WorldWideScience

Sample records for affects protein metabolism

  1. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism

    Institute of Scientific and Technical Information of China (English)

    Fei DOU; Liu-Di YUAN; Jing-Jing ZHU

    2005-01-01

    Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the upstream kinase in the Ras-Raf-MEK-ERK pathway,forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.

  2. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy

    OpenAIRE

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or “diabetic osteopathy”. These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent e...

  3. Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans.

    Science.gov (United States)

    Luiking, Yvette C; Deutz, Nicolaas E P; Jäkel, Martin; Soeters, Peter B

    2005-05-01

    Dietary protein quality is considered to be dependent on the degree and velocity with which protein is digested, absorbed as amino acids, and retained in the gut as newly synthesized protein. Metabolic animal studies suggest that the quality of soy protein is inferior to that of casein protein, but confirmatory studies in humans are lacking. The study objective was to assess the quality of casein and soy protein by comparing their metabolic effects in healthy human subjects. Whole-body protein kinetics, splanchnic leucine extraction, and urea production rates were measured in the postabsorptive state and during 8-h enteral intakes of isonitrogenous [0.42 g protein/(kg body weight . 8 h)] protein-based test meals, which contained either casein (CAPM; n = 12) or soy protein (SOPM; n = 10) in 2 separate groups. Stable isotope techniques were used to study metabolic effects. With enteral food intake, protein metabolism changed from net protein breakdown to net protein synthesis. Net protein synthesis was greater in the CAPM group than in the SOPM group [52 +/- 14 and 17 +/- 14 nmol/(kg fat-free mass (FFM) . min), respectively; P CAPM (P = 0.07). Absolute splanchnic extraction of leucine was higher in the subjects that consumed CAPM [306 +/- 31 nmol/(kg FFM . min)] vs. those that consumed SOPM [235 +/- 29 nmol/(kg FFM . min); P < 0.01]. In conclusion, a significantly larger portion of soy protein is degraded to urea, whereas casein protein likely contributes to splanchnic utilization (probably protein synthesis) to a greater extent. The biological value of soy protein must be considered inferior to that of casein protein in humans. PMID:15867285

  4. Metabolic parameters and emotionality are little affected in G-protein coupled receptor 12 (Gpr12 mutant mice.

    Directory of Open Access Journals (Sweden)

    Elisabeth Frank

    Full Text Available BACKGROUND: G-protein coupled receptors (GPR bear the potential to serve as yet unidentified drug targets for psychiatric and metabolic disorders. GPR12 is of major interest given its putative role in metabolic function and its unique brain distribution, which suggests a role in emotionality and affect. We tested Gpr12 deficient mice in a series of metabolic and behavioural tests and subjected them to a well-established high-fat diet feeding protocol. METHODOLOGY/PRINCIPAL FINDINGS: Comparing the mutant mice with wild type littermates, no significant differences were seen in body weight, fatness or weight gain induced by a high-fat diet. The Gpr12 mutant mice displayed a modest but significant lowering of energy expenditure and a trend to lower food intake on a chow diet, but no other metabolic parameters, including respiratory rate, were altered. No emotionality-related behaviours (assessed by light-dark box, tail suspension, and open field tests were affected by the Gpr12 gene mutation. CONCLUSIONS/SIGNIFICANCE: Studying metabolic and emotionality parameters in Gpr12 mutant mice did not reveal a major phenotypic impact of the gene mutation. Compared to previous results showing a metabolic phenotype in Gpr12 mice with a mixed 129 and C57Bl6 background, we suggest that a more pure C57Bl/6 background due to further backcrossing might have reduced the phenotypic penetrance.

  5. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  6. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    Science.gov (United States)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  7. Varying plant protein sources in the diet of sea bass Dicentrarchus labrax differently affects lipid metabolism and deposition

    Directory of Open Access Journals (Sweden)

    E. Tibaldi

    2010-04-01

    Full Text Available The liver activity of lipogenic enzymes, the lipid content in various tissues, and plasma lipid levels of major, were measured in sea bass (D. labrax fed over 96 days either a, fish meal-based control diet or preparations where 70% of fish meal protein was replaced by wheat gluten singly or in combination with pea or soybean meals. Relative to the controls, sea bass fed the wheat gluten-based diet resulted in stimulated lipogenesis in liver and increased lipid deposition in muscle. The opposite occurred when a substantial amount of soybean meal was included in the diet. Mesenteric fat depots were apparently insensitive to major changes in dietary protein source in fish showing similar intakes of digestible protein, energy and lipid. These results confirm that varying plant protein source in the diet differently affects lipid metabolism and deposition in sea bass.

  8. Ruminal protein metabolism and intestinal amino acid utilization as affected by dietary protein and carbohydrate sources in sheep.

    Science.gov (United States)

    Hussein, H S; Jordan, R M; Stern, M D

    1991-05-01

    Eight wether lambs fitted with ruminal, duodenal, and ileal cannulas were used in a replicated 4 x 4 Latin square design to study the effects of carbohydrate and protein sources on ruminal protein metabolism and carbohydrate fermentation and intestinal amino acid (AA) absorption. Treatments were arranged as a 2 x 2 factorial. Carbohydrate sources were corn and barley; protein sources were soybean meal (SBM) and fish meal (FM). Diets contained 15.5% CP, of which 40% was supplied by SBM or FM. Corn or barley provided 39% of dietary DM that contained equal amounts of grass hay and wheat straw. Fish meal diets produced a lower (P less than .05) ruminal NH3 concentration and resulted in less CP degradation and bacterial protein flow to the duodenum than did SBM diets. Replacing SBM with FM increased (P less than .05) ruminal digestion of all fiber fractions. In addition, cellulose and hemicellulose digestibilities in the rumen tended to increase (P greater than .05) when barley replaced corn in the FM diets. Carbohydrate x protein interactions (P less than .05) were observed for OM digestion in the rumen and AA absorption in the small intestine (percentage of AA entering); these interactions were highest for the barley-FM diet. These results suggest that feeding FM with barley, which is high in both degradable carbohydrate and protein, might benefit ruminants more than feeding FM with corn, which is high in degradable carbohydrate but relatively low in degradable protein. PMID:1648551

  9. Arginine Depletion by Arginine Deiminase Does Not Affect Whole Protein Metabolism or Muscle Fractional Protein Synthesis Rate in Mice

    Science.gov (United States)

    Marini, Juan C.; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight. PMID:25775142

  10. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism

    NARCIS (Netherlands)

    M.R. Soeters; N.M. Lammers; P.F. Dubbelhuis; M.T. Ackermans; C.F. Jonkers-Schuitema; E. Fliers; H.P. Sauerwein; J.M. Aerts; M.J. Serlie

    2009-01-01

    Background: Intermittent fasting (IF) was shown to increase whole-body insulin sensitivity, but it is uncertain whether IF selectively influences intermediary metabolism. Such selectivity might be advantageous when adapting to periods of food abundance and food shortage. Objective: The objective was

  11. Energy metabolism in young mink kits (Neovison vison) affected by protein and carbohydrate level in the diet

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Hansen, NE; Tauson, A-H

    The mink is a strict carnivore and mink diets usually have a high content of protein. The energy metabolism in young minks in the transition period from milk to solid food is not investigated in detail, and the protein requirement is poorly defined. The substrate oxidation can give useful informa...

  12. Does methamphetamine affect bone metabolism?

    International Nuclear Information System (INIS)

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10 mg/kg METH groups (n = 6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5 mg/kg METH showed an increased locomotor activity, whereas those receiving 10 mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5 mg/kg METH group, but not in the 10 mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5 mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10 mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that

  13. Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health.

    Directory of Open Access Journals (Sweden)

    Judith J Eckert

    Full Text Available Previously, we have shown that a maternal low protein diet, fed exclusively during the preimplantation period of mouse development (Emb-LPD, is sufficient to induce by the blastocyst stage a compensatory growth phenotype in late gestation and postnatally, correlating with increased risk of adult onset cardiovascular disease and behavioural dysfunction. Here, we examine mechanisms of induction of maternal Emb-LPD programming and early compensatory responses by the embryo. Emb-LPD induced changes in maternal serum metabolites at the time of blastocyst formation (E3.5, notably reduced insulin and increased glucose, together with reduced levels of free amino acids (AAs including branched chain AAs leucine, isoleucine and valine. Emb-LPD also caused reduction in the branched chain AAs within uterine fluid at the blastocyst stage. These maternal changes coincided with an altered content of blastocyst AAs and reduced mTORC1 signalling within blastocysts evident in reduced phosphorylation of effector S6 ribosomal protein and its ratio to total S6 protein but no change in effector 4E-BP1 phosphorylated and total pools. These changes were accompanied by increased proliferation of blastocyst trophectoderm and total cells and subsequent increased spreading of trophoblast cells in blastocyst outgrowths. We propose that induction of metabolic programming following Emb-LPD is achieved through mTORC1signalling which acts as a sensor for preimplantation embryos to detect maternal nutrient levels via branched chain AAs and/or insulin availability. Moreover, this induction step associates with changes in extra-embryonic trophectoderm behaviour occurring as early compensatory responses leading to later nutrient recovery.

  14. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    Science.gov (United States)

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging. PMID:26965008

  15. Atrogin-1 Affects Muscle Protein Synthesis and Degradation When Energy Metabolism Is Impaired by the Antidiabetes Drug Berberine

    OpenAIRE

    Wang, Huiling; Liu, Dajun; Cao, Peirang; Lecker, Stewart; Hu, Zhaoyong

    2010-01-01

    OBJECTIVE Defects in insulin/IGF-1 signaling stimulate muscle protein loss by suppressing protein synthesis and increasing protein degradation. Since an herbal compound, berberine, lowers blood levels of glucose and lipids, we proposed that it would improve insulin/IGF-1 signaling, blocking muscle protein losses. RESEARCH DESIGN AND METHODS We evaluated whether berberine ameliorates muscle atrophy in db/db mice, a model of type 2 diabetes, by measuring protein synthesis and degradation in mus...

  16. Age and sex affect protein metabolism at protein intakes that span the range of adequacy: comparison of leucine kinetics and nitrogen balance data☆

    OpenAIRE

    Conley, Travis B.; McCabe, George P; Lim, Eunjung; Yarasheski, Kevin E; Johnson, Craig A; Campbell, Wayne W

    2012-01-01

    Research suggests that changes in leucine oxidation (leuox) with feeding may reflect adult protein requirements. We evaluated this possibility by assessing the effects of age, sex, and different protein intakes on whole-body leucine kinetics and nitrogen balance. Thirty-four young (n = 18, 22–46 years) and old (n= 16, 63–81 years) men and women completed three 18-day trials with protein intakes of 0.50, 0.75 and 1.00 g protein·kg body weight−1·d−1. Fasting and fed-state leucine kinetics were ...

  17. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... affected by a reduction of the flux of glutamate derived carbon through the malic enzyme and pyruvate carboxylase catalyzed reactions. Finally, it was found that in the presence of glutamate as an additional substrate, glucose metabolism monitored by the use of tritiated deoxyglucose was unaffected by AMPK...

  18. Neuroinflammation in Lyme neuroborreliosis affects amyloid metabolism

    Directory of Open Access Journals (Sweden)

    Anckarsäter Henrik

    2010-06-01

    Full Text Available Abstract Background The metabolism of amyloid precursor protein (APP and β-amyloid (Aβ is widely studied in Alzheimer's disease, where Aβ deposition and plaque development are essential components of the pathogenesis. However, the physiological role of amyloid in the adult nervous system remains largely unknown. We have previously found altered cerebral amyloid metabolism in other neuroinflammatory conditions. To further elucidate this, we investigated amyloid metabolism in patients with Lyme neuroborreliosis (LNB. Methods The first part of the study was a cross-sectional cohort study in 61 patients with acute facial palsy (19 with LNB and 42 with idiopathic facial paresis, Bell's palsy and 22 healthy controls. CSF was analysed for the β-amyloid peptides Aβ38, Aβ40 and Aβ42, and the amyloid precursor protein (APP isoforms α-sAPP and β-sAPP. CSF total-tau (T-tau, phosphorylated tau (P-tau and neurofilament protein (NFL were measured to monitor neural cell damage. The second part of the study was a prospective cohort-study in 26 LNB patients undergoing consecutive lumbar punctures before and after antibiotic treatment to study time-dependent dynamics of the biomarkers. Results In the cross-sectional study, LNB patients had lower levels of CSF α-sAPP, β-sAPP and P-tau, and higher levels of CSF NFL than healthy controls and patients with Bell's palsy. In the prospective study, LNB patients had low levels of CSF α-sAPP, β-sAPP and P-tau at baseline, which all increased towards normal at follow-up. Conclusions Amyloid metabolism is altered in LNB. CSF levels of α-sAPP, β-sAPP and P-tau are decreased in acute infection and increase after treatment. In combination with earlier findings in multiple sclerosis, cerebral SLE and HIV with cerebral engagement, this points to an influence of neuroinflammation on amyloid metabolism.

  19. Homocysteine thiolactone affects protein ubiquitination in yeast.

    Science.gov (United States)

    Bretes, Ewa; Zimny, Jarosław

    2013-01-01

    The formation of homocysteine thiolactone (HcyTl) from homocysteine occurs in all examined so far organisms including bacteria, yeast, and humans. Protein N-homocysteinylation at the ε-amino group of lysine is an adverse result of HcyTl accumulation. Since tagging of proteins by ubiquitination before their proteasomal degradation takes place at the same residue, we wondered how N-homocysteinylation may affect the ubiquitination of proteins. We used different yeast strains carrying mutations in genes involved in the homocysteine metabolism. We found positive correlation between the concentration of endogenous HcyTl and the concentration of ubiquitinated proteins. This suggests that N-homocysteinylation of proteins apparently does not preclude but rather promotes their decomposition. PMID:24051443

  20. Regulation of intermediary metabolism by protein acetylation

    OpenAIRE

    Guan, Kun-Liang; Xiong, Yue

    2010-01-01

    Extensive studies during the past four decades have identified important roles for lysine acetylation in the regulation of nuclear transcription. Recent proteomic analyses on protein acetylation uncovered a large number of acetylated proteins in the cytoplasm and mitochondria, including most enzymes involved in intermediate metabolism. Acetylation regulates metabolic enzymes by multiple mechanisms, including via enzymatic activation or inhibition, and by influencing protein stability. Convers...

  1. Leucine and protein metabolism in obese zucker rats

    Science.gov (United States)

    Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however they increase in obesity and appear to prognosticate diabetes onset. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1...

  2. Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism

    OpenAIRE

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M. A.; Bodnar, Wanda M.; Wishnok, John S.; Styblo, Miroslav; Swenberg, James A.; Fox, James G; Tannenbaum, Steven R.

    2014-01-01

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect th...

  3. Tissue protein metabolism in parasitized animals

    International Nuclear Information System (INIS)

    The effects of gastrointestinal nematode infection of mammals, particularly of the small intestine of the sheep, on protein metabolism of skeletal muscle, liver, the gastrointestinal tract and wool are described. These changes have been integrated to explain poor growth and production in the sheep heavily infected with Trichostrongylus colubriformis. The rates of both synthesis and catabolism of muscle protein are depressed, but nitrogen is lost from this tissue because the depression of synthesis exceeds that of catabolism. Anorexia is the major cause of these changes. Although the effect on liver protein synthesis is unclear, it is probable that the leakage of plasma proteins into the gastrointestinal tract stimulates an early increase in the rate of synthesis of these proteins, but this eventually declines and is insufficient to correct developing hypoalbuminaemia. Changes in the intestinal tract are complex. Exogenous nitrogen is reduced by anorexia, but the flow of nitrogen through the tract from abomasum to faeces is above normal because of the increase of endogenous protein from leakage of plasma protein and, presumably, from exfoliated epithelial cells. There is evidence that protein metabolism of intestinal tissue, particularly in the uninfected distal two-thirds, is increased. Synthesis of wool protein is decreased. As the result of anorexia, intestinal loss of endogenous protein and an increased rate of intestinal protein metabolism there is a net movement of amino nitrogen from muscle, liver and possibly skin to the intestine of the heavily infected sheep. Thus, the availability of amino nitrogen for growth and wool production is reduced. (author)

  4. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However, these...

  5. Protein,carbohydrate and lipid metabolism

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    950255 Effects of TPN and indomethacin on stressresponse and protein metabolism after surgery.QUANZhufu(全竹富),et al.General Hosp,Nanjing Com-mand,Nanjing,210002.Med J Chin PLA 1995;20(1):24-26.The study was planned to evaluate effects of TPNand indomethacin on stress response after trauma,andprotein metabolism in patients who had received totalgastrectomy for cardiac cancer of stomach.19 caseswere divided into control,TPN,and indomethacin

  6. [Pathogenetic correction of metabolic disturbances in chronic liver affections].

    Science.gov (United States)

    Romantsov, M G; Petrov, A Iu; Aleksandrova, L N; Sukhanov, D S; Kovalenko, A L

    2012-01-01

    The available drugs for the treatment of chronic liver affections (the adequate model is chronic hepatitis C) include agents of metabolic therapy, whose efficacy is not always enough, that required the search for original mitochondrial substrates on the basis of succinate. Such agents were composed as a pharmaceutical group named "Substrates of Energetic Metabolism" or "Substrate Antihypoxants". The review presents the description of the pharmacological effects of remaxole and cytoflavin, evident from lower levels of active metabolites of oxygen that increases the clinical efficacy of the therapy. Their role in the metabolic reactions in chronic liver affections is exclusive and rather actual. PMID:23700935

  7. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism.

    Science.gov (United States)

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M A; Bodnar, Wanda M; Wishnok, John S; Styblo, Miroslav; Swenberg, James A; Fox, James G; Tannenbaum, Steven R

    2014-02-17

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect the biotransformation of arsenic. Using an integrated approach combining 16S rRNA gene sequencing and HPLC-ICP-MS arsenic speciation, we demonstrate that IL-10 gene knockout leads to a significant taxonomic change of the gut microbiome, which in turn substantially affects arsenic metabolism. PMID:24490651

  8. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways.

    Science.gov (United States)

    Bazer, Fuller W; Wu, Guoyao; Johnson, Gregory A; Wang, Xiaoqiu

    2014-12-01

    Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolized via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring. PMID:25224489

  9. Mitochondrial uncoupling proteins and energy metabolism

    Directory of Open Access Journals (Sweden)

    Rosa Anna Busiello

    2015-02-01

    Full Text Available Understanding the metabolic factors that contribute to energy metabolism (EM is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1, which was the first in this family to be discovered, the reactions catalyzed by its homologue UCP3 and the physiological role remain under debate.This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.

  10. Albumin Supplement Affects the Metabolism and Metabolism-Related Drug-Drug Interaction of Fenoprofen Enantiomers.

    Science.gov (United States)

    Wang, Nan; Wang, Feng; Meng, Yu; Yang, Guo-Hui; Chen, Ju-Wu; Wang, Jia-Xiang

    2015-07-01

    The influence of albumin towards the metabolism behavior of fenoprofen enantiomers and relevant drug-drug interaction was investigated in the present study. The metabolic behavior of fenoprofen enantiomers was compared in a phase II metabolic incubation system with and without bovine serum albumin (BSA). BSA supplement increased the binding affinity parameter (Km) of (R)-fenoprofen towards human liver microsomes (HLMs) from 148.3 to 214.4 μM. In contrast, BSA supplement decreased the Km of (S)-fenoprofen towards HLMs from 218.2 to 123.5 μM. For maximum reaction velocity (Vmax), the addition of BSA increased the Vmax of (R)-fenoprofen from 1.3 to 1.6 nmol/min/mg protein. In the contrast, BSA supplement decreased the Vmax value from 3.3 to 1.5 nmol/min/mg protein. Andrographolide-fenoprofen interaction was used as an example to investigate the influence of BSA supplement towards fenoprofen-relevant drug-drug interaction. The addition of 0.2% BSA in the incubation system significantly decreased the inhibition potential of andrographolide towards (R)-fenoprofen metabolism (P andrographolide towards the metabolism of (S)-fenoprofen. BSA supplement also changed the inhibition kinetic type and parameter of andrographolide towards the metabolism of (S)-fenoprofen. In conclusion, albumin supplement changes the metabolic behavior of fenoprofen enantiomers and the fenoprofen-andrographolide interaction. PMID:26037509

  11. Effect of long-term refeeding on protein metabolism in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Kondrup, J; Nielsen, K; Juul, A

    1997-01-01

    studies. Initial and final whole-body protein metabolism was measured in the fed state by primed continuous [15N]glycine infusion. Refeeding caused a statistically significant increase of about 30% in protein synthesis in both studies while protein degradation was only slightly affected. The increase in...

  12. Aging, exercise, and muscle protein metabolism.

    Science.gov (United States)

    Koopman, René; van Loon, Luc J C

    2009-06-01

    Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic disease. The age-related loss of skeletal muscle mass is attributed to a disruption in the regulation of skeletal muscle protein turnover, resulting in an imbalance between muscle protein synthesis and degradation. As basal (fasting) muscle protein synthesis rates do not seem to differ substantially between the young and elderly, many research groups have started to focus on the muscle protein synthetic response to the main anabolic stimuli, i.e., food intake and physical activity. Recent studies suggest that the muscle protein synthetic response to food intake is blunted in the elderly. The latter is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Physical activity and/or exercise stimulate postexercise muscle protein accretion in both the young and elderly. However, the latter largely depends on the timed administration of amino acids and/or protein before, during, and/or after exercise. Prolonged resistance type exercise training represents an effective therapeutic strategy to augment skeletal muscle mass and improve functional performance in the elderly. The latter shows that the ability of the muscle protein synthetic machinery to respond to anabolic stimuli is preserved up to very old age. Research is warranted to elucidate the interaction between nutrition, exercise, and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly. PMID:19131471

  13. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    OpenAIRE

    Weimin Gao; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduc...

  14. Can Solution Supersaturation Affect Protein Crystal Quality?

    Science.gov (United States)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  15. Exercise ameliorates chronic kidney disease–induced defects in muscle protein metabolism and progenitor cell function

    OpenAIRE

    Wang, Xiaonan H.; Du, Jie; Klein, Janet D.; Bailey, James L; Mitch, William E.

    2009-01-01

    Chronic kidney disease (CKD) impairs muscle protein metabolism leading to muscle atrophy, and exercise can counteract this muscle wasting. Here we evaluated how resistance exercise (muscle overload) and endurance training (treadmill running) affect CKD-induced abnormalities in muscle protein metabolism and progenitor cell function using mouse plantaris muscle. Both exercise models blunted the increase in disease-induced muscle proteolysis and improved phosphorylation of Akt and the forkhead t...

  16. Metabolic effects of milk protein intake strongly depend on pre-existing metabolic and exercise status.

    Science.gov (United States)

    Melnik, Bodo C; Schmitz, Gerd; John, Swen; Carrera-Bastos, Pedro; Lindeberg, Staffan; Cordain, Loren

    2013-01-01

    Milk protein intake has recently been suggested to improve metabolic health. This Perspective provides evidence that metabolic effects of milk protein intake have to be regarded in the context of the individual's pre-existing metabolic and exercise status. Milk proteins provide abundant branched-chain amino acids (BCAAs) and glutamine. Plasma BCAAs and glutamine are increased in obesity and insulin resistance, but decrease after gastric bypass surgery resulting in weight loss and improved insulin sensitivity. Milk protein consumption results in postprandial hyperinsulinemia in obese subjects, increases body weight of overweight adolescents and may thus deteriorate pre-existing metabolic disturbances of obese, insulin resistant individuals. PMID:24225036

  17. Fermentation and hydrogen metabolism affect uranium reduction by clostridia.

    Science.gov (United States)

    Gao, Weimin; Francis, Arokiasamy J

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H2) production. PMID:25937978

  18. Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins.

    Science.gov (United States)

    Yamaji, Toshiyuki; Hanada, Kentaro

    2015-02-01

    In recent decades, many sphingolipid enzymes, sphingolipid-metabolism regulators and sphingolipid transfer proteins have been isolated and characterized. This review will provide an overview of the intracellular localization and topology of sphingolipid enzymes in mammalian cells to highlight the locations where respective sphingolipid species are produced. Interestingly, three sphingolipids that reside or are synthesized in cytosolic leaflets of membranes (ceramide, glucosylceramide and ceramide-1-phosphate) all have cytosolic lipid transfer proteins (LTPs). These LTPs consist of ceramide transfer protein (CERT), four-phosphate adaptor protein 2 (FAPP2) and ceramide-1-phosphate transfer protein (CPTP), respectively. These LTPs execute functions that affect both the location and metabolism of the lipids they bind. Molecular details describing the mechanisms of regulation of LTPs continue to emerge and reveal a number of critical processes, including competing phosphorylation and dephosphorylation reactions and binding interactions with regulatory proteins and lipids that influence the transport, organelle distribution and metabolism of sphingolipids. PMID:25382749

  19. 饲粮粗蛋白质水平对泌乳水牛产奶量及氮代谢的影响%Dietary Crude Protein Level Affects Milk Yield and Nitrogen Metabolism of Lactating Water Buffalo

    Institute of Scientific and Technical Information of China (English)

    邹彩霞; 韦升菊; 梁贤威; 覃广胜; 杨炳壮; 杨承剑

    2012-01-01

    This experiment was conducted to investigate the effects of dietary crude protein level on milk yield and nitrogen metabolism of lactating water buffalo. A 4 x 4 Latin square experiment design was used in the experiment. Sixteen healthy early lactation water buffalo with similar milk yield in the last lactation and 2 or 3 parities were divided into 4 groups to carry out animal experiment, and digestion and metabolism experiment. The animals were randomly divided into 4 groups and fed diets containing varying levels of crude protein (16. 0% , 15. 2% , 14. 4% and 13. 6% ). There were 4 feeding trial periods, each period included 21 d with 7 d adaptation period, and whole experiment lasted for 84 d. According to Latin square experiment design, each group in each period was fed different levels of dietary crude protein. Two nitrogen digestion and metabolism trials were conducted on the last 4 days of the second and the fourth feeding trial period. The results showed that there were significant differences in total nitrogen intake, digestible nitrogen, milk nitrogen/total nitrogen intake and apparent nitrogen digestibility among some groups (P 0. 05). There were no significant differences in milk yield, milk protein percentage, milk fat percentage, milk non-solid percentage whole milk solids content and lactose percentage among each group (P > 0. 05). There were no significant differences in the contents of serum total protein and urea nitrogen (P > 0. 05). The relationship between nitrogen intake (x, g/d) and fat corrected milk (y, kg/d) was showed as follows; y = ?0. 001 6x2 +0. 955 6x ?129. 91. In conclusion, dietary crude protein level has no significant effect on performance and blood biochemical indices of lactating water buffalo, according to the curvilinear relationship between nitrogen intake and fat corrected milk, when the nitrogen intake is 298. 625 g/d, the max standard milk yield of water buffalo is 12.773 kg/d.%本试验旨在研究饲粮粗蛋白质水

  20. Aerobic fitness does not modulate protein metabolism in response to increased exercise: a controlled trial

    OpenAIRE

    Byerley Lauri O; Castaneda-Sceppa Carmen; Grediagin Ann; Pikosky Matthew A; Smith Tracey J; Glickman Ellen L; Young Andrew J

    2009-01-01

    Abstract Background A sudden increase in exercise and energy expenditure is associated with an increase in protein turnover and nitrogen excretion. This study examined how a sudden increase in exercise-induced energy expenditure affected whole body protein metabolism and nitrogen balance in people of differing levels of aerobic fitness. We hypothesized that alterations in whole-body protein turnover would be attenuated, and nitrogen balance would be preserved, in individual with higher levels...

  1. BCL-2 family proteins as regulators of mitochondria metabolism.

    Science.gov (United States)

    Gross, Atan

    2016-08-01

    The BCL-2 family proteins are major regulators of apoptosis, and one of their major sites of action are the mitochondria. Mitochondria are the cellular hubs for metabolism and indeed selected BCL-2 family proteins also possess roles related to mitochondria metabolism and dynamics. Here we discuss the link between mitochondrial metabolism/dynamics and the fate of stem cells, with an emphasis on the role of the BID-MTCH2 pair in regulating this link. We also discuss the possibility that BCL-2 family proteins act as metabolic sensors/messengers coming on and off of mitochondria to "sample" the cytosol and provide the mitochondria with up-to-date metabolic information. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26827940

  2. Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential?

    OpenAIRE

    Hipkiss, Alan R; Cartwright, Stephanie P.; Bromley, Clare; Gross, Stephane R.; Bill, Roslyn M.

    2013-01-01

    The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on energy metabolism include the dipeptide’s ...

  3. Multiple dietary supplements do not affect metabolic and cardiovascular health.

    Science.gov (United States)

    Soare, Andreea; Weiss, Edward P; Holloszy, John O; Fontana, Luigi

    2013-09-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m2) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals. PMID:24036417

  4. Environmentally Relevant Dose of Bisphenol A Does Not Affect Lipid Metabolism and Has No Synergetic or Antagonistic Effects on Genistein’s Beneficial Roles on Lipid Metabolism

    Science.gov (United States)

    Fan, Ying; Li, Hongyu; Zhao, Nana; Yang, Huiqin; Ye, Xiaolei; He, Dongliang; Yang, Hui; Jin, Xin; Tian, Chong; Ying, Chenjiang

    2016-01-01

    Both bisphenol A (BPA, an endocrine disrupting chemicals) and genistein (a phytoestrogen mainly derived from leguminosae) are able to bind to estrogen receptors, but they are considered to have different effects on metabolic syndrome, surprisingly. We here investigate the effects of an environmentally relevant dose of BPA alone and the combined effects with genistein on lipid metabolism in rats. Eight groups of adult male Wistar rats, fed with either standard chow diet or high-fat diet, were treated with BPA (50μg/kg/day), genistein (10mg/kg/day), and BPA plus genistein for 35 weeks, respectively. Metabolic parameters in serum and liver were determined; the hematoxylin/eosin and oil Red O staining were used to observe liver histologically; gene expressions related to hepatic lipid metabolism were analyzed by Real-time PCR; protein expressions of PPARγ, PPARα and LC3 in liver were analyzed by western blotting. No difference of body weight gain, total energy intake, liver weight/body weight or body fat percentage in both STD- and HFD-fed sub-groups was observed after treatment with BPA, genistein, or BPA plus genistein (P>0.05). Genistein alleviated lipid metabolism disorder and decreased the mRNA and protein expression of PPARγ (P0.05) or combined with genistein. Our findings suggest that long-term environmentally relevant dose of BPA did not affect lipid metabolism, and had no synergetic or antagonistic roles on genistein’s beneficial function on hepatic lipid metabolism. PMID:27171397

  5. Expression data on liver metabolic pathway genes and proteins

    OpenAIRE

    Mooli Raja Gopal Reddy; Chodisetti Pavan Kumar; Malleswarapu Mahesh; Manchiryala Sravan Kumar; Jeyakumar, Shanmugam M

    2016-01-01

    Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, gl...

  6. Liver and muscle protein metabolism in cachexia

    OpenAIRE

    Peters, J.A.C.

    2009-01-01

    Up to 50% of cancer patients suffer from progressive weight loss (cachexia). Cachexia is induced by proinflammatory mediators (cytokines), induced by the tumor’s presence. These cytokines induce so-called acute phase protein synthesis by the liver, followed by skeletal muscle protein breakdown. Skeletal muscle protein breakdown seems to serve for providing amino acids (AA) for acute phase protein synthesis in the liver. The net effect of cytokines is a negative protein balance in the skeletal...

  7. Spastin binds to lipid droplets and affects lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Chrisovalantis Papadopoulos

    2015-04-01

    Full Text Available Mutations in SPAST, encoding spastin, are the most common cause of autosomal dominant hereditary spastic paraplegia (HSP. HSP is characterized by weakness and spasticity of the lower limbs, owing to progressive retrograde degeneration of the long corticospinal axons. Spastin is a conserved microtubule (MT-severing protein, involved in processes requiring rearrangement of the cytoskeleton in concert to membrane remodeling, such as neurite branching, axonal growth, midbody abscission, and endosome tubulation. Two isoforms of spastin are synthesized from alternative initiation codons (M1 and M87. We now show that spastin-M1 can sort from the endoplasmic reticulum (ER to pre- and mature lipid droplets (LDs. A hydrophobic motif comprised of amino acids 57 through 86 of spastin was sufficient to direct a reporter protein to LDs, while mutation of arginine 65 to glycine abolished LD targeting. Increased levels of spastin-M1 expression reduced the number but increased the size of LDs. Expression of a mutant unable to bind and sever MTs caused clustering of LDs. Consistent with these findings, ubiquitous overexpression of Dspastin in Drosophila led to bigger and less numerous LDs in the fat bodies and increased triacylglycerol levels. In contrast, Dspastin overexpression increased LD number when expressed specifically in skeletal muscles or nerves. Downregulation of Dspastin and expression of a dominant-negative variant decreased LD number in Drosophila nerves, skeletal muscle and fat bodies, and reduced triacylglycerol levels in the larvae. Moreover, we found reduced amount of fat stores in intestinal cells of worms in which the spas-1 homologue was either depleted by RNA interference or deleted. Taken together, our data uncovers an evolutionarily conserved role of spastin as a positive regulator of LD metabolism and open up the possibility that dysfunction of LDs in axons may contribute to the pathogenesis of HSP.

  8. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    Directory of Open Access Journals (Sweden)

    Peiqiang Yu

    2007-01-01

    Full Text Available The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1 using the newly advanced synchrotron technology (S-FTIR as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2 revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3 prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4 obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  9. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    G. Harvey Anderson

    2011-05-01

    Full Text Available Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake.

  10. Studies of protein metabolism with labelled proteins and protein-like substances in nutritional disorders

    International Nuclear Information System (INIS)

    Adult human volunteers were studied using I131-labelled albumin and I131-labelled gamma-globulin under standardized metabolic conditions; while on a normal diet; after 3-6 weeks of isocaloric low-protein intake; and after a similar period of high-protein intake. The results were analysed by the 'equilibrium time' method, which was developed in 1957. Synthesis and transfer rates were derived according to methods developed in 1961 by C.M.E. Matthews. 2 figs, 6 tabs

  11. Effects of adiposity and 30 days of caloric restriction upon protein metabolism in moderately versus severely obese women

    OpenAIRE

    Henderson, G. C.; Nadeau, D; Horton, E.S.; Nair, K. S.

    2010-01-01

    Protein metabolism adapts during caloric restriction (CR) to minimize protein loss, and it is unclear if greater fat stores favorably affect this response. We sought to determine if protein metabolism is related to degree of obesity and if the response to CR is impacted by pre-CR adiposity level. Whole body protein metabolism was studied in 12 obese women over a wide range of body mass index (BMI) (30-53kg/m2) as inpatients using [1-13C]leucine as a tracer following 5 days of a weight maintai...

  12. Radioactive Lysine in Protein Metabolism Studies

    Science.gov (United States)

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  13. Metabolic behavior of cell surface biotinylated proteins

    International Nuclear Information System (INIS)

    The turnover of proteins on the surface of cultured mammalian cells was measured by a new approach. Reactive free amino or sulfhydryl groups on surface-accessible proteins were derivatized with biotinyl reagents and the proteins solubilized from culture dishes with detergent. Solubilized, biotinylated proteins were then adsorbed onto streptavidin-agarose, released with sodium dodecyl sulfate and mercaptoethanol, and separated on polyacrylamide gels. Biotin-epsilon-aminocaproic acid N-hydroxysuccinimide ester (BNHS) or N-biotinoyl-N'-(maleimidohexanoyl)hydrazine (BM) were the derivatizing agents. Only 10-12 bands were adsorbed onto streptavidin-agarose from undervatized cells or from derivatized cells treated with free avidin at 4 degrees C. Two-dimensional isoelectric focusing-sodium dodecyl sulfate gel electrophoresis resolved greater than 100 BNHS-derivatized proteins and greater than 40 BM-derivatized proteins. There appeared to be little overlap between the two groups of derivatized proteins. Short-term pulse-chase studies showed an accumulation of label into both groups of biotinylated proteins up until 1-2 h of chase and a rapid decrease over the next 1-5 h. Delayed appearance of labeled protein at the cell surface was attributed to transit time from site of synthesis. The unexpected and unexplained rapid disappearance of pulse-labeled proteins from the cell surface was invariant for all two-dimensionally resolved proteins and was sensitive to temperature reduction to 18 degrees C. Long-term pulse-chase experiments beginning 4-8 h after the initiation of chase showed the disappearance of derivatized proteins to be a simple first-order process having a half-life of 115 h in the case of BNHS-derivatized proteins and 30 h in the case of BM-derivatized proteins

  14. Study of protein metabolism and cell proliferation using 15N

    International Nuclear Information System (INIS)

    Investigations of nitrogen and protein metabolism with the stable isotope 15N were carried out in 11 patients with arteriosclerosis and 7 healthy controls. After oral application of 3 g 15NH4Cl (95 At% 15N) per 70 kg body weight the incorporation of the isotope 15N in plasma proteins and blood cells and the 15N elimination in urine were followed up. Retardations of 15N elimination, an accelerated incorporation of 15N in fibrin and a retarded 15N incorporation in platelet protein were observed in patients with arteriosclerosis. The described method enables complex assertions about protein metabolism of the whole body and so represents a possibility to evaluate objectively the influence of an intervention on metabolism. (author)

  15. Effects of metabolic rate on protein evolution

    OpenAIRE

    James F Gillooly; Michael W. McCoy; Allen, Andrew P.

    2007-01-01

    Since the modern evolutionary synthesis was first proposed early in the twentieth century, attention has focused on assessing the relative contribution of mutation versus natural selection on protein evolution. Here we test a model that yields general quantitative predictions on rates of protein evolution by combining principles of individual energetics with Kimura's neutral theory. The model successfully predicts much of the heterogeneity in rates of protein evolution for diverse eukaryotes ...

  16. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    Science.gov (United States)

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  17. Liver and muscle protein metabolism in cachexia

    NARCIS (Netherlands)

    Peters, J.A.C.

    2009-01-01

    Up to 50% of cancer patients suffer from progressive weight loss (cachexia). Cachexia is induced by proinflammatory mediators (cytokines), induced by the tumor’s presence. These cytokines induce so-called acute phase protein synthesis by the liver, followed by skeletal muscle protein breakdown. Skel

  18. Intersection of the unfolded protein response and hepatic lipid metabolism

    OpenAIRE

    Lee, Ann-Hwee; Glimcher, Laurie H.

    2009-01-01

    The liver plays a central role in whole-body lipid metabolism by governing the synthesis, oxidization, transport and excretion of lipids. The unfolded protein response (UPR) was identified as a signal transduction system that is activated by ER stress. Recent studies revealed a critical role of the UPR in hepatic lipid metabolism. The IRE1/XBP1 branch of the UPR is activated by high dietary carbohydrates and controls the expression of genes involved in fatty acid and cholesterol biosynthesis....

  19. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    Science.gov (United States)

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. PMID:27179108

  20. Postexercise recovery period: carbohydrate and protein metabolism.

    Science.gov (United States)

    Viru, A

    1996-02-01

    The essence of the postexercise recovery period is normalization of function and homeostatic equilibrium, and replenishment of energy resources and accomplishment of the reconstructive function. The repletion of energy stores is actualized in a certain sequence and followed by a transitory supercompensation. The main substrate for repletion of the muscle glycogen store is blood glucose derived from hepatic glucose output as well as from consumption of carbohydrates during the postexercise period. The repletion of liver glycogen is realized less rapidly. It depends to a certain extent on hepatic gluconeogenesis but mainly on supply with exogenous carbohydrates. The constructive function is founded on elevated protein turnover and adaptive protein synthesis. Whereas during and shortly after endurance exercise intensive protein breakdown was found in less active fast-twitch glycolytic fibers, during the later course of the recovery period the protein degradation rate increased together with intensification of protein synthesis rate in more active fast-twitch glycolytic oxidative and slow-twitch oxidative fibers. PMID:8680938

  1. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    Science.gov (United States)

    Li, Jia; Armstrong, Cheryl L. H.; Campbell, Wayne W.

    2016-01-01

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER) in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each) in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab), TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03). While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p < 0.05), protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss. PMID:26821042

  2. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses.

    Science.gov (United States)

    Li, Jia; Armstrong, Cheryl L H; Campbell, Wayne W

    2016-02-01

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER) in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each) in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab), TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03). While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss. PMID:26821042

  3. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    Directory of Open Access Journals (Sweden)

    Jia Li

    2016-01-01

    Full Text Available Higher protein meals increase satiety and the thermic effect of feeding (TEF in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume and quantity (10%, 20%, or 30% of energy from protein on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab, TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03. While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p < 0.05, protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  4. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution.

    Science.gov (United States)

    Maida, Adriano; Zota, Annika; Sjøberg, Kim A; Schumacher, Jonas; Sijmonsma, Tjeerd P; Pfenninger, Anja; Christensen, Marie M; Gantert, Thomas; Fuhrmeister, Jessica; Rothermel, Ulrike; Schmoll, Dieter; Heikenwälder, Mathias; Iovanna, Juan L; Stemmer, Kerstin; Kiens, Bente; Herzig, Stephan; Rose, Adam J

    2016-09-01

    Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis. PMID:27548521

  5. Insulin resistance of muscle protein metabolism in aging

    OpenAIRE

    Rasmussen, Blake B.; Fujita, Satoshi; Wolfe, Robert R.; Mittendorfer, Bettina; Roy, Mona; Rowe, Vincent L.; Volpi, Elena

    2006-01-01

    A reduced response of older skeletal muscle to anabolic stimuli may contribute to the development of sarcopenia. We hypothesized that muscle proteins are resistant to the anabolic action of insulin in the elderly. We examined the effects of hyperinsulinemia on muscle protein metabolism in young (25±2 year) and older (68±1 year) healthy subjects using stable isotope tracer techniques. Leg blood flow was higher in the young at baseline and increased during hyperinsulinemia, whereas it did not c...

  6. Dysregulation of skeletal muscle protein metabolism by alcohol

    OpenAIRE

    Steiner, Jennifer L.; Lang, Charles H.

    2015-01-01

    Alcohol abuse, either by acute intoxication or prolonged excessive consumption, leads to pathological changes in many organs and tissues including skeletal muscle. As muscle protein serves not only a contractile function but also as a metabolic reserve for amino acids, which are used to support the energy needs of other tissues, its content is tightly regulated and dynamic. This review focuses on the etiology by which alcohol perturbs skeletal muscle protein balance and thereby over time prod...

  7. Regulation of lipid metabolism by angiopoietin-like proteins

    NARCIS (Netherlands)

    Dijk, Wieneke; Kersten, Sander

    2016-01-01

    PURPOSE OF REVIEW: The angiopoietin-like proteins (ANGPTLs) 3, 4 and 8 have emerged as key regulators of plasma lipid metabolism by serving as potent inhibitors of the enzyme lipoprotein lipase (LPL). In this review, we provide an integrated picture of the role of ANGPTL3, ANGPTL4 and ANGPTL8 in

  8. Ubiquitin Metabolism Affects Cellular Response to Volatile Anesthetics in Yeast

    OpenAIRE

    Wolfe, Darren; Reiner, Thomas; Keeley, Jessica L.; Pizzini, Mark; Keil, Ralph L.

    1999-01-01

    To investigate the mechanism of action of volatile anesthetics, we are studying mutants of the yeast Saccharomyces cerevisiae that have altered sensitivity to isoflurane, a widely used clinical anesthetic. Several lines of evidence from these studies implicate a role for ubiquitin metabolism in cellular response to volatile anesthetics: (i) mutations in the ZZZ1 gene render cells resistant to isoflurane, and the ZZZ1 gene is identical to BUL1 (binds ubiquitin ligase), which appears to be invo...

  9. Food restriction affects energy metabolism in rat liver mitochondria.

    OpenAIRE

    Dumas, Jean-François; Roussel, Damien; Simard, Gilles; Douay, Olivier; Foussard, Françoise; Malthiery, Yves; Ritz, Patrick

    2004-01-01

    To examine the effect of 50% food restriction over a period of 3 days on mitochondrial energy metabolism, liver mitochondria were isolated from ad libitum and food-restricted rats. Mitochondrial enzyme activities and oxygen consumption were assessed spectrophotometrically and polarographically. With regard to body weight loss (-5%), food restriction decreased the liver to body mass ratio by 7%. Moreover, in food-restricted rats, liver mitochondria displayed diminished state 3 (-30%), state 4-...

  10. Scoparone affects lipid metabolism in primary hepatocytes using lipidomics.

    Science.gov (United States)

    Zhang, Aihua; Qiu, Shi; Sun, Hui; Zhang, Tianlei; Guan, Yu; Han, Ying; Yan, Guangli; Wang, Xijun

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, could provide valuable insights about disease mechanisms. In this study, we present a nontargeted lipidomics strategy to determine cellular lipid alterations after scoparone exposure in primary hepatocytes. Lipid metabolic profiles were analyzed by high-performance liquid chromatography coupled with time-of-flight mass spectrometry, and a novel imaging TransOmics tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. Chemometric and statistical analyses of the obtained lipid fingerprints revealed the global lipidomic alterations and tested the therapeutic effects of scoparone. Identification of ten proposed lipids contributed to the better understanding of the effects of scoparone on lipid metabolism in hepatocytes. The most striking finding was that scoparone caused comprehensive lipid changes, as represented by significant changes of the identificated lipids. The levels of identified PG(19:1(9Z)/14:0), PE(17:1(9Z)/0:0), PE(19:1(9Z)/0:0) were found to be upregulated in ethanol-induced group, whereas the levels in scoparone group were downregulated. Lipid metabolism in primary hepatocytes was changed significantly by scoparone treatment. We believe that this novel approach could substantially broaden the applications of high mass resolution mass spectrometry for cellular lipidomics. PMID:27306123

  11. Perilipin-related protein regulates lipid metabolism in C. elegans

    OpenAIRE

    Chughtai, Ahmed Ali; Kaššák, Filip; Kostrouchová, Markéta; Novotný, Jan Philipp; Krause, Michael W.; Saudek, Vladimír; Kostrouch, Zdenek; Kostrouchová, Marta

    2015-01-01

    Perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue and likely orthologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid drople...

  12. Proteomic detection of proteins involved in perchlorate and chlorate metabolism.

    Science.gov (United States)

    Bansal, Reema; Deobald, Lee A; Crawford, Ronald L; Paszczynski, Andrzej J

    2009-09-01

    Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified. PMID:19199051

  13. Immune challenge affects basal metabolic activity in wintering great tits.

    OpenAIRE

    Ots, I.; Kerimov, A. B.; Ivankina, E. V.; Ilyina, T. A.; Hõrak, P.

    2001-01-01

    The costs of exploiting an organism's immune function are expected to form the basis of many life-history trade-offs. However, there has been debate about whether such costs can be paid in energetic and nutritional terms. We addressed this question in a study of wintering, free-living, male great tits by injecting them with a novel, non-pathogenic antigen (sheep red blood cells) and measuring the changes in their basal metabolic rates and various condition indices subsequent to immune challen...

  14. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism

    OpenAIRE

    Clayton, T. Andrew; Baker, David; Lindon, John C.; Everett, Jeremy R.; Nicholson, Jeremy K

    2009-01-01

    We provide a demonstration in humans of the principle of pharmacometabonomics by showing a clear connection between an individual's metabolic phenotype, in the form of a predose urinary metabolite profile, and the metabolic fate of a standard dose of the widely used analgesic acetaminophen. Predose and postdose urinary metabolite profiles were determined by 1H NMR spectroscopy. The predose spectra were statistically analyzed in relation to drug metabolite excretion to detect predose biomarker...

  15. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins.

    Directory of Open Access Journals (Sweden)

    Julia Bally

    Full Text Available BACKGROUND: Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Here we used proteomics to characterize tobacco (Nicotiana tabacum plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD or a green fluorescent protein (GFP. While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE: The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation.

  16. Protein and leucine metabolism in maple syrup urine disease

    International Nuclear Information System (INIS)

    Constant infusions of [13C]leucine and [2H5]phenylalanine were used to trace leucine and protein kinetics, respectively, in seven children with maple syrup urine disease (MSUD) and eleven controls matched for age and dietary protein intake. Despite significant elevations of plasma leucine (mean 351 mumol/l, range 224-477) in MSUD subjects, mean whole body protein synthesis [3.78 +/- 0.42 (SD) g.kg-1. 24 h-1] and catabolism (4.07 +/- 0.46) were similar to control values (3.69 +/- 0.50 and 4.09 +/- 0.50, respectively). The relationship between phenylalanine and leucine fluxes was also similar in MSUD subjects (mean phenylalanine-leucine flux ratio 0.35 +/- 0.07) and previously reported adult controls (0.33 +/- 0.02). Leucine oxidation was undetectable in four of the MSUD subjects and very low in the other three (less than 4 mumol.kg-1.h-1; controls 13-20). These results show that persistent elevation in leucine concentration has no effect on protein synthesis. The marked disturbance in leucine metabolism in MSUD did not alter the relationship between rates of catabolism of protein to phenylalanine and leucine, which provides further support for the validity of the use of a single amino acid to trace whole body protein metabolism. The minimal leucine oxidation in MSUD differs from findings in other inborn metabolic errors and indicates that in patients with classical MSUD there is no significant route of leucine disposal other than through protein synthesis

  17. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes. PMID:20077421

  18. Effect of protein provision via milk replacer or solid feed on protein metabolism in veal calves.

    Science.gov (United States)

    Berends, H; van den Borne, J J G C; Røjen, B A; Hendriks, W H; Gerrits, W J J

    2015-02-01

    The current study evaluated the effects of protein provision to calves fed a combination of solid feed (SF) and milk replacer (MR) at equal total N intake on urea recycling and N retention. Nitrogen balance traits and [(15)N2]urea kinetics were measured in 30 calves (23 wk of age, 180±3.7kg of body weight), after being exposed to the following experimental treatments for 11 wk: a low level of SF with a low N content (SF providing 12% of total N intake), a high level of SF with a low N content (SF providing 22% of total N intake), or a high level of SF with a high N content (SF providing 36% of total N intake). The SF mixture consisted of 50% concentrates, 25% corn silage, and 25% straw on a dry matter basis. Total N intake was equalized to 1.8g of N·kg of BW(-0.75)·d(-1) by adjusting N intake via MR. All calves were housed individually on metabolic cages to allow for quantification of a N balance of calves for 5 d, and for the assessment of urea recycling from [(15)N2]urea kinetics. Increasing low-N SF intake at equal total N intake resulted in a shift from urinary to fecal N excretion but did not affect protein retention (0.71g of N·kg of BW(-0.75)·d(-1)). Increasing low-N SF intake increased urea recycling but urea reused for anabolism remained unaffected. Total-tract neutral detergent fiber digestibility decreased (-9%) with increasing low-N SF intake, indicating reduced rumen fermentation. Increasing the N content of SF at equal total N intake resulted in decreased urea production, excretion, and return to ornithine cycle, and increased protein retention by 17%. This increase was likely related to an effect of energy availability on protein retention due to an increase in total-tract neutral detergent fiber digestion (>10%) and due to an increased energy supply via the MR. In conclusion, increasing low-N SF intake at the expense of N intake from MR, did not affect protein retention efficiency in calves. Increasing the N content of SF at equal total N

  19. Accounting for Human Polymorphisms Predicted to Affect Protein Function

    OpenAIRE

    Ng, Pauline C.; Henikoff, Steven

    2002-01-01

    A major interest in human genetics is to determine whether a nonsynonymous single-base nucleotide polymorphism (nsSNP) in a gene affects its protein product and, consequently, impacts the carrier's health. We used the SIFT (Sorting Intolerant From Tolerant) program to predict that 25% of 3084 nsSNPs from dbSNP, a public SNP database, would affect protein function. Some of the nsSNPs predicted to affect function were variants known to be associated with disease. Others were artifacts of SNP di...

