WorldWideScience

Sample records for affects carbon partitioning

  1. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation

    International Nuclear Information System (INIS)

    Carbon partitioning from martensite into austenite in the quenching and partitioning (Q&P) process has been suggested to be controlled by the constrained carbon equilibrium (CCE) criterion. It defines an approach for predicting the carbon concentration in austenite under the condition that competing reactions such as carbide formation and bainite transformation are suppressed. Carbide precipitation in martensite is, however, often observed during the partitioning step, even in low-carbon steels as well as in high-carbon steels, even when containing a high amount of Si. Therefore, carbon partitioning from martensite into austenite is studied here, considering carbide precipitation in martensite. Carbon partitioning was investigated by means of a field-emission electron probe micro analysis (FE-EPMA) and atom probe tomography (APT), using 1.07 wt.% and 0.59 wt.% carbon steels with various martensite volume fractions. Carbon partitioning from martensite to austenite was clearly observed in all specimens, even though a considerable amount of carbide precipitated inside the martensite. The austenite carbon concentration after the partitioning step was not influenced by either the martensite volume fraction or the bulk carbon content. A modified model for predicting the austenite carbon concentration after the partitioning step was proposed to explain the experimental results by assuming carbon equilibria between austenite, ferrite and cementite under a constrained condition

  2. Influence of carbon partitioning kinetics on final Austenite fraction during quenching and partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Amy J [Los Alamos National Laboratory; Speer, John G [COLORADO SCHOOL OF MINES; Matlock, David K [COLORADO SCHOOL OF MINES; Rizzo, F C [PONTIFFCIA UNIV; Edmonds, David V [UNIV OF LEEDS; Santofimia, Maria J [IMDEA-MATERIALES, MADRID

    2009-01-01

    The quenching and partitioning (Q&P) process is a two-stage heat-treatment procedure proposed for producing steel microstructures that contain carbon-enriched retained austenite. In Q&P processing, austenite stabilization is accomplished by carbon partitioning from supersaturated martensite. A quench temperature selection methodology was developed to predict an optimum process quench temperature; extension of this methodology to include carbon partitioning kinetics is developed here. Final austenite fraction is less sensitive to quench temperature than previously predicted, in agreement with experimental results.

  3. Coupled Model for Carbon Partitioning from Martensite into Austenite During the Quenching Process in Fe-C Steels

    Science.gov (United States)

    Liu, Peixing; Zhu, Bin; Wang, Yilin; Zhang, Yisheng

    2016-08-01

    In this paper, a coupled model for carbon partitioning from martensite into austenite during the quenching process in Fe-C steels is constructed where the carbon is permitted to partition while the martensite is continuously forming. A diffusion model of carbon at the `martensite/austenite interface' is created where the interface does not move during the carbon partitioning process, and the driving force for carbon partitioning originates from the chemical potential difference. The results show that the martensitic transformation and carbon partitioning affect each other, and that the cooling rate between the martensite start temperature ( M s) and room temperature has a major effect on the volume fraction of the final retained austenite. The simulation results are shown to be in good agreement with experiments.

  4. Coupled Model for Carbon Partitioning from Martensite into Austenite During the Quenching Process in Fe-C Steels

    Science.gov (United States)

    Liu, Peixing; Zhu, Bin; Wang, Yilin; Zhang, Yisheng

    2016-05-01

    In this paper, a coupled model for carbon partitioning from martensite into austenite during the quenching process in Fe-C steels is constructed where the carbon is permitted to partition while the martensite is continuously forming. A diffusion model of carbon at the `martensite/austenite interface' is created where the interface does not move during the carbon partitioning process, and the driving force for carbon partitioning originates from the chemical potential difference. The results show that the martensitic transformation and carbon partitioning affect each other, and that the cooling rate between the martensite start temperature (M s) and room temperature has a major effect on the volume fraction of the final retained austenite. The simulation results are shown to be in good agreement with experiments.

  5. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration

    International Nuclear Information System (INIS)

    The factors controlling nitrous oxide (N2O) emissions vary with different soil and environmental conditions and management practices. This study was conducted to determine the importance of soil aeration, nitrate (NO3) addition, carbon (C) additions, and C sources on gaseous nitrogen (N) losses from the denitrification of arable soils at a potato farm in Atlantic Canada. Denitrification and N2O emissions were measured using acetylene inhibition. An N2O and nitrogen gas (N2) ratio of 0.7 showed that most emissions occurred as N2O. Emissions at water-filled pore spaces (WFPs) of 0.45 m3 per m3 were negligible. N2O emissions increased with NO3 and C additions. Results suggested that soil aeration plays a dominant role in controlling the magnitude of denitrification and N2O emissions. However, soil NO3 supplies in this study did not limit the denitrification process. The study showed that N2O emissions are controlled by C availability when there is a high degree of soil disturbance and high fertilizer N inputs. The relationship between the demand and supply of terminal electron acceptors (TEAs) was used to explain the spatial distribution of the N2O emissions. Higher WFPs and lower soil NO3 concentrations resulted in higher rates of total denitrification. It was concluded that further research is needed to examine the role of overall soil and crop management in relation to C availability when developing mitigation strategies. 52 refs., 4 tabs

  6. Marine microalgae growth and carbon partitioning as a function of nutrient availability.

    Science.gov (United States)

    Fernandes, Tomásia; Fernandes, Igor; Andrade, Carlos A P; Cordeiro, Nereida

    2016-08-01

    To understand in which way the structural differences of three marine microalgae (Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp.) affect their carbon partitioning, growth and applicability; a stoichiometric imbalance was imposed by steady carbon and other nutrients variation. Towards high nutrients concentrations/low carbon availability a decrease of 12-51% in C/N microalgae ratio was observed and maximum cell densities were achieved. Moreover, linear correlation between the nutrient input and microalgae protein content were observed. The macromolecular ratios pointed that carbohydrate was the main contributor for the C/N decrement. Although lipid content in R. marina remained constant throughout the experiment, a rise of 37-107% in N. gaditana and Isochrysis sp. was verified. Lipid fractions revealed high percentages of glycolipids in all microalgae (57-73% of total lipids). The present study shows an easy way to understand and modulate microalgae carbon partitioning relying on the field of application. PMID:27179298

  7. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  8. Partitioning Carbon Dioxide Emission and Assessing Dissolved Organic Carbon Leaching of a Drained Peatland Cultivated with Pineapple at Saratok, Malaysia

    Directory of Open Access Journals (Sweden)

    Liza Nuriati Lim Kim Choo

    2014-01-01

    Full Text Available Pineapples (Ananas comosus (L. Merr. cultivation on drained peats could affect the release of carbon dioxide (CO2 into the atmosphere and also the leaching of dissolved organic carbon (DOC. Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr than under bare peat treated with chloroform (205 t CO2 ha/yr, and they were the lowest (179.6 t CO2 ha/yr under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.

  9. Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon

    International Nuclear Information System (INIS)

    Research highlights: In this paper, SEM and TEM were used to characterize microstructure of Q and P steels with different partitioning time at 300 deg. C. The interesting phenomena were discovered and discussed: 1.Lower bainite (bainitic ferrite plus ε-carbide) rather than carbide-free bainite was observed during partitioning process. 2.The mechanical properties of Q and P steels can be tailored and adjusted through balance volume fraction of retained austenite and lower bainite during partitioning process. 3.The final amount of austenite was influenced by the transformation kinetics of lower bainite during partitioning process. According to the analysis, it can be concluded that associated with carbon partitioning from martensite to austenite, lower bainite transformation inevitably occurred. More importantly, lower bainite transformation seriously affected the mechanical properties of Q and P steels and final amount of austenite. - Abstract: A study of 40SiMnNiCr steel subjected to a two-step quenching and partitioning process (Q and P) is presented. The result suggests that strength variation of Q and P steels during the two-step Q and P process was a cumulative effect of increase of retained austenite fraction, decrease of carbon supersaturation of virgin martensite, and particularly much of lower bainite formation. A trade-off between high strength and good ductility of two-step Q and P steels can be tailored and adjusted by controlling lower bainite fraction. The final amount of austenite was influenced by the transformation kinetics of lower bainite during the partitioning process.

  10. How drought severity constrains GPP and its partitioning among carbon pools in a Quercus ilex coppice?

    Directory of Open Access Journals (Sweden)

    S. Rambal

    2014-06-01

    Full Text Available The partitioning of photosynthates toward biomass compartments has a crucial role in the carbon sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought prone forests. We analyzed the fate of GPP in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Gross and net carbon fluxes between the ecosystem and the atmosphere were measured with an eddy-covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy-covariance fluxes with annual productions we managed to close a C budget and derive values of autotrophic and heterotrophic respirations, NPP and carbon use efficiency (CUE, the ratio between NPP and GPP. Average values of yearly NEP, GPP and Reco were 282, 1259 and 977 g C m−2. The corresponding ANPP components were 142.5, 26.4 and 69.6 g C m−2 for leaves, reproductive effort (flowers and fruits and stems. Gross and net carbon exchange between the ecosystem and the atmosphere were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected, the stem growth, to the least affected, the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease more slightly in response to drought than GPP and NPP, probably due to drought-acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem and highlight the value of maintaining continuous

  11. Unusual carbon partitioning during phosphate deficiency in celery, a mannitol-synthesizing species

    International Nuclear Information System (INIS)

    Mannitol and sucrose are the main photosynthetic products and translocated carbon compounds in celery (Apium graveolens L.). Carbon partitioning was studied in greenhouse-grown celery plants supplied with a nutrient solution containing or lacking phosphate (P). P-deficient plants developed new leaves at about the same rate as control plants, but showed greatly reduced growth of leaves and petioles; root growth was apparently unaffected. P-deficient leaves contained less mannitol and more sucrose than control leaves. Starch content increased with P-deficiency only in mature (the most photosynthetically-active) leaves, and then amounted to less than 10 mg/g fresh weight. Similarly, when 14CO2 was supplied to intact plants, P-deficient leaves contained less label in mannitol and more in sucrose than did control leaves; labeling of starch changed little. The P-status of celery leaves apparently affects the partitioning of carbon between mannitol and sucrose more than it affects starch accumulation. This is in marked contrast to the large increase in starch content commonly observed during P-deficiency in species that produce and translocate predominantly sucrose

  12. Development of partitioning process: back-extraction of actinoid and lanthanoid with hydrazine carbonate

    International Nuclear Information System (INIS)

    In the present study the back extraction of actinoid, lanthanoid, Y, Zr, and Mo from DIDPA [Diisodecylphosphoric Acid] and HDEHP [Di(2-ethylhexylphosphoric) Acid] was investigated by using hydrazine carbonate solution. Hydrazine carbonate is a salt-free reagent and easy to decompose. If it is possible to apply this reagent to the 4-group partitioning process, more sophisticated process would be constructed, because of the reduction of secondary wastes. All the elements other than Y could be back-extracted from HDEHP and all the elements other than Y and Mo could be back-extracted from DIDPA by hydrazine carbonate. It was found that the nature of alcohol which was added to avoid emulsification affects on the distribution ratio more than the added amount. (author)

  13. PCDD/F and PCB water column partitioning examination using natural organic matter and black carbon partition coefficient models.

    Science.gov (United States)

    Howell, Nathan L; Rifai, Hanadi S

    2016-04-01

    A 9-year water dataset from the Houston Ship Channel (HSC) was analyzed to understand partitioning in polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs). Total PCBs had more mass as dissolved (74 %) whereas total PCDD/Fs did not (11 %). Generally, the limited number of PCDD/Fs (only 2378 substituted) explained these differences though differences in chemical behavior beyond log K ow also likely influence partitioning. The particular fractionation seen in the HSC also seemed related to a wide variation in particulate organic carbon (POC)/dissolved organic carbon (DOC) ratio (0.42-180 %). Published and unaltered linear free energy and linear solvation energy relationships for DOC, POC, and particulate black carbon (BC) resulted in predictions that were at best 27 % (PCB) and 25 % root-mean-square error (RMSE) (PCDD/F) partition fraction compared to observed (using estimated BC/POC fractions of 10 and 25 %, respectively). These results show, at least in light of the uncertainties in this data (e.g., precise fraction of BC), that a 25 % accuracy in model prediction of operationally dissolved or suspended fraction for any one PCB or PCDD/F congener is the best prediction that may be expected. It is therefore recommended that site-specific data be used to calibrate most any water column-partitioning model if it is to be expected to describe what actually occurs in field conditions. PMID:26614453

  14. Suppression of Ms temperature by carbon partitioning from carbon-supersaturated ferrite to metastable austenite during intercritical annealing

    International Nuclear Information System (INIS)

    Highlights: • DP980/1180 were produced by gas-jet cooling and Quenching, respectively. • The martensite formation of G-steel happened below tempering temperature. • The martensite formation of Q-steel occurred above tempering temperature. • The carbon partitioning caused by carbon-supersaturated ferrite decreased Ms. - Abstract: Three various cooling patterns including gas-jet cooling (∼25 °C/s), Fast spraying water cooling (∼60 °C/s) and Water quenching (∼1700 °C/s) were chosen to study the effects of carbon partitioning on martensitic transformation and mechanical properties in a low carbon dual phase steel. The suppression of Ms temperature by decreasing the cooling rate was investigated by dilatometer experiments. The results show that the Ms suppression was closely associated with the carbon partitioning between carbon-supersaturated ferrite and metastable austenite before martensitic transformation, which leads to the enrichment of alloy elements in austenite. Since no carbon partitioning occurred during water quenching process, more interstitial solid solution of carbon will segregate to the dislocations and thus contribute to the increase in ferritic strength in the quenched steel. The decrease of Ms temperature, the change of martensitic microstructure and the increase of ferritic strength were also used to verify the presence of carbon partition. Besides, the increase in yield and ultimate tensile strengths at higher cooling rate was mainly attributed to the ferrite and interfaces strengthening as well as the suppression of ferritic transformation

  15. Determination of carbon distributions in quenched and partitioned microstructures using nanoscale secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    A multi-modal characterization technique, which combines nanoscale secondary ion mass spectroscopy (Nano-SIMS) with a spatial resolution of ∼100 nm and electron back scatter diffraction (EBSD) to determine carbon distributions in austenite and martensite in a quenched and partitioned (Q&P) Fe–0.29C–2.95Mn–1.59Si steel is presented. Significant carbon enrichment of austenite was measured with decreased levels of carbon in martensite, supporting the carbon partitioning mechanism. Fresh untempered martensite could be identified, and different degrees of enrichment were observed for blocky and lath austenite

  16. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T. [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1996-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  17. Inhibition of Trehalose Breakdown Increases New Carbon Partitioning into Cellulosic Biomass in Nicotiana tabacum

    Energy Technology Data Exchange (ETDEWEB)

    Best, F.M.; Ferrieri, R.; Best, F.M.; Koenig, K.; McDonald, K.; Schueller, M.J.; Rogers, A.; Ferrieri, R.A.

    2011-01-18

    Validamycin A was used to inhibit in vivo trehalase activity in tobacco enabling the study of subsequent changes in new C partitioning into cellulosic biomass and lignin precursors. After 12-h exposure to treatment, plants were pulse labeled using radioactive {sup 11}CO{sub 2}, and the partitioning of isotope was traced into [{sup 11}C]cellulose and [{sup 11}C]hemicellulose, as well as into [{sup 11}C]phenylalanine, the precursor for lignin. Over this time course of treatment, new carbon partitioning into hemicellulose and cellulose was increased, while new carbon partitioning into phenylalanine was decreased. This trend was accompanied by a decrease in phenylalanine ammonia-lyase activity. After 4 d of exposure to validamycin A, we also measured leaf protein content and key C and N metabolite pools. Extended treatment increased foliar cellulose and starch content, decreased sucrose, and total amino acid and nitrate content, and had no effect on total protein.

  18. The Effects of SO2 on N2-Fixation, Carbon Partitioning, and Yield Components in Snapbean, Phaseolus Vulgaris L.

    OpenAIRE

    Stephen M. Griffith

    1983-01-01

    The primary air pollutant sulfur dioxide has been shown to affect plant biochemistry and physiology, although very little is known about its effects on N2-fixation in legumes. This study was designed to determine if N2-fixation, carbon partitioning , and productivity are affected under short term low level, so2 exposures. Greenhouse grown snapbeans (P has eo lus vulgaris L. cv. Ear l iwax), 29 days from planting, were exposed to 0.0, 0.4, and 0.8 parts per million sulfur dioxide for 4 hour...

  19. Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest.

    Science.gov (United States)

    Hasselquist, N J; Metcalfe, D B; Marshall, J D; Lucas, R W; Högberg, P

    2016-03-01

    Given the strong coupling between the carbon (C) and nitrogen (N) cycles, there is substantial interest in understanding how N availability affects C cycling in terrestrial ecosystems, especially in ecosystems limited by N. However, most studies in temperate and boreal forests have focused on the effects of N addition on tree growth. By comparison, less is known about the effects of N availability on the cycling of C in understory vegetation despite some evidence that dwarf shrubs, mosses, and lichens play an important role in the forest C balance. In this study, we used an in situ 13CO2 pulse-labeling technique to examine the short-term dynamics of C partitioning in understory vegetation in three boreal Pinus sylvestris forest stands exposed to different rates of N addition: a low and high N addition that receive annual additions of NH4NO3 of 20 and 100 kg N/ha, respectively, and this is a typo. It should be an unfertilized control. Labeling was conducted at two distinct periods (early vs. late growing season), which provided a seasonal picture of how N addition affects C dynamics in understory vegetation. In contrast to what has been found in trees, there was no obvious trend in belowground C partitioning in ericaceous plants in response to N additions or seasonality. Increasing N addition led to a greater percentage of 13C being incorporated into ericaceous leaves with a high turnover, whereas high rates of N addition strongly reduced the incorporation of 13C into less degradable moss tissues. Addition of N also resulted in a greater percentage of the 13C label being respired back to the atmosphere and an overall reduction in total understory carbon use efficiency. Taken together, our results suggest a faster cycling of C in understory vegetation with increasing N additions; yet the magnitude of this general response was strongly dependent on the amount of N added and varied seasonally. These results provide some of the first in situ C and N partitioning

  20. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  1. Photosynthesis and assimilate partitioning characteristics of the coconut palm as observed by carbon-14 labelling

    International Nuclear Information System (INIS)

    A technique was developed on the use of carbon dioxide(carbon-14 labelled) rapid labelling of foliage and to ascertain photosynthesis and partitioning characteristics of labelled assimilate into other parts of the coconut palm. An eight-year-old Tall x Tall young coconut palm growing under field conditions at Bandirippuwa Estate and with six developing bunches , was selected for this study. The labelling was carried out on a bright sunny day and soil was at field capacity. Seventh leaf from the youngest open leaf was used for labelling with 5 mCi of sodium bi carbonate (Carbon-14 labelled). The results revealed that within 24 hours, 60% of the labelled assimilate was partitioned into other parts of the palm and at the end of the seventh day about 18% of the labelled assimilate still remained in the labelled leaf. Among the developing bunches fifth and sixth bunches from the youngest developing bunch received more labelled assimilate than young developing bunches above them. It was revealed that partitioning of assimilate into various ''sinks'' is determined by the developmental stage or activeness of the ''sink''. The proportion of C-14 labelled carbon assimilate, partitioned into developing bunches was substantially low compared to the total amount of labelled carbon fixed by the labelled leaf. Further, it was observed that partitioning of assimilated labelled carbon into the young leaves above, as well as the mature leaves below the labelled leaf. The complex vascular anatomy of the palms could be attributed to this pattern of partitioning of assimilates into upper and lower leaves from the labelled leaf

  2. Resolution of Adsorption and Partition Components of Organic Compounds on Black Carbons.

    Science.gov (United States)

    Chiou, Cary T; Cheng, Jianzhong; Hung, Wei-Nung; Chen, Baoliang; Lin, Tsair-Fuh

    2015-08-01

    Black carbons (BCs) may sequester non-ionic organic compounds by adsorption and/or partition to varying extents. Up to now, no experimental method has been developed to accurately resolve the combined adsorption and partition capacity of a compound on a BC. In this study, a unique "adsorptive displacement method" is introduced to reliably resolve the adsorption and partition components for a solute-BC system. It estimates the solute adsorption on a BC by the use of an adsorptive displacer to displace the adsorbed target solute into the solution phase. The method is validated by tests with uses of activated carbon as the model carbonaceous adsorbent, soil organic matter as the model carbonaceous partition phase, o-xylene and 1,2,3-trichlorobenzene as the reference solutes, and p-nitrophenol as the adsorptive displacer. Thereafter, the adsorption-partition resolution was completed for the two solutes on selected model BCs: four biochars and two National Institute of Standards and Technology (NIST) standard soots (SRM-2975 and SRM-1650b). The adsorption and partition components resolved for selected solutes with given BCs and their dependences upon solute properties enable one to cross-check the sorption data of other solutes on the same BCs. The resolved components also provide a theoretical basis for exploring the potential modes and extents of different solute uptakes by given BCs in natural systems. PMID:26114972

  3. Field-Scale Partitioning of Ecosystem Respiration Components Suggests Carbon Stabilization in a Bioenergy Grass Ecosystem

    Science.gov (United States)

    Black, C. K.; Miller, J. N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2014-12-01

    Annually-harvested agroecosystems have the potential to be net carbon sinks only if their root systems allocate sufficient carbon belowground and if this carbon is then retained as stable soil organic matter. Soil respiration measurements are the most common approach to evaluate the stability of soil carbon at experimental time scales, but valid inferences require the partitioning of soil respiration into root-derived (current-year C) and heterotrophic (older C) components. This partitioning is challenging at the field scale because roots and soil are intricately mixed and physical separation in impossible without disturbing the fluxes to be measured. To partition soil flux and estimate the C sink potential of bioenergy crops, we used the carbon isotope difference between C3 and C4 plant species to quantify respiration from roots of three C4 grasses (maize, Miscanthus, and switchgrass) grown in a site with a mixed cropping history where respiration from the breakdown of old soil carbon has a mixed C3-C4 signature. We used a Keeling plot approach to partition fluxes both at the soil surface using soil chambers and from the whole field using continuous flow sampling of air within and above the canopy. Although soil respiration rates from perennial grasses were higher than those from maize, the isotopic signature of respired carbon indicated that the fraction of soil CO2 flux attributable to current-year vegetation was 1.5 (switchgrass) to 2 (Miscanthus) times greater in perennials than that from maize, indicating that soil CO2 flux came mostly from roots and turnover of soil organic matter was reduced in the perennial crops. This reduction in soil heterotrophic respiration, combined with the much greater quantities of C allocated belowground by perennial grasses compared to maize, suggests that perennial grasses grown as bioenergy crops may be able to provide an additional climate benefit by acting as carbon sinks in addition to reducing fossil fuel consumption.

  4. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2012-12-04

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.

  5. Partition and poliomyelitis: an investigation of the polio disparity affecting Muslims during India's eradication program.

    Directory of Open Access Journals (Sweden)

    Rashid S Hussain

    Full Text Available Significant disparities in the incidence of polio existed during its eradication campaign in India. In 2006, Muslims, who comprise 16% of the population in affected states, comprised 70% of paralytic polio cases. This disparity was initially blamed on the Muslims and a rumor that the vaccination program was a plot to sterilize their children. Using the framework of structural violence, this paper describes how the socio-political and historical context of Muslim populations in India shaped the polio disparity.A qualitative study utilizing methods of rapid ethnography was conducted from May-August 2009 in Aligarh, Uttar Pradesh, India. Field methods included participant observation of vaccination teams, historical document research, and 107 interviews with both Global Polio Eradication Initiative (GPEI stakeholders and families with vaccine-eligible children. Almost all respondents agreed that Aligarh was a highly segregated city, mostly due to riots after Partition and during the 1990s. Since the formation of segregated neighborhoods, most respondents described that "Muslim areas" had been underdeveloped compared to "Hindu areas," facilitating the physical transmission of poliovirus. Distrust of the government and resistance to vaccination were linked to this disparate development and fears of sterilization influenced by the "Family Planning Program" from 1976-1977.Ethnic violence and social marginalization since the Partition and during the rise of Hindu nationalism led to distrust of the government, the formation of segregated slums, and has made Muslims victims of structural violence. This led to the creation of disease-spreading physical environments, lowered vaccine efficacy, and disproportionately higher levels of resistance to vaccination. The causes of the polio disparity found in this study elucidate the nature of possible other health disparities affecting minorities in India.This study is limited by the manual coding of the

  6. Membrane-Transport Systems for Sucrose in Relation to Whole-Plant Carbon Partitioning

    Institute of Scientific and Technical Information of China (English)

    Brian G. Ayre

    2011-01-01

    T Sucrose is the principal product of photosynthesis used for the distribution of assimilated carbon in plants. Transport mechanisms and efficiency influence photosynthetic productivity by relieving product inhibition and contribute to plant vigor by controlling source/sink relationships and biomass partitioning. Sucrose is synthesized in the cytoplasm and may move cell to cell through plasmodesmata or may cross membranes to be compartmentalized or exported to the apoplasm for uptake into adjacent cells. As a relatively large polar compound, sucrose requires proteins to facilitate efficient membrane transport. Transport across the tonoplast by facilitated diffusion, antiport with protons, and symport with protons have been proposed; for transport across plasma membranes, symport with protons and a mechanism resembling facilitated diffusion are evident. Despite decades of research, only symport with protons is well established at the molecular level. This review aims to integrate recent and older studies on sucrose flux across membranes with principles of whole-plant carbon partitioning.

  7. Partition coefficients of organics in ionic liquid–supercritical carbon dioxide systems

    Czech Academy of Sciences Publication Activity Database

    Roth, Michal

    Ústav chemických procesů AV ČR, v. v. i, 2015. s. 11. [EU COST CM1206 Action Exchange on Ionic Liquids Workshop. 21.04.2015-22.04.2015, Praha] Institutional support: RVO:68081715 Keywords : ionic liquid * supercritical carbon dioxide * partition coefficient Subject RIV: CB - Analytical Chemistry, Separation https://drive.google.com/file/d/0ByvzfYWTeIHMaDRlMU5IVzQtSGs/view?pli=1

  8. Partition coefficients of organics in ionic liquid–supercritical carbon dioxide systems

    Czech Academy of Sciences Publication Activity Database

    Roth, Michal

    Ústav chemických procesů AV ČR, v. v. i, 2015. s. 11. [EU COST CM1206 Action Exchange on Ionic Liquids Workshop. 21.04.2015-22.04.2015, Praha] Institutional support: RVO:68081715 Keywords : ionic liquid * supercritical carbon dioxide * partition coefficient Subject RIV: CB - Analytical Chemistry, Separation https://drive. google .com/file/d/0ByvzfYWTeIHMaDRlMU5IVzQtSGs/view?pli=1

  9. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    International Nuclear Information System (INIS)

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log Koc values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log Kow, organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs

  10. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, M.A.; Garcia-Guinea, J. [National Museum of Natural Sciences, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Laborda, F. [Group of Analytical Spectroscopy and Sensors Group, Institute of Environmental Sciences, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Garrido, F., E-mail: fernando.garrido@mncn.csic.es [National Museum of Natural Sciences, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2015-12-01

    Thallium (Tl) and its compounds are toxic to biota even at low concentrations but little is known about Tl concentration and speciation in soils. An understanding of the source, mobility, and dispersion of Tl is necessary to evaluate the environmental impact of Tl pollution cases. In this paper, we examine the Tl source and dispersion in two areas affected by abandoned mine facilities whose residues remain dumped on-site affecting to soils and sediments of natural water courses near Madrid city (Spain). Total Tl contents and partitioning in soil solid phases as determined by means of a sequential extraction procedure were also examined in soils along the riverbeds of an ephemeral and a permanent streams collecting water runoff and drainage from the mines wastes. Lastly, electronic microscopy and cathodoluminescence probe are used as a suitable technique for Tl elemental detection on thallium-bearing phases. Tl was found mainly bound to quartz and alumino-phyllosilicates in both rocks and examined soils. Besides, Tl was also frequently found associated to organic particles and diatom frustules in all samples from both mine scenarios. These biogenic silicates may regulate the transfer of Tl into the soil-water system. - Highlights: • Abandoned mine residues are Tl sources in soils of Madrid catchment area. • Tl was associated to quartz and aluminosilicates in both rocks and soils. • Tl was frequently found associated to organic particles and diatom frustules. • Cathodoluminescence is a suitable technique for Tl detection on soils and rocks.

  11. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain).

    Science.gov (United States)

    Gomez-Gonzalez, M A; Garcia-Guinea, J; Laborda, F; Garrido, F

    2015-12-01

    Thallium (Tl) and its compounds are toxic to biota even at low concentrations but little is known about Tl concentration and speciation in soils. An understanding of the source, mobility, and dispersion of Tl is necessary to evaluate the environmental impact of Tl pollution cases. In this paper, we examine the Tl source and dispersion in two areas affected by abandoned mine facilities whose residues remain dumped on-site affecting to soils and sediments of natural water courses near Madrid city (Spain). Total Tl contents and partitioning in soil solid phases as determined by means of a sequential extraction procedure were also examined in soils along the riverbeds of an ephemeral and a permanent streams collecting water runoff and drainage from the mines wastes. Lastly, electronic microscopy and cathodoluminescence probe are used as a suitable technique for Tl elemental detection on thallium-bearing phases. Tl was found mainly bound to quartz and alumino-phyllosilicates in both rocks and examined soils. Besides, Tl was also frequently found associated to organic particles and diatom frustules in all samples from both mine scenarios. These biogenic silicates may regulate the transfer of Tl into the soil-water system. PMID:26218566

  12. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain)

    International Nuclear Information System (INIS)

    Thallium (Tl) and its compounds are toxic to biota even at low concentrations but little is known about Tl concentration and speciation in soils. An understanding of the source, mobility, and dispersion of Tl is necessary to evaluate the environmental impact of Tl pollution cases. In this paper, we examine the Tl source and dispersion in two areas affected by abandoned mine facilities whose residues remain dumped on-site affecting to soils and sediments of natural water courses near Madrid city (Spain). Total Tl contents and partitioning in soil solid phases as determined by means of a sequential extraction procedure were also examined in soils along the riverbeds of an ephemeral and a permanent streams collecting water runoff and drainage from the mines wastes. Lastly, electronic microscopy and cathodoluminescence probe are used as a suitable technique for Tl elemental detection on thallium-bearing phases. Tl was found mainly bound to quartz and alumino-phyllosilicates in both rocks and examined soils. Besides, Tl was also frequently found associated to organic particles and diatom frustules in all samples from both mine scenarios. These biogenic silicates may regulate the transfer of Tl into the soil-water system. - Highlights: • Abandoned mine residues are Tl sources in soils of Madrid catchment area. • Tl was associated to quartz and aluminosilicates in both rocks and soils. • Tl was frequently found associated to organic particles and diatom frustules. • Cathodoluminescence is a suitable technique for Tl detection on soils and rocks

  13. Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2008-01-01

    calculated by the software ACD/Labs®. The Henderson-Hasselbalch equation was applied to calculate dissociation. Regressions were developed to predict separately for the neutral and the ionic molecule species the distribution coefficient (Kd) normalized to organic carbon (KOC) from log KOW and pKa. The log......The sorption of organic electrolytes to soil was investigated. A dataset consisting of 164 electrolytes, composed of 93 acids, 65 bases, and six amphoters, was collected from literature and databases. The partition coefficient log KOW of the neutral molecule and the dissociation constant pKa were...

