Two plants were indicated preferential uptake of these radionuclides. • Bioindicator was identified in the Western Ghats Environment

  16. Growth and Nitrogen Uptake in Sorghum Plants Manured with Leucaena Leucocaphala Leaves as Affected by Nitrogen Rate and Time of Application

    International Nuclear Information System (INIS)

    A pot experiment was conducted to determine the effect of four rates of nitrogen (N) in the form of leucaena leaves and the time of application on the performance of sorghum plants using the 15N isotopic dilution technique. Results showed that leucaena green manure (LGM) increased dry matter and N yield of sorghum. Nitrogen recoveries of LGM ranged between 23 and 47%. An additional beneficial effect of LGM was attributed to the enhancement of soil N uptake. The best timing of LGM incorporation for obtaining more N derived from LGM, less soil N uptake, and greater dry matter and N in sorghum leaves seemed to be at planting. However, the appropriate timing and rate of LGM to obtain greater dry matter and N yield in panicles, as well as in the whole plant of sorghum, appeared to be at 30 days before planting, particularly a rate of 120 kg N ha-1. (author)

  17. Sourgrass densities affecting the initial growth and macronutrient content of coffee plants Densidades de capim-amargoso afetando o crescimento inicial e o teor de macronutrientes do cafeeiro

    Directory of Open Access Journals (Sweden)

    L.B Carvalho

    2013-03-01

    Full Text Available The objective of this work was to evaluate the coexistence effects of coffee (Coffea arabica with densities of sourgrass (Digitaria insularis on crop macronutrient content and plant growth. The experiment was conducted in plots where one coffee plant was maintained in coexistence with 0 (weed-free check, 1, 2, 4, 8, and 16 sourgrass plants, using a completely randomized design with three replicates. Reduction of coffee growth and macronutrient content, except P that increased, started when the coexistence occurred with sourgrass plants in a density of 1 plant per plot. In general, macronutrient content was reduced by 18-50%, while growth characteristics were reduced by 9-41%, when coffee plants coexisted with 16 plants of sourgrass. Thus, sourgrass competition for nutrients was a strong factor limiting coffee plant growth.O objetivo deste trabalho foi avaliar os efeitos da convivência do cafeeiro (Coffea arabica com densidades de capim-amargoso (Digitaria insularis sobre o teor de macronutrientes e o crescimento das plantas da cultura. O experimento foi conduzido em caixas enterradas no solo, onde uma planta de café foi mantida em convivência com 0 (testemunha livre de plantas daninhas, 1, 2, 4, 8 e 16 plantas de capim-amargoso, usando o delineamento inteiramente casualizado com três repetições. A redução no crescimento e no teor de macronutrientes do cafeeiro - exceto P, que aumentou - iniciou-se quando a convivência ocorreu com plantas de capim-amargoso na densidade de uma planta por caixa. Em geral, o teor de macronutrientes foi reduzido em 10-50%, enquanto as características de crescimento foram reduzidas em 9-41%, quando o cafeeiro conviveu com 16 plantas de capim-amargoso. Assim, a competição de capim-amargoso por nutrientes foi um forte fator limitante para o crescimento das plantas de café.

  18. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine

    OpenAIRE

    Myung Chae Jung

    2008-01-01

    Heavy metal concentrations were measured in soils and plants in and around a copper-tungsten mine in southeast Korea to investigate the influence of past base metal mining on the surface environment. The results of chemical analysis indicate that the heavy metals in soils decreased with distance from the source, controlled mainly by water movement and topography. The metal concentrations measured in plant species generally decreased in the order; spring onions > soybean leaves > perilla leave...

  19. The potential of a salt-tolerant plant (Distichlis spicata cv. NyPa Forage) to treat effluent from inland saline aquaculture and provide livestock feed on salt-affected farmland.

    Science.gov (United States)

    Lymbery, Alan J; Kay, Gavin D; Doupé, Robert G; Partridge, Gavin J; Norman, Hayley C

    2013-02-15

    Dryland salinity is a major problem affecting food production from agricultural land in Australia and throughout the world. Although there is much interest in using saline groundwater to grow marine fish on salt-affected farmland, the disposal of nutrient enriched, saline aquaculture effluent is a major environmental problem. We investigated the potential of the salt-tolerant NyPa Forage plant (Distichlis spicata L. Greene var. yensen-4a) to trap nutrients from saline aquaculture effluent and subsequently to provide a fodder crop for livestock. Sub-surface flow wetlands containing NyPa Forage were constructed and their efficacy in removing total nitrogen, ammonia, nitrite/nitrate, total phosphorus and orthophosphate was monitored under different levels of nutrients and salinity. The wetlands removed 60-90% of total nitrogen loads and at least 85% of ammonia, nitrite/nitrate, total phosphorus and orthophosphate loads, with greater efficiency at high nutrient and low salinity levels. The above-ground yield, sodium, crude protein (CP) and in vitro dry matter digestibility (DMD) of NyPa Forage plants were measured after fertilisation with different nutrient levels and cropping at different frequencies. Yield of plants increased with increased nutrient, while nutritive value was greater when nutrients were applied but did not differ among nutrient levels. Yield was not affected by cropping frequency, but nutritive value was greatest when plants were cropped at intervals of 21 or 42 days. At optimum nutrient addition and cropping levels, the plants had a mean CP content of 16.7% and an in vitro DMD of 67.6%, equivalent to an energy value of 9.5 MJ kg(-1). Assuming an equivalent fibre content and voluntary food intake as grass hay, and no accumulation of other toxic minerals, these nutritive values would be sufficient for maintenance or moderate liveweight gains in dry adult sheep or cattle. PMID:23333515

  20. Poinsettia plant exposure

    Science.gov (United States)

    Christmas flower poisoning; Lobster plant poisoning; Painted leaf poisoning ... Leaves, stem, sap of the poinsettia plant ... Poinsettia plant exposure can affect many parts of the body. EYES (IF DIRECT CONTACT OCCURS) Burning Redness STOMACH AND ...

  1. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant.

    Science.gov (United States)

    Garcia, Kevin; Delteil, Amandine; Conéjéro, Geneviève; Becquer, Adeline; Plassard, Claude; Sentenac, Hervé; Zimmermann, Sabine

    2014-02-01

    Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway. PMID:24279702

  2. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine

    Directory of Open Access Journals (Sweden)

    Myung Chae Jung

    2008-04-01

    Full Text Available Heavy metal concentrations were measured in soils and plants in and around a copper-tungsten mine in southeast Korea to investigate the influence of past base metal mining on the surface environment. The results of chemical analysis indicate that the heavy metals in soils decreased with distance from the source, controlled mainly by water movement and topography. The metal concentrations measured in plant species generally decreased in the order; spring onions > soybean leaves > perilla leaves » red pepper > corn grains » jujube grains, although this pattern varied moderately between different elements. The results agree with other reports that metal concentrations in leaves are usually much higher than those in grain. Factors influencing the bioavailability of metals and their occurrences in crops were found as soil pH, cation exchange capacity, organic matter content, soil texture, and interaction among the target elements. It is concluded that total metal concentrations in soils are the main controls on their contents in plants. Soil pH was also an important factor. A stepwise linear multiple regression analysis was also conducted to identify the dominant factors influencing metal uptake by plants. Metal concentrations in plants were also estimated by computer-aided statistical methods.

  3. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host.

    Science.gov (United States)

    Boccara, Martine; Mills, Catherine E; Zeier, Jürgen; Anzi, Chiara; Lamb, Chris; Poole, Robert K; Delledonne, Massimo

    2005-07-01

    Host cells respond to infection by generating nitric oxide (NO) as a cytotoxic weapon to facilitate killing of invading microbes. Bacterial flavohaemoglobins are well-known scavengers of NO and play a crucial role in protecting animal pathogens from nitrosative stress during infection. Erwinia chrysanthemi, which causes macerating diseases in a wide variety of plants, possesses a flavohaemoglobin (HmpX) whose function in plant pathogens has remained unclear. Here we show that HmpX consumes NO and prevents inhibition by NO of cell respiration, indicating a role in protection from nitrosative stress. Furthermore, infection of Saintpaulia ionantha plants with an HmpX-deficient mutant of E. chrysanthemi revealed that the lack of NO scavenging activity causes the accumulation of unusually high levels of NO in host tissue and triggers hypersensitive cell death. Introduction of the wild-type hmpX gene in an incompatible strain of Pseudomonas syringae had a dramatic effect on the hypersensitive cell death in soya bean cell suspensions, and markedly reduced the development of macroscopic symptoms in Arabidopsis thaliana plants. These observations indicate that HmpX not only protects against nitrosative stress but also attenuates host hypersensitive reaction during infection by intercepting NO produced by the plant for the execution of the hypersensitive cell death programme. PMID:15998309

  4. {sup 134}Cs uptake by four plant species and Cs-K relations in the soil-plant system as affected by Ca(OH){sub 2} application to an acid soil

    Energy Technology Data Exchange (ETDEWEB)

    Massas, I., E-mail: massas@aua.g [Soil Science Laboratory, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens (Greece); Skarlou, V.; Haidouti, C.; Giannakopoulou, F. [Soil Science Laboratory, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens (Greece)

    2010-03-15

    Three rates of Ca(OH){sub 2} were applied to an acid soil and the {sup 134}Cs uptake by radish, cucumber, soybean and sunflower plants was studied. The {sup 134}Cs concentration in all plant species was reduced from 1.6-fold in the sunflower seeds to 6-fold in the soybean vegetative parts at the higher Ca(OH){sub 2} rate. Potassium (K) concentration in plants was also reduced, but less effectively. The significantly decreased {sup 134}Cs-K soil to plant distribution factors (D.F.) clearly suggest a stronger effect of soil liming on {sup 134}Cs than on K plant uptake. This observation was discussed in terms of ionic interactions in the soil matrix and within the plants. The results also indicated that the increased Ca{sup 2+} concentration in the exchange phase and in the soil solution along with the improved root activity, due to the soil liming, enhanced the immobilization of {sup 134}Cs in the soil matrix and consequently lowered the {sup 134}Cs availability for plant uptake.

  5. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia.

    Science.gov (United States)

    Paul, Melanie Verena; Iyer, Srignanakshi; Amerhauser, Carmen; Lehmann, Martin; van Dongen, Joost T; Geigenberger, Peter

    2016-09-01

    Subgroup-VII-ethylene-response-factor (ERF-VII) transcription factors are involved in the regulation of hypoxic gene expression and regulated by proteasome-mediated proteolysis via the oxygen-dependent branch of the N-end-rule pathway. While research into ERF-VII mainly focused on their role to regulate anoxic gene expression, little is known on the impact of this oxygen-sensing system in regulating plant metabolism and growth. By comparing Arabidopsis (Arabidopsis thaliana) plants overexpressing N-end-rule-sensitive and insensitive forms of the ERF-VII-factor RAP2.12, we provide evidence that oxygen-dependent RAP2.12 stability regulates central metabolic processes to sustain growth, development, and anoxic resistance of plants. (1) Under normoxia, overexpression of N-end-rule-insensitive Δ13RAP2.12 led to increased activities of fermentative enzymes and increased accumulation of fermentation products, which were accompanied by decreased adenylate energy states and starch levels, and impaired plant growth and development, indicating a role of oxygen-regulated RAP2.12 degradation to prevent aerobic fermentation. (2) In Δ13RAP2.12-overexpressing plants, decreased carbohydrate reserves also led to a decrease in anoxic resistance, which was prevented by external Suc supply. (3) Overexpression of Δ13RAP2.12 led to decreased respiration rates, changes in the levels of tricarboxylic acid cycle intermediates, and accumulation of a large number of amino acids, including Ala and γ-amino butyric acid, indicating a role of oxygen-regulated RAP2.12 abundance in controlling the flux-modus of the tricarboxylic acid cycle. (4) The increase in amino acids was accompanied by increased levels of immune-regulatory metabolites. These results show that oxygen-sensing, mediating RAP2.12 degradation is indispensable to optimize metabolic performance, plant growth, and development under both normoxic and hypoxic conditions. PMID:27372243

  6. Nicotine Concentration in Leaves of Flue-cured Tobacco Plants as Affected by Removal of the Shoot Apex and Lateral Buds

    Institute of Scientific and Technical Information of China (English)

    Shu-Sheng Wang; Qiu-Mei Shi; Wen-Qing Li; Jun-Fang Niu; Chun-Jian Li; Fu-Suo Zhang

    2008-01-01

    It is believed that the nicotine concentration in tobacco is closely correlated with the amount of nitrogen (N) supplied.On the other hand,N uptake mainly occurs at the early growth stage,whereas nicotine concentration increases at the late growth stage,especially after removing the shoot apex.To identify the causes of the increased nicotine concentration in tobacco plants,and to compare the effects of different ways of mechanical wounding on nicotine concentration,field experiments were carried out in Fuzhou,Fujian Province in 2003 and 2004.Excision of the shoot apex had almost no influence on N content in the plant;however,it caused dramatic increases in nicotine concentration in leaves,especially in the middle and upper leaves.An additional increase of the nicotine concentration was obtained by removal of axillary buds.The wounding caused by routine leaf harvests,however,did not change the leaf nicotine concentration,and neither did reducing leaf harvest times.The present results revealed no direct relationship between N supply and nicotine concentration in tobacco leaves,and indicate that not all kinds of mechanical wounding were capable of stimulating nicotine synthesis in tobacco plants.Since nicotine production is highly dependent on the removal of apical meristems and hence on the major sources of auxin in the plant,and application of 1-naphthylacetic acid onto the cut surface of the stem after removing the shoot apex markedly decreased the nicotine concentration in different leaves and the total nicotine content in the plant,the results suggest that decreased auxin supply caused by removal of the shoot apex as a kind of mechanical wounding might regulate nicotine synthesis in the roots of tobacco plants.

  7. Conceptual differences between existing and advanced reactors and criteria affecting the development of new types of nuclear power plants world-wide

    International Nuclear Information System (INIS)

    A comparison of the nuclear safety principles and the design and operating parameters between existing and advanced reactors is presented, and criteria affecting the development of new types of nuclear reactor are outlined

  8. Knocking Out ACR2 Does Not Affect Arsenic Redox Status in Arabidopsis thaliana: Implications for As Detoxification and Accumulation in Plants

    OpenAIRE

    Liu, W; Schat, H.; Bliek, M.; Chen, Y; McGrath, S.; George, G; Salt, D. E.; Zhao, F.J.

    2012-01-01

    Many plant species are able to reduce arsenate to arsenite efficiently, which is an important step allowing detoxification of As through either efflux of arsenite or complexation with thiol compounds. It has been suggested that this reduction is catalyzed by ACR2, a plant homologue of the yeast arsenate reductase ScACR2. Silencing of AtACR2 was reported to result in As hyperaccumulation in the shoots of Arabidopsis thaliana. However, no information of the in vivo As speciation has been report...

  9. Constitutively overexpressing a tomato fructokinase gene (lefrk1) in cotton (Gossypium hirsutum L. cv. coker 312) positively affects plant vegetative growth, boll number and seed cotton yield.

    Science.gov (United States)

    Increasing fructokinase (FRK) activity in cotton (Gossypium hirsutum L.) plants may reduce fructose inhibition of sucrose synthase (Sus) and lead to improved fibre yield and quality. Cotton was transformed with a tomato (Solanum lycopersicum L.) fructokinase gene (LeFRK1) under the control of the C...

  10. THE ADDITION OF MILK OR YOGURT TO A PLANT-BASED DIET INCREASES ZINC BIOAVAILABILITY BUT DOES NOT AFFECT IRON BIOAVAILABILITY IN WOMEN

    Science.gov (United States)

    The addition of milk and milk-based products to the diets of individuals subsisting on plant-based diets was reported to have positive effects on nutritional status and functional outcomes such as growth, morbidity, and cognition. We examined the effect of the addition of milk or yogurt on the bioav...

  11. Time course of export of 14C-assimilates and their distribution pattern as affected by feeding time and night temperature in cucumber plants

    International Nuclear Information System (INIS)

    The export and distribution pattern of 14C fed intermittently to the single leaves of cucumber plants were investigated and compared with the results obtained on tomato plants in the previous report. The percentage of the total export of 14C 4 hours after feeding was about 20% irrespective of the feeding time, and amounted to 30 to 35% by the next morning. The ratio of the 14C exported in the daytime to that during the following night was about 1 : 1. The comparatively slow rate of increase of 14C export from 4 to 8 hours after the earlier feeding seemed to be due to the incorporation of 14C into starch and the resultant reduction of the pool size of 14C-sugars as they translocate. The export of 14C fed in the afternoon was retarded at low temperature at night, and especially in the plants at the 20-leaf stage. The percentage distribution to the lower parts including the roots 16 hours after feeding was comparatively high at the 7-leaf stage, and it decreased with rising night temperature. At the 20-leaf stage, it was highest at 12 deg C and decreased at both lower and higher temperatures. It was considered that the low values at low temperature was due to the delay of export. There was little difference between cucumber and tomato plants not only in the time course of the export but also in the effects of night temperature on the distribution pattern. (Kaihara, S.)

  12. A Survey of Heavy Metals content of Soil and plants As Affected by Long-Term Application of Sewage Water. A Case Study

    Directory of Open Access Journals (Sweden)

    Abd El Lateef E. M.

    2014-07-01

    Full Text Available As part of a four year study evaluating the practicability and value of sewage sludge use in Egypt, soil and plant surveys were carried out on a citrus plantation, irrigated with Cairo sewage since the 1920s, in order to evaluate the long-term accumulation of trace elements and heavy metals and their bioavailability. While total and DTPA soil concentrations correlated well, no relationship could be found between soil and plant tissue concentrations, despite elevated levels of heavy metals in the soil. Study of long-term contamination of soil with potentially toxic elements (PTEs has not demonstrated a potential risk to crop quality and yield or human health from the slow accumulation of PTEs in sludge-treated agricultural soil. PTE concentrations in plant tissues remained low and within normal ranges despite significant increases in soil content after long-term irrigation with sewage effluent. Concentrations of PTEs in plant tissues were not related to total or DTPA extractable metals in contaminated soil. DTPA may not be a sufficiently reliable indicator of actual phytoavailability of trace elements in sludge-treated soil, although it is accepted that DTPA is widely used in nutrient diagnosis assessment. These data provide assurance about the minimal risk to the environment from trace elements and PTEs in sludge-treated agricultural soil, but a more detailed dietary analysis of Cd intakes under Egyptian conditions is recommended, following the approaches adopted in the UK and US for setting Cd soil limits or loading rates for this element.

  13. Sulfate and thiol levels in roots and shoot of sulfur-deprived spinach plants as affected by high pedospheric sulfate levels

    NARCIS (Netherlands)

    Poortinga, AM; de Kok, LJ

    2000-01-01

    Sulfur-deprivation of spinach resulted in a reduced growth, a decreased shoot/root ratio and an increase in dry matter content. The content of sulfur, thiols and soluble proteins was strongly decreased, whereas that of nitrate and free amino acids was increased. When sulfur-deprived plants were tran

  14. [Effectiveness of symbiotic n2-fixation in leguminous plants, as affected by inoculation with rhizobia, by substrate, n-fertilizing, and 14c-sucrose application (author's transl)].

    Science.gov (United States)

    Merbach, W; Schilling, G

    1980-01-01

    Cultivation experiments (Mitscherlich-vessels, quartz sand, 15N-labelled soil, 15N-fertilizer) showed, that various strains of Rhizobium lupini (white and yellow lupines) and of Rhizobium leguminosarum (field beans and peas) induced a different N2-fixation of the inoculated plants, the most effective Rhizobium strains being 367a, Cz, T3, 271 (Rh. lupini), and Azotogen (Rh, leguminosarum). Yellow lupines and field bean plants were supplied with N2 from the air considerably better than white lupines and peas after inoculation with the most effective Rhizobium strains. Application of mineral N to the white lupines and peas not only substituted the inhibited N2-fixation, but increased N amounts in the plants. White lupines fixed more N2 under soil conditions than in quartz sand. An experiment with steam-sterilized and 15-labelled soil as a comparative substrate showed, that this finding was mainly caused by an additional Rhizobium infection from the soil. Contrary to field beans and yellow lupines which fix N2 up to ripeness, white lupines and peas finished N2-fixation in the time of flowering. Mineral-N applied at that time was an additional source of N for last-named plants and they utilized it for production of higher protein yields. Continual spraying of white lupine plants with 14C-labelled sucrose solution after the time of flowering caused continuance of N2-fixation up to the stage of ripeness. It is assumed that the cause of this effect was the competition of growing seeds and nodules for the photosynthates. The supply of nodules was inadequate without external sucrose application. Mineral N inhibited the sucrose-induced N2-fixation of white lupine nodules and their consumption of photosynthates. Consequently, the applied 14C was transported into seeds to a larger extent. The investigations allow the following conclusion: Effective N2-fixation requires nodules being a powerful sink for assimilates on the basis of a highly efficient photosynthetic system of the

  15. Animal v. plant-based bait: does the bait type affect census of fish assemblages and trophic groups by baited remote underwater video (BRUV) systems?