  20. Miltefosine Affects Lipid Metabolism in Leishmania donovani Promastigotes▿

    OpenAIRE

    Rakotomanga, M.; Blanc, S.; Gaudin, K.; Chaminade, P.; Loiseau, P.M.

    2007-01-01

    Miltefosine (hexadecylphosphocholine [HePC]) is the first orally active antileishmanial drug. Transient HePC treatment of Leishmania donovani promastigotes at 10 μM significantly reduced the phosphatidylcholine content and enhanced the phosphatidylethanolamine (PE) content in parasite membranes, suggesting a partial inactivation of PE-N-methyltransferase. Phospholipase D activity did not seem to be affected by HePC. In addition, the enhancement of the lysophosphatidylcholine content could be ...

  1. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology

    Science.gov (United States)

    Tenzer, Stefan; Docter, Dominic; Kuharev, Jörg; Musyanovych, Anna; Fetz, Verena; Hecht, Rouven; Schlenk, Florian; Fischer, Dagmar; Kiouptsi, Klytaimnistra; Reinhardt, Christoph; Landfester, Katharina; Schild, Hansjörg; Maskos, Michael; Knauer, Shirley K.; Stauber, Roland H.

    2013-10-01

    In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time.

  2. Radioisotope techniques in the study of protein metabolism

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) held a panel meeting on June 1-5, 1964. The purpose of the panel was to discuss the present status of radioactive tracer techniques for the study of protein metabolism and to suggest ways of extending an co-ordinating the Agency's research programme in this field. The meeting was attended by 13 invited experts from ten different countries, and three representatives of the World Health Organization (WHO). Sessions of the panel were devoted to methods of preparation of labelled proteins and protein-like substances, to techniques of measurement of gastro-intestinal protein absorption and loss and to the clinical applications of these techniques. At each session, working papers were presented by various participants and then discussed in detail. This report gives the full texts of the working papers together with extensive summaries of the discussions and provides a detailed picture of the present situation and likely future developments in this field of work. It is hoped that its publication will be of interest to all concerned with problems of protein metabolism, whether in clinical medicine or the basic medical sciences. 349 refs, figs and tabs

  3. Reciprocal regulation of protein synthesis and carbon metabolism for thylakoid membrane biogenesis.

    Directory of Open Access Journals (Sweden)

    Alexandra-Viola Bohne

    Full Text Available Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins. We previously described the RNA binding activity of a 63 kDa chloroplast protein from Chlamydomonas reinhardtii, which has been implicated in expression of the psbA mRNA, encoding the D1 protein of photosystem II. Here, we identify this factor as dihydrolipoamide acetyltransferase (DLA2, a subunit of the chloroplast pyruvate dehydrogenase complex (cpPDC, which is known to provide acetyl-CoA for fatty acid synthesis. Analyses of RNAi lines revealed that DLA2 is involved in the synthesis of both D1 and acetyl-CoA. Gel filtration analyses demonstrated an RNP complex containing DLA2 and the chloroplast psbA mRNA specifically in cells metabolizing acetate. An intrinsic RNA binding activity of DLA2 was confirmed by in vitro RNA binding assays. Results of fluorescence microscopy and subcellular fractionation experiments support a role of DLA2 in acetate-dependent localization of the psbA mRNA to a translation zone within the chloroplast. Reciprocally, the activity of the cpPDC was specifically affected by binding of psbA mRNA. Beyond that, in silico analysis and in vitro RNA binding studies using recombinant proteins support the possibility that RNA binding is an ancient feature of dihydrolipoamide acetyltransferases. Our results suggest a regulatory function of DLA2 in response to growth on reduced carbon energy sources. This raises the intriguing possibility that this regulation functions to coordinate the synthesis of lipids and proteins for the biogenesis of photosynthetic membranes.

  4. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    Science.gov (United States)

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  5. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Andersen, Synne M; Holen, Elisabeth; Aksnes, Anders; Rønnestad, Ivar; Zerrahn, Jens-Erik; Espe, Marit

    2013-12-14

    In the present study, quadruplicate groups of juvenile Atlantic salmon (Salmo salar) were fed plant protein-based diets with increasing arginine inclusions (range 28·8-37·4 g/kg DM) to investigate whether arginine supplementation affects growth and lipid accumulation through an elevated polyamine turnover. Dietary lysine was held at a constant concentration, just below the requirement. All other amino acids were balanced and equal in the diets. Arginine supplementation increased protein and fat accretion, without affecting the hepatosomatic or visceralsomatic indices. Dietary arginine correlated with putrescine in the liver (R 0·78, P= 0·01) and with ornithine in the muscle, liver and plasma (P= 0·0002, 0·003 and 0·0002, respectively). The mRNA of ornithine decarboxylase, the enzyme producing putrescine, was up-regulated in the white adipose tissue of fish fed the high-arginine inclusion compared with those fed the low-arginine diet. Concomitantly, spermidine/spermine-(N1)-acetyltransferase, the rate-limiting enzyme for polyamine turnover that consumes acetyl-CoA, showed an increased activity in the liver of fish fed the arginine-supplemented diets. In addition, lower acetyl-CoA concentrations were observed in the liver of fish fed the high-arginine diet, while ATP, which is used in the process of synthesising spermidine and spermine, did not show a similar trend. Gene expression of the rate-limiting enzyme for β-oxidation of long-chain fatty acids, carnitine palmitoyl transferase-1, was up-regulated in the liver of fish fed the high-arginine diet. Taken together, the data support that increased dietary arginine activates polyamine turnover and β-oxidation in the liver of juvenile Atlantic salmon and may act to improve the metabolic status of the fish. PMID:23656796

  6. Effect of diet and hormones on protein metabolism in muscle

    International Nuclear Information System (INIS)

    Muscle protein is in a state of continual flux. Protein is constantly being synthesized and degraded and it is the balance between these two processes which controls the rate of change in the protein content of muscle. The protein degradative rate and its rate of change is as important as the synthetic rate in controlling muscle protein mass. Generally, a change in synthetic rate is accompanied by a change in the same direction in the degradative rate, although the magnitude of the responses may differ. Postnatal muscle growth is by cross-sectional and longitudinal hypertrophy of existing muscle fibres. The ability of an animal to effect the net catabolism of muscle protein enables this tissue to provide amino acids for other tissues, e.g. the foetus and the brain. Individual muscles show different responses to their hormonal environment and this is reflected in their differing response to nutritional stress. The hormones insulin and cortisol have antagonistic effects on muscle protein metabolism; insulin tends to be anabolic, while cortisol tends to be catabolic. The ratio of these two hormones in the plasma can be correlated to responses seen in muscle both during dietary insufficiency and during growth. (author)

  7. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    OpenAIRE

    Motoi Tamura; Chigusa Hoshi; Sachiko Hori

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0....

  8. METABOLIC SYNDROME - THE CONSEQUENCE OF LIFELONG TREATMENT OF BIPOLAR AFFECTIVE DISORDER

    OpenAIRE

    Dadić-Hero, Elizabeta; Ružić, Klementina; Grahovac, Tanja; Petranović, Duška; Graovac, Mirjana; Žarković Palijan, Tija

    2010-01-01

    Mood disturbances are characteristic and dominant feature of Mood disorders. Bipolar Affective Disorder (BAD) is a mood disorder which occurs equally in both sexes. BAD may occur in co morbidity with other mental diseases and disorders such as: Anorexia Nervosa, Bulimia Nervosa, Attention Deficit, Panic Disorder and Social Phobia. However, medical disorders (one or more) can also coexist with BAD. Metabolic syndrome is a combination of metabolic disorders that increase the risk of developing ...

  9. Dietary protein and carbohydrate affect feeding behavior and metabolic regulation in hummingbirds (Melanotrochilus fuscus Las proteínas y carbohidratos dietarios afectan la conducta de alimentación y la regulación metabólica en picaflores (Melanotrochilus fuscus

    Directory of Open Access Journals (Sweden)

    FLAVIA P. ZANOTTO

    2005-06-01

    Full Text Available The objective of this work was to link hummingbird feeding behavior with metabolic regulation and in addition to assess whether dietary composition would affect entrance into torpor. Hummingbirds were fed a combination of diets with contrasting amounts of protein and carbohydrate. The diets were composed of the following: 2.4 % protein (P - 12 % sucrose (S and 0.8 % protein (P - 36 % sucrose (S. The main findings showed that periods of feeding on each of the diets could be distinguished as separate bouts or feeding events. Hummingbirds presented to high protein-low carbohydrate diets (2.4P-12S ingested a larger volume of diet, fed for longer (both around 1.7x and increased the interval between feedings compared with hummingbirds fed diets 0.8P-36S. Physiological regulation between feeding events, on the other hand, was achieved through an increase in metabolic rate for low protein-high sugar diets (0.8P-36S. This response could probably be related to high sucrose assimilation rates through the digestive system of hummingbirds, a process already known to be very efficient in these birds. Additionally, there was a steeper decrease in oxygen consumption for hummingbirds fed diets 2.4P-12S during fasting and a suggestion of a higher torpor incidence in birds fed these dietsEl objetivo de este trabajo fue unir la conducta de alimentación de picaflores con su regulación metabólica y además determinar como la composición dietaria podría afectar la entrada en sopor. Los picaflores fueron alimentados con una combinación de dietas con cantidades contrastantes de proteínas y carbohidratos. La composición dietaria fue: 2,4 % proteína (P - 12 % sacarosa (S y 0.8 % proteína (P - 36 % (sacarosa (S. Se observó que para cada dieta, los períodos de alimentación se pueden distinguir como eventos separados de alimentación. Cuando se enfrentan a dietas de alta proteína-bajo carbohidratos (2,4P-12S, los picaflores ingieren grandes volúmenes de

  10. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2......% (D2), 4% D4), and 6% BPM (D6), BPM providing up to 20% of total dietary N. Five balance experiments were conducted when the chickens were 3-7, 10-14, 17-21, 23-27, and 30-34 days old. During the same periods, 22-h respiration experiments (indirect calorimetry) were performed with troups of 6 chickens...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  11. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Sulek, Karolina; Skov, Kasper;

    2014-01-01

    deconjugation and dehydroxylation of bile acids. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine. Especially, the digestion of larger carbohydrates (penta- and tetrasaccharides) was increased in MC mice. Interestingly, we also found vitamin E (α......-tocopherol acetate) in higher levels in the intestine of GF mice compared to MC mice, suggesting that NCFM either metabolizes the compound orindirectly affects the absorption by changing the metabolome in the intestine. The use of NCFM to increase the uptake of vitamin E supplements in humans and animals is a highly...

  12. Sitamaquine-resistance in Leishmania donovani affects drug accumulation and lipid metabolism.

    Science.gov (United States)

    Imbert, L; Cojean, S; Libong, D; Chaminade, P; Loiseau, P M

    2014-09-01

    This study focuses on the mechanism of sitamaquine-resistance in Leishmania donovani. Sitamaquine accumulated 10 and 1.4 fold more in cytosol than in membranes of wild-type (WT) and of sitamaquine-resistant (Sita-R160) L. donovani promastigotes, respectively. The sitamaquine accumulation was a concentration-dependent process in WT whereas a saturation occurred in Sita-R160 suggesting a reduced uptake or an increase of the sitamaquine efflux. Membrane negative phospholipids being the main target for sitamaquine uptake, a lipidomic analysis showed that sitamaquine-resistance did not rely on a decrease of membrane negative phospholipid rate in Sita-R160, discarding the hypothesis of reduced uptake. However, sterol and phospholipid metabolisms were strongly affected in Sita-R160 suggesting that sitamaquine-resistance could be related to an alteration of phosphatidylethanolamine-N-methyl-transferase and choline kinase activities and to a decrease in cholesterol uptake and of ergosterol biosynthesis. Preliminary data of proteomics analysis exhibited different protein profiles between WT and Sita-160R remaining to be characterized. PMID:25201056

  13. Topological Properties of Protein-Protein and Metabolic Interaction Networks of Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    Thanigaimani Rajarathinam; Yen-Han Lin

    2006-01-01

    The underlying principle governing the natural phenomena of life is one of the critical issues receiving due importance in recent years. A key feature of the scale-free architecture is the vitality of the most connected nodes (hubs). The major objective of this article was to analyze the protein-protein and metabolic interaction networks of Drosophila melanogaster by considering the architectural patterns and the consequence of removal of hubs on the topological parameter of the two interaction systems. Analysis showed that both interaction networks follow a scale-free model, establishing the fact that most real world networks,from varied situations, conform to the small world pattern. The average path length showed a two-fold and a three-fold increase (changing from 9.42 to 20.93 and from 5.29 to 17.75, respectively) for the protein-protein and metabolic interaction networks, respectively, due to the deletion of hubs. On the contrary, the arbitrary elimination of nodes did not show any remarkable disparity in the topological parameter of the protein-protein and metabolic interaction networks (average path length: 9.42±0.02 and 5.27±0.01, respectively). This aberrant behavior for the two cases underscores the significance of the most linked nodes to the natural topology of the networks.

  14. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-05-01

    Full Text Available Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity’s impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol, regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key role in the general health of an individual. This review summarizes recent research progress regarding VA’s role in carbohydrate, lipid, and protein metabolism. Due to the large amount of information regarding VA functions, this review focusses on metabolism in metabolic active organs and tissues. Additionally, some perspectives for future studies will be provided.

  15. Metabolic syndrome - the consequence of lifelong treatment of bipolar affective disorder.

    Science.gov (United States)

    Dadić-Hero, Elizabeta; Ruzić, Klementina; Grahovac, Tanja; Petranović, Duska; Graovac, Mirjana; Palijan, Tija Zarković

    2010-06-01

    Mood disturbances are characteristic and dominant feature of Mood disorders. Bipolar Affective Disorder (BAD) is a mood disorder which occurs equally in both sexes. BAD may occur in co morbidity with other mental diseases and disorders such as: Anorexia Nervosa, Bulimia Nervosa, Attention Deficit, Panic Disorder and Social Phobia. However, medical disorders (one or more) can also coexist with BAD. Metabolic syndrome is a combination of metabolic disorders that increase the risk of developing cardiovascular disease. A 61-year old female patient has been receiving continuous and systematic psychiatric treatment for Bipolar Affective Disorder for the last 39 years. The first episode was a depressive one and it occurred after a child delivery. Seventeen years ago the patient developed diabetes (diabetes type II), and twelve years ago arterial hypertension was diagnosed. High cholesterol and triglyceride levels as well as weight gain were objective findings. During the last nine years she has been treated for lower leg ulcer. Since metabolic syndrome includes abdominal obesity, hypertension, diabetes mellitus, increased cholesterol and serum triglyceride levels, the aforesaid patient can be diagnosed with Metabolic Syndrome. When treating Bipolar Affective Disorder, the antipsychotic drug choice should be careful and aware of its side-effects in order to avoid the development or aggravation of metabolic syndrome. PMID:20562789

  16. Effect of altitude on the protein metabolism of Bolivian children

    International Nuclear Information System (INIS)

    The malnutrition is prevalent and is a major problem among Bolivian children. It is caused by several interacting factors: (1) inadequate protein energy intake due to low socio-economic status; (ii) exposure to acute, repeated and chronic bacterial infections; (iii) exposure to multiple and chronic parasitic infections; (iv) high altitude of the capital, La Paz, 3600 m, with a numerous populations compared to the rest of the country. The research objectives in the first phase are: (i) determination of protein utilization with a non-invasive method using stable isotope tracer among children living at high and low altitude; (ii) determination of protein metabolism among eutrophic children without parasitic or acute bacterial infections at both altitudes; (iii) determination of protein requirement among these children. Two groups of 10 pubertal children, matched for age and sex, of same socio-economic status, eutrophic, without malnutrition, infections or intestinal parasites will be studied; the different status being arrived by anthropometric, nutritional intake, biochemical and pediatrical evaluation. For the metabolic study, stable isotopes L-[1-13C] leucine labelled casein will be used and 13CO2 excreted will be measured. All the basic nutritional assessment and VCO2 measurements will be performed in Bolivia, while the samples of expired gas will be stored in Vacutainers for further analysis by isotope radio mass spectrometer (IRMS), in Clermont-Ferrand, France. The plans for future work is based on the study of the effects of the different variables and their interactions. The following will be evaluated: (i) the socio-economic status; (ii) the bacterial infections: (iii) the parasitic infections; (iv) the altitude. As published by Obert, et al., the socio-economic variable is more connected with the nutritional status than with the altitude. 12 refs, 1 fig., 1 tab

  17. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    Science.gov (United States)

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  18. Protein metabolism in malnourished children with acute lower respiratory infection

    International Nuclear Information System (INIS)

    We studied 19 subjects and 15 controls from November 1994 to February 1995. HIV infection is common among this population and HIV testing was done by ELISA of most subjects and controls in the course of their routine clinical care. To determine how HIV infection effects protein metabolism all HIV infected subjects and controls were grouped into a third category and compared to the subjects and controls. After the HIV subgrouping we were left with 13 subjects, 13 controls, and 8 HIV positive patients. KIC enrichments were used to calculate protein synthesis and breakdown, as KIC is believed to reflect intracellular leucine concentrations. Of note in Table 2 is the KIC/Leucine ratio is consistently greater than 1, averaging 1.3 over 16 samples. This is an unexpected finding as the KIC/Leucine ratio has been shown to be constant with a value of about 0.75 over a wide range of conditions. Samples for these eight patients have been evaluated under six different GCMS conditions to verify this unexpected observation. This ratio > 1.0 has been consistently found under all of these conditions. We are not certain what biological phenomenon can explain this, but it calls into question the validity of the four compartment model upon which these calculations are based. It is not unreasonable to expect that children with kwashiorkor metabolize ketoacids differently, and this difference could account for the increased KIC/Leucine ratio. 19 refs, 4 tabs

  19. Suppression of the External MitochondrialNADPH Dehydrogenase, NDB1, in Arabidopsisthaliana Affects Central Metabolism andVegetative Growth

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Ca2+-dependent oxidation of cytosolic NADPH is mediated by NDB1, which is an external type II NADPHdehydrogenase in the plant mitochondrial electron transport chain. Using RNA interference, the NDB1 transcript wassuppressed by 80% in Arabidopsis thaliana plants, and external Ca2+-dependent NADPH dehydrogenase activity becameundetectable in isolated mitochondria. This was linked to a decreased level of NADP+ in rosettes of the transgenic lines.Sterile-grown transgenic seedlings displayed decreased growth specifically on glucose, and respiratory metabolism of 14C-glucose was increased. On soil, NDBl-suppressing plants had a decreased vegetative biomass, but leaf maximumquantum efficiency of photosystem Ⅱ and CO2 assimilation rates, as well as total respiration, were similar to the wild-type. The in vivo alternative oxidase activity and capacity were also similar in all genotypes. Metabolic profiling revealeddecreased levels of sugars, citric acid cycle intermediates, and amino acids in the transgenic lines. The NDBl-suppressioninduced transcriptomic changes associated with protein synthesis and glucosinolate and jasmonate metabolism. Thetranscriptomic changes also overlapped with changes observed in a mutant lacking ABAINSENSITIVE4 and in A. thalianaoverexpressing stress tolerance genes from rice. The results thus indicate that A. thaliana NDB1 modulates NADP(H)reduction levels, which in turn affect central metabolism and growth, and interact with defense signaling.

  20. Short communication: Proteins from circulating exosomes represent metabolic state in transition dairy cows.

    Science.gov (United States)

    Crookenden, M A; Walker, C G; Peiris, H; Koh, Y; Heiser, A; Loor, J J; Moyes, K M; Murray, A; Dukkipati, V S R; Kay, J K; Meier, S; Roche, J R; Mitchell, M D

    2016-09-01

    Biomarkers that identify prepathological disease could enhance preventive management, improve animal health and productivity, and reduce costs. Circulating extracellular vesicles, particularly exosomes, are considered to be long-distance, intercellular communication systems in human medicine. Exosomes provide tissue-specific messages of functional state and can alter the cellular activity of recipient tissues through their protein and microRNA content. We hypothesized that exosomes circulating in the blood of cows during early lactation would contain proteins representative of the metabolic state of important tissues, such as liver, which play integral roles in regulating the physiology of cows postpartum. From a total of 150 cows of known metabolic phenotype, 10 cows were selected with high (n=5; high risk) and low (n=5; low risk) concentrations of nonesterified fatty acids, β-hydroxybutyrate, and liver triacylglycerol during wk 1 and 2 after calving. Exosomes were extracted from blood on the day of calving (d 0) and postcalving at wk 1 and wk 4, and their protein composition was determined by mass spectroscopy. Extracellular vesicle protein concentration and the number of exosome vesicles were not affected by risk category; however, the exosome protein cargo differed between the groups, with proteins at each time point identified as being unique to the high- and low-risk groups. The proteins α-2 macroglobulin, fibrinogen, and oncoprotein-induced transcript 3 were unique to the high-risk cows on d 0 and have been associated with metabolic syndrome and liver function in humans. Their presence may indicate a more severe inflammatory state and a greater degree of liver dysfunction in the high-risk cows than in the low-risk cows, consistent with the high-risk cows' greater plasma β-hydroxybutyrate and liver triacylglycerol concentrations. The commonly shared proteins and those unique to the low-risk category indicate a role for exosomes in immune function. The data

  1. Changes in contralateral protein metabolism following unilateral sciatic nerve section

    International Nuclear Information System (INIS)

    Changes in nerve biochemistry, anatomy, and function following injuries to the contralateral nerve have been repeatedly reported, though their significance is unknown. The most likely mechanisms for their development are either substances carried by axoplasmic flow or electrically transmitted signals. This study analyzes which mechanism underlies the development of a contralateral change in protein metabolism. The incorporation of labelled amino acids (AA) into proteins of both sciatic nerves was assessed by liquid scintillation after an unilateral section. AA were offered locally for 30 min to the distal stump of the sectioned nerves and at homologous levels of the intact contralateral nerves. At various times, from 1 to 24 h, both sciatic nerves were removed and the proteins extracted with trichloroacetic acid (TCA). An increase in incorporation was found in both nerves 14-24 h after section. No difference existed between sectioned and intact nerves, which is consistent with the contralateral effect. Lidocaine, but not colchicine, when applied previously to the nerves midway between the sectioning site and the spinal cord, inhibited the contralateral increase in AA incorporation. It is concluded that electrical signals, crossing through the spinal cord, are responsible for the development of the contralateral effect. Both the nature of the proteins and the significance of the contralateral effect are matters for speculation

  2. Acute responses of muscle protein metabolism to reduced blood flow reflect metabolic priorities for homeostasis.

    Science.gov (United States)

    Zhang, Xiao-Jun; Irtun, Oivind; Chinkes, David L; Wolfe, Robert R

    2008-03-01

    The present experiment was designed to measure the synthetic and breakdown rates of muscle protein in the hindlimb of rabbits with or without clamping the femoral artery. l-[ring-(13)C(6)]phenylalanine was infused as a tracer for measurement of muscle protein kinetics by means of an arteriovenous model, tracer incorporation, and tracee release methods. The ultrasonic flowmeter, dye dilution, and microsphere methods were used to determine the flow rates in the femoral artery, in the leg, and in muscle capillary, respectively. The femoral artery flow accounted for 65% of leg flow. A 50% reduction in the femoral artery flow reduced leg flow by 28% and nutritive flow by 26%, which did not change protein synthetic or breakdown rate in leg muscle. Full clamp of the femoral artery reduced leg flow by 42% and nutritive flow by 59%, which decreased (P < 0.05) both the fractional synthetic rate from 0.19 +/- 0.05 to 0.14 +/- 0.03%/day and fractional breakdown rate from 0.28 +/- 0.07 to 0.23 +/- 0.09%/day of muscle protein. Neither the partial nor full clamp reduced (P = 0.27-0.39) the intracellular phenylalanine concentration or net protein balance in leg muscle. We conclude that the flow threshold to cause a fall of protein turnover rate in leg muscle was a reduction of 30-40% of the leg flow. The acute responses of muscle protein kinetics to the reductions in blood flow reflected the metabolic priorities to maintain muscle homeostasis. These findings cannot be extrapolated to more chronic conditions without experimental validation. PMID:18089763

  3. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  4. Kinetic variation of protein metabolism in pregnant rats

    International Nuclear Information System (INIS)

    Kinetic variation of nitrogen metabolism in the skeletal muscle and liver of rats during the course of pregnancy was studied by the use of 15N-amino nitrogen during acclimatization on a protein-free diet. 15N from 15N-glycine given on day 1 of pregnancy decreased from the 1st to 2nd trimester in the liver, suggesting contribution to the N metabolic pool. In the muscle, the rate of 15N showed a marked decrease in the 2nd trimester, indicating, along with an increased accumulation of the total muscular N content, N accumulation in muscle protein in the 2nd trimester and promoted decomposition of mobiler muscular protein in the 2nd trimester. The marked decrease in the muscle 15N content from the 2nd trimester and the decrease in the total N content in the 3rd trimester support the serious involvement of muscular N in fetal growth. The level of 15N from 15N-ammonium during the course of pregnancy was significantly high in the 2nd trimester and low in the 3rd. The 2nd trimester showed amino N accumulation in the muscle, and the 3rd, a decrease in N accumulation and amino N release. In regard to the kinetics of 15N-lysine in the cell fraction, the muscular microsomes showed a high 15N accumulation in the 2nd trimester and a voluminous release in the 3rd trimester. In contrast, the liver microsomes showed a linear decrease of 15N up to 2nd trimester, followed by no change. (Chiba, N.)

  5. Factors affecting Maillard induced gelation of protein-sugar systems

    OpenAIRE

    Azhar, Mat Easa

    1996-01-01

    Gelation due to the Maillard reaction took place when solutions containing a low level of bovine serum albumin were heated in the presence of carbonyl compounds. The Maillard reaction caused a change in colour, a decrease in the pH and induced gelation. These changes were dependent on the type and concentration of sugars or protein and on the heating conditions used. Reducing sugar and Maillard reaction products (e.g. glyoxal) affected these changes, yet their order of reactivity for browning...

  6. Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows.

    Science.gov (United States)

    Janovick, N A; Boisclair, Y R; Drackley, J K

    2011-03-01

    An experiment was conducted to determine the effect of prepartum plane of energy intake on metabolic profiles related to lipid metabolism and health in blood and liver. Primiparous (n=24) and multiparous (n=23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A high energy diet [1.62 Mcal of net energy for lactation (NE(L))/kg; 15% crude protein] was fed for either ad libitum intake or restricted intake to supply 150% (OVR) or 80% (RES) of energy requirements for dry cows in late gestation. To limit energy intake to 100% of National Research Council requirements at ad libitum intake, chopped wheat straw was included as 31.8% of dry matter for a control diet (CON; 1.21 Mcal of NE(L)/kg of dry matter; 14.2% crude protein). Regardless of parity group, OVR cows had greater concentrations of glucose, insulin, and leptin in blood prepartum compared with either CON or RES cows; however, dietary effects did not carry over to the postpartum period. Prepartum nonesterified fatty acids (NEFA) were lower in OVR cows compared with either CON or RES cows. Postpartum, however, OVR cows had evidence of greater mobilization of triacylglycerol (TAG) from adipose tissue as NEFA were higher than in CON or RES cows, especially within the first 10 d postpartum. Prepartum β-hydroxybutyrate (BHBA) was not affected by diet before parturition; however, within the first 10 d postpartum, OVR cows had greater BHBA than CON or RES cows. Prepartum diet did not affect liver composition prepartum; however, OVR cows had greater total lipid and TAG concentrations and lower glycogen postpartum than CON or RES cows. Frequency of ketosis and displaced abomasum was greater for OVR cows compared with CON or RES cows postpartum. Controlling or restricting prepartum energy intake yielded metabolic results that were strikingly similar both prepartum and postpartum, independent of parity group. The use of a bulky diet controlled prepartum energy intake in

  7. Non-Genomic Origins of Proteins and Metabolism

    Science.gov (United States)

    Pohorille, Andrew

    2003-01-01

    It is proposed that evolution of inanimate matter to cells endowed with a nucleic acid- based coding of genetic information was preceded by an evolutionary phase, in which peptides not coded by nucleic acids were able to self-organize into networks capable of evolution towards increasing metabolic complexity. Recent findings that truly different, simple peptides (Keefe and Szostak, 2001) can perform the same function (such as ATP binding) provide experimental support for this mechanism of early protobiological evolution. The central concept underlying this mechanism is that the reproduction of cellular functions alone was sufficient for self-maintenance of protocells, and that self- replication of macromolecules was not required at this stage of evolution. The precise transfer of information between successive generations of the earliest protocells was unnecessary and, possibly, undesirable. The key requirement in the initial stage of protocellular evolution was an ability to rapidly explore a large number of protein sequences in order to discover a set of molecules capable of supporting self- maintenance and growth of protocells. Undoubtedly, the essential protocellular functions were carried out by molecules not nearly as efficient or as specific as contemporary proteins. Many, potentially unrelated sequences could have performed each of these functions at an evolutionarily acceptable level. As evolution progressed, however proteins must have performed their functions with increasing efficiency and specificity. This, in turn, put additional constraints on protein sequences and the fraction of proteins capable of performing their functions at the required level decreased. At some point, the likelihood of generating a sufficiently efficient set of proteins through a non-coded synthesis was so small that further evolution was not possible without storing information about the sequences of these proteins. Beyond this point, further evolution required coupling between

  8. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  9. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running.

    Directory of Open Access Journals (Sweden)

    Thomas K Uchida

    Full Text Available Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2-5 m/s with tendon force-strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2-3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail.

  10. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    Science.gov (United States)

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  11. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Motoi Tamura

    2013-12-01

    Full Text Available This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group and those fed a 0.05% daidzein-containing control diet (CD group for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05. Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05. The fecal lipid contents (% dry weight were significantly greater in the XD group than in the CD group (p < 0.01. The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05. This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  12. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    International Nuclear Information System (INIS)

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca2+-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit β (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: ► We performed brain proteomic analysis of rats exposed to the neurotoxicant, Aroclor 1254. ► Cerebellum and

  13. Aerobic fitness does not modulate protein metabolism in response to increased exercise: a controlled trial

    Directory of Open Access Journals (Sweden)

    Byerley Lauri O

    2009-06-01

    Full Text Available Abstract Background A sudden increase in exercise and energy expenditure is associated with an increase in protein turnover and nitrogen excretion. This study examined how a sudden increase in exercise-induced energy expenditure affected whole body protein metabolism and nitrogen balance in people of differing levels of aerobic fitness. We hypothesized that alterations in whole-body protein turnover would be attenuated, and nitrogen balance would be preserved, in individual with higher levels of aerobic fitness. Methods Eleven men, categorized as either having a lower (LOW-FIT; n = 5 or higher (FIT; n = 6 aerobic fitness level, completed a 4-d baseline period (BL of an energy balance diet while maintaining usual physical activity level, followed by a 7-d intervention consisting of 1,000 kcal·d-1 increased energy expenditure via exercise (50–65% VO2peak. All volunteers consumed 0.9 g protein·kg-1·d-1 and total energy intake was adjusted to maintain energy balance throughout the 11-d study. Mean nitrogen balance (NBAL was determined for BL, days 5–8 (EX1, and days 9–11 (EX2. Whole-body protein turnover was derived from phenylalanine and tyrosine kinetics assessed while fasting at rest on days 4, 7, and 12 using a priming dose of L-[ring-15N]tyrosine and a 4-h primed, continuous infusion of L-[15N]phenylalanine and L-[ring-2H4]tyrosine. Results A significant main effect of time indicated that NBAL increased over the course of the intervention; however, a group-by-time interaction was not observed. Although FIT demonstrated a lower net protein oxidation and higher net protein balance compared to LOW-FIT, neither the effect of time nor a group-by-time interaction was significant for Phe flux, net protein oxidation, or derived whole-body protein synthesis and net protein balance. Conclusion The absence of significant group-by-time interactions in protein metabolism (i.e., NBAL and whole-body protein turnover between LOW-FIT and FIT males

  14. Uncoupling proteins, dietary fat and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Warden Craig H

    2006-09-01

    Full Text Available Abstract There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3 proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane potential, but they also have distinctly different physiological roles. Human genetic studies consistently demonstrate the effect of UCP2 alleles on type-2 diabetes. Less clear is whether UCP2 alleles influence body weight or body mass index (BMI with many studies showing a positive effect while others do not. There is strong evidence that both UCP2 and UCP3 protect against mitochondrial oxidative damage by reducing the production of reactive oxygen species. The evidence that UCP2 protein is a negative regulator of insulin secretion by pancreatic β-cells is also strong: increased UCP2 decreases glucose stimulated insulin secretion ultimately leading to β-cell dysfunction. UCP2 is also neuroprotective, reducing oxidative stress in neurons. UCP3 may also transport fatty acids out of mitochondria thereby protecting the mitochondria from fatty acid anions or peroxides. Current data suggest that UCP2 plays a role in the metabolic syndrome through down-regulation of insulin secretion and development of type-2 diabetes. However, UCP2 may protect against atherosclerosis through reduction of oxidative stress and both UCP2 and UCP3 may protect against obesity. Thus, these UCP1 homologues may both contribute to and protect from the markers of the metabolic syndrome.

  15. Hypercapnia adversely affects postprandial metabolism in the European eel (Anguilla anguilla)

    DEFF Research Database (Denmark)

    Methling, C.; Pedersen, Per Bovbjerg; Steffensen, John Fleng;

    2013-01-01

    The present study examined the effects of elevated CO2 partial pressure on the specific dynamic action (SDA) and ammonia excretion in European eel (Anguilla anguilla) following forced feeding. Two different hypercapnic scenarios were investigated; one inwhich pCO2 oscillated between 20 and 60 mm ...... ammonia excretion were observed at high pCO2 or low Ph/normocapnia. The results demonstrate that despite an exceptional tolerance towards elevated pCO2 and acidosis, postprandial metabolic processes of the European eel are adversely affected by hypercapnia and low pH...... significantly increased the duration of the SDA response by 22% and 29%, respectively.Hypercapnia had no effect on standard metabolic rate,while constant or oscillating hypercapnia significantly lowered the maximum metabolic rate compared to controls, causing a significant reduction of the aerobic scope during...

  16. Cardiac metabolic pathways affected in the mouse model of barth syndrome.

    Science.gov (United States)

    Huang, Yan; Powers, Corey; Madala, Satish K; Greis, Kenneth D; Haffey, Wendy D; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS. PMID:26030409

  17. Study of protein and metabolic profile of sugarcane workers

    International Nuclear Information System (INIS)

    Full text: The National Alcohol Program (Proalcool) is a successful Brazilian renewable fuel initiative aiming to reduce the country's oil dependence. Producing ethanol from sugar cane, the program has shown positive results although accompanied by potential damage. The environmental impact mainly derives from the particulate matter emissions due to sugarcane burning, which is potentially harmful to human health. The physical activity of sugarcane workers is repetitive and exhaustive and is carried out in presence of dust, smoke and soot. The efforts by the sugarcane workers during the labor process result in increased risks of nervous, respiratory and cardiovascular system diseases and also in premature death. The aim of the present study was to investigate the effect of occupational stress on protein and metabolic profile of sugarcane workers. Forty serum samples were analyzed by 1-DE and LC MS/MS proteomic shotgun strategy and nuclear magnetic resonance (NMR). A set of proteins was found to be altered in workers after crops when compared with controls. The analysis of NMR spectra by Chenomx also showed differences in the expression of metabolites. For example, lactate displayed higher levels in control subjects than in sugarcane workers, and vice versa for the acetate. The concentrations of the two metabolites were lower after the crop, except in the case of acetate, which remained uniform in the control subjects before and after the crop. The present findings can have important application for rational designs of preventive measures and early disease detection in sugarcane workers. (author)

  18. Study of protein and metabolic profile of sugarcane workers

    Energy Technology Data Exchange (ETDEWEB)

    Polachini, G.M.; Tajara, E.H. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil); Santos, U.P. [Universidade de Sao Paulo (USP), SP (Brazil); Zeri, A.C.M.; Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The National Alcohol Program (Proalcool) is a successful Brazilian renewable fuel initiative aiming to reduce the country's oil dependence. Producing ethanol from sugar cane, the program has shown positive results although accompanied by potential damage. The environmental impact mainly derives from the particulate matter emissions due to sugarcane burning, which is potentially harmful to human health. The physical activity of sugarcane workers is repetitive and exhaustive and is carried out in presence of dust, smoke and soot. The efforts by the sugarcane workers during the labor process result in increased risks of nervous, respiratory and cardiovascular system diseases and also in premature death. The aim of the present study was to investigate the effect of occupational stress on protein and metabolic profile of sugarcane workers. Forty serum samples were analyzed by 1-DE and LC MS/MS proteomic shotgun strategy and nuclear magnetic resonance (NMR). A set of proteins was found to be altered in workers after crops when compared with controls. The analysis of NMR spectra by Chenomx also showed differences in the expression of metabolites. For example, lactate displayed higher levels in control subjects than in sugarcane workers, and vice versa for the acetate. The concentrations of the two metabolites were lower after the crop, except in the case of acetate, which remained uniform in the control subjects before and after the crop. The present findings can have important application for rational designs of preventive measures and early disease detection in sugarcane workers. (author)

  19. Apolipoprotein M affecting lipid metabolism or just catching a ride with lipoproteins in the circulation?

    DEFF Research Database (Denmark)

    Dahlbäck, B; Nielsen, Lars Bo

    2009-01-01

    link to cholesterol metabolism. However, in casecontrol studies, apoM levels in patients with coronary heart disease (CHD) and controls were similar, suggesting apoM levels not to affect the risk for CHD in humans. Experiments in transgenic mice suggested apoM to have antiatherogenic properties......; possible mechanisms include increased formation of pre-ss HDL, enhanced cholesterol mobilization from foam cells, and increased antioxidant properties....

  20. The Arabidopsis NIMIN proteins affect NPR1 differentially

    Directory of Open Access Journals (Sweden)

    Meike eHermann

    2013-04-01

    Full Text Available NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1 is the central regulator of the pathogen defense reaction systemic acquired resistance (SAR. NPR1 acts by sensing the SAR signal molecule salicylic acid (SA to induce expression of PATHOGENESIS-RELATED (PR genes. Mechanistically, NPR1 is the core of a transcription complex interacting with TGA transcription factors and NIM1 INTERACTING (NIMIN proteins. Arabidopsis NIMIN1 has been shown to suppress NPR1 activity in transgenic plants. The Arabidopsis NIMIN family comprises four structurally related, yet distinct members. Here, we show that NIMIN1, NIMIN2 and NIMIN3 are expressed differentially, and that the encoded proteins affect expression of the SAR marker PR-1 differentially. NIMIN3 is expressed constitutively at a low level, but NIMIN2 and NIMIN1 are both responsive to SA. While NIMIN2 is an immediate early SA-induced and NPR1-independent gene, NIMIN1 is activated after NIMIN2, but clearly before PR-1. Notably, NIMIN1, like PR-1, depends on NPR1. In a transient assay system, NIMIN3 suppresses SA-induced PR-1 expression, albeit to a lesser extent than NIMIN1, whereas NIMIN2 does not negatively affect PR-1 gene activation. Furthermore, although binding to the same domain in the C-terminus, NIMIN1 and NIMIN2 interact differentially with NPR1, thus providing a molecular basis for their opposing effects on NPR1. Together, our data suggest that the Arabidopsis NIMIN proteins are regulators of the SAR response. We propose that NIMINs act in a strictly consecutive and SA-regulated manner on the SA sensor protein NPR1, enabling NPR1 to monitor progressing threat by pathogens and to promote appropriate defense gene activation at distinct stages of SAR. In this scenario, the defense gene PR-1 is repressed at the onset of SAR by SA-induced, yet instable NIMIN1.

  1. Influence of some simulated factors of cosmic flight on mineral and protein metabolism in the maxillodental system of rats

    International Nuclear Information System (INIS)

    Mineral and protein metabolic changes in hard tissues of the maxillodental system, as opposed to skeletal bone, were studied in model experiments simulating space flight, with extreme factors given solely or combined: hypergravitation, ionizing radiation, magnetically activated water. Alterations occurring in protein synthesis proved to be the key events, whereas those in individual mineral components were either insignificant or of secondary nature. Long-term ingestion of magnetically activated water reduced radiation susceptibility of metabolic processes in mineralized tissues, but affected unfavorably the complex of signs resulting from combined exposure to extreme factors. Administration of a radioprotective drug, Adeturone, in treatments involving acceleration plus radiation led to normalization or partial balancing of metabolic processes in the mineral and organic components of maxillodental hard tissues and skeletal bone. The evidence obtained adds thus an anti-osteolathyrogenic feature to the radioprotective characteristics of Adeturone

  2. Metabolic syndrome in a cohort of affectively ill patients, a naturalistic study

    DEFF Research Database (Denmark)

    Vinberg, Maj; Madsen, Maiken; Breum, Leif;

    2012-01-01

    at a Mood Disorder Clinic. Methods: Patients were evaluated for the presence of metabolic syndrome (MeS) according to modified NCEP ATP III criteria. Results: Of the 143 patients eligible for participation, 100 patients participated in the study (32% male, mean age 43.6 ± 14.2); the prevalence of MeS was 26......Background: Patients with affective disorder have higher mortality not only because of their affective illness but also because of a higher risk of death from physical illness especially cardiovascular diseases. Aim: To investigate the prevalence in a naturalistic cohort of patient treated...

  3. Skeletal muscle metabolic flexibility : The roles of AMP-activated protein kinase and calcineurin

    OpenAIRE

    Long, Yun Chau

    2007-01-01

    Skeletal muscle fibers differ considerably in their metabolic and physiological properties. The metabolic properties of skeletal muscle display a high degree of flexibility which adapts to various physiological demands by shifting energy substrate metabolism. Studies were conducted to evaluate the roles of AMP-activated protein kinase (AMPK) and calcineurin in the regulation of skeletal muscle metabolism. Fasting elicited a coordinated expression of genes involved in lipid ...

  4. Metabolism of minor isoforms of prion proteins Cytosolic prion protein and transmembrane prion protein*

    Institute of Scientific and Technical Information of China (English)

    Zhiqi Song; Deming Zhao; Lifeng Yang

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathoge-nicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with spe-cific topological structure can destroy intracellular stability and contribute to prion protein pathoge-nicity. In this study, the latest molecular chaperone system associated with endoplasmic reticu-lum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular me-chanisms wil help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.

  5. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    Science.gov (United States)

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  6. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism.

    Science.gov (United States)

    Shaik, Shahnoor S; Obata, Toshihiro; Hebelstrup, Kim H; Schwahn, Kevin; Fernie, Alisdair R; Mateiu, Ramona V; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  7. Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways

    Institute of Scientific and Technical Information of China (English)

    Antonio Giovino; Federico Martinelli; Sergio Saia

    2016-01-01

    The red palm weevil (RPW; Rhynchophorus ferrugi-neus) is spreading worldwide and severely harming many palm species. However, most studies on RPW focused on insect biology, and little information is available about the plant response to the attack. In the present experiment, we used metabolomics to study the alteration of the leaf metabolome of Phoenix canariensis at initial (1st stage) or advanced (2nd stage) attack by RPW compared with healthy (unattacked) plants. The leaf metabolome significantly varied among treatments. At the 1st stage of attack, plants showed a reprogramming of carbohydrate and organic acid metabolism;in contrast, peptides and lipid metabolic pathways underwent more changes during the 2nd than 1st stage of attack. Enrichment metabolomics analysis indicated that RPW attack mostly affected a particular group of compounds rather than rearranging plant metabolic pathways. Some compounds selectively affected during the 1st rather than 2nd stage (e.g. phenylalanine;tryptophan;cel obiose;xylose;quinate;xylonite;idonate;and iso-threonate;cel obiotol and arbutine) are upstream events in the phenylpropanoid, terpenoid and alkaloid biosynthesis. These compounds could be designated as potential markers of initial RPW attack. However, further investigation is needed to determine efficient early screening methods of RPW attack based on the concentrations of these molecules.

  8. Membrane bending by protein crowding is affected by protein lateral confinement.

    Science.gov (United States)

    Derganc, Jure; Čopič, Alenka

    2016-06-01

    Crowding of asymmetrically-distributed membrane proteins has been recently recognized as an important factor in remodeling of biological membranes, for example during transport vesicle formation. In this paper, we theoretically analyze the effect of protein crowding on membrane bending and examine its dependence on protein size, shape, transmembrane asymmetry and lateral confinement. We consider three scenarios of protein lateral organization, which are highly relevant for cellular membranes in general: freely diffusing membrane proteins without lateral confinement, the presence of a diffusion barrier and interactions with a vesicular coat. We show that protein crowding affects vesicle formation even if the proteins are distributed symmetrically across the membrane and that this effect depends significantly on lateral confinement. The largest crowding effect is predicted for the proteins that are confined to the forming vesicle by a diffusion barrier. We calculate the bending properties of a crowded membrane and find that its spontaneous curvature depends primarily on the degree of transmembrane asymmetry, and its effective bending modulus on the type of lateral confinement. Using the example of COPII vesicle formation from the endoplasmic reticulum, we analyze the energetic cost of vesicle formation. The results provide a novel insight into the effects of lateral and transmembrane organization of membrane proteins, and can guide data interpretation and future experimental approaches. PMID:26969088

  9. Specific estrogen-binding protein of rat liver and sex steroid metabolism

    International Nuclear Information System (INIS)

    Model experiments were conducted to study the effect of a highly purified preparation of specific estrogen-binding protein (SEBP) on the intensity of estradiol and testosterone metabolism under the influence of enzymes in liver homogenate from female rats, not containing SEBP. The liver of mature female rats was homogenized in two volumes of 50 mM Tris-HCl buffer, pH 7.5, containing 600 mg% of glucose. The tritium-steroid was preincubated for 15 min at 0-4 C with 0-4 microg of the preparation of SEBP (200 microl). A standard preparation of partially purified SEBP was obtained from liver cystosol of mature male rats; affinity chromatography on estradiolagarose was used. It is shown that SEBP can really take part in regulation of the dynamics of sex steroids in the liver. E1 did not affect the metabolic rate of H 3-E2 by liver homogenate from females, but caused marked acceleration of H 3-E2 metabolism by male liver homogenate

  10. Identifying molecular effects of diet through systems biology: influence of herring diet on sterol metabolism and protein turnover in mice.

    Directory of Open Access Journals (Sweden)

    Intawat Nookaew

    Full Text Available BACKGROUND: Changes in lifestyle have resulted in an epidemic development of obesity-related diseases that challenge the healthcare systems worldwide. To develop strategies to tackle this problem the focus is on diet to prevent the development of obesity-associated diseases such as cardiovascular disease (CVD. This will require methods for linking nutrient intake with specific metabolic processes in different tissues. METHODOLOGY/PRINCIPAL FINDING: Low-density lipoprotein receptor-deficient (Ldlr -/- mice were fed a high fat/high sugar diet to mimic a westernized diet, being a major reason for development of obesity and atherosclerosis. The diets were supplemented with either beef or herring, and matched in macronutrient contents. Body composition, plasma lipids and aortic lesion areas were measured. Transcriptomes of metabolically important tissues, e.g. liver, muscle and adipose tissue were analyzed by an integrated approach with metabolic networks to directly map the metabolic effects of diet in these different tissues. Our analysis revealed a reduction in sterol metabolism and protein turnover at the transcriptional level in herring-fed mice. CONCLUSION: This study shows that an integrated analysis of transcriptome data using metabolic networks resulted in the identification of signature pathways. This could not have been achieved using standard clustering methods. In particular, this systems biology analysis could enrich the information content of biomedical or nutritional data where subtle changes in several tissues together affects body metabolism or disease progression. This could be applied to improve diets for subjects exposed to health risks associated with obesity.

  11. Lysine Malonylome May Affect the Central Metabolism and Erythromycin Biosynthesis Pathway in Saccharopolyspora erythraea.