  14. Partitioning of organic carbon among density fractions in surface sediments of Fiordland, New Zealand

    Science.gov (United States)

    Cui, Xingqian; Bianchi, Thomas S.; Hutchings, Jack A.; Savage, Candida; Curtis, Jason H.

    2016-03-01

    Transport of particles plays a major role in redistributing organic carbon (OC) along coastal regions. In particular, the global importance of fjords as sites of carbon burial has recently been shown to be even more important than previously thought. In this study, we used six surface sediments from Fiordland, New Zealand, to investigate the transport of particles and OC based on density fractionation. Bulk, biomarker, and principle component analysis were applied to density fractions with ranges of 2.5 g cm-3. Our results found various patterns of OC partitioning at different locations along fjords, likely due to selective transport of higher density but smaller size particles along fjord head-to-mouth transects. We also found preferential leaching of certain biomarkers (e.g., lignin) over others (e.g., fatty acids) during the density fractionation procedure, which altered lignin-based degradation indices. Finally, our results indicated various patterns of OC partitioning on density fractions among different coastal systems. We further propose that a combination of particle size-density fractionation is needed to better understand transport and distribution of particles and OC.

  15. On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning

    Directory of Open Access Journals (Sweden)

    G. Lasslop

    2012-12-01

    Full Text Available Networks that merge and harmonise eddy-covariance measurements from many different parts of the world have become an important observational resource for ecosystem science. Empirical algorithms have been developed which combine direct observations of the net ecosystem exchange of carbon dioxide with simple empirical models to disentangle photosynthetic (GPP and respiratory fluxes (Reco. The increasing use of these estimates for the analysis of climate sensitivities, model evaluation and calibration demands a thorough understanding of assumptions in the analysis process and the resulting uncertainties of the partitioned fluxes. The semi-empirical models used in flux partitioning algorithms require temperature observations as input, but as respiration takes place in many parts of an ecosystem, it is unclear which temperature input – air, surface, bole, or soil at a specific depth – should be used. This choice is a source of uncertainty and potential biases. In this study, we analysed the correlation between different temperature observations and nighttime NEE (which equals nighttime respiration across FLUXNET sites to understand the potential of the different temperature observations as input for the flux partitioning model. We found that the differences in the correlation between different temperature data streams and nighttime NEE are small and depend on the selection of sites. We investigated the effects of the choice of the temperature data by running two flux partitioning algorithms with air and soil temperature. We found the time lag (phase shift between air and soil temperatures explains the differences in the GPP and Reco estimates when using either air or soil temperatures for flux partitioning. The impact of the source of temperature data on other derived ecosystem parameters was estimated, and the strongest impact was found for the temperature sensitivity. Overall, this study suggests that the

  16. Above Ground Biomass-carbon Partitioning, Storage and Sequestration in a Rehabilitated Forest, Bintulu, Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Forest degradation and deforestation are some of the major global concerns as it can reduce forest carbon storage and sequestration capacity. Forest rehabilitation on degraded forest areas has the potential to improve carbon stock, hence mitigate greenhouse gases emission. However, the carbon storage and sequestration potential in a rehabilitated tropical forest remains unclear due to the lack of information. This paper reports an initiative to estimate biomass-carbon partitioning, storage and sequestration in a rehabilitated forest. The study site was at the UPM-Mitsubishi Corporation Forest Rehabilitation Project, UPM Bintulu Sarawak Campus, Bintulu, Sarawak. A plot of 20 x 20 m2 was established each in site 1991 (Plot 1991), 1999 (Plot 1999) and 2008 (Plot 2008). An adjacent natural regenerating secondary forest plot (Plot NF) was also established for comparison purposes. The results showed that the contribution of tree component biomass/ carbon to total biomass/ carbon was in the order of main stem > branch > leaf. As most of the trees were concentrated in diameter size class = 10 cm for younger rehabilitated forests, the total above ground biomass/ carbon was from this class. These observations suggest that the forests are in the early successional stage. The total above ground biomass obtained for the rehabilitated forest ranged from 4.3 to 4,192.3 kg compared to natural regenerating secondary forest of 3,942.3 kg while total above ground carbon ranged from 1.9 to 1,927.9 kg and 1,820.4 kg, respectively. The mean total above ground biomass accumulated ranged from 1.3 x 10-2 to 20.5 kg/ 0.04 ha and mean total carbon storage ranged from 5.9 x 10-3 to 9.4 kg/ 0.04 ha. The total CO2 sequestrated in rehabilitated forest ranged from 6.9 to 7,069.1 kg CO2/ 0.04 ha. After 19 years, the rehabilitated forest had total above ground biomass and carbon storage comparable to the natural regeneration secondary forest. The forest rehabilitated activities have the potential

  17. Partitioning of catchment water budget and its implications for ecosystem carbon exchange

    Directory of Open Access Journals (Sweden)

    D. Lee

    2009-12-01

    Full Text Available Spatially averaged annual carbon budget is one of the key information to understand ecosystem response and feedback to climate change. Water availability is a primary constraint of carbon uptake in many ecosystems and therefore the estimation of transpiration (T may serve as an alternative to quantify carbon budget. To apply this concept, we estimated long-term steady state water budget for the Han River basin (~26 000 km2 in Korea and examined its implication for catchment scale carbon exchange. For this, the catchment scale evapotranspiration (ET was derived from the long term precipitation (P and discharge (Q data. Then, using stable isotope data of P and Q along with hydrometeorological information, ET was partitioned into evaporation from soil and water surfaces (ES, evaporation from intercepted rainfall (El, and transpiration. ES was identified as a minor component of ET in the study areas regardless of the catchment scales. T was estimated from ET after accounting for El and ES. For the Han River basin, the estimated annual T from 1966 to 2007 was 22–31% of annual P and the proportion decreased with increasing P. Assuming that T further constrains catchment scale carbon uptake in terms of water use efficiency (WUE, we examined the possibility of using T as a relative measure for the strength and temporal changes of carbon uptake capacity. The proposed relations provide a simple and practical way to assess the distribution and strength of carbon sink.

  18. Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff

    Science.gov (United States)

    Babiarz, C.L.; Hurley, J.P.; Krabbenhoft, D.P.; Gilmour, C.; Branfireun, B.A.

    2003-01-01

    Results from pilot studies on colloidal phase transport of newly deposited mercury in lake water and overland runoff demonstrate that the combination of ultrafiltration, and stable isotope amendment techniques is a viable tool for the study of mercury partitioning to filterable carbon. Ultrafiltration mass balance calculations were generally excellent, averaging 97.3, 96.1 and 99.8% for dissolved organic carbon (DOC), total mercury (HgT), and methylmercury (MeHg), respectively. Sub nanogram per liter quantities of isotope were measurable, and the observed phase distribution from replicate ultrafiltration separations on lake water agreed within 20%. We believe the data presented here are the first published colloidal phase mercury data on lake water and overland runoff from uncontaminated sites. Initial results from pilot-scale lake amendment experiments indicate that the choice of matrix used to dissolve the isotope did not affect the initial phase distribution of the added mercury in the lake. In addition there was anecdotal evidence that native MeHg was either recently produced in the system, or at a minimum, that this 'old' MeHg partitions to the same subset of DOC that binds the amended mercury. Initial results from pilot-scale overland runoff experiments indicate that less than 20% of newly deposited mercury was transported in the filterable fraction (<0.7 ??m). There is some indication of colloidal phase enrichment of mercury in runoff compared to the phase distribution of organic carbon, but the mechanism of this enrichment is unclear. The phase distribution of newly deposited mercury can differ from that of organic carbon and native mercury, suggesting that the quality of the carbon (available ligands), not the quantity of carbon, regulates partitioning. Further characterization of DOC is needed to clarify the underlying mechanisms. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem photosynthesis (by ~25%) and

  20. Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions.

    Science.gov (United States)

    Ding, Nan; Li, Haiwei; Feng, Xiao; Wang, Qianyou; Wang, Shan; Ma, Li; Zhou, Junwen; Wang, Bo

    2016-08-17

    Metal-organic frameworks (MOFs), by virtue of their remarkable uptake capability, selectivity, and ease of regeneration, hold great promise for carbon capture from fossil fuel combustion. However, their stability toward moisture together with the competitive adsorption of water against CO2 drastically dampens their capacity and selectivity under real humid flue gas conditions. In this work, an effective strategy was developed to tackle the above obstacles by partitioning the channels of MOFs into confined, hydrophobic compartments by in situ polymerization of aromatic acetylenes. Specifically, polynaphthylene was formed via a radical reaction inside the channels of MOF-5 and served as partitions without altering the underlying structure of the framework. Compared with pristine MOF-5, the resultant material (PN@MOF-5) exhibits a doubled CO2 capacity (78 vs 38 cm(3)/g at 273 K and 1 bar), 23 times higher CO2/N2 selectivity (212 vs 9), and significantly improved moisture stability. The dynamic CO2 adsorption capacity can be largely maintained (>90%) under humid conditions during cycles. This strategy can be applied to other MOF materials and may shed light on the design of new MOF-polymer materials with tunable pore sizes and environments to promote their practical applications. PMID:27477091

  1. Task-partitioning in insect societies: Non-random direct material transfers affect both colony efficiency and information flow.

    Science.gov (United States)

    Grüter, Christoph; Schürch, Roger; Farina, Walter M

    2013-06-21

    Task-partitioning is an important organisational principle in insect colonies and is thought to increase colony efficiency. In task-partitioning, tasks such as the collection of resources are divided into subtasks in which the material is passed from one worker to another. Previous models have assumed that worker-worker interactions are random, but experimental evidence suggests that receivers can have preferences to handle familiar materials. We used an agent-based simulation model to explore how non-random interactions during task-partitioning with direct transfer affect colony work efficiency. Because task-partitioning also allows receivers and donors to acquire foraging related information we analysed the effect of non-random interactions on informative interaction patterns. When receivers non-randomly rejected donors offering certain materials, donors overall experienced increased time delays, hive stay durations and a decreased number of transfer partners. However, the number of transfers was slightly increased, which can improve the acquisition and quality of information for donors. When receivers were non-randomly attracted to donors offering certain materials, donors experienced reduced transfer delays, hive stay durations and an increased number of simultaneous receivers. The number of transfers is slightly decreased. The effects of the two mechanisms "non-random rejection" and "non-random attraction" are biggest if the number of foragers and receivers is balanced. In summary, our results show that colony ergonomics are improved if receivers do not reject donors and if mechanisms exist that help receivers detect potential donors, such as learning the odour of the transferred food. Finally, our simulations suggest that non-random interactions can potentially affect the foraging patterns of colonies in changing environments. PMID:23454081

  2. Effects of gamma radiation on stem diameter growth, carbon gain and biomass partitioning in Helianthus annuus

    International Nuclear Information System (INIS)

    To determine the effects of gamma radiation on stem diameter growth, carbon gain, and biomass partitioning, 19-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) were given variable doses (0–40 Gy) from a 60Co gamma source. Exposure of plants to gamma radiation caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that very low doses of radiation could induce morphological growth changes. Carbohydrate analysis of plants exposed to 40 Gy demonstrated significantly more starch content in leaves and significantly less in stems 18 days after exposure compared with control plants. In contrast, the carbohydrate content of the roots of plants exposed to 40 Gy was not significantly different from non-irradiated plants 18 days after exposure. (author)

  3. Defaunation affects carbon storage in tropical forests

    OpenAIRE

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro

    2015-01-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are ...

  4. Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Pakistan.

    Science.gov (United States)

    Ali, Usman; Bajwa, Anam; Chaudhry, Muhammad Jamshed Iqbal; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-04-01

    This study was conducted with the aim of assessing the levels and black carbon mediated sediment-water partitioning of organochlorine pesticides (OCPs) from the Indus River. ∑OCPs ranged between 52-285 ng L(-1) and 5.6-29.2 ng g(-1) in water and sediment samples respectively. However, the ranges of sedimentary fraction of total organic carbon (f(TOC)) and black carbon (f(BC)) were 0.82-2.26% and 0.04-0.5% respectively. Spatially, OCPs concentrations were higher at upstream sites as compared to downstream sites. Source diagnostic ratios indicated the technical usage of HCH (α-HCH/γ-HCH>4) and significant presence of DDT metabolites with fresh inputs into the Indus River as indicated by the ratios of (DDE+DDD)/∑DDTs (0.27-0.96). The partitioning of OCPs between the sediments and water can be explained by two carbon Freundlich adsorption model which included both organic carbon and black carbon pools as partitioning media. PMID:26761782

  5. Defaunation affects carbon storage in tropical forests.

    Science.gov (United States)

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  6. Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Barouh, Nathalie; Nielsen, Nina Skall;

    2013-01-01

    The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used as the...... decreased the oxidative stability of emulsions with α-lactalbumin and β-lactoglobulin. For both types of emulsions the partitioning of proteins between the interface and the aqueous phase appeared to be important for the oxidative stability. The effect of pre-heating the aqueous phase with the milk proteins...

  7. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok, E-mail: hchoi@uta.edu [Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019-0308 (United States); Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Lawal, Wasiu [Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)

    2015-04-28

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls.

  8. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    International Nuclear Information System (INIS)

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls

  9. Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems

    Science.gov (United States)

    Kokh, Maria A.; Lopez, Mathieu; Gisquet, Pascal; Lanzanova, Aurélie; Candaudap, Frédéric; Besson, Philippe; Pokrovski, Gleb S.

    2016-08-01

    Although CO2 is a ubiquitous volatile in geological fluids typically ranging from a few to more than 50 wt%, its effect on metal vapor-liquid fractionation during fluid boiling and immiscibility phenomena in the Earth's crust remains virtually unknown. Here we conducted first experiments to quantify the influence of CO2 on the partition of different metals in model water + salt + sulfur + CO2 systems at 350 °C and CO2 pressures up to 100 bar, which are typical conditions of formation of many hydrothermal ore deposits. In addition, we performed in situ Raman spectroscopy measurements on these two-phase systems, to determine sulfur and carbon speciation in the liquid and vapor phases. Results show that, in S-free systems and across a CO2 concentration range of 0-50 wt% in the vapor phase, the absolute vapor-liquid partitioning coefficients of metals (Kvap/liq = Cvap/Cliq, where C is the mass concentration of the metal in the corresponding vapor and liquid phase) are in the range 10-6-10-5 for Mo; 10-4-10-3 for Na, K, Cu, Fe, Zn, Au; 10-3-10-2 for Si; and 10-4-10-1 for Pt. With increasing CO2 from 0 to 50 wt%, Kvap/liq values decrease for Fe, Cu and Si by less than one order of magnitude, remain constant within errors (±0.2 log unit) for Na, K and Zn, and increase by 0.5 and 2 orders of magnitude, respectively for Au and Pt. The negative effect of CO2 on the partitioning of some metals is due to weakening of hydration of chloride complexes of some metals (Cu, Fe) in the vapor phase and/or salting-in effects in the liquid phase (Si), whereas both phenomena are negligible for complexes of other metals (Na, K, Zn, Mo). The only exception is Pt (and in a lesser extent Au), which partitions significantly more to the vapor of S-free systems in the presence of CO2, likely due to formation of volatile carbonyl (CO) complexes. In the S-bearing system, with H2S content of 0.1-1.0 wt% in the vapor, Kvap/liq values of Cu, Fe, Mo, and Au are in the range 0.01-0.1, those of Pt 0

  10. Solid state partitioning of trace metals in suspended particulate matter from a river system affected by smelting-waste drainage

    International Nuclear Information System (INIS)

    The partitioning of particulate trace metals was investigated during one year of monthly sampling of suspended particulate matter (SPM) at eight sites along the Lot-Garonne fluvial system, known for its polymetallic pollution. The chemical partitioning in five operationally defined fractions (exchangeable/carbonate, Fe/Mn oxides, organic matter/sulfides, acid soluble, residual) was determined using a multiple single extraction approach. This approach showed that Cd, Zn, Pb and Cu were mainly associated with acid soluble phases (84-95%, 65-88%, 61-82% and 55-80% of the respective total metal content), and therefore showed a high mean potential of mobilization and bioavailability. In the Riou-Mort River, draining the smelting-wastes, Zn, Cd and Mn showed high mobility as they were little associated with the residual fraction (1-2%) and mainly bound to the 'exchangeable' fraction of SPM (60-80%), probably weakly adsorbed on amorphous freshly-precipitated sulfide and/or oxide phases. Upstream and downstream of the anthropogenic source of metallic pollution, Mn and Cd, and Zn to a lesser extent, remained highly reactive. The other trace metals were mainly associated with the residual fraction and thus less mobile. However, the multiple single extraction scheme revealed that the most reactive transport phases were non-selectively extracted by the conventional extractants used here. These selectivity problems could not have been observed if sequential extraction was used

  11. Partitioning of catchment water budget and its implications for ecosystem carbon exchange

    Directory of Open Access Journals (Sweden)

    D. Lee

    2010-06-01

    Full Text Available Spatially averaged annual carbon budget is one of the key information needed to understand ecosystem response and feedback to climate change. Water availability is a primary constraint of carbon uptake in many ecosystems and therefore the estimation of ecosystem water use may serve as an alternative to quantify Gross Primary Productivity (GPP. To examine this concept, we estimated a long-term steady state water budget for the Han River basin (~26 000 km2 in Korea and examined its application for catchment scale carbon exchange. For this, the catchment scale evapotranspiration (ET was derived from the long term precipitation (P and discharge (Q data. Then, using stable isotope data of P and Q along with other hydrometeorological information, ET was partitioned into evaporation from soil and water surfaces (ES, evaporation from intercepted rainfall (EI, and transpiration (T. ES was identified as a minor component of ET in the study areas regardless of the catchment scales. The annual T, estimated from ET after accounting for EI and ES for the Han River basin from 1966 to 2007, was 22~31% of annual P and the proportion decreased with increasing P. Assuming that T further constrains the catchment scale GPP in terms of water use efficiency (WUE, we examined the possibility of using T as a relative measure for the strength and temporal changes of carbon uptake capacity. The proposed relationship would provide a simple and practical way to assess the spatial distribution of ecosystem GPP, provided the WUE estimates in terms of GPP/T at ecosystem scale could be obtained. For carbon and water tracking toward a sustainable Asia, ascertaining such a spatiotemporally representative WUE and their variability is a

  12. Work hardening behaviors of a low carbon Nb-microalloyed Si–Mn quenching–partitioning steel with different cooling styles after partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Ding, Hua, E-mail: hding2013@163.com [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Wang, Chao [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Ding, Ting [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2013-11-15

    In this paper, the strain hardening behaviors of a low carbon Nb-microalloyed Si–Mn quenching–partitioning (Q–P) steel were investigated. The microstructures were analyzed by the scanning electron microscope (SEM) and transmission electron microscope (TEM). Mechanical tests were used to evaluate the room temperature tensile properties of the steel. The work hardening behaviors of the tested specimens were analyzed using the Hollomon approach. The results showed that a two-stage work hardening behavior was observed during deformation processes. In the first stage, for the quenched samples, martensite deforms plastically and the hardening exponent decreased. For the air-cooled samples, however, the carbide-free ferrite deforms preferentially, and then, the carbide-free ferrite and martensite co-deform. In the second stage, due to the effect of transformation induced plasticity of retained austenite, the hardening exponent decreased slowly and plateaus were observed in the plots of n{sub i}–ε{sub t} until fracture. Variations of the work hardening behaviors were related to the martensite and the volume fraction of retained austenite in Q–P steels and the microstructural evolution during partitioning and following cooling process.

  13. Microstructural evolution and mechanical properties of low-carbon steel treated by a two-step quenching and partitioning process

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shu [The State Key Laboratory of Rolling & Automation, Northeastern University, Shenyang 110819 (China); Liu, Xianghua, E-mail: liuxh@mail.neu.edu.cn [The State Key Laboratory of Rolling & Automation, Northeastern University, Shenyang 110819 (China); Research Academy, Northeastern University, Shenyang 110819 (China); Liu, Wayne J [Research Academy, Northeastern University, Shenyang 110819 (China); Lan, Huifang; Wu, Hongyan [The State Key Laboratory of Rolling & Automation, Northeastern University, Shenyang 110819 (China)

    2015-07-29

    The quenching and partitioning (Q&P) process is studied in Ti-bearing low-carbon steel. Detailed characterization of the microstructural evolution is performed by means of optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicate that the investigated steel subjected to the Q&P process forms a multiphase microstructure of primarily lath martensite, with small amounts of plate-type martensite and retained austenite. The distribution and morphology of the retained austenite are observed; moreover the relationship between the phase fraction of the retained austenite, its carbon concentration, and the partitioning conditions is established. Carbides preferentially precipitate within the plate-type martensite at first, and gradually form in the martensitic laths over time during the partitioning step. Additionally, titanium precipitations contribute to both the refinement of prior austenite grains and the improvement of strength by precipitation strengthening. The results of mechanical properties testing indicate that the samples partitioned at 400 °C exhibit a superior combination of strength and elongation, with products of the two properties ranging between 19.6 and 20.9 GPa%. Based on analysis of work hardening behavior it is determined that the higher ductility is closely related to the higher phase fraction and/or stability of retained austenite.

  14. Microstructural evolution and mechanical properties of low-carbon steel treated by a two-step quenching and partitioning process

    International Nuclear Information System (INIS)

    The quenching and partitioning (Q&P) process is studied in Ti-bearing low-carbon steel. Detailed characterization of the microstructural evolution is performed by means of optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicate that the investigated steel subjected to the Q&P process forms a multiphase microstructure of primarily lath martensite, with small amounts of plate-type martensite and retained austenite. The distribution and morphology of the retained austenite are observed; moreover the relationship between the phase fraction of the retained austenite, its carbon concentration, and the partitioning conditions is established. Carbides preferentially precipitate within the plate-type martensite at first, and gradually form in the martensitic laths over time during the partitioning step. Additionally, titanium precipitations contribute to both the refinement of prior austenite grains and the improvement of strength by precipitation strengthening. The results of mechanical properties testing indicate that the samples partitioned at 400 °C exhibit a superior combination of strength and elongation, with products of the two properties ranging between 19.6 and 20.9 GPa%. Based on analysis of work hardening behavior it is determined that the higher ductility is closely related to the higher phase fraction and/or stability of retained austenite

  15. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    International Nuclear Information System (INIS)

    The 13C/12C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in 13C and CO2 at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO2 fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 ± 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO2 flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr

  16. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning

    OpenAIRE

    Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-Ebongue, Georges-Frank; Drira, Noureddine; Ohlrogge, John B.; Arondel, Vincent

    2011-01-01

    Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript ...

  17. Effect of prior austenite carbon partitioning on martensite hardening variation in a low alloy ferrite–martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi Banadkouki, S.S.; Fereiduni, E., E-mail: e.fereiduni@yahoo.com

    2014-12-01

    The aim of this research work is to investigate in detail the carbon partitioning within prior austenite developed during austenite to ferrite phase transformation, and consequently its relation to the martensite hardening variation in a low alloy ferrite–martensite dual phase (DP) steel. For this purpose, a wide variety of ferrite–martensite DP samples with different volume fractions of ferrite and martensite have been developed using step quenching heat treatment processes at 600 °C for various holding times after being austenitized at 860 °C for 60 min. Both spot and line scan energy dispersive X-ray spectroscopy for carbon analyses have been used in conjunction with nanoindentation tests to follow the variation of carbon partitioning within prior austenite areas and consequently the associated martensite hardening response in the DP specimens. Experimental results showed that the martensite hardening behavior was quite variable in the ferrite–martensite DP samples and even within a specific martensite area within a specific DP microstructure. A higher level and also a more scattered nanohardness were observed for martensite in the DP samples treated at 600 °C for longer holding times. These results were rationalized due to the variation of carbon partitioning within the prior austenite area developed during isothermal holding in the ferrite–austenite DP region. Longer isothermal holding times were associated with more carbon redistribution within prior austenite as a consequence of more ferrite formation, which resulted in the formation of harder martensite with a more scattered hardening response. Furthermore, compared to the central locations of martensite area, those nearer to the ferrite–martensite interfaces contained higher carbon concentration and consequently higher hardening responses.

  18. Analysing the Relevance of Experience Partitions to the Prediction of Players’ Self-Reports of Affect

    DEFF Research Database (Denmark)

    Martínez, Héctor Pérez; Yannakakis, Georgios N.

    2011-01-01

    A common practice in modeling affect from physiological signals consists of reducing the signals to a set of statistical features that feed predictors of self-reported emotions. This paper analyses the impact of various time-windows, used for the extraction of physiological features, to the...

  19. On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel 100Cr6

    Science.gov (United States)

    Song, Wenwen; Choi, Pyuck-Pa; Inden, Gerhard; Prahl, Ulrich; Raabe, Dierk; Bleck, Wolfgang

    2014-02-01

    We report on the characterization of high carbon bearing steel 100Cr6 using electron microscopy and atom probe tomography in combination with multi-component diffusion simulations. Scanning electron micrographs show that around 14 vol pct spheroidized carbides are formed during soft annealing and only 3 vol pct remain after dissolution into the austenitic matrix through austenitization at 1123 K (850 °C) for 300 seconds. The spheroidized particles are identified as (Fe, Cr)3C by transmission electron microscopy. Atom probe analysis reveals the redistribution and partitioning of the elements involved, i.e., C, Si, Mn, Cr, Fe, in both, the spheroidized carbides and the bainitic matrix in the sample isothermally heat-treated at 773 K (500 °C) after austenitization. Homogeneous distribution of C and a Cr gradient were detected within the spheroidized carbides. Due to its limited diffusivity in (Fe, Cr)3C, Cr exhibits a maximum concentration at the surface of spheroidized carbides (16 at. pct) and decreases gradually from the surface towards the core down to about 2 at. pct. The atom probe results also indicate that the partially dissolved spheroidized carbides during austenitization may serve as nucleation sites for intermediate temperature cementite within bainite, which results in a relatively softer surface and harder core in spheroidized particles. This microstructure may contribute to the good wear resistance and fatigue properties of the steel. Good agreement between DICTRA simulations and experimental composition profiles is obtained by an increase of mobility of the substitutional elements in cementite by a factor of five, compared to the mobility in the database MOBFE2.

  20. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  1. Effects of shading and ethephon on carbon assimilates distribution partitioning in fruit limb of greenhouse-grown 'Dajiubao' peach

    International Nuclear Information System (INIS)

    The distribution of carbon assimilates and the relative sink strength were studied by 14C labeling in one-year-old fruiting limbs of greenhouse-grown 'Dajiubao' peach (Prunus persica L. Batsch), under 60% shading and 600 mg/L Ethephon treatment. After 10d shading treatment prior to pulsing of 14CO2 percent of assimilates translocation into fruit decreased significantly from fed shoot during fruit-ripening stage, but this partitioning patterns was not observed during stone-hardening stage, although less carbon allocated to seed within fruit components (mesocarp, endocarp and seed). The relative sink strength of each organ nearly followed the same variation trend as carbon assimilates distribution under shading treatment. Application of Ethephon to the surface of fruits under shading conditions promoted more carbon into fruits during fruit-ripening stage, with increasing their relative skink strength. (authors)

  2. Climate change affects carbon allocation to the soil in shrublands

    DEFF Research Database (Denmark)

    Gorissen, A.; Tietema, A.; Joosten, N.N.;

    2004-01-01

    Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes...... may affect the supply of carbon and energy to the soil microbial population and subsequently alter decomposition and mineralization, important ecosystem processes in carbon and nutrient cycling. In this study, carried out within the cross-European research project CLIMOOR, the effect of climate change...... in the growing season. Differences in climate, soil, and plant characteristics resulted in a gradient in the severity of the drought effects on net carbon uptake by plants with the impact being most severe in Spain, followed by Denmark, with the UK showing few negative effects at significance levels of p less...

  3. Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Ding, Hua, E-mail: hding2013@163.com [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical and Materials Engineering, University of Texas at El Paso, 500W, University Avenue, El Paso, TX 79968 (United States); Wang, Chao [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-08-12

    In the present study the determining role of niobium (Nb) on significant enhancement in mechanical properties in a low-carbon quenched and partitioned steel is elucidated. The study indicates that solute drag and precipitation pinning effect of Nb suppressed the recrystallization during hot deformation, leading to grain size refinement of hot-rolled steels. The cold-rolled and final microstructure after Q–P treatment was also refined because of refined hot rolled microstructure. Additionally, the degree of refinement was enhanced with increase in Nb-content. The tensile strength of the experimental steels was increased with increase in Nb-content from 1130 MPa in steel without Nb to 1210 MPa in steel with 0.048 wt% Nb. However, the total elongation first increased to 18% followed by a small decrease to 15%. The decrease in ductility is attributed to the consumption of carbon by precipitating NbC, which decreased the enrichment of austenite by carbon during partitioning, with consequent decrease in the stability of austenite. The decrease in the stability of retained austenite ultimately reduced the volume fraction of retained austenite and led to reduction in elongation.

  4. Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel

    International Nuclear Information System (INIS)

    In the present study the determining role of niobium (Nb) on significant enhancement in mechanical properties in a low-carbon quenched and partitioned steel is elucidated. The study indicates that solute drag and precipitation pinning effect of Nb suppressed the recrystallization during hot deformation, leading to grain size refinement of hot-rolled steels. The cold-rolled and final microstructure after Q–P treatment was also refined because of refined hot rolled microstructure. Additionally, the degree of refinement was enhanced with increase in Nb-content. The tensile strength of the experimental steels was increased with increase in Nb-content from 1130 MPa in steel without Nb to 1210 MPa in steel with 0.048 wt% Nb. However, the total elongation first increased to 18% followed by a small decrease to 15%. The decrease in ductility is attributed to the consumption of carbon by precipitating NbC, which decreased the enrichment of austenite by carbon during partitioning, with consequent decrease in the stability of austenite. The decrease in the stability of retained austenite ultimately reduced the volume fraction of retained austenite and led to reduction in elongation

  5. Influential role of black carbon in the soil-air partitioning of polychlorinated biphenyls (PCBs) in the Indus River Basin, Pakistan.