    Science.gov (United States)

    Ghazilou, A; Shokri, M R; Gladstone, W

    2016-05-01

    Coral reef fish communities were sampled at the Nayband Marine Park, Iran, using baited remote underwater video stations (BRUVSs) which incorporated animal (i.e. frigate tuna Auxis thazard and beef liver), or plant-based baits (i.e. raw dough and raw dough-turmeric powder mix). The A. thazard was found to record significantly (P turmeric powder mix trials. There was also a significant difference in trophic composition of fish assemblages surveyed by animal- and plant-based baits which seemed to be due to variations in attraction patterns of carnivores and herbivores occurring at the earlier phases of each BRUV deployments. Meanwhile, the assemblage structure was comparable among fish assemblages sampled by different bait treatments, indicating that species-level responses to each bait type may be more complicated. In essence, the efficiency of mixed baits should also be examined in future studies. PMID:27170108

  16. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations

    OpenAIRE

    Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice r...

  17. Evaluation of Geostatistical Techniques for Mapping Spatial Distribution of Soil PH, Salinity and Plant Cover Affected by Environmental Factors in Southern Iran

    OpenAIRE

    Mohammad ZARE-MEHRJARDI; Ruhollah TAGHIZADEH-MEHRJARDI; Ali AKBARZADEH

    2010-01-01

    The study presented in this paper attempts to evaluate some interpolation techniques for mapping spatial distribution of soil pH, salinity and plant cover in Hormozgan province, Iran. The relationships among environmental factors and distribution of vegetation types were also investigated. Plot sampling was applied in the study area. Landform parameters of each plot were recorded and canopy cover percentages of each species were measured while stoniness and browsing damage were estimated. Res...

  18. Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils

    OpenAIRE

    Lemtiri, Aboulkacem; Liénard, Amandine; Alabi, Taofic; Brostaux, Yves; Cluzeau, Daniel; Francis, Frédéric; Colinet, Gilles

    2015-01-01

    Earthworms increase the availability of heavy metals in some situations and aid in maintaining the structure and quality of soil. The introduction of earthworms into metal-contaminated soils has been suggested as an aid for phytoremediation processes. In Wallonia, Belgium, a century of industrial metallurgic activities has led to the substantial pollution of soils by heavy metals, including copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd), due to atmospheric dusts. Two plant species, Vicia ...

  19. In Vitro Propagation Of ‘Gisela 5’ Rootstock As Affected By Mineral Composition Of Media And Plant Growth Regulators

    OpenAIRE

    Fallahpour Maliheh; Miri Seied Mehdi; Bouzari Naser

    2015-01-01

    The purpose of the presented study was to determine the best mineral composition of media and plant growth regulators in the micropropagation of the ‘Gisela 5’ (Prunus cerasus × P. canescens) dwarf sweet cherry rootstock. Nodal explants from young healthy shoots were excised and cultured on Murashige and Skoog medium without growth regulators. In vitro raised shoot tips were transferred to three culture media including Murashige and Skoog (MS), Driver and Kuniyuki (DKW) and Lloyd and McCown (...

  20. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    Science.gov (United States)

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. PMID:27060198

  1. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia.

    Directory of Open Access Journals (Sweden)

    Takashi Matsuo

    2007-05-01

    Full Text Available Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/e(KO flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant-herbivore interactions, and speciation.

  2. Potential Activity of Basil Plants as a Source of Antioxidants and Anticancer Agents as Affected by Organic and Bio-organic Fertilization

    Directory of Open Access Journals (Sweden)

    Hanan Anwar Aly TAIE

    2010-06-01

    Full Text Available Sweet basil (Ocimum basilicum is a popular culinary herbal crop grown for fresh or dry leaf, essential oil and seed markets. Recently, basil was shown to rank highest among species and herbal crops for phenolic compounds, essential oils which are associated with decreasing risks of cancer and aging diseases. The current study aimed to evaluate the potential activity of phenolic, flavonoids and essential oil of basil as antioxidant and anticancer activities by application organic and bio-organic fertilization. A pot experiment was conducted. Basil seeds were grown, with three levels of organic fertilizers (compost in presence or absence of biofertilizer. Growth parameters, pigments content, total phenolics, total flavonoids and antioxidant activity of methanolic plant extract were examined. Application of 50% compost and 50% sand in the presence of biofertilizer resulted in enhancement fresh and dry weights, total phenolics, total flavonoids and pigment content as compared with compost alone. The constituents of essential oils extracted by hydrodistilation of basil leaves were identified by GLC. Eleven components of essential oils were identified. The highest value of antioxidant and anticancer activities were obtained in basil plants grown in 50% and 75% compost treatments in the presence of biofertilizer. These results emphasized the important of bioorganic fertilizers for enhancement the antioxidant activity of phenolics, flavonoids, and essential oils of basil plant extract.

  3. A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects.

    Directory of Open Access Journals (Sweden)

    Silja Emilia Hannula

    Full Text Available In this three year field study the impact of different potato (Solanum tuberosum L. cultivars including a genetically modified (GM amylopectin-accumulating potato line on rhizosphere fungal communities are investigated using molecular microbiological methods. The effects of growth stage of a plant, soil type and year on the rhizosphere fungi were included in this study. To compare the effects, one GM cultivar, the parental isoline, and four non-related cultivars were planted in the fields and analysed using T-RFLP on the basis of fungal phylum specific primers combined with multivariate statistical methods. Additionally, fungal biomass and some extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases were quantified in order to gain insight into the function of the fungal communities. Plant growth stage and year (and agricultural management had the strongest effect on both diversity and function of the fungal communities while the GM-trait studied was the least explanatory factor. The impact of cultivar and soil type was intermediate. Occasional differences between cultivars, the amylopectin-accumulating potato line, and its parental variety were detected, but these differences were mostly transient in nature and detected either only in one soil, one growth stage or one year.

  4. nfluência do uso de biorreguladores no crescimento de Hymenaea courbaril (Nota Científica. Hymenaea courbaril growth as affected by plant bioregulators (Scientific Note.

    Directory of Open Access Journals (Sweden)

    Cristiano Bueno de MORAES

    2013-12-01

    Full Text Available Considerando-se a reduzida disponibilidade de trabalhos científicos relacionados com a avaliação de espécies florestais sob o efeito de biorreguladores vegetais, o estudo teve como objetivo avaliar o efeito da aplicação dos seguintes representantes destas substâncias: paclobutrazol (PBZ, ácido giberélico (GA3 e ethephon em mudas de Hymenaea courbaril. O experimento foi implantado em esquema fatorial 3 x 3 (3 biorreguladores x 3 dosagens, sob delineamento de blocos casualizados, com três repetições e utilizando quatro plantas por parcela, em condições de viveiro. Para avaliar o efeito dos tratamentos no crescimento das plantas, foram medidas as seguintes variáveis: altura da planta, diâmetro do colo, teor de clorofila e teores de proteínas solúveis totais. A aplicação do PBZ promoveu alterações morfológicas nas folhas, como a redução no tamanho e intensidade da cor. Foram verificadas redução na altura das plantas (28% e redução na síntese de proteínas (48%. Já o GA3 promoveu aumento desta variável (12%. O ethephon promoveu morte dos ponteiros apicais, reduzindo a altura das mudas (22%. Concluiu-se que as aplicações dos biorreguladores influenciaram no desenvolvimento vegetativo do jatobá, fornecendo resultados preliminares importantes para a utilização de hormônios sintéticos em espécie arbórea.The study aimed to evaluate the effect of application of plant growth regulators: paclobutrazol (PBZ, gibberellic acid (GA3 and ethephon in seedlings of Hymenaea courbaril. The experiment was established in randomized block design, three replications, three regulators, three dosages/regulators, plots with four plants and witness treatment. Parameters such as height and diameter, chlorophyll content and total soluble proteins were measured to assess the effect of treatments on plant growth. The application of PBZ promoted morphological changes in leaves as a reduction in size, texture and color intensity. We

  5. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity.

    Science.gov (United States)

    Han, Qin; Wu, Fengli; Wang, Xiaonan; Qi, Hong; Shi, Liang; Ren, Ang; Liu, Qinghai; Zhao, Mingwen; Tang, Canming

    2015-04-01

    Verticillium wilt in cotton caused by Verticillium dahliae is one of the most serious plant diseases worldwide. Because no known fungicides or cotton cultivars provide sufficient protection against this pathogen, V. dahliae causes major crop yield losses. Here, an isolated cotton endophytic bacterium, designated Bacillus amyloliquefaciens 41B-1, exhibited greater than 50% biocontrol efficacy against V. dahliae in cotton plants under greenhouse conditions. Through high-performance liquid chromatography and mass analysis of the filtrate, we found that the antifungal compounds present in the strain 41B-1 culture filtrate were a series of isoforms of iturins. The purified iturins suppressed V. dahliae microsclerotial germination in the absence or presence of cotton. Treatment with the iturins induced reactive oxygen species bursts, Hog1 mitogen-activated protein kinase (MAPK) activation and defects in cell wall integrity. The oxidative stress response and high-osmolarity glycerol pathway contribute to iturins resistance in V. dahliae. In contrast, the Slt2 MAPK pathway may be involved in iturins sensitivity in this fungus. In addition to antagonism, iturins could induce plant defence responses as activators and mediate pathogen-associated molecular pattern-triggered immunity. These findings suggest that iturins may affect fungal signalling pathways and mediate plant defence responses against V. dahliae. PMID:24934960

  6. 植物蛋白饮料稳定性影响因素和分析方法的研究%Study on the affected factors and analysis method of stability of plant protein beverage

    Institute of Scientific and Technical Information of China (English)

    周超进; 何锦风; 蒲彪

    2011-01-01

    植物蛋白饮料中蛋白沉淀、脂肪上浮问题,严重影响了产品质量.本文综合叙述了环境压力和饮料自身各因素对植物蛋白饮料稳定性的影响,并介绍了一些常用快速的稳定性分析方法.%The effect of sediment protein and fat separation on the quality of plant protein beverage was significant. The factors including environmental stresses and inside factors affecting the stability of plant protein beverage were comprehensively described ,the regular and fast technologies of determining stability were introduced.

  7. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants

    Institute of Scientific and Technical Information of China (English)

    Juan Zhang; Youliang Peng; Zejian Guo

    2008-01-01

    WRKY transcription factors have many regulatory roles in response to biotic and abiotic stresses. In this study, we isolated a rice WRKY gene (OsWRKY31) that is induced by the rice blast fungus Magnaporthe grisea and auxin. This gene encodes a polypeptide of 211 amino-acid residues and belongs to a subgroup of the rice WRKY gene family that probably originated after the divergence of monocot and dicot plants. OsWRKY31 was found to be localized to the nucleus of onion epidermis cells to transiently express OsWRKY31-eGFP fusion protein. Analysis of 0sWRKY31 and its mutants fused with a Cal4 DNA-binding domain indicated that OsWRKY31 has transactivation activity in yeast. Overexpression of the OsWRKY31 gene was found to enhance resistance against infection with M. grisea, and the transgenic lines exhibited reduced lateral root formation and elongation compared with wild-type and RNAi plants. The lines with overexpression showed constitutive expression of many defense-related genes, such as PBZ1 and OsSci2, as well as early auxin-response genes, such as OsIAA4 and OsCrll genes. Furthermore, the plants with overexpression were less sensitive to exogenously supplied IBA, NAA and 2,4-D at high concentrations, suggesting that overexpression of the OsWRKY31 gene might alter the auxin response or transport. These results also suggest that OsWRKY31 might be a common component in the signal transduction pathways of the auxin response and the defense response in rice.

  8. Adhesion and biofilm formation by Staphylococcus aureus from food processing plants as affected by growth medium, surface type and incubation temperature

    OpenAIRE

    Heloísa Maria Ângelo Jerônimo; Rita de Cássia Ramos do Egypto Queiroga; Ana Caroliny Vieira da Costa; Isabella de Medeiros Barbosa; Maria Lúcia da Conceição; Evandro Leite de Souza

    2012-01-01

    This study assessed the effect of different growth media [BHI broth, BHI broth plus glucose (10 g/100 mL) and BHI broth plus NaCl (5 g/100 mL)] and incubation temperatures (28 or 37 ºC) on the adherence, detachment and biofilm formation on polypropylene and stainless steel surfaces (2 x 2 cm coupons) for a prolonged period (24-72 h) by some strains of Staphylococcus aureus (S3, S28 and S54) from food processing plants. The efficacy of the sanitizers sodium hypochlorite (250 mg/mL) and peracet...

  9. Factors affecting the conversion of Zn, Cu, Pb, and Cd in soils - the system of plants in forest; Faktorer som paavirker omsetning av Zn, Cu, Pb og Cd i jord - plantesystemet i skog

    Energy Technology Data Exchange (ETDEWEB)

    Berthelsen, B.O.

    1996-01-01

    The conference paper relates the factors affecting the conversion of long-range transported heavy metals in soils with the focus on the system of forest plants. The paper discusses themes like the mobility of metals in forest soils under the influence of artificial acidification, contribution from metal accumulation in ectomycorrhiza to metal levels in organic surface soils, importance of cutting areas for accumulation and transport of metals in surface soils, concentration of metals in forest vegetation in relation to temporal and geographic differences in the atmospheric precipitation of metals. 6 refs., 5 figs.

  10. Nitrogen Fixed by Pea Plant as Affected by Lead,Cadmium and Rates of N-Fertilizer Using 15N Tracer Technique

    International Nuclear Information System (INIS)

    A pot experiment was carried out in greenhouse to investigate the effect Pb and Cd applied on growth, yield and the amount of fixed nitrogen by pea's plants.15N-labelled (5 % atom excess) ammonium nitrate was applied at three levels (0,20 and 40 mg N-1 kg soil). The legume pea seeds were inoculated with Rhizobium Leguminesarum. Lead was applied as lead sulfate at rates of 0, 50 and 200 mg Pb kg-1 soil, while the cadmium applied as cadmium sulfate at rates of 0, 5 and 10 mg Cd kg-1 soil. Results indicated that the highest values of Pb uptake were 540,11.55 and 552 mg-1 pot for pea shoot, pods and whole plant at the rate of 200 mg Pb kg-1 soil + 40 mg N kg-1 soil, respectively, While, the highest values of Cd-uptake were 13.90, 6.54 and 20 mg-1 pot at the rate of 10 mg Cd kg-1 + 20 mg N kg-1 soil for the same sequence. The values of Ndff and Ndfa were 43.74 and 278.2 while Ndfs recorded 164.1 mg pot-1 at rate of 5 mg Cd kg-1soil + 40 mg N kg-1 soil compared to the control.

  11. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants

    International Nuclear Information System (INIS)

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (Csoln) and 0.005 M Ca(NO3)2 extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75 days in a pot experiment. Lowering soil pH increased Csoln, the 0.005 M Ca(NO3)2-soluble fractions and the DGT-measured Cd and Zn concentrations (CDGT) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R2 > 0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than Csoln. However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. - Highlights: ► The effect of soil acidification was assessed for four Zn and Cd polluted soils. ► For some soils moderate acidification could enhance the metal uptake efficiency. ► Chemical assessment of bioavailability using soil solution and

  12. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Iqbal; Puschenreiter, Markus, E-mail: markus.puschenreiter@boku.ac.at; Wenzel, Walter W.

    2012-02-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C{sub soln}) and 0.005 M Ca(NO{sub 3}){sub 2} extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75 days in a pot experiment. Lowering soil pH increased C{sub soln}, the 0.005 M Ca(NO{sub 3}){sub 2}-soluble fractions and the DGT-measured Cd and Zn concentrations (C{sub DGT}) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R{sup 2} > 0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C{sub soln}. However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. - Highlights: Black-Right-Pointing-Pointer The effect of soil acidification was assessed for four Zn and Cd polluted soils. Black-Right-Pointing-Pointer For some soils moderate acidification could

  13. Soil-plant-milk transfer of fallout cesium and strontium in Austrian pastures and in an area affected by local fallout from nuclear tests conducted at the Semipalatinsk test site

    International Nuclear Information System (INIS)

    After the nuclear accident in Chernobyl the radiocesium transfer along the soil-plant-milk food chain was investigated quite intensively. For various reasons the assessment of the 90Sr transfer was largely neglected. The objectives of this survey were to investigate the mobility of 137Cs and 90Sr at four different pastures in Austria and at the village of Dolon in Kazakhstan. Two of the Austrian pastures are lowland, the other two alpine pastures. Dolon is adjacent to the Semipalatinsk test site and it was affected by local fallout from various nuclear test explosions. At the investigated alpine pastures the 137CS and 90Sr plant uptake is enhanced compared to the lowland pastures. A strong positive correlation exists between the soil to plant transfer of both nuclides. This indicates that certain parameters, which are typical for alpine environments, have a similar influence on the plant uptake of these two nuclides. The obtained data demonstrate that milk can be used as an indicator of the average plant contamination not only for radiocesium but also for radiostrontium. Due to various reasons considerable uncertainties are associated with this. Even a few decades after the local fallout events the majority of 90Sr in soil samples from Dolon is fallout particle bound. Therefore, it can be assumed that this is also the case for 137CS . This has favorable consequences with regards to the bioavailability and the transport of these radionuclides through various food chains. Because of the stability of the fallout particles it can be concluded that the majority of 90Sr and 137CS will decay before being released due to physical and chemical weathering or microbial activity. (author)

  14. Analysis of the influence of external irradiation component on the patients with thyroid cancer affected by the Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    The definition possible relationship between the latent period and doses of external irradiation component on the thyroid gland in patients was estimated. Dose reconstruction from external irradiation component on the thyroid gland was applied in 99 patients with thyroid cancer affected by the Chernobyl accident. External irradiation component does not always correspond to the range of the doses that increase risk of thyroid cancer. No linear relation between the latent period duration and the dose of the external irradiation component on thyroid was revealed

  15. Effective Antibiotics against ‘Candidatus Liberibacter asiaticus’ in HLB-Affected Citrus Plants Identified via the Graft-Based Evaluation

    Science.gov (United States)

    Powell, Charles A.; Doud, Melissa S.; Yang, Chuanyu; Duan, Yongping

    2014-01-01

    Citrus huanglongbing (HLB), caused by three species of fastidious, phloem-limited ‘Candidatus Liberibacter’, is one of the most destructive diseases of citrus worldwide. To date, there is no established cure for this century-old and yet, newly emerging disease. As a potential control strategy for citrus HLB, 31 antibiotics were screened for effectiveness and phytotoxicity using the optimized graft-based screening system with ‘Candidatus Liberibacter asiaticus’ (Las)-infected citrus scions. Actidione and Oxytetracycline were the most phytotoxic to citrus with less than 10% of scions surviving and growing; therefore, this data was not used in additional analyses. Results of principal component (PCA) and hierarchical clustering analyses (HCA) demonstrated that 29 antibiotics were clustered into 3 groups: highly effective, partly effective, and not effective. In spite of different modes of actions, a number of antibiotics such as, Ampicillin, Carbenicillin, Penicillin, Cefalexin, Rifampicin and Sulfadimethoxine were all highly effective in eliminating or suppressing Candidatus Liberibacter asiaticus indicated by both the lowest Las infection rate and titers of the treated scions and inoculated rootstock. The non-effective group, including 11 antibiotics alone with three controls, such as Amikacin, Cinoxacin, Gentamicin, Kasugamycin, Lincomycin, Neomycin, Polymixin B and Tobramycin, did not eliminate or suppress Las in the tested concentrations, resulting in plants with increased titers of Las. The other 12 antibiotics partly eliminated or suppressed Las in the treated and graft-inoculated plants. The effective and non-phytotoxic antibiotics could be potential candidates for control of citrus HLB, either for the rescue of infected citrus germplasm or for restricted field application. PMID:25372135

  16. How the choice of multi-gas equivalency metrics affects mitigation options: The case of CO2 capture in a Brazilian coal-fired power plant

    International Nuclear Information System (INIS)

    This study shows how the assessment of emissions reductions from CO2 capture is critically dependent on the choice of multi-gas equivalency metric and climate impact time horizon. This has implications for time-sensitive mitigation policies, in particular when considering relative impact of short-lifetime gases. CO2, CH4 and N2O emissions from a coal-fired power plant in Brazil are used to estimate and compare the CO2-equivalent emissions based on standard practice global warming potentials GWP-100 with the less common GWP-50 and variable GWP for impact target years 2050 and 2100. Emission reductions appear lower for the variable metric, when the choice of target year is critical: 73% in 2100 and 60% in 2050. Reductions appear more favorable using a metric with a fixed time horizon, where the choice of time horizon is important: 77% for GWP-100 and 71% for GWP-50. Since CH4 emissions from mining have a larger contribution in the total emission of a plant with capture compared to one without, different perspectives on the impact of CH4 are analyzed. Use of variable GWP implies that CH4 emissions appear 39% greater in 2100 than with use of fixed GWP and 91% greater in 2050. - Highlights: • Emissions reduction from CO2 capture is analyzed. • Multi-gas emissions reduction is compared for target years 2050 and 2100. • Emissions reduction ranges from 77 to 60% according to the kind of metric. • Emissions reductions appear lower for the variable metric. • Implications for time-sensitive mitigation policies, specially short-lived gases

  17. Specific complex of non-radiation risk factors for socially significant pathologies could affect the liquidators of Chernobyl nuclear power plant accident

    Directory of Open Access Journals (Sweden)

    Koterov A.N.