    Science.gov (United States)

    Xu, Jun-Yu; Xu, Zhen; Zhou, Ying; Ye, Bang-Ce

    2016-05-01

    Lysine acylation is a dynamic, reversible post-translational modification that can regulate cellular and organismal metabolism in bacteria. Acetylome has been studied well in bacteria. However, to our knowledge, there are no proteomic data on the lysine malonylation in prokaryotes, especially in actinomycetes, which are the major producers of therapeutic antibiotics. In our study, the first malonylome of the erythromycin-producing Saccharopolyspora erythraea was described by using a high-resolution mass spectrometry-based proteomics approach and high-affinity antimalonyllysine antibodies. We identified 192 malonylated sites on 132 substrates. Malonylated proteins are enriched in many biological processes such as protein synthesis, glycolysis and gluconeogenesis, the TCA cycle, and the feeder metabolic pathways of erythromycin synthesis according to GO analysis and KEGG pathway analysis. A total of 238 S/T/Y/H-phosphorylated sites on 158 proteins were also identified in our study, which aimed to explore the potential cross-talk between acylation and phosphorylation. After that, site-specific mutations showed that malonylation is a negative regulatory modification on the enzymatic activity of the acetyl-CoA synthetase (Acs) and glutamine synthetase (Gs). Furthermore, we compared the malonylation levels of the two-growth state to explore the potential effect of malonylation on the erythromycin biosynthesis. These findings expand our current knowledge of the actinomycetes malonylome and supplement the acylproteome databases of the whole bacteria. PMID:27090497

  12. A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model.

    Directory of Open Access Journals (Sweden)

    Michael Oster

    Full Text Available In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP or an adequate protein diet (AP, 12% CP throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc and postnatal stages (1, 28, 188 dpn. Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages.

  13. The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles

    Directory of Open Access Journals (Sweden)

    Walther Dirk

    2008-11-01

    Full Text Available Abstract Background The study of biological interaction networks is a central theme of systems biology. Here, we investigate the relationships between two distinct types of interaction networks: the metabolic pathway map and the protein-protein interaction network (PIN. It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzymes complexes. Inspecting high-throughput PIN data, it was shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In our study, we expanded this line of research to include comparisons of the underlying respective network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency. Results Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and may thus be essential for the structural integrity of several biosynthetic systems. Conclusion Our results reveal topological equivalences between the protein

  14. Removal of ovarian hormones affects the ageing process of acetate metabolism

    Directory of Open Access Journals (Sweden)

    Yoshihisa Urita

    2009-01-01

    Full Text Available Background : Despite a close association between gastrointestinal motility and sex hormones, it has been unknown whether ovarian hormones affect absorption and metabolism of nutrients. The aim of this study is, therefore, to evaluate metabolism of acetate in rats with age and the influence of ovariectomy on its change. M ethods : Fourteen female rats of the F344 strain were used, and 13C-acetate breath test was performed at 2, 7 and 13 months of age. Seven rats were ovariectomized at three weeks of age (ovariectomy group and the remaining seven rats were studied as control group. After 24-hr fasting, rats are orally administrated 1ml of water containing sodium 13C-acetate (100mg/kg and housed in an animal chamber. The expired air in the chamber is collected in a breath-sampling bag using a aspiration pump. The 13CO2 concentration is measured using an infrared spectrometer for 120 min and expressed as delta per mil. Results : The breath 13CO2 excretion increased with time and peaked 30 min in control rats. In ovariectomized rats, thee peak time of 13CO2 excretion was prolonged to 40 min at 7 and 13 months of age. Cmax was significantly higher at 2 months of age but lower at 4 months of age in ovariectomized rats than in control rats. Those of two groups became equal at 7 months of age. Conclusions : From the viewpoint of acetate metabolism, removal of ovarian hormones might make rats to be precocious ones and accelerate ageing. (Urita Y, Watanabe T, Imai T, Yasuyuki Miura Y, Washizawa N, Masaki Sanaka M, Nakajima H, Sugimoto M. Removal of ovarian hormones affects the ageing process of acetate metabolism.

  15. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    .5. RESULTS Among the redox homeostasis genes examined, metallothionein showed a significant down regulation in the radiation treated group (-3.85 fold) and a trend toward down regulation in the high Fe + rad group. Metallothionein is involved in the regulation of physiological metals and also has antioxidant activities. Among the drug metabolism genes examined, ATP binding cassette subfamily B (Abcb1b) gene expression increased more than 10-fold in both groups that received radiation treatments. This increased expression was also seen at the protein level. This ABC transporter carries many different compounds across cell membranes, including administered medications. The cytochrome P450 2E1 enzyme, a mixed-function oxidase that deactivates some medications and activates others, showed about a 2-fold increase in gene expression in both radiation-treated groups, with a trend toward increased expression at the protein level. Expression of epoxide hydrolase, which detoxifies polycyclic aromatic hydrocarbons, showed similar 2-fold increases. Among the DNA repair genes examined, expression of RAD51 was significantly down regulated (1.5 fold) in the radiation treated group. RAD51 is involved in repair of double-stranded DNA breaks. CONCLUSION This experiment used 2 different sources of physiological oxidative stress, administered separately and together, and examined their impacts on liver gene and protein expression. It is clear that significant changes occurred in expression of several genes and proteins in the radiation-treated animals. If the results from this ground analog of portions of the spaceflight environment hold true for the spaceflight environment itself, the physiological roles of the affected enzymes (drug transport and metabolism, redox homeostasis) could mean consequences in redox homeostasis or the pharmacokinetics of administered medications

  16. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases.

    Science.gov (United States)

    Ruchat, Stephanie-May; Houde, Andrée-Anne; Voisin, Grégory; St-Pierre, Julie; Perron, Patrice; Baillargeon, Jean-Patrice; Gaudet, Daniel; Hivert, Marie-France; Brisson, Diane; Bouchard, Luigi

    2013-09-01

    Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring's methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24-28 weeks of pregnancy. DNA methylation was measured at>485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10(-06); none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10(-13)diabetes mellitus p = 4.3 × 10(-11)). Among the differentially methylated genes, 326 in placenta and 117 in cord blood were also associated with newborn weight. Our results therefore suggest that GDM has epigenetic effects on genes preferentially involved in the metabolic diseases pathway, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming. PMID:23975224

  17. Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue

    Directory of Open Access Journals (Sweden)

    Ge Changrong

    2010-01-01

    Full Text Available Abstract Background High dietary protein can reduce fat deposition in animal subcutaneous adipose tissue, but little is known about the mechanism. Methods Sixty Wujin pigs of about 15 kg weight were fed either high protein (HP: 18% or low protein (LP: 14% diets, and slaughtered at body weights of 30, 60 or 100 kg. Bloods were collected to measure serum parameters. Subcutaneous adipose tissues were sampled for determination of adipocyte size, protein content, lipid metabolism-related gene expression, and enzyme activities. Results HP significantly reduced adipocyte size, fat meat percentage and backfat thickness, but significantly increased daily gain, lean meat percentage and loin eye area at 60 and 100 kg. Serum free fatty acid and triglyceride concentrations in the HP group were significantly higher than in the LP group. Serum glucose and insulin concentrations were not significantly affected by dietary protein at any body weight. HP significantly reduced gene expression of acetyl CoA carboxylase (ACC, fatty acid synthase (FAS and sterol regulatory element binding protein 1c (SREBP-1c at 60 kg and 100 kg; however, the mRNA level and enzyme activity of FAS were increased at 30 kg. HP promoted gene and protein expression and enzyme activities of lipoprotein lipase (LPL, carmitine palmtoyltransferase-1B (CPT-1B, peroxisome proliferator-activated receptor γ (PPARγ and adipocyte-fatty acid binding proteins (A-FABP at 60 kg, but reduced their expression at 100 kg. Gene expression and enzyme activity of hormone sensitive lipase (HSL was reduced markedly at 60 kg but increased at 100 kg by the high dietary protein. Levels of mRNA, enzyme activities and protein expression of ACC, FAS, SREBP-1c and PPARγ in both LP and HP groups increased with increasing body weight. However, gene and protein expression levels/enzyme activities of LPL, CPT-1B, A-FABP and HSL in both groups were higher at 60 kg than at 30 and 100 kg. Conclusion Fat deposition in Wujin

  18. Combination of inositol and alpha lipoic acid in metabolic syndrome-affected women: a randomized placebo-controlled trial

    OpenAIRE

    Capasso, Immacolata; Esposito, Emanuela; Maurea, Nicola; Montella, Maurizio; Crispo, Anna; De Laurentiis, Michelino; D’Aiuto, Massimiliano; Frasci, Giuseppe; Botti, Gerardo; Grimaldi, Maria; Cavalcanti, Ernesta; Esposito, Giuseppe; Fucito, Alfredo; Brillante, Giuseppe; D’Aiuto, Giuseppe

    2013-01-01

    Background Inositol has been reported to improve insulin sensitivity since it works as a second messenger achieving insulin-like effects on metabolic enzymes. The aim of this study was to evaluate the inositol and alpha lipoic acid combination effectiveness on metabolic syndrome features in postmenopausal women at risk of breast cancer. Methods A six-month prospective, randomized placebo-controlled trial was carried out on a total of 155 postmenopausal women affected by metabolic syndrome at ...

  19. Protein engineering for metabolic engineering: Current and next-generation tools

    Energy Technology Data Exchange (ETDEWEB)

    Marcheschi, RJ; Gronenberg, LS; Liao, JC

    2013-04-16

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes.

  20. Structure SNP (StSNP): a web server for mapping and modeling nsSNPs on protein structures with linkage to metabolic pathways

    OpenAIRE

    Uzun, Alper; Leslin, Chesley M.; Abyzov, Alexej; Ilyin, Valentin

    2007-01-01

    SNPs located within the open reading frame of a gene that result in an alteration in the amino acid sequence of the encoded protein [nonsynonymous SNPs (nsSNPs)] might directly or indirectly affect functionality of the protein, alone or in the interactions in a multi-protein complex, by increasing/decreasing the activity of the metabolic pathway. Understanding the functional consequences of such changes and drawing conclusions about the molecular basis of diseases, involves integrating inform...

  1. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  2. GlmS and NagB Regulate Amino Sugar Metabolism in Opposing Directions and Affect Streptococcus mutans Virulence

    Science.gov (United States)

    Kawada-Matsuo, Miki; Mazda, Yusuke; Oogai, Yuichi; Kajiya, Mikihito; Kawai, Toshihisa; Yamada, Sakuo; Miyawaki, Shouichi; Oho, Takahiko; Komatsuzawa, Hitoshi

    2012-01-01

    Streptococcus mutans is a cariogenic pathogen that produces an extracellular polysaccharide (glucan) from dietary sugars, which allows it to establish a reproductive niche and secrete acids that degrade tooth enamel. While two enzymes (GlmS and NagB) are known to be key factors affecting the entrance of amino sugars into glycolysis and cell wall synthesis in several other bacteria, their roles in S. mutans remain unclear. Therefore, we investigated the roles of GlmS and NagB in S. mutans sugar metabolism and determined whether they have an effect on virulence. NagB expression increased in the presence of GlcNAc while GlmS expression decreased, suggesting that the regulation of these enzymes, which functionally oppose one another, is dependent on the concentration of environmental GlcNAc. A glmS-inactivated mutant could not grow in the absence of GlcNAc, while nagB-inactivated mutant growth was decreased in the presence of GlcNAc. Also, nagB inactivation was found to decrease the expression of virulence factors, including cell-surface protein antigen and glucosyltransferase, and to decrease biofilm formation and saliva-induced S. mutans aggregation, while glmS inactivation had the opposite effects on virulence factor expression and bacterial aggregation. Our results suggest that GlmS and NagB function in sugar metabolism in opposing directions, increasing and decreasing S. mutans virulence, respectively. PMID:22438919

  3. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    Science.gov (United States)

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. PMID:27147100

  4. Does hyperketonemia affect protein or glucose kinetics in postabsorptive or traumatized man

    International Nuclear Information System (INIS)

    Leucine and glucose turnover were measured using simultaneous infusions of [13C]leucine and [2H]glucose before and during an infusion of Na DL-hydroxybutyrate (Na DL-HB) in overnight-fasted patients the day before and 3 days after total hip replacement. The ketone body infusion before surgery resulted in a significant increase in plasma leucine concentration and leucine turnover, while glucose concentration and turnover decreased. Surgery increased leucine turnover. Ketone body infusion after surgery caused a further increased leucine turnover while turnover fell as before surgery. We suggest that exogenous ketone bodies decrease hepatic glucose production and probably stimulate a rise in protein synthesis above breakdown leading to a decreased nitrogen excretion as observed by other investigators. Despite the metabolic adaptation to trauma, this response was not affected by surgery

  5. Factors affecting human heterocyclic amine intake and the metabolism of PhIP.

    Science.gov (United States)

    Knize, Mark G; Kulp, Kristen S; Salmon, Cynthia P; Keating, Garrett A; Felton, James S

    2002-09-30

    We are working to understand possible human health effects from exposure to heterocyclic amines that are formed in meat during cooking. Laboratory-cooked beef, pork, and chicken are capable of producing tens of nanograms of MeIQx, IFP, and PhIP per gram of meat and smaller amounts of other heteroyclic amines. Well-done restaurant-cooked beef, pork, and chicken may contain PhIP and IFP at concentrations as high as tens of nanograms per gram and MeIQx at levels up to 3 ng/g. Although well-done chicken breast prepared in the laboratory may contain large amounts of PhIP, a survey of flame-grilled meat samples cooked in private homes showed PhIP levels in beef steak and chicken breast are not significantly different (P=0.36). The extremely high PhIP levels reported in some studies of grilled chicken are not seen in home-cooked samples.Many studies suggest individuals may have varying susceptibility to carcinogens and that diet may influence metabolism, thus affecting cancer susceptibility. To understand the human metabolism of PhIP, we examined urinary metabolites of PhIP in volunteers following a single well-done meat exposure. Using solid-phase extraction and LC/MS/MS, we quantified four major PhIP metabolites in human urine. In addition to investigating individual variation, we examined the interaction of PhIP with a potentially chemopreventive food. In a preliminary study of the effect of broccoli on PhIP metabolism, we fed chicken to six volunteers before and after eating steamed broccoli daily for 3 days. Preliminary results suggest that broccoli, which contains isothiocyanates shown to induce Phases I and II metabolism in vitro, may affect both the rate of metabolite excretion and the metabolic products of a dietary carcinogen. This newly developed methodology will allow us to assess prevention strategies that reduce the possible risks associated with PhIP exposure. PMID:12351155

  6. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    International Nuclear Information System (INIS)

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks

  7. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Dove; Finlay, Liam; Butler, Judy [Linus Pauling Institute, Oregon State University (United States); Gómez, Luis; Smith, Eric [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States); Moreau, Régis [Linus Pauling Institute, Oregon State University (United States); Hagen, Tory, E-mail: Tory.Hagen@oregonstate.edu [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States)

    2014-07-18

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.

  8. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model.

    Directory of Open Access Journals (Sweden)

    Lucie Šedová

    Full Text Available Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16 and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx into the genomic background of the spontaneously hypertensive rat (SHR strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference and diastolic (10-15 mmHg difference blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001. The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1. Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic

  9. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model

    Science.gov (United States)

    Šedová, Lucie; Pravenec, Michal; Křenová, Drahomíra; Kazdová, Ludmila; Zídek, Václav; Krupková, Michaela; Liška, František; Křen, Vladimír; Šeda, Ondřej

    2016-01-01

    Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18–28 mmHg difference) and diastolic (10–15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome

  10. Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males

    OpenAIRE

    Moore Daniel R; Areta Jose; Coffey Vernon G; Stellingwerff Trent; Phillips Stuart M; Burke Louise M; Cléroux Marilyn; Godin Jean-Philippe; Hawley John A

    2012-01-01

    Abstract Background The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. Methods Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8), 4x20g every 3h (intermediate, INT; n=7), or 2x40g every 6h (BOLUS; n=8) after an acute bout of bilateral knee extension exerci...

  11. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins

    OpenAIRE

    Bayram, Ozgur; Braus, Gerhard H

    2012-01-01

    Filamentous fungi produce a number of small bioactive molecules as part of their secondary metabolism ranging from benign antibiotics such as penicillin to threatening mycotoxins such as aflatoxin. Secondary metabolism can be linked to fungal developmental programs in response to various abiotic or biotic external triggers. The velvet family of regulatory proteins plays a key role in coordinating secondary metabolism and differentiation processes such as asexual or sexual sporulation and scle...

  12. Hypoxia and the Presence of Human Vascular Endothelial Cells Affect Prostate Cancer Cell Invasion and Metabolism

    Directory of Open Access Journals (Sweden)

    Ellen Ackerstaff

    2007-12-01

    Full Text Available Tumor progression and metastasis are influenced by hypoxia, as well as by interactions between cancer cells and components of the stroma, such as endothelial cells. Here, we have used a magnetic resonance (MRcompatible invasion assay to further understand the effects of hypoxia on human prostate cancer cell invasion and metabolism in the presence and absence of human umbilical vein endothelial cells (HUVECs. Additionally, we compared endogenous activities of selected proteases related to invasion in PC-3 cells and HUVECs, profiled gene expression of PC-3 cells by microarray, evaluated cell proliferation of PC-3 cells and HUVECs by flow cytometry, under hypoxic and oxygenated conditions. The invasion of less-invasive DU-145 cells was not affected by either hypoxia or the presence of HUVECs. However, hypoxia significantly decreased the invasion of PC-3 cells. This hypoxia-induced decrease was attenuated by the presence of HUVECs, whereas under oxygenated conditions, HUVECs did not alter the invasion of PC-3 cells. Cell metabolism changed distinctly with hypoxia and invasion. The endogenous activity of selected extracellular proteases, although altered by hypoxia, did not fully explain the hypoxia-induced changes in invasion. Gene expression profiling indicated that hypoxia affects multiple cellular functions and pathways.

  13. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β0-thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  14. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways and transcription factors

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Murgia, Marta; Nagaraja, Nagarjuna;

    2015-01-01

    spectrometric (MS) workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins......Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging due to highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art mass...... expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compare to tissue. This revealed unexpectedly...

  15. Angiopoietin-Like Protein 4 and Postprandial Skeletal Muscle Lipid Metabolism in Overweight and Obese Prediabetics

    NARCIS (Netherlands)

    Kolk, van der Birgitta W.; Goossens, Gijs H.; Jocken, Johan W.; Kersten, Sander; Blaak, Ellen E.

    2016-01-01

    Context: Angiopoietin-like protein 4 (ANGPTL4) decreases plasma triacylglycerol (TAG) clearance by inhibiting lipoprotein lipase (LPL) and may contribute to impairments in lipid metabolism under compromised metabolic conditions. Objectives: To investigate the effects of a high-saturated fatty acid (

  16. Evaluation of the protein metabolism during hepatic coma evidenced by 15N tracer data

    International Nuclear Information System (INIS)

    In patients in coma hepaticum as well as in pigs with experimental hepatic coma the protein metabolism was studied under conditions of parenteral application of an amino acid diet using 15N-glycine as tracer

  17. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  18. The choice of label and measurement technique in tracer studies of body protein metabolism in man

    International Nuclear Information System (INIS)

    The turnover of non-serum proteins in man has had limited study despite the physiological importance of maintaining the balance between synthesis and breakdown of body proteins. Body protein is usually considered as a single pool and breakdown rates are often measured by monitoring excreted label at intervals after pulse labelling with radioactive or 15N amino acids. No label has yet been used for measuring tissue protein breakdown in man which is free from the major problem of label re-utilization. All measurements of breakdown rates, eg. with 75Se-selenomethionine, 15N- or 14C-glycine, give rate constants which are too low. The heterogeneity of body proteins also means that an estimate of the weighted average breakdown rate can only be obtained after following the excretion of isotope for a long period, perhaps of the order of 3-4 half-lives which, for man, would be 100 days after labelling. We therefore use infusions with either 14C- or 15N-labelled amino acids to measure breakdown and synthesis rates: these values are less affected by problems of protein heterogeneity. Single injection techniques are subject to more error than constant infusions of label because of the difficulty of defining the precursor activity. 15N labelling need not be confined to essential amino acids if total protein rather than amino acid turnover is studied: the latter involves measurements of the labelled amino acid itself which is difficult with 15N because of the small amounts of free amino acid nitrogen available. Carbon labelling of non-essential amino acids is unsuitable for studies of protein turnover and the choice of the position of the label on the molecule is important when labelled essential amino acids are employed. Short-term changes in protein metabolism are evaluated better with amino acids with a small pool size; the equilibration time in the excretory bicarbonate pool is also shorter than in the urea pool so that 15N is less useful than carbon labelling. We now use C

  19. Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium

    Science.gov (United States)

    Turner, Matthew L.; Cronin, James G.; Noleto, Pablo G.; Sheldon, I. Martin

    2016-01-01

    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity. PMID:26974839

  20. Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium.

    Science.gov (United States)

    Turner, Matthew L; Cronin, James G; Noleto, Pablo G; Sheldon, I Martin

    2016-01-01

    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity. PMID:26974839

  1. Hepatic autophagy contributes to the metabolic response to dietary protein restriction.

    Science.gov (United States)

    Henagan, Tara M; Laeger, Thomas; Navard, Alexandra M; Albarado, Diana; Noland, Robert C; Stadler, Krisztian; Elks, Carrie M; Burk, David; Morrison, Christopher D

    2016-06-01

    Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction. PMID:27173459

  2. Nitrogen metabolism of young barley plants as affected by NaCl - salinity and potassium

    International Nuclear Information System (INIS)

    In a solution culture experiment with 31 days old barley plants (var. Miura) the influence of NaCl-salinization (80 mM) and KCl addition (5 and 10 mM) on the uptake and turnover of labelled nitrogen (15NH415NO3) was studied. Labelled N was applied for 24h at the end of a 20 days salinization period. Salinization impaired growth and incorporation of labelled N into the protein fraction paralleled by accumulation of labelled inorganic N. All salt effects were much more pronounced in the shoots than in the roots. Potassium addition enhanced N uptake (total 15N-content) and incorporation into protein, reduced the accumulation of inorganic N and improved the growth of salinized plants. The presented data support the point of view that impairment of protein (enzyme) metabolism is an important aspect of salt stress which is probably induced by the disturbance of the K/Na balance of the tissues under saline conditions. (Auth.)

  3. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov [Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Osorio, Cristina [Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States); Royland, Joyce E.; Ramabhadran, Ram [Genetic and Cellular Toxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Alzate, Oscar [Department of Cellular and Developmental Biology, University of North Carolina at Chapel Hill, North Carolina (United States); Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States)

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the neurotoxicant

  4. Removal of ovarian hormones affects the ageing process of acetate metabolism

    Directory of Open Access Journals (Sweden)

    Tsunehiko Imai

    2009-07-01

    Full Text Available Background: Despite a close association between gastrointestinal motility and sex hormones, it has been unknown whether ovarian hormones affect absorption and metabolism of nutrients. The aim of this study is, therefore, to evaluate metabolism of acetate in rats with age and the influence of ovariectomy on its change. Methods: Fourteen female rats of the F344 strain were used, and 13C-acetate breath test was performed at 2, 7 and 13 months of age. Seven rats were ovariectomized at three weeks of age (ovariectomy group and the remaining seven rats were studied as control group. After 24-hr fasting, rats are orally administrated 1ml of water containing sodium 13C-acetate (100mg/kg and housed in an animal chamber. The expired air in the chamber is collected in a breath-sampling bag using a aspiration pump. The 13CO2 concentration is measured using an infrared spectrometer for 120 min and expressed as delta per mil. Results: The breath 13CO2 excretion increased with time and peaked 30 min in control rats. In ovariectomized rats, thee peak time of 13CO2 excretion was prolonged to 40 min at 7 and 13 months of age. Cmax was significantly higher at 2 months of age but lower at 4 months of age in ovariectomized rats than in control rats. Those of two groups became equal at 7 months of age. Conclusions: From the viewpoint of acetate metabolism, removal of ovarian hormones might make rats to be precocious ones and accelerate ageing.

  5. Factors affecting carisoprodol metabolism in pain patients using urinary excretion data.

    Science.gov (United States)

    Tse, Stephanie A; Atayee, Rabia S; Ma, Joseph D; Best, Brookie M

    2014-04-01

    Carisoprodol is a skeletal muscle relaxant prescribed to treat pain. Carisoprodol is metabolized to meprobamate, an active metabolite with anxiolytic effects, by the genetically polymorphic CYP2C19 enzyme. Concomitant use of CYP2C19 substrates or inhibitors may alter carisoprodol metabolism, with therapeutic and/or toxic implications for effectively treating patients with pain. This was a retrospective analysis of urinary excretion data collected from patients with pain from March 2008 to May 2011. Carisoprodol and meprobamate urine concentrations were measured by liquid chromatography-tandem mass spectrometry, and the metabolic ratio (MR) of meprobamate to carisoprodol concentrations was determined in 14,965 subjects. The MR geometric mean and 95% confidence interval (95% CI) of the young group (105, 95% CI = 99.1-113) were ∼47.4% higher than the middle-aged group (71.9, 95% CI = 70-73.8) and nearly two times higher than the elderly group (54.4, 95% CI = 51.3-57.6). Females had a 20.7% higher MR compared with males. No significant change in the MR was observed with overall CYP2C19 inhibitor or substrate use. However, evaluation of individual inhibitors showed co-administration with esomeprazole or fluoxetine was associated with a 31.8 and 24.6% reduction in MR, respectively, compared with controls (P < 0.05). Omeprazole did not significantly affect the MR. Patient-specific factors such as age, sex and co-medications may be important considerations for effective carisoprodol therapy. PMID:24488112

  6. Maternal obesity affects fetal neurodevelopmental and metabolic gene expression: a pilot study.

    Directory of Open Access Journals (Sweden)

    Andrea G Edlow

    Full Text Available OBJECTIVE: One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA in obese versus lean pregnant women. METHODS: This prospective pilot study included eight obese (BMI≥30 and eight lean (BMI<25 women undergoing clinically indicated mid-trimester genetic amniocentesis. Subjects were matched for gestational age and fetal sex. Fetuses with abnormal karyotype or structural anomalies were excluded. Cell-free fetal RNA was extracted from amniotic fluid and hybridized to whole genome expression arrays. Genes significantly differentially regulated in 8/8 obese-lean pairs were identified using paired t-tests with the Benjamini-Hochberg correction (false discovery rate of <0.05. Biological interpretation was performed with Ingenuity Pathway Analysis and the BioGPS gene expression atlas. RESULTS: In fetuses of obese pregnant women, 205 genes were significantly differentially regulated. Apolipoprotein D, a gene highly expressed in the central nervous system and integral to lipid regulation, was the most up-regulated gene (9-fold. Apoptotic cell death was significantly down-regulated, particularly within nervous system pathways involving the cerebral cortex. Activation of the transcriptional regulators estrogen receptor, FOS, and STAT3 was predicted in fetuses of obese women, suggesting a pro-estrogenic, pro-inflammatory milieu. CONCLUSION: Maternal obesity affects fetal neurodevelopmental and metabolic gene expression as early as the second trimester. These findings may have implications for postnatal neurodevelopmental and metabolic abnormalities described in the offspring of obese women.

  7. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Directory of Open Access Journals (Sweden)

    Stephanie P Cartwright

    Full Text Available The dipeptide L-carnosine (β-alanyl-L-histidine has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose, 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol, L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  8. Chronic contamination with 137Cesium affects Vitamin D3 metabolism in rats

    International Nuclear Information System (INIS)

    Twenty years after Chernobyl disaster, many people are still chronically exposed to low dose of 137Cs, mainly through the food consumption. A large variety of diseases have been described in highly exposed people with 137Cs, which include bone disorders. The aim of this work was to investigate the biological effects of a chronic exposure to 137Cs on Vitamin D3 metabolism, a hormone essential in bone homeostasis. Rats were exposed to 137Cs in their drinking water for 3 months at a dose of 6500 Bq/l (approximately 150 Bq/rat/day), a similar concentration ingested by the population living in contaminated territories in the former USSR countries. Cytochromes P450 enzymes involved in Vitamin D3 metabolism, related nuclear receptors and Vitamin D3 target genes were assessed by real time PCR in liver, kidney and brain. Vitamin D, PTH, calcium and phosphate levels were measured in plasma. An increase in the expression level of cyp2r1 (40%, p 137Cs-exposed rats. However a significant decrease of Vitamin D (1,25(OH)D3) plasma level (53%, p = 0.02) was observed. In brain, cyp2r1 mRNA level was decreased by 20% (p 137Cs contamination. In conclusion, this study showed for the first time that chronic exposure with post-accidental doses of 137Cs affects Vitamin D3 active form level and induces molecular modifications of CYPs enzymes involved its metabolism in liver and brain, without leading to mineral homeostasis disorders

  9. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Jouhten, Paula; Nielsen, Jens

    2010-01-01

    BACKGROUND: Several protein-protein interaction studies have been performed for the yeast Saccharomyces cerevisiae using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different...... proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. RESULTS: Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient-sensing and...... metabolic regulatory signal transduction pathways (STP) operating in Saccharomyces cerevisiae. The reconstructed STP network includes a full protein-protein interaction network including the key nodes Snf1, Tor1, Hog1 and Pka1. The network includes a total of 623 structural open reading frames (ORFs) and...

  10. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    Science.gov (United States)

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  11. Failure of caffeine to affect metabolism during 60 min submaximal exercise.

    Science.gov (United States)

    Titlow, L W; Ishee, J H; Riggs, C E

    1991-01-01

    Caffeine consumption prior to athletic performance has become commonplace. The usual dosage is approximately 200 mg, a level of caffeine ingestion equivalent to two cups of brewed coffee. This study was designed to examine the effects of a common level of caffeine ingestion, specifically 200 mg, on metabolism during submaximal exercise performance in five males. The subjects performed two 60-min monitored treadmill workouts at 60% maximal heart rate during a 2-week period. The subjects were randomly assigned, double-blind to receive a caffeine or placebo capsule 60 min prior to exercise. Testing was performed in the afternoon following a midnight fast. Venous blood was withdrawn pre-exercise, every 15 min during the workout, and 10 min after recovery. Blood was analysed for free fatty acid, triglycerides, glucose, lactic acid, haemoglobin and haematocrit. The respiratory exchange ratio (R), perceived exertion (RPE) and oxygen uptake were measured every 4 min during exercise. An examination of the data with repeated-measures ANOVA revealed no significant differences between the two groups. Within the limitations of the study, it was concluded that 200 mg caffeine failed to affect metabolism during 60 min submaximal exercise. PMID:1856908

  12. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  13. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  14. Protein metabolism and utilization during undernutrition in ruminants

    International Nuclear Information System (INIS)

    Recent advances made in the understanding of protein nutrition in ruminants are discussed, with particular emphasis placed on the implications for low-level feeding systems. It is shown that protein supplements normally given when the rumen outflow rate is low are virtually completely degraded, leaving a very constant protein:energy ratio to be absorbed by the animals even if the dietary crude protein is varied, since the microbial protein produced is directly related to the energy fermented. When ruminants are given a maintenance energy diet the microbial protein produced is insufficient to meet the protein demand for tissue maintenance in young ruminants; consequently, they will lose protein and live weight. If the animals are given less than energy maintenance they will lose still more protein. The consequences for subsequent compensatory growth are discussed in detail. Using the intragastric nutrition technique it has been shown that ruminants can attain a protein balance by being given only the protein required for maintenance when body fat is available as a source of energy. The ability to manipulate fat stores as an energy source by use of protein is discussed in detail for both growth and feed conservation. (author)

  15. A Metabolic Probe-Enabled Strategy Reveals Uptake and Protein Targets of Polyunsaturated Aldehydes in the Diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Stefanie Wolfram

    Full Text Available Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways.

  16. Emergence of Complexity in Protein Functions and Metabolic Networks

    Science.gov (United States)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  17. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    Directory of Open Access Journals (Sweden)

    Motoyama Caio SM

    2011-09-01

    Full Text Available Abstract Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H or the alternation of chow (C and an H diet (CH regimen induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

  18. Effect of Different Protein Levels On Nutrient Digestion Metabolism and Serum Biochemical Parameters in Calves

    Institute of Scientific and Technical Information of China (English)

    LI Hui; DIAO Qi-yu; ZHANG Nai-feng; TU Yan; WANG Ji-feng

    2008-01-01

    The current study has been performed to examine the effects of different dietary protein levels on the growth,nutrient digestion and absorption,as well as biochemical parameters in calves.Nine healthy newborn calves were selected,randomly divided into 3 groups and fed 3 milk replacers with different protein levels(18,22,and 26%),respectively.Five period-digestion-metabolism trials were taken between 12-20,22-30,32-40,42-50,and 52-60 days after birth.All 3 groups showed a similar growth curve during 11 to 61 experimental days,however,the growth rate of the 22%crude protein(CP) group was 8.89%higher than that of the 18%CP group and 19.48%higher than that of the 26%CP group.respectively. The apparent digestibility of dry material(DM)declined gradually with age,whereas,the apparent digestibility of N,extract ether(EE)rose slightly.Compared to the 22%CP and 26%CP group,calves fed with 18%CP apparently had a lower digestibility than DM,EE,and nitrogen(N).The average apparent digestibilities of N were 69.39,75.36,and 74.55%, respectively.Both the apparent digestibility and retention of calcium(Ca)and phosphorus(P)were steady throughout the experiment,but the average apparent digestibility of P in the 26%CP group was only 63.83%,which was markedly lower than that of the 18%CP group(70.40%)and 22%CP group(69.73%).In addition,the sernm concentrations of total protein(TP),albumin(ALB),and globulin(GLOB)of the 22%CP group were higher than those in the 18%CP and 26%CP groups.The urea N(BUN)content in the 18%CP group,on the other hand,was significantly lower than that of the other two groups.The highest glucose(GLU)concentration was found in the 22%CP group(5.38 mmol L-1),at the end of the trials.The protein levels in the milk replacer affected the digestion metabolism of nutrition and the serum biochemical parameters of calves at different physiological phases.Calves fed with 22%CP milk replacer had a better growth performance than the other groups.

  19. Effect of altitude on protein metabolism in Bolivian children

    International Nuclear Information System (INIS)

    Protein utilization during feeding is difficult to assess by classical tracer methodology, particularly under field conditions. We propose a new approach using the measurement of tracer recovery (expired 13CO2) after the ingestion of a single oral dose of a 13C-leucine labelled milk protein. Protein will be obtained by infusing a cow with 13C-leucine. The difference between the amounts of tracer given and recovered should be an index of protein utilization. Since altitude might influence protein absorption, this non-invasive method will be used in Bolivian children, living either at 3600 m (La Paz) or at sea level. (author). 14 refs

  20. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    Science.gov (United States)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. Biotechnol. Bioeng. 2016;113: 961-969. © 2015 Wiley Periodicals, Inc. PMID:26480251

  1. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Rolland, Marine; Skov, Peter V; Larsen, Bodil K; Holm, Jørgen; Gómez-Requeni, Pedro; Dalsgaard, Johanne

    2016-08-01

    Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works as a signalling factor in different metabolic pathways. The study investigated the effect of increasing dietary methionine intake on the intermediary metabolism in the liver of juvenile rainbow trout. For this purpose, five diets were formulated with increasing methionine levels from 0.60 to 1.29% dry matter. The diets were fed in excess for six weeks before three sampling campaigns carried out successively to elucidate (i) the hepatic expression of selected genes involved in lipid, glucose and amino acid metabolism; (ii) the postprandial ammonia excretion; and (iii) the postprandial plasma methionine concentrations. The transcript levels of enzymes involved in lipid metabolism (fatty acid synthase, glucose 6 phosphate dehydrogenase and carnitine palmitoyl transferase 1 a), gluconeogenesis (fructose-1,6-biphosphatase) and amino acid catabolism (alanine amino transferase and glutamate dehydrogenase) were significantly affected by the increase in dietary methionine. Changes in gene expression reflected to some extent the decrease in ammonia excretion (P=0.022) and in the hepatosomatic index (HSI; Ptrout responded in a dose-dependent manner to increasing levels of dietary methionine. PMID:27105833

  2. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    Science.gov (United States)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  3. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    International Nuclear Information System (INIS)

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.)

  4. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome.

    Science.gov (United States)

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca(2+)]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  5. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum

    Energy Technology Data Exchange (ETDEWEB)

    Barros, M.P., E-mail: marcelo.barros@cruzeirodosul.edu.br [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Hollnagel, H.C. [Pós-Graduação, Faculdade Mario Schenberg, 06710500 Cotia, SP (Brazil); Glavina, A.B. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Soares, C.O. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Department of Biochemistry, Instituto de Química, Universidade de São Paulo (IQ-USP), São Paulo (Brazil); Ganini, D. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 (United States); Dagenais-Bellefeuille, S.; Morse, D. [Departement de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montreal, QC H1X 2B2 (Canada); Colepicolo, P. [Department of Biochemistry, Instituto de Química, Universidade de São Paulo (IQ-USP), São Paulo (Brazil)

    2013-10-15

    Highlights: •Molybdenum (Mo) is a key micronutrient for nitrogen and redox metabolism in many microalgae. •Molybdate and (more abundant) sulfate anions compete for uptake, although proper mechanism is still obscure. •Higher concentrations of molybdate in culture medium diminish sulfur content in L. polyedrum. •Mo toxicity was monitored as a function of [Mo]:[sulfate] ratios in L. polyedrum and was linked to oxidative stress. •Induction of xanthine oxidase activity and/or depletion of thiol-dependent antioxidants are suggested as plausible mechanisms to explain Mo toxicity in dinoflagellates. -- Abstract: Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO{sub 4}{sup 2−}), although MoO{sub 4}{sup 2−} uptake is thought to compete with uptake of the much more abundant sulfate anion (SO{sub 4}{sup 2−}, approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO{sub 4}{sup 2−} and SO{sub 4}{sup 2−} concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO{sub 4}{sup 2−} concentrations (from 0 to 200 μM) and three different SO{sub 4}{sup 2−} concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of

  6. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    OpenAIRE

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H.; Schwahn, Kevin; Fernie, Alisdair R.; Mateiu, Ramona Valentina; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or ...

  7. A comparative study protein metabolism in various tissues by autoradiography

    International Nuclear Information System (INIS)

    By the use of autoradiographic technique, the incorporation of 35S-methionine in tissue protein has been utilized as an index of tissue protein synthesis. It was found that 35S-methionine incorporates rapidly in immature cells of bone marrow, liver, kidney and spleen. In spite of their important physiological functions, heart, lung and skeletal muscle have their proteins synthesized at low speed

  8. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    Directory of Open Access Journals (Sweden)

    Nielsen Jens

    2010-05-01

    Full Text Available Abstract Background Several protein-protein interaction studies have been performed for the yeast Saccharomyces cerevisiae using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. Results Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient-sensing and metabolic regulatory signal transduction pathways (STP operating in Saccharomyces cerevisiae. The reconstructed STP network includes a full protein-protein interaction network including the key nodes Snf1, Tor1, Hog1 and Pka1. The network includes a total of 623 structural open reading frames (ORFs and 779 protein-protein interactions. A number of proteins were identified having interactions with more than one of the protein kinases. The fully reconstructed interaction network includes all the information available in separate databases for all the proteins included in the network (nodes and for all the interactions between them (edges. The annotated information is readily available utilizing the functionalities of network modelling tools such as Cytoscape and CellDesigner. Conclusions The reported fully annotated interaction model serves as a platform for integrated systems biology studies of nutrient sensing and regulation in S. cerevisiae. Furthermore, we propose this annotated reconstruction as a first step towards generation of an extensive annotated protein-protein interaction network of signal transduction and metabolic regulation in this yeast.

  9. Pathophysiological changes that affect drug disposition in protein-energy malnourished children

    Directory of Open Access Journals (Sweden)

    Oshikoya Kazeem A

    2009-12-01

    Full Text Available Abstract Protein-energy malnutrition (PEM is a major public health problem affecting a high proportion of infants and older children world-wide and accounts for a high childhood morbidity and mortality in the developing countries. The epidemiology of PEM has been extensively studied globally and management guidelines formulated by the World Health Organization (WHO. A wide spectrum of infections such as measles, malaria, acute respiratory tract infection, intestinal parasitosis, tuberculosis and HIV/AIDS may complicate PEM with two or more infections co-existing. Thus, numerous drugs may be required to treat the patients. In-spite of abundant literature on the epidemiology and management of PEM, focus on metabolism and therapeutic drug monitoring is lacking. A sound knowledge of pathophysiology of PEM and pharmacology of the drugs frequently used for their treatment is required for safe and rational treatment. In this review, we discuss the pathophysiological changes in children with PEM that may affect the disposition of drugs frequently used for their treatment. This review has established abnormal disposition of drugs in children with PEM that may require dosage modification. However, the relevance of these abnormalities to the clinical management of PEM remains inconclusive. At present, there are no good indications for drug dosage modification in PEM; but for drug safety purposes, further studies are required to accurately determine dosages of drugs frequently used for children with PEM.

  10. Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males

    Directory of Open Access Journals (Sweden)

    Moore Daniel R

    2012-10-01

    Full Text Available Abstract Background The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. Methods Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8, 4x20g every 3h (intermediate, INT; n=7, or 2x40g every 6h (BOLUS; n=8 after an acute bout of bilateral knee extension exercise (4x10 repetitions at 80% maximal strength. Whole-body protein turnover (Q, synthesis (S, breakdown (B, and net balance (NB were measured throughout 12h of recovery by a bolus ingestion of [15N]glycine with urinary [15N]ammonia enrichment as the collected end-product. Results PULSE Q rates were greater than BOLUS (~19%, P Conclusion We conclude that the pattern of ingested protein, and not only the total daily amount, can impact whole-body protein metabolism. Individuals aiming to maximize NB would likely benefit from repeated ingestion of moderate amounts of protein (~20g at regular intervals (~3h throughout the day.

  11. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  12. Nitrogen metabolism and protozoa production rate in cattle fed on diet containing protected protein

    International Nuclear Information System (INIS)

    Nitrogen metabolism and protozoa production rate using 14C-choline as marker were studied on 9 adult male crossbred (Tharparker x Brown Swiss) rumen fistulated animals divided into 3 groups (A, B and C). All the animals were fed concentrate mixture and wheatstraw. However, groundnut cake (GNC) in concentrate mixture was untreated in group A, 50 per cent formaldehyde treated in group B and 100 per cent formaldehyde treated in group C. Although, DM intake was similar in these groups but water intake was significantly (P<0.05) higher in control group. Total-N, ammonia-N and blood urea were significantly lower in group B and C as compared to group A. Apparent CP digestibility was not affected by addition of formaldehyde treated GNC at 50 and 100 per cent levels. However, N balances increased significantly (P<0.05) due to addition of protected protein in diet. Protozoal pool as well as production rate were significantly (P<0.01) decreased due to formaldehyde treatment of GNC protein. Thus addition of formaldehyde treated GNC in diets decreased ammonia and protozoa production but increased N retention in groups B and C. (author). 27 refs., 3 tabs., 2 figs

  13. Conformational fluctuations affect protein alignment in dilute liquid crystal media

    DEFF Research Database (Denmark)

    Louhivuori, M.; Otten, R.; Lindorff-Larsen, Kresten;

    2006-01-01

    The discovery of dilute liquid crystalline media to align biological macromolecules has opened many new possibilities to study protein and nucleic acid structures by NMR spectroscopy. We inspect the basic alignment phenomenon for an ensemble of protein conformations to deduce relative contributions...

  14. Bt proteins Cry1Ah and Cry2Ab do not affect cotton aphid Aphis gossypii and ladybeetle Propylea japonica.

    Science.gov (United States)

    Zhao, Yao; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Wang, Xiao-Ping; Cui, Jin-Jie; Lei, Chao-Liang

    2016-01-01

    Plant varieties expressing the Bt (Bacillus thuringiensis) insecticidal proteins Cry1Ah and Cry2Ab have potential commercialization prospects in China. However, their potential effects on non-target arthropods (NTAs) remain uncharacterized. The cotton aphid Aphis gossypii is a worldwide pest that damages various important crops. The ladybeetle Propylea japonica is a common and abundant natural enemy in many cropping systems in East Asia. In the present study, the effects of Cry1Ah and Cry2Ab proteins on A. gossypii and P. japonica were assessed from three aspects. First, neither of the Cry proteins affected the growth or developmental characteristics of the two test insects. Second, the expression levels of the detoxification-related genes of the two test insects did not change significantly in either Cry protein treatment. Third, neither of the Cry proteins had a favourable effect on the expression of genes associated with the amino acid metabolism of A. gossypii and the nutrition utilization of P. japonica. In conclusion, the Cry1Ah and Cry2Ab proteins do not appear to affect the cotton aphid A. gossypii or the ladybeetle P. japonica. PMID:26829252

  15. A novel family of small proteins that affect plant development

    Energy Technology Data Exchange (ETDEWEB)

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  16. Effect of dietary protein on lipid and glucose metabolism: implications for metabolic health

    NARCIS (Netherlands)

    Rietman, A.

    2015-01-01

    Abstract Background: Diet is an important factor in the development of the Metabolic Syndrome (Mets) and type 2 Diabetes Mellitus. Accumulation of intra hepatic lipid (IHL) can result in non-alcoholic fatty liver disease (NAFLD), which is sometimes considered the he

  17. Different true-protein sources do not modify the metabolism of crossbred Bos taurus × Bos indicus growing heifers

    Directory of Open Access Journals (Sweden)

    Diego Azevedo Mota

    2015-02-01

    Full Text Available The present study was conducted to investigate the effect of alternative true-protein sources to soybean meal, with different ruminal degradability, using a sugarcane-based diet, on nutrient digestion, ruminal fermentation, efficiency of microbial protein synthesis and passage rate in prepubertal dairy heifers. Eight crossbred rumen- and duodenum-cannulated Holstein × Gyr dairy heifers (202.0±11.5 kg BW were evaluated in a 4 × 4 Latin square experimental design with four treatments and four periods in two simultaneous replicates. Dietary treatments were: soybean meal; cottonseed meal; peanut meal; and sunflower meal. When associated with diets containing sugarcane, the different protein sources did not affect intake or digestibility of dry mater, crude protein, organic matter and neutral detergent fiber. The average ruminal pH, NH3-N and concentration of total volatile fatty acids were not different among the diets supplied. The concentration of butyric acid was different among the protein sources, wherein the animals fed the diet with sunflower meal presented lower values than those fed the other sources. Diets did not affect nitrogen balance, microbial nitrogen, microbial synthesisefficiency, estimated dry matter flow, or passage rate. Alternative protein sources can be used to reduce the costs without changing the animal metabolism.

  18. Influence of dietary proteins on cholesterol metabolism and nephrocalcinosis.

    NARCIS (Netherlands)

    Zhang, X.

    1992-01-01

    This thesis consists of two parts. The first part deals with the effects of type and amount of various animal proteins on plasma and liver cholesterol concentrations in female, weanling rats. The second part focusses on the nephrocalcinogenic effects of dietary proteins in female rats.Chapter 1 pres

  19. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    OpenAIRE

    A Deshmukh; Murgia, M.; Nagaraj, N; Treebak, J.; Cox, J; Mann, M

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and...

  20. Multiple dietary supplements do not affect metabolic and cardio-vascular health.

    Science.gov (United States)

    Soare, Andreea; Weiss, Edward P; Holloszy, John O; Fontana, Luigi

    2014-02-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m(2)) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals. PMID:24659610

  1. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins

    DEFF Research Database (Denmark)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J.; Shojaosadati, Seyed Abbas;

    2016-01-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins...

  2. Changes of protein metabolism after X-irradiation. Pt. 3

    International Nuclear Information System (INIS)

    The protease activity against externally added haemoglobin as a substrate and the autolytic activity against the proteins of the organism were decreased in most of the organs and in the total organism on the 3rd day after irradiation. This contradicts the explanation of the protein loss by an increased protein degradation. The free amino acids in the organs and in the whole organism are unchanged or diminished. An increase would be expected if an increased protein degradation had occured because the free amino acids are the end product of the protein degradation. The conclusion of this investigation is that other mechanisms than protein degradation are responsible for the protein loss of the organism 3-6 days after X-irradiation. The increase of the protease activity and of the free amino acids in the blood plasma from day 1-3 coincides with the end of the destruction phase in the organism between day 1-2 after irradiation. The changes of the protease activity in the erythrocytes between day 1-30 after irradiation are probably not caused by a direct effect of the radiation on the erythrocytes of the peripheral blood. They are rather the result of a transient suppression of the hematopoetic differentiation. (orig.)

  3. YEAST A SINGLE CELL PROTEIN: CHARACTERISTICS and METABOLISM

    Directory of Open Access Journals (Sweden)

    AMATA, I.A

    2013-02-01

    Full Text Available Most of the developing countries of the world are facing a major problem of malnutrition. Due to rapid growth in the population, food and feed scarcity are prevalent leading to a deficiency of protein and essential nutrients amongst human beings and livestock. It is therefore important to take necessary measures to stem this trend by increasing protein production and making it available and more affordable to the population by utilizing methods available for the production of alternative sources of nutrients. The increased world demand for food and in particular protein has engineered the search for non-conventional protein sources to supplement the available protein sources. Since the early fifties, intense efforts have been made to explore these alternate and non-conventional protein sources. In 1996, new sources mainly yeast, fungi, bacteria and algae have been used to ferment biomass in the form of biological waste to produce single cell proteins. Microbial biomass has been considered an alternative to conventional sources of food and feed. Large scale production processes for SCP production reveal interesting features.

  4. Metabolism

    Science.gov (United States)

    ... also influenced by body composition — people with more muscle and less fat generally have higher BMRs. previous continue Things That Can Go Wrong With Metabolism Most of the time your metabolism works effectively ...

  5. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K; Færgeman, Nils J.; Neergaard, T B; Gaigg, B

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport and ......) [4]. Additional factors affecting the concentration of free LCA include feed back inhibition of the acylCoA synthetase [5], binding to acylCoA receptors (LCA-regulated molecules and enzymes), binding to membranes and the activity of acylCoA hydrolases [6]....