    Science.gov (United States)

    Ali, Usman; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2015-09-01

    Levels of polychlorinated biphenyls (PCBs) were assessed in surface soils and passive air samples from the Indus River Basin, and the influential role of black carbon (BC) in the soil-air partitioning process was examined. ∑26-PCBs ranged between 0.002-3.03 pg m(-3) and 0.26-1.89 ng g(-1) for passive air and soil samples, respectively. Lower chlorinated (tri- and tetra-) PCBs were abundant in both air (83.9%) and soil (92.1%) samples. Soil-air partitioning of PCBs was investigated through octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of the paired-t test revealed that both models showed statistically significant agreement between measured and predicted model values for the PCB congeners. Ratios of fBCKBC-AδOCT/fOMKOA>5 explicitly suggested the influential role of black carbon in the retention and soil-air partitioning of PCBs. Lower chlorinated PCBs were strongly adsorbed and retained by black carbon during soil-air partitioning because of their dominance at the sampling sites and planarity effect. PMID:25933089

  6. From dimers to collective dipoles: Structure and dynamics of methanol/ethanol partition by narrow carbon nanotubes

    Science.gov (United States)

    Garate, Jose A.; Perez-Acle, Tomas

    2016-02-01

    Alcohol partitioning by narrow single-walled carbon nanotubes (SWCNTs) holds the promise for the development of novel nanodevices for diverse applications. Consequently, in this work, the partition of small alcohols by narrow tubes was kinetically and structurally quantified via molecular dynamics simulations. Alcohol partitioning is a fast process in the order of 10 ns for diluted solutions but the axial-diffusivity within SWCNT is greatly diminished being two to three orders of magnitude lower with respect to bulk conditions. Structurally, alcohols form a single-file conformation under confinement and more interestingly, they exhibit a pore-width dependent transition from dipole dimers to a single collective dipole, for both methanol and ethanol. Energetic analyses demonstrate that this transition is the result of a detailed balance between dispersion and electrostatics interactions, with the latter being more pronounced for collective dipoles. This transition fully modifies the reorientational dynamics of the loaded particles, generating stable collective dipoles that could find usage in signal-amplification devices. Overall, the results herein have shown distinct physico-chemical features of confined alcohols and are a further step towards the understanding and development of novel nanofluidics within SWCNTs.

  7. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency

    OpenAIRE

    Gondret, Florence; Louveau, Isabelle; Mourot, Jacques; Duclos, Michel; Lagarrigue, Sandrine; Gilbert, Hélène; Van Milgen, Jacob

    2014-01-01

    The use and partition of feed energy are key elements in productive efficiency of pigs. This study aimed to determine whether dietary energy sources affect the partition of body lipids and tissue biochemical pathways of energy use between pigs differing in feed efficiency. Forty-eight barrows (pure Large White) from two divergent lines selected for residual feed intake (RFI), a measure of feed efficiency, were compared. From 74 d to 132 ± 0.5 d of age, pigs (n = 12 by line and by diet) were o...

  8. Carbon Tetrachloride and Chloroform Partition Coefficients Derived from Aqueous Desorption of Contaminated Hanford Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert G.; Sklarew, Debbie S.; Brown, Christopher F.; Gent, Philip M.; Szecsody, Jim E.; Mitroshkov, Alexandre V.; Thompson, Christopher J.

    2005-07-08

    Researchers at PNNL determined CCl4 and CHCl3 groundwater/sediment partition coefficients (Kd values) for contaminated aquifer sediments collected from borehole C3246 (299-W15-46) located in the 200 West Area adjacent to the Z-9 trench. Having realistic values for this parameter is critical to predict future movement of CCl4 in groundwater from the 200 West Area.

  9. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly.

    Science.gov (United States)

    Pepe-Ranney, Charles; Hall, Edward K

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  10. Assessing the combined influence of TOC and black carbon in soil–air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan

    International Nuclear Information System (INIS)

    Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002–0.53 ng g−1 in the surface soils while 1.43–22.1 and 0.19–7.59 pg m−3 in the passive air samples, respectively. Black carbon (fBC) and total organic carbon (fTOC) fractions were also measured and ranged between 0.73 and 1.75 and 0.04–0.2%, respectively. The statistical analysis revealed strong influence of fBC than fTOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta–bromodiphenylether (DE-71) commercial formulation in the study area. Soil–air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC−A). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. - Highlights: • Model based calculations of black carbon-air partition coefficients for PBDEs. • Soil and air levels of PBDEs and DPs reported first time for ecologically important sites of the Indus River Basin, Pakistan. • Both, fBC and fTOC showed combined influence on soil–air partitioning of PBDEs in the Indus River Basin, Pakistan. - BC and TOC showed combined influence on soil–air partitioning of POPs i-e., PBDEs in the Indus River Basin, Pakistan

  11. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Univ. of Arizona, Tucson, AZ (United States); Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States); Moorcroft, Paul [Univ. of Arizona, Tucson, AZ (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem

  12. How life affects the geochemical cycle of carbon

    Science.gov (United States)

    Walker, James C. G.

    1992-01-01

    Developing a quantitative understanding of the biogeochemical cycles of carbon as they have worked throughout Earth history on various time scales, how they have been affected by biological evolution, and how changes in the carbon content of ocean and atmosphere may have affected climate and the evolution of life are the goals of the research. Theoretical simulations were developed that can be tuned to reproduce such data as exist and, once tuned, can be used to predict properties that have not yet been observed. This is an ongoing process, in which models and results are refined as new data and interpretations become available and as understanding of the global system improves. Results of the research are described in several papers which were published or submitted for publication. These papers are summarized. Future research plans are presented.

  13. A new integration of hot pressing and carbon partition process to produce high strength steel components with better toughness

    Directory of Open Access Journals (Sweden)

    Zhang Shi-hong

    2015-01-01

    Full Text Available A novel one step method for hot pressing and quench & partition (Q&P integration – hot Pressing-dynamic partitioning (HP-DP process is presented, which can be processed by regular hot pressing equipment and process. The HP-DP formed steel is an upgrade of the existing hot pressed steel especially suitable for making high strength components with superior crashworthiness due to better toughness. Corresponding steel sheet based on conventional 22MnB5 is designed and prepared. After that, the physical simulation experiments for HP-DP are carried out on thermal-mechanical simulator. Microstructure of the steel subjected to HP-DP treatment, with a typical Q&P treated feature, is mainly composed of initial quenched martensite phase, final quenched martensite phase and retained austenite phase, which indicate the occurrence of carbon diffusion concomitantly with martensite transformation. Compared with conventional hot pressed samples, the HP-DP samples show both better tensile property especially elongation and impact energy absorption ability. The effect of HP-DP parameters on the stability of retained austenite and mechanical property is also discussed. The paper illustrates the promising application potential of the HP-DP process.

  14. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States). Dept. of Ecology and Evolutionary Biology; Davidson, Eric [Woods Hole Research Center, Falmouth, MA (United States); Finzi, Adrien [Boston Univ., MA (United States). Dept. of Biology; Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States). Dept. of Organismic and Evolutionary Biology

    2016-01-28

    This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of below ground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. above ground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: (A) Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics; (B) Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated below ground using measurements of root growth and indices of below ground autotrophic vs. heterotrophic respiration (via trenched plots andisotope measurements); (C) Testing whether plant allocation of carbon below ground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and (D) Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).

  15. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Eric A. [Woods Hole Research Center, Falmouth, MA (United States); Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Savage, Kathleen [Woods Hole Research Center, Falmouth, MA (United States); Finzi, Adrien [Boston Univ., MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States); Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States)

    2016-02-18

    1. Project Summary and Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).

  16. Regulation of carbon partitioning into carotenes by MPTA, a substituted tertiary amine

    International Nuclear Information System (INIS)

    In mature citrus fruits, synthesis and turnover of carotenes appears to be low. Treatment of lemon pieces with the substituted tertiary amine, 2-(4-methylphenoxyl)triethylamine, MPTA, induces the synthesis of carotenes. Exposure of tissue slices (lemon flavedo) to MPTA for 72 hrs results in the production of 29.6 μg gfrwt-1 lycopene whereas control slices showed only trace amounts of lycopene. An identical incorporation of 14C-glucose into sugars, amino acids and organic acids, in both treated and control tissue slices indicates the non-disturbance of fruit respiration by MPTA treatment. Incorporation of 14C-glucose into carotenes is negligible in mature citrus fruits, but in MPTA treated tissue slices there is a pronounced incorporation of 14C-glucose into carotenes. MPTA treatment induces the synthesis of carotene enzymes, thus effecting an increased partitioning of glucose into the MVA pathway for carotene synthesis

  17. Coupling carbon allocation with leaf and root phenology predicts tree-grass partitioning along a savanna rainfall gradient

    Science.gov (United States)

    Haverd, V.; Smith, B.; Raupach, M.; Briggs, P.; Nieradzik, L.; Beringer, J.; Hutley, L.; Trudinger, C. M.; Cleverly, J.

    2016-02-01

    The relative complexity of the mechanisms underlying savanna ecosystem dynamics, in comparison to other biomes such as temperate and tropical forests, challenges the representation of such dynamics in ecosystem and Earth system models. A realistic representation of processes governing carbon allocation and phenology for the two defining elements of savanna vegetation (namely trees and grasses) may be a key to understanding variations in tree-grass partitioning in time and space across the savanna biome worldwide. Here we present a new approach for modelling coupled phenology and carbon allocation, applied to competing tree and grass plant functional types. The approach accounts for a temporal shift between assimilation and growth, mediated by a labile carbohydrate store. This is combined with a method to maximize long-term net primary production (NPP) by optimally partitioning plant growth between fine roots and (leaves + stem). The computational efficiency of the analytic method used here allows it to be uniquely and readily applied at regional scale, as required, for example, within the framework of a global biogeochemical model.We demonstrate the approach by encoding it in a new simple carbon-water cycle model that we call HAVANA (Hydrology and Vegetation-dynamics Algorithm for Northern Australia), coupled to the existing POP (Population Orders Physiology) model for tree demography and disturbance-mediated heterogeneity. HAVANA-POP is calibrated using monthly remotely sensed fraction of absorbed photosynthetically active radiation (fPAR) and eddy-covariance-based estimates of carbon and water fluxes at five tower sites along the North Australian Tropical Transect (NATT), which is characterized by large gradients in rainfall and wildfire disturbance. The calibrated model replicates observed gradients of fPAR, tree leaf area index, basal area, and foliage projective cover along the NATT. The model behaviour emerges from complex feedbacks between the plant

  18. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure

    OpenAIRE

    Coleman, Heather D.; Yan, Jimmy; Mansfield, Shawn D

    2009-01-01

    Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba × grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in...

  19. CO{sub 2} enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth differentiation balance models?

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, W.J. [Forestry Sciences Lab., Rhinelander, WI (United States); Julkunen-Tiitto, R. [Univ. of Joensuu, Biology Dept., Joensuu (Finland); Herms, D.A. [Ohio State Univ., Dept. of Entmology, Wooster, OH (United States)

    2005-11-01

    Rising levels of atmospheric CO{sub 2} can alter plant growth and partitioning to secondary metabolites. The protein competition model (PCM) and the extended growth/differentiation balance model (GDB{sub e}) are similar but alternative models that address ontogenetic and environmental effects on whole-plant carbon partitioning to the phenylpropanoid biosynthetic pathway, making many divergentpredictins. To test the validity of the models, we compare plant responses to one key prediction: if CO{sub 2} enrichment simultaneously stimulates both photosynthesis and growth, then PCM predicts that partitioning to phenolic compounds will decline, whereas GDB{sub e} generally predicts the opposite. Elevated CO{sub 2} (at 548 ppm) increased the biomass growth (ca 23%) as well as the net photosynthesis (ca 13%) of 1-year-old potted paper birch, Betula papyrifera Marsch., in a free air carbon dioxide enrichment study (FACE) in northern Wisconsin. Concomitantly, elevated CO{sub 2} increased carbon partitioning to all measured classes of phenolics (Folin-Denis phenolics, HPLC low molecular weight phenolics (i.e. cinnamic acid derivatives, flavonol flycosides, and flavon-3-ols), condensed tannins, and acid-detergent lignin) in leaves. In stem tissues, tannins and lignin increased, but F-D phenolics did not. In root tissues, F-D phenolics, and tannins increased, but lignin did not. The data suggest that CO{sub 2} enrichment stimulated pathway-wide increase in carbon partitioning to phenylpropanoids. High CO{sub 2} plants had 11.8% more F-D phenolics, 19.3% more tannin, and 10% more lignin than ambient plants after adjusting for plant mass via analysis of covariance. In general, the results unequivocally support the predictions of the GDB{sub e} model. By way of contrast, results from many parallel studies on FACE trembling aspen, Populus tremuloides Michx., suggest that although 2 enrichment has consistently stimulated both photosynthesis and growth, it apparently did not

  20. Geological and hydrogeological features affecting migration, multi-phase partitioning and degradation of chlorinated hydrocarbons through unconsolidated porous media.

    OpenAIRE

    Filippini, Maria

    2015-01-01

    Chlorinated solvents are the most ubiquitous organic contaminants found in groundwater since the last five decades. They generally reach groundwater as Dense Non-Aqueous Phase Liquid (DNAPL). This phase can migrate through aquifers, and also through aquitards, in ways that aqueous contaminants cannot. The complex phase partitioning to which chlorinated solvent DNAPLs can undergo (i.e. to the dissolved, vapor or sorbed phase), as well as their transformations (e.g. degradation), depend on the...

  1. Patterns of Carbon Partitioning in Leaves of Crassulacean Acid Metabolism Species during Deacidification.

    Science.gov (United States)

    Christopher, J. T.; Holtum, JAM.

    1996-09-01

    Carbohydrates stored during deacidification in the light were examined in 11 Crassulacean acid metabolism (CAM) species from widely separated taxa grown under uniform conditions. The hypothesis that NAD(P) malic enzyme CAM species store chloroplastic starch and glucans, and phosphoenolpyruvate carboxykinase species store extrachloroplastic sugars or polymers was disproved. Of the six malic enzyme species examined, Kalanchoe tubiflora, Kalanchoe pinnata, Kalanchoe daigremontiana, and Vanilla planifolia stored mainly starch. Sansevieria hahnii stored sucrose and Agave guadalajarana did not store starch, glucose, fructose, or sucrose. Of the five phosphoenolpyruvate carboxykinase species investigated, Ananus comosus stored extrachloroplastic carbohydrate, but Stapelia gigantea, Hoya carnosa, and Portea petropolitana stored starch, whereas Aloe vera stored both starch and glucose. Within families, the major decarboxylase was common for all species examined, whereas storage carbohydrate could differ both between and within genera. In the Bromeliaceae, A. comosus stored mainly fructose, but P. petropolitana stored starch. In the genus Aloe, A. vera stored starch and glucose, but A. arborescens is known to store a galactomannan polymer. We postulate that the observed variation in carbohydrate partitioning between CAM species is the result of two principal components: (a) constraints imposed by the CAM syndrome itself, and (b) diversity in biochemistry resulting from different evolutionary histories. PMID:12226397

  2. Partitioning in trees and soil (PiTS) - a experimental approach to improve knowledge of forest carbon dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Garten Jr, Charles T [ORNL; Iversen, Colleen M [ORNL; Norby, Richard J [ORNL; Thornton, Peter E [ORNL; Weston, David [ORNL; Gu, Lianhong [ORNL; Brice, Deanne Jane [ORNL; Childs, Joanne [ORNL; Evans, R [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Summary The dynamics of rapid changes in carbon (C) partitioning within forest ecosystems are not well understood, which limits improvement of mechanistic models of C cycling. Our objective was to inform model processes by describing relationships between C partitioning and accessible environmental or physiological measurements, with a special emphasis on belowground C flux. We exposed eight 7-year-old loblolly pine trees to air enriched with 13CO2 and then implemented adjacent light shade (LS) and heavy shade (HS) treatments in order to manipulate C uptake and flux. A soil pit was dug adjacent to the trees to provide greater access belowground. The impacts of shading on photosynthesis, plant water potential, sap flow, basal area growth, root growth, and soil C exchange rate (CER) were assessed for each tree over a three-week period. The progression of the 13C label was concurrently tracked from the atmosphere through foliage, phloem, roots, and soil CO2 efflux. The HS treatment significantly reduced C uptake, sap flow, stem growth and root standing crop, and resulted in greater residual soil water content to 1 m depth. Sap flow was strongly correlated with CER on the previous day, but not the current day, with no apparent treatment effect on the relationship. The 13C label was immediately detected in foliage on label day (half-life = 0.5 d), progressed through phloem by day 2 (half-life = 4.7 d), roots by day 2-4, and subsequently was evident as respiratory release from soil which peaked between days 3-6. The 13C of soil CO2 efflux was strongly correlated with phloem 13C on the previous day, or two days earlier. These data detail the timing and relative magnitude of C flux through a young pine stand in relation to environmental conditions. Refinement of belowground sampling will be necessary to adequately separate and quantify the flux of recently fixed C into roots, and fate of that new C as respiratory, mycorrhizal or exudative release, storage or partitioning

  3. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China

    DEFF Research Database (Denmark)

    Lü, Xiao-Tao; Yin, Jiang-Xia; Jepsen, Martin Rudbeck;

    2010-01-01

    in Malaysia. The variation of C storage in the tree layer among different plots was mainly due to different densities of large trees (DBH > 70 cm). The contributions of the shrub layer, herb layer, woody lianas, and fine litter each accounted for 1-2 t C ha-1 to the total carbon stock. The mineral...

  4. The QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions

    Science.gov (United States)

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua Quine Starch, At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates...

  5. Assessing the combined influence of TOC and black carbon in soil-air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan.

    Science.gov (United States)

    Ali, Usman; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Katsoyiannis, Athanasios; Jones, Kevin C; Malik, Riffat Naseem

    2015-06-01

    Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002-0.53 ng g(-1) in the surface soils while 1.43-22.1 and 0.19-7.59 pg m(-3) in the passive air samples, respectively. Black carbon (fBC) and total organic carbon (fTOC) fractions were also measured and ranged between 0.73 and 1.75 and 0.04-0.2%, respectively. The statistical analysis revealed strong influence of fBC than fTOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta-bromodiphenylether (DE-71) commercial formulation in the study area. Soil-air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. PMID:25795070

  6. Partitioning sources of recharge in environments with groundwater recirculation using carbon-14 and CFC-12

    Science.gov (United States)

    Bourke, Sarah A.; Cook, Peter G.; Dogramaci, Shawan; Kipfer, Rolf

    2015-06-01

    Groundwater recirculation occurs when groundwater is pumped from an aquifer onto the land surface, and a portion of that water subsequently infiltrates back to the aquifer. In environments where groundwater is recirculated, differentiation between various sources of recharge (e.g. natural rainfall recharge vs. recirculated water) can be difficult. Groundwater age indicators, in particular transient trace gases, are likely to be more sensitive tracers of recharge than stable isotopes or chloride in this setting. This is because, unlike stable isotopes or chloride, they undergo a process of equilibration with the atmosphere, and historical atmospheric concentrations are known. In this paper, groundwater age indicators (14C and CFC-12) were used as tracers of recharge by surplus mine water that is discharged to streams. Ternary mixing ratios were calculated based on 14C and CFC-12 concentrations measured along three transects of piezometers and monitoring wells perpendicular to the creeks, and from dewatering wells. Uncertainty in calculated mixing ratios was estimated using a Monte Carlo approach. Ternary mixing ratios in dewatering wells suggest that recharge by mine water accounted for between 10% and 87% of water currently abstracted by dewatering wells. The calculated mixing ratios suggest that recharge by mine water extends to a distance of more than 550 m from the creeks. These results are supported by seepage flux estimates based on the water and chloride balance along the creeks, which suggest that 85-90% of mine water discharged to the creeks recharges the aquifer and recharge by mine water extends between 110 and 730 m from the creeks. Mixing calculations based on gaseous groundwater age indicators could also be used to partition recharge associated with agricultural irrigation or artificial wetland supplementation.

  7. On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning

    DEFF Research Database (Denmark)

    Lasslop, G.; Migliavacca, M.; Bohrer, G.;

    2012-01-01

    Networks that merge and harmonise eddy-covariance measurements from many different parts of the world have become an important observational resource for ecosystem science. Empirical algorithms have been developed which combine direct observations of the net ecosystem exchange of carbon dioxide w...... estimates based on different temperature observations to account for the uncertainty due to the choice of temperature and to assure the robustness of the temporal patterns of the derived variables....

  8. Martensitic transformation and stress partitioning in a high-carbon steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Grumsen, Flemming Bjerg; Pantleon, Karen;

    2012-01-01

    Martensitic transformation in a high-carbon steel was investigated with (synchrotron) X-ray diffraction at sub-zero Celsius temperature. In situ angular X-ray diffraction was applied to: (i) quantitatively determine the fractions of retained austenite and martensite; and (ii) measure the evolutio...... of the lattice strain in retained austenite. Ex situ (synchrotron) energy-dispersive X-ray diffraction was performed to assess the effects of the martensitic transformation on the development of stresses in austenite....

  9. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning.

    Science.gov (United States)

    Bourgis, Fabienne; Kilaru, Aruna; Cao, Xia; Ngando-Ebongue, Georges-Frank; Drira, Noureddine; Ohlrogge, John B; Arondel, Vincent

    2011-07-26

    Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information. PMID:21709233

  10. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity

    Directory of Open Access Journals (Sweden)

    Alyne Oliveira Lavinsky

    2015-10-01

    Full Text Available Plants may respond to drought by altering biomass allocation to shoots and roots or by changing the metabolic activities in these organs. To determine how drought changes the partitioning of carbon allocated to growth and secondary metabolism in maize roots and how it affects photosynthesis (A and productivity in maize, we evaluated leaf gas exchange, yield componentes, root morphology, and primary and secondary metabolites including total soluble sugars (TSS, starch (S, phenolics (PHE, and lignin (LIG. Data were collected from pot-grown plants of four maize genotypes: BRS 1010 and 2B710 (sensitive genotypes and DKB390 and BRS1055 (tolerant genotypes under two soil water tensions: field capacity (FC, − 18 kPa and water deficit (WD, − 138 kPa. WD was applied at the pre-flowering stage for 12 days and then the water supply was restored and maintained at optimum levels until the end of the cycle. For genotype BRS 1055 under FC, the greatest A did not result in greater grain biomass (DGB because the accumulated photoassimilates had already filled the cells, and thus the excessive TSS synthesized in leaves was allocated to roots in large amounts. However, the sharp decrease in A caused by WD imposition in this genotype did not affect the influx pressure of leaf TSS, which was due largely to conversion of primary metabolites to PHE compounds to increase the length of fine roots. In leaves of DKB390 under WD, both S and TSS were reduced, whereas PHE were increased to prevent excessive water loss and xylem cavitation. Under WD, both BRS1010 and 2B710 genotypes displayed reduced allocation of biomass to shoots and roots and LIG content in leaves, as well as lower A and DGB values. In BRS1010 this response was coupled to S decrease in leaves and TSS increase in roots, whereas in 2B710 there was a concomitant S increase in roots.

  11. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis.

    Science.gov (United States)

    Mittal, Amandeep; Balasubramanian, Rajagopal; Cao, Jin; Singh, Prabhjeet; Subramanian, Senthil; Hicks, Glenn; Nothnagel, Eugene A; Abidi, Noureddine; Janda, Jaroslav; Galbraith, David W; Rock, Christopher D

    2014-08-01

    Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals. PMID:24821950

  12. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity

    Institute of Scientific and Technical Information of China (English)

    Alyne Oliveira Lavinsky; Paulo César Magalhães; Roniel Geraldo Ávila; Mariana Melo Diniz; Thiago Corrêa de Souza

    2015-01-01

    Plants may respond to drought by altering biomass allocation to shoots and roots or by changing the metabolic activities in these organs. To determine how drought changes the partitioning of carbon allocated to growth and secondary metabolism in maize roots and how it affects photosynthesis (A) and productivity in maize, we evaluated leaf gas exchange, yield componentes, root morphology, and primary and secondary metabolites including total soluble sugars (TSS), starch (S), phenolics (PHE), and lignin (LIG). Data were collected from pot-grown plants of four maize genotypes:BRS 1010 and 2B710 (sensitive genotypes) and DKB390 and BRS1055 (tolerant genotypes) under two soil water tensions:field capacity (FC,−18 kPa) and water deficit (WD,−138 kPa). WD was applied at the pre-flowering stage for 12 days and then the water supply was restored and maintained at optimum levels until the end of the cycle. For genotype BRS 1055 under FC, the greatest A did not result in greater grain biomass (DGB) because the accumulated photoassimilates had already filled the cells, and thus the excessive TSS synthesized in leaves was allocated to roots in large amounts. However, the sharp decrease in A caused by WD imposition in this genotype did not affect the influx pressure of leaf TSS, which was due largely to conversion of primary metabolites to PHE compounds to increase the length of fine roots. In leaves of DKB390 under WD, both S and TSS were reduced, whereas PHE were increased to prevent excessive water loss and xylem cavitation. Under WD, both BRS1010 and 2B710 genotypes displayed reduced allocation of biomass to shoots and roots and LIG content in leaves, as well as lower A and DGB values. In BRS1010 this response was coupled to S decrease in leaves and TSS increase in roots, whereas in 2B710 there was a concomitant S increase in roots.

  13. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity

    Institute of Scientific and Technical Information of China (English)

    Alyne; Oliveira; Lavinsky; Paulo; César; Magalh?es; Roniel; Geraldo; ávila; Mariana; Melo; Diniz; Thiago; Corrêa; de; Souza

    2015-01-01

    Plants may respond to drought by altering biomass allocation to shoots and roots or by changing the metabolic activities in these organs. To determine how drought changes the partitioning of carbon allocated to growth and secondary metabolism in maize roots and how it affects photosynthesis(A) and productivity in maize, we evaluated leaf gas exchange, yield componentes, root morphology, and primary and secondary metabolites including total soluble sugars(TSS), starch(S), phenolics(PHE), and lignin(LIG). Data were collected from pot-grown plants of four maize genotypes: BRS 1010 and 2B710(sensitive genotypes) and DKB390 and BRS1055(tolerant genotypes) under two soil water tensions: field capacity(FC,-18 kP a) and water deficit(WD,-138 kP a). WD was applied at the pre-flowering stage for 12 days and then the water supply was restored and maintained at optimum levels until the end of the cycle. For genotype BRS 1055 under FC, the greatest A did not result in greater grain biomass(DGB) because the accumulated photoassimilates had already filled the cells, and thus the excessive TSS synthesized in leaves was allocated to roots in large amounts. However, the sharp decrease in A caused by WD imposition in this genotype did not affect the influx pressure of leaf TSS, which was due largely to conversion of primary metabolites to PHE compounds to increase the length of fine roots. In leaves of DKB390 under WD, both S and TSS were reduced, whereas PHE were increased to prevent excessive water loss and xylem cavitation. Under WD, both BRS1010 and2B710 genotypes displayed reduced allocation of biomass to shoots and roots and LIG content in leaves, as well as lower A and DGB values. In BRS1010 this response was coupled to S decrease in leaves and TSS increase in roots, whereas in 2B710 there was a concomitant S increase in roots.

  14. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality

    OpenAIRE

    Yadav, Umesh P.; Ayre, Brian G.; Bush, Daniel R.

    2015-01-01

    The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem,...

  15. Carbon, Nitrogen and Phosphorus Accumulation and Partitioning, and C:N:P Stoichiometry in Late-Season Rice under Different Water and Nitrogen Managements

    OpenAIRE

    Yushi Ye; Xinqiang Liang; Yingxu Chen; Liang Li; Yuanjing Ji; Chunyan Zhu

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD...

  16. Carbon partitioning as validation methods for crop yields and CO2 sequestration monitoring in Asia using a photosynthetic-sterility model

    Science.gov (United States)

    Kaneko, Daijiro; Yang, Peng; Kumakura, Toshiro

    2010-10-01

    Sustainability of world crop production and food security has become uncertain. The authors have developed an environmental research system called Remote Sensing Environmental Monitor (RSEM) for treating carbon sequestration by vegetation, grain production, desertification of Eurasian grassland, and CDM afforestation/ reforestation to a background of climate change and economic growth in rising Asian nations. The RSEM system involves vegetation photosynthesis and crop yield models for grains, including land-use classification, stomatal evaluation by surface energy fluxes, and daily monitoring for early warning. This paper presents a validation method for RSEM based on carbon partitioning in plants, focusing in particular on the effects of area sizes used in crop production statistics on carbon fixation and on sterility-based corrections to accumulated carbon sequestration values simulated using the RSEM photosynthesis model. The carbonhydrate in grains has the same chemical formula as cellulose in grain plants. The method proposed by partitioning the fixed carbon in harvested grains was used to investigate estimates of the amounts of carbon fixed, using the satellite-based RSEM model.

  17. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency.

    Science.gov (United States)

    Gondret, F; Louveau, I; Mourot, J; Duclos, M J; Lagarrigue, S; Gilbert, H; van Milgen, J

    2014-11-01

    The use and partition of feed energy are key elements in productive efficiency of pigs. This study aimed to determine whether dietary energy sources affect the partition of body lipids and tissue biochemical pathways of energy use between pigs differing in feed efficiency. Forty-eight barrows (pure Large White) from two divergent lines selected for residual feed intake (RFI), a measure of feed efficiency, were compared. From 74 d to 132 ± 0.5 d of age, pigs (n = 12 by line and by diet) were offered diets with equal protein and ME contents. A low fat, low fiber diet (LF) based on cereals and a high fat, high fiber diet (HF) where vegetal oils and wheat straw were used to partially substitute cereals, were compared. Irrespective of diet, gain to feed was 10% better (P percentage of PUFA, especially the EFA C18:2 and C18:3, was greater (P < 0.001) in backfat of HF-fed pigs. In both lines, these changes were associated with a marked decrease (P < 0.001) in the activities of two lipogenic enzymes, the fatty acid synthase (FASN) and the malic enzyme, in backfat. For the high RFI line, the hepatic lipid content was greater (P < 0.05) in pigs fed the HF diet than in pigs fed the LF diet, despite a reduced FASN activity (-32%; P < 0.001). In both lines, the HF diet also led to lower glycogen content (-70%) and lower glucokinase activity (-15%; P < 0.05) in the liver. These results show that dietary energy sources modified the partition of energy between liver, adipose tissue, and muscle in a way that was partly dependent of the genetics for feed efficiency, and changed the activity levels of biochemical pathways involved in lipid and glucose storage in tissues. PMID:25253805

  18. Effect of Lipid Partitioning on Predictions of Acute Toxicity of Oil Sands Process Affected Water to Embryos of Fathead Minnow (Pimephales promelas).