    2014-12-01

    Full Text Available The review considers the complex of non-radiation factors that could affect the liquidators of the Chernobyl accident: the demographic, social and professional group heterogeneity to warrant differentiation of risk, the effects of heavy metals, 'hot particles', chemicals, psychogenic stress, social dislocation in the post-perestroika period, alcohol abuse, smoking, and the effect of screening. All these factors tend to have a significant intensity, unlike the radiation exposure for the majority of subjects. It is concluded that the increased frequency and severity of some large socially significant pathologies in contingent liquidators may be due to a unique set of predominantly non-radiation factors associated, however, with a particular radiation accident.

  18. Storage on maternal plants affects light and temperature on requirements during germination in two small seeded halophytes in the arabian deserts

    International Nuclear Information System (INIS)

    Seeds are either stored in a soil seed bank or retained on maternal plants until they are released (aerial seed bank). Though there are extensive studies on the germination requirements of seeds in soil banks of saline habitats, studies conducted for halophytes with aerial seed banks are rare. We assessed the impact of aerial and room-temperature storages on the light and temperature requirements during germination in two small-seeded halophytes: Halocnmum strobilaceum having a short-term aerial seed bank (less than one year) and Halopeplis perfoliata having a longer term aerial seed bank (up to two years). Seed storage in the aerial bank reduced the germination in H. strobilaceum, but either increased it (5-months storage) or had no effect (17-months storage) in H. perfoliata. Seeds of both species that were stored in aerial bank germinated to higher percentages in light than in darkness, indicating that considerable portions of the seed populations are light sensitive. Seeds of H. perfoliata attained less than 5.0 percentage germination in darkness at higher temperatures, compared to more than 90.0 percentage in light. The results support the hypothesis that the aerial seed bank is an adaptive strategy for survival in the saline habitats of the two species. (author)

  19. In Vitro Propagation Of ‘Gisela 5’ Rootstock As Affected By Mineral Composition Of Media And Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    Fallahpour Maliheh

    2015-06-01

    Full Text Available The purpose of the presented study was to determine the best mineral composition of media and plant growth regulators in the micropropagation of the ‘Gisela 5’ (Prunus cerasus × P. canescens dwarf sweet cherry rootstock. Nodal explants from young healthy shoots were excised and cultured on Murashige and Skoog medium without growth regulators. In vitro raised shoot tips were transferred to three culture media including Murashige and Skoog (MS, Driver and Kuniyuki (DKW and Lloyd and McCown (WPM containing benzyl adenine (BA (0.5, 1 or 2 mg·l−1 in combination with kinetin (Kin at 0 or 0.5 mg·l−1. WPM and DKW media were proving to be the most effective, resulting in a higher percentage of shoot multiplication and shoot number as compared to MS. BA in concentration 2 mg·l−1 resulted in the highest number of microshoots per explant (3.1. For rooting, 0, 0.5, 1 or 2 mg·l−1 indole-3-butyric acid (IBA on MS, DKW and WPM media were tested. WPM medium containing 2 mg·l−1 IBA was most effective for rooting (93.7% in comparison to MS (53.1% and DKW (14.0%. Rooted plantlets were successfully hardened and established in pots.

  20. Natural radionuclide of Po210 in the edible seafood affected by coal-fired power plant industry in Kapar coastal area of Malaysia

    Directory of Open Access Journals (Sweden)

    Mohamed Che Abd Rahim

    2011-05-01

    Full Text Available Abstract Background Po210 can be accumulated in various environmental materials, including marine organisms, and contributes to the dose of natural radiation in seafood. The concentration of this radionuclide in the marine environment can be influenced by the operation of a coal burning power plant but existing studies regarding this issue are not well documented. Therefore, the aim of this study was to estimate the Po210 concentration level in marine organisms from the coastal area of Kapar, Malaysia which is very near to a coal burning power plant station and to assess its impact on seafood consumers. Methods Concentration of Po210 was determined in the edible muscle of seafood and water from the coastal area of Kapar, Malaysia using radiochemical separation and the Alpha Spectrometry technique. Results The activities of Po210 in the dissolved phase of water samples ranged between 0.51 ± 0.21 and 0.71 ± 0.24 mBql-1 whereas the particulate phase registered a range of 50.34 ± 11.40 to 72.07 ± 21.20 Bqkg-1. The ranges of Po210 activities in the organism samples were 4.4 ± 0.12 to 6.4 ± 0.95 Bqkg-1 dry wt in fish (Arius maculatus, 45.7 ± 0.86 to 54.4 ± 1.58 Bqkg-1 dry wt in shrimp (Penaeus merguiensis and 104.3 ± 3.44 to 293.8 ± 10.04 Bqkg-1 dry wt in cockle (Anadara granosa. The variation of Po210 in organisms is dependent on the mode of their life style, ambient water concentration and seasonal changes. The concentration factors calculated for fish and molluscs were higher than the recommended values by the IAEA. An assessment of daily intake and received dose due to the consumption of seafood was also carried out and found to be 2083.85 mBqday-1person-1 and 249.30 μSvyr-1 respectively. These values are comparatively higher than reported values in other countries. Moreover, the transformation of Po210 in the human body was calculated and revealed that a considerable amount of Po210 can be absorbed in the internal organs. The

  1. Three-year monitoring study of radiocesium transfer and ambient dose rate in forest environments affected by the Fukushima Dai-ichi Nuclear Power Plant accident

    Science.gov (United States)

    Kato, Hiroaki; Onda, Yuichi; Loffredo, Nicolas; Kawamori, Ayumi; Hisadome, Keigo

    2015-04-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years (July 2011~) following the Fukushima Dai-ichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We also measured an ambient dose rate at different height in the forest by using a survey meter (TCS-172B, Hitachi-Aloka Medical, LTD.) and a portable Ge gamma-ray detector (Detective-DX-100T, Ortec, Ametek, Inc.). Furthermore, effects of forest decontamination on the reduction of ambient dose rate were assessed quantitatively. Total Cs-137 deposition flux from the canopy to forest floor for the mature cedar, young cedar, and the mixed broad-leaved stands were 157 kBq/m^2, 167 kBq/m^2, and 54 kBq/m^2, respectively. These values correspond to 36%, 39% and 12% of total atmospheric input after the accident. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the forest type. These data suggested that an ambient dose rate in forest environment can be variable in spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor. We presented the analysis results of the relationship between radiocesium deposition flux and ambient dose rate at the forest floor. In addition to that, we reported the effects of forest decontamination (e.g., tree felling, removal of organic materials, woodchip pavement) on the reduction of ambient dose rate in the forest environment.

  2. Isotopic ratio and vertical distribution of radionuclides in soil affected by the accident of Fukushima Dai-ichi nuclear power plants.

    Science.gov (United States)

    Fujiwara, Takeshi; Saito, Takumi; Muroya, Yusa; Sawahata, Hiroyuki; Yamashita, Yuji; Nagasaki, Shinya; Okamoto, Koji; Takahashi, Hiroyuki; Uesaka, Mitsuru; Katsumura, Yosuke; Tanaka, Satoru

    2012-11-01

    The results of γ analyses of soil samples obtained from 50 locations in Fukushima prefecture on April 20, 2011, revealed the presence of a spectrum of radionuclides resulted from the accident of the Fukushima Dai-ichi nuclear power plant (FDNPP). The sum γ radioactivity concentration ranged in more than 3 orders of magnitude, depending on the sampling locations. The contamination of soils in the northwest of the FDNPP was considerable. The (131)I/(137)Cs activity ratios of the soil samples plotted as a function of the distance from the F1 NPPs exhibited three distinctive patterns. Such patterns would reflect not only the different deposition behaviors of these radionuclides, but also on the conditions of associated release events such as temperature and compositions and physicochemical forms of released radionuclides. The (136)Cs/(137)Cs activity ratio, on the other hand, was considered to only reflect the difference in isotopic compositions of source materials. Two locations close to the NPP in the northwest direction were found to be depleted in short-lived (136)Cs. This likely suggested the presence of distinct sources with different (136)Cs/(137)Cs isotopic ratios, although their details were unknown at present. Vertical γ activity profiles of (131)I and (137)Cs were also investigated, using 20-30 cm soil cores in several locations. About 70% or more of the radionuclides were present in the uppermost 2-cm regions. It was found that the profiles of (131)I/(137)Cs activity ratios showed maxima in the 2-4 cm regions, suggesting slightly larger migration of the former nuclide. PMID:22634028

  3. Rootstock and fruit canopy position affect peach [Prunus persica (L.) Batsch] (cv. Rich May) plant productivity and fruit sensorial and nutritional quality.

    Science.gov (United States)

    Gullo, Gregorio; Motisi, Antonio; Zappia, Rocco; Dattola, Agostino; Diamanti, Jacopo; Mezzetti, Bruno

    2014-06-15

    The right combination of rootstock and training system is important for increased yield and fruit sensorial and nutritional homogeneity and quality with peach [Prunus persica (L.) Batsch]. We investigated the effects of rootstock and training system on these parameters, testing the effect of vigorous GF677 and weaker Penta rootstock on 'Rich May' peach cultivar. Fruit position effects regarding photosynthetically active radiation availability, along the canopy profile using the Y training system, were investigated. The positive relationships between total polyphenols content and antioxidant capacity according to canopy vigour and architecture were determined for the two scion/stock combinations. Changes in fruit epicarp colour and content of bioactive compounds were also determined. Lower-vigour trees from Penta rootstock grafting yielded larger fruit with improved skin overcolour, and greater total polyphenols content and antioxidant capacity. GF677 rootstock produced more vigorous trees with fruit with lower sensorial and nutritional parameters. Canopy position strongly affects fruit sensorial and nutritional qualities. These data define potential for improvements to peach production efficiency and fruit quality, particularly for southern Europe peach cultivation conditions. PMID:24491725

  4. Estimation of uranium isotopes in soil affected by Fukushima nuclear power plant accident and its mobility based on distribution coefficient and soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, S.K. [National Institute of Radiological Sciences (Japan); Mishra, S. [Bhabha Atomic Research Centre (India); Sorimachi, A.; Hosoda, M.; Tokonami, S. [Hirosaki University (Japan); Kritsananuwat, R. [Tokyo Metropolitan University (Japan); Ishikawa, T. [Fukushima Medical University (Japan)

    2014-07-01

    An extraordinary earthquake of magnitude 9.0 followed by Tsunami on 11 March 2011 caused serious nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) about 250 km north to Tokyo, capital of Japan. This resulted in radioactive contamination due to deposition of long-lived radionuclides. Contaminated soil can cause an enhanced radiation exposure even after many years. Depending upon environmental conditions radionuclides can be mobilized to aquatic systems. Therefore, the fate and transfer of these radionuclides in the soil water system is very important for radiation protection and dose assessment. In the present study, emphasis has been given on isotope ratio measurement of uranium that may give some idea about its contamination during accident. Soil and water samples were collected from contaminated areas around FDNPP. Inductively coupled plasma mass spectrometry (ICPMS) is used for total uranium concentration and thermal ionization mass spectrometry (TIMS) has been used for uranium isotopes measurement. Extraction chromatography has been used for the separation of uranium. We have observed, isotope ratio {sup 235}U/{sup 238}U is of natural origin, however in a few soil samples {sup 236}U has been detected. For the migration behavior, its distribution coefficient (K{sub d}) has been determined using laboratory batch method. Depleted uranium is used as tracer for uranium K{sub d} estimation. Chemical characterization of soil with respect to different parameters has been carried out. The effect of these soil parameters on distribution coefficient of uranium has been studied in order to explain the radionuclide mobility in this particular area. The distribution coefficient values for uranium are found to vary from 30-35679 L/Kg. A large variation in the distribution coefficient values shows the retention or mobility of uranium is highly dependent on soil characteristics in the particular area. This variation is explained with respect to pH, Fe, Mn

  5. Characteristics of initial deposition and behavior of radiocesium in forest ecosystems of different locations and species affected by the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Komatsu, Masabumi; Kaneko, Shinji; Ohashi, Shinta; Kuroda, Katsushi; Sano, Tetsuya; Ikeda, Shigeto; Saito, Satoshi; Kiyono, Yoshiyuki; Tonosaki, Mario; Miura, Satoru; Akama, Akio; Kajimoto, Takuya; Takahashi, Masamichi

    2016-09-01

    After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, information about stand-level spatial patterns of radiocesium initially deposited in the surrounding forests was essential for predicting the future dynamics of radiocesium and suggesting a management plan for contaminated forests. In the first summer (approximately 6 months after the accident), we separately estimated the amounts of radiocesium ((134)Cs and (137)Cs; Bq m(-2)) in the major components (trees, organic layers, and soils) in forests of three sites with different contamination levels. For a Japanese cedar (Cryptomeria japonica) forest studied at each of the three sites, the radiocesium concentration greatly differed among the components, with the needle and organic layer having the highest concentrations. For these cedar forests, the proportion of the (137)Cs stock in the aboveground tree biomass varied from 22% to 44% of the total (137)Cs stock; it was 44% in highly contaminated sites (7.0 × 10(5) Bq m(-2)) but reduced to 22% in less contaminated sites (1.1 × 10(4) Bq m(-2)). In the intermediate contaminated site (5.0-5.8 × 10(4) Bq m(-2)), 34% of radiocesium was observed in the aboveground tree biomass of the Japanese cedar stand. However, this proportion was considerably smaller (18-19%) in the nearby mixed forests of the Japanese red pine (Pinus densiflora) and deciduous broad-leaved trees. Non-negligible amounts of (134)Cs and (137)Cs were detected in both the sapwood and heartwood of all the studied tree species. This finding suggested that the uptake or translocation of radiocesium had already started within 6 months after the accident. The belowground compartments were mostly present in the organic layer and the uppermost (0-5 cm deep) mineral soil layer at all the study sites. We discussed the initial transfer process of radiocesium deposited in the forest and inferred that the type of initial deposition (i.e., dry versus wet radiocesium deposition), the amount of

  6. Tree plant organic matter stocks in spruce green moss Piceetum hylocomiosum and pine lichen Pinetum cladinosum forest communities after windfall

    Directory of Open Access Journals (Sweden)

    A. V. Manov

    2015-12-01

    Full Text Available Accumulation of organic matter in spruce green moss Piceetum hylocomiosum and pine lichen Pinetum cladinosum forest communities after windfall was investigated. Phytomass of Piceetum hylocomiosum stand is 51.8 t • ha-1, and Pinetum cladinosum stand is 7.5 t • ha-1. Phytomass in the disturbed stands is 3.5 times less than in undisturbed spruce forest and 15 times less than in undisturbed pine forest. The undergrowth accumulates 2.8 t • ha-1 in spruce forest, and 0.9 t • ha-1 in pine forest after windfall. Number of trees, volume of wood, stock of organic matter was determined in coarse woody debris subject to decay class. Most of the dead trees (77–97 % belong to the second decay class. Reduced competition for light and mineral nutrients influences the intensity of organic matter accumulation by tree plants. We detected that increasing radial growth of spruce and fir began before windfall. This demonstrates the stand drying. However, maximal rate of annual ring increment (2.03–2.17 mm for spruce and 3.98–4.07 mm for fir was observed in 2009–2010 years. After windfall radial growth of undergrowth increased 2 times in Piceetum hylocomiosum and 7.7 times in Pinetum cladinosum. Height increment of spruce and fir understorey increased 2.2–2.6 times in spruce forest. As compared with undisturbed ecosystems height increment of pine understorey is 1.2–2.0 times higher on windbreak in Pinetum cladinosum.

  7. Estabelecimento de plântulas e desempenho de plantas em resposta ao vigor dos aquênios de girassol Seedlings establishment and plants performance as affected by sunflower achenes vigour

    Directory of Open Access Journals (Sweden)

    Madelon Rodrigues Sá Braz

    2009-10-01

    sunflower achenes, cultivar 'Embrapa 122 V2000', with distinct vigorous levels. Plant population was evaluated at 10, 20, 40, 60, 80 and 100 days after sowing (DAS. Plant height, leaf number, stem diameter and dry matter production were evaluated at 20, 40, 60, 80 and 100DAS. At harvest (100DAS the number of achenes per plant, mass of 1000 achenes and achenes yield (g plant-1 and kg ha-1 were also evaluated. Two and six months after harvest, the achenes were submitted to the following tests: germination, first count, accelerated aging, seedling emergence in sand, length of seedlings and electrical conductivity. The results indicated that achenes vigour affected plant population at 60DAS. Vigorous sunflower achenes improved the development of plants beyond 60DAS and this effect may persist until the final production, at initial population absence.

  8. Affect Regulation

    DEFF Research Database (Denmark)

    Pedersen, Signe Holm; Poulsen, Stig Bernt; Lunn, Susanne

    2014-01-01

    Gergely and colleagues’ state that their Social Biofeedback Theory of Parental Affect Mirroring” can be seen as a kind of operationalization of the classical psychoanalytic concepts of holding, containing and mirroring. This article examines to what extent the social biofeedback theory of parenta...