  6. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  7. Role of insulin-like growth factor binding protein-3 in glucose and lipid metabolism

    OpenAIRE

    Kim, Ho-Seong

    2013-01-01

    Insulin-like growth factor binding protein (IGFBP)-3 has roles in modulating the effect of IGFs by binding to IGFs and inhibiting cell proliferation in an IGF-independent manner. Although recent studies have been reported that IGFBP-3 has also roles in metabolic regulation, their exact roles in adipose tissue are poorly understood. In this review, we summarized the studies about the biological roles in glucose and lipid metabolism. IGFBP-3 overexpression in transgenic mice suggested that IGFB...

  8. Translocator Protein (TSPO) Affects Mitochondrial Fatty Acid Oxidation in Steroidogenic Cells.

    Science.gov (United States)

    Tu, Lan N; Zhao, Amy H; Hussein, Mahmoud; Stocco, Douglas M; Selvaraj, Vimal

    2016-03-01

    Translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a highly conserved outer mitochondrial membrane protein present in specific subpopulations of cells within different tissues. In recent studies, the presumptive model depicting mammalian TSPO as a critical cholesterol transporter for steroidogenesis has been refuted by studies examining effects of Tspo gene deletion in vivo and in vitro, biochemical testing of TSPO cholesterol transport function, and specificity of TSPO-mediated pharmacological responses. Nevertheless, high TSPO expression in steroid-producing cells seemed to indicate an alternate function for this protein in steroidogenic mitochondria. To seek an explanation, we used CRISPR/Cas9-mediated TSPO knockout steroidogenic MA-10 Leydig cell (MA-10:TspoΔ/Δ) clones to examine changes to core mitochondrial functions resulting from TSPO deficiency. We observed that 1) MA-10:TspoΔ/Δ cells had a shift in substrate utilization for energy production from glucose to fatty acids with significantly higher mitochondrial fatty acid oxidation (FAO), and increased reactive oxygen species production; and 2) oxygen consumption rate, mitochondrial membrane potential, and proton leak were not different between MA-10:TspoΔ/Δ and MA-10:Tspo+/+ control cells. Consistent with this finding, TSPO-deficient adrenal glands from global TSPO knockout (Tspo(-/-)) mice also showed up-regulation of genes involved in FAO compared with the TSPO floxed (Tspo(fl/fl)) controls. These results demonstrate the first experimental evidence that TSPO can affect mitochondrial energy homeostasis through modulation of FAO, a function that appears to be consistent with high levels of TSPO expression observed in cell types active in lipid storage/metabolism. PMID:26741196

  9. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel.

    Science.gov (United States)

    Wang, Yun; Javed, Iqbal; Liu, Yahui; Lu, Song; Peng, Guang; Zhang, Yongqian; Qing, Hong; Deng, Yulin

    2016-01-01

    Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins. PMID:26523826

  10. Association between C-reactive protein and features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Fröhlich, M; Imhof, A; Berg, Gabriele;

    2000-01-01

    OBJECTIVE: To assess the association of circulating levels of C-reactive protein, a sensitive systemic marker of inflammation, with different components of the metabolic syndrome. RESEARCH DESIGN AND METHODS: Total cholesterol (TC), HDL cholesterol, triglycerides, uric acid, BMI , and prevalence of...... concentrations in subjects grouped according to the presence of 0-1, 2-3, and > or =4 features of the metabolic syndrome were 1.11, 1.27, and 2.16 mg/l, respectively, with a statistically highly significant trend (P < 0.0001). CONCLUSIONS: The data suggest that a variety of features of the metabolic syndrome are...

  11. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  12. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  13. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley.

    Science.gov (United States)

    Ghaffari, Mohammad Reza; Ghabooli, Mehdi; Khatabi, Behnam; Hajirezaei, Mohammad Reza; Schweizer, Patrick; Salekdeh, Ghasem Hosseini

    2016-04-01

    The root endophytic fungus Piriformospora indica enhances plant adaptation to environmental stress based on general and non-specific plant species mechanisms. In the present study, we integrated the ionomics, metabolomics, and transcriptomics data to identify the genes and metabolic regulatory networks conferring salt tolerance in P. indica-colonized barley plants. To this end, leaf samples were harvested at control (0 mM NaCl) and severe salt stress (300 mM NaCl) in P. indica-colonized and non-inoculated barley plants 4 weeks after fungal inoculation. The metabolome analysis resulted in an identification of a signature containing 14 metabolites and ions conferring tolerance to salt stress. Gene expression analysis has led to the identification of 254 differentially expressed genes at 0 mM NaCl and 391 genes at 300 mM NaCl in P. indica-colonized compared to non-inoculated samples. The integration of metabolome and transcriptome analysis indicated that the major and minor carbohydrate metabolism, nitrogen metabolism, and ethylene biosynthesis pathway might play a role in systemic salt-tolerance in leaf tissue induced by the root-colonized fungus. PMID:26951140

  14. SOME MAGNESIUM STATUS INDICATORS AND OXIDATIVE METABOLISM RESPONSES TO LOW DIETARY MAGNESIUM ARE AFFECTED BY DIETARY COPPER IN POSTMENOPAUSAL WOMEN

    Science.gov (United States)

    In both animals and humans, deficiencies of both magnesium and copper result in undesirable changes in lipid and reactive oxygen metabolism that can adversely affect cardiovascular and bone health. Thus, a study with human volunteers was conducted with the objective of ascertaining whether a low in...

  15. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    Science.gov (United States)

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  16. Protein and energy metabolism in two lines of chickens selected for growth on high or low protein diets

    DEFF Research Database (Denmark)

    Chwalibog, André; Eggum, B O; Sørensen, Peter

    1983-01-01

    Genetic adaptation was investigated in broilers selected for seven generations on a normal (A) or a low (B) protein diet. Protein and energy metabolism were studied in males from these selected lines fed on a diet of intermediate protein content. All selected birds retained more nitrogen than those...... studied 10 years previously. There was no difference in nitrogen retention between groups, although relative growth rate of group B birds was higher. Heat productions relative to gross energy intake were 0.38 (group B) and 0.45 (group A). Energy retentions relative to gross energy intake were 0.39 (group...

  17. Glucocorticoids and 11β-HSD1 are major regulators of intramyocellular protein metabolism.

    Science.gov (United States)

    Morgan, Stuart A; Hassan-Smith, Zaki K; Doig, Craig L; Sherlock, Mark; Stewart, Paul M; Lavery, Gareth G

    2016-06-01

    The adverse metabolic effects of prescribed and endogenous glucocorticoid excess, 'Cushing's syndrome', create a significant health burden. While skeletal muscle atrophy and resultant myopathy is a clinical feature, the molecular mechanisms underpinning these changes are not fully defined. We have characterized the impact of glucocorticoids upon key metabolic pathways and processes regulating muscle size and mass including: protein synthesis, protein degradation, and myoblast proliferation in both murine C2C12 and human primary myotube cultures. Furthermore, we have investigated the role of pre-receptor modulation of glucocorticoid availability by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in these processes. Corticosterone (CORT) decreased myotube area, decreased protein synthesis, and increased protein degradation in murine myotubes. This was supported by decreased mRNA expression of insulin-like growth factor (IGF1), decreased activating phosphorylation of mammalian target of rapamycin (mTOR), decreased phosphorylation of 4E binding protein 1 (4E-BP1), and increased mRNA expression of key atrophy markers including: atrogin-1, forkhead box O3a (FOXO3a), myostatin (MSTN), and muscle-ring finger protein-1 (MuRF1). These findings were endorsed in human primary myotubes, where cortisol also decreased protein synthesis and increased protein degradation. The effects of 11-dehydrocorticosterone (11DHC) (in murine myotubes) and cortisone (in human myotubes) on protein metabolism were indistinguishable from that of CORT/cortisol treatments. Selective 11β-HSD1 inhibition blocked the decrease in protein synthesis, increase in protein degradation, and reduction in myotube area induced by 11DHC/cortisone. Furthermore, CORT/cortisol, but not 11DHC/cortisone, decreased murine and human myoblast proliferative capacity. Glucocorticoids are potent regulators of skeletal muscle protein homeostasis and myoblast proliferation. Our data underscores the potential use of

  18. Myocardial Oxidative Metabolism and Protein Synthesis during Mechanical Circulatory Support by Extracorporeal Membrane Oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Priddy, MD, Colleen M.; Kajimoto, Masaki; Ledee, Dolena; Bouchard, Bertrand; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-02-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support essential for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative. We focused on the amino acid leucine, and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart (i) the fractional contribution of leucine (FcLeucine) and pyruvate (FCpyruvate) to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and (ii) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 hours of normal circulation or ECMO) and intracoronary infusion [13C6,15N]-L-leucine (3.7 mM) alone or with [2-13C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (~ 40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. Conclusion: The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining (i) metabolic flexibility indicated by ability to respond to pyruvate, and (ii) a normal or increased capacity for global protein synthesis, suggesting an improved protein balance.

  19. Effects of atorvastatin on human c reactive protein metabolism

    Science.gov (United States)

    Statins are known to reduce plasma C-reactive protein (CRP) concentrations. Our goals were to define the mechanisms by which CRP was reduced by maximal dose atorvastatin. Eight subjects with combined hyperlipidemia (5 men and 3 postmenopausal women) were enrolled in a randomized, placebo-controlled...

  20. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.

    Science.gov (United States)

    Qian, Lili; Nie, Litong; Chen, Ming; Liu, Ping; Zhu, Jun; Zhai, Linhui; Tao, Sheng-Ce; Cheng, Zhongyi; Zhao, Yingming; Tan, Minjia

    2016-06-01

    Protein lysine malonylation is a recently identified post-translational modification (PTM), which is evolutionarily conserved from bacteria to mammals. Although analysis of lysine malonylome in mammalians suggested that this modification was related to energy metabolism, the substrates and biological roles of malonylation in prokaryotes are still poorly understood. In this study, we performed qualitative and quantitative analyses to globally identify lysine malonylation substrates in Escherichia coli. We identified 1745 malonylation sites in 594 proteins in E. coli, representing the first and largest malonylome data set in prokaryotes up to date. Bioinformatic analyses showed that lysine malonylation was significantly enriched in protein translation, energy metabolism pathways and fatty acid biosynthesis, implying the potential roles of protein malonylation in bacterial physiology. Quantitative proteomics by fatty acid synthase inhibition in both auxotrophic and prototrophic E. coli strains revealed that lysine malonylation is closely associated with E. coli fatty acid metabolism. Protein structural analysis and mutagenesis experiment suggested malonylation could impact enzymatic activity of citrate synthase, a key enzyme in citric acid (TCA) cycle. Further comparative analysis among lysine malonylome, succinylome and acetylome data showed that these three modifications could participate in some similar enriched metabolism pathways, but they could also possibly play distinct roles such as in fatty acid synthesis. These data expanded our knowledge of lysine malonylation in prokaryotes, providing a resource for functional study of lysine malonylation in bacteria. PMID:27183143

  1. Nucleic Acids and Protein Metabolism of Bone Marrow Cells Studied by Means of Tritiumlabelled Precursors

    International Nuclear Information System (INIS)

    The advantages of the use of tritium-labelled compounds in radioautographic technique are discussed. Tritium electrons have a maximal energy of 0.018 MeV, corresponding to about 1μm range in a photographic emulsion, and consequently they allow the highest possible resolution at a cellular and subcellular level. This is particularly useful for studying metabolic phenomena of tissues which are composed, as in the case of bone marrow, of different cellular types at various stages of differentiation. This technique has been used for investigating nucleic acids and protein metabolism of normal and leukaemic bone marrow cells. DNA metabolism has been studied utilizing a specific precursor, H3-thymidine. Some significant differences of the percentages of labelled cells have been detected by comparing the normal and leukaemic elements belonging to the same stage of maturation. In acute leukaemia cells, particularly, a strikingly lower incorporation of thymidine was found and these results have been taken as evidence of a decreased proliferative capacity of these cells, as compared to normal myeloblasts. With the same technique, RNA and protein metabolism have been investigated utilizing H3- uridine, H3-leucine and H3-phenylalanine as precursors. The existence of a strict interrelationship between RNA and protein metabolism is now fully accepted in cellular biology. The existence of a constant ratio between uridine and amino acids incorporation has also been demonstrated in normal bone marrow cells. In acute leukaemia cells the incorporation of RNA and protein precursors, although different from case to case, is constantly and significantly lower. Furthermore, the ratio between uridine and amino acids incorporation is constantly altered in these cells. The lower RNA and protein metabolism and its dissociation in acute leukaemia cells is discussed in relation to the well-known maturation defect of these cells. (author)

  2. The effect of BmNPV infection on protein metabolism in silkworm (Bombyx mori larva

    Directory of Open Access Journals (Sweden)

    K Etebari

    2007-02-01

    Full Text Available Grasseri is one of the most important diseases of silkworm with significant yield loss, which is caused by nuclear polyhedrosis viruses (NPV. In the present research the effect of this disease on changes of biochemical compounds which are related to protein metabolism in 5th instar larvae were studied. The larvae that showed the grasseri symptoms after contamination with 5.5×10-4 polyhedral/ml were assumed as infected treatment. The hemolymph of infected and uninfected larvae in 3 and 5 days after 4th molting were collected and its total protein, urea, alanine aminotransferase (ALT and aspartate aminotransferase (AST were measured. The results showed that the amount of all the compounds except urea were considerably different in both groups. Total protein had decreased in infected larvae but activity level of two aminotransferases significantly increased. Therefore, grasseri has a considerable effect on protein metabolism.

  3. SLOB, a SLOWPOKE channel binding protein, regulates insulin pathway signaling and metabolism in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amanda L Sheldon

    Full Text Available There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO undergoes modulation via its binding partner SLO-binding protein (SLOB. Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs in the pars intercerebralis (PI region of the brain; these cells also express and secrete Drosophila insulin like peptides (dILPs. Previously, we found that flies lacking SLOB exhibit increased resistance to starvation, and we reasoned that SLOB may regulate aspects of insulin signaling and metabolism. Here we investigate the role of SLOB in metabolism and find that slob null flies exhibit changes in energy storage and insulin pathway signaling. In addition, slob null flies have decreased levels of dilp3 and increased levels of takeout, a gene known to be involved in feeding and metabolism. Targeted expression of SLOB to mNSCs rescues these alterations in gene expression, as well as the metabolic phenotypes. Analysis of fly lines mutant for both slob and slo indicate that the effect of SLOB on metabolism and gene expression is via SLO. We propose that modulation of SLO by SLOB regulates neurotransmission in mNSCs, influencing downstream insulin pathway signaling and metabolism.

  4. Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Lewis

    2010-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins.

  5. Influence of culture conditions on growth and protein metabolism in chlorella pyranosides

    International Nuclear Information System (INIS)

    Growth and protein metabolism of Chlorella pyranoside under different conditions of temperature, photo period and CO2 concentration was studied. The optimum of biomass production was observed at 25 degree centigree, 40.000 ppm of CO2 in air and a 20 h. light period, followed of 4 h. of darkness. Some variations in free aminoacids content was observed under different conditions but no change did occur in protein. (Author) 68 refs

  6. Dll1 haploinsufficiency in adult mice leads to a complex phenotype affecting metabolic and immunological processes.

    Directory of Open Access Journals (Sweden)

    Isabel Rubio-Aliaga

    Full Text Available BACKGROUND: The Notch signaling pathway is an evolutionary conserved signal transduction pathway involved in embryonic patterning and regulation of cell fates during development and self-renewal. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, involving as well other signal transduction pathways, and implicated in distinct human diseases. Delta-like 1 (Dll1 is one of the known ligands of the Notch receptors. The role of the Notch ligands is less well understood. Loss-of-function of Dll1 leads to embryonic lethality, but reduction of Delta-like 1 protein levels has not been studied in adult stage. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the haploinsufficient phenotype of Dll1 and a missense mutant Dll1 allele (Dll1(C413Y. Haploinsufficiency leads to a complex phenotype with several biological processes altered. These alterations reveal the importance of Dll1 mainly in metabolism, energy balance and in immunology. The animals are smaller, lighter, with altered fat to lean ratio and have increased blood pressure and a slight bradycardia. The animals have reduced cholesterol and triglyceride levels in blood. At the immunological level a subtle phenotype is observed due to the effect and fine-tuning of the signaling network at the different levels of differentiation, proliferation and function of lymphocytes. Moreover, the importance of the proteolytic regulation of the Notch signaling network emphasized. CONCLUSIONS/SIGNIFICANCE: In conclusion, slight alterations in one player of Notch signaling alter the entire organism, emphasizing the fine-tuning character of this pathway in a high number of processes.

  7. Soy protein isolate does not affect ellagitannin bioavailability and urolithin formation when mixed with pomegranate juice in humans.

    Science.gov (United States)

    Yang, Jieping; Lee, Rupo; Henning, Susanne M; Thames, Gail; Hsu, Mark; ManLam, Hei; Heber, David; Li, Zhaoping

    2016-03-01

    We investigated the effect of mixing soy protein isolate and pomegranate juice (PJ) on the bioavailability and metabolism of ellagitannins (ETs) in healthy volunteers. Eighteen healthy volunteers consumed PJ alone or PJ premixed with soy protein isolate (PJSP). The concentration of plasma ellagic acid (EA) and urine urolithins was measured. There was no significant difference in plasma EA over a 6-h period between the two interventions. While the maximum concentration of plasma EA after PJSP consumption was slightly but significantly lower than after PJ consumption, EA remained in the plasma longer with an elimination half-life t1/2E at 1.36±0.59 versus 1.06±0.47h for PJSP and PJ consumption, respectively. Urinary urolithin A, B and C was not significantly different between the two interventions. In conclusion, premixing soy protein isolate and PJ did not affect the bioavailability or the metabolism of pomegranate ETs in healthy volunteers. PMID:26471685

  8. Role of the Mixed-Lineage Protein Kinase Pathway in the Metabolic Stress Response to Obesity

    Directory of Open Access Journals (Sweden)

    Shashi Kant

    2013-08-01

    Full Text Available Saturated free fatty acid (FFA is implicated in the metabolic response to obesity. In vitro studies indicate that FFA signaling may be mediated by the mixed-lineage protein kinase (MLK pathway that activates cJun NH2-terminal kinase (JNK. Here, we examined the role of the MLK pathway in vivo using a mouse model of diet-induced obesity. The ubiquitously expressed MLK2 and MLK3 protein kinases have partially redundant functions. We therefore compared wild-type and compound mutant mice that lack expression of MLK2 and MLK3. MLK deficiency protected mice against high-fat-diet-induced insulin resistance and obesity. Reduced JNK activation and increased energy expenditure contribute to the metabolic effects of MLK deficiency. These data confirm that the MLK pathway plays a critical role in the metabolic response to obesity.

  9. Studies of the protein and the energy metabolism in man during a wintering in Antarctica

    International Nuclear Information System (INIS)

    During the 29th Soviet Antarctic Expedition in Novolazarevskaya from March 1984 to March 1985 the protein and energy metabolisms were studied in six expeditioners from the GDR. The investigations were carried out at the beginning of the expedition (May), during the polar night (July) and during the polar day (December). The effect of a special stress situation (sledge trek in April 1984) was investigated in one subject. The stable nitrogen isotope 15N was used to study the protein metabolism. The assessment of the energy metabolism was based on the oxygen consumption, which was determined by means of a spirograph. In addition, the vital capacity, the breath minute volume, the blood pressure, etc. were measured. 69 refs. (author)

  10. The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress

    NARCIS (Netherlands)

    van der Harg, J. M.; Nolle, A.; Zwart, R.; Boerema, A. S.; van Haastert, E. S.; Strijkstra, A. M.; Hoozemans, J. J. M.; Scheper, W.

    2014-01-01

    The unfolded protein response (UPR) is activated in neurodegenerative tauopathies such as Alzheimer's disease (AD) in close connection with early stages of tau pathology. Metabolic disturbances are strongly associated with increased risk for AD and are a potent inducer of the UPR. Here, we demonstra

  11. Adherence Issues in Inherited Metabolic Disorders Treated by Low Natural Protein Diets

    NARCIS (Netherlands)

    MacDonald, A.; van Rijn, M.; Feillet, F.; Lund, A. M.; Bernstein, L.; Bosch, A. M.; Gizewska, M.; van Spronsen, F. J.

    2012-01-01

    Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor-free or essenti

  12. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Directory of Open Access Journals (Sweden)

    Deluc Laurent G

    2009-05-01

    Full Text Available Abstract Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1 transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation

  13. Methodical investigation of the protein metabolism and of the bioenergetics of the protein retention in growing animals. 2

    International Nuclear Information System (INIS)

    The amino acid composition of the proteins in selected body fractions of chickens and the 15N -excess of amino acids isolated from them resulting from a feeding experiment with long-term 15NH4-acetate labelling were determined. The amino acid spectra of feathers, breast and leg muscles are characterized by differences in the content of individual amino acids specific for the organs, the composition of the proteins, however, is independent of the protein content of the ration and the age of the animals. The sarcoplasmatic and myofibrillar proteins also have typical amino acid patterns, which-with the exception of the histidine content-are neither influenced by the extraction of the proteins from the breast or leg muscles nor by the energy level of the feeding or the age of the animals. There are no significant differences in the metabolization of the main protein fraction of the breast and leg muscles. The oral supply of 15N-ammonium acetate to broilers predominantly labels the non-essential amino acids so that the derived kinetic data chiefly represent the metabolism of the non-essential amino acids. (author)

  14. Depletion of the "gamma-type carbonic anhydrase-like" subunits of complex I affects central mitochondrial metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Fromm, Steffanie; Göing, Jennifer; Lorenz, Christin; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-01-01

    "Gamma-type carbonic anhydrase-like" (CAL) proteins form part of complex I in plants. Together with "gamma carbonic anhydrase" (CA) proteins they form an extra domain which is attached to the membrane arm of complex I on its matrix exposed side. In Arabidopsis two CAL and three CA proteins are present, termed CAL1, CAL2, CA1, CA2 and CA3. It has been proposed that the carbonic anhydrase domain of complex I is involved in a process mediating efficient recycling of mitochondrial CO2 for photosynthetic carbon fixation which is especially important during growth conditions causing increased photorespiration. Depletion of CAL proteins has been shown to significantly affect plant development and photomorphogenesis. To better understand CAL function in plants we here investigated effects of CAL depletion on the mitochondrial compartment. In mutant lines and cell cultures complex I amount was reduced by 90-95% but levels of complexes III and V were unchanged. At the same time, some of the CA transcripts were less abundant. Proteome analysis of CAL depleted cells revealed significant reduction of complex I subunits as well as proteins associated with photorespiration, but increased amounts of proteins participating in amino acid catabolism and stress response reactions. Developmental delay of the mutants was slightly alleviated if plants were cultivated at high CO2. Profiling of selected metabolites revealed defined changes in intermediates of the citric acid cycle and amino acid catabolism. It is concluded that CAL proteins are essential for complex I assembly and that CAL depletion specifically affects central mitochondrial metabolism. PMID:26482706

  15. Protein turnover in lactating mink (Mustela vison) is not affected by dietary protein supply

    DEFF Research Database (Denmark)

    Tauson, Anne-Helene; Fink, Rikke; Chwalibog, André;

    2006-01-01

    protein supply was reduced below current recommendations and replaced with readily digestible carbohydrates (5,6). The effect of reduced protein supply on protein turnover is, however, still unknown. Tracer methodology with ¹5 N-labeled amino acids has been used to measure the whole-body protein turnover...

  16. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk.

    Directory of Open Access Journals (Sweden)

    Cathy Slack

    2010-03-01

    Full Text Available Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF-1 signaling (IIS pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the

  17. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    OpenAIRE

    M. Ryan Smith; Vayalil, Praveen K.; Fen Zhou; Benavides, Gloria A; Beggs, Reena R.; Hafez Golzarian; Bhavitavya Nijampatnam; Oliver, Patsy G.; Smith, Robin A.J.; Murphy, Michael P.; Velu, Sadanandan E.; Aimee Landar

    2016-01-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compo...

  18. Effects of Uniconazole on Nitrogen Metabolism and Grain Protein Content of Rice

    Institute of Scientific and Technical Information of China (English)

    XIANG Zu-fen; YANG Wen-yu; REN Wan-jun; WANG Xiao-chun

    2005-01-01

    The effects of uniconazole by soaking seeds and spraying leaves at booting stage with different concentrations (0, 20 and40 mg/kg) on the nitrogen metabolism of flag leaf and grains after flowering, and rice grain protein content and yield were studied withhybrid rice combination Shanyou 63. Under uniconazole treatment, the soluble protein content in flag leaf was increased in early andmiddle period of grain filling, but this content was nearly the same as or even lower than that of control at maturity; Glutaminesynthetase activity in superior and inferior grains and non-protein nitrogen content in superior grains at early stage of graindevelopment were promoted, and moreover, the transforming speed from non-protein nitrogen to protein nitrogen was accelerated;Non-protein nitrogen content was lower than that of control at maturity, but protein nitrogen content at each stage was higher thanthose of control; Protein nitrogen content in superior and inferior grains and protein nitrogen absolutely accumulative content in agrain both were enhanced and protein content and yield in rice grain were raised. The application of uniconazole by soaking seedsand spraying leaves raised crude protein content by an average of 7.2% and 8.3%, and protein yield by an average of 13.1% and13.4%, respectively.

  19. SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism.

    Directory of Open Access Journals (Sweden)

    Nicolas M Bertagnolli

    Full Text Available To search for evolutionary forces that might act upon transcript length, we use the singular value decomposition (SVD to identify the length distribution functions of sets and subsets of human and yeast transcripts from profiles of mRNA abundance levels across gel electrophoresis migration distances that were previously measured by DNA microarrays. We show that the SVD identifies the transcript length distribution functions as "asymmetric generalized coherent states" from the DNA microarray data and with no a-priori assumptions. Comparing subsets of human and yeast transcripts of the same gene ontology annotations, we find that in both disparate eukaryotes, transcripts involved in protein synthesis or mitochondrial metabolism are significantly shorter than typical, and in particular, significantly shorter than those involved in glucose metabolism. Comparing the subsets of human transcripts that are overexpressed in glioblastoma multiforme (GBM or normal brain tissue samples from The Cancer Genome Atlas, we find that GBM maintains normal brain overexpression of significantly short transcripts, enriched in transcripts that are involved in protein synthesis or mitochondrial metabolism, but suppresses normal overexpression of significantly longer transcripts, enriched in transcripts that are involved in glucose metabolism and brain activity. These global relations among transcript length, cellular metabolism and tumor development suggest a previously unrecognized physical mode for tumor and normal cells to differentially regulate metabolism in a transcript length-dependent manner. The identified distribution functions support a previous hypothesis from mathematical modeling of evolutionary forces that act upon transcript length in the manner of the restoring force of the harmonic oscillator.

  20. New method for the quality check of food proteins of the maintenance metabolism. 4

    International Nuclear Information System (INIS)

    Male adult rats (370 g body weight) were fed on maintenance level (460 kJ ME/kgsup(0,75). In a 10 days preliminary period they received a casein/methionine (95/5) diet supplemented with 10 mg 15N excess per 0.178 kg metabolic body weight in form of ammonium acetate. Thereafter the animals were put on 8 isonitrogenous diets containing as protein sources casein, soya protein, gelatine, whole-egg, fish meal, pea, wheat and yeast. The 15N excretion via urine and feces was used to evaluate the dietary proteins for maintenance. 15N in urine was lowest in animals fed on wheat diet and highest after feeding whole-egg diet. From these data a so called '15N excretion biological valence (BV)' was calculated, which indicated the highest quality for wheat and soy protein in meeting the needs of the intermediary maintenance metabolism. On the other hand, dietary protein sources influence the loss of endogenous nitrogen as metabolic fecal nitrogen (MFN). It was found to be lowest in animals fed on diets containing isolated proteins (6 mg MFN/100 g body weight) and highest after feeding protein sources of plant origin with a high content in crude fibre (10 mg MFN/100 g). Both, losses of 15N via urine and via feces were combined in a parameter called 'total BV'. According to this parameter the differences in quality for maintenance were only little between the protein sources tested (casein 100, soy protein 100, pea 99, wheat 99, whole egg 92, fish meal 89, gelatin 89). It was concluded that in the state of maintenance the supply with essential amino acids is not critical and that the supply with dispensable amino acids (or nonspecific nitrogen) is of great importance. (author)

  1. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    DEFF Research Database (Denmark)

    de Castro Barbosa, Thais; Ingerslev, Lars R; Alm, Petter S;

    2016-01-01

    OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. METHODS: F0-male rats fed either HFD or chow diet...... weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD...... provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations....

  2. Effects of Different Protein Levels on the Growth Performance and Metabolic Rate of Nutrition in Broilers

    Institute of Scientific and Technical Information of China (English)

    WU Hongda

    2009-01-01

    The objective of this study is to determine the effect of different protein levels on the growth performance and metabolic rate of nutrition in broilers. Total 360 healthy and weight closed local broilers of 3 weeks were chosen and then divided into three groups randomly by one factor. Each group contains three handlings, each handling consists of 40 broilers. The period of experiment was 7 weeks. The metabolic experiment was performed at the 7th week. Three different protein levels were used in broilers' diet. The levels of protein were 19%, 17.5% and 16%. The results showed that the different levels of protein in crude dietary had significant difference between 19% group and the other two groups. The average daily weight gain and daily efficiency were significantly higher than that of the other two groups (P0.05), and the metabolic rate of the impact of phosphorus was significantly different (P<0.05). The result showed that when protein level was 19%, the growth of the local broiler was the best.

  3. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    International Nuclear Information System (INIS)

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of 3H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of 3H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls. (auth.)

  4. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood ...

  5. Different proteolipid protein mutants exhibit unique metabolic defects

    Directory of Open Access Journals (Sweden)

    Maik Hüttemann

    2009-08-01

    Full Text Available PMD (Pelizaeus–Merzbacher disease, a CNS (central nervous system disease characterized by shortened lifespan and severe neural dysfunction, is caused by mutations of the PLP1 (X-linked myelin proteolipid protein gene. The majority of human PLP1 mutations are caused by duplications; almost all others are caused by missense mutations. The cellular events leading to the phenotype are unknown. The same mutations in non-humans make them ideal models to study the mechanisms that cause neurological sequelae. In the present study we show that mice with Plp1 duplications (Plp1tg have major mitochondrial deficits with a 50% reduction in ATP, a drastically reduced mitochondrial membrane potential and increased numbers of mitochondria. In contrast, the jp (jimpy mouse with a Plp1 missense mutation exhibits normal mitochondrial function. We show that PLP in the Plp1tg mice and in Plp1-transfected cells is targeted to mitochondria. PLP has motifs permissive for insertion into mitochondria and deletions near its N-terminus prevent its co-localization to mitochondria. These novel data show that Plp1 missense mutations and duplications of the native Plp1 gene initiate uniquely different cellular responses.

  6. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor

    Science.gov (United States)

    Choi, Bom-Ie; Harvey, Alexandra J.; Green, Mark P.

    2016-01-01

    Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10 ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17β-oestradiol (E2). Exposure to BPA or E2 (10 ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10 ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual. PMID:27384909

  7. Acrylamide administration alters protein phosphorylation and phospholipid metabolism in rat sciatic nerve

    International Nuclear Information System (INIS)

    The effects of ACR on protein phosphorylation and phospholipid metabolism were assessed in rat sciatic nerve. After 5 days of ACR administration (50 mg/kg/day) an increase in the incorporation of 32P into phosphatidylinositol-4,5-bisphosphate, phosphatidylinositol-4-phosphate, and phosphatidylcholine was detected in proximal sciatic nerve segments. In contrast, no changes in phospholipid metabolism were observed in distal segments. After 9 days of ACR treatment when neurotoxicological symptoms were clearly apparent, a generalized increase in radiolabel uptake into phospholipids was noted exclusively in proximal nerve regions. ACR-induced increases in phospholipid metabolism were toxicologically specific since comparable administration of MBA (108 mg/kg/day X 5 or 9 days) produced only minor changes. ACR intoxication was also associated with a rise in sciatic nerve protein phosphorylation. After 9 days of ACR treatment, phosphorylation of beta-tubulin, P0, and several unidentified proteins (38 and 180 kDa) was increased in distal segments. In contrast, chronic administration of MBA caused increases in phosphorylation of beta-tubulin and the major myelin proteins of proximal nerve segments. In cell free homogenates prepared from sciatic nerves of treated and control rats, MBA caused an increase in phosphorylation of major myelin proteins similar to its effect in intact proximal nerve segments. The most striking effect observed in nerve homogenates of ACR-treated rats was a marked decrease in phosphorylation of an 80-kDa protein. Addition of ACR (1 mM) to homogenates of normal nerve had no effect on protein phosphorylation. Our results indicate that changes in the phosphorylation of phospholipids and proteins in sciatic nerve might be a component of the neurotoxic mechanism of ACR

  8. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    International Nuclear Information System (INIS)

    Highlights: ► The impact of UCP-2 over expression on mitochondrial function is controversial. ► We tested mitochondrial functions at defined levels of overexpression. ► We find minor increases of fatty acid oxidation and uncoupling. ► Effects were seen only at high level (fourfold) of over expression. ► Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 μg/ml of doxycycline (dox) induced UCP-2 fourfold (424 ± 113%, mean ± SEM) and 0.1 μg/ml twofold (178 ± 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 ± 11%) as well as D-[U-14C]-glucose oxidation (+5 ± 9% at 11 mM glucose). Oxidation of [1-14C]-oleate was increased from 4088 to 5797 fmol/μg prot/2 h at 3.3 mM glucose, p 14C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the positive findings. A fourfold induction of UCP-2 was required to exert minor metabolic effects. These findings question an impact of moderately elevated UCP-2 levels in beta cells as

  9. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hals, Ingrid K., E-mail: ingrid.hals@ntnu.no [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ogata, Hirotaka; Pettersen, Elin [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ma, Zuheng; Bjoerklund, Anneli [Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden); Skorpen, Frank [Department of Laboratory Medicine, NTNU, Trondheim (Norway); Egeberg, Kjartan Wollo [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Grill, Valdemar [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the

  10. Relationship between C-reactive protein and features of the metabolic syndrome in military pilots in the Serbia and Montenegro

    OpenAIRE

    Jovelić Aleksandra; Rađen Goran; Jovelić Stojan; Marković Marica

    2005-01-01

    Background/Aim. C-reactive protein is an independent predictor of the risk of cardiovascular events and diabetes mellitus in apparently healthy men. The relationship between C-reactive protein and the features of metabolic syndrome has not been fully elucidated. To assess the cross-sectional relationship between C-reactive protein and the features of metabolic syndrome in healthy people. Methods. We studied 161 military pilots (agee, 40±6 years) free of cardiovascular disease, diabetes mellit...

  11. Drug-Induced Diabetes Mellitus: Evidence for Statins and Other Drugs Affecting Glucose Metabolism.

    Science.gov (United States)

    Anyanwagu, U; Idris, I; Donnelly, R

    2016-04-01

    Abnormalities of glucose metabolism and glucose tolerance, either because of a reduction in tissue sensitivity to insulin (e.g., in liver, skeletal muscle, and adipose tissues) and/or a reduction in pancreatic insulin secretion, are associated with a number of unwanted health outcomes. Even small increases in circulating glucose levels (often described as dysglycemia or prediabetes) may confer an increased risk of cardiovascular (CV) disease and progression to overt type 2 diabetes. A number of drug therapies, many of them used long term in chronic disease management, have adverse effects on glucose metabolism, diabetes risk, and glycemic control among patients with preexisting diabetes. In this study, we review the evidence, underlying mechanisms, and the clinical significance of drug-related adverse effects on glucose metabolism. PMID:26440603

  12. FANCM-FAAP24 and FANCJ: FA proteins that metabolize DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Abdullah Mahmood; Singh, Thiyam Ramsing [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH 45229 (United States); Meetei, Amom Ruhikanta, E-mail: Ruhikanta.Meetei@cchmc.org [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH 45229 (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 (United States)

    2009-07-31

    Fanconi anemia (FA) is a rare autosomal recessive or X-linked disorder characterized by aplastic anemia, cancer susceptibility and cellular sensitivity to DNA-crosslinking agents. Eight FA proteins (FANCA, -B, -C, -E, -F, -G, -L and -M) and three non-FA proteins (FAAP100, FAAP24 and HES1) form the FA nuclear core complex that is required for monoubiquitination of the FANCD2-FANCI dimer upon DNA damage. The other three FA proteins, FANCD1/BRCA2, FANCJ/BACH1/BRIP1 and FANCN/PALB2, act in parallel or downstream of the FANCD2-FANCI dimer. Despite the isolation and characterization of several FA proteins, the mechanism by which these proteins protect cells from DNA interstrand crosslinking agents has been unclear. This is because a majority of the FA proteins lack any recognizable functional domains that can provide insight into their function. The recently discovered FANCM (Hef) and FANCJ (BRIP1/BACH1) proteins contain helicase domains, providing potential insight into the role of FA proteins in DNA repair. FANCM with its partner, FAAP24, and FANCJ bind and metabolize a variety of DNA substrates. In this review, we focus on the discovery, structure, and function of the FANCM-FAAP24 and FANCJ proteins.

  13. Impact of Exercise and Metabolic Disorders on Heat Shock Proteins and Vascular Inflammation

    Directory of Open Access Journals (Sweden)

    Earl G. Noble

    2012-01-01

    Full Text Available Heat shock proteins (Hsp play critical roles in the body’s self-defense under a variety of stresses, including heat shock, oxidative stress, radiation, and wounds, through the regulation of folding and functions of relevant cellular proteins. Exercise increases the levels of Hsp through elevated temperature, hormones, calcium fluxes, reactive oxygen species (ROS, or mechanical deformation of tissues. Isotonic contractions and endurance- type activities tend to increase Hsp60 and Hsp70. Eccentric muscle contractions lead to phosphorylation and translocation of Hsp25/27. Exercise-induced transient increases of Hsp inhibit the generation of inflammatory mediators and vascular inflammation. Metabolic disorders (hyperglycemia and dyslipidemia are associated with type 1 diabetes (an autoimmune disease, type 2 diabetes (the common type of diabetes usually associated with obesity, and atherosclerotic cardiovascular disease. Metabolic disorders activate HSF/Hsp pathway, which was associated with oxidative stress, increased generation of inflammatory mediators, vascular inflammation, and cell injury. Knock down of heat shock factor-1 (HSF1 reduced the activation of key inflammatory mediators in vascular cells. Accumulating lines of evidence suggest that the activation of HSF/Hsp induced by exercise or metabolic disorders may play a dual role in inflammation. The benefits of exercise on inflammation and metabolism depend on the type, intensity, and duration of physical activity.

  14. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Zota, Annika; Sjøberg, Kim Anker;

    2016-01-01

    of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21...... expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction...... and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis....

  15. Programming of intermediate metabolism in young lambs affected by late gestational maternal undernourishment

    DEFF Research Database (Denmark)

    Husted, Sanne; Nielsen, Mette Olaf; Tygesen, Malin Plumhoff; Kiani, Alishir; Blache, D.; Ingvartsen, K.L.

    2007-01-01

    Effects of moderate maternal undernourishment during late gestation on the intermediary metabolism and maturational changes in young lambs were investigated. 20 twin-bearing sheep, bred to two different rams, were randomly allocated the last 6 wk of gestation to either a NORM diet [barley, protei...

  16. Energy metabolism and lactation performance of primiparous sows as affected by dietary fat and vitamin E.

    NARCIS (Netherlands)

    Babinszky, L.

    1992-01-01

    In this thesis different levels of dietary fat (37, 43, 75 and 125 g/kg DM, respectively) and vitamin E (from 14 to 151 mg α-tocopherol/kg diet) in the lactation diet, were studied for their effect on the energy metabolism, and lactation performance of primiparous sows. The effects of different leve

  17. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake

    Science.gov (United States)

    Schöttler, S.; Klein, Katja; Landfester, K.; Mailänder, V.

    2016-03-01

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake.Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance

  18. [A study on protein metabolism in nephrotic patients treated with Chinese herbs].

    Science.gov (United States)

    Li, L; Yu, H; Pan, J

    1995-10-01

    It was found in our previous studies that two Chinese herbs Astragali and Angelica (A&A) together with high protein diet could ameliorate the lowering of serum albumin level and increase the synthesis rate of protein as shown by 15N-glicine tracer priming protein turnover study in nephrotic rats. Further experiment was designed to investigate the role of A&A and high protein intake in protein dynamic study and nitrogen balance in nephrotic patients. The level of serum total protein (STP), serum albumin (SA), urinary protein loss (UP), serum cholesterol (Cho) and index number of protein turnover and nitrogen balance in 7 patients were measured before and after treatment of 30 days with A&A. The results showed that after treatment the patients had significantly increased STA and SA (44.3 +/- 5.60 vs 49.7 +/- 6.80 P < 0.01; 22.6 +/- 0.42 vs. 29.4 +/- 7.40 P < 0.05), decreased UP and Cho (6.54 +/- 1.83 vs 4.63 +/- 1.33 P < 0.05; 9.69 +/- 2.31 vs. 7.82 +/- 1.95 P < 0.05) and increased net rates of total protein synthesis (1.06 +/- 0.03 vs 1.27 +/- 0.12 P < 0.05). It is concluded that A&A together with high protein intake could improve the disorder of protein metabolism and increase the level of serum protein by improving the net rate of protein synthesis in nephrotic patients. PMID:8731827

  19. The role of AMP-activated protein kinase in regulation of skeletal muscle metabolism

    OpenAIRE

    Anna Dziewulska; Paweł Dobrzyń; Agnieszka Dobrzyń

    2010-01-01

    AMP-activated protein kinase (AMPK) is a conserved, ubiquitously expressed eukaryotic enzyme that is activated in response to increasing AMP level. Regulation of AMPK activity in skeletal muscle is coordinated by contraction and phosphorylation by upstream kinases and a growing number of hormones and cytokines. Once activated, AMPK turns on catabolic, ATP-generating pathways, and turns off ATP-consuming metabolic processes such as biosynthesis and proliferation. Activation of AMPK promotes gl...

  20. Relationship between high-sensitivity C-reactive protein and obesity / metabolic syndrome in children

    Institute of Scientific and Technical Information of China (English)

    陈芳芳

    2014-01-01

    Objective To explore the relationship between highsensitivity C-reactive protein(hsC RP)and obesity/metabolic syndrome(MetS)related factors in children.Methods 403 children aged 10-14 and born in Beijing were involved in this study.Height,weight,waist circumference,fat mass percentage(Fat%),blood pressure(BP),hsC RP,triglyceride(TG),total cholesterol

  1. Metabolic Basis for Thyroid Hormone Liver Preconditioning: Upregulation of AMP-Activated Protein Kinase Signaling

    OpenAIRE

    Videla, Luis A; Virginia Fernández; Pamela Cornejo; Romina Vargas

    2012-01-01

    The liver is a major organ responsible for most functions of cellular metabolism and a mediator between dietary and endogenous sources of energy for extrahepatic tissues. In this context, adenosine-monophosphate- (AMP-) activated protein kinase (AMPK) constitutes an intrahepatic energy sensor regulating physiological energy dynamics by limiting anabolism and stimulating catabolism, thus increasing ATP availability. This is achieved by mechanisms involving direct allosteric activation and reve...

  2. Type and amount of dietary protein in the treatment of metabolic syndrome: a randomized controlled trial 1 2

    OpenAIRE

    Hill, Alison M; Harris Jackson, Kristina A; Roussell, Michael A; West, Sheila G.; Kris-Etherton, Penny M

    2015-01-01

    Background: Food-based dietary patterns emphasizing plant protein that were evaluated in the Dietary Approaches to Stop Hypertension (DASH) and OmniHeart trials are recommended for the treatment of metabolic syndrome (MetS). However, the contribution of plant protein to total protein in these diets is proportionally less than that of animal protein. Objective: This study compared 3 diets varying in type (animal compared with plant) and amount of protein on MetS criteria. Design: Sixty-two ove...

  3. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into the coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.

  4. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration.

    Science.gov (United States)

    Siudeja, Katarzyna; Srinivasan, Balaji; Xu, Lanjun; Rana, Anil; de Jong, Jannie; Nollen, Ellen A A; Jackowski, Suzanne; Sanford, Lynn; Hayflick, Susan; Sibon, Ody C M

    2011-12-01

    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transferred to lysine residues of proteins, in a reaction regulated by acetyltransferases. The tight balance between acetyltransferases and their antagonistic counterparts histone deacetylases is a well-known determining factor for the acetylation status of proteins. However, the influence of Coenzyme A levels on protein acetylation is unknown. Here we investigate whether decreased levels of the central metabolite Coenzyme A induce alterations in protein acetylation and whether this correlates with specific phenotypes of PKAN models. We show that in various organisms proper Coenzyme A metabolism is required for maintenance of histone- and tubulin acetylation, and decreased acetylation of these proteins is associated with an impaired DNA damage response, decreased locomotor function and decreased survival. Decreased protein acetylation and the concurrent phenotypes are partly rescued by pantethine and HDAC inhibitors, suggesting possible directions for future PKAN therapy development. PMID:21998097

  5. Effect of protein provision via milk replacer or solid feed on protein metabolism in veal calves

    DEFF Research Database (Denmark)

    Berends, H.; van den Borne, J. J G C; Røjen, B. A.;

    2015-01-01

    total N intake). The SF mixture consisted of 50% concentrates, 25% corn silage, and 25% straw on a dry matter basis. Total N intake was equalized to 1.8g of N·kg of BW-0.75·d-1 by adjusting N intake via MR. All calves were housed individually on metabolic cages to allow for quantification of a N balance...

  6. Inactivation of Tor proteins affects the dynamics of endocytic proteins in early stage of endocytosis

    Indian Academy of Sciences (India)

    Brandon Tenay; Evin Kimberlin; Michelle Williams; Juliette Denise; Joshua Fakilahyel; Kyoungtae Kim

    2013-06-01

    Tor2 is an activator of the Rom2/Rho1 pathway that regulates -factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of -factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic proteins. We report here that endocytic proteins, Abp1 and Rvs167, are less recruited to endocytic sites not only in tor2 but also tor1 mutants. Furthermore, we found that the endocytic proteins Rvs167 and Sjl2 are completely mistargeted to the cytoplasm in tor1tor2ts double mutant cells. We also demonstrate here that the efficiency of endocytic internalization or scission in all tor mutants was drastically decreased. In agreement with the Sjl2 mislocalization, we found that in tor1tor2ts double mutant cells, as well as other tor mutant cells, the overall PIP2 level was dramatically increased. Finally, the cell wall chitin content in tor2ts and tor1tor2ts mutant cells was also significantly increased. Taken together, both functional Tor proteins, Tor1 and Tor2, are essentially required for proper endocytic protein dynamics at the early stage of endocytosis.

  7. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake.

    Science.gov (United States)

    Schöttler, S; Klein, Katja; Landfester, K; Mailänder, V

    2016-03-14

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake. PMID:26804616

  8. Influence of apolipoprotein E and its receptors on cerebral amyloid precursor protein metabolism following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shuai; SUN Xiao-chuan

    2012-01-01

    Traumatic brain injury (TBI) is the leading cause of mortality and disability among young individuals in our society,and globally the incidence of TBI is rising sharply.Mounting evidence has indicated that apolipoprotein E (apoE:protein; APOE:gene) genotype influences the outcome after TBI.The proposed mechanism by which APOE affects the clinicopathological consequences of TBI is multifactorial and includes amyloid deposition,disruption of lipid distribution,dysfunction of mitochondrial energy production,oxidative stress and increases intracellular calcium in response to injury.This paper reviews the current state of knowledge regarding the influence of apoE and its receptors on cerebral amyloid betaprotein precursor metabolism following TBI.

  9. Energy metabolism affects susceptibility of A. gambiae mosquitoes to Plasmodium infection

    Science.gov (United States)

    Oliveira, Jose Henrique M.; Gonçalves, Renata L.S.; Oliveira, Giselle A.; Oliveira, Pedro L.; Oliveira, Marcus F.; Barillas-Mury, Carolina

    2011-01-01

    Previous studies showed that A. gambiae L35 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial State-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when State-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of P. berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  10. Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection.

    Science.gov (United States)

    Oliveira, Jose Henrique M; Gonçalves, Renata L S; Oliveira, Giselle A; Oliveira, Pedro L; Oliveira, Marcus F; Barillas-Mury, Carolina

    2011-06-01

    Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  11. Detection on OAR7 of QTL affecting fat and protein yields in dairy sheep

    Directory of Open Access Journals (Sweden)

    Antonello Carta

    2010-01-01

    Full Text Available The objective of this paper was identifying QTL that affect fat and protein yields in dairy sheep independently of milk yield. Data were collected in an experimental flock of 887 ewes organized in a daughter design. QTL detection focused on OAR7 where 13 microsatellites were available. The genetic abilities to produce fat and protein independently from the ability to produce milk were estimated as the residuals of the regression of EBV for fat and protein yields on EBV for milk yield. One QTL affecting fat yield (CWP=0.00009 and one QTL affecting protein yield (CWP=0.006 were detected. The most probable QTL location was 115.3 cM in the Sheep Best Position Linkage Map Version 4.7 for both traits. No QTL affecting milk yield was detected. The analysis of fat and protein yields independently of milk yield is an effective strategy to identify chromosomal regions affecting milk composition with no detrimental effect on milk yield.

  12. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of sonic hedgehog?