    Science.gov (United States)

    Morandi, Garrett D; Zhang, Kun; Wiseman, Steve B; Pereira, Alberto Dos Santos; Martin, Jonathan W; Giesy, John P

    2016-08-16

    Dissolved organic compounds in oil sands process affected water (OSPW) are known to be responsible for most of its toxicity to aquatic organisms, but the complexity of this mixture prevents use of traditional bottom-up approaches for predicting toxicities of mixtures. Therefore, a top-down approach to predict toxicity of the dissolved organic fraction of OSPW was developed and tested. Accurate masses (i.e., m/z) determined by ultrahigh resolution mass spectrometry in negative and positive ionization modes were used to assign empirical chemical formulas to each chemical species in the mixture. For each chemical species, a predictive measure of lipid accumulation was estimated by stir-bar sorptive extraction (SBSE) to poly(dimethyl)siloxane, or by partitioning to solid-supported lipid membranes (SSLM). A narcosis mode of action was assumed and the target-lipid model was used to estimate potencies of mixtures by assuming strict additivity. A model developed using a combination of the SBSE and SSLM lipid partitioning estimates, whereby the accumulation of chemicals to neutral and polar lipids was explicitly considered, was best for predicting empirical values of LC50 in 96-h acute toxicity tests with embryos of fathead minnow (Pimephales promelas). Model predictions were within 4-fold of observed toxicity for 75% of OSPW samples, and within 8.5-fold for all samples tested, which is comparable to the range of interlaboratory variability for in vivo toxicity testing. PMID:27420640

  19. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    Science.gov (United States)

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. PMID:27082255

  20. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, A. [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Olías, M., E-mail: manuel.olias@dgyp.uhu.es [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Cánovas, C.R. [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Martín, J.E.; Bolivar, J.P. [Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain)

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  1. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    International Nuclear Information System (INIS)

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  2. Changes in partitioning of carbon amongst photosynthetic pico- and nano-plankton groups in the Sargasso Sea in response to changes in the North Atlantic Oscillation

    Science.gov (United States)

    Casey, John R.; Aucan, Jerome P.; Goldberg, Stacey R.; Lomas, Michael W.

    2013-09-01

    Picophytoplankton carbon biomass at the Bermuda Atlantic Time-series Study (BATS) site from June 2004 to December 2010 was estimated from the direct calibration of cellular carbon content and forward light scatter (via flow cytometry). Seasonality and interannual dynamics of Prochlorococcus, Synechococcus and small eukaryotic algae (algae, respectively. Thus, shifts in algal community structure are inferred to be associated with changes in light intensity and implied nutrient supply via mixing (i.e., patterns in upper ocean stability). These observed changes in phytoplankton biomass partitioning were correlated with the important ocean carbon cycle parameters of export flux, mesopelagic transfer efficiency, and elemental stoichiometry. Importantly, interannual relationships between these parameters and algal biomass were detected only when QC was considered as variable.

  3. A genomics investigation of partitioning into and among flavonoid-derived condensed tannins for carbon sequestration in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L

    2013-03-24

    The project set out to use comparative (genotype and treatment) and transgenic approaches to investigate the determinants of condensed tannin (CT) accrual and chemical variability in Populus. CT type and amount are thought to effect the decomposition of plant detritus in the soil, and thereby the sequestering of carbon in the soil. The stated objectives were: 1. Genome-wide transcriptome profiling (microarrays) to analyze structural gene, transcription factor and metabolite control of CT partitioning; 2. Transcriptomic (microarray) and chemical analysis of ontogenetic effects on CT and PG partitioning; and 3. Transgenic manipulation of flavonoid biosynthetic pathway genes to modify the control of CT composition. Objective 1: A number of approaches for perturbing CT content and chemistry were tested in Objective 1, and those included nitrogen deficit, leaf wounding, drought, and salicylic acid spraying. Drought had little effect on CTs in the genotypes we used. Plants exhibited unpredictability in their response to salicylic acid spraying, leading us to abandon its use. Reduced plant nitrogen status and leaf wounding caused reproducible and magnitudinally striking increases in leaf CT content. Microarray submissions to NCBI from those experiments are the following: GSE ID 14515: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 1979. Public on Jan 04, 2010; Contributor(s) Harding SA, Tsai C GSE ID 14893: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 3200. Public on Feb 19, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16783 Wound-induced gene expression changes in Populus: 1 week; clone RM5. Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16785 Wound-induced gene expression changes in Populus: 90 hours; clone RM5 Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C Although CT amount changed in response to treatments, CT composition was essentially

  4. A new integration of hot pressing and carbon partition process to produce high strength steel components with better toughness

    OpenAIRE

    Zhang Shi-hong; Song Hong-wu; Zhang Fei-bao; Liu Wei-jie

    2015-01-01

    A novel one step method for hot pressing and quench & partition (Q&P) integration – hot Pressing-dynamic partitioning (HP-DP) process is presented, which can be processed by regular hot pressing equipment and process. The HP-DP formed steel is an upgrade of the existing hot pressed steel especially suitable for making high strength components with superior crashworthiness due to better toughness. Corresponding steel sheet based on conventional 22MnB5 is designed and prepared. After that, the ...

  5. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements.

    Directory of Open Access Journals (Sweden)

    Yushi Ye

    Full Text Available Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C, nitrogen (N and phosphorus (P, in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD and four N managements (control, N0; conventional urea at 240 kg N ha(-1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha(-1, BBF; polymer-coated urea at 240 kg N ha(-1, PCU. We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems.

  6. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements.

    Science.gov (United States)

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha(-1), UREA; controlled-release bulk blending fertilizer at 240 kg N ha(-1), BBF; polymer-coated urea at 240 kg N ha(-1), PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems. PMID:24992006

  7. Bulk partitioning the growing season net ecosystem exchange of CO2 in Siberian tundra reveals the seasonality of its carbon sequestration strength

    Directory of Open Access Journals (Sweden)

    E.-M. Pfeiffer

    2012-10-01

    Full Text Available This paper evaluates the relative contribution of light and temperature on net ecosystem CO2 uptake during the 2006 growing season in a~polygonal tundra ecosystem in the Lena River Delta in Northern Siberia (72°22´ N, 126°30´ E. We demonstrate that the timing of warm periods may be an important determinant of the magnitude of the ecosystem's carbon sink function, as they drive temperature-induced changes in respiration. Hot spells during the early portion of the growing season are shown to be more influential in creating mid-day surface-to-atmosphere net ecosystem CO2 exchange fluxes than those occurring later in the season. In this work we also develop and present a bulk flux partition model to better account for tundra plant physiology and the specific light conditions of the arctic region that preclude the successful use of traditional partition methods that derive a respiration-temperature relationship from all night-time data. Night-time, growing season measurements are rare during the arctic summer, however, so the new method allows for temporal variation in the parameters describing both ecosystem respiration and gross uptake by fitting both processes at the same time. Much of the apparent temperature sensitivity of respiration seen in the traditional partition method is revealed in the new method to reflect seasonal changes in basal respiration rates. Understanding and quantifying the flux partition is an essential precursor to describing links between assimilation and respiration at different time scales, as it allows a more confident evaluation of measured net exchange over a broader range of environmental conditions. The growing season CO2 sink estimated by this study is similar to those reported previously for this site, and is substantial enough to withstand the long, low-level respiratory CO2 release during the rest of the year to maintain the site's CO2 sink function on an annual basis.

  8. High-pressure (vapour + liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal + carbon dioxide + water}: Partition coefficient measurement

    International Nuclear Information System (INIS)

    Highlights: • A new apparatus based on a static–analytic method was assembled in this work. • This work reports high-pressure VLE data of (E)-2-hexenal or hexanal + CO2 + water. • Data includes (CO2 + water) partition coefficients of (E)-2-hexenal and hexanal. • High separation factors from water (∼104) were found especially for (E)-2-hexenal. • The data were obtained at T = (313, 323, and 333) K and pressures from (8 to 19) MPa. - Abstract: A new apparatus based on a static–analytic method assembled in this work was utilised to perform high-pressure (vapour + liquid) equilibria measurements of aqueous ternary systems. This work includes values of isothermal partition coefficients between CO2 and water of two apple aroma constituents, (E)-2-hexenal and hexanal. Additionally, this work reports new experimental (vapour + liquid) equilibria measurements for the ternary systems (CO2 + (E)-2-hexenal + water) and (CO2 + hexanal + water), at fixed liquid phase composition (600 mg · kg−1), at temperatures of (313, 323 and 333) K and at pressures from (8 to 19) MPa. Vapour liquid interphase was checked and monitored visually for all the systems studied in this work. No liquid immiscibility was observed at the composition, temperatures and pressures studied. In order to suggest reasonable operation conditions for fractionation of aromas with dense carbon dioxide, partition coefficients of the aroma compounds between CO2 and water along with their separation factors from water were calculated. Partition coefficients of (E)-2-hexenal between CO2 and water were in the range of (6 to 91) and where found to be near six times higher than those of hexanal (9 to 17). Very high separation factors from water were observed (∼104) especially for (E)-2-hexenal. The highest separation factor, for both compounds, was found at a temperature of 313 K and pressures from (12 to 14) MPa

  9. Evaluating dissolved organic carbon-water partitioning using polyparameter linear free energy relationships: Implications for the fate of disinfection by-products.

    Science.gov (United States)

    Neale, Peta A; Escher, Beate I; Goss, Kai-Uwe; Endo, Satoshi

    2012-07-01

    The partitioning of micropollutants to dissolved organic carbon (DOC) can influence their toxicity, degradation, and transport in aquatic systems. In this study carbon-normalized DOC-water partition coefficients (K(DOC-w)) were measured for a range of non-polar and polar compounds with Suwannee River fulvic acid (FA) using headspace and solid-phase microextraction (SPME) methods. The studied chemicals were selected to represent a range of properties including van der Waal forces, cavity formation and hydrogen bonding interactions. The K(DOC-w) values were used to calibrate a polyparameter linear free energy relationship (pp-LFER). The difference between experimental and pp-LFER calculated K(DOC-w) values was generally less than 0.3 log units, indicating that the calibrated pp-LFER could provide a good indication of micropollutant interaction with FA, though statistical analysis suggested that more data would improve the predictive capacity of the model. A pp-LFER was also calibrated for Aldrich humic acid (HA) using K(DOC-w) values collected from the literature. Both experimental and pp-LFER calculated K(DOC-w) values for Aldrich HA were around one order of magnitude greater than Suwannee River FA. This difference can be explained by the higher cavity formation energy in Suwannee River FA. Experimental and pp-LFER calculated K(DOC-w) values were compared for halogenated alkanes and alkenes, including trihalomethane disinfection by-products, with good agreement between the two approaches. Experimental and calculated values show that DOC-water partitioning is generally low; indicating that sorption to DOC is not an important fate process for these chemicals in the environment. PMID:22542133

  10. Partition Equilibrium

    Science.gov (United States)

    Feldman, Michal; Tennenholtz, Moshe

    We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.

  11. Bioconcentration of Dissolved Organic Compounds from Oil Sands Process-Affected Water by Medaka (Oryzias latipes): Importance of Partitioning to Phospholipids.

    Science.gov (United States)

    Zhang, Kun; Wiseman, Steve; Giesy, John P; Martin, Jonathan W

    2016-06-21

    The complex mixture of dissolved organics in oil sands process-affected water (OSPW) is acutely lethal to fish at environmentally relevant concentrations, but few bioconcentration factors (BCFs) have been measured for its many chemical species. Japanese medaka (Oryzias latipes) were exposed to 10% OSPW, and measured BCFs were evaluated against predicted BCFs from octanol-water distribution ratios (DOW) and phospholipid membrane-water distribution ratios (DMW). Two heteroatomic chemical classes detected in positive ion mode (SO(+), NO(+)) and one in negative mode (O2(-), also known as naphthenic acids) had the greatest DMW values, as high as 10 000. Estimates of DMW were similar to and correlated with DOW for O(+), O2(+), SO(+), and NO(+) chemical species, but for O2(-) and SO2(-) species the DMW values were much greater than the corresponding DOW, suggesting the importance of electrostatic interactions for these ionizable organic acids. Only SO(+), NO(+), and O2(-) species were detectable in medaka exposed to OSPW, and BCFs for SO(+) and NO(+) species ranged from 0.6 to 28 L/kg, lower than predicted (i.e., 1.4-1.7 × 10(3) L/kg), possibly because of biotransformation of these hydrophobic substances. BCFs of O2(-) species ranged from 0.7 to 53 L/kg, similar to predicted values and indicating that phospholipid partitioning was an important bioconcentration mechanism. PMID:27224302

  12. How does forest thinning affect short- and long-term water partitioning in the semi-arid Santa Fe Municipal Watershed, and how do these changes compare to unmediated forest responses to climate change?

    Science.gov (United States)

    Dugger, A. L.; Tague, C.; Allen, C. D.; Ringler, T.

    2011-12-01

    In water-limited environments, water and vegetation systems are intrinsically linked. Vegetation exerts direct controls on water partitioning through transpiration and indirect controls on partitioning through radiation and precipitation interception, rooting effects on soil permeability, and litter effects on water capture and storage, among others. In semi-arid forest systems of the Southwest U.S. in particular, vegetation controls on water partitioning are often the most dominant after climate, so changes in vegetation structure, species type, and biomass can lead to large shifts in downstream water availability. We use a coupled ecologic-hydrologic, process-based model (RHESSys) to investigate how human- and nature-induced changes in vegetation biomass, structure, and spatial distribution affect the partitioning of water into evaporation (E), transpiration (T), groundwater recharge (GW), and streamflow (Q) in the Santa Fe Municipal Watershed in Northern New Mexico. Previous work at this site has shown that RHESSys can successfully capture observed seasonal streamflow patterns and inter-annual biomass dynamics (growth/mortality) in response to climate. In this study, we use sensitivity analysis of model vegetation parameterization to estimate the relative magnitude of responses in E, T, GW, and Q due to a range of different vegetation manipulation scenarios, including uniform changes in biomass, varying spatial patterns of vegetation thinning, increasing canopy cover gaps through thinning, and changes in litter and coarse woody debris. The dynamic vegetation model allows us to not only evaluate instantaneous changes in partitioning associated with these manipulations, but also how partitioning evolves over time. Finally, we compare model estimates of effects on water partitioning from forest treatment to effects from unmediated "natural" vegetation responses to climate warming.

  13. Carbon monoxide affects electrical and contractile activity of rat myocardium

    OpenAIRE

    Porokhnya Maria V; Haertdinov Nail N; Abramochkin Denis V; Zefirov Andrew L; Sitdikova Gusel F

    2011-01-01

    Abstract Background Carbon monoxide (CO) is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and vent...

  14. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors

    International Nuclear Information System (INIS)

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. - Highlights: → Highest carbon sequestration potential in evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). → The final carbon gain of the grassland was negative (massive ecosystem respiration). → Climate is important factor of net primary productivity. → Carbon uptake is strongly affected by the ontogeny and a production strategy of ecosystem. - Identification of the apparent differences in the carbon storage by different ecosystem types.

  15. Multiwalled Carbon Nanotube Dispersion Methods Affect Their Aggregation, Deposition, and Biomarker Response

    Science.gov (United States)

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT...

  16. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    Science.gov (United States)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  17. Carbon monoxide affects electrical and contractile activity of rat myocardium

    Directory of Open Access Journals (Sweden)

    Porokhnya Maria V

    2011-06-01

    Full Text Available Abstract Background Carbon monoxide (CO is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and ventricular myocardium. Contractions of atrial myocardial stripes were registered via force transducer. Results CO (10-4 - 10-3 M caused prominent decrease of action potential duration (APD in working atrial myocardium as well as significant acceleration of sinus rhythm. In addition CO reduced force of contractions and other parameters of contractile activity. Inhibitor of heme oxygenase zinc protoporphyrin IX exerts opposite effects: prolongation of action potential, reduction of sinus rhythm rate and enhancement of contractile function. Therefore, endogenous CO, which may be generated in the heart due to the presence of active heme oxygenase, is likely to exert the same effects as exogenous CO applied to the perfusing medium. In ventricular myocardium preparations exogenous CO also induced shortening of action potential, while zinc protoporphyrin IX produced the opposite effect. Conclusions Thus, endogenous or exogenous carbon monoxide may act as an important regulator of electrical and contractile cardiac activity.

  18. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production

    Science.gov (United States)

    Hardison, Amber K.; Algar, Christopher K.; Giblin, Anne E.; Rich, Jeremy J.

    2015-09-01

    Biologically available nitrogen is removed from ecosystems through the microbial processes of anaerobic ammonium oxidation (anammox) or denitrification, while dissimilatory nitrate reduction to ammonium (DNRA) retains it. A mechanistic understanding of controls on partitioning among these pathways is currently lacking. The objective of this study was to conduct a manipulative experiment to determine the influence of organic C and NO3- loading on partitioning. Sediment was collected from a location on the southern New England shelf (78 m water depth) and sieved. Half of the sediment was mixed with freeze-dried phytoplankton and the other half was not. Sediment was then spread into 1.5 mm, "thin discs" closed at the bottom and placed in large aquarium tanks with filtered, N2/CO2 sparged seawater to maintain O2 limited conditions. Half of the discs received high NO3- loading, while the other half received low NO3- loading, resulting in a multifactorial design with four treatments: no C addition, low NO3- (-C-N); C addition, low NO3- (+C-N); no C addition, high NO3- (-C+N); and C addition, high NO3- (+C+N). Sediment discs were incubated in the tanks for 7 weeks, during which time inorganic N (NH4+, NO3-, and NO2-) was monitored, and sediment discs were periodically removed from the tanks to conduct 15N isotope labeling experiments in vials to measure potential rates of anammox, denitrification, and DNRA. Temporal dynamics of inorganic N concentrations in the tanks were indicative of anoxic N metabolism, with strong response of the build up or consumption of the intermediate NO2-, depending on treatments. Vial incubation experiments with added 15NO2- + 14NH4+ indicated significant denitrification and DNRA activity in sediment thin discs, but incubations with added 15NH4+ + 14NO2- indicated anammox was not at all significant. Inorganic N concentrations in the tanks were fit to a reactive transport model assuming different N transformations. Organic C decomposition rates

  19. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors.

    Science.gov (United States)

    Marek, Michal V; Janouš, Dalibor; Taufarová, Klára; Havránková, Kateřina; Pavelka, Marian; Kaplan, Věroslav; Marková, Irena

    2011-05-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. PMID:21345558

  20. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  1. Black Carbon Vertical Profiles Strongly Affect its Radiative Forcing Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, Susanne E.; Berntsen, T.; Bian, Huisheng; Bellouin, N.; Diehl, T.; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kinne, Stefan; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, Xiaohong; Penner, Joyce E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, Kai

    2013-03-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  2. Photosynthate partitioning in higher plants. I. The effect of elevated carbon dioxide levels. II. The role of pyruvate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Baysdorfer, C.W.

    1983-12-01

    The regulation of photosynthetic rates in a simulated alfalfa crop were investigated. Long and short term CO/sub 2/ enrichment, /sup 14/CO/sub 2/ feeding, and partial defoliation were used to investigate source/sink interactions in a simulated alfalfa crop. Long term CO/sub 2/ enrichment did not increase the photosynthetic rate or the growth rate in mature alfalfa, in spite of the fact that photorespiration was substantially reduced. Short term CO/sub 2/ exposures did, however, increase mature crop photosynthetic rates as did partial defoliation of the crop. In contrast, seedling photosynthetic rates and growth rates were increased in response to long term CO/sub 2/ enrichment. These results suggest that, for the mature alfalfa crop, photosynthesis is limited by the demand for photosynthate. In a second, related experiment partial purification of and regulatory properties of spinach pyruvate kinase isoforms were isolated. Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide k/sub m/ values. In addition, both isoforms differ in their response to three key metabolites, citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a K/sub a/ of 0.05 mM, glutamate an inhibitor with a K/sub i/ of 0.68 mM. A pyruvate kinase with these properties has not been previously reported. Based on these considerations it is likely that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.

  3. Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic–austenitic TRIP steels

    International Nuclear Information System (INIS)

    Understanding alloying and thermal processing at an atomic scale is essential for the optimal design of high-carbon (0.71 wt.%) bainitic–austenitic transformation-induced plasticity (TRIP) steels. We investigate the influence of the austempering temperature, chemical composition (especially the Si:Al ratio) and partitioning on the nanostructure and mechanical behavior of these steels by atom probe tomography. The effects of the austempering temperature and of Si and Al on the compositional gradients across the phase boundaries between retained austenite and bainitic ferrite are studied. We observe that controlling these parameters (i.e. Si, Al content and austempering temperature) can be used to tune the stability of the retained austenite and hence the mechanical behavior of these steels. We also study the atomic scale redistribution of Mn and Si at the bainitic ferrite/austenite interface. The observations suggest that either para-equilibrium or local equilibrium-negligible partitioning conditions prevail depending on the Si:Al ratio during bainite transformation.

  4. Bulk partitioning the growing season net ecosystem exchange of CO2 in Siberian tundra reveals the seasonality of its carbon sequestration strength

    Directory of Open Access Journals (Sweden)

    B. R. K. Runkle

    2013-03-01

    Full Text Available This paper evaluates the relative contribution of light and temperature on net ecosystem CO2 uptake during the 2006 growing season in a polygonal tundra ecosystem in the Lena River Delta in Northern Siberia (72°22´ N, 126°30´ E. The occurrence and frequency of warm periods may be an important determinant of the magnitude of the ecosystem's carbon sink function, as they drive temperature-induced changes in respiration. Hot spells during the early portion of the growing season, when the photosynthetic apparatus of vascular plants is not fully developed, are shown to be more influential in creating positive mid-day surface-to-atmosphere net ecosystem CO2 exchange fluxes than those occurring later in the season. In this work we also develop and present a multi-step bulk flux partition model to better account for tundra plant physiology and the specific light conditions of the arctic region. These conditions preclude the successful use of traditional partition methods that derive a respiration–temperature relationship from all nighttime data or from other bulk approaches that are insensitive to temperature or light stress. Nighttime growing season measurements are rare during the arctic summer, however, so the new method allows for temporal variation in the parameters describing both ecosystem respiration and gross uptake by fitting both processes at the same time. Much of the apparent temperature sensitivity of respiration seen in the traditional partition method is revealed in the new method to reflect seasonal changes in basal respiration rates. Understanding and quantifying the flux partition is an essential precursor to describing links between assimilation and respiration at different timescales, as it allows a more confident evaluation of measured net exchange over a broader range of environmental conditions. The growing season CO2 sink estimated by this study is similar to those reported previously for this site, and is substantial

  5. Does pro-environmental behaviour affect carbon emissions?

    International Nuclear Information System (INIS)

    The primary focus of this research is to explore the effect of pro-environmental behaviour on CO2 emissions in relation to heating, electricity and transport activities in the residential sector. Changing such behaviour has considerable potential for conserving energy and is an important target of environmental policies which are designed to decrease energy consumption. It is hypothesized that people who consciously act in a pro-environmental way do not necessarily have lower CO2 emissions more than those who do not undertake environmental activities. Data about residential energy use is based on a survey carried out in Hungary in 2010 with a sample of 1012 people. Latent cluster analysis (LCA) was conducted based on data about the reported pro-environmental behavior in the survey and four clusters were identified. Relevant sociostructural and structural factors were also inverstigated. Results of the data analysis show that no significant difference is found between the impacts of environmentally aware and environmentally unaware consumers, i.e. both ‘Brown’ and ‘Supergreen’ consumers consume approximately the same amount of energy and produce approximately the same amount of carbon emissions because the motivation-driven activities of ‘Supergreens’ are offset by structural factors

  6. Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size

    Science.gov (United States)

    Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.

    1999-01-01

    Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.

  7. Carbon Partitioning and Allometric Relationships between Stem Diameter and Total Organic Carbon (TOC in Plant Components of Bruguiera gymnorrhiza (L. Lamk. and Lumnitzera racemosa Willd. in a Microtidal Basin Estuary in Sri Lanka

    Directory of Open Access Journals (Sweden)

    K.A.R.S. Perera

    2013-02-01

    Full Text Available Plants sequester carbon and this capacity depends on their net primary productivity and pattern of biomass/carbon partitioning within them which is less well studied for mangroves. Above (A to below (B-ground carbon ratio (A/B of both Bruguiera gymnorrhiza (L. Lamk. and Lumnitzera racemosa Willd. from where micro-tidal conditions prevail, Negombo estuary, Sri Lanka (7°11′42.18″ N ~ 79°50′47.50″ E was approximately 3, and it resembles that of terrestrial plants than that of mangroves in macro-tidal coasts. Relatively low inundation frequency, duration and depth apparently promote aerial growth than root production. Wet oxidation without external heating, followed by colorimetric method was adopted to determine total organic carbon (TOC of plant components. Except for leaves of L. racemosa, nearly half the biomass of all other components of the two species was composed of TOC. Statistically significant allometric relationships exist among TOC and dbh (diameter at breast height of trees. As 96.5% of TOC in L. racemosa was in sequestered form (in the wood it is superior to B. gymnorrhiza which accumulates carbon only 78.7% in sequestered form. Profuse branching of L. racemosa contributes to carbon sequestration capacity of the species.

  8. Partition expanders

    Czech Academy of Sciences Publication Activity Database

    Gavinsky, Dmitry; Pudlák, Pavel

    Dagstuhl: Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2014 - (Mayr, E.; Portier, N.), s. 325-336. (Leibniz International Proceedings in Informatics. 25). ISBN 978-3-939897-65-1. ISSN 1868-8969. [International Symposium on Theoretical Aspects of Computer Science (STACS 2014), /31./. Lyon (FR), 05.03.2014-08.03.2014] R&D Projects: GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : partitions * expanders * random graphs Subject RIV: BA - General Mathematics http://drops.dagstuhl.de/opus/volltexte/2014/4468/

  9. Carbon dioxide inhalation induces dose-dependent and age-related negative affectivity.

    Directory of Open Access Journals (Sweden)

    Eric J Griez

    Full Text Available BACKGROUND: Carbon dioxide inhalation is known to induce an emotion similar to spontaneous panic in Panic Disorder patients. The affective response to carbon dioxide in healthy subjects was not clearly characterized yet. METHODOLOGY/PRINCIPAL FINDINGS: Sixty-four healthy subjects underwent a double inhalation of four mixtures containing respectively 0, 9, 17.5 and 35% CO(2 in compressed air, following a double blind, cross-over, randomized design. Affective responses were assessed according to DSM IV criteria for panic, using an Electronic Visual Analogue Scale and the Panic Symptom List. It was demonstrated that carbon dioxide challenges induced a dose dependent negative affect (p<0.0001. This affect was semantically identical to the DSM IV definition of panic. Older individuals were subjectively less sensitive to Carbon Dioxide (p<0.05. CONCLUSIONS/SIGNIFICANCE: CO(2 induced affectivity may lay on a continuum with pathological panic attacks. Consistent with earlier suggestions that panic is a false biological alarm, the affective response to CO(2 may be part of a protective system triggered by suffocation and acute metabolic distress.

  10. Matrix partitions of digraphs

    OpenAIRE

    Schell, David George

    2008-01-01

    The matrix partition problem has been of recent interest in graph theory. Matrix partitions generalize the study of graph colourings and homomorphisms. Many well-known graph partition problems can be stated in terms of matrices. For example skew partitions, split partitions, homogeneous sets, clique-cutsets, stable-cutsets and k-colourings can all be modeled as matrix partitions. For each matrix partition problem there is an equivalent trigraph H-colouring problem. We show a ‘dichotomy’ for t...

  11. Factors affecting the strength and toughness of ultra-low carbon steel weld metal

    OpenAIRE

    Van Slyke, Jonathon J.

    1999-01-01

    The factors that affect strength and toughness often ultra-low carbon steel weld samples (HSLA-80 and HSLA-100), welded using the gas metal arc welding (GMAW) process and new ultra-low carbon consumable electrodes, were studied. The analysis was confined only to the weld metal, and the base metal was not considered. Analysis methods included optical microscopy, scanning electron microscopy, and transmission electron microscopy. Energy dispersive x- ray analysis was performed in the transmissi...

  12. Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13CO2 labelling techniques

    Science.gov (United States)

    Studer, M. S.; Siegwolf, R. T. W.; Abiven, S.

    2014-03-01

    Various 13CO2 labelling approaches exist to trace carbon (C) dynamics in plant-soil systems. However, it is not clear if the different approaches yield the same results. Moreover, there is no consistent way of data analysis to date. In this study we compare with the same experimental setup the two main techniques: pulse and continuous labelling. We evaluate how these techniques perform to estimate the C transfer time, the C partitioning along time and the C residence time in different plant-soil compartments. We used identical plant-soil systems (Populus deltoides × nigra, Cambisol soil) to compare the pulse labelling approach (exposure to 99 atom % 13CO2 for three hours, traced for eight days) with a continuous labelling (exposure to 10 atom % 13CO2, traced for 14 days). The experiments were conducted in climate chambers under controlled environmental conditions. Before label addition and at four successive sampling dates, the plant-soil systems were destructively harvested, separated into leaves, petioles, stems, cuttings, roots and soil and soil microbial biomass was extracted. The soil CO2 efflux was sampled throughout the experiment. To model the C dynamics we used an exponential function to describe the 13C signal decline after pulse labelling. For the evaluation of the 13C distribution during the continuous labelling we applied a logistic function. Pulse labelling is best suited to assess the minimum C transfer time from the leaves to other compartments, while continuous labelling can be used to estimate the mean transfer time through a compartment, including short-term storage pools. The C partitioning between the plant-soil compartments obtained was similar for both techniques, but the time of sampling had a large effect: shortly after labelling the allocation into leaves was overestimated and the soil 13CO2 efflux underestimated. The results of belowground C partitioning were consistent for the two techniques only after eight days of labelling, when the

  13. Mass and energy balance of the carbonization of babassu nutshell as affected by temperature

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2014-03-01

    Full Text Available The objective of this work was to evaluate the carbonization yield of babassu nutshell as affected by final temperature, as well as the energy losses involved in the process. Three layers constituting the babassu nut, that is, the epicarp, mesocarp and endocarp, were used together. The material was carbonized, considering the following final temperatures: 450, 550, 650, 750, and 850ºC. The following were evaluated: energy and charcoal yields, pyroligneous liquid, non-condensable gases, and fixed carbon. The use of babassu nutshell can be highly feasible for charcoal production. The yield of charcoal from babassu nutshell carbonization was higher than that reported in the literature for Eucalyptus wood carbonization, considering the final temperature of 450ºC. Charcoal and energy yields decreased more sharply at lower temperatures, with a tendency to stabilize at higher temperatures. The energy yields obtained can be considered satisfactory, with losses between 45 and 52% (based on higher heating value and between 43 and 49% (based on lower heating value at temperatures ranging from 450 to 850ºC, respectively. Yields in fixed carbon and pyroligneous liquid are not affected by the final carbonization temperature.