  9. Adhesion and biofilm formation by Staphylococcus aureus from food processing plants as affected by growth medium, surface type and incubation temperature

    Directory of Open Access Journals (Sweden)

    Heloísa Maria Ângelo Jerônimo

    2012-12-01

    Full Text Available This study assessed the effect of different growth media [BHI broth, BHI broth plus glucose (10 g/100 mL and BHI broth plus NaCl (5 g/100 mL] and incubation temperatures (28 or 37 ºC on the adherence, detachment and biofilm formation on polypropylene and stainless steel surfaces (2 x 2 cm coupons for a prolonged period (24-72 h by some strains of Staphylococcus aureus (S3, S28 and S54 from food processing plants. The efficacy of the sanitizers sodium hypochlorite (250 mg/mL and peracetic acid (30 mg/mL in reducing the number of viable bacterial cells in a preformed biofilm was also evaluated. S. aureus strains adhered in highest numbers in BHI broth, regardless of the type of surface or incubation temperature. Cell detachment from surfaces revealed high persistence over the incubation period. The number of cells needed for biofilm formation was noted in all experimental systems after 3 days. Peracetic acid and sodium hypochlorite were not efficient in completely removing the cells of S. aureus adhered onto polypropylene and stainless steel surfaces. From these results, the assayed strains revealed high capacities to adhere and form biofilms on polypropylene and stainless steel surfaces under the different growth conditions, and the cells in biofilm matrixes were resistant to total removal when exposed to the sanitizers sodium hypochlorite and peracetic acid.Este estudo teve como objetivo avaliar o efeito de diferentes meios de crescimento [caldo BHI, caldo BHI adicionado de glucose (10 g/100 mL e caldo BHI adicionado de NaCl (5 g/100 mL] e temperaturas de incubação (28 e 37 ºC sobre a adesão, separação e formação de biofilme sobre superfícies (2 x 2 cm de polipropileno e aço inoxidável durante longo tempo de incubação (24-72 h por parte de cepas de Staphylococcus aureus (S3, S58 e S54 isoladas de plantas de processamento de alimentos. Também foi avaliada a eficácia dos sanitizantes hipoclorito de sódio (250 mg/mL e ácido perac

  10. 影响北京地区湿地沉水植物群落组成的主要水环境因子%Major hydro-environmental factors affecting the community composition of wetland submerged plants in Beijing

    Institute of Scientific and Technical Information of China (English)

    袁婧; 崔国发; 雷霆

    2009-01-01

    为了揭示影响沉水植物群落组成的水环境因子,包括水体的水文过程和理化特性,分析用特定沉水植物或群落作为检测水环境的直接指示物的可能性,选取北京地区的淡水湿地9处,采用系统取样法进行野外调查.每条样带记录沉水植物的鲜质量和湿地水文参数(流速和水深);同时取水样检测其理化参数:透明度、水温、电导率、pH值、氧化还原位、总氮、总磷、化学需氧量.对环境因子和沉水植物生物量进行DCCA排序,再运用双向分类矩阵,最终将14种沉水植物分为10个类群.结合群落水环境参数综合分析,影响植物群落组成的因子是流速、总氮含量、化学需氧量、电导率、氧化还原电位,其中流速的作用非常显著.不同沉水植物群落分类组对环境因子有明显的指示意义,狐尾藻+菹草群落是水体严重富营养化的表现,而北京水毛茛群落的出现是水质较好的表现.%In order to reveal the hydro-environmental factors affecting the community composition of wetland submerged plants, and to approach the possibility of using certain submerged plant species or communities as the direct indicators in detecting hydro-environment, a field investiga-tion was conducted on nine freshwater wetlands in Beijing. The plant fresh mass, wetland hydro-logical parameters (flow rate and water depth), and water physical and chemical parameters (transparency, temperature, conductivity, pH, redox potential, total nitrogen, total phosphorus, and chemical oxygen demand) were measured, and DCCA ordination was made. Based on the ordination, and by using two-way classification matrix, the fourteen wetland submerged plant spe-cies in Beijing were classified into ten groups. According to the comprehensive analysis on the measured variables, the factors affecting the community composition of the wetland submerged plants were flow rate, total nitrogen concentration, chemical oxygen demand

  11. Whole body counter assessment of internal radiocontamination in patients with end-stage renal disease living in areas affected by the Fukushima Daiichi nuclear power plant disaster: a retrospective observational study

    Science.gov (United States)

    Shimmura, Hiroaki; Tsubokura, Masaharu; Kato, Shigeaki; Akiyama, Junichi; Nomura, Shuhei; Mori, Jinichi; Tanimoto, Tetsuya; Abe, Koichiro; Sakai, Shuji; Kawaguchi, Hiroshi; Tokiwa, Michio

    2015-01-01

    Objective To assess internal radiocontamination of patients with end-stage renal disease (ESRD) who were regularly taking haemodialysis (HD) and living in areas affected by the crippled Fukushima Daiichi nuclear plant after the Great East Japan earthquake on 11 March 2011. Methods Internal radiocontamination in 111 patients with ESRD regularly taking HD at Jyoban Hospital in Iwaki city, Fukushima from July 2012 to November 2012 was assessed with a whole body counter (WBC). The maximum annual effective dose was calculated from the detected Cs-137 levels. Interviews concerning patient dietary preferences and outdoor activities were also conducted. Results Among the 111 patients tested, internal radiocontamination with Cs-137 was detected in two participants, but the levels were marginal and just exceeded the detection limit (250 Bq/body). The tentatively calculated maximum annual effective dose ranged from 0.008 to 0.009 mSv/year, which is far below the 1 mSv/year limit set by the government of Japan. Relative to 238 non-ESRD participants, patients with ERSD had significantly more opportunities to consume locally grown produce that was not distributed to the market (pFukushima nuclear plant. Although HD is suggested to promote Cs-137 excretion, continuous inspection of locally grown produce together with WBC screening for radiocontamination should be continued for patients with ESRD regularly taking HD. PMID:26644125

  12. Morphological variation of Aechmea distichantha (Bromeliaceae) in a Chaco forest: habitat and size-related effects.

    Science.gov (United States)

    Cavallero, L; López, D; Barberis, I M

    2009-05-01

    Plants show different morphologies when growing in different habitats, but they also vary in their morphology with plant size. We examined differences in sun- and shade-grown plants of the bromeliad Aechmea distichantha with respect to relationships between plant size and variables related to plant architecture, biomass allocation and tank water dynamics. We selected vegetative plants from the understorey and from forest edges of a Chaco forest, encompassing the whole size range of this bromeliad. Plant biomass was positively correlated with most architectural variables and negatively correlated with most biomass allocation variables. Understorey plants were taller and had larger diameters, whereas sun plants had more leaves, larger sheath area, sheath biomass and sheath mass fraction. All tank water-related variables were positively correlated with plant biomass. Understorey plants had a greater projected leaf area, whereas sun plants had higher water content and evaporative area. Plasticity indices were higher for water-related than for allocation variables. In conclusion, there were architectural and biomass allocation differences between sun- and shade-grown plants along a size gradient, which, in turn, affected tank water-related variables. PMID:19470109

  13. Affective Urbanism

    DEFF Research Database (Denmark)

    Samson, Kristine

    , experience and consumption are all strategic design tools applied by planners and architects. Whereas urban design in former modernist planning served merely functional or political means, urban design has increasingly become an aesthetical mediator of ideologies embedded in the urban field of life forces...... capitalism not only changes urban life and its means of production, it specifically influences the way the city is designed and how it unfolds as events (Anderson & Harrison 2010) and affective, emotional production (Pile 2009). Through examples of urban design and events in the Carlsberg City in Copenhagen...... and The High Line in Chelsea, New York, the paper sets out to define and question these affective modes of production. Whether these productions are socio-material practices consisting of ludic designs (Stevens 2007), temporary architecture or art installations or evental practices consisting of...

  14. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    Recently, in human geography there has been a considerable attention paid to retheorising maps; less as a product and more as practice. This refers to the notion that rather than reading maps as fixed representations, digital mapping is by nature a dynamic, performative, and participatory practice....... In particular, mapping environmental damage, endangered species, and human made disasters has become one of the focal point of affective knowledge production. These ‘more-than-humangeographies’ practices include notions of species, space and territory, and movement towards a new political ecology...

  15. Qualidade nutricional de cenoura e alface cultivadas em Mossoró-RN em função da densidade populacional Nutritional quality of carrot and lettuce grown in Mossoró-RN, Brazil, as affected by plant densities

    Directory of Open Access Journals (Sweden)

    Francisco Bezerra Neto

    2006-12-01

    out from June to September of 2003, in the experimental area of "Universidade Federal Rural do Semi-Árido" (UFERSA, in Mossoró, Rio Grande do Norte state, Brazil, in order to evaluate the effect of carrot and lettuce populational densities in a second growing period on their nutritional quality in a strip-intercropping system. A randomized complete block design was used with the treatments arranged in a 4 x 4 factorial scheme with three replications. The treatments consisted of the combination of four carrot-plant densities (40%, 60%, 80% and 100% of the recommended sole crop density - RSCD with four lettuce-plant densities (40%, 60%, 80% and 100% of the RSCD. The reference populations for carrot and lettuce in sole crop, corresponding to 100%, were of 500,000 plants.ha-1 and 250,000 plants.ha-1, respectively. Carrot cv. Brasília and lettuce cv. Tainá were planted. Quality characteristics evaluated were firmness and content of vitamin C, total carotenoids and beta-carotene for carrot roots and firmness, contents of vitamin C, total carotenoids and total chlorophyll for lettuce leaves. The associations of plant densities of carrot and lettuce did not affect any of the assessed characteristics in both crops. However, both carrot and lettuce plant densities affected the traits evaluated in both crops. The firmness, contents of vitamin C and beta-carotene in carrot roots decreased as the plant densities of carrot increased, while the content of total carotenoids increased as carrot population increased. The same decreasing behavior was observed in contents of vitamin C, total carotenoids and chlorophyll in the lettuce leaves with an increase in the plant densities of lettuce.

  16. [Affective dependency].

    Science.gov (United States)

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy. PMID:23888587

  17. Multinationals and plant survival

    DEFF Research Database (Denmark)

    Bandick, Roger

    2010-01-01

    The aim of this paper is twofold: first, to investigate how different ownership structures affect plant survival, and second, to analyze how the presence of foreign multinational enterprises (MNEs) affects domestic plants’ survival. Using a unique and detailed data set on the Swedish manufacturing...... sector, I am able to separate plants into those owned by foreign MNEs, domestic MNEs, exporting non-MNEs, and purely domestic firms. In line with previous findings, the result, when conditioned on other factors affecting survival, shows that foreign MNE plants have lower survival rates than non......-MNE plants. However, separating the non-MNEs into exporters and non-exporters, the result shows that foreign MNE plants have higher survival rates than non-exporting non-MNEs, while the survival rates of foreign MNE plants and exporting non-MNE plants do not seem to differ. Moreover, the simple non...

  18. Change in Phylogenetic Community Structure during Succession of Traditionally Managed Tropical Rainforest in Southwest China

    OpenAIRE

    Xiao-Xue Mo; Ling-Ling Shi; Yong-Jiang Zhang; Hua Zhu; Ferry Slik, J. W.

    2013-01-01

    Tropical rainforests in Southeast Asia are facing increasing and ever more intense human disturbance that often negatively affects biodiversity. The aim of this study was to determine how tree species phylogenetic diversity is affected by traditional forest management types and to understand the change in community phylogenetic structure during succession. Four types of forests with different management histories were selected for this purpose: old growth forests, understorey planted old grow...

  19. Discussion of the question whether a local authority can claim to be affected in its planning competence by a permit issued for construction of a radwaste processing plant. High Administrative Court Lueneburg, judgement of 21.1.1993 - 7 K 5/90

    International Nuclear Information System (INIS)

    A local authority has taken legal action against the first partial permit for the construction of a radwaste conditioning pilot plant at Gorleben, claiming to be affected in its planning competence by the fact that transport of spent fuel elements between the spent fuel storage facility and the pilot plant 2 km away would have to proceed on the rural district road. The action has been discussed. Appealable head notes: A local authority is not affected in its planning competence by a permit issued for construction of a facility for radwaste processing, although the operation of said facility may result in radwaste being transported by a road crossing the local authority's territory. (orig.)

  20. How does real affect affect affect recognition in speech?

    NARCIS (Netherlands)

    Truong, Khiet Phuong

    2009-01-01

    The aim of the research described in this thesis was to develop speech-based affect recognition systems that can deal with spontaneous (‘real’) affect instead of acted affect. Several affect recognition experiments with spontaneous affective speech data were carried out to investigate what combinati

  1. Responses to ammonium and nitrate additions by boreal plants and their natural enemies

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, Annika [Umeaa Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden)]. E-mail: annika.nordin@genfys.slu.se; Strengbom, Joachim [Department of Ecology and Environmental Sciences, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: joachim.strengbom@ebc.uu.se; Ericson, Lars [Department of Ecology and Environmental Sciences, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: lars.ericson@eg.umu.se

    2006-05-15

    Separate effects of ammonium (NH{sub 4} {sup +}) and nitrate (NO{sub 3} {sup -}) on boreal forest understorey vegetation were investigated in an experiment where 12.5 and 50.0 kg nitrogen (N) ha{sup -1} year{sup -1} was added to 2 m{sup 2} sized plots during 4 years. The dwarf-shrubs dominating the plant community, Vaccinium myrtillus and V. vitis-idaea, took up little of the added N independent of the chemical form, and their growth did not respond to the N treatments. The grass Deschampsia flexuosa increased from the N additions and most so in response to NO{sub 3} {sup -}. Bryophytes took up predominately NH{sub 4} {sup +} and there was a negative correlation between moss N concentration and abundance. Plant pathogenic fungi increased from the N additions, but showed no differences in response to the two N forms. Because the relative contribution of NH{sub 4} {sup +} and NO{sub 3} {sup -} to the total N deposition on a regional scale can vary substantially, the N load a habitat can sustain without substantial changes in the biota should be set considering specific vegetation responses to the predominant N form in deposition. - Biota will respond to nitrogen deposition depending on the form of nitrogen.

  2. Responses to ammonium and nitrate additions by boreal plants and their natural enemies

    International Nuclear Information System (INIS)

    Separate effects of ammonium (NH4+) and nitrate (NO3-) on boreal forest understorey vegetation were investigated in an experiment where 12.5 and 50.0 kg nitrogen (N) ha-1 year-1 was added to 2 m2 sized plots during 4 years. The dwarf-shrubs dominating the plant community, Vaccinium myrtillus and V. vitis-idaea, took up little of the added N independent of the chemical form, and their growth did not respond to the N treatments. The grass Deschampsia flexuosa increased from the N additions and most so in response to NO3-. Bryophytes took up predominately NH4+ and there was a negative correlation between moss N concentration and abundance. Plant pathogenic fungi increased from the N additions, but showed no differences in response to the two N forms. Because the relative contribution of NH4+ and NO3- to the total N deposition on a regional scale can vary substantially, the N load a habitat can sustain without substantial changes in the biota should be set considering specific vegetation responses to the predominant N form in deposition. - Biota will respond to nitrogen deposition depending on the form of nitrogen

  3. Rice seedling and plant development as affected by increasing rates of penoxsulam under controlled environments Desenvolvimento de plântulas e plantas adultas de arroz em função de doses crescentes de penoxsulam em ambiente controlado

    Directory of Open Access Journals (Sweden)

    G. Concenço

    2006-01-01

    Full Text Available Rice is a major staple in many countries. Weed control is one of the factors limiting higher rice yield. ALS (acetolactate synthase-inhibiting herbicides are desirable weed control herbicides because of their high efficacy, low toxicity to mammalians, and low rates used. An important herbicide characteristic is high selectivity to the crop, since it facilitates fast crop establishment and greater crop advantage over the weeds. The objectives of this work were to study the effects of increasing rates of the ALS-inhibiting herbicide penoxsulam on seed integrity and germination, and seedling and plant development of rice cv. BRS Pelota under controlled laboratory and greenhouse conditions. The results showed that penoxsulam affected rice germination and seedling and plant growth at rates above 54 g a.i. ha-1, and that penoxsulam is safe for rice seedling development at the currently recommended rates.O arroz é componente importante da dieta humana em vários países. Entre os fatores que limitam o aumento na sua produtividade está o controle de plantas daninhas. Os herbicidas inibidores da ALS (acetolactato sintase são preferidos em razão da alta eficiência no controle de plantas daninhas, da baixa toxicidade aos mamíferos e das baixas doses utilizadas. Uma característica importante que um herbicida deve possuir é a alta seletividade à cultura, pois ela implica estabelecimento mais rápido, com vantagem competitiva sobre as plantas daninhas. O objetivo deste trabalho foi estudar os efeitos do herbicida inibidor da ALS penoxsulam em doses crescentes sobre a integridade e germinação das sementes, bem como sobre o desenvolvimento inicial das plântulas e da planta adulta do cultivar BRS Pelota, sob condições de ambiente controlado (laboratório e casa de vegetação. Os resultados mostraram que o penoxsulam afetou a germinação e o crescimento de plântulas e plantas adultas nas doses acima de 54 g i.a. ha-1 e que ele é seguro para o

  4. Protection of third parties. The protection of third parties affected by building or plant construction permits under the public construction law, the emission control law, or the atomic energy law

    International Nuclear Information System (INIS)

    Building construction permits just like plant construction permits under the Federal Emission Control Act or the Atomic Energy Act are typical cases representing the administrative order with a dual effect, or an effect on third parties: decisions supporting the interests of the project owner always affect third parties. Third party protection therefore is a major topic of public construction law or the environmental protection law to be applied to industrial installations. Although actions brought by third parties have become something ordinary for the administrative courts, substantive third party protection continues to pose specific problems. The book in hand develops and explains a way out of the dilemma created by third party protection. The solutions presented are founded on a sound dogmatic basis and take into account the Federal Constitutional Court's rulings in matters of civil rights. The starting point adopted by the authors is the third party rights warranting protection, with the objective protection provided for by the law in general gaining effect as subjective rights as far as the protection is based on the civil rights of the constitution. The scope of protection affordable depends on the individual case and the reconciliation of terests of all parties concerned. The problem solutions set forth very extensively rely on the jurisdiction in matters of third party protection and on approaches published in the relevant literature, so that the book also may serve as a guide to current practice and a helpful source of reference for readers looking for information about the issue of third party protection. (orig./HP)

  5. Who is affected more by air pollution - sick or healthy? Some evidence from a health survey of schoolchildren living in the vicinity of a coal-fired power plant in Northern Israel

    Energy Technology Data Exchange (ETDEWEB)

    Yogev-Baggio, T.; Bibi, H.; Dubnov, J.; Or-Hen, K.; Carel, R.; Portnov, B.A. [University of Haifa, Haifa (Israel). Dept. of Natural Resources & Environmental Management

    2010-03-15

    A cohort of 1181 schoolchildren, residing near a major coal-fired power plant in the Hadera district of Israel, were subdivided into three health status groups: (a) healthy children, (b) children experiencing chest symptoms, and (c) children with asthma or spastic bronchitis. Pulmonary Function Tests (PFTs) were performed twice (in 1996 and 1999) and analyzed in conjunction with air pollution estimates at the children's places of residence and several potential confounders - height, age, gender, parental education, passive smoking, housing density, length of residence in the study area and proximity to the main road. A significant negative association was found between changes in PFT results and individual exposure estimates to air pollution, controlled for socio-demographic characteristics of children and their living conditions. A sensitivity analysis revealed a decrease in the Forced Expiratory Volume during the First Second (FEV1) of about 19.6% for children with chest symptoms, 11.8% for healthy children, and approximately 7.9% for children diagnosed with asthma. Results of a sensitivity test for the Forced Vital Capacity (FVC) were found to be similar. Exposure to air pollution appeared to have had the greatest effect on children with chest symptoms. This phenomenon may be explained by the fact that this untreated symptomatic group might experience the most severe insult on their respiratory system as a result of exposure to ambient air pollution, which is reflected by a considerable reduction in their FEV1 and FVC. Since asthmatic children have lower baseline and slower growth rates, their PFT change may be affected less by exposure to air pollution, reflecting a well known relationship between pulmonary function change and height growth, according to which age-specific height is very similar for preadolescent children, but shifts upward with age during the growth spurt.

  6. Interactions between plants and microorganisms

    Science.gov (United States)

    Allelopathic microorganisms comprise rhizobacteria and fungi that colonize the surfaces of plant roots, and produce and release phytotoxic metabolites, similar to allelochemicals, that detrimentally affect growth of their host plants. The allelopathic microorganisms are grouped separately from typic...

  7. A functional trait perspective on plant invasion

    Science.gov (United States)

    Global environmental change affects exotic plant invasions, which profoundly impact native plant populations, communities and ecosystems. In this context, we review plant functional traits, including those that drive invader abundance (invasiveness), and impacts, as well as the integration of these...

  8. Obtenção de anticorpos policlonais contra proteínas presentes em plantas afetadas pela anomalia declínio dos citros Production of antibodies against proteins expressed in plants affected by citrus blight

    Directory of Open Access Journals (Sweden)

    Sanzio Carvalho Lima Barrios

    2006-10-01

    Full Text Available O declínio dos citros, uma anomalia de etiologia desconhecida, continua sendo um dos entraves para o setor citrícola, uma vez que não existem medidas de prevenção e controle para as plantas acometidas pela anomalia. Para a caracterização e estudo da anomalia, muita ênfase tem sido dada à mudança na expressão gênica de plantas afetadas, que culmina no acúmulo de proteínas. Proteínas totais extraídas dos vasos do xilema de raízes de plantas afetadas pela anomalia, quando separadas por eletroforese no sistema SDS-PAGE 12,5%, apresentam um perfil eletroforético contendo proteínas com massas moleculares de cerca de 21, 23, 31 e 42 kDa, sendo que plantas consideradas sadias apresentam proteínas de 21, 31 e 42 kDa. Com este trabalho objetivou-se obter anticorpos contra essas proteínas, bem como a titulação adequada para os mesmos. Duas inoculações subcutâneas foram realizadas em coelhos, espaçadas de 15 dias, ambas usando cerca de 120 µg de proteína isolada, sendo que cada coelho recebeu uma proteína específica, visando à produção de anticorpos. A primeira sangria foi realizada aos 21 dias após a primeira inoculação e as demais semanalmente. A técnica Western Blotting foi realizada para a confirmação da especificidade dos anticorpos, bem como para determinação das respectivas titulações. O título 1:1500 foi aquele que proporcionou maior especificidade para as proteínas de 21, 23 e 31 kDa. Para a proteína de 42 kDa a melhor titulação foi de 1:3000. Estes anticorpos poderão ser utilizados em estudos para caracterização dessas proteínas.Citrus blight, an abnormality of unknown etiology, is a major problem in citrus production, since there are no prevention and control measures to be taken. In order to characterize this abnormality, changes in genetic expression of the affected plants have exhaustedly been studied. Crude proteec extract obtained from the root xylem of the abnormal plants, when separated

  9. Sunflower plants nutrients accumulation and oil yield as affected by achenes vigour and sowing density
    Acúmulo de nutrientes e rendimento de óleo em plantas de girassol influenciados pelo vigor dos aquênios e pela densidade de semeadura

    OpenAIRE

    Madelon Rodrigues Sá Braz; Claudia Antônia Vieira Rossetto

    2010-01-01

    The objective this work was to evaluate the nutrients accumulation and achenes oil yield in sunflower plants as affected by achenes vigour and sowing density. An experiment was installed in the field at Seropédica, State of Rio de Janeiro, in October 2006 with three lots of sunflower achenes, cultivar Embrapa 122 V2000, classified as low, medium and high vigour and two sowing density (45,000 e 75,000 seeds.ha-1). The collected were realized at 20, 60 and 100 days after planting (DAP) to the d...