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, R.I. [Johns Hopkins Univ., Baltimore, MD (United States); Roessler, E.; Muenke, M. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1996-12-30

    The RAH/Smith-Lemli-Opitz syndrome (RAH/SLOS) is an autosomal recessive malformation syndrome associated with increased levels of 7-dehydrocholesterol (7-DHC) and a defect of cholesterol biosynthesis at the level of 3{beta}-hydroxy-steroid-{Delta}{sup 7}-reductase (7-DHC reductase). Because rats exposed to inhibitors of 7-DHC reductase during development have a high frequency of holoprosencephaly (HPE), we have undertaken a search for biochemical evidence of RSH/SLOS and other possible defects of sterol metabolism among patients with various forms of HPE. We describe 4 patients, one with semilobar HPE and three others with less complete forms of the HPE sequence, in whom we have made a biochemical diagnosis of RAH/SLOS. The clinical and biochemical spectrum of these and other patients with RAH/SLOS suggests a role of abnormal sterol metabolism in the pathogenesis of their malformations. The association of HPE and RAH/SLOS is discussed in light of the recent discoveries that mutations in the embryonic patterning gene, Sonic Hedgehog (SHH), can cause HPE in humans and that the sonic hedgehog protein product undergoes autoproteolysis to form a cholesterol-modified active product. These clinical, biochemical, and molecular studies suggest that HPE and other malformations in SLOS may be caused by incomplete or abnormal modification of the sonic hedgehog protein and, possibly, other patterning proteins of the hedgehog class, a hypothesis testable in somatic cell systems. 37 refs., 1 fig.

  13. Energy metabolism affects susceptibility of A. gambiae mosquitoes to Plasmodium infection

    OpenAIRE

    Oliveira, Jose Henrique M.; Gonçalves, Renata L. S.; Oliveira, Giselle A.; Pedro L Oliveira; Oliveira, Marcus F.; Barillas-Mury, Carolina

    2011-01-01

    Previous studies showed that A. gambiae L35 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial State-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when ...

  14. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.

    Science.gov (United States)

    Mailloux, Ryan J; Treberg, Jason R

    2016-08-01

    At its core mitochondrial function relies on redox reactions. Electrons stripped from nutrients are used to form NADH and NADPH, electron carriers that are similar in structure but support different functions. NADH supports ATP production but also generates reactive oxygen species (ROS), superoxide (O2(·-)) and hydrogen peroxide (H2O2). NADH-driven ROS production is counterbalanced by NADPH which maintains antioxidants in an active state. Mitochondria rely on a redox buffering network composed of reduced glutathione (GSH) and peroxiredoxins (Prx) to quench ROS generated by nutrient metabolism. As H2O2 is quenched, NADPH is expended to reactivate antioxidant networks and reset the redox environment. Thus, the mitochondrial redox environment is in a constant state of flux reflecting changes in nutrient and ROS metabolism. Changes in redox environment can modulate protein function through oxidation of protein cysteine thiols. Typically cysteine oxidation is considered to be mediated by H2O2 which oxidizes protein thiols (SH) forming sulfenic acid (SOH). However, problems begin to emerge when one critically evaluates the regulatory function of SOH. Indeed SOH formation is slow, non-specific, and once formed SOH reacts rapidly with a variety of molecules. By contrast, protein S-glutathionylation (PGlu) reactions involve the conjugation and removal of glutathione moieties from modifiable cysteine residues. PGlu reactions are driven by fluctuations in the availability of GSH and oxidized glutathione (GSSG) and thus should be exquisitely sensitive to changes ROS flux due to shifts in the glutathione pool in response to varying H2O2 availability. Here, we propose that energy metabolism-linked redox signals originating from mitochondria are mediated indirectly by H2O2 through the GSH redox buffering network in and outside mitochondria. This proposal is based on several observations that have shown that unlike other redox modifications PGlu reactions fulfill the requisite

  15. Maple Bark Biochar Affects Rhizoctonia solani Metabolism and Increases Damping-Off Severity.

    Science.gov (United States)

    Copley, Tanya R; Aliferis, Konstantinos A; Jabaji, Suha

    2015-10-01

    Many studies have investigated the effect of biochar on plant yield, nutrient uptake, and soil microbial populations; however, little work has been done on its effect on soilborne plant diseases. To determine the effect of maple bark biochar on Rhizoctonia damping-off, 11 plant species were grown in a soilless potting substrate amended with different concentrations of biochar and inoculated or not with Rhizoctonia solani anastomosis group 4. Additionally, the effect of biochar amendment on R. solani growth and metabolism in vitro was evaluated. Increasing concentrations of maple bark biochar increased Rhizoctonia damping-off of all 11 plant species. Using multivariate analyses, we observed positive correlations between biochar amendments, disease severity and incidence, abundance of culturable bacterial communities, and physicochemical parameters. Additionally, biochar amendment significantly increased R. solani growth and hyphal extension in vitro, and altered its primary metabolism, notably the mannitol and tricarboxylic acid cycles and the glycolysis pathway. One or several organic compounds present in the biochar, as identified by gas chromatography-mass spectrometry analysis, may be metabolized by R. solani. Taken together, these results indicate that future studies on biochar should focus on the effect of its use as an amendment on soilborne plant pathogens before applying it to soils. PMID:25938176

  16. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  17. Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo*

    OpenAIRE

    Lee-Young, Robert S; Griffee, Susan R.; Lynes, Sara E.; Bracy, Deanna P.; Julio E Ayala; McGuinness, Owen P.; Wasserman, David H.

    2009-01-01

    AMP-activated protein kinase (AMPK) has been postulated as a super-metabolic regulator, thought to exert numerous effects on skeletal muscle function, metabolism, and enzymatic signaling. Despite these assertions, little is known regarding the direct role(s) of AMPK in vivo, and results obtained in vitro or in situ are conflicting. Using a chronically catheterized mouse model (carotid artery and jugular vein), we show that AMPK regulates skeletal muscle metabolism in vivo at several levels, w...

  18. Ochratoxin a lowers mRNA levels of genes encoding for key proteins of liver cell metabolism.

    Science.gov (United States)

    Hundhausen, Christoph; Boesch-Saadatmandi, Christine; Matzner, Nicole; Lang, Florian; Blank, Ralf; Wolffram, Siegfried; Blaschek, Wolfgang; Rimbach, Gerald

    2008-01-01

    Ochratoxin A (OTA) is a nephro- and hepatotoxic mycotoxin that frequently contaminates food and feedstuffs. Although recent studies have indicated that OTA modulates renal gene expression, little is known regarding its impact on differential gene expression in the liver. Therefore a microarray study of the HepG2 liver cell transcriptome in response to OTA exposure (0, 0.25, 2.5 micromol/l for 24 h) was performed using Affymetrix GeneChip technology. Selected microarray results were verified by real-time PCR and Western blotting as independent methods. Out of 14,500 genes present on the microarray, 13 and 250 genes were down-regulated by 0.25 and 2.5 micromol/l OTA, respectively. Reduced mRNA levels of calcineurin A beta (PPP3CB), which regulates inflammatory signalling pathways in immune cells, and of the uncoupling protein 2 (UCP2), which has been suggested to control the production of reactive oxygen species (ROS), were observed in response to 0.25 micromol/l OTA. A particularly strong down-regulation due to 2.5 micromol/l OTA was evident for the mRNA levels of insulin-like growth factor binding protein 1 (IGFBP1) and tubulin beta 1 (TUBB1) which have been demonstrated to function as a pro-survival factor in hepatocytes and as an important cytoskeletal component, respectively. In addition, many genes involved in energy and xenobiotic metabolism, including phosphoglycerate kinase 1 (PGK1), stearoyl-Coenzyme A desaturase 1 (SCD), and glutathione S-transferase omega 1 (GSTO1), were down-regulated by OTA. Furthermore, OTA significantly inhibited the capacitative calcium entry into the HepG2 cells, indicating an alteration of calcium homeostasis. Overall, OTA dose-dependently affects multiple genes encoding for key proteins of liver cell metabolism. PMID:19287073

  19. The role of leucine and its metabolites in protein and energy metabolism.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Li, Yinghui; Tang, Yulong; Kong, Xiangfeng; Feng, Zemeng; Anthony, Tracy G; Watford, Malcolm; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2016-01-01

    Leucine (Leu) is a nutritionally essential branched-chain amino acid (BCAA) in animal nutrition. It is usually one of the most abundant amino acids in high-quality protein foods. Leu increases protein synthesis through activation of the mammalian target of rapamycin (mTOR) signaling pathway in skeletal muscle, adipose tissue and placental cells. Leu promotes energy metabolism (glucose uptake, mitochondrial biogenesis, and fatty acid oxidation) to provide energy for protein synthesis, while inhibiting protein degradation. Approximately 80 % of Leu is normally used for protein synthesis, while the remainder is converted to α-ketoisocaproate (α-KIC) and β-hydroxy-β-methylbutyrate (HMB) in skeletal muscle. Therefore, it has been hypothesized that some of the functions of Leu are modulated by its metabolites. Both α-KIC and HMB have recently received considerable attention as nutritional supplements used to increase protein synthesis, inhibit protein degradation, and regulate energy homeostasis in a variety of in vitro and in vivo models. Leu and its metabolites hold great promise to enhance the growth and health of animals (including humans, birds and fish). PMID:26255285

  20. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly.

    Science.gov (United States)

    Sawatsky, Bevan; Bente, Dennis A; Czub, Markus; von Messling, Veronika

    2016-05-01

    The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins include trafficking signals that influence protein processing and cell surface expression. To characterize the role of the cytoplasmic domain in protein expression, fusion support and particle assembly in more detail, we constructed chimeric Nipah virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H) proteins carrying the respective heterologous cytoplasmic domain, as well as a series of mutants with progressive deletions in this domain. CDV H retained fusion function and was normally expressed on the cell surface with a heterologous cytoplasmic domain, while the expression and fusion support of NiV G was dramatically decreased when its cytoplasmic domain was replaced with that of CDV H. The cell surface expression and fusion support functions of CDV H were relatively insensitive to cytoplasmic domain deletions, while short deletions in the corresponding region of NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H cytoplasmic domain strongly influence its incorporation into virus-like particles formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had no significant effect on incorporation of G into particles. The cytoplasmic domains of both the CDV H and NiV G proteins thus contribute differently to the virus life cycle. PMID:26813519

  1. Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    Directory of Open Access Journals (Sweden)

    Patrick Lyn

    2009-10-01

    Full Text Available Abstract Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body.

  2. Endothelial nitric oxide synthase (NOS) deficiency affects energy metabolism pattern in murine oxidative skeletal muscle.

    Science.gov (United States)

    Momken, Iman; Fortin, Dominique; Serrurier, Bernard; Bigard, Xavier; Ventura-Clapier, Renée; Veksler, Vladimir

    2002-01-01

    Oxidative capacity of muscles correlates with capillary density and with microcirculation, which in turn depend on various regulatory factors, including NO generated by endothelial nitric oxide synthase (eNOS). To determine the role of eNOS in patterns of regulation of energy metabolism in various muscles, we studied mitochondrial respiration in situ in saponin-permeabilized fibres as well as the energy metabolism enzyme profile in the cardiac, soleus (oxidative) and gastrocnemius (glycolytic) muscles isolated from mice lacking eNOS (eNOS(-/-)). In soleus muscle, the absence of eNOS induced a marked decrease in both basal mitochondrial respiration without ADP (-32%; P <0.05) and maximal respiration in the presence of ADP (-29%; P <0.05). Furthermore, the eNOS(-/-) soleus muscle showed a decrease in total creatine kinase (-29%; P <0.05), citrate synthase (-31%; P <0.01), adenylate kinase (-27%; P <0.05), glyceraldehyde-3-phosphate dehydrogenase (-43%; P <0.01) and pyruvate kinase (-26%; P <0.05) activities. The percentage of myosin heavy chains I (slow isoform) was significantly increased from 24.3+/-1.5% in control to 30.1+/-1.1% in eNOS(-/-) soleus muscle ( P <0.05) at the expense of a slight non-significant decrease in the three other (fast) isoforms. Besides, eNOS(-/-) soleus showed a 28% loss of weight. Interestingly, we did not find differences in any parameters in cardiac and gastrocnemius muscles compared with respective controls. These results show that eNOS knockout has an important effect on muscle oxidative capacity as well on the activities of energy metabolism enzymes in oxidative (soleus) muscle. The absence of such effects in cardiac and glycolytic (gastrocnemius) muscle suggests a specific role for eNOS-produced NO in oxidative skeletal muscle. PMID:12123418

  3. Mcy protein, a potential antidiabetic agent: evaluation of carbohydrate metabolic enzymes and antioxidant status.

    Science.gov (United States)

    Marella, Saritha; Maddirela, Dilip Rajasekhar; Kumar, E G T V; Tilak, Thandaiah Krishna; Badri, Kameswara Rao; Chippada, Apparao

    2016-05-01

    The objective of the present study is to elucidate the long-term effects of anti-hyperglycemic active principle, Mcy protein (MCP), isolated from the fruits of Momordica cymbalaria on carbohydrate metabolism and oxidative stress in experimental diabetic rats. We used streptozotocin induced diabetic rats for the current studies. Our studies showed that MCP (2.5mg/kg.b.w) treatment significantly normalized the deranged activities of critical carbohydrate metabolizing enzymes, hexokinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase and fructose-1,6-bis phosphatase. In addition MCP showed inhibitory activity on α-glucosidase and aldose reductase enzymes in in vitro assays. Further MCP treatment improved the antioxidant defensive mechanism by preventing deleterious oxidative products of cellular metabolism, which initiates the lipid peroxidation and by normalizing the antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) activities. Additional structural studies using circular dichroism spectroscopy indicate that MCP contains majorly α-helix. Our findings suggest MCP regulates blood glucose and better manage diabetes mellitus associated complications by regulating carbohydrate metabolism and by protecting from the deleterious effects of oxidative stress. PMID:26826289

  4. The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Shiori Sekine

    2016-03-01

    Full Text Available Phosphoglycerate mutase family member 5 (PGAM5 is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT, a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21 that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria.

  5. The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress.

    Science.gov (United States)

    Sekine, Shiori; Yao, Akari; Hattori, Kazuki; Sugawara, Sho; Naguro, Isao; Koike, Masato; Uchiyama, Yasuo; Takeda, Kohsuke; Ichijo, Hidenori

    2016-03-01

    Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT), a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21) that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria. PMID:27077115

  6. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress

    DEFF Research Database (Denmark)

    Laino, Paolo; Shelton, Dale; Finnie, Christine;

    2010-01-01

    include proteins with metabolic activity or structural function. In order to investigate the consequences of heat stress on the accumulation of nonprolamin proteins in mature durum wheat kernels, the Italian cultivar Svevo was subjected to two thermal regimes (heat stress versus control). The 2-D patterns...... polypeptides, 47 of which were identified by MALDI-TOF and MALDI-TOF-TOF MS and included HSPs, proteins involved in the glycolysis and carbohydrate metabolism, as well as stress-related proteins. Many of the heat-induced polypeptides are considered to be allergenic for sensitive individuals....

  7. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    Science.gov (United States)

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  8. Isolation and Expression Analysis of STAT Members from Synechogobius hasta and Their Roles in Leptin Affecting Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Kun Wu

    2016-03-01

    Full Text Available Signal transducers and activators of transcription proteins (STATs act as important mediators in multiple biological processes induced by a large number of cytokines. In the present study, full-length cDNA sequences of seven STAT members, including some splicing variants different from those in mammals, were obtained from Synechogobius hasta. The phylogenetic analysis revealed that the seven STAT members were derived from paralogous genes that might have arisen by whole genome duplication (WGD events during vertebrate evolution. All of these members share similar domain structure compared with those of mammals, and were widely expressed across the tested tissues (brain, gill, heart, intestine, liver, muscle and spleen, but at variable levels. Incubation in vitro of recombinant human leptin changed the intracellular triglyceride (TG content and mRNA levels of several STATs members, as well as expressions and activities of genes involved in lipid metabolism. Furthermore, Tyrphostin B42 (AG490, a specific inhibitor of the Janus Kinase 2(JAK2-STAT pathway, partially reversed leptin-induced change on STAT3 and its two spliced isoforms expression, as well as expressions and activities of genes involved in lipid metabolism. As a consequence, the decrease of TG content was also reversed. Thus, our study suggests that STAT3 is the requisite for the leptin signal and the activation of the STAT3 member may account for the leptin-induced changes in lipid metabolism in S. hasta.

  9. The alternative sigma factor, sigmaS, affects polyhydroxyalkanoate metabolism in Pseudomonas putida.

    Science.gov (United States)

    Raiger-Iustman, Laura J; Ruiz, Jimena A

    2008-07-01

    To determine whether the stationary sigma factor, sigma(S), influences polyhydroxyalkanoate metabolism in Pseudomonas putida KT2440, an rpoS-negative mutant was constructed to evaluate polyhydroxyalkanoate accumulation and expression of a translational fusion to the promoter region of the genes that code for polyhydroxyalkanoate synthase 1 (phaC1) and polyhydroxyalkanoate depolymerase (phaZ). By comparison with the wild-type, the rpoS mutant showed a higher polyhydroxyalkanoate degradation rate and increased expression of the translational fusion during the stationary growth phase. These results suggest that sigma(S) might control the genes involved in polyhydroxyalkanoate metabolism, possibly in an indirect manner. In addition, survival and oxidative stress assays performed under polyhydroxyalkanoate- and nonpolyhydroxyalkanoate- accumulating conditions demonstrated that the accumulated polyhydroxyalkanoate increased the survival and stress tolerance of the rpoS mutant. According to this, polyhydroxyalkanoate accumulation would help cells to overcome the adverse conditions encountered during the stationary phase in the strain that lacks RpoS. PMID:18498401

  10. [How do transport and metabolism affect the biological effects of polycyclic aromatic hydrocarbons?].

    Science.gov (United States)

    Bekki, Kanae; Toriba, Akira; Tang, Ning; Kameda, Takayuki; Takigami, Hidetaka; Suzuki, Go; Hayakawa, Kazuichi

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs), some of which are carcinogenic/mutagenic, are generated by combustion of fossil fuels and also released through tanker or oilfield accident to cause a large scale environmental pollution. PAHs concentration in China is especially high in East Asia because of many kinds of generation sources such as coal heating systems, vehicles and factories without exhaust gas/particulate treatment systems. So, the atmospheric pollution caused by PAHs in China has been seriously concerned from the view point of health effects. Like yellow sand and sulfur oxide, PAHs exhausted in China are also transported to Japan. Additionally, strongly mutagenic nitrated PAHs (NPAHs), estrogenic/antiestrogenic PAH hydroxides (PAHOHs) and reactive oxygen species-producing PAH quinones (PAHQs) are formed from PAHs by the chemical reaction during the transport. Furthermore these PAHOHs and PAHQs are produced by the metabolism in animal body. In the biological activities caused by the above PAH derivatives, the structure-activity relationship was observed. In this review, our recent results on the generation of PAH derivatives by atmospheric transport and metabolism are reported. Also, the existing condition of PAHs as atmospheric pollutants is considered. PMID:22382837

  11. Synchrotron X-ray diffraction and scanning electron microscopy to understand enamel affected by metabolic disorder mucopolysaccharidosis.

    Science.gov (United States)

    Khan, Malik Arshman; Addison, Owen; James, Alison; Hendriksz, Christian J; Al-Jawad, Maisoon

    2016-04-01

    Mucopolysaccharidosis (MPS) is an inherited metabolic disorder that can affect the tooth structure leading to defects. Synchrotron X-ray diffraction being a state of the art technique has been used to determine the enamel crystallite orientation in deciduous enamel affected by Mucopolysaccharidosis Type I and Mucopolysaccharidosis Type IVA and comparing these with that of healthy deciduous enamel. Using this technique it was observed that there is a loss of texture in deciduous enamel affected by Mucopolysaccharidosis Type I and Mucopolysaccharidosis Type IVA when compared to the healthy deciduous enamel. Generally it was observed that the incisal surface of the deciduous teeth possessed a higher texture or preferred orientation of enamel crystallites and on progression towards the cervical region there was a decrease in the texture or preferred orientation of enamel crystallites. Scanning electron microscopy showed that the presence of a poorly calcified layer between the enamel and dentine at the enamel-dentine junction (EDJ) in MPS affected samples was likely to be responsible for rendering the tooth structure weak and prone to fracture as is often the case in MPS affected deciduous enamel. PMID:26896739

  12. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    OpenAIRE

    Jia Li; Armstrong, Cheryl L.H.; Campbell, Wayne W.

    2016-01-01

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER)...

  13. The effect of dietary protein on the amino acid supply and threonine metabolism in the pregnant rat

    OpenAIRE

    Rees, William; Hay, Susan; Antipatis, Christos

    2006-01-01

    International audience To characterise the effects of dietary protein content on threonine metabolism during pregnancy, rats were fed diets containing 18% or 9% protein and then killed at different stages of gestation. Serum threonine concentrations fell significantly faster in the animals fed the diet containing 9% protein when compared to those fed the diet containing 18% protein. On day 4 of gestation the rate of threonine oxidation was higher in maternal liver homogenates prepared from...

  14. Effects of Human C-Reactive Protein on Pathogenesis of Features of the Metabolic Syndrome

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kajiya, T.; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Malínská, H.; Oliyarnyk, O.; Kazdová, L.; Fan, J.; Wang, J.; Kurtz, T. W.

    2011-01-01

    Roč. 57, č. 4 (2011), s. 731-737. ISSN 0194-911X R&D Projects: GA MZd(CZ) NS9759; GA MŠk(CZ) ME08006; GA MŠk(CZ) 1M0520; GA ČR(CZ) GAP301/10/0290; GA ČR GAP303/10/0505; GA AV ČR(CZ) IAA500110805 Grant ostatní: EC(XE) HEALTH-F4-2010-241504 Institutional research plan: CEZ:AV0Z50110509 Keywords : C-reactive protein * metabolic syndrome * transgenic rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 6.207, year: 2011

  15. Mixed - Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states.

    Science.gov (United States)

    Craige, Siobhan M; Reif, Michaella M; Kant, Shashi

    2016-09-01

    Mixed lineage kinases, or MLKs, are members of the MAP kinase kinase kinase (MAP3K) family, which were originally identified among the activators of the major stress-dependent mitogen activated protein kinases (MAPKs), JNK and p38. During stress, the activation of JNK and p38 kinases targets several essential downstream substrates that react in a specific manner to the unique stressor and thus determine the fate of the cell in response to a particular challenge. Recently, the MLK family was identified as a specific modulator of JNK and p38 signaling in metabolic syndrome. Moreover, the MLK family of kinases appears to be involved in a very wide spectrum of disorders. This review discusses the newly identified functions of MLKs in multiple diseases including metabolic disorders, inflammation, cancer, and neurological diseases. PMID:27259981

  16. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation, and meat tenderization in beef.

    Science.gov (United States)

    Li, C B; Li, J; Zhou, G H; Lametsch, R; Ertbjerg, P; Brüggemann, D A; Huang, H G; Karlsson, A H; Hviid, M; Lundström, K

    2012-05-01

    The objective of this study was to investigate the response of sarcoplasmic proteins in bovine LM to low-voltage electrical stimulation (ES; 80 V, 35 s) after dressing and its contribution to meat tenderization at an early postmortem time. Proteome analysis showed that ES resulted in decreased (P tenderization, resulting in lesser (P tenderization of beef. Our results suggested the possible importance of the activation of μ-calpain, phosphorylation of sarcoplasmic proteins, and release of lysosomal enzymes for ES-induced tenderization of beef muscle. PMID:22147478

  17. L-Alanylglutamine inhibits signaling proteins that activate protein degradation, but does not affect proteins that activate protein synthesis after an acute resistance exercise.

    Science.gov (United States)

    Wang, Wanyi; Choi, Ran Hee; Solares, Geoffrey J; Tseng, Hung-Min; Ding, Zhenping; Kim, Kyoungrae; Ivy, John L

    2015-07-01

    Sustamine™ (SUS) is a dipeptide composed of alanine and glutamine (AlaGln). Glutamine has been suggested to increase muscle protein accretion; however, the underlying molecular mechanisms of glutamine on muscle protein metabolism following resistance exercise have not been fully addressed. In the present study, 2-month-old rats climbed a ladder 10 times with a weight equal to 75 % of their body mass attached at the tail. Rats were then orally administered one of four solutions: placebo (PLA-glycine = 0.52 g/kg), whey protein (WP = 0.4 g/kg), low dose of SUS (LSUS = 0.1 g/kg), or high dose of SUS (HSUS = 0.5 g/kg). An additional group of sedentary (SED) rats was intubated with glycine (0.52 g/kg) at the same time as the ladder-climbing rats. Blood samples were collected immediately after exercise and at either 20 or 40 min after recovery. The flexor hallucis longus (FHL), a muscle used for climbing, was excised at 20 or 40 min post exercise and analyzed for proteins regulating protein synthesis and degradation. All supplements elevated the phosphorylation of FOXO3A above SED at 20 min post exercise, but only the SUS supplements significantly reduced the phosphorylation of AMPK and NF-kB p65. SUS supplements had no effect on mTOR signaling, but WP supplementation yielded a greater phosphorylation of mTOR, p70S6k, and rpS6 compared with PLA at 20 min post exercise. However, by 40 min post exercise, phosphorylation of mTOR and rpS6 in PLA had risen to levels not different than WP. These results suggest that SUS blocks the activation of intracellular signals for MPB, whereas WP accelerates mRNA translation. PMID:25837301

  18. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    Directory of Open Access Journals (Sweden)

    Marie S A Palmnäs

    Full Text Available Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat or high fat (HF, 60% kcal fat and further into ad libitum water control (W or low-dose aspartame (A, 5-7 mg/kg/d in drinking water treatments for 8 week (n = 10-12 animals/treatment. Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05. Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  19. Pinto Bean Hull Extract Supplementation Favorably Affects Markers of Bone Metabolism and Bone Structure in Mice

    Science.gov (United States)

    Dry edible beans (Phaseolus vulgaris) have many health benefits attributed to their high content of protein, non-digestible starches, fiber, and other bioactive components. Hulls from dry beans are rich in phenolics known to possess antioxidant activity that is beneficial to human health. The object...

  20. PARAMETERS OF PROTEIN METABOLISM IN GOATS FED DIETS WITH DIFFERENT PORTION OF SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    S.A. Ariyani

    2015-04-01

    Full Text Available Fifteen Jawarandu male goats were used to study the effect of different portion of sugarcanebagasse in diets on some parameters of protein metabolism. Goats had average of body weight of 18 kgand aged at 18 months. Animals were housed in metabolic cages and were alloted to a completelyrandomized design receiving three experimental diets with sugarcane bagasse portions of 15, 25, and35% (dry matter basis, respectively. After eight weeks of adjustment period to experimental diets andenvironment, each group of treatment was subjected to ten days of digestion trial, and followed bycollection of rumen liquid samples. Parameters observed were feed digestibility, nitrogen retention,ruminal feed fermentation, and excretion of urinary allantoin to estimate microbial protein synthesis.Data were tested using one way analysis of variance, and followed by Duncan’s mulitiple range test. Drymatter and protein intakes lowered (P<0.05 as the increasing of sugarcane bagasse in diets. Proteindigestibility and retention were unaffected by the treatment of bagasse portion. The dietary treatment didnot change ruminal ammonia, total VFA, acetate, propionate, and butyrate concentrations. Microbialnitrogen synthesis and efficiency of microbial nitrogen synthesis were unaffected by the dietarytreatment.

  1. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro

    Institute of Scientific and Technical Information of China (English)

    Rong ZHOU; Ling WANG; Xing XU; Jing CHEN; Li-hong HU; Li-li CHEN; Xu SHEN

    2013-01-01

    Aim:To discover the active compound on AMP-activated protein kinase (AMPK) activation and investigate the effects of the active compound 1,8-dihydroxyanthraquinone (danthron) from the traditional Chinese medicine rhubarb on AMPK-mediated lipid and glucose metabolism in vitro.Methods:HepG2 and C2C12 cells were used.Cell viability was determined using MTT assay.Real-time PCR was performed to measure the gene expression.Western blotting assay was applied to investigate the protein phosphorylation level.Enzymatic assay kits were used to detect the total cholesterol (TC),triglyceride (TG) and glucose contents.Results:Danthron (0.1,1,and 10 μmol/L) dose-dependently promoted the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC)in both HepG2 and C2C12 cells.Meanwhile,danthron treatment significantly reduced the lipid synthesis related sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthetase (FAS) gene expressions,and the TC and TG levels.In addition,danthron treatment efficiently increased glucose consumption.The actions of danthron on lipid and glucose metabolism were abolished or reversed by co-treatment with the AMPK inhibitor compound C.Conclusion:Danthron effectively reduces intracellular lipid contents and enhanced glucose consumption in vitro via activation of AMPK signaling pathway.

  2. Sucrose, glucose and fructose have similar genotoxicity in the rat colon and affect the metabolism

    DEFF Research Database (Denmark)

    Hansen, Max; Baunsgaard, D.; Autrup, H.; Vogel, Ulla Birgitte; Møller, P.; Lindecrona, R.; Wallin, H.; Poulsen, H. E.; Loft, S.; Dragsted, L. O.

    2008-01-01

    proliferation were determined in colon, and a metabonomic analysis was performed in plasma and urine. The sugars increased the mutation rates in colon and the bulky adduct levels in colon and liver to a similar extent. All sugars decrease the caecal concentration of acetic acid and propionic acid. The......% sucrose, glucose, fructose or potato starch as part of the diet. Mutation rates and bulky DNA adduct levels were determined in colon and liver. The concentration of short-chain fatty acids and pH were deter-mined in caecum, C-peptide was determined in plasma, biomarkers for oxidative damage and...... metabonomic studies indicated disturbed amino acid metabolism and decrease in plasma and urinary acetate as a common feature for all sugars and confirmed triglyceridemic effects of fructose. In conclusion, the genotoxicity may be related to the altered chemical environment in the caecum and thereby also in...

  3. Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites.

    Science.gov (United States)

    Costas, Benjamín; Aragão, Cláudia; Ruiz-Jarabo, Ignacio; Vargas-Chacoff, Luis; Arjona, Francisco J; Mancera, Juan M; Dinis, Maria T; Conceição, Luís E C

    2012-07-01

    Senegalese sole (Solea senegalensis) is a eurytherm teleost that under natural conditions can be exposed to annual water temperature fluctuations between 12 and 26°C. This study assessed the effects of temperature on sole metabolic status, in particular in what concerns plasma free amino acid changes during thermal acclimation. Senegalese sole maintained at 18°C were acclimated to either cold (12°C) or warm (26°C) environmental temperatures for 21 days. Fish maintained at 18°C served as control. Plasma concentrations of cortisol, glucose, lactate, triglycerides, proteins, and free amino acids were assessed. Cold acclimation influenced interrenal responses of sole by increasing cortisol release. Moreover, plasma glucose and lactate concentrations increased linearly with temperature, presumably reflecting a higher metabolic activity of sole acclimated to 26°C. Acclimation temperature affected more drastically plasma concentrations of dispensable than that of indispensable amino acids, and different acclimation temperatures induced different responses. Asparagine, glutamine and ornithine seem to be of particular importance for ammonia detoxification mechanisms, synthesis of triglycerides that may be used during homeoviscous adaptation and, to a lesser extent, as energetic substrates in specimens acclimated to 12°C. When sole is acclimated to 26°C taurine, glutamate, GABA and glycine increased, which may suggest important roles as antioxidant defences, in osmoregulatory processes and/or for energetic purposes at this thermal regimen. In conclusion, acclimation to different environmental temperatures induces several metabolic changes in Senegalese sole, suggesting that amino acids may be important for thermal acclimation. PMID:21947601

  4. Glucocorticoids affect the metabolism of bone marrow stromal cells and lead to osteonecrosis of the femoral head: a review

    Institute of Scientific and Technical Information of China (English)

    TAN Gang; KANG Peng-de; PEI Fu-xing

    2012-01-01

    Objective To review the recent developments in the mechanisms of glucocorticoids induced osteonecrosis of femoral head (ONFH) and introduce a new theory of ONFH.Data sources Both Chinese- and English-language literatures were searched using MEDLINE (1997-2011),Pubmed (1997-2011 ) and the Index of Chinese-language Literature (1997-2011 ).Study selection Data from published articles about mechanisms of glucocorticoids induced ONFH in recent domestic and foreign literature were selected.Data extraction Data were mainly extracted from 61 articles which are listed in the reference section of this review.Results Glucocorticoids are steroid hormones secreted by the adrenal cortex that play a pivotal role in the regulation of a variety of developmental,metabolic and immune functions.However,high dose of exogenous glucocorticoids usage is the most common non-traumatic cause of ON FH.Glucocorticoids can affect the metabolisms of osteoblasts,osteoclasts,bone marrow stromal cells and adipocytes which decrease osteoblasts formation but increase adipocytes formation and cause ONFH finally.Conclusions Glucocorticoids affect the differentiation of mesenchymal stem cells,through activating or inhibiting the related transcript regulators of osteogenesis and adipogenesis.At last,the size and volume of mesenchymal stem cells derived adipocytes will increase amazingly,but the osteoblasts will be decreased obviously.In the meantime,the activity of the osteoclasts will be activated.So,these mechanisms work together and lead to ONFH.

  5. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    Science.gov (United States)

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors. PMID:26031097

  6. Can N-acetyl-L-cysteine affect zinc metabolism when used as a paracetamol antidote?

    Science.gov (United States)

    Brumas, V; Hacht, B; Filella, M; Berthon, G

    1992-07-01

    N-Acetyl-L-cysteine (NAC) has long been used in the treatment of chronic lung diseases. Inhalation and oral administration of the drug are both effective in reducing mucus viscosity. In addition, NAC oral therapy allows to restore normal mucoprotein secretion in the long term. Although displaying heavy metal-complexing potential, NAC exerts no detectable influence on the metabolism of essential trace metals when used in the above context (i.e. at doses near 600 mg day-1). However, this may no longer be the case when NAC is used as an oxygen radical scavenger, like in the treatment of paracetamol poisoning. In the latter case, intravenous doses as high as 20 g day-1 are administered, which may induce excessive zinc urinary excretion. In order to allow a better appreciation of the risk of zinc depletion during NAC therapy, the present work addresses the role of this drug towards zinc metabolism at the molecular level. First, formation constants for zinc-NAC complexes have been determined under physiological conditions. Then, computer simulations for blood plasma and gastrointestinal fluid have been run to assess the influence of NAC and its metabolites (e.g. cysteine and glutathione) on zinc excretion and absorption. Blood plasma simulations reveal that NAC can effectively mobilise an important fraction of zinc into urinary excretable complexes as from concentrations of 10(-3) mol dm-3 (which corresponds to a dose of about 800 mg). This effect can still be enhanced by the action of NAC metabolites, among which cysteine is the most powerful zinc sequestering agent. In contrast, simulations relative to gastrointestinal conditions suggest that NAC should tend to increase zinc absorption, regardless of its dose. PMID:1529808

  7. Molecular spectroscopic investigation on fractionation-induced changes on biomacromolecule of co-products from bioethanol processing to explore protein metabolism in ruminants

    Science.gov (United States)

    Zhang, Xuewei; Yan, Xiaogang; Beltranena, Eduardo; Yu, Peiqiang

    2014-03-01

    Fractionation processing is an efficient technology which is capable to redesign/redevelop a new food or feed product with a specified chemical and nutrient profile. This processing technique was able to produce four different fractions (called "A", "B", "C", "D" fractions/treatments) with different nutrient profile form a co-product of bioethanol processing [wheat dried distillers grains with soluble (DDGS)]. To date, there is no study on the effect of fractionation processing on inherent molecular structure of different fractions and how the processing-induced structural change affect the metabolic characteristics of protein and nutrient availability. The objectives of this experiment were to: (1) investigate the effect of fractionation processing on changes of protein functional groups (amide I, amide II, and their ratio) and molecular structure (modeled α-helix, β-sheet, and their ratio), and (2) study the relationship between the fractionation processing-induced changes of protein molecular structure and nutrients availability as well as the metabolic characteristics of protein. The hypothesis of this study was that the fractionation processing changes the molecular structure and such changes affect the metabolic characteristics of protein. The protein molecular structure spectral profile of the fractions A, B, C and D were identified by Fourier-transform infrared attenuated total reflection spectroscopy (FT/IR-ATR). The results showed that the fractionation processing significantly affected the protein molecular spectral profiles. The differences in amide I to amide II peak area and height ratios were strongly significant (P < 0.01) among the treatment fractions, ranging from 4.98 to 6.33 and 3.28 to 4.00, respectively. The difference in the modeled protein α-helix to β-sheet ratio was also strongly significant (P < 0.01) among the treatment fractions. Multivariate molecular spectral analysis with cluster (CLA) and principal component analyses (PCA

  8. Adherence issues in inherited metabolic disorders treated by low natural protein diets

    DEFF Research Database (Denmark)

    MaCdonald, A; van Rijn, M; Feillet, F;

    2012-01-01

    Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor...... on their neuropsychological profile. There are little data about their ability to self-manage their own diet or the success of any formal educational programs that may have been implemented. Trials conducted in non-phenylketonuria (PKU) patients are rare, and the development of specialist L-AAs for non-PKU AA disorders has...

  9. The effect of BmNPV infection on protein metabolism in silkworm (Bombyx mori) larva

    OpenAIRE

    K Etebari; L Matindoost; SZ Mirhoseini; MW Turnbull

    2007-01-01

    Grasseri is one of the most important diseases of silkworm with significant yield loss, which is caused by nuclear polyhedrosis viruses (NPV). In the present research the effect of this disease on changes of biochemical compounds which are related to protein metabolism in 5th instar larvae were studied. The larvae that showed the grasseri symptoms after contamination with 5.5×10-4 polyhedral/ml were assumed as infected treatment. The hemolymph of infected and uninfected larvae in 3 and 5 days...

  10. Heme metabolism in stress regulation and protein production: from Cinderella to a key player

    DEFF Research Database (Denmark)

    Martínez, J. L.; Petranovic, D.; Nielsen, Jens

    2016-01-01

    Heme biosynthesis is a highly conserved pathway which is present in all kingdoms, from Archaea to higher organisms such as plants and mammals. The heme molecule acts as a prosthetic group for different proteins and enzymes involved in energy metabolism and reactions involved in electron transfer....... Based on our recent findings and other recent reports, we here illustrate that heme is more than a co-factor. We also discuss the necessity to gain more insight into the heme biosynthesis pathway regulation, as this interacts closely with overall stress control. Understanding heme biosynthesis and its...

  11. Alteration of different domains in AFLR affects aflatoxin pathway metabolism in Aspergillus parasiticus transformants.

    Science.gov (United States)

    Ehrlich, K C; Montalbano, B G; Bhatnagar, D; Cleveland, T E

    1998-04-01

    AFLR, a zinc binuclear cluster DNA-binding protein, is required for activation of genes comprising the aflatoxin biosynthetic pathway in Aspergillus spp. Transformation of Aspergillus parasiticus with plasmids containing the intact aflR gene gave clones that produced fivefold more aflatoxin pathway metabolites than did the untransformed strain. When a 13-bp region in the aflR promoter (position -102 to -115 with respect to the ATG) was deleted, including a portion of a palindromic site previously shown to bind recombinant AFLR, metabolite production was 40% that of transformants with intact aflR. This result provides further evidence that this site may be involved in the autoregulation of aflR. Overexpression of pathway genes could also result from increased quantities of AFLR titrating out a putative repressor protein. In AFLR, a 20-amino-acid acidic region near its carboxy-terminus resembles the region in yeast GAL4 required for GAL80 repressor binding. When 3 of the acidic amino acids in this region were deleted, levels of metabolites were even higher than those produced by transformants with intact aflR, as would be expected if repressor binding was suppressed in transformants containing this altered protein. Transformation with plasmids mutated at the AFLR zinc cluster (Cys to Trp at amino acid position 49) or at a putative nuclear localization signal region (RRARK deleted) gave clones with one-fifth the metabolite production of the untransformed fungus in spite of the transformants making the same or more aflR mRNA. Since these transformants retained a copy of intact aflR, the latter results can be explained best by assuming that AFLR activates genes involved in aflatoxin production as a dimeric protein and that heterodimers containing both mutant and intact AFLR strands are inactive. PMID:9680958

  12. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome

    OpenAIRE

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demo...

  13. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Sunwoo Chun

    Full Text Available A high phosphorus (HP diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus or a HP diet (containing 1.2% phosphorus. Gene Ontology analysis of differentially expressed genes (DEGs revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα, a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054 in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty

  14. Temperature-dependent alterations in metabolic enzymes and proteins of three ecophysiologically different species of earthworms

    Directory of Open Access Journals (Sweden)

    G Tripathi

    2011-08-01

    Full Text Available The effects of varying temperatures (12 - 44° C on the specific activity of cytoplasmic malate dehydrogenase ((cMDH, mitochondrial malate dehydrogenase (mMDH and lactate dehydrogenase (LDH of some earthworms (Metaphire posthuma, Perionyx sansibaricus and Lampito mauritii were studied. The effects of different temperatures on supernatant and mitochondrial protein contents were also investigated. The specific activities of cMDH, mMDH and LDH of the earthworms decreased gradually as a function of increasing temperature from 12 to 44°C. Higher metabolic energy was needed to maintain the activity at low temperatures. Hence, the earthworms showed increased enzyme specific activity at low temperatures. However, the protein content increased upto 28°C. Afterwards, with the increase in the temperature from 28 to 42°C, the proteins in the earthworms showed a significant decrease. The temperature-associated changes in the protein content could be explained by the fact that protein synthesizing capacity was hampered above and below the optimum temperature range. The most pronounced effects of varying temperatures were on P. sansibaricus. It might be due to the epigeic nature of the earthworm species. Then minimum effect was on the endogeic earthworm M. posthuma. Virtually, the differences in the enzymes physiology were associated with the differences in the ecological categories of the earthworms. This clearly demonstrate a possible link between the physiology and ecology at aerobic (cMDH, mMDH and anaerobic (LDH levels in the tropical earthworms.

  15. Soy Germ Protein With or Without-Zn Improve Plasma Lipid Profile in Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    SIWI PRAMATAMA MARS WIJAYANTI

    2012-03-01

    Full Text Available The aim of this research was to determine the effect of soy germ protein on lipid profile of metabolic syndrome (MetS patients. Respondents were 30 women with criteria, i.e. blood glucose level > normal, body mass index > 25 kg/m2, hypertriglyceridemia, low cholesterol-HDL level, 40-65 years old, living in Purwokerto, and signed the informed consent. The project was approved by the ethics committee of the Medical Faculty from Gadjah Mada University-Yogyakarta. Respondents were divided into three randomly chosen groups consisting of ten women each. The first, second, and third groups were treated, respectively, with milk enriched soy germ protein plus Zn, milk enriched soy germ protein (without Zn, and placebo for two months. Blood samples were taken at baseline, one and two months after observation. Two months after observation the groups consuming milk enriched with soy germ protein, both with or without Zn, had their level of cholesterol-total decrease from 215.8 to 180.2 mg/dl (P = 0.03, triglyceride from 240.2 to 162.5 mg/dl (P = 0.02, and LDL from 154.01 to 93.85 mg/dl (P = 0.03. In contrast, HDL increased from 38.91 to 49.49 mg/dl (P = 0.0008. In conclusion, soy germ protein can improve lipid profile, thus it can inhibit atherosclerosis incident.

  16. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators

    Science.gov (United States)

    Moreno-Arriola, Elizabeth; EL Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases. PMID:26824904

  17. Multi-omic profiling of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael;

    2015-01-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied t...

  18. Aminocarnitine and acylaminocarnitines: Carnitine acyltransferase inhibitors affecting long-chain fatty acid and glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1989-01-01

    DL-Aminocarnitine (DL-3-amino-4-trimethylaminobutyrate) and the acylaminocarnitines acetyl-, decanoyl- and palmitoyl-DL-aminocarnitine have been synthesized and tested as inhibitors of carnitine palmitoyl-transferase and carnitine acetyltransferase in vitro and in vivo. Acetyl-DL-aaminocarnitine is the most potent reversible inhibitor of carnitine acetyltransferase reported to date, and is competitive with respect to acetyl-L-carnitine. Mice given acetyl-DL-aminocarnitine metabolize (U-{sup 14}C)acetyl-L-carnitine at about 60% of the rate of control mice. Palmitoyl-DL-aminocarnitine is the most potent reversible inhibitor of carnitine palmitoyltransferase reported to date. Decanoyl-DL-aminocarnitine and DL-aminocarnitine are also very potent inhibitors; all compounds inhibit the catabolism of ({sup 14}C)palmitate to {sup 14}CO{sub 2} in intact mice by at least 50%. Carnitine palmitoyltransferase controls the entry of long-chain fatty acids into the mitochondrial matrix for {beta}-oxidation. The inhibition of carnitine palmitoyltransferase by aminocarnitine or acylaminocarnitines in vivo prevents or reverses ketogenesis in fasted mice, and causes the reversible accumulation of triglycerides in liver, kidney and plasma. Administration of DL-aminocarnitine to streptozotocindiabetic mice lowers plasma glucose levels and improves the glucose tolerance test.

  19. Aminocarnitine and acylaminocarnitines: Carnitine acyltransferase inhibitors affecting long-chain fatty acid and glucose metabolism

    International Nuclear Information System (INIS)

    DL-Aminocarnitine (DL-3-amino-4-trimethylaminobutyrate) and the acylaminocarnitines acetyl-, decanoyl- and palmitoyl-DL-aminocarnitine have been synthesized and tested as inhibitors of carnitine palmitoyl-transferase and carnitine acetyltransferase in vitro and in vivo. Acetyl-DL-aaminocarnitine is the most potent reversible inhibitor of carnitine acetyltransferase reported to date, and is competitive with respect to acetyl-L-carnitine. Mice given acetyl-DL-aminocarnitine metabolize [U-14C]acetyl-L-carnitine at about 60% of the rate of control mice. Palmitoyl-DL-aminocarnitine is the most potent reversible inhibitor of carnitine palmitoyltransferase reported to date. Decanoyl-DL-aminocarnitine and DL-aminocarnitine are also very potent inhibitors; all compounds inhibit the catabolism of [14C]palmitate to 14CO2 in intact mice by at least 50%. Carnitine palmitoyltransferase controls the entry of long-chain fatty acids into the mitochondrial matrix for β-oxidation. The inhibition of carnitine palmitoyltransferase by aminocarnitine or acylaminocarnitines in vivo prevents or reverses ketogenesis in fasted mice, and causes the reversible accumulation of triglycerides in liver, kidney and plasma. Administration of DL-aminocarnitine to streptozotocindiabetic mice lowers plasma glucose levels and improves the glucose tolerance test

  20. Methodical studies on measuring kinetic parameters of the protein metabolism of the whole body in connection with measurings of the energy metabolic rate of rats

    International Nuclear Information System (INIS)

    In 3 successive experiments with growing rats the suitability of pulse labelling with 15N glycine, linked with labelling by means of 14C lysine (experiment 3), was tested for the determination of kinetic parameters of the protein metabolism of the whole body by the application of the compartment model in comparison with pulse labelling with 15N-amino acid mixture (experiment 2) and long-term labelling with 15N-labelled wheat in the feed (experiment 1) under standardized experiment conditions. In measurings of energy metabolism simultaneously carried out with parallel groups of animals the comparability of the metabolic development was studied. The ascertained values of protein synthesis rate, protein catabolism rate and re-utilization rate showed insignificant differences only between the 3 15N tracer variants (with certain limitations for the 'protein turnover' (P)-group of experiment 2) in comparison with errors of the applied methods, from which conclusions can be drawn for the suitability of 15N glycine as tracer, at least under the experimental conditions tested. Protein synthesis and degradation rates ascertained from 14CO2 excretion in experiment 3 were clearly below those average values ascertained with 15N. The differences in the average heat production between the main periods of the 3 experiments were statistically insignificant. (author)

  1. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    Energy Technology Data Exchange (ETDEWEB)

    Binas, B. [Max Delbrueck Center for Molecular Medicine, Berlin-Buch (Germany)

    1998-12-31

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.) [Deutsch] Fettsaeurebindungsproteine (FABPs) sind wichtige Bindungsstellen fuer Fettsaeuren in vivo; sie bilden eine breit exprimierte Familie genetisch verwandter kleiner Zytosoleiweisse, die sehr wahrscheinlich den intrazellulaeren Transport unveresterter langkettiger Fettsaeuren vermitteln. Die genetische Hemmung der FABP-Expanssion in vivo bietet sich deshalb als Werkzeug zur Erforschung und gezielten Veraenderung des Fettsaeurestoffwechsels an. (orig.)

  2. Dissociation of the effects of epinephrine and insulin on glucose and protein metabolism

    International Nuclear Information System (INIS)

    The separate and combined effects of insulin and epinephrine on leucine metabolism were examined in healthy young volunteers. Subjects participated in four experimental protocols: (1) euglycemic insulin clamp (+80 microU/ml), (2) epinephrine infusion (50 ng.kg-1.min-1) plus somatostatin with basal replacement of insulin and glucagon, (3) combined epinephrine (50 ng.kg-1.min-1) plus insulin (+80 microU/ml) infusion, and (4) epinephrine and somatostatin as in study 2 plus basal amino acid replacement. Studies were performed with a prime-continuous infusion of [1-14C]leucine and indirect calorimetry. Our results indicate that (1) hyperinsulinemia causes a generalized decrease in plasma amino acid concentrations, including leucine; (2) the reduction in plasma leucine concentration is primarily due to an inhibition of endogenous leucine flux; nonoxidative leucine disposal decreases after insulin infusion; (3) epinephrine, without change in plasma insulin concentration, reduces plasma amino acid levels; (4) combined epinephrine-insulin infusion causes a greater decrease in plasma amino levels than observed with either hormone alone; this is because of a greater inhibition of endogenous leucine flux; and (5) when basal amino acid concentrations are maintained constant with a balanced amino acid infusion, epinephrine inhibits the endogenous leucine flux. In conclusion, the present results do not provide support for the concept that epinephrine is a catabolic hormone with respect to amino acid-protein metabolism. In contrast, epinephrine markedly inhibits insulin-mediated glucose metabolism

  3. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism.

    Directory of Open Access Journals (Sweden)

    Bruno L Bozaquel-Morais

    Full Text Available In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4, type 2A phosphatase and its related regulator (pph21 and sap185, type 2C protein phosphatases (ptc1, ptc4, ptc7 and dual phosphatases (pps1, msg5 were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190 were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis.