  14. Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum

    International Nuclear Information System (INIS)

    The mineral carbonation of FGD (flue gas desulfurization) gypsum was carried out through CO2 sorption into ammonia solution containing FGD gypsum. High-purity calcium carbonate was precipitated from DCC (dissolved calcium carbonate) solution which was extracted during the induction period. The factors affecting the preparation of pure calcium carbonate were examined under the following conditions: CO2 flow rate (1–3 L/min), ammonia content (4–12%), and S/L (solid-to-liquid) ratio (5–300 g/L). X-Ray diffraction study revealed that the PCC (precipitated calcium carbonate) was round-shaped vaterite. The induction time for PCC decreased as the CO2 flow rate increased. The maximum formation efficiency for pure PCC was seen to increase linearly with the ammonia content. The formation efficiency for pure PCC was the highest (90%) for S/L ratio of 5 g/L but it decreased as S/L ratio increased. On the other hand, S/L ratio didn't affect the maximum solubility limit of DCC. It is believed that the pure PCC would add an economic value to the FGD gypsum carbonation for industrial CO2 sequestration. - Highlights: • Pure and white CaCO3 was synthesized using induction period during direct carbonation of FGD gypsum. • Its formation efficiency was increased with ammonia content but decreased with solid-to-liquid ratio. • This method is expected to extend to other industrial CO2 sequestration for the enhanced economic value of precipitated CaCO3

  15. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

    2010-06-10

    The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active

  16. On the spheroidized carbide dissolution and elemental partitioning in a high carbon bearing steel 100Cr6

    OpenAIRE

    Song, Wenwen; Choi, Pyuck-Pa; Inden, Gerhard; Prahl, Ulrich; Raabe, Dierk; Bleck, Wolfgang

    2014-01-01

    We report on the characterization of high carbon bearing steel 100Cr6 using electron microscopy and atom probe tomography in combination with multi-component diffusion simulations (DICTRA). Scanning electron micrographs show that around 14 vol.% spheroidized carbides are formed during soft annealing and only 3 vol.% remain after dissolution into the austenitic matrix by austenitization at 1123 K (850 {\\deg}C) for 300 s. The spheroidized particles are identified as (Fe, Cr)3C by transmission e...

  17. Assimilate Partitioning and Plant Development

    Institute of Scientific and Technical Information of China (English)

    Yong-Ling Ruan; John W.Patrick; Hans Weber

    2010-01-01

    @@ It has been a pleasure to organize this special issue of Molecular Plant on 'Assimilate Partitioning and Plant Development'. Assimilate, a collective term describing organic carbon (C) and nitrogen (N), is of paramount importance for plant development and realization of crop productivity.

  18. Ecosystem carbon storage capacity as affected by disturbance regimes: a general theoretical model

    Science.gov (United States)

    Weng, E.; Luo, Y.; Wang, W.; Wang, H.; Hayes, D. J.; McGuire, A. D.; Hastings, A.; Schimel, D.

    2012-12-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x]=UτE λ/(λ+sτ1) , where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model , for example, approximately 1.8 Pg C will be lost in the high latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of 21st century, which will require around 12% increases in NPP to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  19. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    Science.gov (United States)

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover.(13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2emissions. PMID:26902802

  20. Water level changes affect carbon turnover and microbial community composition in lake sediments

    Science.gov (United States)

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-01-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  1. Tracking the fingerprints and combined TOC-black carbon mediated soil-air partitioning of polychlorinated naphthalenes (PCNs) in the Indus River Basin of Pakistan.

    Science.gov (United States)

    Ali, Usman; Sánchez-García, Laura; Rehman, Muhammad Yasir Abdur; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-01-01

    This study reports the first investigation of polychlorinated naphthalenes (PCNs) in air and soil samples from ecologically important sites of the Indus River Basin, Pakistan. The concentrations of ∑39-PCNs in air and soil were found in a range between 1-1588 pg m(-3) and 0.02-23 ng g(-1) while the mean TEQ values were calculated to be 5.4E(-04) pg TEQ m(-3) and 1.6E(+01) pg TEQ g(-1), respectively. Spatially, air and soil PCN concentrations were found to be high at Rahim Yar Khan (agricultural region). Lower-medium chlorinated PCNs (sum of tri-, tetra- and penta-CNs) predominated in both air and soil, altogether constituting 87 and 86% of total PCNs in the two environmental matrices, respectively. According to the data, soil-air partitioning of PCNs was interpreted to be similarly controlled by the combined effect of black carbon and organic matter in the Indus River Basin, with no preferential implication of the recalcitrant organic form. PMID:26613673

  2. Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process

    Science.gov (United States)

    Li, Wan-song; Gao, Hong-ye; Li, Zhong-yi; Nakashima, Hideharu; Hata, Satoshi; Tian, Wen-huai

    2016-03-01

    We present a study concerning Fe-0.176C-1.31Si-1.58Mn-0.26Al-0.3Cr (wt%) steel subjected to a quenching and partitioning (Q&P) process. The results of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile tests demonstrate that the microstructures primarily consist of lath martensite, retained austenite, lower bainite (LB), and a small amount of tempered martensite; moreover, few twin austenite grains were observed. In the microstructure, three types of retained austenite with different sizes and morphologies were observed: blocky retained austenite (~300 nm in width), film-like retained austenite (80-120 nm in width), and ultra- fine film-like retained austenite (30-40 nm in width). Because of the effect of the retained austenite/martensite/LB triplex microstructure, the specimens prepared using different quenching temperatures exhibit high ultimate tensile strength and yield strength. Furthermore, the strength effect of LB can partially counteract the decreasing strength effect of martensite. The formation of LB substantially reduces the amount of retained austenite. Analyses of the retained austenite and the amount of blocky retained austenite indicated that the carbon content is critical to the total elongation of Q&P steel.

  3. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process

    International Nuclear Information System (INIS)

    Highlights: → As-treated Q-P-T steel covers a wide spectrum of strength and elongation. → High strength results from martensite laths and NbC or ε-carbides in martensite matrix. → Good ductility is attributed to TRIP effect from retained austenite flakes. → Si can only suppress the formation of Fe3C in short tempering time steel. → Si cannot suppress the formation of ε-carbides in low tempering temperature. - Abstract: In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to a Fe-0.25C-1.5Mn-1.2Si-1.5Ni-0.05Nb (wt%) hot-rolled steel, and its optimized parameters were obtained by a Gleeble-3500 thermal simulator and salt baths, respectively. Mechanical property results of the as-treated Q-P-T samples show that the Nb-microalloyed low-carbon steels subjected to Q-P-T processes cover a wide spectrum of strength (1200-1500 MPa) and elongation (14-18%), and exhibit excellent product of strength and elongation (21,000-22,000 MPa%). Microstructural characterization indicates that high strength results from dislocation-type martensite laths and dispersively distributed fcc NbC or hcp ε-carbides in martensite matrix and good ductility is attributed to transformation induced plasticity (TRIP) effect from plenty of retained austenite flakes between martensite laths.

  4. The protein binding substance Ibuprofen does not affect the T1 time or partition coefficient in contrast-enhanced cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Kawel Nadine

    2012-10-01

    Full Text Available Abstract Background Contrast enhanced cardiovascular magnetic resonance (CMR with T1 mapping enables quantification of diffuse myocardial fibrosis. Various factors, however, can interfere with T1 measurements. The purpose of the current study was to assess the effect of co-medication with a typical protein binding drug (Ibuprofen on T1 values in vitro and in vivo. Methods 50 vials were prepared with different concentrations of gadobenate dimeglumine, Ibuprofen and human serum albumin in physiologic NaCl solution and imaged at 1.5T with a spin echo sequence at multiple TRs to measure T1 values and calculate relaxivities. 10 volunteers (5 men; 31±6.3 years were imaged at 1.5T. T1 values for myocardium and blood pool were determined for various time points after administration of 0.15mmol/kg gadobenate dimeglumine using a modified look-locker inversion-recovery sequence before and after administration of Ibuprofen over 24 hours. The partition coefficient was calculated as ΔR1myocardium/ΔR1blood, where R1=1/T1. Results In vitro no significant correlation was found between relaxivity and Ibuprofen concentration, neither in absence (r=−0.15, p=0.40 nor in presence of albumin (r=−0.32, p=0.30. In vivo there was no significant difference in post contrast T1 times of myocardium and blood, respectively and also in the partition coefficient between exam 1 and 2 (p>0.05. There was good agreement of the T1 times of myocardium and blood and the partition coefficient, respectively between exam 1 and 2. Conclusions Contrast enhanced T1 mapping is unaffected by co-medication with the protein binding substance Ibuprofen and has an excellent reproducibility.

  5. SOWING DATE MEDIATED HEAT STRESS AFFECTS THE LEAF GROWTH AND DRY MATTER PARTITIONING IN SOME SPRING WHEAT (TRITICUM AESTIVUM L.) CULTIVARS

    OpenAIRE

    Kamal Uddin Ahamed, Kamrun Nahar and Masayuki Fujita

    2010-01-01

    To observe the effect of high temperature stress on the leaf growth and dry matter partitioning of 5 wheat varieties (Sourav, Pradip, Sufi, Shatabdi and Bijoy) a field experiment was conducted with normal sowing (sowing at November 30) and late sowing (sowing at December 30) at the research field of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh. It was observed that stem dry weight was highest in Shatabdi under both normal (2.267 g) and heat stressed (1.801 g) environment and Pradi...

  6. Molecular insights into how a deficiency of amylose affects carbon allocation – carbohydrate and oil analyses and gene expression profiling in the seeds of a rice waxy mutant

    Directory of Open Access Journals (Sweden)

    Zhang Ming-Zhou

    2012-12-01

    Full Text Available Abstract Background Understanding carbon partitioning in cereal seeds is of critical importance to develop cereal crops with enhanced starch yields for food security and for producing specified end-products high in amylose, β-glucan, or fructan, such as functional foods or oils for biofuel applications. Waxy mutants of cereals have a high content of amylopectin and have been well characterized. However, the allocation of carbon to other components, such as β-glucan and oils, and the regulation of the altered carbon distribution to amylopectin in a waxy mutant are poorly understood. In this study, we used a rice mutant, GM077, with a low content of amylose to gain molecular insight into how a deficiency of amylose affects carbon allocation to other end products and to amylopectin. We used carbohydrate analysis, subtractive cDNA libraries, and qPCR to identify candidate genes potentially responsible for the changes in carbon allocation in GM077 seeds. Results Carbohydrate analysis indicated that the content of amylose in GM077 seeds was significantly reduced, while that of amylopectin significantly rose as compared to the wild type BP034. The content of glucose, sucrose, total starch, cell-wall polysaccharides and oil were only slightly affected in the mutant as compared to the wild type. Suppression subtractive hybridization (SSH experiments generated 116 unigenes in the mutant on the wild-type background. Among the 116 unigenes, three, AGP, ISA1 and SUSIBA2-like, were found to be directly involved in amylopectin synthesis, indicating their possible roles in redirecting carbon flux from amylose to amylopectin. A bioinformatics analysis of the putative SUSIBA2-like binding elements in the promoter regions of the upregulated genes indicated that the SUSIBA2-like transcription factor may be instrumental in promoting the carbon reallocation from amylose to amylopectin. Conclusion Analyses of carbohydrate and oil fractions and gene expression

  7. Linear modeling of the soil-water partition coefficient normalized to organic carbon content by reversed-phase thin-layer chromatography.

    Science.gov (United States)

    Andrić, Filip; Šegan, Sandra; Dramićanin, Aleksandra; Majstorović, Helena; Milojković-Opsenica, Dušanka

    2016-08-01

    Soil-water partition coefficient normalized to the organic carbon content (KOC) is one of the crucial properties influencing the fate of organic compounds in the environment. Chromatographic methods are well established alternative for direct sorption techniques used for KOC determination. The present work proposes reversed-phase thin-layer chromatography (RP-TLC) as a simpler, yet equally accurate method as officially recommended HPLC technique. Several TLC systems were studied including octadecyl-(RP18) and cyano-(CN) modified silica layers in combination with methanol-water and acetonitrile-water mixtures as mobile phases. In total 50 compounds of different molecular shape, size, and various ability to establish specific interactions were selected (phenols, beznodiazepines, triazine herbicides, and polyaromatic hydrocarbons). Calibration set of 29 compounds with known logKOC values determined by sorption experiments was used to build simple univariate calibrations, Principal Component Regression (PCR) and Partial Least Squares (PLS) models between logKOC and TLC retention parameters. Models exhibit good statistical performance, indicating that CN-layers contribute better to logKOC modeling than RP18-silica. The most promising TLC methods, officially recommended HPLC method, and four in silico estimation approaches have been compared by non-parametric Sum of Ranking Differences approach (SRD). The best estimations of logKOC values were achieved by simple univariate calibration of TLC retention data involving CN-silica layers and moderate content of methanol (40-50%v/v). They were ranked far well compared to the officially recommended HPLC method which was ranked in the middle. The worst estimates have been obtained from in silico computations based on octanol-water partition coefficient. Linear Solvation Energy Relationship study revealed that increased polarity of CN-layers over RP18 in combination with methanol-water mixtures is the key to better modeling of

  8. Partitioning Net Ecosystem Carbon Exchange Into net Assimilation and Respiration With Canopy-scale Isotopic Measurements: an Error Propagation Analysis With Both 13C and 18O Data

    Science.gov (United States)

    Peylin, P.; Ogee, J.; Cuntz, M.; Bariac, T.; Ciais, P.; Brunet, Y.

    2003-12-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of non-foliar respiration (FR) and gross photosynthesis (FA). However the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes and a rigorous estimation of the errors on FA and FR is needed. In this study we account and propagate uncertainties on all terms in the mass balance equations for total and "labeled" CO2 in order to get precise estimates of the errors on FA and FR. We applied our method to a maritime pine forest in the Southwest of France. Using the δ 13C-CO2 and CO2 measurements, we show that the resulting uncertainty associated to the gross fluxes can be as large as 4 æmol m-2 s-1. In addition, even if we could get more precise estimates of the isoflux and the isotopic signature of FA we show that this error would not be significantly reduced. This is because the isotopic disequilibrium between FA and FR is around 2-3‰ , i.e. the order of magnitude of the uncertainty on the isotopic signature of FR (δ R). With δ 18O-CO2 and CO2 measurements, the uncertainty associated to the gross fluxes lies also around 4 æmol m-2 s-1. On the other hand, it could be dramatically reduced if we were able to get more precise estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 10-15‰ , i.e. much larger than the uncertainty on δ R. The isotopic disequilibrium between FA and FR or the uncertainty on δ R vary among ecosystems and over the year. Our approach may help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  9. Does deciduous tree species identity affect carbon storage in temperate soils?

    Science.gov (United States)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  10. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Baath, Erland;

    2007-01-01

    carbon turnover (measured as changes in the pools during a growing-season-long field incubation of soil cores in situ). The mainly N limited bacterial communities had shifted slightly towards limitation by C and P in response to seven growing seasons of warming. This and the significantly increased...... bacterial growth rate under warming may partly explain the observed higher C loss from the warmed soil. This is furthermore consistent with the less dramatic increase in the contents of dissolved organic carbon (DOC) and dissolved organic N (DON) in the warmed soil than in the soil from ambient temperature...... during the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the...

  11. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    OpenAIRE

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H

    2016-01-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to ...

  12. Soil-Air Partitioning of Polychlorinated Biphenyls and Total Dichloro-Diphenyl-Trichloroethanes

    Institute of Scientific and Technical Information of China (English)

    Yaping Zhang; Erping Bi; Honghan Chen

    2014-01-01

    Soil-air partitioning is an important diffusive process that affects the environmental fate of organic compounds and human health. In this review, factors affecting the soil-air partitioning of polychlorinated biphenyls (PCBs) and total dichloro-diphenyl-trichloroethanes (p,p’-and o,p’-isomers of DDT, DDD, and DDE) are discussed. Hydrophobicity is an important factor that influences soil-air partition coefficients (KSA), and its effect can be explained through enthalpy of phase change for soil-air partitioning transfer (ΔHSA). For more hydrophobic compounds, a sharp increase in the KSA of PCBs and organochlorines can be seen in the early aging period. During the aging period, the temperature has a significant effect on the more hydrophobic organic compounds. The content and properties of soil or-ganic matter influence the KSA of the target compounds. Generally, KSA decreases with increasing rela-tive humidity in soils. The linear trend between KSA and temperature (T) changes at 0 °C. Freezing the air or soil in experiments would change the research results. On the basis of factors influencing soil-air partitioning, a multipleparameter (T, organic carbon fraction (fOC), and octanol-air partition coefficient (KOA)) model is put forward to predict the KSA values for PCBs and total DDTs.

  13. Partitions and their lattices

    OpenAIRE

    kunz, Milan

    2006-01-01

    Ferrers graphs and tables of partitions are treated as vectors. Matrix operations are used for simple proofs of identities concerning partitions. Interpreting partitions as vectors gives a possibility to generalize partitions on negative numbers. Partitions are then tabulated into lattices and some properties of these lattices are studied. There appears a new identity counting Ferrers graphs packed consecutively into isoscele form. The lattices form the base for tabulating combinatorial ident...

  14. Changes in Carbon Electrode Morphology Affect Microbial Fuel Cell Performance with Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    David V. P. Sanchez

    2015-03-01

    Full Text Available The formation of biofilm-electrodes is crucial for microbial fuel cell current production because optimal performance is often associated with thick biofilms. However, the influence of the electrode structure and morphology on biofilm formation is only beginning to be investigated. This study provides insight on how changing the electrode morphology affects current production of a pure culture of anode-respiring bacteria. Specifically, an analysis of the effects of carbon fiber electrodes with drastically different morphologies on biofilm formation and anode respiration by a pure culture (Shewanella oneidensis MR-1 were examined. Results showed that carbon nanofiber mats had ~10 fold higher current than plain carbon microfiber paper and that the increase was not due to an increase in electrode surface area, conductivity, or the size of the constituent material. Cyclic voltammograms reveal that electron transfer from the carbon nanofiber mats was biofilm-based suggesting that decreasing the diameter of the constituent carbon material from a few microns to a few hundred nanometers is beneficial for electricity production solely because the electrode surface creates a more relevant mesh for biofilm formation by Shewanella oneidensis MR-1.

  15. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  16. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    Directory of Open Access Journals (Sweden)

    Jana Stöckel

    Full Text Available Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  17. Seismic signatures of carbonate caves affected by near-surface absorptions

    Science.gov (United States)

    Rao, Ying; Wang, Yanghua

    2015-12-01

    The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.

  18. Effects of partial defoliation on carbon and nitrogen partitioning and photosynthetic carbon uptake by two-year-old cork oak (Quercus suber) saplings.

    Science.gov (United States)

    Cerasoli, S; Scartazza, A; Brugnoli, E; Chaves, M M; Pereira, J S

    2004-01-01

    At the end of the growing season in late July, 20-month-old cork oak (Quercus suber L.) saplings were partially defoliated (63% of leaf area) to evaluate their ability to recover leaf area after defoliation. At 18 and 127 days after defoliation, changes in starch and nitrogen pools were determined in leaves and perennial organs, and variations in photosynthetic carbon uptake were investigated. To determine the role of stored nitrogen in regrowth after defoliation, plant nitrogen was labeled in the previous winter by enriching the nutrient solution with 15N. Plants recovered the lost leaf area in 127 days. Although there was remobilization of starch and nitrogen from leaves and perennial organs, the availability of resources for growth in the following spring was not decreased by defoliation. On the contrary, starch concentration in coarse roots was higher in defoliated saplings than in control saplings, presumably as a result of the higher net CO2 exchange rate in newly developed leaves compared with pre-existing leaves. PMID:14652217

  19. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    OpenAIRE

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions...

  20. Growth rate controlled barium partitioning in calcite and aragonite

    Science.gov (United States)

    Goetschl, Katja Elisabeth; Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2016-04-01

    The barium (Ba) content and the Ba/Ca molar ratios in biogenic and abiotic carbonates have been widely used from the scientific community as a geochemical proxy especially in marine and early diagenetic settings. The Ba content of carbonate minerals has been earlier associated to changes in oceanic circulation that may have been caused by upwelling, changes in weathering regimes and river-runoff as well as melt water discharge. The physicochemical controls of Ba ion incorporation in the two most abundant CaCO3 polymorphs found in Earth's surface environments, i.e. calcite and aragonite, have adequately been studied only for calcite. These earlier studies (i.e. [1]) suggest that at increasing growth rate, Ba partitioning in calcite is increasing as well. In contrast, to date the effect of growth rate on the partitioning of Ba in aragonite remains questionable, despite the fact that this mineral phase is the predominant carbonate-forming polymorph in shallow marine environments. To shed light on the mechanisms controlling Ba ion uptake in carbonates in this study we performed steady-state Ba co-precipitation experiments with calcite and aragonite at 25°C. The obtained results for the partitioning of Ba in calcite are in good agreement with those reported earlier by [1], whereas those for aragonite indicate a reduction of Ba partitioning at elevated aragonite growth rates, with the partitioning coefficient value between solid and fluid to be approaching the unity. This finding is good agreement with the formation of a solid solution in the aragonite-witherite system, owing to the isostructural crystallography of the two mineral phases. Moreover, our data set provides new insights that are required for reconstructing the evolution of the Ba content of pristine marine versus diagenetically altered carbonate minerals commonly occurring in marine subfloor settings, as the thermodynamically less stable aragonite will transform to calcite enriched in Ba, whilst affecting

  1. SOWING DATE MEDIATED HEAT STRESS AFFECTS THE LEAF GROWTH AND DRY MATTER PARTITIONING IN SOME SPRING WHEAT (TRITICUM AESTIVUM L. CULTIVARS

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Ahamed, Kamrun Nahar and Masayuki Fujita

    2010-09-01

    Full Text Available To observe the effect of high temperature stress on the leaf growth and dry matter partitioning of 5 wheat varieties (Sourav, Pradip, Sufi, Shatabdi and Bijoy a field experiment was conducted with normal sowing (sowing at November 30 and late sowing (sowing at December 30 at the research field of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh. It was observed that stem dry weight was highest in Shatabdi under both normal (2.267 g and heat stressed (1.801 g environment and Pradip (1.202 g and Sufi (1.166 g produced the lowest stem dry weight in those conditions. Leaf number of Pradip (5.37 and Shatabdi (5.01 was the highest in the normal and late sowing condition, respectively and it was lowest in the variety Bijoy (4.87 followed by Sufi (3.62 under the normal and late sowing condition. Both under normal and late sown heat stressed condition the variety Shatabdi showed the highest leaf area, longest leaf sheath and lamina with concomitant increase of dry matter (5.976 g and 4.459 g tiller-1 under normal and heat stress, respectively. However, the spike dry weight was highest in Bijoy and lowest was in Sourav and Sufi regardless the growing condition. In normal sowing the ear weight and husk of main stem was the highest in Shatabdi (2.933 g, whereas seed weight per main stem was highest in Bijoy (2.167 g. In late sown condition, ear weight, seed weight per stem was highest in Bijoy and husk wt. was found the highest in Shatabdi. Grain weight of variety Bijoy (34.94g and Shatabdi (33.30 g were higher in late sowing, whereas Sufi had lowest 1000 grain weight (23.81 g and finally Bijoy produced the highest grain yield both under normal sowing late sown mediated heat stressed condition. Considering all Bijoy can said to be the best performing variety amongst all and Sufi is the worst one considering specially the yield componentsand yield.

  2. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiao [School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan (China); Schluesener, Hermann J, E-mail: mornsmile@yahoo.com [Institute of Brain Research, University of Tuebingen, Calwerstrasse 3, D-72076, Tuebingen (Germany)

    2010-03-12

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  3. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Science.gov (United States)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  4. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    International Nuclear Information System (INIS)

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  5. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal)

    OpenAIRE

    Czimczik, Claudia I; Preston, Caroline M; Schmidt, Michael W I; Schulze, Ernst-Detlef

    2003-01-01

    [1] In boreal forests, fire is a frequent disturbance and converts soil organic carbon (OC) to more degradation-resistant aromatic carbon, i.e., black carbon (BC) which might act as a long-term atmospheric-carbon sink. Little is known on the effects of fires on boreal soil OC stocks and molecular composition. We studied how a surface fire affected the composition of the forest floor of Siberian Scots pine forests by comparing the bulk elemental composition, molecular structure (13C-MAS NMR), ...

  6. Sediment-Porewater Partitioning, Total Sulfur and Methylmercury Production in Estuaries

    OpenAIRE

    Schartup, Amina T.; Balcom, Prentiss H.; Mason, Robert P.

    2014-01-01

    Mercury (Hg) speciation and the activity of Hg(II)-methylating bacteria are responsible for the rate of methylmercury (MeHg) production and thus bioaccumulation in marine foodwebs. Factors affecting porewater partitioning (Kd) and methylation of Hg(II) were examined at 11 sites in sediment of 4 biogeochemically diverse estuaries in the Northeast U. S. In Long Island Sound, 88% of total mercury (HgT) log Kd variability was described by porewater dissolved organic carbon concentration and sedim...

  7. Factors Affecting Water Quality in Selected Carbonate Aquifers in the United States,1993-2005

    Science.gov (United States)

    Lindsey, Bruce D.; Berndt, Marian P.; Katz, Brian G.; Ardis, Ann F.; Skach, Kenneth A.

    2009-01-01

    Carbonate aquifers are an important source of water in the United States; however, these aquifers can be particularly susceptible to contamination from the land surface. The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program collected samples from wells and springs in 12 carbonate aquifers across the country during 1993-2005; water-quality results for 1,042 samples were available to assess the factors affecting ground-water quality. These aquifers represent a wide range of climate, land-use types, degrees of confinement, and other characteristics that were compared and evaluated to assess the effect of those factors on water quality. Differences and similarities among the aquifers were also identified. Samples were analyzed for major ions, radon, nutrients, 47 pesticides, and 54 volatile organic compounds (VOCs). Geochemical analysis helped to identify dominant processes that may contribute to the differences in aquifer susceptibility to anthropogenic contamination. Differences in concentrations of dissolved oxygen and dissolved organic carbon and in ground-water age were directly related to the occurrence of anthropogenic contaminants. Other geochemical indicators, such as mineral saturation indexes and calcium-magnesium molar ratio, were used to infer residence time, an indirect indicator of potential for anthropogenic contamination. Radon exceeded the U.S. Environmental Protection Agency proposed Maximum Contaminant Level (MCL) of 300 picocuries per liter in 423 of 735 wells sampled, of which 309 were drinking-water wells. In general, land use, oxidation-reduction (redox) status, and degree of aquifer confinement were the most important factors affecting the occurrence of anthropogenic contaminants. Although none of these factors individually accounts for all the variation in water quality among the aquifers, a combination of these characteristics accounts for the majority of the variation. Unconfined carbonate aquifers that had high

  8. Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese.

    Science.gov (United States)

    Huang, De-Jia; Yang, Shyi-Kuen

    2016-03-01

    This study was conducted to investigate the effect of nocturnal light pulses (NLPs) on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control) or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day), whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate (CO2 PR) was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05) the mean and minimal CO2 PR during both the daytime and nighttime. Both the mean and minimal CO2 PR during the daytime were significantly higher (p<0.05) than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal CO2 PR were higher during the daytime than during the nighttime. PMID:26950871

  9. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl4 is used in Pu recovery from aqueous streams.)

  10. Factors affecting regional per-capita carbon emissions in China based on an LMDI factor decomposition model.

    Science.gov (United States)

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model-panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  11. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns

    Science.gov (United States)

    Haack, S.K.; Garchow, H.; Klug, M.J.; Forney, L.J.

    1995-01-01

    We determined factors that affect responses of bacterial isolates and model bacterial communities to the 95 carbon substrates in Biolog microliter plates. For isolates and communities of three to six bacterial strains, substrate oxidation rates were typically nonlinear and were delayed by dilution of the inoculum. When inoculum density was controlled, patterns of positive and negative responses exhibited by microbial communities to each of the carbon sources were reproducible. Rates and extents of substrate oxidation by the communities were also reproducible but were not simply the sum of those exhibited by community members when tested separately. Replicates of the same model community clustered when analyzed by principal- components analysis (PCA), and model communities with different compositions were clearly separated un the first PCA axis, which accounted for >60% of the dataset variation. PCA discrimination among different model communities depended on the extent to which specific substrates were oxidized. However, the substrates interpreted by PCA to be most significant in distinguishing the communities changed with reading time, reflecting the nonlinearity of substrate oxidation rates. Although whole-community substrate utilization profiles were reproducible signatures for a given community, the extent of oxidation of specific substrates and the numbers or activities of microorganisms using those substrates in a given community were not correlated. Replicate soil samples varied significantly in the rate and extent of oxidation of seven tested substrates, suggesting microscale heterogeneity in composition of the soil microbial community.

  12. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  13. Regenerative partition structures

    OpenAIRE

    Gnedin, Alexander; Pitman, Jim

    2004-01-01

    We consider Kingman's partition structures which are regenerative with respect to a general operation of random deletion of some part. Prototypes of this class are the Ewens partition structures which Kingman characterised by regeneration after deletion of a part chosen by size-biased sampling. We associate each regenerative partition structure with a corresponding regenerative composition structure, which (as we showed in a previous paper) can be associated in turn with a regenerative random...

  14. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    International Nuclear Information System (INIS)

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys295 and His261. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His261, which coordinates one of the Fe atoms with Cys295, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys295, we constructed CODH-II variants. Ala substitution for the Cys295 substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys295 indirectly and His261 together affect Ni-coordination in the C-cluster

  15. The role of initial affective impressions in responses to educational communications: The case of carbon capture and sequestration (CCS)

    OpenAIRE

    Bruine de Bruin, W.; Wong-Parodi, G

    2014-01-01

    Emerging technologies promise potential benefits at a potential cost. Developers of educational communications aim to improve people's understanding and to facilitate public debate. However, even relatively uninformed recipients may have initial feelings that are difficult to change. We report that people's initial affective impressions about carbon capture and sequestration (CCS), a low-carbon coal-based electricity-generation technology with which most people are unfamiliar, influences how ...

  16. Improved model calculation of atmospheric CO2 increment in affecting carbon stock of tropical mangrove forest

    OpenAIRE

    Jana, Tapan Kumar; Ray, Raghab; Chowdhury, Chumki; Majumder, Natasha; Dutta, Manab Kumar; Mukhopadhyay, Sandip Kumar

    2013-01-01

    Because of the difficulties in setting up arrangements in the intertidal zone for free-air carbon dioxide enrichment experimentation, the responses to increasing atmospheric carbon dioxide in mangrove forests are poorly studied. This study applied box model to overcome this limitation, and the relative changes in present level of reservoirs organic carbon contents in response to the future increase of atmospheric carbon dioxide were examined in the Avicennia-dominated mangrove forest at the l...

  17. Study on laser welded heat-affected zone in new ultralow carbon bainitic steel

    Institute of Scientific and Technical Information of China (English)

    Lin Zhao; Wuzhu Chen; Xudong Zhang; Jiguo Shan

    2007-01-01

    800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformation (TMCP&RPC) technique. The microstructure and the mechanical properties of the heat-affected zone (HAZ) in NULCB steel under laser welding conditions were investigated by using a Gleeble-1500 thermal simulator. The experimental results indicate that the simplex microstructure in the HAZ is granular bainite that consists of bainite-ferrite (BF) lath and M-A constituent when the cooling time from 800 to 500°C (t8/5) is 0.3-30 s, and the M-A constituent consists of twinned martensite and residual austenite. As t8/5 increases, the hardness and tensile strength of HAZ decreases, but they are higher than that of the base metal, indicating the absence of softened zone after laser welding. The impact toughness of HAZ increases at first and then decreases when tw increases. The impact energy of HAZ is much higher than that of the base metal when t8/5 is between 3 and 15 s. It indicates that excellent low temperature toughness can be obtained under appropriate laser welding conditions.