  10. Understory influence on leafroller pupunations in Hawke's bay organic apple orchard

    OpenAIRE

    Rogers, D. J.; Walker, J.T.S.; Moen, I.C.; Weibel, F.; Lo, P.L.; Cole, L. M.

    2003-01-01

    Leafrollers (Tortricidae) were collected from apple foliage and understorey vegetation in six commercial organic apple orchards in Hawke’s Bay over one season. Assessments were made of plant species present in the understorey at the time of collection. All leafroller larvae were reared to adults on artificial diet to identify leafroller species and parasitoids. Nearly half (47%) of all leafrollers collected in these orchards were located in the understorey, highlighting the importance of unde...

  11. Does the type of weight loss diet affect who participates in a behavioral weight loss intervention? A comparison of participants for a plant-based diet versus a standard diet trial

    OpenAIRE

    Turner-McGrievy, Gabrielle M.; Davidson, Charis R.; Wilcox, Sara

    2013-01-01

    Studies have found that people following plant-based eating styles, such as vegan or vegetarian diets, often have different demographic characteristics, eating styles, and physical activity (PA) levels than individuals following an omnivorous dietary pattern. There has been no research examining if there are differences in these characteristics among people who are willing to participate in a weight loss intervention using plant-based dietary approaches as compared to a standard reduced calor...

  12. The soil microbial community composition and soil microbial carbon uptake are more affected by soil type than by different vegetation types (C3 and C4 plants) and seasonal changes

    Science.gov (United States)

    Griselle Mellado Vazquez, Perla; Lange, Markus; Gleixner, Gerd

    2016-04-01

    This study investigates the influence of different vegetation types (C3 and C4 plants), soil type and seasonal changes on the soil microbial biomass, soil microbial community composition and soil microbial carbon (C) uptake. We collected soil samples in winter (non-growing season) and summer (growing season) in 2012 from an experimental site cropping C3 and C4 plants for 6 years on two different soil types (sandy and clayey). The amount of phospholipid fatty acids (PLFAs) and their compound-specific δ13C values were used to determined microbial biomass and the flow of C from plants to soil microorganisms, respectively. Higher microbial biomass was found in the growing season. The microbial community composition was mainly explained by soil type. Higher amounts of SOC were driving the predominance of G+ bacteria, actinobacteria and cyclic G- bacteria in sandy soils, whereas root biomass was significantly related to the increased proportions of G- bacteria in clayey soils. Plant-derived C in G- bacteria increased significantly in clayey soils in the growing season. This increase was positively and significantly driven by root biomass. Moreover, changes in plant-derived C among microbial groups pointed to specific capabilities of different microbial groups to decompose distinct sources of C. We concluded that soil texture and favorable growth conditions driven by rhizosphere interactions are the most important factors controlling the soil microbial community. Our results demonstrate that a change of C3 plants vs. C4 plants has only a minor effect on the soil microbial community. Thus, such experiments are well suited to investigate soil organic matter dynamics as they allow to trace the C flow from plants into the soil microbial community without changing the community abundance and composition.

  13. Indirect remote sensing of a cryptic forest understorey invasive species

    NARCIS (Netherlands)

    Joshi, C; De Leeuw, J; van Andel, J; Skidmore, AK; Lekhak, HD; van Duren, IC; Norbu, N

    2006-01-01

    Remote sensing has successfully been applied to map the distribution of canopy dominating invasive species. Many invaders however, do not dominate the canopy, and remote sensing has so far not been applied to map such species. In this study, an indirect method was used to map the seed production of

  14. Regulating nutrient allocation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  15. Experiencing affective interactive art

    NARCIS (Netherlands)

    Bialoskorski, Leticia S.S.; Westerink, Joyce H.D.M.; Broek, van den Egon L.

    2010-01-01

    The progress in the field of affective computing enables the realization of affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on the integration of a framework for affective move

  16. DOSES DE NITROGÊNIO E DENSIDADES DE PLANTAS COM E SEM UM REGULADOR DE CRESCIMENTO AFETANDO O TRIGO, CULTIVAR OR-1 NITROGEN DOSES AND PLANT DENSITIES WITH AND WITHOUT A GROWTH REGULATOR AFFECTING WHEAT, CULTIVAR OR-1

    Directory of Open Access Journals (Sweden)

    Jeferson Zagonel

    2002-02-01

    Full Text Available Doses de nitrogênio e elevadas populações de plantas são utilizadas visando a obtenção de altas produtividades em trigo. Porém, estes fatores podem promover o acamamento das plantas, especialmente para as cultivares de porte médio ou alto. O uso de produtos que reduzem a estatura das plantas pode minimizar este problema. Visando avaliar o efeito do regulador de crescimento trinexapc-ethyl em diferentes populações de plantas e doses de nitrogênio, na cultivar de trigo OR-1, instalou-se um experimento na Fazenda Escola "Capão da Onça", da Universidade Estadual de Ponta Grossa, em Ponta Grossa, PR, no ano de 1999. O delineamento experimental foi blocos ao acaso em esquema fatorial 2 x 3 x 4, em quatro repetições. Os vinte e quatro tratamentos constaram da aplicação de 125 g i.a./ha de trinexapac-ethyl e testemunha; densidades de 55, 75 e 112 plantas/m no espaçamento de 0,17m entre fileiras e doses de 0, 45, 90 e 135kg/ha de nitrogênio em cobertura. A aplicação do trinexapac-ethyl resultou em plantas com entre-nós mais curtos; em aumento do número de espigas/m e da produtividade. Com o aumento da dose de nitrogênio, ocorreu aumento da estatura das plantas, do número de espigas/m e da produtividade. Com o aumento da densidade de plantas, o diâmetro do caule, a massa seca das plantas e o número de grãos por espiga diminuíram mas o número de espigas/m e o peso de mil grãos aumentaram, sem afetarem a produtividade. Não ocorreu acamamento em nenhum dos tratamentos.Elevated nitrogen rates and high plant populations are adopted with the purpose of achieving high wheat yields. However, these factors may promote the lodging of the plants, especially for the medium and tall height cultivars. The utilization of products which reduce plant height could minimize this problem. With the aim of evaluating the effects of a growth regulator on different plant populations and nitrogen rates for the wheat cultivar OR-1, an experiment was

  17. Growth and N-uptake of sorghum grown on saline soil as affected by green manuring with sesbania aculeata plant residues using the indirect 15N isotopic dilution method

    International Nuclear Information System (INIS)

    A field experiment was conducted to determine the effects of manuring with three types of plant residues (R, roots; L, shoots and L+R shoots plus roots) of dhaincha (Sesbania aculeata Pers.) on the growth of sorghum (Sorghum bicolor L.) grown on a saline soil using the indirect 15N isotopic dilution technique. The use of Sesbania aculeata residues, particularly the shoots, as green manure, can provide a substantial portion of total N in sorghum, enhanced soil N uptake, and increased water use efficiency. Moreover, the use of sesbania green manure in saline soils, as a bio-reclaiming material, can be a promising approach for enhancing plant growth on a sustainable basis. (author)

  18. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant

    OpenAIRE

    Rottstock, Tanja; Joshi, Jasmin; Kummer, Volker; Fischer, Markus

    2014-01-01

    Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehe...

  19. Chemical interaction between undamaged plants

    OpenAIRE

    Glinwood, Robert; Ninkovic, Velemir; Pettersson, Jan

    2011-01-01

    Most research on plant–plant chemical interactions has focussed on events following herbivore or pathogen attack. However, undamaged plants also interact chemically as a natural facet of their behaviour, and this may have consequences for insects that use the plants as hosts. In this review, the links between allelopathy and insect behaviour are outlined. Findings on how chemical interactions between different plant species and genotypes affect aphid herbivores and their natural e...

  20. Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath.

    Science.gov (United States)

    Southon, Georgina E; Green, Emma R; Jones, Alan G; Barker, Chris G; Power, Sally A

    2012-09-01

    Increases in the emissions and associated atmospheric deposition of nitrogen (N) have the potential to cause significant changes to the structure and function of N-limited ecosystems. Here, we present the results of a long-term (13 year) experiment assessing the impacts of N addition (30 kg ha(-1)  yr(-1) ) on a UK lowland heathland under a wide range of environmental conditions, including the occurrence of prolonged natural drought episodes and a severe summer fire. Our findings indicate that elevated N deposition results in large, persistent effects on Calluna growth, phenology and chemistry, severe suppression of understorey lichen flora and changes in soil biogeochemistry. Growing season rainfall was found to be a strong driver of inter-annual variation in Calluna growth and, although interactions between N and rainfall for shoot growth were not significant until the later phase of the experiment, N addition exacerbated the extent of drought injury to Calluna shoots following naturally occurring droughts in 2003 and 2009. Following a severe wildfire at the experimental site in 2006, heathland regeneration dynamics were significantly affected by N, with a greater abundance of pioneering moss species and suppression of the lichen flora in plots receiving N additions. Significant interactions between climate and N were also apparent post fire, with the characteristic stimulation in Calluna growth in +N plots suppressed during dry years. Carbon (C) and N budgets demonstrate large increases in both above- and below-ground stocks of these elements in N-treated plots prior to the fire, despite higher levels of soil microbial activity and organic matter turnover. Although much of the organic material was removed during the fire, pre-existing treatment differences were still evident following the burn. Post fire accumulation of below-ground C and N stocks was increased rapidly in N-treated plots, highlighting the role of N deposition in ecosystem C sequestration

  1. A C subunit of the plant nuclear factor NF-Y required for rhizobial infection and nodule development affects partner selection in the common bean-Rhizobium etli symbiosis.

    Science.gov (United States)

    Zanetti, María Eugenia; Blanco, Flavio A; Beker, María Pía; Battaglia, Marina; Aguilar, O Mario

    2010-12-01

    Legume plants are able to interact symbiotically with soil bacteria to form nitrogen-fixing root nodules. Although specific recognition between rhizobia and legume species has been extensively characterized, plant molecular determinants that govern the preferential colonization by different strains within a single rhizobium species have received little attention. We found that the C subunit of the heterotrimeric nuclear factor NF-Y from common bean (Phaseolus vulgaris) NF-YC1 plays a key role in the improved nodulation seen by more efficient strains of rhizobia. Reduction of NF-YC1 transcript levels by RNA interference (RNAi) in Agrobacterium rhizogenes-induced hairy roots leads to the arrest of nodule development and defects in the infection process with either high or low efficiency strains. Induction of three G2/M transition cell cycle genes in response to rhizobia was impaired or attenuated in NF-YC1 RNAi roots, suggesting that this transcription factor might promote nodule development by activating cortical cell divisions. Furthermore, overexpression of this gene has a positive impact on nodulation efficiency and selection of Rhizobium etli strains that are naturally less efficient and bad competitors. Our findings suggest that this transcription factor might be part of a mechanism that links nodule organogenesis with an early molecular dialogue that selectively discriminates between high- and low-quality symbiotic partners, which holds important implications for optimizing legume performance. PMID:21139064

  2. A C Subunit of the Plant Nuclear Factor NF-Y Required for Rhizobial Infection and Nodule Development Affects Partner Selection in the Common Bean–Rhizobium etli Symbiosis[C][W

    Science.gov (United States)

    Zanetti, María Eugenia; Blanco, Flavio A.; Beker, María Pía; Battaglia, Marina; Aguilar, O. Mario

    2010-01-01

    Legume plants are able to interact symbiotically with soil bacteria to form nitrogen-fixing root nodules. Although specific recognition between rhizobia and legume species has been extensively characterized, plant molecular determinants that govern the preferential colonization by different strains within a single rhizobium species have received little attention. We found that the C subunit of the heterotrimeric nuclear factor NF-Y from common bean (Phaseolus vulgaris) NF-YC1 plays a key role in the improved nodulation seen by more efficient strains of rhizobia. Reduction of NF-YC1 transcript levels by RNA interference (RNAi) in Agrobacterium rhizogenes–induced hairy roots leads to the arrest of nodule development and defects in the infection process with either high or low efficiency strains. Induction of three G2/M transition cell cycle genes in response to rhizobia was impaired or attenuated in NF-YC1 RNAi roots, suggesting that this transcription factor might promote nodule development by activating cortical cell divisions. Furthermore, overexpression of this gene has a positive impact on nodulation efficiency and selection of Rhizobium etli strains that are naturally less efficient and bad competitors. Our findings suggest that this transcription factor might be part of a mechanism that links nodule organogenesis with an early molecular dialogue that selectively discriminates between high- and low-quality symbiotic partners, which holds important implications for optimizing legume performance. PMID:21139064

  3. Soil fertility characteristics as affected by close spacing of conilon coffee plants Características da fertilidade do solo influenciadas pelo plantio adensado de café conilon

    Directory of Open Access Journals (Sweden)

    André Guarçoni M.

    2011-08-01

    Full Text Available In arabica coffee crops grown at high altitudes with lower temperatures, soil fertility can be improved by condensed spacing. However, at low lands with warmer temperatures in which conilon coffee is grown, the effect of close spacing on the soil characteristics may change. Aiming to determine the effect of coffee-trees close planting grown with or without NPK fertilization on the soil fertility characteristics, soil samples were collected (0-20 and 20-40 cm depth within four different conilon crop spacings (2,222; 3,333; 4,000; and 5,000 plants/ha. It was determined pH, H+Al, effective CEC (t, pH 7.0 CEC (T, base saturation (v, aluminum saturation (m values and organic matter (OM, P, K, Ca2+, Mg2+ and Al3+ contents. The analytical results were compared by Student t test and regression analysis. Conilon coffee-trees with close planting only changed soil fertility characteristics when coffee plants received annual NPK fertilization. Close planting substantially increased P and K contents and the T value in the upper soil layer and P and K contents and T, t and H+Al values in the lower soil layer.O plantio adensado melhora a fertilidade do solo em lavouras de café arábica, cultura típica de regiões altas e de temperaturas amenas. O café conilon é cultivado em regiões baixas e quentes, o que pode modificar os efeitos do adensamento sobre a fertilidade do solo. Visando determinar a influência do adensamento de plantio do café conilon, com ou sem adubação, nas características da fertilidade do solo, foram coletadas amostras de solo (0-20 e 20-40 cm de profundidade em quatro densidades de plantio (2.222; 3.333; 4.000 e 5.000 plantas/ha. Foram determinados os valores de pH, H+Al, CTC efetiva (t, CTC pH 7,0 (T, saturação por bases (V e saturação por alumínio (m e os teores de matéria orgânica (MO, P, K, Ca2+, Mg2+ e Al3+. Os resultados analíticos foram comparados pelo teste t de Student e por análise de regressão. O adensamento de

  4. Learning to be Affected in Contemporary Art

    Directory of Open Access Journals (Sweden)

    Stephanie Springgay

    2016-02-01

    Full Text Available The Canadian artist Diane Borsato has explored a number of different projects with bees and beekeepers, mushrooms and mychologists, and with plants. Much of Borsato’s practice is concerned with ‘learning’ through affective, bodily, and intimate gestures. She often works with specific groups of people – mycologists, astronomers, physicists, tea sommeliers, ikebana practitioners and beekeepers – in order to think about the mobility of thought, about ethical-political encounters, and the affective dimensions to embodied knowing.

  5. 不同磷水平下植物体内镉的积累、化学形态及生理特性%ACCUMULATION, CHEMICAL FORMS AND PHYSIOLOGICAL CHARACTERIZATION OF CADMIUM IN PLANTS AFFECTED BY PHOSPHORUS

    Institute of Scientific and Technical Information of China (English)

    杨志敏; 郑绍健; 胡霭堂

    2000-01-01

    Corn and wheat cultivated in hydroponic culture solution with supplies of cadmium (c(Cd)0, 4.0 μmol/L) and phosphorus (c(P)0, 0.12, 0.6, 3.0 mmol/L) under controlled growth conditions in relation to the chemical forms of Cd, growth and physiological parameters, and enzyme activities of 21-day-old plants were investigated. The three predominant forms of Cd were NaCl-extractable Cd (related to Cd-binding proteins or polypeptides), acetic acid-extractable Cd (CdHPO4, Cd3(PO4)2, or Cd-polyphosphates), and water-extractable Cd (organic acid complexes). Increasing application of P tended to reduce the percentage of Cd combined with proteins and increase the amount of Cd-phosphates. Decreased cell plasma membrane permeability and K+ leakage of Cd-treated plants were observed with the P supply of 0.6 mmol/L. The moderate supply of P (0.6 mmol/L) also improved the contents of chlorophyll pigments, the activities of root dehydrogenase and leaf nitrate reductase in Cd-treated plants, whereas supply with an excess of P (3.0 mmol/L) showed not to be more effective in the alleviation of Cd toxic to plants. Results showed that wheat was more tolerant to Cd toxicity than corn. Fig 5, Tab 4, Ref17%在控制条件下,将玉米、小麦植株在含有不同浓度磷(c(P)0,0.12,0.6,3.0 mmol/L)和镉(c(Cd)0,4.0 μmol/L)的营养液中培养21d,研究植株体内各种镉的形态、生理特性和酶活性的变化.选择三种主要镉的形态,即氯化钠可提取态(镉与蛋白质或多肽结合态),醋酸可提取态(镉与磷酸盐的结合态)和去离子水可提取态(水溶性、有机酸盐镉的形态)作为优势态镉加以分析和研究.结果表明,提高介质中磷的浓度,降低了与蛋白质结合态镉的含量,而增加了镉-磷酸盐的含量.与缺磷或低磷供应比较,在c(P)0.6~3.0 mmol/L下的两种作物根系脱氢酶的活性明显提高,根系K+的透性减小,玉米叶绿素的含量明显升高,硝酸还原酶活性增大.但高磷(c(P)3

  6. Kruemmel nuclear power plant

    International Nuclear Information System (INIS)

    This short description of the site and the nuclear power plant with information on the presumable effects on the environment and the general public is to provide some data material to the population in a popular form so that the citizens may in form themselves about the plant. In this description which shall be presented to the safety report, the site, the technical design and the operation mode of the nuclear power plant are described. Some problems of the emission and the effects of radioactive materials as well as other issues related to the plant which are of interest to the public are dealt with. The supposed accidents and their handling are discussed. The description shows that the selected site is suitable for both setting-up and operation of the plant without affecting the safety of the people living there and that in admissible burdens of the environment shall not have to be expected. (orig./HP)

  7. Functional-structural plant modelling in crop production

    OpenAIRE

    VOS, J; Marcelis, L.F.M.; de Visser; Struik, P.C.; Evers, J.B.

    2007-01-01

    Functional-structural plant models (FSPMs) describe in quantitative terms the development over time of the three-dimensional (3D) structure of plants as governed by physiological processes and affected by environmental factors. FSPMs are particularly suited to analyse problems in which the spatial structure of the plant or its canopy is an essential factor to explain, e.g., plant competition (intra-plant, inter-plant, inter-species) and the effects of plant configuration and plant manipulatio...

  8. Soil Nutrient, Woody Understory and Shoot and Root Growth Responses of Pinus brutia Ten. Saplings to Fire

    Directory of Open Access Journals (Sweden)

    Petros GANATSAS

    2012-05-01

    Full Text Available Nine years after a wildfire, above- and below-ground morphology of Pinus brutia Ten. saplings and the microsite factors prevailing in understorey (unburned area and postfire conditions (burned area of the Forest Park of Thessaloniki were studied. Major stand characteristics (density, tree canopy cover, tree height, crown height, and diameter were measured in the unburned area. Light and soil conditions as well as plant cover of woody species were recorded in both areas (burned and unburned. A random sample of pine saplings, of uniform age, was taken from both burned and unburned areas, and their above-ground (height, diameter, number and total length of branches, needle biomass and below-ground morphological characteristics (taproot length, total length of coarse and fine roots, and number of coarse roots were measured. Data analysis showed that above- and below-ground morphology of pine saplings was adversely affected in saplings grown in understorey conditions, compared to those grown in postfire conditions. P. brutia is a shade-intolerant tree species and thus the light conditions seem to be the critical factor affecting the growth of pine saplings. Light is not a limiting factor in the burned area compared to the understorey, where density of the tree canopy limits available light.

  9. Factors affecting "in vitro" plant development and root colonization of sweet potato by Glomus etunicatum Becker & Gerd Fatores que afetam o desenvolvimento da planta e a colonização radicular "in vitro", da batata doce por Glomus etunicatum Becker & Gerd.