  4. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation and meat tenderization in beef

    DEFF Research Database (Denmark)

    Li, C.B.; Li, J.; Zhou, G.H.;

    2012-01-01

    The objective of this study was to investigate the response of sarcoplasmic proteins in bovine longissimus muscle to low-voltage electrical stimulation (ES, 80 V, 35 s) after dressing and its contribution to meat tenderization at early postmortem time. Proteome analysis showed that ES resulted in...... lower (P <0.05) phosphorylation levels of creatine kinase M chain, fructose bisphosphate aldolase C-A, ß-enolase and pyruvate kinase at 3 h postmortem. Zymography indicated an earlier (P <0.05) activation of µ-calpain in ES muscles. Free lysosomal cathepsin B&L activity increased faster (P <0.05) in ES...

  5. A new tool in C. elegans reveals changes in secretory protein metabolism in ire-1-deficient animals.

    Science.gov (United States)

    Safra, Modi; Henis-Korenblit, Sivan

    2014-01-01

    We recently showed that the ire-1/xbp-1 arm of the UPR plays a crucial role in maintaining basic endoplasmic reticulum (ER) functions required for the metabolism of secreted proteins even during unstressed growth conditions. During these studies we realized that although C. elegans is a powerful system to study the genetics of many cellular processes; it lacks effective tools for tracking the metabolism of secreted proteins at the cell and organism levels. Here, we outline how genetic manipulations and expression analysis of a DAF-28::GFP translational fusion transgene can be combined to infer different steps in the life cycle of secretory proteins. We demonstrate how we have used this tool to reveal folding defects, clearance defects, and secretion defects in ire-1 and xbp-1 mutants. We believe that further studies using this tool will deepen the understanding of secretory protein metabolism. PMID:25191629

  6. Anesthesia with halothane and nitrous oxide alters protein and amino acid metabolism in dogs

    International Nuclear Information System (INIS)

    General anesthesia in combination with surgery is known to result in negative nitrogen balance. To determine whether general anesthesia without concomitant surgery decreases whole body protein synthesis and/or increases whole body protein breakdown, two groups of dogs were studied: Group 1 (n = 6) in the conscious state and Group 2 (n = 8) during general anesthesia employing halothane (1.5 MAC) in 50% nitrous oxide and oxygen. Changes in protein metabolism were estimated by isotope dilution techniques employing simultaneous infusions of [4,53H]leucine and alpha-[1-14C]-ketoisocaproate (KIC). Total leucine carbon flux was unchanged or slightly increased in the anesthetized animals when compared to the conscious controls, indicating only a slight increase in the rate of proteolysis. However, leucine oxidation was increased (P less than 0.001) by more than 80% in the anesthetized animals when compared with their conscious controls, whereas whole body nonoxidative leucine disappearance, an indicator of whole body protein synthesis, was decreased. The ratio of leucine oxidation to the nonoxidative rate of leucine disappearance, which provides an index of the catabolism of at least one essential amino acid in the postabsorptive state, was more than twofold increased (P less than 0.001) in the anesthetized animals regardless of the tracer employed. These studies suggest that the administration of anesthesia alone, without concomitant surgery, is associated with a decreased rate of whole body protein synthesis and increased leucine oxidation, resulting in increased leucine and protein catabolism, which may be underlying or initiating some of the protein wasting known to occur in patients undergoing surgery

  7. Pesticidal Impact on the Protein Metabolism of Freshwater Field Crab,Oziotelphusa Senex Senex(Fabricius)

    Institute of Scientific and Technical Information of China (English)

    K.RADHAKRISHNAIAH; B.SIVARAMAKRISHNAtffu

    1995-01-01

    The total protein increased in the gills and decreased in the muscle of the freshwater field crab Oziotelphusa senex senex at days 1 and 2 on eposure to lethal concentrations and at days 1 and 10 to sublethal concentrations of furadan,endosulfan,chlorpyrifos,and a mixture of these three in a 100:1:1 ratio.The increase in the gill protein was greater on exposure to the sublethal concentrations than to the lethal concentrations while the decrease in the muscle protein was greater on exposure to the lethal concentrations than to the sublethal concentrations.In the hepatopancreas,the protein content decreased on exposure to the lethal concentrations,but,in contrast,increased on exposure to the sublethal concentrations.These results clearly indicate that changes in the protein content are not only organ-deendent but also concentration-dependent.i.e.,lethal versus sbulethal.Irrespective of the changes in the total protein,the levels of free amino acids and the activities of protease,alanine and aspartate aminortransferases,and glutamate dehydrogenase increased in all the three organs o the crabs exposed to the lethal and sublethal concentrations,(more in lethal than in sublethal)and increased at a greater rate over time of exposure.Ammonia toxicity,measured by an increase in the hemolymph ammonia and a decrease in the urea,was also observed at the lethal concentrations of all the three pesticides.The ammonia and urea levela increased in the crabs exposed to the sublethal concentrations.Although the effect of each pesticide on the protein metabolism was similar,the degree of toxicity was the lowest ox exposure to furadan,intermediate on exposure to endosulfan and chlorpyrifos,and cumulative on exposure to a mixture of the three pesticides.

  8. Effects of nutritional and hormonal factors on the metabolism of retinol-binding protein by primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Studies were conducted to explore hormonal and nutritional factors that might be involved in the regulation of retinol-binding protein (RBP) synthesis and secretion by the liver. The studies employed primary cultures of hepatocytes from normal rats. When cells were cultured in Dulbecco's modified Eagle's medium alone, a high rate of RBP secretion was observed initially, which declined and became quite low by 24 hr. Supplementing the medium with amino acids maintained RBP and albumin secretion at moderate (but less than initial) rates for at least 3 days. Further addition of dexamethasone maintained the production and secretion rates of RBP, transthyretin, and albumin close to the initial rates for up to 3-5 days in culture as measured by radioimmunoassay. Hormonally treated hepatocytes produced and secreted RBP, transthyretin, and albumin at both absolute and relative rates similar to physiological values, as estimated from rates reported by others from studies in vivo and with perfused livers. Glucagon addition partially maintained the secretion rates of these 3 proteins, but less effectively than did dexamethasone. A number of other hormones, added singly or in combination, did not affect RBP production or secretion. Addition of retinol to the cultured normal hepatocytes was without effect upon RBP secretion. These studies show that supplementing the culture medium of hepatocytes with amino acids and dexamethasone maintains RBP production and secretion for several days. In normal hepatocytes, with ample supply of retinol available within the cell, addition of exogenous retinol does not appear to influence RBP metabolism or secretion by the cells

  9. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism.

    Directory of Open Access Journals (Sweden)

    Màrius Tomàs-Gamisans

    Full Text Available Genome-scale metabolic models (GEMs are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented.In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In

  10. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae.

    Science.gov (United States)

    Derecka, Kamila; Blythe, Martin J; Malla, Sunir; Genereux, Diane P; Guffanti, Alessandro; Pavan, Paolo; Moles, Anna; Snart, Charles; Ryder, Thomas; Ortori, Catharine A; Barrett, David A; Schuster, Eugene; Stöger, Reinhard

    2013-01-01

    The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L(-1)) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators. PMID:23844170

  11. Biochemical and clinical aspects of advanced oxidation protein products in kidney diseases and metabolic disturbances

    Directory of Open Access Journals (Sweden)

    Agnieszka Piwowar

    2014-02-01

    Full Text Available Intensified oxidative modification of proteins and increased concentration of advanced oxidation protein products (AOPPs are confirmed by many experimental investigations in different pathological states, especially these with well-known participation of oxidative stress (OS in etiopathogenesis but also these with not well recognized its role. Presented data indicate that AOPPs play a significant role in many disorders with chronic background, because of they reflect both intensification of OS and the degree of pathological changes connected with OS in these diseases. This review sets out the clinical and diagnostic aspects of AOPPs in these diseases such as: renal diseases with different etiology, cardiovascular diseases, as well as connected with metabolic disturbances – e.g. diabetes, atherosclerosis or metabolic syndrome. Moreover results of investigation about utility of AOPPs measurement, mainly in plasma/serum, in these diseases are presented. The review and evaluation of application of AOPPs as useful marker in diagnosis, prognosis and monitoring the course of these diseases were performed. This paper also describes the suggested mechanisms of their action which contribute to biochemical and clinic changes undergoing in the condition of increased OS. Diagnostic or prognostic utility of AOPPs are especially indicated in the course of diabetes and its complications (diabetic nephropahy and cardiovascular diseases.

  12. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver.

    Directory of Open Access Journals (Sweden)

    Xiang Yi Kong

    Full Text Available Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1 has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmp gt/gt mice (formerly known as Ncu-g1gt/gt mice were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmp gt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmp gt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmp gt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmp gt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmp gt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmp gt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmp gt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury.

  13. Impaired mitochondrial metabolism and protein synthesis in streptozotocin diabetic rat hepatocytes

    International Nuclear Information System (INIS)

    Isolated hepatocytes prepared from control, streptozotocin diabetic rats were incubated at 30 degrees C in Krebs-Henseleit bicarbonate buffer, pH 7.4, containing 0.5 mM concentration of each of the 20 natural amino acids. Effect of insulin on the oxidation of 2,3-14C and 1,4-14C succinate (suc) carbons and their incorporation into hepatocyte protein, lipid and various metabolic intermediates was studied. Mitochondrial oxidation of suc carbons and their incorporation into protein and lipid was significantly lower in diabetic and insulin treated diabetic rats. Diabetic rats failed to exhibit any significant insulin effect on the oxidation of either 2,3 or 1,4-14C suc carbons. Amphibolic channeling of 2,3-14C suc carbons into amino acids was significantly reduced in hepatocytes of diabetic rats, however, more of these carbons were diverted into the gluconeogenesis pathway. Diabetes caused a far greater decrease in the oxidation of 2,3-14C suc carbons as compared to 1,4-14C suc. Based on an earlier report that insulin stimulates only the intramitochondrial Krebs cycle reactions, the authors conclude that the diminished level of anabolic activities in the diabetic rat hepatocytes is due to the subsequent reduction in amphibolic channeling of metabolic intermediates

  14. Metabolic Basis for Thyroid Hormone Liver Preconditioning: Upregulation of AMP-Activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Luis A. Videla

    2012-01-01

    Full Text Available The liver is a major organ responsible for most functions of cellular metabolism and a mediator between dietary and endogenous sources of energy for extrahepatic tissues. In this context, adenosine-monophosphate- (AMP- activated protein kinase (AMPK constitutes an intrahepatic energy sensor regulating physiological energy dynamics by limiting anabolism and stimulating catabolism, thus increasing ATP availability. This is achieved by mechanisms involving direct allosteric activation and reversible phosphorylation of AMPK, in response to signals such as energy status, serum insulin/glucagon ratio, nutritional stresses, pharmacological and natural compounds, and oxidative stress status. Reactive oxygen species (ROS lead to cellular AMPK activation and downstream signaling under several experimental conditions. Thyroid hormone (L-3,3′,5-triiodothyronine, T3 administration, a condition that enhances liver ROS generation, triggers the redox upregulation of cytoprotective proteins affording preconditioning against ischemia-reperfusion (IR liver injury. Data discussed in this work suggest that T3-induced liver activation of AMPK may be of importance in the promotion of metabolic processes favouring energy supply for the induction and operation of preconditioning mechanisms. These include antioxidant, antiapoptotic, and anti-inflammatory mechanisms, repair or resynthesis of altered biomolecules, induction of the homeostatic acute-phase response, and stimulation of liver cell proliferation, which are required to cope with the damaging processes set in by IR.

  15. Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network.

    Science.gov (United States)

    Luo, Tao; Luo, Sha; Araújo, Wagner L; Schlicke, Hagen; Rothbart, Maxi; Yu, Jing; Fan, Tingting; Fernie, Alisdair R; Grimm, Bernhard; Luo, Meizhong

    2013-04-01

    The first committed and highly regulated step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, which is catalyzed by Mg chelatase that consists of CHLH, CHLD and CHLI subunits. In this study, CHLI and CHLD genes were suppressed by virus-induced gene silencing (VIGS-CHLI and VIGS-CHLD) in pea (Pisum sativum), respectively. VIGS-CHLI and VIGS-CHLD plants both showed yellow leaf phenotypes with the reduced Mg chelatase activity and the inactivated synthesis of 5-aminolevulinic acid. The lower chlorophyll accumulation correlated with undeveloped thylakoid membranes, altered chloroplast nucleoid structure, malformed antenna complexes and compromised photosynthesis capacity in the yellow leaf tissues of the VIGS-CHLI and VIGS-CHLD plants. Non-enzymatic antioxidant contents and the activities of antioxidant enzymes were altered in response to enhanced accumulation of reactive oxygen species (ROS) in the chlorophyll deficient leaves of VIGS-CHLI and VIGS-CHLD plants. Furthermore, the results of metabolite profiling indicate a tight correlation between primary metabolic pathways and Mg chelatase activity. We also found that CHLD induces a feedback-regulated change of the transcription of photosynthesis-associated nuclear genes. CHLD and CHLI silencing resulted in a rapid reduction of photosynthetic proteins. Taken together, Mg chelatase is not only a key regulator of tetrapyrrole biosynthesis but its activity also correlates with ROS homeostasis, primary interorganellar metabolism and retrograde signaling in plant cells. PMID:23416492

  16. Quantitative Metabolomics and Instationary 13C-Metabolic Flux Analysis Reveals Impact of Recombinant Protein Production on Trehalose and Energy Metabolism in Pichia pastoris

    OpenAIRE

    Joel Jordà; Hugo Cueto Rojas; Marc Carnicer; Aljoscha Wahl; Pau Ferrer; Joan Albiol

    2014-01-01

    Pichia pastoris has been recognized as an effective host for recombinant protein production. In this work, we combine metabolomics and instationary 13C metabolic flux analysis (INST 13C-MFA) using GC-MS and LC-MS/MS to evaluate the potential impact of the production of a Rhizopus oryzae lipase (Rol) on P. pastoris central carbon metabolism. Higher oxygen uptake and CO2 production rates and slightly reduced biomass yield suggest an increased energy demand for the producing strain. This observa...

  17. Higher endogenous methionine in transgenic Arabidopsis seeds affects the composition of storage proteins and lipids.

    Science.gov (United States)

    Cohen, Hagai; Pajak, Agnieszka; Pandurangan, Sudhakar; Amir, Rachel; Marsolais, Frédéric

    2016-06-01

    Previous in vitro studies demonstrate that exogenous application of the sulfur-containing amino acid methionine into cultured soybean cotyledons and seedlings reduces the level of methionine-poor storage proteins and elevates those that are methionine-rich. However, the effect of higher endogenous methionine in seeds on the composition of storage products in vivo is not studied yet. We have recently produced transgenic Arabidopsis seeds having significantly higher levels of methionine. In the present work we used these seeds as a model system and profiled them for changes in the abundances of 12S-globulins and 2S-albumins, the two major groups of storage proteins, using 2D-gels and MALDI-MS detection. The findings suggest that higher methionine affects from a certain threshold the accumulation of several subunits of 12S-globulins and 2S-albumins, regardless of their methionine contents, resulting in higher total protein contents. The mRNA abundances of most of the genes encoding these proteins were either correlated or not correlated with the abundances of these proteins, implying that methionine may regulate storage proteins at both transcriptional and post-transcriptional levels. The elevations in total protein contents resulted in reduction of total lipids and altered the fatty acid composition. Altogether, the data provide new insights into the regulatory roles of elevated methionine levels on seed composition. PMID:26888094

  18. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    The aim of this study was to investigate whether prolonged one-leg knee-extensor exercise enhances net protein degradation in muscle with a normal or low glycogen content. Net amino acid production, as a measure of net protein degradation, was estimated from leg exchange and from changes in the c...... and glutamate extracted in increased amounts from the blood during exercise, are used for the synthesis of glutamine and for tricarboxylic-acid cycle anaplerosis.......The aim of this study was to investigate whether prolonged one-leg knee-extensor exercise enhances net protein degradation in muscle with a normal or low glycogen content. Net amino acid production, as a measure of net protein degradation, was estimated from leg exchange and from changes in the...... concentrations of amino acids that are not metabolized in skeletal muscle. Experiments were performed at rest and during one-leg knee-extensor exercise in six subjects having one leg with a normal glycogen content and the other with a low glycogen content. Exercise was performed for 90 min at a workload of 60...

  19. The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling.

    Science.gov (United States)

    Chiapparino, Antonella; Maeda, Kenji; Turei, Denes; Saez-Rodriguez, Julio; Gavin, Anne-Claude

    2016-01-01

    Within the eukaryotic cell, more than 1000 species of lipids define a series of membranes essential for cell function. Tightly controlled systems of lipid transport underlie the proper spatiotemporal distribution of membrane lipids, the coordination of spatially separated lipid metabolic pathways, and lipid signaling mediated by soluble proteins that may be localized some distance away from membranes. Alongside the well-established vesicular transport of lipids, non-vesicular transport mediated by a group of proteins referred to as lipid-transfer proteins (LTPs) is emerging as a key mechanism of lipid transport in a broad range of biological processes. More than a hundred LTPs exist in humans and these can be divided into at least ten protein families. LTPs are widely distributed in tissues, organelles and membrane contact sites (MCSs), as well as in the extracellular space. They all possess a soluble and globular domain that encapsulates a lipid monomer and they specifically bind and transport a wide range of lipids. Here, we present the most recent discoveries in the functions and physiological roles of LTPs, which have expanded the playground of lipids into the aqueous spaces of cells. PMID:26658141

  20. Hormonal regulation of protein metabolism in relation to nutrition and disease.

    Science.gov (United States)

    Garlick, P J; McNurlan, M A; Bark, T; Lang, C H; Gelato, M C

    1998-02-01

    This paper examines the role of hormones in the normal responses of muscle protein synthesis to nutrient intake and the use of hormones to improve the effects of nutritional therapies in patients with protein-wasting conditions. In growing rats, the increase in muscle protein synthesis after feeding seems to be mediated by the rise in plasma insulin and also by an enhanced sensitivity of the muscle to insulin brought about by the amino acid leucine. In adult rats, however, the responsiveness of muscle to both feeding and insulin is much reduced, suggesting that changes in protein degradation play an important role in the response to feeding. Similarly, in adult humans, muscle protein synthesis is not affected by insulin, but is stimulated by insulin-like growth factor (IGF)-I and growth hormone (GH). The effect of GH treatment has been studied in a number of different groups of patients suffering from protein wasting, and improvements in nitrogen balance and lean body mass have been reported. In a study of patients with acquired immunodeficiency syndrome (AIDS), however, GH treatment for 2 wk caused a fall in muscle protein synthesis in the patients with wasting, despite an increase in healthy controls, suggesting that the responsiveness of muscle to the hormone may be altered by the stage of the disease. PMID:9478024

  1. Water Collective Dynamics in Whole Photosynthetic Green Algae as Affected by Protein Single Mutation.

    Science.gov (United States)

    Russo, Daniela; Rea, Giuseppina; Lambreva, Maya D; Haertlein, Michael; Moulin, Martine; De Francesco, Alessio; Campi, Gaetano

    2016-07-01

    In the context of the importance of water molecules for protein function/dynamics relationship, the role of water collective dynamics in Chlamydomonas green algae carrying both native and mutated photosynthetic proteins has been investigated by neutron Brillouin scattering spectroscopy. Results show that single point genetic mutation may notably affect collective density fluctuations in hydrating water providing important insight on the transmission of information possibly correlated to biological functionality. In particular, we highlight that the damping factor of the excitations is larger in the native compared to the mutant algae as a signature of a different plasticity and structure of the hydrogen bond network. PMID:27300078

  2. Antioxidant and functional properties of tea protein as affected by the different tea processing methods

    OpenAIRE

    Zhang, Yu; Chen, Haixia; Ning ZHANG; Ma, Lishuai

    2013-01-01

    The Box-Behnken design combined with response surface methodology was used to optimize alkali extraction of protein from tea. Three independent extraction variables (extraction time: X1; extraction temperature: X2; alkali concentration: X3) were evaluated. The antioxidant and functional properties of tea protein as affected by different tea processing were compared. The optimum conditions were: extraction time of 85 min, extraction temperature of 80 °C, and alkali concentration of 0.15 M. Und...

  3. Water requirements and metabolism of Egyptian sheep and goats as affected by breed, season and physiological status

    International Nuclear Information System (INIS)

    Water requirements and metabolism and some physiological and blood characteristics were studied in dry non-pregnant Barki and Rahmani ewes and in Baladi goats during spring, summer and winter seasons. The Rahmani sheep showed greater thermal discomfort than the Barki during the summer season. Pregnancy was associated with a significant increase in body weight and a decline in PCV and total serum protein, and these changes were greater in goats than in sheep. They were accompanied by significant increases in TBW and WTR. All these changes were more pronounced during late pregnancy than during mid-pregnancy, although the effect of stage of pregnancy on TBW did not occur in the Barki ewes. The pregnancy induced changes in total protein and WTR were greater in spring, while those in TBW were greater in winter. The above parameters also showed similar changes during lactation (particularly during early lactation), but lactating animals showed a decrease instead of an increase in body weight. Goats showed greater reductions in body weight, PCV and water t1/2 and greater increases in WTR than sheep during the spring season. Withdrawal of drinking water for four days caused a reduction in body weight, blood glucose and plasma T3 and T4, and an increase in PCV, total serum protein and plasma osmolality. Plasma aldosterone increased slightly during dehydration but increased markedly during the rehydration period, particularly in the Rahmani sheep during the summer season. The above parameters changed similarly when the animals were starved for four days (feed but not water was withheld), but total serum protein showed a decrease instead of an increase. Changes during dehydration were more pronounced in summer, while those during starvation were greater in winter. 32 refs, 4 figs, 2 tabs

  4. Structure and Characterization of Proteins and Enzymes Involved in Nucleotide Metabolism and Iron-Sulfur Proteins

    DEFF Research Database (Denmark)

    Løvgreen, Monika Nøhr; Ooi, Bee Lean

    hindrance caused by the introduced valine side chain. In contrast to the A115V:dTTP structure, an increased number of hydrogen bonds in the WT:dTTP structure favors dTTP binding in the inactive conformation. The reduced number of hydrogen bonds in A115V:dTTP may explain its reduced thermal stability.......8. The crystal structure of D14C [Fe3S4] is the first structure with a [Fe3S4] cluster, in which a cysteine from a full cysteine binding motif is unprotected and facing away from the cluster. The structure is in close resemblance with the WT [Fe3S4] structure. Crystal packing in both D14C and WT [Fe3S4] Fd shows...... extended β-sheet dimers. These dimers were not observed in solution and were likely a result of the high protein concentration in the crystals. WT, A115V and A115G Mt DCD-DUT were successfully purified, and the crystal structure of the A115V variant with dTTP bound was solved. The variants were created...

  5. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    Science.gov (United States)

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  6. The use of N15 for the study of protein metabolism, with particular reference to nutritional problems

    International Nuclear Information System (INIS)

    The stable isotopes that have been or might be used for the study of protein metabolism are N15, C13 and D. The subject of this paper is limited to some of the applications of N15 because labelled nitrogen is the most direct tool for the study of nitrogen metabolism. There are advantages and disadvantages to using N15 instead of the radioactive isotopes C14 and S35 which have been widely used in work on protein metabolism, particularly in animals. Most of the principles of experimental design and difficulties of interpretation are the same regardless of the isotope used. There are however, physiological and technical differences which must be considered. For example, nitrogen and sulphur are excreted in the urine, where carbon is excreted by the lungs. In metabolic studies which involve measurements of excretion, particularly cumulative excretion, the use of N15 or S35 is clearly preferable to that of C14

  7. Biological Effect of Muller's Ratchet: Distant Capsid Site Can Affect Picornavirus Protein Processing▿

    OpenAIRE

    Escarmís, Cristina; Perales, Celia; Domingo, Esteban

    2009-01-01

    Repeated bottleneck passages of RNA viruses result in accumulation of mutations and fitness decrease. Here, we show that clones of foot-and-mouth disease virus (FMDV) subjected to bottleneck passages, in the form of plaque-to-plaque transfers in BHK-21 cells, increased the thermosensitivity of the viral clones. By constructing infectious FMDV clones, we have identified the amino acid substitution M54I in capsid protein VP1 as one of the lesions associated with thermosensitivity. M54I affects ...

  8. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    International Nuclear Information System (INIS)

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [3H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [3H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-κB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  9. Effects of Chinese herbal medicine on plasma glucose, protein and energy metabolism in sheep

    Institute of Scientific and Technical Information of China (English)

    Xi Liang; Kyota Yamazaki; Mohammad Kamruzzaman; Xue Bi; Arvinda Panthee; Hiroaki Sano

    2014-01-01

    Background:The use of antibiotics in animal diets is facing negative feedback due to the hidden danger of drug residues to human health. Traditional Chinese herbal medicine has been used to replace antibiotics in the past two decades and played an increasingly important role in livestock production. The present study was carried out to assess the feeding effects of a traditional nourishing Chinese herbal medicine mixture on kinetics of plasma glucose, protein and energy metabolism in sheep. Ruminal fermentation characteristics were also determined. Methods:Four sheep were fed on either mixed hay (MH-diet) or MH-diet supplemented with 2%of Chinese herbal medicine (mixture of Astragalus root, Angelica root and Atractylodes rhizome;CHM-diet) over two 35-day periods using a crossover design. The turnover rate of plasma glucose was measured with an isotope dilution method using [U-13C]glucose. The rates of plasma leucine turnover and leucine oxidation, whole body protein synthesis (WBPS) and metabolic heat production were measured using the [1-13C]leucine dilution and open circuit calorimetry. Results:Body weight gain of sheep was higher (P=0.03) for CHM-diet than for MH-diet. Rumen pH was lower (P=0.02), concentration of rumen total volatile fatty acid tended to be higher (P=0.05) and acetate was higher (P=0.04) for CHM-diet than for MH-diet. Turnover rates of plasma glucose and leucine did not differ between diets. Oxidation rate of leucine tended to be higher (P=0.06) for CHM-diet than for MH-diet, but the WBPS did not differ between diets. Metabolic heat production tended to be greater (P=0.05) for CHM-diet than for MH-diet. Conclusions:The sheep fed on CHM-diet had a higher body weight gain and showed positive impacts on rumen fermentation and energy metabolism without resulting in any adverse response. Therefore, these results suggested that the Chinese herbal medicine mixture should be considered as a potential feed additive for sheep.

  10. 5´AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Lundsgaard, Anne-Marie; Jeppesen, Jacob;

    2015-01-01

    It is well known that exercise has a major impact on substrate metabolism for many hours after exercise. However, the regulatory mechanisms increasing lipid oxidation and facilitating glycogen resynthesis in the post-exercise period are unknown. To address this, substrate oxidation was measured...... in muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA expression in WT and AMPKα2 KO was observed following exercise, which is consistent with AMPKα2 -deficiency not affecting the exercise-induced activation of the PDK4 transcriptional regulators, HDAC4 and SIRT1. Interestingly, PDK4 protein content...... regulates muscle metabolism post-exercise through inhibition of the PDH complex and hence glucose oxidation, subsequently creating conditions for increased fatty acid oxidation. This article is protected by copyright. All rights reserved....

  11. Highly sensitive C reactive protein in patients with metabolic syndrome and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Mukta N Chowta

    2012-01-01

    Full Text Available Context: Although there are several studies reported in the western literature regarding the association of C reactive protein (CRP level with components of metabolic syndrome, data in the Indian population were lacking. As there will be a considerable difference in the profile of risk factors for cardiovascular diseases (CVDs, studies regarding the correlation of CRP level with cardiovascular risk factors and metabolic syndrome in the Indian population are required. Objective: To correlate the highly sensitive CRP (hsCRP level to individual components of metabolic syndrome and coronary vascular disease. Materials and Methods : Forty patients who were diagnosed clinically with metabolic syndrome were included in the study. Detailed history with regard to diabetes mellitus, hypertension and other CVD was collected from each patient. All the patients underwent complete physical examination, including ECG. Height, weight, fasting blood glucose and lipid levels were measured in all the patients. CVD was assessed with the following: new-onset angina, fatal and non-fatal myocardial infarction or stroke, transient ischemic attack, heart failure or intermittent claudication. Results: The mean hsCRP level was higher in patients with CVD compared with those without CVD. The CRP level correlation with CVD showed a statistically significant correlation. hsCRP level was very high in eight hypertensive patients, whereas it was very high in five normotensives. But, statistical analysis has not shown any significant correlation between hypertension and hsCRP level. Similarly, although a higher hsCRP level was seen in diabeteics, statistical analysis failed to show a significant correlation between diabetes and the hsCRP level. Analyses of hsCRP correlation with body mass index, fasting glucose, cholesterol, triglycerides, high-density lipoprotein and low-density lipoprotein did not show a significant correlation with the hsCRP level. Conclusions: Increased hs

  12. A gestational high protein diet affects the abundance of muscle transcripts related to cell cycle regulation throughout development in porcine progeny.

    Directory of Open Access Journals (Sweden)

    Michael Oster

    Full Text Available BACKGROUND: In various animal models pregnancy diets have been shown to affect offspring phenotype. Indeed, the underlying programming of development is associated with modulations in birth weight, body composition, and continual diet-dependent modifications of offspring metabolism until adulthood, producing the hypothesis that the offspring's transcriptome is permanently altered depending on maternal diet. METHODOLOGY/PRINCIPAL FINDINGS: To assess alterations of the offspring's transcriptome due to gestational protein supply, German Landrace sows were fed isoenergetic diets containing protein levels of either 30% (high protein--HP or 12% (adequate protein--AP throughout their pregnancy. Offspring muscle tissue (M. longissimus dorsi was collected at 94 days post conception (dpc, and 1, 28, and 188 days post natum (dpn for use with Affymetrix GeneChip Porcine Genome Arrays and subsequent statistical and Ingenuity pathway analyses. Numerous transcripts were found to have altered abundance at 94 dpc and 1 dpn; at 28 dpn no transcripts were altered, and at 188 dpn only a few transcripts showed a different abundance between diet groups. However, when assessing transcriptional changes across developmental time points, marked differences were obvious among the dietary groups. Depending on the gestational dietary exposure, short- and long-term effects were observed for mRNA expression of genes related to cell cycle regulation, energy metabolism, growth factor signaling pathways, and nucleic acid metabolism. In particular, the abundance of transcripts related to cell cycle remained divergent among the groups during development. CONCLUSION: Expression analysis indicates that maternal protein supply induced programming of the offspring's genome; early postnatal compensation of the slight growth retardation obvious at birth in HP piglets resulted, as did a permanently different developmental alteration and responsiveness to the common environment of the

  13. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae.

    Science.gov (United States)

    Narayanan, Aswathy; Pullepu, Dileep; Reddy, Praveen Kumar; Uddin, Wasim; Kabir, M Anaul

    2016-07-01

    The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell's defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors. PMID:26992923

  14. High-sensitivity C-reactive protein predicts target organ damage in Chinese patients with metabolic syndrome

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Nie, Hai; He, Hongbo;

    2007-01-01

    with metabolic syndrome. A total of 1082 consecutive patients of Chinese origin were screened for the presence of metabolic syndrome according to the National Cholesterol Education Program's Adult Treatment Panel III. High-sensitivity C-reactive protein and target organ damage, including cardiac...... hypertrophy, carotid intima-media thickness, and renal impairment, were investigated. The median (25th and 75th percentiles) of high-sensitivity C-reactive protein in 619 patients with metabolic syndrome was 2.42 mg/L (0.75 and 3.66 mg/L) compared with 1.13 mg/L (0.51 and 2.46 mg/L) among 463 control subjects...... (P <.01). There was a progressive increase in high-sensitivity C-reactive protein level with the number of components of the metabolic syndrome. Stratification of patients with metabolic syndrome into 3 groups according to their high-sensitivity C-reactive protein concentrations (3.0 mg/L) showed...

  15. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases.

    Science.gov (United States)

    Srivastava, Rai Ajit K; Pinkosky, Stephen L; Filippov, Sergey; Hanselman, Jeffrey C; Cramer, Clay T; Newton, Roger S

    2012-12-01

    The adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism at the cellular as well as whole-body level. It is activated by low energy status that triggers a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways. AMPK is involved in a wide range of biological activities that normalizes lipid, glucose, and energy imbalances. These pathways are dysregulated in patients with metabolic syndrome (MetS), which represents a clustering of major cardiovascular risk factors including diabetes, lipid abnormalities, and energy imbalances. Clearly, there is an unmet medical need to find a molecule to treat alarming number of patients with MetS. AMPK, with multifaceted activities in various tissues, has emerged as an attractive drug target to manage lipid and glucose abnormalities and maintain energy homeostasis. A number of AMPK activators have been tested in preclinical models, but many of them have yet to reach to the clinic. This review focuses on the structure-function and role of AMPK in lipid, carbohydrate, and energy metabolism. The mode of action of AMPK activators, mechanism of anti-inflammatory activities, and preclinical and clinical findings as well as future prospects of AMPK as a drug target in treating cardio-metabolic disease are discussed. PMID:22798688

  16. The influence of maternal protein nutrition on offspring development and metabolism: the role of glucocorticoids.

    Science.gov (United States)

    Almond, K; Bikker, P; Lomax, M; Symonds, M E; Mostyn, A

    2012-02-01

    The consequences of sub-optimal nutrition through alterations in the macronutrient content of the maternal diet will not simply be reflected in altered neonatal body composition and increased mortality, but are likely to continue into adulthood and confer greater risk of metabolic disease. One mechanism linking manipulations of the maternal environment to an increased risk of later disease is enhanced fetal exposure to glucocorticoids (GC). Tissue sensitivity to cortisol is regulated, in part, by the GC receptor and 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2. Several studies have shown the effects of maternal undernutrition, particularly low-protein diets, on the programming of GC action in the offspring; however, dietary excess is far more characteristic of the diets consumed by contemporary pregnant women. This study investigated the programming effects of moderate protein supplementation in pigs throughout pregnancy. We have demonstrated an up-regulation of genes involved in GC sensitivity, such as GC receptor and 11β-HSD, in the liver, but have yet to detect any other significant changes in these piglets, with no differences observed in body weight or composition. This increase in GC sensitivity was similar to the programming effects observed following maternal protein restriction or global undernutrition during pregnancy. PMID:22123495

  17. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements.

    Science.gov (United States)

    Jamieson, J D; Palade, G E

    1968-12-01

    Since in the pancreatic exocrine cell synthesis and intracellular transport of secretory proteins can be uncoupled (1), it is possible to examine separately the metabolic requirements of the latter process. To this intent, guinea pig pancreatic slices were pulse labeled with leucine-(3)H for 3 min and incubated post-pulse for 37 min in chase medium containing 5 x 10(-4)M cycloheximide and inhibitors of glycolysis, respiration, or oxidative phosphorylation. In each case, the effect on transport was assessed by measuring the amount of labeled secretory proteins found in zymogen granule fractions isolated from the corresponding slices. This assay is actually a measure of the efficiency of transport of secretory proteins from the cisternae of the rough endoplasmic reticulum (RER) to the condensing vacuoles of the Golgi complex which are recovered in the zymogen granule fraction (16). The results indicate that transport is insensitive to glycolytic inhibitors (fluoride, iodoacetate) but is blocked by respiratory inhibitors (N(2), cyanide, Antimycin A) and by inhibitors of oxidative phosphorylation (dinitrophenol, oligomycin). Except for Antimycin A, the effect is reversible. Parallel radioautographic studies and cell fractionation procedures applied to microsomal subfractions have indicated that the energy-dependent step is located between the transitional elements of the RER and the small, smooth-surfaced vesicles at the periphery of the Golgi complex. Radiorespirometric data indicate that the substrates oxidized to support transport are endogenous long-chain fatty acids. PMID:5699933

  18. Milk protein composition and stability changes affected by iron in water sources.

    Science.gov (United States)

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  19. Rhein Protects against Obesity and Related Metabolic Disorders through Liver X Receptor-Mediated Uncoupling Protein 1 Upregulation in Brown Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Xiaoyan Sheng, Xuehua Zhu, Yuebo Zhang, Guoliang Cui, Linling Peng, Xiong Lu, Ying Qin Zang

    2012-01-01

    Full Text Available Liver X receptors (LXRs play important roles in regulating cholesterol homeostasis, and lipid and energy metabolism. Therefore, LXR ligands could be used for the management of metabolic disorders. We evaluated rhein, a natural compound from Rheum palmatum L., as an antagonist for LXRs and investigated its anti-obesity mechanism in high-fat diet-fed mice. Surface plasmon resonance assays were performed to examine the direct binding of rhein to LXRs. LXR target gene expression was assessed in 3T3-L1 adipocytes and HepG2 hepatic cells in vitro. C57BL/6J mice fed a high-fat diet were orally administered with rhein for 4 weeks, and then the expression levels of LXR-related genes were analyzed. Rhein bound directly to LXRs. The expression levels of LXR target genes were suppressed by rhein in 3T3-L1 and HepG2 cells. In white adipose tissue, muscle and liver, rhein reprogrammed the expression of LXR target genes related to adipogenesis and cholesterol metabolism. Rhein activated uncoupling protein 1 (UCP1 expression in brown adipose tissue (BAT in wild-type mice, but did not affect UCP1 expression in LXR knockout mice. In HIB-1B brown adipocytes, rhein activated the UCP1 gene by antagonizing the repressive effect of LXR on UCP1 expression. This study suggests that rhein may protect against obesity and related metabolic disorders through LXR antagonism and regulation of UCP1 expression in BAT.

  20. How does the antagonism between capping and anti-capping proteins affect actin network dynamics?

    International Nuclear Information System (INIS)

    Actin-based cell motility is essential to many biological processes. We built a simplified, three-dimensional computational model and subsequently performed stochastic simulations to study the growth dynamics of lamellipodia-like branched networks. In this work, we shed light on the antagonism between capping and anti-capping proteins in regulating actin dynamics in the filamentous network. We discuss detailed mechanisms by which capping and anti-capping proteins affect the protrusion speed of the actin network and the rate of nucleation of filaments. We computed a phase diagram showing the regimes of motility enhancement and inhibition by these proteins. Our work shows that the effects of capping and anti-capping proteins are mainly transmitted by modulation of the filamentous network density and local availability of monomeric actin. We discovered that the combination of the capping/anti-capping regulatory network with nucleation-promoting proteins introduces robustness and redundancy in cell motility machinery, allowing the cell to easily achieve maximal protrusion speeds under a broader set of conditions. Finally, we discuss distributions of filament lengths under various conditions and speculate on their potential implication for the emergence of filopodia from the lamellipodial network.

  1. How does the antagonism between capping and anti-capping proteins affect actin network dynamics?

    Science.gov (United States)

    Hu, Longhua; Papoian, Garegin A.

    2011-09-01

    Actin-based cell motility is essential to many biological processes. We built a simplified, three-dimensional computational model and subsequently performed stochastic simulations to study the growth dynamics of lamellipodia-like branched networks. In this work, we shed light on the antagonism between capping and anti-capping proteins in regulating actin dynamics in the filamentous network. We discuss detailed mechanisms by which capping and anti-capping proteins affect the protrusion speed of the actin network and the rate of nucleation of filaments. We computed a phase diagram showing the regimes of motility enhancement and inhibition by these proteins. Our work shows that the effects of capping and anti-capping proteins are mainly transmitted by modulation of the filamentous network density and local availability of monomeric actin. We discovered that the combination of the capping/anti-capping regulatory network with nucleation-promoting proteins introduces robustness and redundancy in cell motility machinery, allowing the cell to easily achieve maximal protrusion speeds under a broader set of conditions. Finally, we discuss distributions of filament lengths under various conditions and speculate on their potential implication for the emergence of filopodia from the lamellipodial network.

  2. How does the antagonism between capping and anti-capping proteins affect actin network dynamics?

    Energy Technology Data Exchange (ETDEWEB)

    Hu Longhua; Papoian, Garegin A, E-mail: gpapoian@umd.edu [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (United States)

    2011-09-21

    Actin-based cell motility is essential to many biological processes. We built a simplified, three-dimensional computational model and subsequently performed stochastic simulations to study the growth dynamics of lamellipodia-like branched networks. In this work, we shed light on the antagonism between capping and anti-capping proteins in regulating actin dynamics in the filamentous network. We discuss detailed mechanisms by which capping and anti-capping proteins affect the protrusion speed of the actin network and the rate of nucleation of filaments. We computed a phase diagram showing the regimes of motility enhancement and inhibition by these proteins. Our work shows that the effects of capping and anti-capping proteins are mainly transmitted by modulation of the filamentous network density and local availability of monomeric actin. We discovered that the combination of the capping/anti-capping regulatory network with nucleation-promoting proteins introduces robustness and redundancy in cell motility machinery, allowing the cell to easily achieve maximal protrusion speeds under a broader set of conditions. Finally, we discuss distributions of filament lengths under various conditions and speculate on their potential implication for the emergence of filopodia from the lamellipodial network.

  3. Rice proteins, extracted by alkali and α-amylase, differently affect in vitro antioxidant activity.

    Science.gov (United States)

    Wang, Zhengxuan; Liu, Ye; Li, Hui; Yang, Lin

    2016-09-01

    Alkali treatment and α-amylase degradation are different processes for rice protein (RP) isolation. The major aim of this study was to determine the influence of two different extraction methods on the antioxidant capacities of RPA, extracted by alkaline (0.2% NaOH), and RPE, extracted by α-amylase, during in vitro digestion for 2h with pepsin and for 3h with pancreatin. Upon pepsin-pancreatin digestion, the protein hydrolysates (RPA-S, RPE-S), which were the supernatants in the absence of undigested residue, and the whole protein digests (RPA, RPE), in which undigested residue remained, were measured. RPE exhibited the stronger antioxidant responses to free radical scavenging activity, metal chelating activity, and reducing power, whereas the weakest antioxidant capacities were produced by RPE-S. In contrast, no significant differences in antioxidant activity were observed between RPA and RPA-S. The present study demonstrated that the in vitro antioxidant responses induced by the hydrolysates and the protein digests of RPs could be affected differently by alkali treatment and α-amylase degradation, suggesting that the extraction is a vital processing step to modify the antioxidant capacities of RPs. The results of the current study indicated that the protein digests, in which undigested residues remained, could exhibit more efficacious antioxidant activity compared to the hydrolysates. PMID:27041309

  4. Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis.

    Science.gov (United States)

    Savas, Jeffrey N; Park, Sung Kyu; Yates, John R

    2016-01-01

    The analysis of protein half-life and degradation dynamics has proven critically important to our understanding of a broad and diverse set of biological conditions ranging from cancer to neurodegeneration. Historically these protein turnover measures have been performed in cells by monitoring protein levels after "pulse" labeling of newly synthesized proteins and subsequent chase periods. Comparing the level of labeled protein remaining as a function of time to the initial level reveals the protein's half-life. In this method we provide a detailed description of the workflow required for the determination of protein turnover rates on a whole proteome scale in vivo.Our approach starts with the metabolic labeling of whole rodents by restricting all the nitrogen in their diet to exclusively nitrogen-15 in the form of spirulina algae. After near complete organismal labeling with nitrogen-15, the rodents are then switched to a normal nitrogen-14 rich diet for time periods of days to years. Tissues are harvested, the extracts are fractionated, and the proteins are digested to peptides. Peptides are separated by multidimensional liquid chromatography and analyzed by high resolution orbitrap mass spectrometry (MS). The nitrogen-15 containing proteins are then identified and measured by the bioinformatic proteome analysis tools Sequest, DTASelect2, and Census. In this way, our metabolic pulse-chase approach reveals in vivo protein decay rates proteome-wide. PMID:26867752

  5. Energy dense, protein restricted diet increases adiposity and perturbs metabolism in young, genetically lean pigs.

    Directory of Open Access Journals (Sweden)

    Kimberly D Fisher

    Full Text Available Animal models of obesity and metabolic dysregulation during growth (or childhood are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12, containing 15% tallow, 35% refined sugars and 9.1-12.9% crude protein, or a control corn-based diet (n = 11 with 12.2-19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but by wk 5, consumed more (P<0.001 energy per kg body weight. At wk 15, pigs were subjected to an oral glucose tolerance test (OGTT; blood glucose increased (P<0.05 in control pigs and returned to baseline levels within 60 min. HED pigs were hyperglycemic at time 0, and blood glucose did not return to baseline (P = 0.01, even 4 h post-challenge. During OGTT, glucose area under the curve (AUC was higher and insulin AUC was lower in HED pigs compared to controls (P = 0.001. Chronic HED intake increased (P<0.05 subcutaneous, intramuscular, and perirenal fat deposition, and induced hyperglycemia, hypoinsulinemia, and low-density lipoprotein hypercholesterolemia. A subset of HED pigs (n = 7 was transitioned back to a control diet for an additional six weeks. These pigs were subjected to an additional OGTT at 22 wk. Glucose AUC and insulin AUC did not improve, supporting that dietary intervention was not sufficient to recover glucose tolerance or insulin production. These data suggest a HED may be used to increase adiposity and disrupt glucose homeostasis in young, growing pigs.

  6. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    International Nuclear Information System (INIS)

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g-1·min-1) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g-1·min-1) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring

  7. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows.

    Science.gov (United States)

    Akbar, H; Grala, T M; Vailati Riboni, M; Cardoso, F C; Verkerk, G; McGowan, J; Macdonald, K; Webster, J; Schutz, K; Meier, S; Matthews, L; Roche, J R; Loor, J J

    2015-02-01

    , STAT3, HP, and SAA3 coupled with the increase in ALB on wk 3 in MBCS cows were consistent with blood measures. Overall, results suggest that the greater milk production of cows with higher calving BCS is associated with a proinflammatory response without negatively affecting expression of genes related to metabolism and the growth hormone/insulin-like growth factor-1 axis. Results highlight the sensitivity of indicators of metabolic health and inflammatory state to subtle changes in calving BCS and, collectively, indicate a suboptimal health status in cows calving at either BCS 3.5 or 5.5 relative to BCS 4.5. PMID:25497809

  8. Vertebrate patatin-like phospholipase domain-containing protein 4 (PNPLA4) genes and proteins: a gene with a role in retinol metabolism

    OpenAIRE

    Holmes, Roger S

    2012-01-01

    At least eight families of mammalian patatin-like phospholipase domain-containing proteins (PNPLA) (E.C. 3.1.1.3) catalyse the hydrolysis of triglycerides, including PNPLA4 (alternatively PLPL4 or GS2), which also acts as a retinol transacylase and participates in retinol-ester metabolism in the body. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures and gene locations for PNPLA4 genes and encoded proteins using data from several vertebrate...

  9. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Zebis, Mette Kreutzfeldt; Kiilerich, Kristian;

    2013-01-01

    The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16...... healthy controls. Those with myalgia performed similar to 7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after...... 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism. In...

  10. Preoperative overnight parenteral nutrition (TPN) improves skeletal muscle protein metabolism indicated by microarray algorithm analyses in a randomized trial

    OpenAIRE

    Iresjö, Britt‐Marie; Engström, Cecilia; Lundholm, Kent

    2016-01-01

    Abstract Loss of muscle mass is associated with increased risk of morbidity and mortality in hospitalized patients. Uncertainties of treatment efficiency by short‐term artificial nutrition remain, specifically improvement of protein balance in skeletal muscles. In this study, algorithmic microarray analysis was applied to map cellular changes related to muscle protein metabolism in human skeletal muscle tissue during provision of overnight preoperative total parenteral nutrition (TPN). Twenty...

  11. The Components of Flemingia macrophylla Attenuate Amyloid β-Protein Accumulation by Regulating Amyloid β-Protein Metabolic Pathway

    Directory of Open Access Journals (Sweden)

    Yun-Lian Lin

    2012-01-01

    Full Text Available Flemingia macrophylla (Leguminosae is a popular traditional remedy used in Taiwan as anti-inflammatory, promoting blood circulation and antidiabetes agent. Recent study also suggested its neuroprotective activity against Alzheimer's disease. Therefore, the effects of F. macrophylla on Aβ production and degradation were studied. The effect of F. macrophylla on Aβ metabolism was detected using the cultured mouse neuroblastoma cells N2a transfected with human Swedish mutant APP (swAPP-N2a cells. The effects on Aβ degradation were evaluated on a cell-free system. An ELISA assay was applied to detect the level of Aβ1-40 and Aβ1-42. Western blots assay was employed to measure the levels of soluble amyloid precursor protein and insulin degrading enzyme (IDE. Three fractions of F. macrophylla modified Aβ accumulation by both inhibiting β-secretase and activating IDE. Three flavonoids modified Aβ accumulation by activating IDE. The activated IDE pool by the flavonoids was distinctly regulated by bacitracin (an IDE inhibitor. Furthermore, flavonoid 94-18-13 also modulates Aβ accumulation by enhancing IDE expression. In conclusion, the components of F. macrophylla possess the potential for developing new therapeutic drugs for Alzheimer's disease.

  12. Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus

    Science.gov (United States)

    Wu, Benli; Xiong, Xiaoqin; Xie, Shouqi; Wang, Jianwei

    2015-10-01

    An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow (Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7-50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%-30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%-35% and 10-12.5 kJ/g, respectively.

  13. Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus

    Science.gov (United States)

    Wu, Benli; Xiong, Xiaoqin; Xie, Shouqi; Wang, Jianwei

    2016-07-01

    An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow ( Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7-50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%-30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%-35% and 10-12.5 kJ/g, respectively.

  14. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Skov, Peter Vilhelm; Larsen, Bodil Katrine;

    2016-01-01

    Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works as a signa...

  15. Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins

    Directory of Open Access Journals (Sweden)

    Ying Ma

    2014-01-01

    Full Text Available In this paper, we present a novel, “single experiment” methodology based on genetic engineering of metabolic pathways for direct intracellular production of non-canonical amino acids from simple precursors, coupled with expanded genetic code. In particular, we engineered the intracellular biosynthesis of L-azidohomoalanine from O-acetyl-L-homoserine and NaN3, and achieved its direct incorporation into recombinant target proteins by AUG codon reassignment in a methionine-auxotroph E. coli strain. In our system, the host’s methionine biosynthetic pathway was first diverted towards the production of the desired non-canonical amino acid by exploiting the broad reaction specificity of recombinant pyridoxal phosphate-dependent O-acetylhomoserine sulfhydrylase from Corynebacterium glutamicum. Then, the expression of the target protein barstar, accompanied with efficient L-azidohomoalanine incorporation in place of L-methionine, was accomplished. This work stands as proof-of-principle and paves the way for additional work towards intracellular production and site-specific incorporation of biotechnologically relevant non-canonical amino acids directly from common fermentable sources.