  18. Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects

    International Nuclear Information System (INIS)

    The Kyoto Protocol is the first step towards achieving the objectives of the United Nations Framework Convention on Climate Change and aims among others to promote 'the protection and enhancement of carbon sinks and reservoirs'. To encourage afforestation for carbon sequestration a project must be economically viable. This study uses a model to analyse the impact on project viability of a range of carbon monitoring options, international carbon credit value and discount rate, applied to a Pinus radiata afforestation project in New Zealand. Monitoring carbon in conjunction with conventional forest inventory shows the highest return. Long-term average carbon accounting has lower accounting costs, compared to annual and 5 yearly accounting, as monitoring is only required every 5-10 years until the long-term average is attained. In this study we conclude that monitoring soil carbon stocks is not economically feasible using any of the accounting methods, when carbon is valued at US$ 10/t. This conclusion may be relevant to forest carbon sequestration projects elsewhere in the world and suggests care is needed in selecting the appropriate carbon monitoring options to avoid the risk that costs could be higher than any monetary benefits from terrestrial carbon sequestration. This would remove any commercial incentive to afforest for carbon sequestration reasons and severely limit the use of forest sinks as part of any package of measures addressing the ultimate objective of the UNFCCC

  19. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    Science.gov (United States)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  20. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    Science.gov (United States)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not

  1. Polymers as reference partitioning phase: polymer calibration for an analytically operational approach to quantify multimedia phase partitioning

    DEFF Research Database (Denmark)

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe;

    2016-01-01

    ), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the...... polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials......-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition...

  2. Changes in partitioning of carbon amongst photosynthetic pico-and nano-plankton groups in the Sargasso Sea in response to changes in the North Atlantic Oscillation

    OpenAIRE

    Casey, J.R.; Aucan, Jérôme; Goldberg, S.R.; M. W. Lomas

    2013-01-01

    Picophytoplankton carbon biomass at the Bermuda Atlantic Time-series Study (BATS) site from June 2004 to December 2010 was estimated from the direct calibration of cellular carbon content and forward light scatter (via flow cytometry). Seasonality and interannual dynamics of Prochlorococcus, Synechococcus and small eukaryotic algae (

  3. Thinning Invariant Partition Structures

    CERN Document Server

    Starr, Shannon

    2011-01-01

    A partition structure is a random point process on $[0,1]$ whose points sum to 1, almost surely. In the case that there are infinitely many points to begin with, we consider a thinning action by: first, removing points independently, such that each point survives with probability $p>0$; and, secondly, rescaling the remaining points by an overall factor to normalize the sum again to 1. We prove that the partition structures which are "thinning divisible" for a sequence of $p$'s converging to 0 are mixtures of the Poisson-Kingman partition structures. We also consider the property of being "thinning invariant" for all $p \\in (0,1)$.

  4. Polymers as Reference Partitioning Phase: Polymer Calibration for an Analytically Operational Approach To Quantify Multimedia Phase Partitioning.

    Science.gov (United States)

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp

    2016-06-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases. PMID:27115830

  5. Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope

    Science.gov (United States)

    Wiaux, F.; Vanclooster, M.; Van Oost, K.

    2015-08-01

    In this study we aim to elucidate the role of physical conditions and gas transfer mechanism along soil profiles in the decomposition and storage of soil organic carbon (OC) in subsoil layers. We use a qualitative approach showing the temporal evolution and the vertical profile description of CO2 fluxes and abiotic variables. We assessed soil CO2 fluxes throughout two contrasted soil profiles (i.e. summit and footslope positions) along a hillslope in the central loess belt of Belgium. We measured the time series of soil temperature, soil moisture and CO2 concentration at different depths in the soil profiles for two periods of 6 months. We then calculated the CO2 flux at different depths using Fick's diffusion law and horizon specific diffusivity coefficients. The calculated fluxes allowed assessing the contribution of different soil layers to surface CO2 fluxes. We constrained the soil gas diffusivity coefficients using direct observations of soil surface CO2 fluxes from chamber-based measurements and obtained a good prediction power of soil surface CO2 fluxes with an R2 of 92 %. We observed that the temporal evolution of soil CO2 emissions at the summit position is mainly controlled by temperature. In contrast, at the footslope, we found that long periods of CO2 accumulation in the subsoil alternates with short peaks of important CO2 release. This was related to the high water filled pore space that limits the transfer of CO2 along the soil profile at this slope position. Furthermore, the results show that approximately 90 to 95 % of the surface CO2 fluxes originate from the first 10 cm of the soil profile at the footslope. This indicates that soil OC in this depositional context can be stabilized at depth, i.e. below 10 cm. This study highlights the need to consider soil physical properties and their dynamics when assessing and modeling soil CO2 emissions. Finally, changes in the physical environment of depositional soils (e.g. longer dry periods) may affect the

  6. Bosonic Partition Functions

    CERN Document Server

    Kellerstein, M; Verbaarschot, J J M

    2016-01-01

    The behavior of quenched Dirac spectra of two-dimensional lattice QCD is consistent with spontaneous chiral symmetry breaking which is forbidden according to the Coleman-Mermin-Wagner theorem. One possible resolution of this paradox is that, because of the bosonic determinant in the partially quenched partition function, the conditions of this theorem are violated allowing for spontaneous symmetry breaking in two dimensions or less. This goes back to work by Niedermaier and Seiler on nonamenable symmetries of the hyperbolic spin chain and earlier work by two of the auhtors on bosonic partition functions at nonzero chemical potential. In this talk we discuss chiral symmetry breaking for the bosonic partition function of QCD at nonzero isospin chemical potential and a bosonic random matrix theory at imaginary chemical potential and compare the results with the fermionic counterpart. In both cases the chiral symmetry group of the bosonic partition function is noncompact.

  7. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    Science.gov (United States)

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  8. Poisson-Kingman partitions

    OpenAIRE

    Pitman, Jim

    2002-01-01

    This paper presents some general formulas for random partitions of a finite set derived by Kingman's model of random sampling from an interval partition generated by subintervals whose lengths are the points of a Poisson point process. These lengths can be also interpreted as the jumps of a subordinator, that is an increasing process with stationary independent increments. Examples include the two-parameter family of Poisson-Dirichlet models derived from the Poisson process of jumps of a stab...

  9. Affected zone generated around the erosion pit on carbon steel surface at the incipient stage of vibration cavitation

    Institute of Scientific and Technical Information of China (English)

    CHEN HaoSheng; LI Jiang; LIU ShiHan; CHEN DaRong; WANG JiaDao

    2008-01-01

    The characteristics of erosion pits on a carbon steel surface were investigated at the incipient stage of cavitation erosion. After a 5-minute experiment performed in an ultrasonic vibration system, needle-like erosion pits appeared on the polished steel surface, and a specially affected zone was formed around the pit. The shape of the pit and the plastic deformation of the affected zone indicate that the me-chanical impaction on the surface is the main reason for the cavitation damage. On the other hand, the iridescent color, the decreased surface hardness and the precipitated carbides on the affected zone prove that the affected zone has experienced a tempering process with the temperature higher than 300℃. The lack of oxygen in the affected zone also proves that it is not a chemical oxygen result. A special phenomenon that a carbon ring forms in the affected zone is explained as a result of the tor-oidal bubbles' heating effect at the final stage of the bubble collapse.

  10. The role of snow cover and soil freeze/thaw cycles affecting boreal-arctic soil carbon dynamics

    Directory of Open Access Journals (Sweden)

    Y. Yi

    2015-07-01

    Full Text Available Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (∼ 0.8–1.3 days decade−1 in the mean annual snow cover extent and frozen season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to changes in snow cover and soil freeze/thaw processes in the Pan-Arctic region over the past three decades (1982–2010. Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD cm, corresponding with widespread warming and lengthening non-frozen season. Warming promotes vegetation growth and soil heterotrophic respiration, particularly within surface soil layers (≤ 0.2 m. The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m soil layers, especially in colder climate zones (mean annual T ≤ −10 °C. Our results demonstrate the important control of snow cover in affecting northern soil freeze/thaw and soil carbon decomposition processes, and the necessity of considering both warming, and changing precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.

  11. Integrating spot short-term measurements of carbon emissions and backward dietary energy partition calculations to estimate intake in lactating dairy cows fed ad libitum or restricted.

    Science.gov (United States)

    Pereira, A B D; Utsumi, S A; Dorich, C D; Brito, A F

    2015-12-01

    The objective of this study was to use spot short-term measurements of CH4 (QCH4) and CO2 (QCO2) integrated with backward dietary energy partition calculations to estimate dry matter intake (DMI) in lactating dairy cows. Twelve multiparous cows averaging 173±37d in milk and 4 primiparous cows averaging 179±27d in milk were blocked by days in milk, parity, and DMI (as a percentage of body weight) and, within each block, randomly assigned to 1 of 2 treatments: ad libitum intake (AL) or restricted intake (RI=90% DMI) according to a crossover design. Each experimental period lasted 22d with 14d for treatments adaptation and 8d for data and sample collection. Diets contained (dry matter basis): 40% corn silage, 12% grass-legume haylage, and 48% concentrate. Spot short-term gas measurements were taken in 5-min sampling periods from 15 cows (1 cow refused sampling) using a portable, automated, open-circuit gas quantification system (GreenFeed, C-Lock Inc., Rapid City, SD) with intervals of 12h between the 2daily samples. Sampling points were advanced 2h from a day to the next to yield 16 gas samples per cow over 8d to account for diurnal variation in QCH4 and QCO2. The following equations were used sequentially to estimate DMI: (1) heat production (MJ/d)=(4.96 + 16.07 ÷ respiratory quotient) × QCO2; respiratory quotient=0.95; (2) metabolizable energy intake (MJ/d)=(heat production + milk energy) ± tissue energy balance; (3) digestible energy (DE) intake (MJ/d)=metabolizable energy + CH4 energy + urinary energy; (4) gross energy (GE) intake (MJ/d)=DE + [(DE ÷ in vitro true dry matter digestibility) - DE]; and (5) DMI (kg/d)=GE intake estimated ÷ diet GE concentration. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) and Fit Model procedure in JMP (α=0.05; SAS Institute Inc.). Cows significantly differed in DMI measured (23.8 vs. 22.4kg/d for AL and RI, respectively). Dry matter intake estimated using QCH4 and QCO2 coupled with

  12. Elevated pressure of carbon dioxide affects growth of thermophilic Petrotoga sp.

    Science.gov (United States)

    Rakoczy, Jana; Gniese, Claudia; Schippers, Axel; Schlömann, Michael; Krüger, Martin

    2014-05-01

    Carbon capture and storage (CCS) is considered a promising new technology which reduces carbon dioxide emissions into the atmosphere and thereby decelerates global warming. During CCS, carbon dioxide is captured from emission sources (e.g. fossil fuel power plants or other industries), pressurised, and finally stored in deep geological formations, such as former gas or oil reservoirs as well as saline aquifers. However, with CCS being a very young technology, there are a number of unknown factors that need to be investigated before declaring CCS as being safe. Our research investigates the effect of high carbon dioxide concentrations and pressures on an indigenous microorganism that colonises a potential storage site. Growth experiments were conducted using the thermophilic thiosulphate-reducing bacterium Petrotoga sp., isolated from formation water of the gas reservoir Schneeren (Lower Saxony, Germany), situated in the Northern German Plain. Growth (OD600) was monitored over one growth cycle (10 days) at different carbon dioxide concentrations (50%, 100%, and 150% in the gas phase), and was compared to control cultures grown with 20% carbon dioxide. An additional growth experiment was performed over a period of 145 days with repeated subcultivation steps in order to detect long-term effects of carbon dioxide. Cultivation over 10 days at 50% and 100% carbon dioxide slightly reduced cell growth. In contrast, long-term cultivation at 150% carbon dioxide reduced cell growth and finally led to cell death. This suggested a more pronounced effect of carbon dioxide at prolonged cultivation and stresses the need for a closer consideration of long-term effects. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a sterilising effect on cells. This effect was not observed in control cultures

  13. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    Science.gov (United States)

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  14. Study on the Decomposition of Factors Affecting Energy-Related Carbon Emissions in Guangdong Province, China

    Directory of Open Access Journals (Sweden)

    Wenxiu Wang

    2011-12-01

    Full Text Available Guangdong is China’s largest province in terms of energy consumption. The energy-related carbon emissions in Guangdong province are calculated, and two extended and improved decomposition models for energy-related carbon emissions are established with the Logarithmic Mean Divisia Index method based on the basic principle of Kaya identity. Main results are as follows: (1 the energy-related carbon emissions from the three strata of industry, except the primary industry, and household energy consumption in Guangdong province show increasing trend from 1995 to 2009; (2 the main driving and inhibiting factors which influence energy-related carbon emissions are economic output and energy intensity, respectively, while the contributions of energy mix, industrial structures, population size and living standards are not significant during the period of interest. It is concluded that optimizing the energy mix by exploiting new energy sources and cutting down energy intensity by developing low-carbon technologies are the two most effective approaches to reduce carbon emissions for Guangdong province in the future. The results and proposals in this paper provided reference for relevant administrative departments in the Government of Guangdong province to develop policies for energy conservation and emission reduction as well as to promote development of low-carbon economy.

  15. PDF Weaving - Linking Inventory Data and Monte Carlo Uncertainty Analysis in the Study of how Disturbance Affects Forest Carbon Storage

    Science.gov (United States)

    Healey, S. P.; Patterson, P.; Garrard, C.

    2014-12-01

    Altered disturbance regimes are likely a primary mechanism by which a changing climate will affect storage of carbon in forested ecosystems. Accordingly, the National Forest System (NFS) has been mandated to assess the role of disturbance (harvests, fires, insects, etc.) on carbon storage in each of its planning units. We have developed a process which combines 1990-era maps of forest structure and composition with high-quality maps of subsequent disturbance type and magnitude to track the impact of disturbance on carbon storage. This process, called the Forest Carbon Management Framework (ForCaMF), uses the maps to apply empirically calibrated carbon dynamics built into a widely used management tool, the Forest Vegetation Simulator (FVS). While ForCaMF offers locally specific insights into the effect of historical or hypothetical disturbance trends on carbon storage, its dependence upon the interaction of several maps and a carbon model poses a complex challenge in terms of tracking uncertainty. Monte Carlo analysis is an attractive option for tracking the combined effects of error in several constituent inputs as they impact overall uncertainty. Monte Carlo methods iteratively simulate alternative values for each input and quantify how much outputs vary as a result. Variation of each input is controlled by a Probability Density Function (PDF). We introduce a technique called "PDF Weaving," which constructs PDFs that ensure that simulated uncertainty precisely aligns with uncertainty estimates that can be derived from inventory data. This hard link with inventory data (derived in this case from FIA - the US Forest Service Forest Inventory and Analysis program) both provides empirical calibration and establishes consistency with other types of assessments (e.g., habitat and water) for which NFS depends upon FIA data. Results from the NFS Northern Region will be used to illustrate PDF weaving and insights gained from ForCaMF about the role of disturbance in carbon

  16. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

    2012-04-05

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

  17. Bioanalytical effect-balance model to determine the bioavailability of organic contaminants in sediments affected by black and natural carbon.

    Science.gov (United States)

    Bräunig, Jennifer; Tang, Janet Y M; Warne, Michael St J; Escher, Beate I

    2016-08-01

    In sediments several binding phases dictate the fate and bioavailability of organic contaminants. Black carbon (BC) has a high sorptive capacity for organic contaminants and can limit their bioavailability, while the fraction bound to organic carbon (OC) is considered to be readily desorbable and bioavailable. We investigated the bioavailability and mixture toxicity of sediment-associated contaminants by combining different extraction techniques with in vitro bioanalytical tools. Sediments from a harbour with high fraction of BC, and sediments from remote, agricultural and urban areas with lower BC were treated with exhaustive solvent extraction, Tenax extraction and passive sampling to estimate total, bioaccessible and bioavailable fractions, respectively. The extracts were characterized with cell-based bioassays that measure dioxin-like activity (AhR-CAFLUX) and the adaptive stress response to oxidative stress (AREc32). Resulting bioanalytical equivalents, which are effect-scaled concentrations, were applied in an effect-balance model, consistent with a mass balance-partitioning model for single chemicals. Sediments containing BC had most of the bioactivity associated to the BC fraction, while the OC fraction played a role for sediments with lower BC. As effect-based sediment-water distribution ratios demonstrated, most of the bioactivity in the AhR-CAFLUX was attributable to hydrophobic chemicals while more hydrophilic chemicals activated AREc32, even though bioanalytical equivalents in the aqueous phase remained negligible. This approach can be used to understand the fate and effects of mixtures of diverse organic contaminants in sediments that would not be possible if single chemicals were targeted by chemical analysis; and make informed risk-based decisions concerning the management of contaminated sediments. PMID:27176940

  18. Partitioning Breaks Communities

    Science.gov (United States)

    Reid, Fergal; McDaid, Aaron; Hurley, Neil

    Considering a clique as a conservative definition of community structure, we examine how graph partitioning algorithms interact with cliques. Many popular community-finding algorithms partition the entire graph into non-overlapping communities. We show that on a wide range of empirical networks, from different domains, significant numbers of cliques are split across the separate partitions produced by these algorithms. We then examine the largest connected component of the subgraph formed by retaining only edges in cliques, and apply partitioning strategies that explicitly minimise the number of cliques split. We further examine several modern overlapping community finding algorithms, in terms of the interaction between cliques and the communities they find, and in terms of the global overlap of the sets of communities they find. We conclude that, due to the connectedness of many networks, any community finding algorithm that produces partitions must fail to find at least some significant structures. Moreover, contrary to traditional intuition, in some empirical networks, strong ties and cliques frequently do cross community boundaries; much community structure is fundamentally overlapping and unpartitionable in nature.

  19. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa

    OpenAIRE

    Ouédraogo, E.; Brussaard, L.; Stroosnijder, L.

    2007-01-01

    A field experiment was conducted at Kaibo in southern Burkina Faso on an Eutric Cambisol during the 2000 rainy season to assess the interaction of organic amendment quality and soil fauna, affecting soil organic carbon and sorghum ( Sorghum bicolor L. Moench) performance. Plots were treated with the pesticides Dursban and Endosulfan to exclude soil fauna or left untreated. Sub-treatments consisted of surface-placed maize straw ( C/N ratio= 58), Andropogon straw ( C/N ratio= 153), cattle dung ...

  20. Carbon Availability Affects Diurnally Controlled Processes and Cell Morphology of Cyanothece 51142

    OpenAIRE

    Jana Stöckel; Elvitigala, Thanura R.; Michelle Liberton; Pakrasi, Himadri B.

    2013-01-01

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that...

  1. How will conversion to organic cereal production affect carbon stocks in Swedish agricultural soils?

    OpenAIRE

    Andrén, Olof; Kätterer, Thomas; Kirchmann, Holger

    2008-01-01

    Soil carbon changes were modelled over 30 years with the focus on cereal crops, since leys are often managed similarly in organic and conventional agriculture. Other crops were not considered due to difficulties in large-scale cropping of oilseed rape and potatoes organically because of pest problems. Four scenarios were used: 0%, 8% (current), 20% and 100% organic cereal production. Conversion to organic cereal crop production was found to reduce the amount of carbon stored as organic matter...

  2. Partition density functional theory

    Science.gov (United States)

    Nafziger, Jonathan

    Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.

  3. Microstructural evolution and mechanical properties of heat affected zones for 9Cr2WVTa steels with different carbon contents

    International Nuclear Information System (INIS)

    Highlights: • The weldability of 9Cr2WVTa steel with different carbon contents was studied. • The HAZs of the 9Cr2WVTa steel include three characteristic regions. • Residual delta-ferrite significantly deteriorates the impact property of HAZs. • The twin martensite deteriorates the impact toughness as a whole. • The 9Cr2WVTa steel with 0.14–0.17 wt.% carbon content has good weldability. - Abstract: The microstructures and mechanical properties of heat affected zones (HAZs) by Gas Tungsten Arc Welding (GTAW) were studied for 9Cr2WVTa steels with carbon content varying from 0.07 wt.% to 0.25 wt.%. Enlarged HAZs samples with 8 mm to 10 mm wide uniform temperature zone were prepared by the thermal–mechanical physical simulator Gleeble 1500 based on the Finite Element Method (FEM) numerical simulation and experimental measurement for the welding thermal cycle process and weld profile. The microstructures were observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). In addition, the mechanical properties tests including micro-hardness test, tensile test and impact test were carried out to investigate the effects of the carbon content and the welding thermal cycle. The results show that the big blocky delta ferrite in 9Cr2WVTa steel with lower carbon content deteriorates the impact property. On the other hand, the quenched martensite, especially for the twin martensite in 9Cr2WVTa steel with higher carbon content, deteriorates the impact toughness as well. The weldability of 9Cr2WVTa steel can be improved by adjusting the carbon content between 0.14 wt.% and 0.17 wt.%

  4. Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel

    International Nuclear Information System (INIS)

    Hot-rolling direct quenching and partitioning (HDQP) processes distinguished by the dynamical partitioning procedures and the isothermal partitioning procedures were applied to a low-carbon steel to investigate the differences in the microstructure and the mechanical properties. Microstructures were characterized by means of EPMA, EBSD, TEM and XRD. Mechanical properties were measured by uniaxial tensile tests. Results show that the microstructures of the HDQP sheets are characterized by lath martensite and film-like inter-lath retained austenite. The dynamically partitioned sheets possess narrower martensite laths with higher dislocation densities, compared with the isothermally partitioned sheets. The martensite lath broadening, the dislocation density reduction and the carbide coarsening exist with decreased cooling rate or with prolonged partitioning time. The coarse carbides appearing in the sheet partitioned longer than 5 min promote the decomposition of austenite. X-ray diffraction (XRD) detection results of the specimens with different plastic strains indicate that the retained austenite with the carbon concentration below 1.5 wt% can perform a better transformation behavior with the plastic strain under 5%. The isothermal partitioning processes can improve the average concentration and homogeneity of carbon in the retained austenite but make up part of the retained austenite too stable. Mechanical property results show that the dynamically partitioned sheets possess higher strengths about 1500–1600 MPa and similar elongations about 14–16% with excellent products of strength and elongation (PSE) about 22,000–25,000 MPa%. It is concluded that a dynamical partitioning procedure is preferable for obtaining a HDQP steel with excellent mechanical properties

  5. Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaodong; Xu, Yunbo, E-mail: yunbo_xu@126.com; Yang, Xiaolong; Liu, Ziquan; Wu, Di

    2014-01-31

    Hot-rolling direct quenching and partitioning (HDQP) processes distinguished by the dynamical partitioning procedures and the isothermal partitioning procedures were applied to a low-carbon steel to investigate the differences in the microstructure and the mechanical properties. Microstructures were characterized by means of EPMA, EBSD, TEM and XRD. Mechanical properties were measured by uniaxial tensile tests. Results show that the microstructures of the HDQP sheets are characterized by lath martensite and film-like inter-lath retained austenite. The dynamically partitioned sheets possess narrower martensite laths with higher dislocation densities, compared with the isothermally partitioned sheets. The martensite lath broadening, the dislocation density reduction and the carbide coarsening exist with decreased cooling rate or with prolonged partitioning time. The coarse carbides appearing in the sheet partitioned longer than 5 min promote the decomposition of austenite. X-ray diffraction (XRD) detection results of the specimens with different plastic strains indicate that the retained austenite with the carbon concentration below 1.5 wt% can perform a better transformation behavior with the plastic strain under 5%. The isothermal partitioning processes can improve the average concentration and homogeneity of carbon in the retained austenite but make up part of the retained austenite too stable. Mechanical property results show that the dynamically partitioned sheets possess higher strengths about 1500–1600 MPa and similar elongations about 14–16% with excellent products of strength and elongation (PSE) about 22,000–25,000 MPa%. It is concluded that a dynamical partitioning procedure is preferable for obtaining a HDQP steel with excellent mechanical properties.

  6. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  7. Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests

    OpenAIRE

    Alberti G; Vicca S; Inglima I; Belelli-Marchesini L; Genesio L; Miglietta F; Marjanovic H; Martinez C.; Matteucci G; D’Andrea E; Peressotti A; Petrella F; Rodeghiero M; Cotrufo MF

    2015-01-01

    The release of organic compounds from roots is a key process influencing soil carbon (C) dynamics and nutrient availability in terrestrial ecosystems. Through this process, plants stimulate microbial activity and soil organic matter (SOM) mineralization thus releasing nitrogen (N) that sustains gross and net primary production (GPP and NPP, respectively). Root inputs also contribute to SOM formation. In this study, we quantified the annual net root-derived C input to soil (Net-Croot) across s...

  8. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation

    KAUST Repository

    Briceño, Kelly

    2012-10-01

    A high molecular weight polyimide (Matrimid) was used as a precursor for fabricating supported carbon molecular sieve membranes without crack formation at 550-700°C pyrolysis temperature. A one-step polymer (polyimide) coating method as precursor of carbon layer was used without needing a prior modification of a TiO 2 macroporous support. The following fabrication variables were optimized and studied to determine their effect on the carbon structure: polymeric solution concentration, solvent extraction, heating rate and pyrolysis temperature. Two techniques (Thermogravimetric analysis and Raman spectroscopy) were used to determine these effects on final carbon structure. Likewise, the effect of the support was also reported as an additional and important variable in the design of supported carbon membranes. Atomic force microscopy and differential scanning calorimetry quantified the degree of influence. Pure gas permeation tests were performed using CH 4, CO, CO 2 and H 2. The presence of a molecular sieving mechanism was confirmed after defects were plugged with PDMS solution at 12wt%. Gas selectivities higher than Knudsen theoretical values were reached with membranes obtained over 650°C, showing as best values 4.46, 4.70 and 10.62 for H 2/N 2, H 2/CO and H 2/CH 4 ratio, respectively. Permeance values were over 9.82×10 -9mol/(m 2Pas)during pure hydrogen permeation tests. © 2012 Elsevier B.V.

  9. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  10. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    Science.gov (United States)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  11. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    Science.gov (United States)

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. PMID:26147312

  12. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    Science.gov (United States)

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors. PMID:26031097

  13. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    OpenAIRE

    Torbert, H.A.; Johnson, H. B.; H. W. Polley

    2012-01-01

    Increasing global atmospheric carbon dioxide (CO2) concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C) and nitrogen (N) in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L.) Willd (Huisache). Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient), 690, and 980 μmol mol−1. Elevated CO2 ...

  14. Partitions with Initial Repetitions

    Institute of Scientific and Technical Information of China (English)

    George E. ANDREWS

    2009-01-01

    A variety of interesting connections with modular forms, mock theta functions and Rogers-Ramanujan type identities arise in consideration of partitions in which the smaller integers are repeated as summands more often than the larger summands. In particular, this concept leads to new interpre-tations of the Rogers-Selberg identities and Bailey's modulus 9 identities.

  15. Generating Primes Using Partitions

    OpenAIRE

    Pittu, Ganesh Reddy

    2015-01-01

    This paper presents a new technique of generating large prime numbers using a smaller one by employing Goldbach partitions. Experiments are presented showing how this method produces candidate prime numbers that are subsequently tested using either Miller Rabin or AKS primality tests.

  16. Analysis of heat affected zone obtained by CO2 laser cutting of low carbon steel (S235)

    Science.gov (United States)

    Zaied, M.; Miraoui, I.; Boujelbene, M.; Bayraktar, E.

    2013-12-01

    Laser cutting is associated with thermal effects at the cutting surface resulting in alteration of microstructure and mechanical properties. An abrupt change on the cutting surface is caused by a structural modified zone called heat affected zone (HAZ) due to weld heat treatment introduced by a high thermal gradient in the substrate material. Heat affected zone is often associated with undesirable effects such as surface cracking, fatigue resistance, etc. Therefore, it is important to minimize the thickness of this zone (HAZ). The objective of this work is to study the effect of high-power CO2 laser cutting on the heat affected zone. The laser cutting of low carbon steel (S235) is investigated with the aim of evaluating the effect of the input laser cutting parameters: laser power and cutting speed, on heat affected zone. An overall optimization was applied to find out the optimal cutting parameters that would minimize the thickness of heat affected zone. It was found that laser cutting parameters have an effect on the heat affected zone. The HAZ can be minimized by increasing the laser cutting speed and decreasing the laser power.

  17. Activated carbon addition affects substrate pH and germination of six plant species

    NARCIS (Netherlands)

    Kabouw, P.; Nab, M.; Dam, van M.

    2010-01-01

    Activated carbon (AC) is widely used in ecological studies for neutralizing allelopathic compounds. However, it has been suggested that AC has direct effects on plants because it alters substrate parameters such as nutrient availability and pH. These side-effects of AC addition may interfere with al

  18. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Barnhart, Elliot [Montana State Univ., Bozeman, MT (United States); Lageson, David [Montana State Univ., Bozeman, MT (United States); Nall, Anita [Montana State Univ., Bozeman, MT (United States); Dobeck, Laura [Montana State Univ., Bozeman, MT (United States); Repasky, Kevin [Montana State Univ., Bozeman, MT (United States); Shaw, Joseph [Montana State Univ., Bozeman, MT (United States); Nugent, Paul [Montana State Univ., Bozeman, MT (United States); Johnson, Jennifer [Montana State Univ., Bozeman, MT (United States); Hogan, Justin [Montana State Univ., Bozeman, MT (United States); Codd, Sarah [Montana State Univ., Bozeman, MT (United States); Bray, Joshua [Montana State Univ., Bozeman, MT (United States); Prather, Cody [Montana State Univ., Bozeman, MT (United States); McGrail, B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oldenburg, Curtis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wagoner, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pawar, Rajesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-12-19

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.

  19. Processes Affecting Carbon Fluxes of Grassland Ecosystems Under Elevated CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Owensby, C.E.; Ham, J.M.; Rice, C.W.; Knapp, A.K.

    1998-03-14

    Final report of a project which exposed native tallgrass prairie to twice-ambient atmospheric CO{sub 2}. Improved water use efficiency increased biomass production and increased soil organic matter. Twice ambient CO{sub 2} decreased canopy evapotranspiration by 22%, but, maintained an increased net carbon sequestration.

  20. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X M; Drury, C F; Reynolds, W D; Yang, J Y

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg(-1) soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg(-1), but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365

  1. On partitions avoiding right crossings

    OpenAIRE

    Yan, Sherry H. F.; Xu, Yuexiao

    2011-01-01

    Recently, Chen et al. derived the generating function for partitions avoiding right nestings and posed the problem of finding the generating function for partitions avoiding right crossings. In this paper, we derive the generating function for partitions avoiding right crossings via an intermediate structure of partial matchings avoiding 2-right crossings and right nestings. We show that there is a bijection between partial matchings avoiding 2-right crossing and right nestings and partitions...