    Directory of Open Access Journals (Sweden)

    Wellington Bressan

    2002-01-01

    Full Text Available Nutrients media (Murashige & Skoog, Hoagland & Arnon and White's media supplemented or not with sucrose and substrates (vermiculite, agar and natrosol were tested for their effects on plant development and root colonization of micropropagated sweet potato, cv. White Star, by Glomus etunicatum Becker & Gerdemann (isolate INVAM FL S329. Addition of sucrose (3% did not affect plant development. However, hyphal growth and root colonization were depressed. Contrasting responses to media nutrient concentration were observed for plant height, root colonization, and hyphal growth. The highest concentration of nutrients in Murashige & Skoog medium improved plant development, but this medium decreased hypha growth and inhibited root colonization. Plants growing in vermiculite substrate had higher (p£0.05 development and mycorrhizal root colonization than those growing in agar or natrosol. The results indicate that colonization of micropropagated sweet potato by arbuscular mycorrhizal fungi is affected by media composition and type of substrate.Os meios de Murashige e Skoog, Hoagland, Arnon e White, suplementados ou não com sacorose, e tendo como substratos vermiculita, ágar ou natrosol foram utilizados para avaliar seus efeitos sobre o desenvolvimento da batata doce, c.v. White Star, e sua colonização por Glomus etunicatum Becker & Gerd. (isolado INVAM FL S329. A adição de sacorose (3% ao meio não afetou o desenvolvimento da planta, porém reduziu o crescimento das hifas de G. etunicatum e a colonização das raízes. A concentração de nutrientes dos meios utilizados mostrou efeitos contrastantes entre altura da planta, crescimento das hifas e colonização das raízes por G. etunicatum. A alta concentração de nutrientes no meio Murashige e Skoog estimulou o crescimento das plantas, reduziu o desenvolvimento das hifas e inibiu a colonização das raízes pelo fungo micorrízico. Plantas desenvolvidas em vermiculita mostraram maior

  10. Using Native Plants in the Reclamation of Areas Affected of Mining Activities in the Rodrigatos River Valley (El Bierzo, Leon, Spain); Aplicacion de Flora Autoctona en la Recuperacion de Zonas Afectadas por la Mineria en el Valle del Rio Rodrigatos (El Bierzo, Leon, Espana).

    Energy Technology Data Exchange (ETDEWEB)

    Galean, L.; Gamarra, R.; Sainz, H.; Millan, R.

    2010-07-27

    It is difficult for sites affected by mining to be colonized by vegetation and thus they suffer a slow recovery to a healthy ecosystem and, as a result, restoration work is necessary. The aim of this report is to propose a set of native species which are conducive to establishing a stable and self-sufficient plant community that will protect the soil and contribute to the rapid integration into the landscape of the areas affected by mining in the upper basin of the river Rodrigatos in the region of El Bierzo (Leon) An analysis of plant communities was undertaken using the phyto sociological method of Braun-Blanquet in order to subsequently select, using ecological criteria, the most suitable species for revegetation. Plant mapping using ortho photos was also developed in order to identify and delineate the location of the different landscape units. Among candidate species, in the first revegetation phase, we suggest a variety of herbs that are able to fix soils and protect them from erosion; species of the genus Cytisus and Genista in areas of moderate slope and species such as Rumex induratus Boiss and Reuter, Erysimum linifolium (Pourr. Ex Pers .) Jay in steeper areas because of their rooting ability. In later stages, the introduction of tree species characteristic for each formation is recommended. Furthermore, in the riverside areas species such as Carex elata subsp.reuteriana (Boiss.) Lucen and Aedo, Alnus glutinosa (L.) and Salix atrocinerea Brot. are proposed for introduction from the fi rst stage onwards. The species proposed in this study include some not commonly used in restoration, so a subsequent more detailed study would be required in order to assess their degree of suitability for this use. (Author) 65 refs.

  11. Will elevated CO2 alter fuel characteristics and flammability of eucalypt woodlands?

    Science.gov (United States)

    Collins, Luke; Resco, Victor; Boer, Matthias; Bradstock, Ross; Sawyer, Robert

    2016-04-01

    Rising atmospheric CO2 may enhance forest productivity via CO2 fertilisation and increased soil moisture associated with water savings, potentially resulting in increased woody plant abundance i.e. woody thickening. Changes to vegetation structure via woody thickening, as well as changes to vegetation properties (e.g. leaf characteristics and moisture content), may have important implications for ecosystem flammability and fire regimes. Understanding how elevated CO2 alters flammability and fire regimes will have implications for ecosystem dynamics, particularly carbon sequestration and emissions. We present data from Free Air CO2 Enrichment (EucFACE) and whole tree growth chamber (WTC) experiments to assess the effect of elevated CO2 on fuel properties and flammability of eucalypt woodlands. Experiments involved ambient (˜400 ppm) and elevated CO2treatments, with elevated treatments being +150 ppm and +240 ppm at EucFACE and the WTCs respectively. We examined the response of vegetation parameters known to influence ecosystem flammability, namely (i) understorey vegetation characteristics (ii) understorey fuel moisture and (iii) leaf flammability. Understorey growth experiments at EucFACE using seedlings of two common woody species (Hakea sericia, Eucalyptus tereticornis) indicate that elevated CO2 did not influence stem and leaf biomass, height or crown dimensions of seedlings after 12 months exposure to experimental treatments. Temporal changes to understorey live fuel moisture were assessed at EucFACE over an 18 month period using time lapse cameras. Understorey vegetation greenness was measured daily from digital photos using the green chromatic coordinate (GCC), an index that is highly correlated with live fuel moisture (R2 = 0.90). GCC and rates of greening and browning were not affected by elevated CO2, though they were highly responsive to soil moisture availability and temperature. This suggests that there is limited potential for elevated CO2 to alter

  12. Plants flex their skeletons

    DEFF Research Database (Denmark)

    Foster, Randy; Mattsson, Ole; Mundy, John

    2003-01-01

    Recent work on the fragile fiber mutants of Arabidopsis has identified microtubule-associated proteins that affect the orientation of cellulose microfibrils in cell walls, a major determinant of plant elongation growth. These same proteins are implicated in responses to gibberellin, provoking fresh...

  13. Pain, Affect, and Attachment

    OpenAIRE

    Carl Eduard Scheidt; Elisabeth Waller

    2015-01-01

    Various psychodynamic processes may underlie the development of psychogenic pain disorder such as conversion, the displacement of affect, or narcissistic defenses. However, many of the processes suggested are related to a disorder of affect regulation. The term affect regulation in psychoanalytic literature refers to phenomena which are often described by the concept of alexithymia. Empirical observations suggest that alexithymia is correlated to insecure attachment, especially an insecure di...

  14. The affect structure revisited

    OpenAIRE

    Elefant-Yanni, Véronique Rica; Victoria-Feser, Maria-Pia

    2005-01-01

    In affective psychology, there is a persistent controversy about the number, the nature and the definition of the affect structure dimensions. Responding to the methodological criticisms addressed to the preceding studies, we conciliated the principal theories regarding the affect structure with the same experimental setting. In particular, using the semantic items all around the circumplex we found three bipolar independent dimensions and using only the PANAS semantic items, we found two uni...

  15. Induced mutations - a tool in plant research

    International Nuclear Information System (INIS)

    These proceedings include 34 papers and 18 brief descriptions of poster presentations in the following areas as they are affected by induced mutations: advancement of genetics, plant evolution, plant physiology, plant parasites, plant symbioses, in vitro culture, gene ecology and plant breeding. Only a relatively small number of papers are of direct nuclear interest essentially in view of the mutations being induced by ionizing radiations. The papers of nuclear interest have been entered as separate and individual items of input

  16. Plant volatiles mediate tritrophic interactions

    OpenAIRE

    Ninkovic, Velemir

    2002-01-01

    The effects of plant-plant interactions via volatiles (aerial allelopathy) on herbivores and their natural enemies were investigated. The model system consisted of four barley varieties, an aphid pest, Rhopalosiphum padi (L.), and a common aphid predator, ladybird, Coccinella septempunctata (L). Aerial allelopathy significantly affected plant leaf temperature and biomass allocation, favouring root growth during the vegetative period, the main period for development of R. padi populations in S...

  17. Plant physiology

    CERN Document Server

    Duca, Maria

    2015-01-01

    This book covers all aspects of plant physiology: plant cell physiology, water regime of plants, photosynthesis, mineral nutrition, plant respiration, plant growth and development, movements in plants, signal perception and transduction etc. It focuses on the fundamental principles of plant physiology and biochemistry from the molecular level to whole plants, on the mechanisms of plant-environment interactions. The book is intended for students (biologists, physiologists, biochemists, biophysicists, ecologists, geneticists), teachers and researchers. Particular emphasis is given to recent research advances made on national and international levels, as well as to personal experimental results of the author that are relevant for a deeper understanding of processes and for practical implementation of gained knowledge. An essential amount of illustrative material (graphics, images, schemes, illustrations) completes the text and supplies additional information in an accessible manner. At the end of each chapter...

  18. Affectivity and race

    DEFF Research Database (Denmark)

    This book presents new empirical studies of social difference in the Nordic welfare states, in order to advance novel theoretical perspectives on the everyday practices and macro-politics of race and gender in multi-ethnic societies. With attention to the specific political and cultural landscapes...... of the Nordic countries, Affectivity and Race draws on a variety of sources, including television programmes, news media, fictional literature, interviews, ethnographic observations, teaching curricula and policy documents, to explore the ways in which ideas about affectivity and emotion afford new...... insights into the experience of racial difference and the unfolding of political discourses on race in various social spheres. Organised around the themes of the politicisation of race through affect, the way that race produces affect and the affective experience of race, this interdisciplinary collection...

  19. Affectivity in the Liminal

    DEFF Research Database (Denmark)

    Thomassen, Bjørn

    alternative interpretations of what liminality is, or could be, taking it to territories distant from its place of origin, quite the contrary: we are moving the concept back to its rightful place in intellectual history and back to the core of its significance, back to the centre of human emotions trembling......In this paper I propose a return to the work of Arnold van Gennep, in order to briefly discuss how the terms of liminality and affectivity were always already connected. By linking the concept of liminality that van Gennep made famous to affectivity, we are actually not proposing new and...... at the threshold. The paper contains three sections: a) liminality and affectivity in van Gennep’s life; b) liminality and affectivity as a theme in his work; c) liminality and affectivity as developed in the early reception of his work....

  20. Plant biotic interactions

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    occurring after infestation by olive fly larvae. The last research article by Niu et al.(2016) describes a growth-promoting rhizobacterium that primes induced systemic resistance by suppressing a host R gene-targeting micro RNA pairs and activating host immune responses. This finding further supports the important roles of plant endogenous small RNAs in plant-pathogen interactions. Hailing Jin, Professor Special Issue Editor UC President’s Chair Director of Genetics, Genomics and Bioinformatics Graduate Program, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, USA doi:10.1111/jipb.12476 ©2016 Institute of Botany, Chinese Academy of Sciences REFERENCES Alagna F, Kal enbach M, Pompa A, De Marchis F, Rao R, Baldwin IT, Bonaventure G, Baldoni L (2016) Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. J Integr Plant Biol 58:413–425 Castiblanco LF, Sundin GW (2016) New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol 58:362–372 da GraSca JV, Douhan GW, Halbert SE, Keremane ML, Lee RF, Vidalakis G, Zhao H (2016) Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. J Integr Plant Biol 58:373–387 Giovino A, Martinel i F, Saia S (2016) Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways. J Integr Plant Biol 58:388–396 Huang J, Yang M, Zhang X (2016) The function of smal RNAs in plant biotic stress response. J Integr Plant Biol 58:312–327 Kaloshian I, Wal ing LL (2016) Hemipteran and dipteran pests: Effectors and plant host immune regulators. J Integr Plant Biol 58:350–361 Mermigka G, Verret F, Kalantidis K (2016) RNA silencing movement in plants. J Integr Plant Biol 58:328–342 Niu D, Xia J, Jiang C, Qi B, Ling X, Lin S, Zhang W, Guo J, Jin H, Zhao H (2016) Bacil us cereus AR156

  1. Poisonous Plants

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH POISONOUS PLANTS Recommend on Facebook Tweet Share Compartir Photo courtesy ... U.S. Department of Agriculture Many native and exotic plants are poisonous to humans when ingested or if ...

  2. Manufacturing Plants

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China starts to produce vegetables and fruits in a factory sunshine,air and soil are indispensable for green plants. This might be axiomatic but not in a plant factory. By creating a plant factory,scientists are trying to grow plants where natural elements are deficient or absent,such as deserts, islands,water surfaces,South and North poles and space,as well as in human habitats such as skyscrapers in modern cities.

  3. Manufacturing Plants

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2010-01-01

    @@ Sunshine, air and soil are indispensable for green plants. This might be axi-omatic but not in a plant factory. By creating a plant factory, scientists are trying to grow plants where natural elements are deficient or absent, such as deserts,islands, water surfaces, South and North poles and space, as well as in human habi-tats such as skyscrapers in modern cities.

  4. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  5. Desfolha, população de plantas e precocidade do milho afetam a incidência e a severidade de podridões de colmo Defoliation, plant population, and earliness of maize affect the incidence and severity of stalk rots

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Bassay Blum

    2003-10-01

    Full Text Available As relações entre fonte e dreno interferem sobre a ocorrência de podridões de colmo na cultura do milho (Zea mays. O estudo foi conduzido em Lages, SC, para avaliar o efeito da desfolha, população de plantas e híbridos sobre as podridões do colmo do milho. O delineamento experimental foi de blocos ao acaso com parcelas sub-subdivididas e três repetições. Os híbridos P32R21 (superprecoce, Premium (precoce e C333B (tardio foram testados sem desfolha e com 50% de desfolha no estágio de espigamento nas populações de 25.000, 50.000, 75.000 e 100.000 plantas ha-1. Avaliaram-se a incidência e a severidade das podridões do colmo causadas por Colletotrichum graminicola, Diplodia maydis e Fusarium moniliforme. O híbrido P32R21 foi o mais afetado pelos fungos causadores de podridões. Nos híbridos P32R21 e Premium, as plantas desfolhadas foram mais severamente infectadas pelos patógenos do que as intactas. O aumento da população de plantas aumentou a intensidade (incidência ou severidade de podridões de colmo nas plantas intactas e diminuiu a ocorrência nas desfolhadas.The relationship between source and sink interferes on maize (Zea mays stalk rot occurrence. This study was conducted in Lages, SC, Brazil, to evaluate the effect of defoliation, plant population, and hybrids on the intensity (incidence or severity of maize stalk rots. The experiment was set in a randomized complete block design (three replications with a split-split-plot arrangement. The hybrids P32R21 (very early, Premium (early and C333B (late were tested without defoliation and with 50% defoliation on ear formation stage at plant populations of 25,000, 50,000, 75,000, and 100,000 plants ha-1. The incidence and severity of Colletotrichum graminicola, Diplodia maydis and Fusarium moniliforme stalk rots were evaluated. The hybrid P32R21 was the most affected by stalk rots. Defoliation enhanced rots on P32R21 and Premium. Enhancements in plant population increased

  6. Silicon in plant disease control

    Directory of Open Access Journals (Sweden)

    Edson Ampélio Pozza

    2015-06-01

    Full Text Available All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.

  7. Allometric scaling of plant life history

    OpenAIRE

    Marbà, Núria; Agustí, Susana; Duarte, Carlos M.

    2007-01-01

    Plant mortality and birth rates are critical components of plant life history affecting the stability of plant populations and the ecosystems they form. Although allometric theory predicts that both plant birth and mortality rates should be size-dependent, this prediction has not yet been tested across plants ranging the full size spectrum. Here we show that both population mortality and population birth rates scale as the 1⁄4 power and plant lifespan as the 1⁄4 power of plant mass across pl...

  8. Medicinal Plants.

    Science.gov (United States)

    Phillipson, J. David

    1997-01-01

    Highlights the demand for medicinal plants as pharmaceuticals and the demand for health care treatments worldwide and the issues that arise from this. Discusses new drugs from plants, anticancer drugs, antiviral drugs, antimalarial drugs, herbal remedies, quality, safety, efficacy, and conservation of plants. Contains 30 references. (JRH)

  9. CRECIMIENTO Y EFICIENCIA FOTOQUÍMICA DEL FOTOSISTEMA II EN PLANTAS DE FRESA (Fragaria sp. AFECTADAS POR LA CALIDAD DE LA LUZ:: IMPLICACIONES AGRONÓMICAS GROWTH AND PHOTOCHEMICAL EFFICIENCY OF PHOTOSYSTEM II IN STRAWBERRY PLANTS (Fragaria sp. AFFECTED BY THE LIGHT QUALITY: AGRONOMIC IMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Fánor Casierra Posada

    influence of light quality on the growth and photochemical efficiency of photosystem II (PSII in strawberry plants (Fragaria sp., cv. Chandler was examined in a factorial set up, under greenhouse in Tunja / Colombia. Plants grew under diverse light qualities (yellow, green, blue, red, transparent, and control without colored cover provided by polypropylene filter films. Determinations of minimum (F0, maximum (Fm, variable (Fv, and terminal (Ft fluorescence and maximum photochemical efficiency (Fv/Fm of dark-adapted leaves were done 32 weeks after the transplant. Related to growth, control plants recorded highest dry matter and specific leaf weight. Plants growing under the red filter developed highest leaf area. The green film reduced the growth. The color films changed the dry matter partitioning patterns in the plants organs, specially the green filter. Filtered light affected the chlorophyll fluorescence variables, related to control plants. Regards to control plants, Fv , Fm and Ft were higher in plants growing under all covers. While F0 was higher under the transparent and yellow films, Fv /Fm was lower under these covers. The results were discussed in relation to possible implications for appropriate agronomic practices.

  10. RENDIMENTO DE BENEFÍCIO E DE GRÃOS INTEIROS EM FUNÇÃO DO ESPAÇAMENTO E DA DENSIDADE DE SEMEADURA DO ARROZ DE SEQUEIRO PERCENTAGE OF UNDAMAGED GRAINS AND HULLING YIELD OF DRYLAND RICE AS AFFECTED BY ROW AND PLANT POPULATION

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    1999-01-01

    Full Text Available O presente trabalho teve por objetivo estudar o efeito do espaçamento entre fileiras (30, 40 e 50 cm e da densidade de semeadura (100, 150 e 200 sementes viáveis/m2 quanto a qualidade industrial de grãos do arroz de sequeiro cv. IAC 201. Dessa forma, foi instalado um experimento em condições de campo, em um Latossolo Vermelho escuro, epi-eutrófico, textura argilosa, em Selvíria, MS. Para tanto, foram avaliados os rendimentos de grãos, no benefício, grãos inteiros e quebrados. A variação do espaçamento e da densidade de semeadura não afetou o rendimento de benefício. O aumento da densidade de semeadura aumentou a porcentagem de grãos quebrados. Os rendimentos de grãos inteiros e quebrados não foram influenciados pela variação do espaçamento entre fileiras.A field experiment was carried out on a clayey Dark Red Latosol in Selvíria, MS, Brazil, to study the effect of three row spacings (30, 40 and 50 cm and three plant densities (100, 150 and 200 viable seeds/m2 on the hulling yield and the percentage of undamaged grains. There was no effect of row spacings and plant densities on hulling yield. Increasing plant population led to an increase of broken grains. The percentage of undamaged and broken grains were not affected by row spacing.

  11. Pain, Affect, and Attachment

    Directory of Open Access Journals (Sweden)

    Carl Eduard Scheidt

    2015-03-01

    Full Text Available Various psychodynamic processes may underlie the development of psychogenic pain disorder such as conversion, the displacement of affect, or narcissistic defenses. However, many of the processes suggested are related to a disorder of affect regulation. The term affect regulation in psychoanalytic literature refers to phenomena which are often described by the concept of alexithymia. Empirical observations suggest that alexithymia is correlated to insecure attachment, especially an insecure dismissing representation of attachment. Psychodynamic psychotherapy in psychogenic pain disorder should focus on the reintegration of split-off affects which may provoke intensive counter-transference and which in order to be used therapeutically must be linked to attachment experiences within and outside of the therapeutic relationship.

  12. Colors Can Affect Us!

    Institute of Scientific and Technical Information of China (English)

    张俊斌

    2006-01-01

    Different colors affect us differently.The following will show us how they work. Experiment proves that math problems worked on yellow paper have fewer mistakes than problems written on other colors of paper.