  16. Rice bran proteins and their hydrolysates modulate cholesterol metabolism in mice on hypercholesterolemic diets.

    Science.gov (United States)

    Zhang, Huijuan; Wang, Jing; Liu, Yingli; Gong, Lingxiao; Sun, Baoguo

    2016-06-15

    The hypolipidemic properties of defatted rice bran protein (DRBP), fresh rice bran protein (FRBP), DRBP hydrolysates (DRBPH), and FRBP hydrolysates (FRBPH) were determined in mice on high fat diets for four weeks. Very low-density lipoprotein cholesterol (VLDL-C), low-density lipoprotein cholesterol (LDL-C) contents, and the hepatic total cholesterol content were reduced while fecal total cholesterol and total bile acid (TBA) contents were increased in the FRBPH diet group. The expression levels of hepatic genes for cholesterol biosynthesis HMG-CoAR and SREBP-2 were lowest in the FRBPH diet group. The mRNA level of HMG-CoAR was significantly positively correlated with the hepatic TG content (r = 0.82, P < 0.05). The mRNA levels of genes related to bile acid biosynthesis and cholesterol efflux, CYP7A1, ABCA1, and PPARγ were up-regulated in all test groups. The results suggest that FRBPH regulates cholesterol metabolism in mice fed the high fat and cholesterol diet by increasing fecal steroid excretion and expression levels of genes related to bile acid synthesis and cholesterol efflux, and the down-regulation of the expression levels of genes related to cholesterol biosynthesis. PMID:27216972

  17. EFFECTS OF CORDYCEPS SINENSIS PREPARATION ON BODY PROTEIN AND AMINO ACID METABOLISM IN PATIENTS AND RATS WITH CHRONIC RENAL FAILURE

    Institute of Scientific and Technical Information of China (English)

    朱淳; 刘强; 左静南; 朱汉威; 马济民

    2002-01-01

    Objective To study the effects of Cordyceps sinensis (CS) on the metabolism of body protein and intra-extracellular amino acids in patients with chronic renal failure( CRF) , and on the rates of protein synthesis in rats with CRF. Methods In patients with CRF, free amino acid concentrations in plasma and skeletal muscle before and after CS treatment were measured by the LKB-4400 amino acid automatic analytical instrument and the changes of body protein metabolism were observed by the method of 15 N-labeled glycine.Meanwhile, the rates of protein synthesis in liver ( SL % /d ) and muscle (SM%/d) of rats with CRF were determinedd by 3f-phenylalanine radioactive tracer. Results After patients with CRF were treated by CS, the Leu, lie, Thr , Lys, Cys, Tyr concentrations in plasma approached the normal levels. In one sample of skeletal muscle the Thr and Lys concentrations approached the normal, whereas both the intracellular and extracellular Val concentrations were still remarkably decreased as compared with the normal controls. Moreover, the nitrogen flow rate (Q) , rates of protein synthesis (S) and catabolism ( C) , and amino nitrogen utilization ratio (S/Q) in patients with CRF and the SL % /d and SM%/d in rats with CRF were significantly increased as compared with those before CS treatment. Conclusion CS can notably improve the amino acid metabolism, promote the body protein synthesis in patients with CRF , and increase the rates of SL % /d and SM%/d in rats with CRF.

  18. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    Science.gov (United States)

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  19. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  20. Placental Hypoxia Developed During Preeclampsia Induces Telocytes Apoptosis in Chorionic Villi Affecting The Maternal-Fetus Metabolic Exchange.

    Science.gov (United States)

    Bosco, Cleofina Becerra; Díaz, Eugenia Guerra; Gutierrez, Rodrigo Rojas; González, Jaime Montero; Parra-Cordero, Mauro; Rodrigo, Ramón Salinas; Barja, Pilar Yañez

    2016-01-01

    Telocytes (TC) are a new type of stromal cells initially found and studied in digestive and extra- digestive organs. These cells have a small cell body with 2 to 5 thin and extremely long cytoplasmic prolongations named telopodes. In recent years, TC have also been described in placental chorionic villi, located in a strategical position between the smooth muscle cells from fetal vessels and the myofibroblasts in the stromal villi. Unlike other organs, the placenta is not innervated and considering the strategic location of TC is has been postulated that TC function would be related to signal transduction mechanisms involved in the regulation of the fetal vessels blood flow, as well as in the shortening/lengthening of the chorionic villi, providing the necessary rhythmicity to the process of maternal/fetal metabolic exchange. Preeclampsia (PE) is a systemic syndrome that affects 4%-6% of pregnancies worldwide. It is characterized by a placental state of ischemia-hypoxia which triggers an oxidative stress stage with the concomitant production of reactive oxygen species (ROS) leading to an increase in the degree of placental apoptosis. Placental vascular tone is regulated by the vasodilator nitric oxide (NO) and, in PE cases, NO is diverted towards the formation of peroxynitrite, a powerful oxidative agent whose activity leads to an increase of placental apoptosis degree that compromises TC and myofibroblasts, a key feature we would like to emphasize in this work. PMID:25643124

  1. Intraepithelial and interstitial deposition of pathological prion protein in kidneys of scrapie-affected sheep.

    Directory of Open Access Journals (Sweden)

    Ciriaco Ligios

    Full Text Available Prions have been documented in extra-neuronal and extra-lymphatic tissues of humans and various ruminants affected by Transmissible Spongiform Encephalopathy (TSE. The presence of prion infectivity detected in cervid and ovine blood tempted us to reason that kidney, the organ filtrating blood derived proteins, may accumulate disease associated PrP(Sc. We collected and screened kidneys of experimentally, naturally scrapie-affected and control sheep for renal deposition of PrP(Sc from distinct, geographically separated flocks. By performing Western blot, PET blot analysis and immunohistochemistry we found intraepithelial (cortex, medulla and papilla and occasional interstitial (papilla deposition of PrP(Sc in kidneys of scrapie-affected sheep. Interestingly, glomerula lacked detectable signals indicative of PrP(Sc. PrP(Sc was also detected in kidneys of subclinical sheep, but to significantly lower degree. Depending on the stage of the disease the incidence of PrP(Sc in kidney varied from approximately 27% (subclinical to 73.6% (clinical in naturally scrapie-affected sheep. Kidneys from flocks without scrapie outbreak were devoid of PrP(Sc. Here we demonstrate unexpectedly frequent deposition of high levels of PrP(Sc in ovine kidneys of various flocks. Renal deposition of PrP(Sc is likely to be a pre-requisite enabling prionuria, a possible co-factor of horizontal prion-transmission in sheep.

  2. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates.

    Science.gov (United States)

    Eshpari, H; Jimenez-Flores, R; Tong, P S; Corredig, M

    2015-12-01

    Milk protein concentrate powders (MPC) with improved rehydration properties are often manufactured using processing steps, such as acidification and high-pressure processing, and with addition of other ingredients, such as sodium chloride, during their production. These steps are known to increase the amount of serum caseins or modify the mineral equilibrium, hence improving solubility of the retentates. The processing functionality of the micelles may be affected. The aim of this study was to investigate the effects of partial acidification by adding glucono-δ-lactone (GDL) to skim milk during membrane filtration on the structural changes of the casein micelles by observing their chymosin-induced coagulation behavior, as such coagulation is affected by both the supramolecular structure of the caseins and calcium equilibrium. Milk protein concentrates were prepared by preacidification with GDL to pH 6 using ultrafiltration (UF) and diafiltration (DF) followed by spray-drying. Reconstituted UF and DF samples (3.2% protein) treated with GDL showed significantly increased amounts of soluble calcium and nonsedimentable caseins compared with their respective controls, as measured by ion chromatography and sodium dodecyl sulfate-PAGE electrophoresis, respectively. The primary phase of chymosin-induced gelation was not significantly different between treatments as measured by the amount of caseino-macropeptide released. The rheological properties of the reconstituted MPC powders were determined immediately after addition of chymosin, both before and after dialysis against skim milk, to ensure similar serum composition for all samples. Reconstituted samples before dialysis showed no gelation (defined as tan δ=1), and after re-equilibration only control UF and DF samples showed gelation. The gelation properties of reconstituted MPC powders were negatively affected by the presence of soluble casein, and positively affected by the amount of both soluble and insoluble

  3. Interleukin 1B genetic polymorphisms interact with polyunsaturated fatty acids to affect risk of the metabolic syndrome in the GOLDN Study

    Science.gov (United States)

    Chronic inflammation has been identified as an important component of the metabolic syndrome (MetS). Therefore, environmental and genetic factors contributing to the variation of inflammatory responses could affect individuals’ susceptibility to the MetS. We investigated the association between comm...

  4. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    Science.gov (United States)

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged. PMID:26041126

  5. Characterization of a corrinoid protein involved in the C1 metabolism of strict anaerobic bacterium Moorella thermoacetica.

    Science.gov (United States)

    Das, Amaresh; Fu, Zheng-Qing; Tempel, Wolfram; Liu, Zhi-Jie; Chang, Jessie; Chen, Lirong; Lee, Doowon; Zhou, Weihong; Xu, Hao; Shaw, Neil; Rose, John P; Ljungdahl, Lars G; Wang, Bi-Cheng

    2007-04-01

    The strict anaerobic, thermophilic bacterium Moorella thermoacetica metabolizes C1 compounds for example CO(2)/H(2), CO, formate, and methanol into acetate via the Wood/Ljungdahl pathway. Some of the key steps in this pathway include the metabolism of the C1 compounds into the methyl group of methylenetetrahydrofolate (MTHF) and the transfer of the methyl group from MTHF to the methyl group of acetyl-CoA catalyzed by methyltransferase, corrinoid protein and CO dehydrogenase/acetyl CoA synthase. Recently, we reported the crystallization of a 25 kDa methanol-induced corrinoid protein from M. thermoacetica (Zhou et al., Acta Crystallogr F 2005; 61:537-540). In this study we analyzed the crystal structure of the 25 kDa protein and provide genetic and biochemical evidences supporting its role in the methanol metabolism of M. thermoacetia. The 25 kDa protein was encoded by orf1948 of contig 303 in the M. thermoacetica genome. It resembles similarity to MtaC the corrinoid protein of the methanol:CoM methyltransferase system of methane producing archaea. The latter enzyme system also contains two additional enzymes MtaA and MtaB. Homologs of MtaA and MtaB were found to be encoded by orf2632 of contig 303 and orf1949 of contig 309, respectively, in the M. thermoacetica genome. The orf1948 and orf1949 were co-transcribed from a single polycistronic operon. Metal analysis and spectroscopic data confirmed the presence of cobalt and the corrinoid in the purified 25 kDa protein. High resolution X-ray crystal structure of the purified 25 kDa protein revealed corrinoid as methylcobalamin with the imidazole of histidine as the alpha-axial ligand replacing benziimidazole, suggesting base-off configuration for the corrinoid. Methanol significantly activated the expression of the 25 kDa protein. Cyanide and nitrate inhibited methanol metabolism and suppressed the level of the 25 kDa protein. The results suggest a role of the 25 kDa protein in the methanol metabolism of M

  6. Hepatitis C virus core protein induces energy metabolism disorders of hepatocytes by down-regulation of silent mating type information regulation 2 homolog-1 and adenosine monophosphate-acti vated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    于建武

    2013-01-01

    Objective To study the role of silent mating type information regulation2homotog-1(SIRT1)-adenosine monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway in hepatitis C virus core protein(HCV-core)induced energy metabolism disorders

  7. Combined inflammatory and metabolic defects reflected by reduced serum protein levels in patients with Buruli ulcer disease.

    Directory of Open Access Journals (Sweden)

    Richard O Phillips

    2014-04-01

    Full Text Available Buruli ulcer is a skin disease caused by Mycobacterium ulcerans that is spreading in tropical countries, with major public health and economic implications in West Africa. Multi-analyte profiling of serum proteins in patients and endemic controls revealed that Buruli ulcer disease down-regulates the circulating levels of a large array of inflammatory mediators, without impacting on the leukocyte composition of peripheral blood. Notably, several proteins contributing to acute phase reaction, lipid metabolism, coagulation and tissue remodelling were also impacted. Their down-regulation was selective and persisted after the elimination of bacteria with antibiotic therapy. It involved proteins with various functions and origins, suggesting that M. ulcerans infection causes global and chronic defects in the host's protein metabolism. Accordingly, patients had reduced levels of total serum proteins and blood urea, in the absence of signs of malnutrition, or functional failure of liver or kidney. Interestingly, slow healers had deeper metabolic and coagulation defects at the start of antibiotic therapy. In addition to providing novel insight into Buruli ulcer pathogenesis, our study therefore identifies a unique proteomic signature for this disease.

  8. Role and metabolism of free leucine in skeletal muscle in protein sparing action of dietary carbohydrate and fat

    International Nuclear Information System (INIS)

    Feeding rats with either a carbohydrate meal or a fat meal to the previously fasted rats caused significant decrease in urinary output of urea and total nitrogen. The content of free leucine in skeletal muscle decreased in the rats fed either a carbohydrate meal or a fat meal. Feeding of either a carbohydrate meal or a fat meal stimulated incorporation of L-leucine-1-14C into protein fraction of skeletal muscle and reduced its oxidation to 14CO2. These results suggest that the metabolism of leucine is under nutritional regulation and that the decrease in content of free leucine in skeletal muscle might be caused by enhanced reutilization of leucine into protein by the feeding of a carbohydrate meal or a fat meal. The role of free leucine in skeletal muscle as a regulator of protein turnover in the tissue are discussed in relation to the metabolism of this branched chain amino acid. (auth.)

  9. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  10. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide

    Science.gov (United States)

    Démares, Fabien J.; Crous, Kendall L.; Pirk, Christian W. W.; Nicolson, Susan W.; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed. PMID:27272274

  11. Identification of archaeal proteins that affect the exosome function in vitro

    Directory of Open Access Journals (Sweden)

    Palhano Fernando L

    2010-05-01

    Full Text Available Abstract Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.

  12. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide.

    Directory of Open Access Journals (Sweden)

    Fabien J Démares

    Full Text Available Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera. Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed.

  13. Use of stable isotopes to assess protein and amino acid metabolism in children and adolescents: a brief review.

    Science.gov (United States)

    Darmaun, Dominique; Mauras, Nelly

    2005-01-01

    As protein accretion is a prerequisite for growth, studying the mechanisms by which nutrients and hormones promote protein gain is of the utmost relevance to paediatric endocrinology. Tracers are ideally suited for the assessment of protein and amino acid kinetics in vivo, as they provide an estimate of synthesis and turnover. Current tracer approaches in children and adolescents utilize stable isotopes, 'heavier' forms of elements that have one or several extra neutrons in the nucleus. Such isotopes are already present at low, but significant, levels in all tissues and foodstuffs, are not radioactive and are devoid of any known side-effects when present in small amounts. L-[1-(13)C] labelled leucine, given as a 4- to 6-h intravenous infusion, has become the method of choice to assess whole-body protein kinetics. After infusion, any 13C-leucine that is oxidized appears in the breath as 13CO2, whereas the remainder is incorporated into body proteins through protein synthesis. The isotope enrichments are determined by isotope ratio mass spectrometry and gas chromatography mass spectrometry, and absolute rates of whole-body protein synthesis, oxidation, and breakdown can be extrapolated. This approach has been used extensively to investigate the regulation of protein kinetics by nutrients and by hormones. Attempts have also been made to measure amino acid/protein metabolism in selected body compartments, and to measure the kinetics of specific tissue proteins, for example, muscle, gut, or plasma proteins. PMID:16439842

  14. Evidence of a Role for Insulin-Like Growth Factor Binding Protein (IGFBP)-3 in Metabolic Regulation

    OpenAIRE

    Yamada, P. M.; Mehta, H. H.; Hwang, D.; Roos, K P; Hevener, A. L.; Lee, K.W.

    2010-01-01

    IGF-binding protein (IGFBP)-3 is a metabolic regulator that has been shown to inhibit insulin-stimulated glucose uptake in murine models. This finding contrasts with epidemiological evidence of decreased serum IGFBP-3 in patients with type 2 diabetes. The purpose of this study was to clarify the role of IGFBP-3 in metabolism. Four-week-old male IGFBP-3−/− and control mice were subjected to a high-fat diet (HFD) for 12 wk. IGFBP-3−/− mice were heavier before the initiation of HFD and at the en...

  15. Metabolic depression during warm torpor in the Golden spiny mouse (Acomys russatus) does not affect mitochondrial respiration and hydrogen peroxide release.

    Science.gov (United States)

    Grimpo, Kirsten; Kutschke, Maria; Kastl, Anja; Meyer, Carola W; Heldmaier, Gerhard; Exner, Cornelia; Jastroch, Martin

    2014-01-01

    Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents. PMID:24021912

  16. Insulin responsiveness of protein metabolism in vivo following bedrest in humans

    International Nuclear Information System (INIS)

    To test the influence of bedrest on insulin regulation of leucine metabolism, six normal young men were subjected to a five-step hyperinsulinemic euglycemic clamp before and after 7 days of strict bedrest. A primed-constant infusion of [1-13C]leucine was used. Before bedrest, the basal rate of appearance (Ra) of intracellular leucine and leucine oxidation were 2.79±0.17 and 0.613±0.070 μmol·kg-1·min-1, respectively. Insulin caused a dose-dependent reduction of the intracellular leucine Ra and leucine oxidation to a minimum of 1.64±0.08 and 0.322±0.039 μmol·kg-1·min-1, respectively, in nonbedrested subjects. Insulin also caused a dose-dependent reduction of plasma leucine concentration. After bedrest, subjects exhibited decreased glucose tolerance and increased endogenous insulin secretion, but basal and insulin-suppressed intracellular leucine Ra and leucine oxidation rates were not different from control. Magnetic resonance imaging of the back and lower extremities revealed a 1-4% decrease in muscle volume and a 2-5% increase in fat volume secondary to bedrest. Bedrest also resulted in a negative nitrogen balance as compared with the control period. Thus because negative nitrogen balance and skeletal muscle atrophy occurred in six rested subjects in the absence of changes in the two indices of protein breakdown used in this study, it seems likely that muscle protein synthesis was inhibited

  17. Insulin responsiveness of protein metabolism in vivo following bedrest in humans

    Energy Technology Data Exchange (ETDEWEB)

    Shangraw, R.E.; Stuart, C.A.; Prince, M.J.; Peters, E.J.; Wolfe, R.R. (Univ. of Texas Medical Branch and Metabolism Unit., Galveston (USA))

    1988-10-01

    To test the influence of bedrest on insulin regulation of leucine metabolism, six normal young men were subjected to a five-step hyperinsulinemic euglycemic clamp before and after 7 days of strict bedrest. A primed-constant infusion of (1-{sup 13}C)leucine was used. Before bedrest, the basal rate of appearance (R{sub a}) of intracellular leucine and leucine oxidation were 2.79{plus minus}0.17 and 0.613{plus minus}0.070 {mu}mol{center dot}kg{sup {minus}1}{center dot}min{sup {minus}1}, respectively. Insulin caused a dose-dependent reduction of the intracellular leucine R{sub a} and leucine oxidation to a minimum of 1.64{plus minus}0.08 and 0.322{plus minus}0.039 {mu}mol{center dot}kg{sup {minus}1}{center dot}min{sup {minus}1}, respectively, in nonbedrested subjects. Insulin also caused a dose-dependent reduction of plasma leucine concentration. After bedrest, subjects exhibited decreased glucose tolerance and increased endogenous insulin secretion, but basal and insulin-suppressed intracellular leucine R{sub a} and leucine oxidation rates were not different from control. Magnetic resonance imaging of the back and lower extremities revealed a 1-4% decrease in muscle volume and a 2-5% increase in fat volume secondary to bedrest. Bedrest also resulted in a negative nitrogen balance as compared with the control period. Thus because negative nitrogen balance and skeletal muscle atrophy occurred in six rested subjects in the absence of changes in the two indices of protein breakdown used in this study, it seems likely that muscle protein synthesis was inhibited.

  18. Systemic Inflammation Affects Human Osteocyte-Specific Protein and Cytokine Expression.

    Science.gov (United States)

    Pathak, Janak L; Bakker, Astrid D; Luyten, Frank P; Verschueren, Patrick; Lems, Willem F; Klein-Nulend, Jenneke; Bravenboer, Nathalie

    2016-06-01

    Bone remodeling can be disturbed in active rheumatoid arthritis (RA), possibly as a result of elevated levels of circulating inflammatory cytokines. Osteocyte-specific proteins and cytokines play a vital role in bone remodeling by orchestrating bone formation and/or bone resorption. Therefore, we aimed to investigate the effect of RA-serum or inflammatory cytokines on expression of human osteocyte-specific proteins and cytokines. Human trabecular bone chips were cultured with RA-serum or inflammatory cytokines for 7-days. Live-dead staining was performed to assess cell viability. Gene expression of osteocyte-specific proteins and cytokines was analyzed by qPCR. Immuno-staining was performed for osteocyte-specific markers. Approximately 60 % of the osteocytes on the bone chips were alive at day-7. Cells in or on the bone chips did express the gene for osteocyte markers SOST, FGF23, DMP1, and MEPE, and the cytokines IL-1β, IL-6, and TNFα at day 0 and 7. Active RA-serum treatment enhanced IL-1β, TNFα, SOST, and DKK1 gene expression. IL-1β treatment enhanced IL-1β, TNFα, IL-6, IL-8, FGF23, and SOST gene expression. TNFα treatment enhanced IL-1β, TNFα, IL-6, IL-8, and FGF23 gene expression. IL-8 treatment enhanced TNFα, IL-8, and FGF23 gene expression. A combination of IL-1β, IL-6, and TNFα treatment synergistically upregulated IL-1β, IL-6, and IL-8 gene expression, as well as enhanced TNFα, OPG, SOST, and FGF23, and inhibited DKK1 gene expression. In conclusion, gene expression of human osteocyte-specific proteins and cytokines was affected by RA-serum, and exogenous recombinant cytokines treatment suggesting that osteocytes could provide a new target to prevent systemic inflammation-induced bone loss in RA. PMID:26887974

  19. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment. PMID:26530987

  20. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.

    Directory of Open Access Journals (Sweden)

    Stéphanie Tomé

    Full Text Available Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD (CAG∼100 transgene, when present in a congenic C57BL/6J (B6 background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with

  1. Sex difference in the association of metabolic syndrome with high sensitivity C-reactive protein in a Taiwanese population

    Directory of Open Access Journals (Sweden)

    Lin Wen-Yuan

    2010-07-01

    Full Text Available Abstract Background Although sex differences have been reported for associations between components of metabolic syndrome and inflammation, the question of whether there is an effect modification by sex in the association between inflammation and metabolic syndrome has not been investigated in detail. Therefore, the aim of this study was to compare associations of high sensitivity C-creative protein (hs-CRP with metabolic syndrome and its components between men and women. Methods A total of 1,305 subjects aged 40 years and over were recruited in 2004 in a metropolitan city in Taiwan. The biochemical indices, such as hs-CRP, fasting glucose levels, lipid profiles, urinary albumin, urinary creatinine and anthropometric indices, were measured. Metabolic syndrome was defined using the American Heart Association and the National Heart, lung and Blood Institute (AHA/NHLBI definition. The relationship between metabolic syndrome and hs-CRP was examined using multivariate logistic regression analysis. Results After adjustment for age and lifestyle factors including smoking, and alcohol intake, elevated concentrations of hs-CRP showed a stronger association with metabolic syndrome in women (odds ratio comparing tertile extremes 4.80 [95% CI: 3.31-6.97] than in men (2.30 [1.65-3.21]. The p value for the sex interaction was 0.002. All components were more strongly associated with metabolic syndrome in women than in men, and all sex interactions were significant except for hypertension. Conclusions Our data suggest that inflammatory processes may be of particular importance in the pathogenesis of metabolic syndrome in women.

  2. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    Science.gov (United States)

    Mondon, C. E.; Rodnick, K. J.; Dolkas, C. B.; Azhar, S.; Reaven, G. M.

    1992-09-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  3. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    Science.gov (United States)

    Mondon, C. E.; Rodnick, K. J.; Azhar, S.; Reaven, G. M.; Dolkas, C. B.

    1992-01-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity-dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  4. Aggravation of Irradiation Induced Impairment in Protein Metabolism in Albino Rate Subjected to Oral Injection of Kelthane Miticide

    International Nuclear Information System (INIS)

    The combined effect of both whole body gamma radiation exposure and administration of organo chlorine miticide kelthaneon protein metabolism was investigated in male albino rats. Kelthane was orally given at a dose level of 100 mg/kg body weight over a period of seven days. Irradiation process permitted the rats to receive one Gray every other day at a weekly cumulative dose of 3 Gy up to a total dose of 15 Gy. The biochemical assays included total proteins, protein fractions, free amino acids (FAAS) and urea level in blood serum as well as protein content and its FAAS in urine . The data revealed significant changes in the protein parameters due to whole body gamma irradiation. These changes were shown to be dose and time dependent which reached their maximum at the end of the experimentation period. The alterations were more pronounced in animal groups exposed to gamma radiation and received keltane pesticide

  5. Inhibition of ABC transport proteins by oil sands process affected water.

    Science.gov (United States)

    Alharbi, Hattan A; Saunders, David M V; Al-Mousa, Ahmed; Alcorn, Jane; Pereira, Alberto S; Martin, Jonathan W; Giesy, John P; Wiseman, Steve B

    2016-01-01

    The ATP-binding cassette (ABC) superfamily of transporter proteins is important for detoxification of xenobiotics. For example, ABC transporters from the multidrug-resistance protein (MRP) subfamily are important for excretion of polycyclic aromatic hydrocarbons (PAHs) and their metabolites. Effects of chemicals in the water soluble organic fraction of relatively fresh oil sands process affected water (OSPW) from Base Mine Lake (BML-OSPW) and aged OSPW from Pond 9 (P9-OSPW) on the activity of MRP transporters were investigated in vivo by use of Japanese medaka at the fry stage of development. Activities of MRPs were monitored by use of the lipophilic dye calcein, which is transported from cells by ABC proteins, including MRPs. To begin to identify chemicals that might inhibit activity of MRPs, BML-OSPW and P9-OSPW were fractionated into acidic, basic, and neutral fractions by use of mixed-mode sorbents. Chemical compositions of fractions were determined by use of ultrahigh resolution orbitrap mass spectrometry in ESI(+) and ESI(-) mode. Greater amounts of calcein were retained in fry exposed to BML-OSPW at concentration equivalents greater than 1× (i.e., full strength). The neutral and basic fractions of BML-OSPW, but not the acidic fraction, caused greater retention of calcein. Exposure to P9-OSPW did not affect the amount of calcein in fry. Neutral and basic fractions of BML-OSPW contained relatively greater amounts of several oxygen-, sulfur, and nitrogen-containing chemical species that might inhibit MRPs, such as O(+), SO(+), and NO(+) chemical species, although secondary fractionation will be required to conclusively identify the most potent inhibitors. Naphthenic acids (O2(-)), which were dominant in the acidic fraction, did not appear to be the cause of the inhibition. This is the first study to demonstrate that chemicals in the water soluble organic fraction of OSPW inhibit activity of this important class of proteins. However, aging of OSPW attenuates

  6. The role of thioredoxin h in protein metabolism during wheat (Triticum aestivum L.) seed germination.

    Science.gov (United States)

    Guo, Hongxiang; Wang, Shaoxin; Xu, Fangfang; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2013-06-01

    Thioredoxin h can regulate the redox environment in the cell and play an important role in the germination of cereals. In the present study, the thioredoxin s antisense transgenic wheat with down-regulation of thioredoxin h was used to study the role of thioredoxin h in protein metabolism during germination of wheat seeds, and to explore the mechanism of the thioredoxin s antisense transgenic wheat seeds having high resistance to pre-harvest sprouting. The qRT-PCR results showed that the expression of protein disulfide isomerase in the thioredoxin s antisense transgenic wheat was up-regulated, which induced easily forming glutenin macropolymers and the resistance of storage proteins to degradation. The expression of serine protease inhibitor was also up-regulated in transgenic wheat, which might be responsible for the decreased activity of thiocalsin during the germination. The expression of WRKY6 in transgenic wheat was down-regulated, which was consistent with the decreased activity of glutamine oxoglutarate aminotransferase. In transgenic wheat, the activities of glutamate dehydrogenase, glutamic pyruvic transaminase and glutamic oxaloacetic transaminase were down-regulated, indicating that the metabolism of amino acid was lower than that in wild-type wheat during seed germination. A putative model for the role of thioredoxin h in protein metabolism during wheat seed germination was proposed and discussed. PMID:23562797

  7. Metabolic responses to acute physical exercise in young rats recovered from fetal protein malnutrition with a fructose-rich diet

    Directory of Open Access Journals (Sweden)

    Botezelli José D

    2011-09-01

    Full Text Available Abstract Background Malnutrition in utero can "program" the fetal tissues, making them more vulnerable to metabolic disturbances. Also there is association between excessive consumption of fructose and the development of metabolic syndrome. However, there is little information regarding the acute effect of physical exercise on subjects recovered from malnutrition and/or fed with a fructose-rich diet. The objective of this study was to evaluate the metabolic aspects and the response to acute physical exercise in rats recovered from fetal protein malnutrition with a fructose-rich diet. Methods Pregnant Wistar rats were fed with a balanced (B diet or a low-protein (L diet. After birth and until 60 days of age, the offspring were distributed into four groups according to the diet received: B: B diet during the whole experiment; balanced/fructose (BF: B diet until birth and fructose-rich (F diet afterwards; low protein/balanced (LB: L diet until birth and B diet afterwards; low protein/fructose (LF: L diet until birth and F diet afterwards. Results The excess fructose intake reduced the body weight gain, especially in the BF group. Furthermore, the serum total cholesterol and the LDL cholesterol were elevated in this group. In the LF group, the serum total cholesterol and the muscle glycogen increased. Acute physical exercise increased the serum concentrations of glucose, triglycerides, HDL cholesterol and liver lipids and reduced the concentrations of muscle glycogen in all groups. Conclusion An excess fructose intake induced some signs of metabolic syndrome. However, protein malnutrition appeared to protect against the short term effects of fructose. In other hand, most responses to acute physical exercise were not influenced by early malnutrition and/or by the fructose overload.

  8. Treatment of Metabolic syndrome by combination of physical activity and diet needs an optimal protein intake: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Dutheil Frédéric

    2012-09-01

    Full Text Available Abstract Background The recommended dietary allowance (RDA for protein intake has been set at 1.0-1.3 g/kg/day for senior. To date, no consensus exists on the lower threshold intake (LTI = RDA/1.3 for the protein intake (PI needed in senior patients ongoing both combined caloric restriction and physical activity treatment for metabolic syndrome. Considering that age, caloric restriction and exercise are three increasing factors of protein need, this study was dedicated to determine the minimal PI in this situation, through the determination of albuminemia that is the blood marker of protein homeostasis. Methods Twenty eight subjects (19 M, 9 F, 61.8 ± 6.5 years, BMI 33.4 ± 4.1 kg/m2 with metabolic syndrome completed a three-week residential programme (Day 0 to Day 21 controlled for nutrition (energy balance of −500 kcal/day and physical activity (3.5 hours/day. Patients were randomly assigned in two groups: Normal-PI (NPI: 1.0 g/kg/day and High-PI (HPI: 1.2 g/kg/day. Then, patients returned home and were followed for six months. Albuminemia was measured at D0, D21, D90 and D180. Results At baseline, PI was spontaneously 1.0 g/kg/day for both groups. Albuminemia was 40.6 g/l for NPI and 40.8 g/l for HPI. A marginal protein under-nutrition appeared in NPI with a decreased albuminemia at D90 below 35 g/l (34.3 versus 41.5 g/l for HPI, p  Conclusion During the treatment based on restricted diet and exercise in senior people with metabolic syndrome, the lower threshold intake for protein must be set at 1.2 g/kg/day to maintain blood protein homeostasis.

  9. Susceptibility of Candida albicans biofilms to caspofungin and anidulafungin is not affected by metabolic activity or biomass production.

    Science.gov (United States)

    Marcos-Zambrano, Laura Judith; Escribano, Pilar; Bouza, Emilio; Guinea, Jesús

    2016-02-01

    Micafungin is more active against biofilms with high metabolic activity; however, it is unknown whether this observation applies to caspofungin and anidulafungin and whether it is also dependent on the biomass production. We compare the antifungal activity of anidulafungin, caspofungin, and micafungin against preformed Candida albicans biofilms with different degrees of metabolic activity and biomass production from 301 isolates causing fungemia in patients admitted to Gregorio Marañon Hospital (January 2007 to September 2014). Biofilms were classified as having low, moderate, or high metabolic activity according XTT reduction assay or having low, moderate, or high biomass according to crystal violet assay. Echinocandin MICs for planktonic and sessile cells were measured using the EUCAST E.Def 7.2 procedure and XTT reduction assay, respectively. Micafungin showed the highest activity against biofilms classified according to the metabolic activity and biomass production (P < .001). The activity of caspofungin and anidulafungin was not dependent on the metabolic activity of the biofilm or the biomass production. These observations were confirmed by scanning electron microscopy. None of the echinocandins produced major changes in the structure of biofilms with low metabolic activity and biomass production when compared with the untreated biofilms. However, biofilm with high metabolic activity or high biomass production was considerably more susceptible to micafungin; this effect was not shown by caspofungin or anidulafungin. PMID:26543157

  10. Preoperative overnight parenteral nutrition (TPN) improves skeletal muscle protein metabolism indicated by microarray algorithm analyses in a randomized trial.

    Science.gov (United States)

    Iresjö, Britt-Marie; Engström, Cecilia; Lundholm, Kent

    2016-06-01

    Loss of muscle mass is associated with increased risk of morbidity and mortality in hospitalized patients. Uncertainties of treatment efficiency by short-term artificial nutrition remain, specifically improvement of protein balance in skeletal muscles. In this study, algorithmic microarray analysis was applied to map cellular changes related to muscle protein metabolism in human skeletal muscle tissue during provision of overnight preoperative total parenteral nutrition (TPN). Twenty-two patients (11/group) scheduled for upper GI surgery due to malignant or benign disease received a continuous peripheral all-in-one TPN infusion (30 kcal/kg/day, 0.16 gN/kg/day) or saline infusion for 12 h prior operation. Biopsies from the rectus abdominis muscle were taken at the start of operation for isolation of muscle RNA RNA expression microarray analyses were performed with Agilent Sureprint G3, 8 × 60K arrays using one-color labeling. 447 mRNAs were differently expressed between study and control patients (P proteins as well as transcripts related to intracellular signaling pathways, PI3 kinase/MAPkinase, were either increased or decreased. In conclusion, muscle mRNA alterations during overnight standard TPN infusions at constant rate altered mRNAs associated with mTOR signaling; increased initiation of protein translation; and suppressed autophagy/lysosomal degradation of proteins. This indicates that overnight preoperative parenteral nutrition is effective to promote muscle protein metabolism. PMID:27273879

  11. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    OpenAIRE

    Nielsen Jens; Jouhten Paula; Nandy Subir K

    2010-01-01

    Abstract Background Several protein-protein interaction studies have been performed for the yeast Saccharomyces cerevisiae using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. Results Here we des...

  12. Membrane protein assembly: two cytoplasmic phosphorylated serine sites of Vpu from HIV-1 affect oligomerization

    Science.gov (United States)

    Chen, Chin-Pei; Lin, Meng-Han; Chan, Ya-Ting; Chen, Li-Chyong; Ma, Che; Fischer, Wolfgang B.

    2016-01-01

    Viral protein U (Vpu) encoded by human immunodeficiency virus type 1 (HIV-1) is a short integral membrane protein which is known to self-assemble within the lipid membrane and associate with host factors during the HIV-1 infectivity cycle. In this study, full-length Vpu (M group) from clone NL4-3 was over-expressed in human cells and purified in an oligomeric state. Various single and double mutations were constructed on its phosphorylation sites to mimic different degrees of phosphorylation. Size exclusion chromatography of wild-type Vpu and mutants indicated that the smallest assembly unit of Vpu was a dimer and over time Vpu formed higher oligomers. The rate of oligomerization increased when (i) the degree of phosphorylation at serines 52 and 56 was decreased and (ii) when the ionic strength was increased indicating that the cytoplasmic domain of Vpu affects oligomerization. Coarse-grained molecular dynamic simulations with models of wild-type and mutant Vpu in a hydrated lipid bilayer supported the experimental data in demonstrating that, in addition to a previously known role in downregulation of host factors, the phosphorylation sites of Vpu also modulate oligomerization. PMID:27353136

  13. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells.

    Science.gov (United States)

    Guo, Chuanliang; Xue, Yan; Yang, Guanheng; Yin, Shang; Shi, Wansheng; Cheng, Yan; Yan, Xiaoshuang; Fan, Shuyue; Zhang, Huijun; Zeng, Fanyi

    2016-08-01

    Nanog is a well-known transcription factor that plays a fundamental role in stem cell self-renewal and the maintenance of their pluripotent cell identity. There remains a large data gap with respect to the spectrum of the key pluripotency transcription factors' interaction partners. Limited information is available concerning Nanog-associated RNA-binding proteins (RBPs), and the intrinsic protein-RNA interactions characteristic of the regulatory activities of Nanog. Herein, we used an improved affinity protocol to purify Nanog-interacting RBPs from mouse embryonic stem cells (ESCs), and 49 RBPs of Nanog were identified. Among them, the interaction of YBX1 and ILF3 with Nanog mRNA was further confirmed by in vitro assays, such as Western blot, RNA immunoprecipitation (RIP), and ex vivo methods, such as immunofluorescence staining and fluorescent in situ hybridization (FISH), MS2 in vivo biotin-tagged RNA affinity purification (MS2-BioTRAP). Interestingly, RNAi studies revealed that YBX1 and ILF3 positively affected the expression of Nanog and other pluripotency-related genes. Particularly, downregulation of YBX1 or ILF3 resulted in high expression of mesoderm markers. Thus, a reduction in the expression of YBX1 and ILF3 controls the expression of pluripotency-related genes in ESCs, suggesting their roles in further regulation of the pluripotent state of ESCs. PMID:26289635

  14. Induced autoimmunity against gonadal proteins affects gonadal development in juvenile zebrafish.

    Directory of Open Access Journals (Sweden)

    Christopher Presslauer

    Full Text Available A method to mitigate or possibly eliminate reproduction in farmed fish is highly demanded. The existing approaches have certain applicative limitations. So far, no immunization strategies affecting gonadal development in juvenile animals have been developed. We hypothesized that autoimmune mechanisms, occurring spontaneously in a number of diseases, could be induced by targeted immunization. We have asked whether the immunization against specific targets in a juvenile zebrafish gonad will produce an autoimmune response, and, consequently, disturbance in gonadal development. Gonadal soma-derived factor (Gsdf, growth differentiation factor (Gdf9, and lymphocyte antigen 75 (Cd205/Ly75, all essential for early gonad development, were targeted with 5 immunization tests. Zebrafish (n = 329 were injected at 6 weeks post fertilization, a booster injection was applied 15 days later, and fish were sampled at 30 days. We localized transcripts encoding targeted proteins by in situ hybridization, quantified expression of immune-, apoptosis-, and gonad-related genes with quantitative real-time PCR, and performed gonadal histology and whole-mount immunohistochemistry for Bcl2-interacting-killer (Bik pro-apoptotic protein. The treatments resulted in an autoimmune reaction, gonad developmental retardation, intensive apoptosis, cell atresia, and disturbed transcript production. Testes were remarkably underdeveloped after anti-Gsdf treatments. Anti-Gdf9 treatments promoted apoptosis in testes and abnormal development of ovaries. Anti-Cd205 treatment stimulated a strong immune response in both sexes, resulting in oocyte atresia and strong apoptosis in supporting somatic cells. The effect of immunization was FSH-independent. Furthermore, immunization against germ cell proteins disturbed somatic supporting cell development. This is the first report to demonstrate that targeted autoimmunity can disturb gonadal development in a juvenile fish. It shows a

  15. Induced Autoimmunity against Gonadal Proteins Affects Gonadal Development in Juvenile Zebrafish

    Science.gov (United States)

    Presslauer, Christopher; Nagasawa, Kazue; Dahle, Dalia; Babiak, Joanna; Fernandes, Jorge M. O.; Babiak, Igor

    2014-01-01

    A method to mitigate or possibly eliminate reproduction in farmed fish is highly demanded. The existing approaches have certain applicative limitations. So far, no immunization strategies affecting gonadal development in juvenile animals have been developed. We hypothesized that autoimmune mechanisms, occurring spontaneously in a number of diseases, could be induced by targeted immunization. We have asked whether the immunization against specific targets in a juvenile zebrafish gonad will produce an autoimmune response, and, consequently, disturbance in gonadal development. Gonadal soma-derived factor (Gsdf), growth differentiation factor (Gdf9), and lymphocyte antigen 75 (Cd205/Ly75), all essential for early gonad development, were targeted with 5 immunization tests. Zebrafish (n = 329) were injected at 6 weeks post fertilization, a booster injection was applied 15 days later, and fish were sampled at 30 days. We localized transcripts encoding targeted proteins by in situ hybridization, quantified expression of immune-, apoptosis-, and gonad-related genes with quantitative real-time PCR, and performed gonadal histology and whole-mount immunohistochemistry for Bcl2-interacting-killer (Bik) pro-apoptotic protein. The treatments resulted in an autoimmune reaction, gonad developmental retardation, intensive apoptosis, cell atresia, and disturbed transcript production. Testes were remarkably underdeveloped after anti-Gsdf treatments. Anti-Gdf9 treatments promoted apoptosis in testes and abnormal development of ovaries. Anti-Cd205 treatment stimulated a strong immune response in both sexes, resulting in oocyte atresia and strong apoptosis in supporting somatic cells. The effect of immunization was FSH-independent. Furthermore, immunization against germ cell proteins disturbed somatic supporting cell development. This is the first report to demonstrate that targeted autoimmunity can disturb gonadal development in a juvenile fish. It shows a straightforward potential

  16. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Science.gov (United States)

    Cai, Zhiyou; Yan, Yong; Wang, Yonglong

    2013-01-01

    Background Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ) and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting neuroinflammation, which contributes to Aβ production and tau hyperphosphorylation. Minocycline may also lower the self-perpetuating cycle between neuroinflammation and the pathogenesis of tau and Aβ to act as a neuroprotector. Therefore, the ability of minocycline to modulate inflammatory reactions may be of great importance in the selection of neuroprotective agents, especially in chronic conditions

  17. The RNA binding protein CsrA controls c-di-GMP metabolism by directly regulating the expression of GGDEF proteins

    OpenAIRE

    Jonas, Kristina; Edwards, Adrianne N.; Simm, Roger; Romeo, Tony; Römling, Ute; Melefors, Öjar

    2008-01-01

    The carbon storage regulator CsrA is an RNA binding protein that controls carbon metabolism, biofilm formation and motility in various eubacteria. Nevertheless, in Escherichia coli only five target mRNAs have been shown to be directly regulated by CsrA at the post-transcriptional level. Here we identified two new direct targets for CsrA, ycdT and ydeH, both of which encode proteins with GGDEF domains. A csrA mutation caused mRNA levels of ycdT and ydeH to increase more than 10-fold. RNA mobil...

  18. Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat

    OpenAIRE

    Palmnäs, Marie S. A.; Cowan, Theresa E.; Bomhof, Marc R.; Su, Juliet; Reimer, Raylene A.; Vogel, Hans J.; Hittel, Dustin S.; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, ...

  19. Effect of ethanol in utero on higher nervous activity and protein and lipid metabolism in the rat brain

    International Nuclear Information System (INIS)

    The authors study parameters of protein phosphorylation and glycoprotein and phospholipid synthesis in the neocortex and hippocampus of adult rats and compare the findings with the results of an investigation of formation and preservation of defensive conditioned reflexes. The pattern of changes in these metabolic parameters are studied in response to stress. For the biochemical tests, the animals were lightly anesthetized with ether and injected with a mixture of (P 32)-orthophosphate and (H 3)-fucose. Phospholipids were identified with molybdate reagent and radioactivity of the protein digest and lipids was measured in Bray's scintillator. The study shows that the use of stress brought metabolic differences between the brain of the experimental and control rats more clearly to light

  20. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner.

    Science.gov (United States)

    Almeida, Juliana; Azevedo, Mariana da Silva; Spicher, Livia; Glauser, Gaétan; vom Dorp, Katharina; Guyer, Luzia; del Valle Carranza, Andrea; Asis, Ramón; de Souza, Amanda Pereira; Buckeridge, Marcos; Demarco, Diego; Bres, Cécile; Rothan, Christophe; Peres, Lázaro Eustáquio Pereira; Hörtensteiner, Stefan; Kessler, Félix; Dörmann, Peter; Carrari, Fernando; Rossi, Magdalena

    2016-02-01

    Tocopherol, a compound with vitamin E (VTE) activity, is a conserved constituent of the plastidial antioxidant network in photosynthetic organisms. The synthesis of tocopherol involves the condensation of an aromatic head group with an isoprenoid prenyl side chain. The latter, phytyl diphosphate, can be derived from chlorophyll phytol tail recycling, which depends on phytol kinase (VTE5) activity. How plants co-ordinate isoprenoid precursor distribution for supplying biosynthesis of tocopherol and other prenyllipids in different organs is poorly understood. Here, Solanum lycopersicum plants impaired in the expression of two VTE5-like genes identified by phylogenetic analyses, named SlVTE5 and SlFOLK, were characterized. Our data show that while SlFOLK does not affect tocopherol content, the production of this metabolite is >80% dependent on SlVTE5 in tomato, in both leaves and fruits. VTE5 deficiency greatly impacted lipid metabolism, including prenylquinones, carotenoids, and fatty acid phytyl esters. However, the prenyllipid profile greatly differed between source and sink organs, revealing organ-specific metabolic adjustments in tomato. Additionally, VTE5-deficient plants displayed starch accumulation and lower CO2 assimilation in leaves associated with mild yield penalty. Taken together, our results provide valuable insights into the distinct regulation of isoprenoid metabolism in leaves and fruits and also expose the interaction between lipid and carbon metabolism, which results in carbohydrate export blockage in the VTE5-deficient plants, affecting tomato fruit quality. PMID:26596763

  1. Garlic (Allium sativum) Extract Supplementation Alters the Glycogen Deposition in Liver and Protein Metabolism in Gonads of Female Albino Rats

    OpenAIRE

    Sashank Srivastava; P. H. Pathak

    2012-01-01

    Garlic is an ayurvedic herb that has been extensively used as medication and as the taste enhancer of the food. The present investigation was undertaken to provide data on the efficacy of garlic (Allium sativum Linn.) extract on glycogen deposition and protein metabolism in female albino rats that may further explore medicinal potential of garlic. The rats were divided into four groups A, B, C and D, keeping group A as a healthy control. The garlic extract was tried in three different doses, ...

  2. Lipoprotein Particles, Insulin, Adiponectin, C-Reactive Protein and Risk of Coronary Heart Disease among Men with Metabolic Syndrome

    OpenAIRE

    Kuller, Lewis H; Grandits, Gregory; Cohen, Jerome D.; Neaton, James D.; Ronald, Prineas

    2006-01-01

    We tested the hypotheses whether nuclear magnetic resonance (NMR) determined lipoprotein particles, insulin and adiponectin, and C-reactive protein (CRP) and white blood cell (WBC) count as markers of inflammation predicted risk of coronary heart disease (CHD) death among 428 men age 35–57 years with metabolic syndrome (MetSyn) in a matched case control study within the Multiple Risk Factor Intervention Trial.

  3. High-sensitivity C-reactive protein and liver enzymes in individuals with Metabolic Syndrome in Talca, Chile

    OpenAIRE

    Leiva, E.; V. Mujica; PALOMO, I.; ORREGO, R.; Guzmán, L.; S. Núñez; MOORE-CARRASCO, R.; Icaza, G.; Díaz, N.

    2010-01-01

    Metabolic syndrome (MS) is a core set of disorders, including abdominal obesity, dyslipidemia, hypertension and hypertriglyceridemia that together predict the development of diabetes type 2 and cardiovascular disease. This study investigated the relationship between liver enzyme levels and high-sensitivity C-reactive protein (hs-CRP) in subjects with and without MS. Alanine-aminotransferase (ALAT), aspartate-aminotransferase (ASAT), γ-glutamyl transferase (GGT) and hs-CRP were measured in 510...

  4. Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses.

    Directory of Open Access Journals (Sweden)

    Laurence Le Moyec

    Full Text Available During long distance endurance races, horses undergo high physiological and metabolic stresses. The adaptation processes involve the modulation of the energetic pathways in order to meet the energy demand. The aims were to evaluate the effects of long endurance exercise on the plasma metabolomic profiles and to investigate the relationships with the individual horse performances. The metabolomic profiles of the horses were analyzed using the non-dedicated methodology, NMR spectroscopy and statistical multivariate analysis. The advantage of this method is to investigate several metabolomic pathways at the same time in a single sample. The plasmas were obtained before exercise (BE and post exercise (PE from 69 horses competing in three endurance races at national level (130-160 km. Biochemical assays were also performed on the samples taken at PE. The proton NMR spectra were compared using the supervised orthogonal projection on latent structure method according to several factors. Among these factors, the race location was not significant whereas the effect of the race exercise (sample BE vs PE of same horse was highly discriminating. This result was confirmed by the projection of unpaired samples (only BE or PE sample of different horses. The metabolomic profiles proved that protein, energetic and lipid metabolisms as well as glycoproteins content are highly affected by the long endurance exercise. The BE samples from finisher horses could be discriminated according to the racing speed based on their metabolomic lipid content. The PE samples could be discriminated according to the horse ranking position at the end of the race with lactate as unique correlated metabolite. As a conclusion, the metabolomic profiles of plasmas taken before and after the race provided a better understanding of the high energy demand and protein catabolism pathway that could expose the horses to metabolic disorders.