  2. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands

    OpenAIRE

    Yue, Haowei; Wang, Mengmeng; Wang, Shiping; Gilbert, Jack A.; Sun, Xin; Wu, Linwei; Lin, Qiaoyan; Hu, Yigang; Li, Xiangzhen; He, Zhili; Zhou, Jizhong; Yang, Yunfeng

    2015-01-01

    Warming has been shown to cause soil carbon (C) loss in northern grasslands owing to accelerated microbial decomposition that offsets increased grass productivity. Yet, a multi-decadal survey indicated that the surface soil C stock in Tibetan alpine grasslands remained relatively stable. To investigate this inconsistency, we analyzed the feedback responses of soil microbial communities to simulated warming by soil transplant in Tibetan grasslands. Whereas microbial functional diversity decrea...

  3. Latitudinal Variation in Carbon Storage Can Help Predict Changes in Swamps Affected by Global Warming

    Science.gov (United States)

    Middleton, Beth A.; McKee, Karen

    2004-01-01

    Plants may offer our best hope of removing greenhouse gases (gases that contribute to global warming) emitted to the atmosphere from the burning of fossil fuels. At the same time, global warming could change environments so that natural plant communities will either need to shift into cooler climate zones, or become extirpated (Prasad and Iverson, 1999; Crumpacker and others, 2001; Davis and Shaw, 2001). It is impossible to know the future, but studies combining field observation of production and modeling can help us make predictions about what may happen to these wetland communities in the future. Widespread wetland types such as baldcypress (Taxodium distichum) swamps in the southeastern portion of the United States could be especially good at carbon sequestration (amount of CO2 stored by forests) from the atmosphere. They have high levels of production and sometimes store undecomposed dead plant material in wet conditions with low oxygen, thus keeping gases stored that would otherwise be released into the atmosphere (fig. 1). To study the ability of baldcypress swamps to store carbon, our project has taken two approaches. The first analysis looked at published data to develop an idea (hypothesis) of how production levels change across a temperature gradient in the baldcypress region (published data study). The second study tested this idea by comparing production levels across a latitudinal range by using swamps in similar field conditions (ongoing carbon storage study). These studies will help us make predictions about the future ability of baldcypress swamps to store carbon in soil and plant biomass, as well as the ability of these forests to shift northward with global warming.

  4. Carbon capture and sequestration: how much does this uncertain option affect near-term policy choices?

    OpenAIRE

    Bosetti, Valentina; Gilotte, Laurent

    2006-01-01

    Policy makers as well as many economists recognize geological Carbon Capture and Sequestration (CCS) as a key option to avoid costly emission reduction. While an extreme perspective is to envision CCS as a magic bullet to solve the issue of climate change, the economics perspective is more balanced and see it as a part of a portfolio of mitigation actions. Besides, as any novel mitigation technology, CCS can be implemented with a twofold purpose; on one side it can substitute some other techn...

  5. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors

    Czech Academy of Sciences Publication Activity Database

    Marek, Michal V.; Janouš, Dalibor; Taufarová, Klára; Havránková, Kateřina; Pavelka, Marian; Kaplan, Věroslav; Marková, I.

    2011-01-01

    Roč. 159, č. 5 (2011), s. 1035-1039. ISSN 0269-7491 R&D Projects: GA MŽP(CZ) SP/1A6/108/07; GA MŠk 2B06068 Institutional research plan: CEZ:AV0Z60870520 Keywords : carbon fluxes * net ecosystem exchange * spruce forest * beech forest * Grassland * agroecosystem * wetland * climate factors Subject RIV: EH - Ecology, Behaviour Impact factor: 3.746, year: 2011

  6. Study of the new manumycin-type metabolite biosynthesis – novel factors affecting carbon chain lengths

    Czech Academy of Sciences Publication Activity Database

    Petříčková, Kateřina; Pospíšil, Stanislav; Tylová, Tereza; Jágr, Michal; Tomek, P.; Kolek, Jan; Chroňáková, Alica; Stříž, I.; Krištůfek, Václav; Petříček, Miroslav

    Cancun : Instituto de Investigaciones Biomédicos UNAM, 2013. [GIM 2013 - International Symposium on the Genetics of Industrial Microorganisms /12./. 23.06.2013-28.06.2013, Cancun] R&D Projects: GA MŠk LH12191 Grant ostatní: GA MZd(CZ) NT/13012 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : manumycin metabolites * biosynthesis * carbon chain lengths Subject RIV: EE - Microbiology, Virology

  7. Soil organic carbon fractions in a Vertisol under irrigated cotton production as affected by burning and incorporating cotton stubble

    International Nuclear Information System (INIS)

    The contribution of cotton stubble to the soil organic matter content of Vertisols under cotton production is not well understood. A 3-year experiment was conducted at the Australian Cotton Research Institute to study the effects of burning and incorporating cotton stubble on the recovery of fertiliser nitrogen (N), lint yield, and organic matter levels. This study reports on the changes in soil organic matter fractions as affected by burning and incorporating cotton stubble into the soil. Soil samples collected at the start and end of the 3-year experiment were analysed for total carbon (CT), total N (NT), and δ13C (a measure of 13C/12C isotopic ratios). Labile carbon (CL) was determined by ease of oxidation and non-labile carbon (CNL) was calculated as the difference between CT and CL. Based on the changes in CT, CL, and CNL, a carbon management index (CMI) was calculated. Further analyses were made for total polysaccharides (PT), labile polysaccharides (PL), and light fraction C (LF-C). Stubble management did not significantly affect the NT content of the soil. After 3 years, the stubble-incorporated plots had a significantly higher content of CT, CL, and polysaccharides. Incorporation of stubble into the soil increased the CMI by 41%, whereas burning decreased the CMI by 6%. The amount of LF-C obtained after 3 years in the stubble-incorporated soil was almost double that obtained in the stubble-burnt soil. It was concluded that for sustainable management of soil organic matter in the Vertisols used for cotton production, stubble produced in the system should be incorporated instead of burnt. Copyright (1998) CSIRO Publishing

  8. Shifts in vegetation affect organic carbon quality in a coastal marsh along the Hudson River Estuary

    Science.gov (United States)

    Zhang, A. H.; Corbett, J. E.; Tfaily, M. M.; Martin, I.; Ho, L.; Sun, E.; Sevilla, L.; Vincent, S.; Newton, R.; Peteet, D. M.

    2015-12-01

    To better understand carbon storage in coastal salt marshes, samples were collected from Piermont Marsh, NY (40 ̊00' N, 73 ̊55'W) located within the Hudson River Estuary. Porewater from three different vegetation sites was analyzed to compare the quality of the dissolved organic carbon. Sites contained either native or invasive vegetation with variations in live plant root depth. Porewater was taken from 0-3m in 50cm intervals, and sites were dominated either by invasive Phragmites australis, native Eleocharis , or native mixed vegetation (Spartina patens, Scirpus, and Typha angustifolia). Sites dominated by invasive Phragmites australis were found to have lower dissolved organic carbon (DOC) concentrations, lower cDOM absorption values, and more labile organic carbon compounds. The molecular composition of the DOC was determined with Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR-MS). Labile DOC components were defined as proteins, carbohydrates, and amino sugars while recalcitrant DOC components were defined as lipids, unsaturated hydrocarbons, lignins, tannins, and condensed hydrocarbons. For the Phragmites, Eleocharis, and mixed vegetation sites, average DOC concentrations with depth were found to be 1.71 ± 1.06, 4.64 ± 1.73, and 4.62 ± 3.5 (mM), respectively and cDOM absorption values with depth were found to be 13.22 ± 4.81, 49.42 ± 10.8, and 35.74 ± 17.49 (m-1). Additionally, DOC concentrations increased with depth in the mixed vegetation and Eleocharis sites, but remained relatively constant in the Phragmites site. The percent of labile compounds in the surface samples were found to be 19.02, 14.64, and 14.07% for the Phragmites, Eleocharis, and mixed vegetation sites, respectively. These findings suggest that sites dominated by Phragmites may have more reactive DOC substrates than sites dominated by native vegetation. These results indicate that the carbon storage in marshes invaded by Phragmites would be expected to decrease over time.

  9. Effect of localized nitrogen availability to soybean half-root systems on photosynthate partitioning to roots and nodules

    International Nuclear Information System (INIS)

    Soybean (Glycine max [L.] Merr. cv Davis) was grown in a split-root growth system designed to maintain control of the root atmosphere. Two experiments were conducted to examine how 80% Ar:20%, O2 (Ar:O2) and air (Air) atmospheres affected N assimilation (NH4NO3 and N2 fixation) and the partitioning of photosynthate to roots and nodules. Application of NH4NO3 to nonnodulated half-root systems enhanced root growth and root respiration at the site of application. A second experiment applied Ar:O2 or air to the two sides of nodulated soybean half-root systems for 11 days in the following combinations: (a) Air to both sides (Air/Air); (b) Air to one side, Ar:O2 to the other (Air/Ar:O2), and (c) Ar:O2 to both sides (Ar:O2/Ar:O2). Results indicated that dry matter and current photosynthate (14C) were selectively partitioned to nodules and roots where N2 was available. Both root and nodule growth on the Air side of Air/Ar:O2 plants was significantly greater than the Ar:O2 side. The relative partitioning of carbon and current photosynthate between roots and nodules on a half-root system was also affected by N2 availability. The Ar:O2 sides partitioned relatively more current photosynthate to roots (57%) than nodules (43%), while N2-fixing root systems partitioned 36 and 64% of the carbon to roots and nodules, respectively. The Ar:O2 atmosphere decreased root and nodule respiration by 80% and nitrogenase activity by 85% compared to half-root systems in Air while specific nitrogenase activity in Ar:O2 was 50% of nodules supplied Air. Results indicated that nitrogen assimilation, whether from N2 fixation or inorganic sources, had a localized effect on root development

  10. Temporal dynamics of groundwater-dissolved inorganic carbon beneath a drought-affected braided stream: Platte River case study

    Science.gov (United States)

    Boerner, Audrey R.; Gates, John B.

    2015-05-01

    Impacts of environmental changes on groundwater carbon cycling are poorly understood despite their potentially high relevance to terrestrial carbon budgets. This study focuses on streambed groundwater chemistry during a period of drought-induced river drying and consequent disconnection between surface water and groundwater. Shallow groundwater underlying vegetated and bare portions of a braided streambed in the Platte River (Nebraska, USA) was monitored during drought conditions in summer 2012. Water temperature and dissolved inorganic carbon (dominated by HCO3-) in streambed groundwater were correlated over a 3 month period coinciding with a decline in river discharge from 35 to 0 m3 s-1. Physical, chemical, and isotopic parameters were monitored to investigate mechanisms affecting the HCO3- trend. Equilibrium thermodynamic modeling suggests that an increase of pCO2 near the water table, coupled with carbonate mineral weathering, can explain the trend. Stronger temporal trends in Ca2+ and Mg2+ compared to Cl- are consistent with carbonate mineral reequilibria rather than evaporative concentration as the primary mechanism of the increased HCO3-. Stable isotope trends are not apparent, providing further evidence of thermodynamic controls rather than evaporation from the water table. A combination of increased temperature and O2 in the dewatered portion of the streambed is the most likely driver of increased pCO2 near the water table. Results of this study highlight potential linkages between surface environmental changes and groundwater chemistry and underscore the need for high-resolution chemical monitoring of alluvial groundwater in order to identify environmental change impacts.

  11. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  12. Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and CO18O data

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Cuntz, M.; Bariac, T.; Brunet, Y.; Berbigier, P.; Richard, P.; Ciais, P.

    2004-06-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of nonfoliar respiration (FR) and net photosynthesis (FA) in order to better understand the variations of this exchange. However, the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes, and a rigorous estimation of the errors on FA and FR is needed. In this study, we account for and propagate uncertainties on all terms in the mass balance and isotopic mass balance equations for CO2 in order to get accurate estimates of the errors on FA and FR. We apply our method to a maritime pine forest in the southwest of France. Nighttime Keeling plots are used to estimate the 13C and 18O isotopic signature of FR (δR), and for both isotopes the a priori uncertainty associated with this term is estimated to be around 2‰ at our site. Using δ13C-CO2 and [CO2] measurements, we then show that the uncertainty on instantaneous values of FA and FR can be as large as 4 μmol m-2 s-1. Even if we could get more accurate estimates of the net CO2 flux, the isoflux, and the isotopic signatures of FA and FR, this uncertainty would not be significantly reduced because the isotopic disequilibrium between FA and FR is too small, around 2-3‰. With δ18O-CO2 and [CO2] measurements the uncertainty associated with the gross fluxes lies also around 4 μmol m-2 s-1 but could be dramatically reduced if we were able to get more accurate estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 12-17‰. The isotopic disequilibrium between FA and FR and the uncertainty on δR vary among ecosystems and over the year. Our approach should help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  13. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification.

    Directory of Open Access Journals (Sweden)

    Yan X Ow

    Full Text Available Under future ocean acidification (OA, increased availability of dissolved inorganic carbon (DIC in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2, and three light treatments (35, 100, 380 μmol m(-2 s(-1 for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3- use inhibitors (carbonic anhydrase inhibitor, acetazolamide and TRIS buffer (pH 8.0. We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax and efficiency (α more in C. serrulata grown under lower light levels (36-60% increase than for those in high light (4% increase. However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA.

  14. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification

    Science.gov (United States)

    2016-01-01

    Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m-2 s-1) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36–60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA. PMID:26938454

  15. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification.

    Science.gov (United States)

    Ow, Yan X; Uthicke, Sven; Collier, Catherine J

    2016-01-01

    Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m(-2) s(-1)) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36-60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA. PMID:26938454

  16. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  17. BKP plane partitions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2007-01-15

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.

  18. Partitioned Triangular Tridiagonalization

    Czech Academy of Sciences Publication Activity Database

    Rozložník, Miroslav; Shklarski, G.; Toledo, S.

    2011-01-01

    Roč. 37, č. 4 (2011), 38:1-38:16. ISSN 0098-3500 R&D Projects: GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * performance * symmetric indefinite matrices * tridiagonalization * Aasen's tridiagonalization * Parlett-Reid tridiagonalization * partitioned factorizations * recursive factorizations Subject RIV: BA - General Mathematics Impact factor: 1.922, year: 2011

  19. BKP plane partitions

    OpenAIRE

    Foda, O.; Wheeler, M.

    2006-01-01

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.

  20. BKP plane partitions

    International Nuclear Information System (INIS)

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another

  1. Development of partitioning method

    International Nuclear Information System (INIS)

    A partitioning method has been developed under the concepts of separation of nuclides in high level nuclear fuel reprocessing liquid waste according to their half lives and radioactive toxicity and of disposal of them by suitable methods. In the partitioning process, which has been developed in JAERI, adoption of solvent extraction process with DIDPA (di-isodecyl phosphoric acid) has been studied for actinides separation. The present paper mainly describes studies on back extraction behavior of Np(IV), Pu(IV) and U(VI) in DIDPA. Most experiments were carried out according to following procedure. These actinides were extracted from 0.5 M nitric acid with DIDPA, where nitric acid concentration in HLW is expected to be adjusted to this value prior to actinides extraction in the partitioning process, and back-extracted with various reagents such as oxalic acid. The experimental results show that distribution ratios of Np(IV) and Pu(IV) can be reduced to less than unity with 1 M oxalic acid and those of U(VI) and Np(IV) with 5 M phosphoric acid. From results of these studies and previous research on Am and Cm, following possibilities were confirmed ; U, Pu, Np, Am and Cm, which are major actinides in HLW, can be extracted simultaneously with DIDPA, and they can be removed from DIDPA with various reagents. (nitric acid for Am and Cm, oxalic acid for Np and Pu, and phosphoric acid for U respectively). (author)

  2. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    Science.gov (United States)

    Bright, B. C.; Hicke, J. A.; Hudak, A. T.

    2012-12-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40-50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75-89% of the study area had >25% AGC in killed trees and 3-6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale.

  3. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    International Nuclear Information System (INIS)

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40–50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75–89% of the study area had >25% AGC in killed trees and 3–6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale. (letter)

  4. Public perception of carbon dioxide storage. The role of trust and affect in attitude formation

    International Nuclear Information System (INIS)

    In this study a multidisciplinary description of, and investigation into carbon dioxide storage is given. Carbon dioxide storage is a CO2-emission reduction option that might be implemented to combat climate change. The threat of climate change has led to emission reduction goals for greenhouse gases in the Netherlands for the period 2008-2010 compared to the year 1990, and possibly more stringent goals for the longer term. The technology of carbon dioxide capture, transport and storage is shortly described, and it is expected that it is possible to perform the technology. Possible identified barriers are the costs, the risks and public perception. A wide range for the estimation of the costs has been found. Any price in the range however leads to a significant increase of the electricity price, when applying CO2 capture and storage to power plants. Risks are not quantified yet, but possible risks are described for man, environment, and buildings in literature. So far, little research had been performed on the public perception of carbon dioxide storage. Therefore a field study has been conducted for this study. From personal communication and literature, the current points of view of government, industry, and environmental NGOs (non-governmental organizations) are described for the Netherlands. Government and environmental NGOs believe that carbon dioxide storage can only be a temporary solution, because it is not considered a sustainable solution. Opposition from environmental NGOs might arise when the storage of carbon dioxide diverts effort from the development of sustainable energy sources. Industry that would perform storage expects that it can be done in a safe and acceptable way. The points of view of the actors involved can influence the perception of citizens and have therefore been summarised and added to the information for the participants in the study. From literature in the field of psychology, a conceptual model for the formation of an attitude

  5. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Di; Pan Bo; Wu Min; Wang Bin; Zhang Huang; Peng Hongbo; Wu Di [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Ning Ping, E-mail: pingning58@gmail.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2011-10-15

    The environmental risks of antibiotics have attracted lots of research attention, but their environmental behavior is not clear yet. Functionalized carbon nanotubes (CNTs) were used as model adsorbents and sulfamethoxazole (SMX) was used as a model antibiotic to investigate the effect of both cations (Ca{sup 2+}, Cs{sup +}) and anions (phosphate) on antibiotics adsorption. Various mechanisms (such as electrostatic interaction, hydrophobic interaction, {pi}-{pi} and hydrogen bonds) play roles in SMX adsorption. Cations and anions could 'wedge into' these mechanisms and thus alter SMX adsorption. This study emphasized that both increased and decreased SMX adsorption could be observed with the addition of cations/anions, depending on environmental conditions (such as pH in this current study). The net effect is the balance between the increased and decreased effects. The contribution of different mechanisms to the overall antibiotic adsorption on solid particles should be identified to accurately predict the apparent effect by cations and anions. - Highlights: > Various mechanisms play role in SMX sorption on CNTs. > The presence of cations and anions may decrease or increase SMX sorption. > The net effect is dependent on the balance among different mechanisms. > It is essential to identify the contribution of different mechanisms. - The balance between decreasing and increasing roles determines the apparent sulfamethoxazole adsorption on carbon nanotubes depending on environmental conditions.

  6. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions

    International Nuclear Information System (INIS)

    The environmental risks of antibiotics have attracted lots of research attention, but their environmental behavior is not clear yet. Functionalized carbon nanotubes (CNTs) were used as model adsorbents and sulfamethoxazole (SMX) was used as a model antibiotic to investigate the effect of both cations (Ca2+, Cs+) and anions (phosphate) on antibiotics adsorption. Various mechanisms (such as electrostatic interaction, hydrophobic interaction, π-π and hydrogen bonds) play roles in SMX adsorption. Cations and anions could 'wedge into' these mechanisms and thus alter SMX adsorption. This study emphasized that both increased and decreased SMX adsorption could be observed with the addition of cations/anions, depending on environmental conditions (such as pH in this current study). The net effect is the balance between the increased and decreased effects. The contribution of different mechanisms to the overall antibiotic adsorption on solid particles should be identified to accurately predict the apparent effect by cations and anions. - Highlights: → Various mechanisms play role in SMX sorption on CNTs. → The presence of cations and anions may decrease or increase SMX sorption. → The net effect is dependent on the balance among different mechanisms. → It is essential to identify the contribution of different mechanisms. - The balance between decreasing and increasing roles determines the apparent sulfamethoxazole adsorption on carbon nanotubes depending on environmental conditions.

  7. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    Directory of Open Access Journals (Sweden)

    H. A. Torbert

    2012-01-01

    Full Text Available Increasing global atmospheric carbon dioxide (CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C and nitrogen (N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L. Willd (Huisache. Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient, 690, and 980 μmol mol−1. Elevated CO2 increased both C and N inputs from plant growth which would result in higher soil C from litter fall, root turnover, and excretions. Results from the incubation indicated an initial (20 days decrease in N mineralization which resulted in no change in C mineralization. However, after 40 and 60 days, an increase in both C and N mineralization was observed. These increases would indicate that increases in soil C storage may not occur in grass ecosystems that are invaded with Acacia over the long term.

  8. Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil: A (13)C study.

    Science.gov (United States)

    Kerré, Bart; Hernandez-Soriano, Maria C; Smolders, Erik

    2016-03-15

    Biochar sequesters carbon (C) in soils because of its prolonged residence time, ranging from several years to millennia. In addition, biochar can promote indirect C-sequestration by increasing crop yield while, potentially, reducing C-mineralization. This laboratory study was set up to evaluate effects of biochar on C-mineralization with due attention to source appointment by using (13)C isotope signatures. An arable soil (S) (7.9g organic C, OCkg(-1)) was amended (single dose of 10gkg(-1) soil) with dried, grinded maize stover (leaves and stalks), either natural (R) or (13)C enriched (R*), and/or biochar (B/B*) prepared from the maize stover residues (450°C). Accordingly, seven different combinations were set up (S, SR, SB, SR*, SB*, SRB*, SR*B) to trace the source of C in CO2 (180days), dissolved organic-C (115days) and OC in soil aggregate fractions (90days). The application of biochar to soil reduced the mineralization of native soil organic C but the effect on maize stover-C mineralization was not consistent. Biochar application decreased the mineralization of the non-enriched maize stover after 90days, this being consistent with a significant reduction of dissolved organic C concentration from 45 to 18mgL(-1). However, no significant effect was observed for the enriched maize stover, presumably due to differences between the natural and enriched materials. The combined addition of biochar and enriched maize stover significantly increased (twofold) the presence of native soil organic C or maize derived C in the free microaggregate fraction relative to soil added only with stover. Although consistent effects among C sources and biochar materials remains elusive, our outcomes indicate that some biochar products can reduce mineralization and solubilization of other sources of C while promoting their physical protection in soil particles. PMID:26780129

  9. Fertilization Affects Biomass Production of Suaeda salsa and Soil Organic Carbon Pool in East Coastal Region of China

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-feng; YANG Jing-song; YAO Rong-jiang; LIU Guang-ming; YU Shi-peng

    2013-01-01

    Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this study was to assess the effects of N and P applied to Suaeda salsa on biomass production, SOC concentration, labile organic carbon (LOC) concentration, SOC pool and carbon management index (CMI) as well as the effect of the land use practice on soil quality of coastal tidal lands in east coastal region of China. The study provided relevant references for coastal exploitation, tidal land management and related study in other countries and regions. The field experiment was laid out in a randomized complete block design, consisting of four N-fertilization rates (0 (N0), 60 (N1), 120 (N2) and 180 kg ha-1 (N3)), three P-fertilization rates (0 (P0), 70 (P1) and 105 kg ha-1 (P2)) and bare land without vegetation. N and P applied to S. salsa on coastal tidal lands significantly affected biomass production (above-ground biomass and roots), bulk density (ρb), available N and P, SOC, LOC, SOC pool and CMI. Using statistical analysis, significantly interactions in N and P were observed for biomass production and the dominant factor for S. salsa production was N in continuous 2-yr experiments. There were no significant interactions between N and P for SOC concentration, LOC concentration and SOC pool. However, significant interaction was obtained for CMI at the 0-20 cm depth and N played a dominant role in the variation of CMI. There were significant improvements for soil measured attributes and parameters, which suggested that increasing the rates of N and P significantly decreasedρb at the 0-20 cm depth and increased available N and P, SOC, LOC, SOC pool as well as CMI at both the 0-20 and 20-40 cm depth, respectively. By correlation analysis, there were significantly positive correlations between biomass (above-ground biomass and roots) and SOC as well as LOC in

  10. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Science.gov (United States)

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change. PMID

  11. Carbon stock and humification index of organic matter affected by sugarcane straw and soil management

    Directory of Open Access Journals (Sweden)

    Aline Segnini

    2013-10-01

    Full Text Available The maintenance of sugarcane (Saccharum spp. straw on a soil surface increases the soil carbon (C stocks, but at lower rates than expected. This fact is probably associated with the soil management adopted during sugarcane replanting. This study aimed to assess the impact on soil C stocks and the humification index of soil organic matter (SOM of adopting no-tillage (NT and conventional tillage (CT for sugarcane replanting. A greater C content and stock was observed in the NT area, but only in the 0-5 cm soil layer (p < 0.05. Greater soil C stock (0-60 cm was found in soil under NT, when compared to CT and the baseline. While C stock of 116 Mg ha-1 was found in the baseline area, in areas under CT and NT systems the values ranged from 120 to 127 Mg ha-1. Carbon retention rates of 0.67 and 1.63 Mg C ha-1 year-1 were obtained in areas under CT and NT, respectively. Laser-Induced Fluorescence Spectroscopy showed that CT makes the soil surface (0-20 cm more homogeneous than the NT system due to the effect of soil disturbance, and that the SOM humification index (H LIF is larger in CT compared to NT conditions. In contrast, NT had a gradient of increasing H LIF, showing that the entry of labile organic material such as straw is also responsible for the accumulation of C in this system. The maintenance of straw on the soil surface and the adoption of NT during sugarcane planting are strategies that can increase soil C sequestration in the Brazilian sugarcane sector.

  12. How Seasonal Drought Affect Carbon and Water Fluxes of Alternative Energy Crops in the US?

    Science.gov (United States)

    Joo, E.; Hussain, M. Z.; Zeri, M.; Masters, M.; Gomez-Casanovas, N.; DeLucia, E. H.; Bernacchi, C.

    2014-12-01

    The cellulosic biomass of Switchgrass (Panicum virgatum L.), Miscanthus (Miscanthus giganteus) and native prairie are considered candidate second-generation biofuels, potentially resulting in partial replacement annual row crops within the Midwestern US. There is an increasing focus to study the environmental impact of agricultural crops, however not much is known on the influence on the energy, carbon and water cycles of energy crops, especially under drought conditions. This study compares the impact of drought episodes (in 2011 and 2012) on evapotranspiration (ET), net ecosystem productivity (NEP) and water use efficiency (WUE; equals to NEP/ET) for Switchgrass (SW), Miscanthus (MXG), Maize (MZ) and native prairie (NP) grown in Central Illinois using the eddy covariance technique. Due to the prolonged drought and the rapid growth development with increasing ET of MXG in 2012, large water deficit (precipitation-ET) was observed for each species up to the highest deficit of -360 mm for this species. The gross primary production (GPP) of MZ was radically decreased by the drought in 2011 and 2012, while SW and NP were not influenced. MXG increased NEP throughout the typically wet and drought years, mainly due to the decrease in respiration and by the largest GPP upon the drought in 2012. Despite having the largest water deficit, MXG showed an enhanced WUE of 12.8 and 11.4 Kg C ha-1mm-1 in 2011 and 2012, respectively, in comparison to years typical to the region with WUE of 3.7-7.3 Kg C ha-1mm-1. Other species did not show a significant enhancement of WUE. Therefore we conclude that out of the studied species, MXG has more access to water, and uses this water the most efficiently to store carbon, under drought conditions.

  13. Lipid metabolism and nutrient partitioning strategies.

    Science.gov (United States)

    Morris, A M; Calsbeek, D J; Eckel, R H

    2004-10-01

    The increasing prevalence of overweight and obesity worldwide is daunting and requires prompt attention by the affected, health care profession, government and the pharmaceutical industry. Because overweight/obesity are defined as an excess of adipose tissue mass, all approaches in prevention and treatment must consider redirecting lipid storage in adipose tissue to oxidative metabolism. Lipid partitioning is a complex process that involves interaction between fat and other macronutrients, particularly carbohydrate. In an isocaloric environment, when fat is stored carbohydrate is oxidized and vice versa. Processes that influence fat partitioning in a manner in which weight is maintained must be modified by changes in organ-specific fat transport and metabolism. When therapy is considered, however, changes in lipid partitioning alone will be ineffective unless a negative energy balance is also achieved, i.e. energy expenditure exceeds energy intake. The intent of this review is to focus on molecules including hormones, enzymes, cytokines, membrane transport proteins, and transcription factors directly involved in fat trafficking and partitioning that could be potential drug targets. Some examples of favorably altering body composition by systemic and/or tissue specific modification of these molecules have already been provided with gene knockout and/or transgenic approaches in mice. The translation of this science to humans remains a challenging task. PMID:15544448

  14. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    Science.gov (United States)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-01-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils. PMID:27113269

  15. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  16. Socioeconomic Factors Affecting Farmers’ Awareness of Clean Development Mechanism Projects: Case of Smallholder Forest Carbon Projects

    Directory of Open Access Journals (Sweden)

    Oscar I. Ayuya

    2011-05-01

    Full Text Available The objective of the study was to identify the socio-economic and institutional factors which influence the level of awareness of Clean Development Mechanism (CDM projects and in so doing to highlight the policy implications for the stakeholders when designing clean development mechanism projects among smallholder farmers. Findings shows that 23% of the farmers were correctly aware of the project and the results of the ordered logit model indicate that age, gender, education level, group membership, existence of tree farming and contact with extension services was found to influence awareness level of smallholder forest Carbon projects. To assist the community to adapt to climate change and produce sufficiently on a sustainable basis and achieve the desired food security under climate change challenges, the study recommends policies to increase awareness of such agro-environmental initiatives and that of extension providers should distinguish their clientele anchored on vital demographic characteristics such as age and gender. If the probability of younger farmers to be aware this initiative is higher, extension communications should be directed to such age group, particularly during initial stages project information dissemination.

  17. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands.