  13. Owners of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  14. Owners of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  15. Competition in a rice - cowpea intercrop as affected by nitrogen fertilizer and plant population Competição em uma cultura consorciada de arroz-guandu em função do fertilizante nitrogenado e da densidade populacional de plantas

    Directory of Open Access Journals (Sweden)

    Frank Oke Oroka

    2007-12-01

    Full Text Available The increased productivity or yield advantage provided by intercropping is attributed to a better use of resources by crops grown in mixtures, as compared to the same species grown in sole stands. In an intercropping system with upland rice and cowpea, the intra and inter-competition was quantified, as affected by plant population density and rate of nitrogen. Reductions in number of panicles per rice plant and number of grains per panicle were obtained with high density in both sole and mixture rice populations. Increasing nitrogen rate did not affect yield and yield components in both populations, but number and weight of pods per plant of cowpea in sole stands increased. Land equivalent ratios exceeding unity were obtained, indicating an improved resource use by the crop mixture. Relative crowding coefficient and aggressivity indices showed cowpea to be the dominant crop, with rice being dominated. Nitrogen utilization efficiency was high with intercrops, but was generally poor in stands of high population density.O aumento em produtividade devido a plantios consorciados é atribuído ao melhor uso dos recursos presentes pelas plantas em desenvolvimento conjunto, em comparação às mesmas espécies crescendo em dosséis separados. Em um sistema consorciado de arroz e guandu quantificou-se as inter- e intra competições em relação à densidade populacional e taxa de aplicação de nitrogênio. Reduções significativas do número de panículas por planta de arroz e número de grãos por panícula foram observados para alta densidade, tanto para culturas solteira de arroz como em populações mistas. O aumento das doses de nitrogênio não afetou a produção e os componentes de produção em ambos os sistemas, ao passo que o número e peso de vagens por planta do guandu aumentaram em culturas solteiras. Foram obtidas razões de área equivalente maiores que a unidade, mostrando melhoria no uso da terra nas culturas mistas. O coeficiente

  16. Parasotoid communities and genetic structure: host plant does not matter

    OpenAIRE

    Jourdie, Violaine; Turlings, Ted

    2008-01-01

    Plant-insect interactions have long been studied and reveal intricate mechanisms. Plants are capable of defending themselves both directly by poisoning insect herbivores and indirectly by emitting volatile compounds that are used by the natural enemies to localize their host. In response, insects have evolved strategies to defeat plant defense mechanisms. Because insect pests are affected by plant signals, their natural enemies also bear these effects. As host plant can affect the physiology ...

  17. Factors Affecting Soil Microbial Community Structure in Tomato Cropping Systems

    Science.gov (United States)

    Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. We identified some of the most important factors controlling microbial biomass and community structure in an agroecosystem utilizing tomato plants with the following nine tre...

  18. Manganese uptake and redistribution in soybean as affected by glyphosate

    OpenAIRE

    Ciro Antonio Rosolem; Gabriel José Massoni de Andrade; Izaias Pinheiro Lisboa; Samuel Menegatti Zoca

    2010-01-01

    Detrimental effects of glyphosate on plant mineral nutrition have been reported in the literature, particularly on Mn uptake and redistribution. However, in most of the experiments conducted so far glyphosate-susceptible plants were used. Effects of glyphosate on Mn absorption kinetics, accumulation, and distribution within the plant, as well as soybean response to Mn as affected by glyphosate were studied in three experiments. In the first experiment, in nutrient solution, the effect of glyp...

  19. Ethnomedicine use in the war affected region of northwest Pakistan

    OpenAIRE

    Adnan, Muhammad; Ullah, Ihsan; Tariq, Akash; Murad, Waheed; Azizullah, Azizullah; Khan, Abdul Latif; Ali, Nawab

    2014-01-01

    Background North-West of Pakistan is bestowed with medicinal plant resources due to diverse geographical and habitat conditions. The traditional use of plants for curing various diseases forms an important part of the region’s cultural heritage. The study was carried out to document medicinal plants used in Frontier Region (FR) Bannu, an area affected by the “War on Terror”. Methods Fieldwork was carried out in four different seasons (spring, autumn, summer and winter) from March 2012 to Febr...

  20. Affective responses to dance.

    Science.gov (United States)

    Christensen, Julia F; Pollick, Frank E; Lambrechts, Anna; Gomila, Antoni

    2016-07-01

    The objective of the present work was the characterization of mechanisms by which affective experiences are elicited in observers when watching dance movements. A total of 203 dance stimuli from a normed stimuli library were used in a series of independent experiments. The following measures were obtained: (i) subjective measures of 97 dance-naïve participants' affective responses (Likert scale ratings, interviews); and (ii) objective measures of the physical parameters of the stimuli (motion energy, luminance), and of the movements represented in the stimuli (roundedness, impressiveness). Results showed that (i) participants' ratings of felt and perceived affect differed, (ii) felt and perceived valence but not arousal ratings correlated with physical parameters of the stimuli (motion energy and luminance), (iii) roundedness in posture shape was related to the experience of more positive emotion than edgy shapes (1 of 3 assessed rounded shapes showed a clear effect on positiveness ratings while a second reached trend level significance), (iv) more impressive movements resulted in more positive affective responses, (v) dance triggered affective experiences through the imagery and autobiographical memories it elicited in some people, and (vi) the physical parameters of the video stimuli correlated only weakly and negatively with the aesthetics ratings of beauty, liking and interest. The novelty of the present approach was twofold; (i) the assessment of multiple affect-inducing mechanisms, and (ii) the use of one single normed stimulus set. The results from this approach lend support to both previous and present findings. Results are discussed with regards to current literature in the field of empirical aesthetics and affective neuroscience. PMID:27235953

  1. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants

    OpenAIRE

    Porcel, Rosa; Zamarreño, Ángel M.; García-Mina, José M.; AROCA, RICARDO

    2014-01-01

    Abstract Background Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca ...

  2. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly

    OpenAIRE

    Kardol, P.; Cornips, N.J.; Van Kempen, M.M.L.; Bakx-Schotman, J.M.T.; Van der Putten, W.H.

    2007-01-01

    Plant–soil feedback affects performance and competitive ability of individual plants. However, the importance of plant–soil feedback in historical contingency processes and plant community dynamics is largely unknown. In microcosms, we tested how six early-successional plant species of secondary succession on ex-arable land induced plant-specific changes in soil community composition. Following one growth cycle of conditioning the soil community, soil feedback effects were assessed as plant p...

  3. A modular reactor plant

    International Nuclear Information System (INIS)

    This paper describes a new concept in liquid metal reactors that is being developed by General Electric under contract to the Department of Energy. This concept is called the Modular Reactor Plant. While this effort is not expected to have a near-term impact, it is directed toward three principal issues currently affecting nuclear power in the United States. First, plant costs have escalated to the point where the startup of new plants require large electric rate increases. Second, the cost of new plants coming on-line today vary by as much as a factor of three. And, third, nuclear construction times often exceed the utilities prudent planning cycle. This paper describes how General Electric's Modular Reactor Plant addreses these issues through shop fabrication and assembly, rail shipment to the site for rapid installation of nuclear components and inherent reactor protection. In addition, it is expected the modular reactor plant will reduce the current cost of development and demonstration of liquid metal reactors to an affordable level

  4. The Affective Turn

    Directory of Open Access Journals (Sweden)

    Alí Lara

    2013-11-01

    Full Text Available In the last decade studies on affect and emotions have become relevant in the social sciences. This is not just a fad guideline, but instead a simultaneous reader of public life changes and subjective experience, from which it is also being transformed the knowledge production. Such a trend has been known as ‘The Affective Turn’ within the Anglophone Academy. Here we will translate it as ‘El Giro Afectivo’. This turn, so far, has not dabbled in the social science literature that is written in Spanish. This paper draws on a singular panorama of discussions about contemporary social studies of affect and emotion, and it’s vertebrate by some of its expressions in the contemporary academy.

  5. The Affective Turn

    DEFF Research Database (Denmark)

    Carnera, Alexander

    2012-01-01

    This paper confronts biopolitics with modern labour addressing questions of ‘governmentality’, ‘self-management’ and ‘social innovation’. It argues that the new modes of production within immaterial labour involve a new complex relation between on the one hand the ‘Art of Governance......-management that human individuation ties together modes of productions with affects and emotions. Introducing Spinoza's concept of ‘affect’, and Gilles Deleuze's reading of Spinoza's ethics focusing on the ‘affective turn’ in relation to the new economy and society, the paper argues for a more positive notion of...... biopolitics that surpasses that of governmentality. The affective self-relation is used as a research tool to analyse the creation of social and economic values in our new modes of productions, for instance, within free labour of the cultural industry. The movie The Five Obstructions is used to show how...

  6. Acumulación de cobre en una comunidad vegetal afectada por contaminación minera en el valle de Puchuncaví, Chile central Copper accumulation in a plant community affected by mining contamination in Puchuncaví valley, central Chile

    Directory of Open Access Journals (Sweden)

    ISABEL GONZÁLEZ

    2008-06-01

    Full Text Available Las especies hiperacumuladoras son capaces de acumular más de 1.000 mg kg-1 de metal en su biomasa aérea y son útiles en procesos de fitoextracción de metales en suelos contaminados por actividades mineras. Con el fin de identificar especies hiperacumuladoras representativas de las condiciones chilenas, se realizó una prospección dentro de la diversidad vegetal en el área afectada por las emisiones de la Fundición Ventanas (90-900 mg kg-1 de Cu total en suelos, así como en un área cercana a una pila de escorias de fundición (500-3.000 mg kg-1 de Cu total en suelos. Se determinaron las concentraciones de Cu en la biomasa aérea de las plantas. Los resultados indican que dentro de la diversidad del sitio existen al menos veintidós especies pseudometalofitas, es decir, ecotipos de especies comunes que son capaces de tolerar concentraciones de cobre en el suelo que para una planta normal serían tóxicas. Las especies fueron clasificadas según su concentración de cobre y mostraron en su mayoría media (200-600 mg kg-1 o baja (Hyperaccumulator plants species are capable of accumulating more than 1,000 mg Cu kg-1 in their shoots and are useful for metal phytoextraction in soils contaminated by mining activities. To identify the hyperaccumulator plants representative of the Chilean conditions, we carried out a survey of plant diversity in the área affected by the emissions of the Ventanas smelter (90-900 mg kg-1 of total Cu in soils and in a nearby área cióse to a smelter slug pile (500-3,000 mg kg-1 of total Cu in soils. Copper concentrations in the shoots of the studied plants were determined. Results indicate that there were at least twenty-two pseudometallophyte species, i.e., ecotypes of common species capable to tolérate concentrations of Cu in the soil that would be toxic for a normal plant. The species were classified by their copper accumulation and nearly all exhibited médium (200-600 mg kg-1 or low (< 200 mg kg-1

  7. Overwintering temperatures affect freezing temperatures of turions of aquatic plants

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír; Kučerová, Andrea

    2013-01-01

    Roč. 208, 8-9 (2013), 497-501. ISSN 0367-2530 Institutional support: RVO:67985939 Keywords : mini thermocouples * frost resistance * hardening Subject RIV: EF - Botanics Impact factor: 1.462, year: 2013

  8. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    Czech Academy of Sciences Publication Activity Database

    Li, R.; Li, J.; Li, S.; Quin, G.; Novák, Ondřej; Pěnčík, Aleš; Ljung, K.; Aoyama, T.; Liu, J.; Murphy, A.; Gu, H.; Tsuge, T.; Qu, L.J.

    2014-01-01

    Roč. 10, č. 1 (2014). ISSN 1553-7390 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : HYPOCOTYL ELONGATION * ARABIDOPSIS-THALIANA * BUD FORMATION Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.528, year: 2014

  9. Aruscular mycorhizal fungi alter plant allometry and biomass - density relationships

    DEFF Research Database (Denmark)

    Zhang, Qian; Zhang, Lu; Weiner, Jacob;

    2011-01-01

    fungi (AMF) can promote plant growth and affect plant form. Here experiments were carried out to test whether AMF affect plant allometry and the self-thinning trajectory. Methods Two experiments were conducted on Medicago sativa L., a leguminous species known to be highly dependent on mycorrhiza. Two...

  10. Temperature Effect to Solar Power Plant

    OpenAIRE

    Modestas Pikutis

    2015-01-01

    There are a lot of different efficiency photovoltaic cells, which are used in solar power plants. All of these different photovoltaic cells are affected by different environment conditions. Maximum power point tracking is the main way to increase solar power plant efficiency. Mostly systems of maximum power point tracking are slow or inaccurate, that means the system cannot stay in maximum power point in solar power plant. This is the main reason why mostly of solar power plants are working n...

  11. Affected in the nightclub

    DEFF Research Database (Denmark)

    Demant, Jakob Johan

    2013-01-01

    experiences within a club as a way of understanding the complexities of pleasure. The study does so by addressing experiences through the concept of affects, which is situated within a framework of a non-representational theory of space. Anxiety, pride, anger, shame and embarrassment are embodied...

  12. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  13. Plant Behavior

    Science.gov (United States)

    Liu, Dennis W. C.

    2014-01-01

    Plants are a huge and diverse group of organisms, ranging from microscopic marine phytoplankton to enormous terrestrial trees epitomized by the giant sequoia: 300 feet tall, living 3000 years, and weighing as much as 3000 tons. For this plant issue of "CBE-Life Sciences Education," the author focuses on a botanical topic that most…

  14. Planting Trees

    OpenAIRE

    Relf, Diane

    2009-01-01

    The key aspects in planning a tree planting are determining the function of the tree, the site conditions, that the tree is suited to site conditions and space, and if you are better served by a container-grown. After the tree is planted according to the prescribed steps, you must irrigate as needed and mulch the root zone area.

  15. Plant Identification.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    This set of teaching aids consists of 12 Audubon Nature Bulletins, providing teachers and students with informational reading on plants. The bulletins include these titles: The Parade of Spring Wild Flowers, Wild Flowers of Our Prairies, Seeds and How They Travel, Poison Ivy and Other Poisonous Plants, The Forest Community, Common Trees and Their…

  16. Neurotransmitters affecting time perception

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:It has been demonstrated that dopamine and acetylcholine are the main neurotransmitters that affect time perception,which is also affected by other neurotransmitters.OBJECTIVE:To summarize how the neurotransmitter affect the time perception,and put forward the perspectives for further study on time perception.RETRIEVE STRATEGY:An online search for related literatures published in English was conducted in Elsevier SDOL(ScienceDirect Online)database from May 1990 to March 2007 using key words of "timing neurotransmitter".Totally 69 literatures were collected,and they were primarily checked.Inclusive criteria:Reviews and experimental studies;correlative studies of timing neurotransmitter.Exclusive criteria:Repeated studies.LITERATURE EVALUATION:The literatures were mainly sourced from Cognitive Brain Research and Neuroscience,and they were analyzed according to the inclusive criteria.Nineteen of them were involved,and all were experimental studies and reviews.DATA SYNTHESIS:The studies on time perception are developed mainly concentrating on dopamine and acetylcholine.Dopamine D2 receptors mainly affect the speed of internal clock.Dopamine receptors play an important role in both timing excitation and inhibition,which suggests the bi-directional regulation of dopamine.Injection of dopamine agonist can affect the attention to timing information.Injection of BW813U(antagonist of acetylcholine) can induce memory disorder,which indicates the effect of acetylcholine on timing memory,and further study shows that it is the effect of acetylcholine in precentral medial area.In a word,the study on the neurotransmitters affecting time perception is still at the primary stage.CONCLUSION:Dopamine and acetylcholine are the neurotransmitters known to be related to time perception.Dopamine in the basal ganglia is related to internal-clock in the range of seconds and minutes;Acetylcholine in prefrontal cortex is related to the mechanisms of temporal memory and attention

  17. Affects and assemblages

    DEFF Research Database (Denmark)

    Samson, Kristine

    happens to aesthetics and how does it change the existing social and geographical understanding of urban space? The paper sets out to reintroduce aesthetical aspects of affects and assemblages in relation to urban space and urban planning. It presupposes urban space as a continuous state of becoming where...... ‘throwntogetherness’ (Massey 2005) or assemblage (Farias & Bender 2010) of perspectives bridging for instance the social and cultural experienced space investigated by the geographer and urban sociologist with the material and formal aesthetics of the architect and urban planner....... cultural geopgraphy. On this backdrop the paper states that affects and assemblages could serve as key notions for the reassembling the aesthetics of urban space. Thus, the paper suggest a less formal understanding of urban space and aesthetics, proposing an understanding of aesthetics as a...

  18. Comfortable bodies: sedentary affects

    OpenAIRE

    David Bissell

    2008-01-01

    Whilst to be comfortable is often equated with conservatism and complacency, this paper considers the various and often complex configurations of comfort as a desirable corporeal sensibility. Subsequently, this paper considers what corporeal comfort as an affective sensibility is and can do to theorisations of the sedentary body. The sensibility of corporeal comfort induced through the relationality between bodies and proximate objects is explored to trace through some of the affectual circul...

  19. Cytoplasm Affects Embryonic Development

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Recent studies by CAS researchers furnish strong evidence that a fertilized egg's nucleus isn't the sole site of control for an embryo's development. A research team headed by Prof. Zhu Zuoyan from the CAS Institute of Hydrobiology in Wuhan discovered that cytoplasm affects the number of vertebrae in cloned offspring created when nuclei from one fish genus were transplanted to enucleated eggs of another.

  20. Factors Affecting Wound Healing

    OpenAIRE

    Guo, S; DiPietro, L. A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutane...

  1. Produção do melão rendilhado em função da concentração de potássio na solução nutritiva e do número de frutos por planta Net melon yield as affected by potassium concentration in nutrient solution and number of fruits per plant

    Directory of Open Access Journals (Sweden)

    Caciana C. Costa

    2004-03-01

    increase in second fruit weight. Yield and fruit weight were not influenced by potassium concentration in the nutrient solution over 66 mg L-1. The number of fruits per plant affected yield and fruit weight promoting, respectively, increase and decrease in proportion to the higher number of fruits per plant.

  2. Affective Image Colorization

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui Wang; Jia Jia; Han-Yu Liao; Lian-Hong Cai

    2012-01-01

    Colorization of gray-scale images has attracted many attentions for a long time.An important role of image color is the conveyer of emotions (through color themes).The colorization with an undesired color theme is less useful,even it is semantically correct.However this has been rarely considered.Automatic colorization respecting both the semantics and the emotions is undoubtedly a challenge.In this paper,we propose a complete system for affective image colorization.We only need the user to assist object segmentation along with text labels and an affective word.First,the text labels along with other object characters are jointly used to filter the internet images to give each object a set of semantically correct reference images.Second,we select a set of color themes according to the affective word based on art theories.With these themes,a generic algorithm is used to select the best reference for each object,balancing various requirements.Finally,we propose a hybrid texture synthesis approach for colorization.To the best of our knowledge,it is the first system which is able to efficiently colorize a gray-scale image semantically by an emotionally controllable fashion.Our experiments show the effectiveness of our system,especially the benefit compared with the previous Markov random field (MRF) based method.

  3. Genetic and clonal diversity of the endemic ant-plant Humboldtia brunonis (Fabaceae) in the Western Ghats of India

    Indian Academy of Sciences (India)

    Suma A Dev; Megha Shenoy; Renee M Borges

    2010-06-01

    Humboldtia brunonis (Fabaceae, Caesalpinioideae) is a dominant self-incompatible ant-plant or myrmecophyte, growing as an understorey tree in high-density patches. It is endemic to the biodiversity hotspot of the southern Western Ghats of India and, besides ants, harbours many endemic invertebrate taxa, such as bees that pollinate it as well as arboreal earthworms, within swollen hollow stem internodes called domatia. Using inter simple sequence repeat (ISSR) markers, three geographically separated populations were found to be multiclonal, characterized by high levels of clonal diversity. Values for the Simpson diversity index ranged between 0.764 and 0.964, and for Fager’s evenness index between 0.00 and 0.036 for neighbourhoods within populations. This myrmecophyte was found to combine sexual recruitment (66.7%) and clonal production (33.3%) as methods of reproduction. Moderate amounts of genetic diversity at the species level were observed, with 52.63% polymorphism, and moderate values of Shannon’s diversity index (0.1895) as well as of Nei’s gene diversity (0.1186). In each population, observed genotypic diversity was significantly lower than expected, indicating significant genetic structure. Neighbour-joining trees demonstrated that Agumbe, which is the most northern population examined and geographically twice as far away from the other two populations, grouped separately and with larger bootstrap support from a larger cluster consisting of the Sampaji and Solaikolli populations, which are closer to each other geographically. Some neighbourhoods within each population showed spatial genetic structure even at small spatial scales of < 5 m. A combination of clonality and short-distance pollen movement by small pollinating bees (Braunsapis puangensis) coupled with primary ballistic seed dispersal, and possible secondary seed dispersal by rodents, may contribute to spatial genetic structure at such small scales. The clonality of H. brunonis may be a factor

  4. Insect symbionts as hidden players in insect-plant interactions

    NARCIS (Netherlands)

    Frago, E.; Dicke, M.; Godfray, H.C.J.

    2012-01-01

    There is growing evidence of the importance of microbial mutualistic symbioses in insect-plant interactions. Mutualists may affect host plant range and enable insects to manipulate plant physiology for their own benefit. The plant can also be a route for the horizontal transfer of mutualistic microo

  5. Factors affecting forage stand establishment

    Directory of Open Access Journals (Sweden)

    Sulc R.M.