  5. Exercise Training and Work Task Induced Metabolic and Stress-Related mRNA and Protein Responses in Myalgic Muscles

    Directory of Open Access Journals (Sweden)

    Gisela Sjøgaard

    2013-01-01

    Full Text Available The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16 healthy controls. Those with myalgia performed ~7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism. In contrast, prolonged general fitness as well as specific strength training decreased mRNA content of heat shock protein while the capacity of carbohydrate oxidation was increased only after specific strength training.

  6. Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis.

    Science.gov (United States)

    Watford, Malcolm; Wu, Guoyao

    2005-04-01

    High intracellular glutamine levels have been implicated in promoting net protein synthesis and accretion in mammalian skeletal muscle. Little is known regarding glutamine metabolism in uricotelic species but chicken breast muscle exhibits high rates of protein accretion and would be predicted to maintain high glutamine levels. However, chicken breast muscle expresses high glutaminase activity and here we report that chicken breast muscle also expresses low glutamine synthetase activity (0.07+/-0.01 U/g) when compared to leg muscle (0.50+/-0.04 U/g). Free glutamine levels were 1.38+/-0.09 and 9.69+/-0.12 nmol/mg wet weight in breast and leg muscles of fed chickens, respectively. Glutamine levels were also lower in dove breast muscle (4.82+/-0.35 nmol/mg wet weight) when compared to leg muscle (16.2+/-1.0 nmol/mg wet weight) and much lower (1.80+/-0.46 nmol/mg wet weight) in lizard leg muscle. In fed chickens, rates of fractional protein synthesis were higher in leg than in breast muscle, and starvation (48 h) resulted in a decrease in both glutamine content and rate of protein synthesis in leg muscle. Thus, although tissue-specific glutamine metabolism in uricotelic species differs markedly from that in ureotelic animals, differences in rates of skeletal muscle protein synthesis are associated with corresponding differences in intramuscular glutamine content. PMID:15763516

  7. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kristensen, Torsten N; Overgaard, Johannes; Loeschcke, Volker;

    2011-01-01

    The ability to use different food sources is likely to be under strong selection if organisms are faced with natural variation in macro-nutrient (protein, carbohydrate and lipid) availabilities. Here, we use experimental evolution to study how variable dietary protein content affects adult body...... composition and developmental success in Drosophila melanogaster. We reared flies on either a standard diet or a protein-enriched diet for 17 generations before testing them on both diet types. Flies from lines selected on protein-rich diet produced phenotypes with higher total body mass and relative lipid...

  8. Interactions between vertebrate hemoglobins and red cell proteins: Possible roles in regulating cellular metabolism and rheology

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Red blood cells (RBCs) play a vital role in vertebrate metabolism. Tissue O2 delivery depends on their O2 transporting properties and rheology, an integral determinant of tissue perfusion. The mechanical characteristics and key metabolic characteristics of RBCs (such as glycolysis rate, pentose...

  9. Yeast Interacting Proteins Database: YBR239C, YPL133C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available cytoplasm and nucleus; null mutation affects periodicity of transcriptional and metabolic oscillation; play...ion; GFP-fusion protein localizes to the cytoplasm and nucleus; null mutation affects periodic

  10. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  11. Lysophosphatidylinositol Signalling and Metabolic Diseases.

    Science.gov (United States)

    Arifin, Syamsul A; Falasca, Marco

    2016-01-01

    Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis. PMID:26784247

  12. Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis

    Directory of Open Access Journals (Sweden)

    Eroukova Veronika

    2008-12-01

    Full Text Available Abstract Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134 with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45, cellular component biogenesis and organization (28, DNA maintenance (21, transport (20, others (38 and unknown (39. These may represent minor cellular target sites (side-effects for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s.

  13. Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects.

    Directory of Open Access Journals (Sweden)

    Karen Windey

    Full Text Available OBJECTIVE: Protein fermentation results in production of metabolites such as ammonia, amines and indolic, phenolic and sulfur-containing compounds. In vitro studies suggest that these metabolites might be toxic. However, human and animal studies do not consistently support these findings. We modified protein fermentation in healthy subjects to assess the effects on colonic metabolism and parameters of gut health, and to identify metabolites associated with toxicity. DESIGN: After a 2-week run-in period with normal protein intake (NP, 20 healthy subjects followed an isocaloric high protein (HP and low protein (LP diet for 2 weeks in a cross-over design. Protein fermentation was estimated from urinary p-cresol excretion. Fecal metabolite profiles were analyzed using GC-MS and compared using cluster analysis. DGGE was used to analyze microbiota composition. Fecal water genotoxicity and cytotoxicity were determined using the Comet assay and the WST-1-assay, respectively, and were related to the metabolite profiles. RESULTS: Dietary protein intake was significantly higher during the HP diet compared to the NP and LP diet. Urinary p-cresol excretion correlated positively with protein intake. Fecal water cytotoxicity correlated negatively with protein fermentation, while fecal water genotoxicity was not correlated with protein fermentation. Heptanal, 3-methyl-2-butanone, dimethyl disulfide and 2-propenyl ester of acetic acid are associated with genotoxicity and indole, 1-octanol, heptanal, 2,4-dithiapentane, allyl-isothiocyanate, 1-methyl-4-(1-methylethenyl-benzene, propionic acid, octanoic acid, nonanoic acid and decanoic acid with cytotoxicity. CONCLUSION: This study does not support a role of protein fermentation in gut toxicity. The identified metabolites can provide new insight into colonic health. TRIAL REGISTRATION: ClinicalTrial.gov NCT01280513.

  14. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein.

    Directory of Open Access Journals (Sweden)

    Victoria A Lawson

    Full Text Available BACKGROUND: The accumulation of protease resistant conformers of the prion protein (PrP(res is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. METHODOLOGY/PRINCIPAL FINDING: In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrP(res formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS from the PrP(C substrate was found to specifically prevent PrP(res formation seeded by mouse derived PrP(Sc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrP(res formation, while having no effect on PrP(res formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. CONCLUSIONS/SIGNIFICANCE: Cofactor requirements for PrP(res formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.

  15. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    Science.gov (United States)

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-01-01

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active. PMID:26474791

  16. Transmembrane protein 106B, a risk factor in frontotemporal lobar degeneration, is a lysosomal type II transmembrane protein and affects autophagy

    OpenAIRE

    Lang, Christina

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a fatal neurodegenerative disease with presenile onset. Clinically, it mainly presents with language disorders or personality and behavioural changes whereas pathologically patients show atrophy of the frontal and temporal lobes of the brain. Like in other neurodegenerative disorders, abnormal protein deposition can be detected in the affected areas of the brain nervous system. However, several different proteins have been identified ...

  17. Metabolic labeling of cellular glycoproteins with glucosamine: potential for erroneous interpretations due to nonenzymatic radiolabeling of proteins

    International Nuclear Information System (INIS)

    Proteins, including serum proteins of culture media, become nonenzymatically radiolabeled under conditions used for metabolic labeling of cultured cells with glucosamine. This occurs even under sterile conditions in the absence of cells. Various commercial lots of 3H or 14C glcN gave similar results: ∼ 0.7% of total label was incorporated into 20% serum (14 mg/ml protein) in 48 h at 370C. By SDS-PAGE fluorography, labeled serum bands correspond to Coomassie stained bands. Incorporation is linear with protein concentration and label input, shows biphasic kinetics (initial rapid rate within first 3 hr, followed by slower linear rate with no sign of saturation through 120 hr), and is temperature-dependent (no reaction at 00C; incorporation at 200C is ∼ 45% of that at 370C). Poly-D-lysine is a better acceptor than protein: 0.5 mg/ml PL accepts as much label as 7 mg/ml protein. Incorporation is inhibited by excess unlabeled glcN and ethanolamine, but not by man, gal or glucose. However, when proteins were incubated with 160 mM glcN, SDS-PAGE bands were yellow-brown, suggesting the occurrence of Maillard-type reactions. Although the chemical mechanism(s) responsible for nonmetabolic radiolabeling by glcN are not clear at this point, the fact that it occurs represents a serious artifact which may lead to erroneous interpretation of data

  18. JAK and STAT members of yellow catfish Pelteobagrus fulvidraco and their roles in leptin affecting lipid metabolism.

    Science.gov (United States)

    Wu, Kun; Tan, Xiao-Ying; Xu, Yi-Huan; Chen, Qi-Liang; Pan, Ya-Xiong

    2016-01-15

    The present study clones and characterizes the full-length cDNA sequences of members in JAK-STAT pathway, explores their mRNA tissue expression and the biological role in leptin influencing lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Full-length cDNA sequences of five JAKs and seven STAT members, including some splicing variants, were obtained from yellow catfish. Compared to mammals, more members of the JAKs and STATs family were found in yellow catfish, which provided evidence that the JAK and STAT family members had arisen by the whole genome duplications during vertebrate evolution. All of these members were widely expressed across the eleven tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, testis and ovary) but at the variable levels. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin changed triglyceride content and mRNA expression of several JAKs and STATs members, and genes involved in lipid metabolism. AG490, a specific inhibitor of JAK2-STAT pathway, partially reversed leptin-induced effects, indicating that the JAK2a/b-STAT3 pathway exerts main regulating actions of leptin on lipid metabolism at transcriptional level. Meanwhile, the different splicing variants were differentially regulated by leptin incubation. Thus, our data suggest that leptin activated the JAK/STAT pathway and increases the expression of target genes, which partially accounts for the leptin-induced changes in lipid metabolism in yellow catfish. PMID:26704851

  19. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian;

    2015-01-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream proces...

  20. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding

    International Nuclear Information System (INIS)

    Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor

  1. The effect of milk and milk proteins on risk factors of metabolic syndrome in overweight adolecents

    DEFF Research Database (Denmark)

    Arnberg, Karina

    of type-2 diabetes and atherosclerotic cardiovascular diseases. Overweight children have higher concentrations of the metabolic syndrome risk factors than normal weight children and the pathological condition underlying cardiovascular diseases, called atherosclerosis, seems to start in childhood. A...

  2. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Directory of Open Access Journals (Sweden)

    Cai Z

    2013-08-01

    Full Text Available Zhiyou Cai,1 Yong Yan,2 Yonglong Wang2 1Department of Neurology, the Lu’an Affiliated Hospital of Anhui Medical University, Lu’an People’s Hospital, Lu’an, Anhui Province, People’s Republic of China; 2Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, People’s Republic of China Background: Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method: An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results: These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion: On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting

  3. Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum.

    Science.gov (United States)

    Yin, Yan-Ling; Zhou, Yue; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2016-10-01

    Nitric oxide (NO) and mitogen-activated protein kinase (MPK) play important roles in brassinosteroid (BR)-induced stress tolerance, however, their functions in BR-induced pesticides metabolism remain unclear. Here, we showed that MPK activity and transcripts of SlMPK1 and SlMPK2 were induced by chlorothalonil (CHT), a widely used fungicide, in tomato leaves. However, cosilencing of SlMPK1/2 compromised the 24-epibrassinolide (EBR)-induced upregulation of detoxification genes and CHT metabolism in tomato leaves. In addition, cosilencing of SlMPK1/2 inhibited the accumulation of S-nitrosothiol (SNO), the reservoir of nitric oxide (NO) in plants, whereas tungstate, the inhibitor of nitrate reductase (NR), blocked EBR-induced SNO accumulation and MPK activity. Inhibiting the accumulation of NO by cPTIO, the specific scavenger and tungstate abolished the EBR-induced upregulation of detoxification genes, glutathione accumulation and CHT metabolism. The results showed that MPK and NR-dependent NO were involved in BR-induced CHT metabolism. Notably, there was a positive crosstalk between the MPK and NO production. PMID:27236431

  4. Significantly fewer protein functional changing variants for lipid metabolism in Africans than in Europeans

    OpenAIRE

    Xue, Cheng; Liu, Xiaoming; Gong, Yun; Zhao, Yuhai; Fu, Yun-Xin

    2013-01-01

    Background The disorders in metabolism of energy substances are usually related to some diseases, such as obesity, diabetes and cancer, etc. However, the genetic background for these disorders has not been well understood. In this study, we explored the genetic risk differences among human populations in metabolism (catabolism and biosynthesis) of energy substances, including lipids, carbohydrates and amino acids. Results Two genotype datasets (Hapmap and 1000 Genome) were used for this study...

  5. Urinary deoxypyridinoline (DPD), serum bone glia protein (BGP) and bone metabolism change in hyperthyroidism

    International Nuclear Information System (INIS)

    Objective: To study the effect of thyroid function on bone metabolism. Methods: Urinary DPD, Serum FT3, FT4 and BGP levels were determined with chemiluminescence assay and RIA in 41 patients with hyperthyroidism and 47 healthy controls. Results: Urinary DPD and serum FT3, FT4, BGP levels were significantly higher in patients with hyperthyroidism than those in healthy controls (p < 0.01). Conclusion: The data showed that hyperthyroidism was correlated with bone metabolism

  6. Protein and folic acid content in the maternal diet determine lipid metabolism and response to high-fat feeding in rat progeny in an age-dependent manner

    OpenAIRE

    Chmurzynska, Agata; Stachowiak, Monika; Gawecki, Jan; Pruszynska-Oszmalek, Ewa; Tubacka, Małgorzata

    2011-01-01

    Maternal diet during gestation can exert a long-term effect on the progeny’s health by programming their developmental scheme and metabolism. The aim of this study is to analyze the influence of maternal diet on lipid metabolism in 10- and 16-week-old rats. Pregnant dams were fed one of four diets: a normal protein and normal folic acid diet (NP-NF), a protein-restricted and normal folic acid diet (PR-NF), a protein-restricted and folic-acid-supplemented diet (PR-FS), or a normal protein and ...

  7. Biochemical studies of effects of alcohol consumption on fat and carbohydrate metabolism in rats fed different levels of proteins

    International Nuclear Information System (INIS)

    Alcohol, ethanol and ethyl alcohol are synonymously used during the present dissertation. Alcohol probably was among the first psychoactive substances to be used by man (Winger et al., 1992). Ethanol is mainly oxidized to acetaldehyde in the liver (Ugarte and Peresa, 1978) by alcohol dehydrogenase (ADH). Alcohol is associated with many metabolic disorders inside the body (Thayer and Rubin, 1979; Forsander and Poso, 1988; Poso and Hirsimaki, 1991; Bernal, et al., 1992). The nutritional factors which received little attention have an important role in alcoholic metabolizing alterations. Morphologically and biochemically, an increase in hepatic lipid was demonstrated when ethanol was given either as a supplement or as an iso caloric substitute for carbohydrate together with an otherwise nutritionally adequate diet. Low-protein diets have been shown to diminish hepatic alcohol dehydrogenase (ADH) levels in rats and to slow down the metabolism of ethanol considerably (Wilson et al., 1986). Hepatic steatosis was produced, even with a high-protein, vitamin-supplemented diet and was accompanied by major ultrastructural liver changes and by elevations of hepatic transaminases in blood (Lieber et al., 1963 and 1965 and Lane and Lieber, 1966). If dietary fat was reduced from 35 to 25% of total calories, hepatic triglyceride accumulation greatly decreased (Lieber and DeCarli, 970)

  8. Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (−)-[18 F]Flubatine in humans

    International Nuclear Information System (INIS)

    Introduction: (−)-[18 F]Flubatine is a PET tracer with high affinity and selectivity for the nicotinic acetylcholine α4β2 receptor subtype. A clinical trial assessing the availability of this subtype of nAChRs was performed. From a total participant number of 21 Alzheimer’s disease (AD) patients and 20 healthy controls (HCs), the following parameters were determined: plasma protein binding, metabolism and activity distribution between plasma and whole blood. Methods: Plasma protein binding and fraction of unchanged parent compound were assessed by ultracentrifugation and HPLC, respectively. The distribution of radioactivity (parent compound + metabolites) between plasma and whole blood was determined ex vivo at different time-points after injection by gamma counting after separation of whole blood by centrifugation into the cellular and non-cellular components. In additional experiments in vitro, tracer distribution between these blood components was assessed for up to 90 min. Results: A fraction of 15% ± 2% of (−)-[18 F]Flubatine was found to be bound to plasma proteins. Metabolic degradation of (−)-[18 F]Flubatine was very low, resulting in almost 90% unchanged parent compound at 90 min p.i. with no significant difference between AD and HC. The radioactivity distribution between plasma and whole blood changed in vivo only slightly over time from 0.82 ± 0.03 at 3 min p.i. to 0.87 ± 0.03 at 270 min p.i. indicating the contribution of only a small amount of metabolites. In vitro studies revealed that (−)-[18 F]Flubatine was instantaneously distributed between cellular and non-cellular blood parts. Discussion: (−)-[18 F]Flubatine exhibits very favourable characteristics for a PET radiotracer such as slow metabolic degradation and moderate plasma protein binding. Equilibrium of radioactivity distribution between plasma and whole blood is reached instantaneously and remains almost constant over time allowing both convenient sample handling and

  9. Proteomic analysis of ACTN4-interacting proteins reveals it's a putative involvement in mRNA metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Khotin, Mikhail, E-mail: h_mg@mail.ru [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Turoverova, Lidia [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Aksenova, Vasilisa [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Department of Genetics, St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg (Russian Federation); Barlev, Nikolai [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN (United Kingdom); Borutinskaite, Veronika Viktorija [Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Department of Developmental Biology, Institute of Biochemistry, LT-08662 Vilnius (Lithuania); Vener, Alexander [Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Bajenova, Olga [Department of Genetics, St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg (Russian Federation); Magnusson, Karl-Eric [Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Pinaev, George P. [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Tentler, Dmitri, E-mail: dtentler@mail.cytspb.rssi.ru [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation)

    2010-06-25

    Alpha-actinin 4 (ACTN4) is an actin-binding protein. In the cytoplasm, ACTN4 participates in structural organisation of the cytoskeleton via cross-linking of actin filaments. Nuclear localisation of ACTN4 has also been reported, but no clear role in the nucleus has been established. In this report, we describe the identification of proteins associated with ACTN4 in the nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and MALDI-TOF mass-spectrometry revealed a large number of ACTN4-bound proteins that are involved in various aspects of mRNA processing and transport. The association of ACTN4 with different ribonucleoproteins suggests that a major function of nuclear ACTN4 may be regulation of mRNA metabolism and signaling.

  10. Effect of whey supplementation on blood markers of protein metabolism in young and elderly after resistance exercise

    OpenAIRE

    Holte, Kristin

    2014-01-01

    Abstract Introduction: Ingestion of whey protein has been shown to be superior to casein in the acute stimulation of anabolic responses in muscle. The composition of whey protein may alter how rapidly the amino acids are available after consumption, and thus affect acute anabolic responses in muscle and other tissues. Aims: To investigate how ingestion of different whey products, influences the acute changes in the blood amino acid and urea concentration following standardized resistance exer...

  11. Effect of long-term refeeding on protein metabolism in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Kondrup, J; Nielsen, K; Juul, A

    1997-01-01

    protein synthesis was associated with significant increases in plasma concentrations of total amino acids (25%), leucine (58%), isoleucine (82%), valine (72%), proline (48%) and triiodothyronine (27%) while insulin, growth hormone, insulin-like growth factor (IGF)-I and IGF-binding protein-3 were not...... a normal protein requirement with the patients who had an increased protein requirement suggests that the increased protein requirement is due to a primary increase in protein degradation. It is speculated that this is due to low levels of IGF-I secondary to impaired liver function, since initial...... plasma concentration of IGF-I was about 25% of control values and remained low during refeeding....

  12. Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.

    Science.gov (United States)

    Rocheleau, Gail; Petrillo, Jessica; Guogas, Laura; Gehrke, Lee

    2004-08-01

    The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity. PMID:15254175

  13. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  14. Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health.

    Science.gov (United States)

    Dickson, Lorna M; Gandhi, Shriya; Layden, Brian T; Cohen, Ronald N; Wicksteed, Barton

    2016-07-01

    Adipose tissue PKA has roles in adipogenesis, lipolysis, and mitochondrial function. PKA transduces the cAMP signal downstream of G protein-coupled receptors, which are being explored for therapeutic manipulation to reduce obesity and improve metabolic health. This study aimed to determine the overall physiological consequences of PKA activation in adipose tissue. Mice expressing an activated PKA catalytic subunit in adipose tissue (Adipoq-caPKA mice) showed increased PKA activity in subcutaneous, epididymal, and mesenteric white adipose tissue (WAT) depots and brown adipose tissue (BAT) compared with controls. Adipoq-caPKA mice weaned onto a high-fat diet (HFD) or switched to the HFD at 26 wk of age were protected from diet-induced weight gain. Metabolic health was improved, with enhanced insulin sensitivity, glucose tolerance, and β-cell function. Adipose tissue health was improved, with smaller adipocyte size and reduced macrophage engulfment of adipocytes. Using metabolic cages, we found that Adipoq-caPKA mice were shown to have increased energy expenditure, but no difference to littermate controls in physical activity or food consumption. Immunoblotting of adipose tissue showed increased expression of uncoupling protein-1 (UCP1) in BAT and dramatic UCP1 induction in subcutaneous WAT, but no induction in the visceral depots. Feeding a HFD increased PKA activity in epididymal WAT of wild-type mice compared with chow, but did not change PKA activity in subcutaneous WAT or BAT. This was associated with changes in PKA regulatory subunit expression. This study shows that adipose tissue PKA activity is sufficient to increase energy expenditure and indicates that PKA is a beneficial target in metabolic health. PMID:27097660

  15. Differential metabolism and leakage of protein in an inherited cataract and a normal lens cultured with ouabain

    International Nuclear Information System (INIS)

    Ocular lenses in Nakano mice showed marked changes in synthesis, degradation and leakage of protein during cataractogenesis. The cataract-associated changes included the differential lowering of crystalline synthesis, the cleavage of crystallin polypeptides to lower molecular weight forms and the leakage of crystallins from cultured lenses. Ouabain treatment of normal lenses induced these alterations, suggesting that changes in the intracellular levels of Na+ and K+ affect the anabolism and catabolism of protein during cataract formation. 35S-methionine was used during the course of the experiments as a method of protein identification. (author)

  16. Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism

    OpenAIRE

    Xu, Di; Borges, Giulianna R.; Deborah R Davis; Agassandian, Khristofor; Sequeira Lopez, Maria Luisa S.; Gomez, R. Ariel; Cassell, Martin D.; Grobe, Justin L.; Sigmund, Curt D.

    2010-01-01

    The renin-angiotensin system (RAS), known for its roles in cardiovascular, metabolic, and developmental regulation, is present in both the circulation and in many individual tissues throughout the body. Substantial evidence supports the existence of a brain RAS, though quantification and localization of brain renin have been hampered by its low expression levels. We and others have previously determined that there are two isoforms of renin expressed in the brain. The classical isoform encodin...

  17. The Sleeping Beauty: How Reproductive Diapause Affects Hormone Signaling, Metabolism, Immune Response and Somatic Maintenance in Drosophila melanogaster

    OpenAIRE

    Kubrak, Olga I.; Lucie Kučerová; Ulrich Theopold; Nässel, Dick R.

    2014-01-01

    Some organisms can adapt to seasonal and other environmental challenges by entering a state of dormancy, diapause. Thus, insects exposed to decreased temperature and short photoperiod enter a state of arrested development, lowered metabolism, and increased stress resistance. Drosophila melanogaster females can enter a shallow reproductive diapause in the adult stage, which drastically reduces organismal senescence, but little is known about the physiology and endocrinology associated with thi...

  18. Hydrocortisone stimulates the development of oligodendrocytes in primary glial cultures and affects glucose metabolism and lipid synthesis in these cultures

    OpenAIRE

    Warringa, R.A.J.; Hoeben, R C; Koper, W.J.; Sykes, J.E.C.; Golde, L.M.G. van; Lopes-Cardozo, M.

    1987-01-01

    Cultures of glial cells were prepared from the brains of one-week-old rat pups. After one day in culture, serum was omitted from the medium and replaced by a combination of growth-stimulating hormones and other factors that enhanced the percentage of oligodendrocytes in the cultures. We investigated the effects of hydrocortisone on the development of oligodendrocytes, on the activities of oligodendrocyte-specific enzymes and on glucose- and lipid-metabolism of the glial cells. (1) Hydrocortis...

  19. Redox driven metabolic tuning: Carbon source and aeration affect synthesis of poly(3-hydroxybutyrate) in Escherichia coli

    OpenAIRE

    Nikel, Pablo I.; de Almeida, Alejandra; Giordano, Andrea M.; Pettinari, M. Julia

    2010-01-01

    Growth and polymer synthesis were studied in a recombinant E. coli strain carrying phaBAC and phaP of Azotobacter sp. strain FA8 using different carbon sources and oxygen availability conditions. The results obtained with glucose or glycerol were completely different, demonstrating that the metabolic routes leading to the synthesis of the polymer when using glycerol do not respond to environmental conditions such as oxygen availability in the same way as they do when other substrates, such as...

  20. Supplemental barley protein and casein similarly affect serum lipids in hypercholesterolemic women and men.

    Science.gov (United States)

    Jenkins, David J A; Srichaikul, Korbua; Wong, Julia M W; Kendall, Cyril W C; Bashyam, Balachandran; Vidgen, Edward; Lamarche, Benoicirct; Rao, A Venketeshwer; Jones, Peter J H; Josse, Robert G; Jackson, Chung-Ja C; Ng, Vivian; Leong, Tracy; Leiter, Lawrence A

    2010-09-01

    High-protein diets have been advocated for weight loss and the treatment of diabetes. Yet animal protein sources are often high in saturated fat and cholesterol. Vegetable protein sources, by contrast, are low in saturated fat and without associated cholesterol. We have therefore assessed the effect on serum lipids of raising the protein intake by 5% using a cereal protein, barley protein, as part of a standard therapeutic diet. Twenty-three hypercholesterolemic men and postmenopausal women completed a randomized crossover study comparing a bread enriched with either barley protein or calcium caseinate [30 g protein, 8374 kJ (2000 kcal)] taken separately as two 1-mo treatment phases with a minimum 2-wk washout. Body weight and diet history were collected weekly during each treatment. Fasting blood samples were obtained at wk 0, 2, and 4. Palatability, satiety, and compliance were similar for both the barley protein- and casein-enriched breads, with no differences between the treatments in effects on serum LDL cholesterol or C-reactive protein, measures of oxidative stress, or blood pressure. Nevertheless, because no adverse effects were observed on cardiovascular risk factors, barley protein remains an additional option for raising the protein content of the diet. PMID:20668250

  1. Mutations in the classical swine fever virus NS4B protein affects virulence in swine

    Science.gov (United States)

    NS4B is one of the non-structural proteins of Classical Swine Fever Virus (CSFV), the etiological agent of a severe, highly lethal disease of swine. Protein domain analysis of the predicted amino acid sequence of the NS4B protein of highly pathogenic CSFV strain Brescia (BICv) identified a Toll/Inte...

  2. Pulmonary heat shock protein expression after exposure to a metabolically activated Clara cell toxicant: relationship to protein adduct formation

    International Nuclear Information System (INIS)

    Heat shock proteins/stress proteins (Hsps) participate in regulation of protein synthesis and degradation and serve as general cytoprotectants, yet their role in lethal Clara cell injury is not clear. To define the pattern of Hsp expression in acute lethal Clara cell injury, mice were treated with the Clara cell-specific toxicant naphthalene (NA), and patterns of expression compared to electrophilic protein adduction and previously established organellar degradation and gluathione (GSH) depletion. In sites of lethal injury (distal bronchiole), prior to organellar degradation (1 h post-NA), protein adduction is detectable and ubiquitin, Hsp 25, Hsp 72, and heme-oxygenase 1 (HO-1) are increased. Maximal Hsp expression, protein adduction, and GSH depletion occur simultaneous (by 2-3 h) with early organelle disruption. Hsp expression is higher later (6-24 h), only in exfoliating cells. In airway sites (proximal bronchiole) with nonlethal Clara cell injury elevation of Hsp 25, 72, and HO-1 expression follows significant GSH depletion (greater than 50% 2 h post-NA). This data build upon our previous studies and we conclude that (1) in lethal (terminal bronchiole) and nonlethal (proximal bronchiole) Clara cell injury, Hsp induction is associated with the loss of GSH and increased protein adduction, and (2) in these same sites, organelle disruption is not a prerequisite for Hsp induction

  3. Plasma membrane lipid-protein interactions affect signaling processes in sterol-biosynthesis mutants of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Henrik eZauber

    2014-03-01

    Full Text Available The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid-protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status.

  4. Identification of mitogen-activated protein kinase docking sites in enzymes that metabolize phosphatidylinositols and inositol phosphates

    Directory of Open Access Journals (Sweden)

    Buckley Colin T

    2006-01-01

    Full Text Available Abstract Background Reversible interactions between the components of cellular signaling pathways allow for the formation and dissociation of multimolecular complexes with spatial and temporal resolution and, thus, are an important means of integrating multiple signals into a coordinated cellular response. Several mechanisms that underlie these interactions have been identified, including the recognition of specific docking sites, termed a D-domain and FXFP motif, on proteins that bind mitogen-activated protein kinases (MAPKs. We recently found that phosphatidylinositol-specific phospholipase C-γ1 (PLC-γ1 directly binds to extracellular signal-regulated kinase 2 (ERK2, a MAPK, via a D-domain-dependent mechanism. In addition, we identified D-domain sequences in several other PLC isozymes. In the present studies we sought to determine whether MAPK docking sequences could be recognized in other enzymes that metabolize phosphatidylinositols (PIs, as well as in enzymes that metabolize inositol phosphates (IPs. Results We found that several, but not all, of these enzymes contain identifiable D-domain sequences. Further, we found a high degree of conservation of these sequences and their location in human and mouse proteins; notable exceptions were PI 3-kinase C2-γ, PI 4-kinase type IIβ, and inositol polyphosphate 1-phosphatase. Conclusion The results indicate that there may be extensive crosstalk between MAPK signaling and signaling pathways that are regulated by cellular levels of PIs or IPs.

  5. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  6. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Directory of Open Access Journals (Sweden)

    Hitomi Maruta

    Full Text Available Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4 genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A, which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  7. Effects of X-irradiation on some aspects of protein metabolism in the frog, Rana hexadactyla

    International Nuclear Information System (INIS)

    Changes in the level of total proteins and protease in brain, muscle and liver tissues of normal and X-irradiated frogs were determined. Low doses of radiation produced an increment in protein level while high doses produced decrement. However, protease activity at all doses exhibited an elevatory trend. Exposure of frogs to lethal doses resulted in increased protease activity and decreased protein content during post-irradiation periods. The results are discussed on the basis of protein destruction and lysosomal damage. (auth.)

  8. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-11-30

    Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peak intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at

  9. Metabolism of labelled proteins of bombicid moth hemolymph at the final stage of its larval development

    International Nuclear Information System (INIS)

    Studied was the distribution of radioactivity among hemolymph total proteins, fat body, carcass, intestinal wall, febroin and sericin sections of the silk gland after a single injection of hemolymph radioactive preparation into a bombyx. The fat body was the place of the synthesis of proteins used for silk protein formation at the end of 5-larval age

  10. A P4-ATPase protein interaction network reveals a link between aminophospholipid transport and phosphoinositide metabolism

    NARCIS (Netherlands)

    Puts, C.F.; Lenoir, G.F.; Krijgsveld, J.; WIlliamson, P.L.; Holthuis, J.C.M.

    2009-01-01

    High-throughput analysis of protein-protein interactions can provide unprecedented insight into how cellular processes are integrated at the molecular level. Yet membrane proteins are often overlooked in these studies owing to their hydrophobic nature and low abundance. Here we used a proteomics-bas

  11. Studies of genetical variation affecting grain protein type and amount in wheat

    International Nuclear Information System (INIS)

    Difficulties in improving protein content and optimizing amino acid ratios in wheat endosperm led to investigations of the genes controlling the endosperm proteins. In wild relatives of wheat different endosperm proteins have been discovered and attempts are described to transfer the genes to bread wheat. The generally negative correlation between grain yield and protein content stimulated further studies on genes of different origin and their effect on correlation, using monosomic techniques. Large grain size was found to be positively correlated with percentage protein. (author)

  12. Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in "Drosophila melanogaster"

    Science.gov (United States)

    Scheiner, Ricarda; Sokolowski, Marla B.; Erber, Joachim

    2004-01-01

    The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The "foraging" ("for") gene encodes a PKG in "Drosophila melanogaster." Here, we demonstrate a function for the "for" gene in sensory responsiveness and nonassociative learning. Larvae of the…

  13. Expression of Bax in yeast affects not only the mitochondria but also vacuolar integrity and intracellular protein traffic

    DEFF Research Database (Denmark)

    Dimitrova, Irina; Toby, Garabet G; Tili, Esmerina;

    2004-01-01

    -transferase (BI-GST) leads to aggregation, but not fusion of the mitochondria. In addition, Bax affects the integrity of yeast vacuoles, resulting in the disintegration and eventual loss of the organelles, and the disruption of intracellular protein traffic. While Bcl-2 coexpression only partially corrects...

  14. Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Schjerling, P.; Langberg, Henning;

    2011-01-01

    Unaccustomed exercise leads to satellite cell proliferation and increased skeletal muscle protein turnover. Several growth factors and cytokines may be involved in the adaptive responses. Non-steroidal anti-inflammatory drugs (NSAIDs) negatively affect muscle regeneration and adaptation in animal...

  15. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    Science.gov (United States)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  16. Controlled trial of the effects of milk basic protein (MBP) supplementation on bone metabolism in healthy adult women.

    Science.gov (United States)

    Aoe, S; Toba, Y; Yamamura, J; Kawakami, H; Yahiro, M; Kumegawa, M; Itabashi, A; Takada, Y

    2001-04-01

    Milk has more beneficial effects on bone health compared to other food sources. Recent in vitro and in vivo studies showed that milk whey protein, especially its basic protein fraction, contains several components capable of both promoting bone formation and inhibiting bone resorption. However, the effects of milk basic protein (MBP) on bone metabolism of humans are not known. The object of this study was to examine the effects of MBP on bone metabolism of healthy adult women. Thirty-three normal healthy women were randomly assigned to treatment with either placebo or MBP (40 mg per day) for six months. The bone mineral density (BMD) of the left calcaneus of each subject was measured at the beginning of the study and after six months of treatment, by dual-energy x-ray absorptiometry. Serum and urine indices of bone metabolism were measured at the base line, three-month intervals, and the end of the study. Daily intake of nutrients was monitored by a three-day food record made at three and six months. The mean (+/- SD) rate of left calcaneus BMD gain of women in the MBP group (3.42 +/- 2.05%) was significantly higher than that of women in the placebo group (2.01 +/- 1.75%, P = 0.042). As compared with the placebo group, urinary cross-linked N-teleopeptides of type-I collagen/creatinine and deoxypyridinoline/creatinine were significantly decreased in the MBP group (p supplementation of 40 mg in healthy adult women can significantly increase their BMD independent of dietary intake of minerals and vitamins. This increase in BMD might be primarily mediated through inhibition of osteoclast-mediated bone resorption by the MBP supplementation. PMID:11388472

  17. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Ashley N Filiano

    Full Text Available Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease. However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2 and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN. These results were confirmed in Per2(Luciferase knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to

  18. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P;

    2009-01-01

    Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...... of either rhTNF-alpha (700 ng.m(-2).h(-1)) or 20% human albumin (Control) which was the vehicle of rhTNF-alpha. Systemic and skeletal muscle protein turnover were estimated by a combination of tracer dilution methodology (primed continuous infusion of L-[ring-(2)H5]phenylalanine and L-[(15)N...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when...

  19. Structural and metabolic studies of O-linked fucose-containing proteins of normal and virally-transformed rat fibroblasts

    International Nuclear Information System (INIS)

    Previous studies in this laboratory have demonstrated that cultured human and rodent cells contain a series of low molecular weight glycosylated amino acids of unusual structure, designated amino acid fucosides. The incorporation of radiolabelled-fucose into one of these components, designated FL4a (glucosylfucosylthreonine), is markedly-reduced in transformed epithelial and fibroblastic cells. The authors have examined fucose-labelled normal and virally-transformed rat fibroblast cell lines for glycoproteins which might be precursors to amino acid fucosides. Using milk alkaline/borohydride treatment (the beta-elimination reaction) to release O-linked oligosaccharides from proteins, they have isolated and partially characterized two low M/sub r/ reaction products (designated DS-ol and TS-ol) released from macromolecular cell material. The identity of one of these components (DS-ol, glucosylfucitol) suggested the existence in these cells of a direct protein precursor to FL4a. They examined fucose-labelled macromolecular cell material for proteins which release DS-ol (DS-proteins.). Using gel filtration chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with subsequent autoradiography, they have observed DS-proteins which appear to exhibit a broad molecular weight size range, and are also present in culture medium from normal and transformed cells. The findings suggest that mammalian cells contain DS-proteins and TS-proteins with a novel carbohydrate-peptide linkage wherein L-fucose is O-linked to a polypeptide backbone. Metabolic studies were undertaken to examine both the relationship between DS-protein and FL4a and the biochemical basis for the decreased level of FL4a and the biochemical basis for the decreased level of FL4a observed in transformed cells

  20. Lipid Chaperones and Metabolic Inflammation

    Directory of Open Access Journals (Sweden)

    Masato Furuhashi

    2011-01-01

    Full Text Available Over the past decade, a large body of evidence has emerged demonstrating an integration of metabolic and immune response pathways. It is now clear that obesity and associated disorders such as insulin resistance and type 2 diabetes are associated with a metabolically driven, low-grade, chronic inflammatory state, referred to as “metaflammation.” Several inflammatory cytokines as well as lipids and metabolic stress pathways can activate metaflammation, which targets metabolically critical organs and tissues including adipocytes and macrophages to adversely affect systemic homeostasis. On the other hand, inside the cell, fatty acid-binding proteins (FABPs, a family of lipid chaperones, as well as endoplasmic reticulum (ER stress, and reactive oxygen species derived from mitochondria play significant roles in promotion of metabolically triggered inflammation. Here, we discuss the molecular and cellular basis of the roles of FABPs, especially FABP4 and FABP5, in metaflammation and related diseases including obesity, diabetes, and atherosclerosis.

  1. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  2. Foliar urea application affects nitric oxide burst and glycine betaine metabolism in two maize cultivars under drought

    International Nuclear Information System (INIS)

    Foliar urea has been proved to act a better role in alleviation of the negative effects of drought stress (DS). However, the modulation mechanism of foliar urea are not conclusive in view of nitric oxide (NO) burst and glycine betaine metabolism and their relationship. Two maize ( Zea mays L.) cultivars (Zhengdan 958, JD958, Jundan 20, ZD20) were grown in hydroponic medium, which were treated with spraying of urea concentration of 15 g L/sup -1/ and two water regimes (non-stress and DS simulated by the addition of polyethylene glycol (PEG, 15% w/v, MW 6000). The ten-day DS treatment increased betaine aldehyde dehydrogenase (BADH) activity, choline content and nitric oxide (NO) content acted as the key enzyme, initial substrate and a nitrogenous signal substance respectively in GB synthesis metabolism, thus, induced to great GB accumulation. The accumulation of NO reached the summit earlier than that of GB. The more positive/less negative responses were recorded in JD958 as compared with ZD20 to DS. Addition of foliar ur ea could increase accumulation of choline and BADH activity as well as NO content, thereby, increase GB accumulation under DS. These positive effects of urea applying foliarly on all parameters measured were more pronounced in cultivar JD20 than those in ZD958 under drought. It is, therefore, concluded that increases of both BADH activity and choline content possibly resulted in enhancement of GB accumulation. Foliar urea application could provoke better GB accumulation by modulation of GB metabolism, possibly mediating by NO burst as a signal molecule during drought, especially in the drought sensitive maize cultivar. (author)

  3. The sleeping beauty: how reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster.

    Science.gov (United States)

    Kubrak, Olga I; Kučerová, Lucie; Theopold, Ulrich; Nässel, Dick R

    2014-01-01

    Some organisms can adapt to seasonal and other environmental challenges by entering a state of dormancy, diapause. Thus, insects exposed to decreased temperature and short photoperiod enter a state of arrested development, lowered metabolism, and increased stress resistance. Drosophila melanogaster females can enter a shallow reproductive diapause in the adult stage, which drastically reduces organismal senescence, but little is known about the physiology and endocrinology associated with this dormancy, and the genes involved in its regulation. We induced diapause in D. melanogaster and monitored effects over 12 weeks on dynamics of ovary development, carbohydrate and lipid metabolism, as well as expression of genes involved in endocrine signaling, metabolism and innate immunity. During diapause food intake diminishes drastically, but circulating and stored carbohydrates and lipids are elevated. Gene transcripts of glucagon- and insulin-like peptides increase, and expression of several target genes of these peptides also change. Four key genes in innate immunity can be induced by infection in diapausing flies, and two of these, drosomycin and cecropin A1, are upregulated by diapause independently of infection. Diapausing flies display very low mortality, extended lifespan and decreased aging of the intestinal epithelium. Many phenotypes induced by diapause are reversed after one week of recovery from diapause conditions. Furthermore, mutant flies lacking specific insulin-like peptides (dilp5 and dilp2-3) display increased diapause incidence. Our study provides a first comprehensive characterization of reproductive diapause in D. melanogaster, and evidence that glucagon- and insulin-like signaling are among the key regulators of the altered physiology during this dormancy. PMID:25393614

  4. The sleeping beauty: how reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Olga I Kubrak

    Full Text Available Some organisms can adapt to seasonal and other environmental challenges by entering a state of dormancy, diapause. Thus, insects exposed to decreased temperature and short photoperiod enter a state of arrested development, lowered metabolism, and increased stress resistance. Drosophila melanogaster females can enter a shallow reproductive diapause in the adult stage, which drastically reduces organismal senescence, but little is known about the physiology and endocrinology associated with this dormancy, and the genes involved in its regulation. We induced diapause in D. melanogaster and monitored effects over 12 weeks on dynamics of ovary development, carbohydrate and lipid metabolism, as well as expression of genes involved in endocrine signaling, metabolism and innate immunity. During diapause food intake diminishes drastically, but circulating and stored carbohydrates and lipids are elevated. Gene transcripts of glucagon- and insulin-like peptides increase, and expression of several target genes of these peptides also change. Four key genes in innate immunity can be induced by infection in diapausing flies, and two of these, drosomycin and cecropin A1, are upregulated by diapause independently of infection. Diapausing flies display very low mortality, extended lifespan and decreased aging of the intestinal epithelium. Many phenotypes induced by diapause are reversed after one week of recovery from diapause conditions. Furthermore, mutant flies lacking specific insulin-like peptides (dilp5 and dilp2-3 display increased diapause incidence. Our study provides a first comprehensive characterization of reproductive diapause in D. melanogaster, and evidence that glucagon- and insulin-like signaling are among the key regulators of the altered physiology during this dormancy.

  5. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii.

    Science.gov (United States)

    Kochhann, Daiani; Campos, Derek Felipe; Val, Adalberto Luis

    2015-12-01

    The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position. PMID:26387464

  6. Novel assessment of global metabolism by 18F-FDG-PET for localizing affected lobe in temporal lobe epilepsy.

    Science.gov (United States)

    Peter, Jonah; Houshmand, Sina; Werner, Thomas J; Rubello, Domenico; Alavi, Abass

    2016-08-01

    The aim of this study was to develop a novel method of global quantitative analysis for use in the diagnosis and treatment evaluation of temporal lobe epilepsy (TLE). We studied 16 patients diagnosed with TLE who underwent fluorine-18 fluorodeoxyglucose-PET (F-FDG-PET) and MRI at the Hospital of the University of Pennsylvania. To quantify temporal lobe hypometabolism, we averaged the mean standardized uptake value across regions of interest (ROIs) encompassing each lobe in its entirety and calculated the metabolic ratios and lateralization indices for each patient on the basis of global measurements. For comparison, we carried out a traditional 'punch biopsy' ROI analysis by averaging the mean standardized uptake value within 1 cm diameter ROIs across select slices. Both techniques were performed twice by the same rater to test intraobserver variability. An expert observer carried out visual analyses of both F-FDG-PET and MRI for reference. The global quantitative analysis identified a seizure focus lateralization in agreement with clinical evaluations for 91% of patients on both trials, with intraclass correlation coefficients of 0.97 and 0.92 for metabolic ratios and lateralization indices, respectively. The punch biopsy analysis was in agreement for 91 and 82% of patients on respective trials, with intraclass correlation coefficients of 0.90 and 0.75. Expert visual analyses carried out on F-FDG-PET and MRI were in agreement for 64 and 9% of patients, respectively. The global quantitative analysis proved to be the most accurate and reliable of the methods tested. This technique has the potential to improve metabolic analysis in TLE and other neuropsychiatric disorders. PMID:27092666

  7. The Sleeping Beauty: How Reproductive Diapause Affects Hormone Signaling, Metabolism, Immune Response and Somatic Maintenance in Drosophila melanogaster

    Science.gov (United States)

    Kubrak, Olga I.; Kučerová, Lucie; Theopold, Ulrich; Nässel, Dick R.

    2014-01-01

    Some organisms can adapt to seasonal and other environmental challenges by entering a state of dormancy, diapause. Thus, insects exposed to decreased temperature and short photoperiod enter a state of arrested development, lowered metabolism, and increased stress resistance. Drosophila melanogaster females can enter a shallow reproductive diapause in the adult stage, which drastically reduces organismal senescence, but little is known about the physiology and endocrinology associated with this dormancy, and the genes involved in its regulation. We induced diapause in D. melanogaster and monitored effects over 12 weeks on dynamics of ovary development, carbohydrate and lipid metabolism, as well as expression of genes involved in endocrine signaling, metabolism and innate immunity. During diapause food intake diminishes drastically, but circulating and stored carbohydrates and lipids are elevated. Gene transcripts of glucagon- and insulin-like peptides increase, and expression of several target genes of these peptides also change. Four key genes in innate immunity can be induced by infection in diapausing flies, and two of these, drosomycin and cecropin A1, are upregulated by diapause independently of infection. Diapausing flies display very low mortality, extended lifespan and decreased aging of the intestinal epithelium. Many phenotypes induced by diapause are reversed after one week of recovery from diapause conditions. Furthermore, mutant flies lacking specific insulin-like peptides (dilp5 and dilp2-3) display increased diapause incidence. Our study provides a first comprehensive characterization of reproductive diapause in D. melanogaster, and evidence that glucagon- and insulin-like signaling are among the key regulators of the altered physiology during this dormancy. PMID:25393614

  8. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development

    OpenAIRE

    Hongxia Wang; Jun Yang; Min Zhang; Weijuan Fan; Nurit Firon; Sitakanta Pattanaik; Ling Yuan; Peng Zhang

    2016-01-01

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosy...

  9. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    Science.gov (United States)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  10. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    Directory of Open Access Journals (Sweden)

    Phillips Stuart M

    2011-10-01

    Full Text Available Abstract Age-related muscle wasting (sarcopenia is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i elevated basal-fasted rates of muscle protein breakdown, ii a reduction in basal muscle protein synthesis (MPS, or iii a combination of the two factors. However, basal rates of muscle protein synthesis and breakdown are unchanged with advancing healthy age. Instead, it appears that the muscles of the elderly are resistant to normally robust anabolic stimuli such as amino acids and resistance exercise. Ageing muscle is less sensitive to lower doses of amino acids than the young and may require higher quantities of protein to acutely stimulate equivalent muscle protein synthesis above rest and accrue muscle proteins. With regard to dietary protein recommendations, emerging evidence suggests that the elderly may need to distribute protein intake evenly throughout the day, so as to promote an optimal per meal stimulation of MPS. The branched-chain amino acid leucine is thought to play a central role in mediating mRNA translation for MPS, and the elderly should ensure sufficient leucine is provided with dietary protein intake. With regards to physical activity, lower, than previously realized, intensity high-volume resistance exercise can stimulate a robust muscle protein synthetic response similar to traditional high-intensity low volume training, which may be beneficial for older adults. Resistance exercise combined with amino acid ingestion elicits the greatest anabolic response and may assist elderly in producing a 'youthful' muscle protein synthetic response provided sufficient protein is ingested following exercise.

  11. Alcohol Binding to the Odorant Binding Protein LUSH: Multiple Factors Affecting Binding Affinities

    OpenAIRE

    Ader, Lauren; Jones, David N. M.; Lin, Hai

    2010-01-01

    Density function theory (DFT) calculations have been carried out to investigate the binding of alcohols to the odorant binding protein LUSH from Drosophila melanogaster. LUSH is one of the few proteins known to bind to ethanol at physiologically relevant concentrations and where high-resolution structural information is available for the protein bound to alcohol at these concentrations. The structures of the LUSH–alcohol complexes identify a set of specific hydrogen-bonding interactions as cr...

  12. Improvement of Oxidative and Metabolic Parameters by Cellfood Administration in Patients Affected by Neurodegenerative Diseases on Chelation Treatment

    OpenAIRE

    Alessandro Fulgenzi; Rachele De Giuseppe; Fabrizia Bamonti; Maria Elena Ferrero

    2014-01-01

    Objective. This prospective pilot study aimed at evaluating the effects of therapy with antioxidant compounds (Cellfood, and other antioxidants) on patients affected by neurodegenerative diseases (ND), who displayed toxic metal burden and were subjected to chelation treatment with the chelating agent calcium disodium ethylenediaminetetraacetic acid (CaNa2EDTA or EDTA). Methods. Two groups of subjects were studied: (a) 39 patients affected by ND and (b) 11 subjects unaffected by ND (controls)....

  13. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism

    Directory of Open Access Journals (Sweden)

    Serenella Nardi

    2016-02-01

    Full Text Available ABSTRACT In recent years, the use of biostimulants in sustainable agriculture has been growing. Biostimulants can be obtained from different organic materials and include humic substance