    1998-01-01

    Full Text Available Significant advances have been made in our knowledge of forage seed physiology, technology, and stand establishment practices; however, stand establishment continues to be one of the most common production problems affecting forage crops in the USA. There is a need for research on stand establishment of forage crops under abiotic and biotic stress. Although the forage seed industry produces and markets seed of high quality, new methods of assessing seed vigor are needed and their use should be expanded in the industry to enable matching seed lot performance to specific environmental conditions where performance can be maximized. Seed treatment and seed coating are used in the forage seed industry, and studies have shown they are of benefit in some environments. There is an increase in no-tillage seeding of forage crops, but improvements in the no-tillage planting equipment are needed to make them better suited to small seeds. Other recent developments in seeding techniques include broadcasting seed with dry granular and fluid fertilizers, which improves the efficiency of the seeding operation.

  6. Above- and below-ground herbivory effects on below- ground plant-fungus interactions and plant-soil feedback responses

    NARCIS (Netherlands)

    Bezemer, T.M.; Putten, van der W.H.; Martens, H.; Voorde, van de T.F.J.; Mulder, P.P.J.; Kostenko, O.

    2013-01-01

    1.Feeding by insect herbivores can affect plant growth and the concentration of defense compounds in plant tissues. Since plants provide resources for soil organisms, herbivory can also influence the composition of the soil community via its effects on the plant. Soil organisms, in turn, are importa

  7. The Affective Turn

    OpenAIRE

    Alí Lara; Giazú Enciso

    2013-01-01

    En la última década los estudios del afecto y las emociones han cobrado relevancia en las ciencias sociales. Esto no es simplemente una directriz de moda, es un indicador simultáneo de las modificaciones en la vida pública y de la experiencia subjetiva; a partir del cual se está transformando la producción de conocimiento. Tal tendencia ha sido conocida en la academia sajona como The Affective Turn, aquí traducido como “El giro afectivo” y que hasta el momento no ha incursionado como tal en l...

  8. Visual affect recognition

    CERN Document Server

    Stathopoulou, I-O

    2010-01-01

    It is generally known that human faces, as well as body motions and gestures, provide a wealth of information about a person, such as age, race, sex and emotional state. This monograph primarily studies the perception of facial expression of emotion, and secondarily of motion and gestures, with the purpose of developing a fully automated visual affect recognition system for use in modes of human/computer interaction. The book begins with a survey of the literature on emotion perception, followed by a description of empirical studies conducted with human participants and the construction of a '

  9. Plant Macrofossils

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past vegetation and environmental change derived from plant remains large enough to be seen without a microscope (macrofossils), such as leaves, needles,...

  10. Plant Speciation

    OpenAIRE

    Rieseberg, Loren H.; Willis, John H.

    2007-01-01

    Like the formation of animal species, plant speciation is characterized by the evolution of barriers to genetic exchange between previously interbreeding populations. Prezygotic barriers, which impede mating or fertilization between species, typically contribute more to total reproductive isolation in plants than do postzygotic barriers, in which hybrid offspring are selected against. Adaptive divergence in response to ecological factors such as pollinators and habitat commonly drives the evo...

  11. Plant Species Sensitivity Distributions for ozone exposure

    International Nuclear Information System (INIS)

    This study derived Species Sensitivity Distributions (SSD), representing a cumulative stressor-response distribution based on single-species sensitivity data, for ozone exposure on natural vegetation. SSDs were constructed for three species groups, i.e. trees, annual grassland and perennial grassland species, using species-specific exposure–response data. The SSDs were applied in two ways. First, critical levels were calculated for each species group and compared to current critical levels for ozone exposure. Second, spatially explicit estimates of the potentially affected fraction of plant species in Northwestern Europe were calculated, based on ambient ozone concentrations. We found that the SSD-based critical levels were lower than for the current critical levels for ozone exposure, with conventional critical levels for ozone relating to 8–20% affected plant species. Our study shows that the SSD concept can be successfully applied to both derive critical ozone levels and estimate the potentially affected species fraction of plant communities along specific ozone gradients. -- Highlights: ► Plant Species Sensitivity Distributions were derived for ozone exposure. ► Annual grassland species, as a species assemblage, tend to be most sensitive to ozone. ► Conventional critical levels for ozone relate to 8–20% affected plant species. ► The affected fraction of plant species for current ozone exposure in Northwestern Europe is estimated. -- Species Sensitivity Distributions offer opportunities in ozone risk assessment to both derive critical levels and estimate the affected fraction of a plant community

  12. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  13. Elicitors in Plant Tissue Culture

    Directory of Open Access Journals (Sweden)

    R. Krishnamurthy

    2013-07-01

    Full Text Available Plants or Plant cells in vitro, show physiological and morphological response to microbial, physical or chemical factors which are known as ‘elicitors’. Elicitation is a process of induced or enhanced synthesis of secondary metabolites by the plants to ensure their survival persistence and competitiveness. The application of elicitors, which is currently the focus of research, has been considered as one of the most effective methods to improve the synthesis of secondary metabolites in medicinal plants. Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavours and other industrial materials. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Commonly tested chemical elicitors are salicylic acid, methyl salicylate, bezoic acid, chitosan and so forth which affect production of phenolic compounds and activation of various defense-related enzymes in plants. Plants are challenged by a variety of biotic stresses like fungal, bacterial or viral infections. This lead to the great loss to a plant yield. Here we discuss the classification of elicitors, mechanism of elicitor, the use of elicitors and the different features of elicitors.

  14. Plant traits related to nitrogen uptake influence plant-microbe competition.

    Science.gov (United States)

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  15. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    OpenAIRE

    Muller, Jonathon N.; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L.

    2014-01-01

    Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for...

  16. Effects of plant diversity on plant biomass production and soil macrofauna in Amazonian pastures

    OpenAIRE

    Laossi, Kam-Rigne; Barot, Sébastien; Carvalho, D; Desjardins, Thierry; Lavelle, Patrick; Martins, M.; Mitja, Danielle; Rendeiro, A. C.; Rousseau, G.; Sarrazin, Max; Velasquez, Elena; Grimaldi, Michel

    2008-01-01

    We examined the effect of plant diversity on plant production and soil macrofauna density and diversity. Four plants species (Arachis pintoi, an herbaceous legume; Brachiaria brizantha, a perennial grass; Leucaena leucocephala, a legume shrub; Solanum rugosum, a non-legume shrub) were used in a field experiment and communities of all combinations of one, two, three or four species were established. Plant diversity neither significantly affected density and diversity of soil macrofauna nor tot...

  17. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    OpenAIRE

    Jing, Jingying; Bezemer, T. Martijn; van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from early-stage ex-arable fields to examine how intra- and interspecific plant–soil feedbacks affect the performance of 10 conditioning species and the focal species, Jacobaea vulgaris. Plants were grown alon...

  18. Material and Affective Movements

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Rosén

    2014-01-01

    This chapter offers a study of life at school as remembered by groups of people who finished secondary school in the 1950s, 1970s and 1990s. The article draws up three generational portraits based on in-depth interviews that demonstrate how school life is remembered in complex and textural ways....... The chapter traces the former pupil’s memories of physical and affective movements within the larger context of school and discovers surprisingly diverse modes of knowing, relating, and attending to things, teachers and classmates among and between the three generations. It thus taps into the rich...... demonstrates how the use of spoken memories is a rewarding source for the writing about school from the pupils’ perspective....

  19. Affective World Literature

    DEFF Research Database (Denmark)

    Vilslev, Annette Thorsen

    The PhD dissertation compares the literary theory and novels of modern Japanese writer Natsume Sōseki. It reads Sōseki’s Theory of Literature (2009, Bungakuron, 1907) as an inherently comparative and interdisciplinary approach to theorizing feelings in world literature. More broadly, the...... dissertation investigates the critical negotiation of the novel as a travelling genre in Japan in the beginning of the 20th century, and, more specifically, Sōseki’s work in relation to world literature and affect theory. Sōseki’s work is highly influential in Japan and East Asia, and his novels widely...... circulated beyond Japan. Using Sōseki’s theory as an example, and by comparing it to other theories, the dissertation argues that comparative literature needs to include not only more non-Western literature but also more non-Western literary theories in the ongoing debate of world literature. Close...

  20. Anticipated affect and behavioral choice.

    NARCIS (Netherlands)

    R. Richard; J. van der Pligt; N.K. de Vries

    1996-01-01

    Most research on the impact of affect on attitudes and behavior emphasizes the effect of past and present affective reactions. In this article we focus on anticipated, postbehavioral, affective reactions. The influence of anticipated affective reactions on a number of behaviors was investigated in t

  1. Maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    This Safety Guide provides detailed guidance on the provisions of the Code on the Safety in Nuclear Power Plants: Operation, IAEA Safety Series No. 50-C-O(Rev.1) on the maintenance of structures, systems and components. Like the Code, the Guide forms part of the IAEA's programme, referred to as the NUSS programme, for establishing Codes and Safety Guides relating to nuclear power plants. Effective maintenance is essential for safe operation of a nuclear power plant. It not only ensures that the level of reliability and effectiveness of all plant structures, systems and components having a bearing on safety remains in accordance with design assumptions and intent, but also that the safety status of the plant is not adversely affected after commencement of operation. Nuclear power plant maintenance requires special attention because of: Limitations set by requirements that a minimum number of components remain operable even when the plant is shut down in order to ensure that all necessary safety functions are guaranteed; Difficulty of access to some plant items even when the plant is shut down, due to radiation protection constraints; Potential radiological hazards to site personnel and the public. This Guide covers the organizational and procedural aspects of maintenance but does not give detailed technical advice on the maintenance of particular plant items. It gives guidance on preventive and remedial measures necessary to ensure that all structures, systems and components important to safety are capable of performing as intended. The Guide covers the organizational and administrative requirements for establishing and implementing preventive maintenance schedules, repairing defective plant items, selecting and training maintenance personnel, providing maintenance facilities and equipment, procuring stores and spare parts, reviewing, controlling and carrying out plant modifications, and generating, collecting and retaining maintenance records for establishing and

  2. Waterlogging and submergence stress: affects and acclimation.

    Science.gov (United States)

    Phukan, Ujjal J; Mishra, Sonal; Shukla, Rakesh Kumar

    2016-10-01

    Submergence, whether partial or complete, imparts some serious consequences on plants grown in flood prone ecosystems. Some plants can endure these conditions by embracing various survival strategies, including morphological adaptations and physiological adjustments. This review summarizes recent progress made in understanding of the stress and the acclimation responses of plants under waterlogged or submerged conditions. Waterlogging and submergence are often associated with hypoxia development, which may trigger various morphological traits and cellular acclimation responses. Ethylene, abscisic acid, gibberellic acid and other hormones play a crucial role in the survival process which is controlled genetically. Effects at the cellular level, including ATP management, starch metabolism, elemental toxicity, role of transporters and redox status have been explained. Transcriptional and hormonal interplay during this stress may provide some key aspects in understanding waterlogging and submergence tolerance. The level and degree of tolerance may vary depending on species or climatic variations which need to be studied for a proper understanding of waterlogging stress at the global level. The exploration of regulatory pathways and interplay in model organisms such as Arabidopsis and rice would provide valuable resources for improvement of economically and agriculturally important plants in waterlogging affected areas. PMID:26177332

  3. CITRUS CANKER: PLANT PATHOLOGY VERSUS PUBLIC POLICY

    Science.gov (United States)

    Increasing international travel and trade has resulted in an unprecedented number of plant pathogen introductions, including Xanthomonas axonopodis pv citri, (Xac), the bacterium that causes citrus canker. The disease affects commercial and dooryard citrus, and has far-reaching politi...

  4. The affective life of semiotics

    OpenAIRE

    J. S. Hutta

    2015-01-01

    The paper challenges writings on affect that locate affective dynamism in autonomic bodily responses while positing discourse and language as "capturing" affect. To move beyond such "verticalism", the paper seeks to further an understanding of language, and semiotics more broadly, as itself affective. Drawing on participatory research conducted in Rio de Janeiro, it uses poetic expression as a paradigmatic case of the affective life of semiotics. Conceptually, it builds on Guat...

  5. Evidence of Epigenetic Mechanisms Affecting Carotenoids.

    Science.gov (United States)

    Arango, Jacobo; Beltrán, Jesús; Nuñez, Jonathan; Chavarriaga, Paul

    2016-01-01

    Epigenetic mechanisms are able to regulate plant development by generating non-Mendelian allelic interactions. An example of these are the responses to environmenal stimuli that result in phenotypic variability and transgression amongst important crop traits. The need to predict phenotypes from genotypes to understand the molecular basis of the genotype-by-environment interaction is a research priority. Today, with the recent discoveries in the field of epigenetics, this challenge goes beyond analyzing how DNA sequences change. Here we review examples of epigenetic regulation of genes involved in carotenoid synthesis and degradation, cases in which histone- and/or DNA-methylation, and RNA silencing at the posttranscriptional level affect carotenoids in plants. PMID:27485227

  6. Sources of Verticillium dahliae affecting lettuce.

    Science.gov (United States)

    Atallah, Zahi K; Maruthachalam, Karunakaran; Subbarao, Krishna V

    2012-11-01

    ABSTRACT Since 1995, lettuce in coastal California, where more than half of the crop in North America is grown, has consistently suffered from severe outbreaks of Verticillium wilt. The disease is confined to this region, although the pathogen (Verticillium dahliae) and the host are present in other crop production regions in California. Migration of the pathogen with infested spinach seed was previously documented, but the geographic sources of the pathogen, as well as the impact of lettuce seed sparsely infested with V. dahliae produced outside coastal California on the pathogen population in coastal California remain unclear. Population analyses of V. dahliae were completed using 16 microsatellite markers on isolates from lettuce plants in coastal California, infested lettuce seed produced in the neighboring Santa Clara Valley of California, and spinach seed produced in four major spinach seed production regions: Chile, Denmark, the Netherlands, and the United States (Washington State). California produces 80% of spinach in the United States and all seed planted with the majority infested by V. dahliae comes from the above four sources. Three globally distributed genetic populations were identified, indicating sustained migration among these distinct geographic regions with multiple spinach crops produced each year and repeated every year in coastal California. The population structure of V. dahliae from coastal California lettuce plants was heavily influenced by migration from spinach seed imported from Denmark and Washington. Conversely, the sparsely infested lettuce seed had limited or no contribution to the Verticillium wilt epidemic in coastal California. The global trade in plant and seed material is likely contributing to sustained shifts in the population structure of V. dahliae, affecting the equilibrium of native populations, and likely affecting disease epidemiology. PMID:22857515

  7. Quality assurance organization for nuclear power plants

    International Nuclear Information System (INIS)

    This Safety Guide provides requirements, recommendations and illustrative examples for structuring, staffing and documenting the organizations that perform activities affecting quality of a nuclear power plant. It also provides guidance on control of organization interfaces, and establishment of lines for direction, communication and co-ordination. The provisions of this Guide are applicable to all organizations participating in any of the constituent areas of activities affecting quality of a nuclear power plant, such as design, manufacture, construction, commissioning and operation

  8. Sunflower plants nutrients accumulation and oil yield as affected by achenes vigour and sowing densityAcúmulo de nutrientes e rendimento de óleo em plantas de girassol influenciados pelo vigor dos aquênios e pela densidade de semeadura

    Directory of Open Access Journals (Sweden)

    Madelon Rodrigues Sá Braz

    2010-02-01

    Full Text Available The objective this work was to evaluate the nutrients accumulation and achenes oil yield in sunflower plants as affected by achenes vigour and sowing density. An experiment was installed in the field at Seropédica, State of Rio de Janeiro, in October 2006 with three lots of sunflower achenes, cultivar Embrapa 122 V2000, classified as low, medium and high vigour and two sowing density (45,000 e 75,000 seeds.ha-1. The collected were realized at 20, 60 and 100 days after planting (DAP to the determination the dry mater, nitrogen, phosphorus, potassium and calcium. In the collecting at 100 DAP too it was evaluated the achene yield (kg ha-1, the content oil and oil yield (kg ha-1. The results indicated that to the 60 days high accumulation of dry mater, N, P K and Ca in stem, leaves and total at density of 45,000 seeds ha-1. The sunflower achenes oil yield and achenes and nutrients harvest index not affected by the achenes vigour and sowing density to. There was a preferential translocation of N and P for the achenes.O objetivo do trabalho foi avaliar o acúmulo de nutrientes e o rendimento de óleo dos aquênios em plantas de girassol produzidas sob a influência do vigor dos aquênios e da densidade de semeadura. Para isto, foi instalado um experimento no campo experimental no município de Seropédica/RJ, em outubro de 2006, com três distintos lotes de aquênios de girassol cv Embrapa 122 V2000, classificados como de baixo, de médio e de alto vigor, sob duas densidades de semeadura (45.000 e 75.000 sementes ha-1. Aos 20, 60 e 100 dias após a semeadura (DAS, foram coletadas as plantas para avaliação da massa de matéria seca e do acúmulo de nitrogênio, de fósforo, de potássio e de cálcio, no caule, nas folhas e nos capítulos. Nas plantas coletadas aos 100 DAS, foi feita também a avaliação do rendimento de aquênios (kg ha-1, do teor de óleo e do rendimento de óleo (kg ha-1. Observou-se que aos 60 DAS, no período entre o

  9. Genetic by environment interactions affect plant–soil linkages

    OpenAIRE

    Pregitzer, Clara C; Joseph K Bailey; Schweitzer, Jennifer A.

    2013-01-01

    The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics be...

  10. Security affects us all!

    CERN Multimedia

    SMB Department

    2016-01-01

    In the hope of minimising the number of thefts of the Organization’s property, which can lead to months of work going to waste on certain projects, you are reminded of the importance that CERN attaches to the rules concerning the protection of equipment for which we are responsible. If you see any unusual behaviour or if you are the victim of a theft, don’t hesitate to report it by submitting a ticket through the CERN Portal or calling the CSA. Security affects us all!   CERN is attractive in more ways than one, and it remains as attractive as ever to thieves. With the nice weather and with the holiday season in full swing, the number of thefts recorded at CERN is on the rise. Items stolen include money, computers, electronic equipment, cable drums and copper antennae.   There are a few basic precautions that you should take to protect both your own and the Organization’s property: lock your door, don’t leave valuable items in your office, st...

  11. Affective monitoring: A generic mechanism for affect elicitation

    OpenAIRE

    Phaf, R. Hans; Rotteveel, Mark

    2012-01-01

    In this paper we sketch a new framework for affect elicitation, which is based on previous evolutionary and connectionist modeling and experimental work from our group. Affective monitoring is considered a local match–mismatch process within a module of the neural network. Negative affect is raised instantly by mismatches, incongruency, disfluency, novelty, incoherence, and dissonance, whereas positive affect follows from matches, congruency, fluency, familiarity, coherence, and resonance, at...

  12. Parasitic fungi of ornamental plants and herbs of Szczecin

    OpenAIRE

    Iwona Adamska

    2013-01-01

    In the years 2000-2001, the occurrence of fungi parasitizing on ornamental plants and herbs cultivated in the Vegetative Hall of the Agricultural University in Szczecin was investigated. The plants represented ca. 200 species. Disease and etiological symptoms were found in 37% of plant species. Most diseased plants came from the family Asteraceae. The plant species most frequently affected was Melisa officinalis. In the laboratory, 35 fungal species were recognized. Most fungi came from the ...

  13. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    OpenAIRE

    Krzysztof Klamkowski; Waldemar Treder

    2006-01-01

    The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’) under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Wat...

  14. Methods in plant foliar volatile organic compounds research 1

    OpenAIRE

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas...

  15. Mechanisms of plant defense against insect herbivores

    OpenAIRE

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ahmad, Tariq; BUHROO, Abdul Ahad; Hussain, Barkat; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2012-01-01

    Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic c...

  16. Harmful plants in meadow associations of Serbia

    OpenAIRE

    Mrfat-Vukelić Slavica; Tomić Zorica P.; Dajić-Stevanović Zora; Lazarević Dragi; Pudlo Vladanka

    2003-01-01

    In this paper results of the analysis of 48 meadow and pasture associations of Serbia deriving from 6 vegetation classes in order to establish the presence of harmful species. In this way possibility for more efficient method of their removal or reduction could be defined. Analysis included plants poisonous to domestic animals or could cause mechanical injuries to livestock, plant species that have harmful affect to the quality of livestock products (meat and milk), also plants not consumed b...

  17. Nuclear plant

    International Nuclear Information System (INIS)

    The reception area of a spent fuel centre (back end plant) contains a decontamination device for fuel element transport containers. A two part, symmetrical working platform is used to monitor their surfaces. Both parts can be pushed out of the way and can be adjusted in heighth. A spindle motor and hydraulic motors are used for this purpose. (DG)

  18. Toxic plants

    Science.gov (United States)

    Reproductive performance is the single most important economic animal trait to the livestock industry and is reported to be 5 and 10 times more significant than carcass quality and growth traits respectively. Poisonous plants impact livestock reproductive function in a major way and have been shown...

  19. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available BACKGROUND: One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments. METHODOLOGY/PRINCIPAL FINDINGS: We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time. CONCLUSIONS/SIGNIFICANCE: Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  20. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of