    Science.gov (United States)

    Yue, Haowei; Wang, Mengmeng; Wang, Shiping; Gilbert, Jack A; Sun, Xin; Wu, Linwei; Lin, Qiaoyan; Hu, Yigang; Li, Xiangzhen; He, Zhili; Zhou, Jizhong; Yang, Yunfeng

    2015-09-01

    Warming has been shown to cause soil carbon (C) loss in northern grasslands owing to accelerated microbial decomposition that offsets increased grass productivity. Yet, a multi-decadal survey indicated that the surface soil C stock in Tibetan alpine grasslands remained relatively stable. To investigate this inconsistency, we analyzed the feedback responses of soil microbial communities to simulated warming by soil transplant in Tibetan grasslands. Whereas microbial functional diversity decreased in response to warming, microbial community structure did not correlate with changes in temperature. The relative abundance of catabolic genes associated with nitrogen (N) and C cycling decreased with warming, most notably in genes encoding enzymes associated with more recalcitrant C substrates. By contrast, genes associated with C fixation increased in relative abundance. The relative abundance of genes associated with urease, glutamate dehydrogenase and ammonia monoxygenase (ureC, gdh and amoA) were significantly correlated with N2O efflux. These results suggest that unlike arid/semiarid grasslands, Tibetan grasslands maintain negative feedback mechanisms that preserve terrestrial C and N pools. To examine whether these trends were applicable to the whole plateau, we included these measurements in a model and verified that topsoil C stocks remained relatively stable. Thus, by establishing linkages between microbial metabolic potential and soil biogeochemical processes, we conclude that long-term C loss in Tibetan grasslands is ameliorated by a reduction in microbial decomposition of recalcitrant C substrates. PMID:25689025

  18. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes

    International Nuclear Information System (INIS)

    Adsorption of nickel, copper, zinc and cadmium from aqueous solutions on carbon nanotubes oxidized with concentrated nitric acid was carried out in single, binary, ternary and quaternary systems. TEM and adsorption of nitrogen were used to determine texture and structural parameters, respectively. The surface chemistry was evaluated using the pH at the point of zero charge, FTIR spectroscopy and XPS analysis. The experimental results showed that all isotherms for Cu2+(aq) fit to Langmuir model in each system. On the other hand, the isotherms for Ni2+(aq), Cd2+(aq) and Zn2+(aq) in multi-component systems reveal the effect of competition for adsorption sites seen as a decrease in the amount adsorbed. The uptakes at the equilibrium concentration of 0-0.04 mmol L-1 in single system and 0-0.15 mmol L-1 in binary system are in the order Cu2+(aq) > Ni2+(aq) > Cd2+(aq) > Zn2+(aq) while for the ternary and quaternary, the order is Cu2+(aq) > Cd2+(aq) > Zn2+(aq) > Ni2+(aq). The results indicate that the mechanism of adsorption is governed by the surface features, ion exchange process and electrochemical potential. The latter plays a significant role in multi-component adsorption where redox reactions, not only on the adsorbent surface but also between the adsorbates, are likely to occur.

  19. Coated or doped carbon nanotube network sensors as affected by environmental parameters

    Science.gov (United States)

    Li, Jing (Inventor)

    2011-01-01

    Methods for using modified single wall carbon nanotubes ("SWCNTs") to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl.sub.2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., C.sub.nH.sub.2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.

  20. Partitioning Uncertain Workflows

    CERN Document Server

    Huberman, Bernardo A

    2015-01-01

    It is common practice to partition complex workflows into separate channels in order to speed up their completion times. When this is done within a distributed environment, unavoidable fluctuations make individual realizations depart from the expected average gains. We present a method for breaking any complex workflow into several workloads in such a way that once their outputs are joined, their full completion takes less time and exhibit smaller variance than when running in only one channel. We demonstrate the effectiveness of this method in two different scenarios; the optimization of a convex function and the transmission of a large computer file over the Internet.

  1. Partition of polycyclic aromatic hydrocarbons on organobentonites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of organobentonites synthesized by exchanging organiccation such as dodecyltri-methylammonium (DTMA),benzyldimethyltetradecylammonium (BDTDA), cetyltrimethyl-ammonium (CTMA), octodeyltrimethylammonium (OTMA) on bentonite. The optimal condition, properties and mechanisms for the organobentonites to sorb phenanthrene, anthracene, naphthalene, acenaphthene in water were investigated in detail. The partition behavior was determined for four polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, anthracene and acenaphthene, from water to a series of organobentonites. The interlayer spacings and organic carbon contents of organobentonites, removal rate and sorption capacities for organobentonites to treat phenanthrene,anthracene, naphthalene, acenaphthene were correlated to the length of alkyl chains and the amounts of cation surfactant exchanged on Foundation item: the bentonite. Phenanthrene, anthracene, naphthalene, and acenaphthene sorption to organobentonites were characterized by linear isotherms, indicating solute partition between water and the organic phase composed of the large alkyl functional groups of quaternary ammonium cations. PAHs distribution coefficients (Kd)between organobentonites and water were proportional to the organic carbon contents of organobentonites. However, the partition coefficients (Koc) were nearly constants for PAHs in the system of organobentonite-water. The Koc of phenanthrene, anthracene,naphthalene, acenaphthene were 2.621x105, 2.106x105, 2.247x104,5.085x104, respectively. The means Koc values on the organobentonites are about ten to twenty times larger than the values on the soils/sediments, what is significant prerequisite for organobentonite to apply to remediation of pollution soil and groundwater. The sorption mechanism was also evaluated from octanol-water partition coefficients and aqueous solubility of PAHs. The correlations between lgKoc and 1gkow, 1gKoc and 1gS for PAHs in the system of water

  2. Partitioning of PAHs in pore water from mangrove wetlands in Shantou, China.

    Science.gov (United States)

    Cao, Qi min; Wang, Hua; Qin, Jian qiao; Chen, Gui zhu; Zhang, Yong bei

    2015-01-01

    To investigate the trend of selected polycyclic aromatic hydrocarbons (PAHs) partitioning, fifteen pore water samples collected from the sediments of three mangrove wetlands were analyzed, and the partition coefficients and the partition model for the PAHs were determined by the correlation between K(oc) and octanol-water partition coefficient (K(ow)). The results revealed that the mean Kp values in inner mangrove wetlands were between 143 and 1031 L /Kg; the particulate organic carbon (POC) could strongly adsorb low-ring PAHs; the PAHs partitioning was on a obvious trend transported to particle phase. We suggest that the classic equilibrium model of organic carbon normalized (K(p)=K(oc)f(oc)) may be used to predict the trend of the selected PAHs partitioning. PMID:25450913

  3. n-Level Graph Partitioning

    OpenAIRE

    Osipov, Vitaly; Sanders, Peter

    2010-01-01

    We present a multi-level graph partitioning algorithm based on the extreme idea to contract only a single edge on each level of the hierarchy. This obviates the need for a matching algorithm and promises very good partitioning quality since there are very few changes between two levels. Using an efficient data structure and new flexible ways to break local search improvements early, we obtain an algorithm that scales to large inputs and produces the best known partitioning results for many in...

  4. On Partitions of Goldbach's Conjecture

    OpenAIRE

    Woon, Max S. C.

    2000-01-01

    An approximate formula for the partitions of Goldbach's Conjecture is derived using Prime Number Theorem and a heuristic probabilistic approach. A strong form of Goldbach's conjecture follows in the form of a lower bounding function for the partitions of Goldbach's conjecture. Numerical computations suggest that the lower and upper bounding functions for the partitions satisfy a simple functional equation. Assuming that this invariant scaling property holds for all even integer $n$, the lower...

  5. Development of partitioning method

    International Nuclear Information System (INIS)

    A partitioning method has been developed under the concepts of separating radioactive nuclides from a high-level waste according to their half lives and radioactive toxicity, and of disposing the waste safely. The partitioning test using about 18 liters (--220Ci) of the fuel reprocessing waste prepared at PNC has been started in October of 1982. In this test the behavior of radioactive nuclides was made clear. The present paper describes chemical behavior of non-radioactive elements contained in the high-level liquid waste in the extraction with di-isodecyl phosphoric acid (DIDPA). Distribution ratios of most of metal ions for DIDPA were less than 0.05, except that those of Mo, Zr and Fe were higher than 7. Ferric ion could not be back-extracted with 4 M HNO3, but with 0.5 M (COOH)2. In the extractiion with DIDPA, the third phase, which causes closing the settling banks or the flow paths in a mixer settler, was formed when the ferric ion concentration was over 0.02 M. This unfavorable phenomenon, however, was found to be suppressed by diluting the ferric ion concentration to lower than 0.01 M or by reducing ferric ion to ferrous ion. (author)

  6. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    Science.gov (United States)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  7. Carbon-allocation dynamics in reed canary grass as affected by soil type and fertilization rates in northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Shaojun Xiong (Unit of Biomass Technology and Chemistry, Swedish Univ. of Agricultural Sciences, Umeaa (Sweden)); Kaetterer, Thomas (Dept. of Soil and Environment, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    2010-01-15

    A field experiment was conducted in northern Sweden between 1995 and 1997, with the objectives (1) to quantify the dynamics of carbon accumulation in above- and below ground crop components of reed canary grass (RCG) during the second and third year after sowing and (2) to examine the effect of fertilization and soil type (mineral vs. organic) on C allocation. Across all treatments, carbon accumulation in below ground organs in the top 20 cm was on average 3 and 3.4 Mg C by the end of the second and third year, respectively, with roots and rhizomes accounting for up to 80%. Roots contributed most to below ground C mass during the second growing season but during the preceding winter, root biomass C decreased by 44-67%, and, thereafter, during the third growing season, the proportion of rhizome C increased. The dynamics of root biomass was considerably high, suggesting high root turnover rates. Rhizomes support re-growth during spring and rhizome biomass seems to increase with crop age. Thus, early harvesting before October may impact on the productivity during the following season. Among the factors studied, harvest date was the most influential and affected C allocation in all crop components considerably. Fertilization stimulated growth of shoots, rhizomes, and BSBs (below ground shoot bases) but not that of roots. However, root biomass was higher in the organic than in the mineral soil. In this study, we considered only plant components above 20 cm depth. More detailed studies are needed to calculate more complete soil C balances. However, high below ground biomass production and root turnover indicate a high C input to the soil, which may result in positive soil C balances. Therefore, RCG cropping could have considerable carbon-sequestration potential

  8. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  9. The role of initial affective impressions in responses to educational communications: the case of carbon capture and sequestration (CCS).

    Science.gov (United States)

    Bruine de Bruin, Wändi; Wong-Parodi, Gabrielle

    2014-06-01

    Emerging technologies promise potential benefits at a potential cost. Developers of educational communications aim to improve people's understanding and to facilitate public debate. However, even relatively uninformed recipients may have initial feelings that are difficult to change. We report that people's initial affective impressions about carbon capture and sequestration (CCS), a low-carbon coal-based electricity-generation technology with which most people are unfamiliar, influences how they interpret previously validated education materials. As a result, even individuals who had originally self-identified as uninformed persisted in their initial feelings after reading the educational communication-though perseverance of feelings about CCS was stronger among recipients who had originally self-identified as relatively informed (Study 1). Moreover, uninformed recipients whose initial feelings were experimentally manipulated by relatively uninformative pro-CCS or anti-CCS arguments persisted in their manipulated feelings after reading the educational communication, due to evaluating the educational communication in line with their manipulated impressions (Study 2). Hence, our results suggest that educational communications will have more impact if they are disseminated before people form strong feelings about the topic under consideration, especially if these are based on little to no factual understanding. PMID:24708355

  10. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria.

    Science.gov (United States)

    Rios-Covian, David; Arboleya, Silvia; Hernandez-Barranco, Ana M; Alvarez-Buylla, Jorge R; Ruas-Madiedo, Patricia; Gueimonde, Miguel; de los Reyes-Gavilan, Clara G

    2013-12-01

    Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics. PMID:24077708

  11. Grassland management affects belowground carbon allocation in mountain grasslands and its resistance and resilience to drought

    Science.gov (United States)

    Karlowsky, Stefan; Augusti, Angela; Ingrisch, Johannes; Hasibeder, Roland; Bahn, Michael; Gleixner, Gerd

    2015-04-01

    Future climate scenarios do not only forecast increased extreme events during summer, but also more frequent drought events in the early season. In mountain grasslands, different land uses may contribute to the response of the ecosystem to climate changes, like drought in May and June. In this study, we examined the drought response of two differently managed grasslands, 1) a more intensive used meadow and 2) a less intensive used abandoned area. Our aim was to highlight differences in both resistance and resilience of ecosystem functioning, based on carbon (C) belowground allocation as a key function in the plant-rhizosphere continuum. Therefore, we used an isotopic approach and in particular, we used 13C pulse labelling to track the fate of newly assimilated C from leaves, to roots and to soil, up to different microbial communities. We performed two 13C pulse labellings, the first during the acute phase of drought, when the water status of soil was drastically decreased compared to the control; and the second during the recovery phase, when the soil water status was restored to control level. We followed the kinetics of 13C incorporation in above- and below-ground bulk material as well as non-structural sugars, in general soil microbial biomass, in different soil microbial communities and in CO2 respired from roots, up to 5 days from each labelling. Preliminary results from the 13C analyses of bulk phytomass material and soil microbial biomass indicate, as expected, different kinetics of aboveground 13C incorporation and its belowground allocation. During the acute phase of drought, 13C incorporation shows a decrease compared to the control for both land uses, with generally higher reductions in meadow treatments. Root 13C tracer dynamics follow the leaf 13C enrichment with a delay. High label amounts are found in leaves directly after labelling, whereas in roots high 13C incorporation is found first after 24 hours, accompanied by a fast decrease of 13C label in

  12. Enhancement of Heat-Affected Zone Toughness of a Low Carbon Steel by TiN Particle

    Science.gov (United States)

    Zhang, Yu; Li, Xiaobao; Ma, Han

    2015-11-01

    Enhancement of heat-affected zone toughness of a weight percentage of 0.014 pct Ti-bearing low carbon steel by TiN particle was investigated. An increase in nitrogen weight percentage from 0.0031 to 0.0083 pct results in increasing of number density of TiN precipitates from 4 × 103 to 3 × 105/mm2, and reduces prior austenite grain size from 850 to 350 μm with a soaking of 1673 K (1400 °C) for 2000 seconds. Effective refinement of austenite grain prohibits formation of ferrite side plate and/or upper bainite, and densely distributed TiN particles promote intra-granular ferrite formation, which is accompanied by an increase of 40 K to 60 K (40 °C to 60 °C) in austenite decomposition temperature during continuous cooling process. The changes in transformed products improved impact toughness of heat-affected zone efficiently, ex., increase absorbed energy of less than 42 J to more than 320 J with a simulated t 8/5 of 550 seconds.

  13. Enhancement of Heat-Affected Zone Toughness of a Low Carbon Steel by TiN Particle

    Science.gov (United States)

    Zhang, Yu; Li, Xiaobao; Ma, Han

    2016-08-01

    Enhancement of heat-affected zone toughness of a weight percentage of 0.014 pct Ti-bearing low carbon steel by TiN particle was investigated. An increase in nitrogen weight percentage from 0.0031 to 0.0083 pct results in increasing of number density of TiN precipitates from 4 × 103 to 3 × 105/mm2, and reduces prior austenite grain size from 850 to 350 μm with a soaking of 1673 K (1400 °C) for 2000 seconds. Effective refinement of austenite grain prohibits formation of ferrite side plate and/or upper bainite, and densely distributed TiN particles promote intra-granular ferrite formation, which is accompanied by an increase of 40 K to 60 K (40 °C to 60 °C) in austenite decomposition temperature during continuous cooling process. The changes in transformed products improved impact toughness of heat-affected zone efficiently, ex., increase absorbed energy of less than 42 J to more than 320 J with a simulated t 8/5 of 550 seconds.

  14. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    Science.gov (United States)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  15. India and Pakistan: Partition Lessons

    DEFF Research Database (Denmark)

    Kaur, Ravinder

    2007-01-01

    The violent territorial rupture of 1947 and its legacy reveal partition to be conceptually flawed and historically ill-grounded as a solution to political antagonism, says Ravinder Kaur.......The violent territorial rupture of 1947 and its legacy reveal partition to be conceptually flawed and historically ill-grounded as a solution to political antagonism, says Ravinder Kaur....

  16. Belief propagation for graph partitioning

    International Nuclear Information System (INIS)

    We study the belief-propagation algorithm for the graph bi-partitioning problem, i.e. the ground state of the ferromagnetic Ising model at a fixed magnetization. Application of a message passing scheme to a model with a fixed global parameter is not banal and we show that the magnetization can in fact be fixed in a local way within the belief-propagation equations. Our method provides the full phase diagram of the bi-partitioning problem on random graphs, as well as an efficient heuristic solver that we anticipate to be useful in a wide range of application of the partitioning problem.

  17. Present status of partitioning developments

    International Nuclear Information System (INIS)

    Evolution and development of the concept of partitioning of high-level liquid wastes (HLLW) in nuclear fuel reprocessing are reviewed historically from the early phase of separating useful radioisotopes from HLLW to the recent phase of eliminating hazardous nuclides such as transuranium elements for safe waste disposal. Since the criteria in determining the nuclides for elimination and the respective decontamination factors are important in the strategy of partitioning, current views on the criteria are summarized. As elimination of the transuranium is most significant in the partitioning, various methods available of separating them from fission products are evaluated. (auth.)

  18. Square Partitions and Catalan Numbers

    OpenAIRE

    Bennett, Matthew; Chari, Vyjayanthi; Dolbin, R. J.; Manning, Nathan

    2009-01-01

    For each integer $k\\ge 1$, we define an algorithm which associates to a partition whose maximal value is at most $k$ a certain subset of all partitions. In the case when we begin with a partition $\\lambda$ which is square, i.e $\\lambda=\\lambda_1\\ge...\\ge\\lambda_k>0$, and $\\lambda_1=k,\\lambda_k=1$, then applying the algorithm $\\ell$ times gives rise to a set whose cardinality is either the Catalan number $c_{\\ell-k+1}$ (the self dual case) or twice the Catalan number. The algorithm defines a t...

  19. Development of partitioning method

    International Nuclear Information System (INIS)

    The present paper describes the examination of the possibility to improve denitration and extraction processes by adding oxalic acid in the partitioning process which has been developed for the purpose of separating high-level liquid waste (HLW) into a few groups of elements. First, the effect of oxalic acid in the denitration of HLW was examined to reduce the amount of the precipitate formed during the denitration. As a result, it was found that it was possible to reduce the precipitation of molybdenum, zirconium and tellurium. However, some elements precipitated at any concentration of oxalic acid. The addition of oxalic acid increased the amounts of precipitates of neodymium which was the representative of transuranic elements and strontium which was a troublesome element because of its heat generation. At the extraction process with DIDPA (diisodecyl phosphoric acid), oxalic acid was expected to prevent the third phase formation caused by iron, by making a complex with iron. However, the result showed that oxalic acid did not suppress the extraction of iron. The addition of oxalic acid was no effects on preventing the third phase formation. The influence of the presence of iron on the oxalate precipitation of rare earths was also examined in the present study. (author)

  20. Partitioning ecosystems for sustainability.

    Science.gov (United States)

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems. PMID:27209800

  1. Incentives for partitioning, revisited

    International Nuclear Information System (INIS)

    The incentives for separating and eliminating various elements from radioactive waste prior to final geologic disposal were investigated. Exposure pathways to humans were defined, and potential radiation doses to an individual living within the region of influence of the underground storage site were calculated. The assumed radionuclide source was 1/5 of the accumulated high-level waste from the US nuclear power economy through the year 2000. The repository containing the waste was assumed to be located in a reference salt site geology. The study required numerous assumptions concerning the transport of radioactivity from the geologic storage site to man. The assumptions used maximized the estimated potential radiation doses, particularly in the case of the intrusion water well scenario, where hydrologic flow field dispersion effects were ignored. Thus, incentives for removing elements from the waste tended to be maximized. Incentives were also maximized by assuming that elements removed from the waste could be eliminated from the earth without risk. The results of the study indicate that for reasonable disposal conditions, incentives for partitioning any elements from the waste in order to minimize the risk to humans are marginal at best

  2. Affecting the morphology of silver deposition on carbon nanotube surface: From nanoparticles to dendritic (tree-like) nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Forati-Nezhad, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Mir Mohamad Sadeghi, Gity, E-mail: gsadeghi@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Yaghmaie, Frank [Northern California Nanotechnology Center, University of California, Davis, CA 95616 (United States); Alimohammadi, Farbod [Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-01-01

    Chemical reduction was used to synthesize silver crystals on the surface of multiwall carbon nanotubes (MWCNTs) in the presence of acetone, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone, and isopropyl alcohol as solvent. DMF and sodium dodecyl sulfate were used as a reducing and a stabilizing agent, respectively. The structure and nature of hybrid MWCNT/silver were characterized by Raman spectroscopy, FTIR spectroscopy, transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). The presence of silver crystals on the nanotubes was confirmed by XRD. The results show the formation of silver crystals on the MWCNT surface and indicate that the morphology of silver crystals can be control by changing the solvent. The type of solvent is an effective parameter that affects the particle size and morphological transition from nanoparticles to silver trees. - Highlights: • The silver crystals are grown on the CNT surface by chemical reduction method. • The morphology of silver crystals is controlled by changing the solvent. • Silver nanoparticles and dendritic nanostructures on CNT surface are achieved. • Any change in structure and surface defects by synthesis condition is investigated.

  3. Affecting the morphology of silver deposition on carbon nanotube surface: From nanoparticles to dendritic (tree-like) nanostructures

    International Nuclear Information System (INIS)

    Chemical reduction was used to synthesize silver crystals on the surface of multiwall carbon nanotubes (MWCNTs) in the presence of acetone, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone, and isopropyl alcohol as solvent. DMF and sodium dodecyl sulfate were used as a reducing and a stabilizing agent, respectively. The structure and nature of hybrid MWCNT/silver were characterized by Raman spectroscopy, FTIR spectroscopy, transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). The presence of silver crystals on the nanotubes was confirmed by XRD. The results show the formation of silver crystals on the MWCNT surface and indicate that the morphology of silver crystals can be control by changing the solvent. The type of solvent is an effective parameter that affects the particle size and morphological transition from nanoparticles to silver trees. - Highlights: • The silver crystals are grown on the CNT surface by chemical reduction method. • The morphology of silver crystals is controlled by changing the solvent. • Silver nanoparticles and dendritic nanostructures on CNT surface are achieved. • Any change in structure and surface defects by synthesis condition is investigated

  4. Biomass partitioning and its relationship with the environmental factors at the alpine steppe in Northern Tibet.

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    Full Text Available Alpine steppe is considered to be the largest grassland type on the Tibetan Plateau. This grassland contributes to the global carbon cycle and is sensitive to climate changes. The allocation of biomass in an ecosystem affects plant growth and the overall functioning of the ecosystem. However, the mechanism by which plant biomass is allocated on the alpine steppe remains unclear. In this study, biomass allocation and its relationship to environmental factors on the alpine grassland were studied by a meta-analysis of 32 field sites across the alpine steppe of the northern Tibetan Plateau. We found that there is less above-ground biomass (M A and below-ground biomass (M B in the alpine steppe than there is in alpine meadows and temperate grasslands. By contrast, the root-to-shoot ratio (R:S in the alpine steppe is higher than it is in alpine meadows and temperate grasslands. Although temperature maintained the biomass in the alpine steppe, precipitation was found to considerably influence M A , M B , and R:S, as shown by ordination space partitioning. After standardized major axis (SMA analysis, we found that allocation of biomass on the alpine steppe is supported by the allometric biomass partitioning hypothesis rather than the isometric allocation hypothesis. Based on these results, we believe that M A and M B will decrease as a result of the increased aridity expected to occur in the future, which will reduce the landscape's capacity for carbon storage.

  5. Study of the Factors Affecting the Abundance of Organic Matter in Jurassic Carbonate Rocks in Qiangtang Basin, Tibet

    Institute of Scientific and Technical Information of China (English)

    文志刚; 胡明毅; 龚文平; 肖传桃

    2004-01-01

    Field and laboratory analyses of carbonate rock samples from the Qiangtang Basin,Tibet, indicate that carbonate source rocks are mainly developed in the Middle Jurassic Xiali Formation and Upper Jurassic Suowa Formation. Comprehensive studies showed that the Suowa Formation carbonate source rocks have a favorable hydrocarbon-generating potential. The abundance of organic matter in the carbonate rocks is controlled mainly by sedimentary environment and inorganic compounds in the rocks, which is higher in the restricted platform facies than in the open platform facies. Organic carbon contents decrease with increasing CaO contents in the source rocks.

  6. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    Science.gov (United States)

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  7. Flux Partitioning by Isotopic Eddy Covariance

    Science.gov (United States)

    Wehr, R.; Munger, J. W.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wofsy, S. C.; Saleska, S. R.

    2011-12-01

    Net ecosystem-atmosphere exchange of CO2 is routinely measured by eddy covariance at sites around the world, but studies of ecosystem processes are more interested in the gross photosynthetic and respiratory fluxes that comprise the net flux. The standard method of partitioning the net flux into these components has been to extrapolate nighttime respiration into daytime based on a relationship between nighttime respiration, temperature, and sometimes moisture. However, such relationships generally account for only a small portion of the variation in nighttime respiration, and the assumption that they can predict respiration throughout the day is dubious. A promising alternate method, known as isotopic flux partitioning, works by identifying the stable isotopic signatures of photosynthesis and respiration in the CO2 flux. We have used this method to partition the net flux at Harvard Forest, MA, based on eddy covariance measurements of the net 12CO2 and 13CO2 fluxes (as well as measurements of the sensible and latent heat fluxes and other meteorological variables). The CO2 isotopologues were measured at 4 Hz by an Aerodyne quantum cascade laser spectrometer with a δ13C precision of 0.4 % in 0.25 sec and 0.02 % in 100 sec. In the absence of such high-frequency, high-precision isotopic measurements, past attempts at isotopic flux partitioning have combined isotopic flask measurements with high-frequency (total) CO2 measurements to estimate the isoflux (the EC/flask approach). Others have used a conditional flask sampling approach called hyperbolic relaxed eddy accumulation (HREA). We 'sampled' our data according to each of these approaches, for comparison, and found disagreement in the calculated fluxes of ~10% for the EC/flask approach, and ~30% for HREA, at midday. To our knowledge, this is the first example of flux partitioning by isotopic eddy covariance. Wider use of this method, enabled by a new generation of laser spectrometers, promises to open a new window

  8. Bootstrap clustering for graph partitioning

    OpenAIRE

    Gambette, Philippe; Guénoche, Alain

    2011-01-01

    Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this pr...

  9. Superfluid Kubo Formulas from Partition Function

    CERN Document Server

    Chapman, Shira; Oz, Yaron

    2014-01-01

    Linear response theory relates hydrodynamic transport coefficients to equilibrium retarded correlation functions of the stress-energy tensor and global symmetry currents in terms of Kubo formulas. Some of these transport coefficients are non-dissipative and affect the fluid dynamics at equilibrium. We present an algebraic framework for deriving Kubo formulas for such thermal transport coefficients by using the equilibrium partition function. We use the framework to derive Kubo formulas for all such transport coefficients of superfluids, as well as to rederive Kubo formulas for various normal fluid systems.

  10. Sediment-water interaction in a water reservoir affected by acid mine drainage : experimental and modeling

    OpenAIRE

    Torres Sánchez, Ester

    2013-01-01

    The discharge of acid mine drainage into a water reservoir may seriously affect the water quality. In this setting, sediment is commonly thought to act as a sink for pollutants. However, redox oscillations in the bottom water promoted by stratification-turnover events may significantly alter the metal cycling. A new sequential extraction procedure has been developed to study the metal partitioning in the sediment. The new scheme for iron, sulfur and organic carbon rich sediments was evaluated...

  11. Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study.

    Science.gov (United States)

    Kooch, Yahya; Hosseini, Seyed Mohsen; Zaccone, Claudio; Jalilvand, Hamid; Hojjati, Seyed Mohammad

    2012-09-01

    Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus

  12. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter

    2014-12-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  13. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    C S Srivatsan; M V N Murthy; R K Bhaduri

    2006-03-01

    In a recent paper (Tran et al, Ann. Phys. 311, 204 (2004)), some asymptotic number theoretical results on the partitioning of an integer were derived exploiting its connection to the quantum density of states of a many-particle system. We generalise these results to obtain an asymptotic formula for the restricted or coloured partitions $p_{k}^{s} (n)$, which is the number of partitions of an integer into the summand of th powers of integers such that each power of a given integer may occur utmost times. While the method is not rigorous, it reproduces the well-known asymptotic results for = 1 apart from yielding more general results for arbitrary values of .

  14. Symbiodinium Community Composition in Scleractinian Corals Is Not Affected by Life-Long Exposure to Elevated Carbon Dioxide

    Science.gov (United States)

    Noonan, Sam H. C.; Fabricius, Katharina E.; Humphrey, Craig

    2013-01-01

    Ocean acidification (OA) is expected to negatively affect coral reefs, however little is known about how OA will change the coral-algal symbiosis on which reefs ultimately depend. This study investigated whether there would be differences in coral Symbiodinium types in response to OA, potentially improving coral performance. We used denaturing gradient gel electrophoresis (DGGE) of the internal transcribed spacer 2 (ITS2) region of ribosomal DNA to investigate the dominant types of Symbiodinium associating with six species of scleractinian coral that were exposed to elevated partial pressures of carbon dioxide (pCO2) in situ from settlement and throughout their lives. The study was conducted at three naturally occurring volcanic CO2 seeps (pCO2 ∼500 to 900 ppm, pHTotal 7.8 – 7.9) and adjacent control areas (pCO2 ∼390 ppm, pHTotal ∼8.0 – 8.05) in Papua New Guinea. The Symbiodinium associated with corals living in an extreme seep site (pCO2 >1000 ppm) were also examined. Ten clade C types and three clade D types dominated the 443 coral samples. Symbiodinium types strongly contrasted between coral species, however, no differences were observed due to CO2 exposure. Within five species, 85 – 95% of samples exhibited the same Symbiodinium type across all sites, with remaining rare types having no patterns attributable to CO2 exposure. The sixth species of coral displayed site specific differences in Symbiodinium types, unrelated to CO2 exposure. Symbiodinium types from the coral inhabiting the extreme CO2 seep site were found commonly throughout the moderate seeps and control areas. Our finding that symbiotic associations did not change in response to CO2 exposure suggest that, within the six coral hosts, none of the investigated 13 clade C and D Symbiodinium types had a selective advantage at high pCO2. Acclimatisation through changing symbiotic association therefore does not seem to be an option for Indo-Pacific corals to deal with future OA. PMID:23717522

  15. Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Swedin Linda

    2012-05-01

    Full Text Available Abstract Background Single-walled carbon nanotubes (SWCNT trigger pronounced inflammation and fibrosis in the lungs of mice following administration via pharyngeal aspiration or inhalation. Human exposure to SWCNT in an occupational setting may occur in conjunction with infections and this could yield enhanced or suppressed responses to the offending agent. Here, we studied whether the sequential exposure to SWCNT via pharyngeal aspiration and infection of mice with the ubiquitous intracellular parasite Toxoplasma gondii would impact on the immune response of the host against the parasite. Methods C57BL/6 mice were pre-exposed by pharyngeal administration of SWCNT (80 + 80 μg/mouse for two consecutive days followed by intravenous injection with either 1x103 or 1x104 green fluorescence protein and luciferase-expressing T. gondii tachyzoites. The dissemination of T. gondii was monitored by in vivo bioluminescence imaging in real time for 7 days and by plaque formation. The inflammatory response was analysed in bronchoalveolar lavage (BAL fluid, and by assessment of morphological changes and immune responses in lung and spleen. Results There were no differences in parasite distribution between mice only inoculated with T. gondii or those mice pre-exposed for 2 days to SWCNT before parasite inoculum. Lung and spleen histology and inflammation markers in BAL fluid reflected the effects of SWCNT exposure and T. gondii injection, respectively. We also noted that CD11c positive dendritic cells but not F4/80 positive macrophages retained SWCNT in the lungs 9 days after pharyngeal aspiration. However, co-localization of T. gondii with CD11c or F4/80 positive cells could not be observed in lungs or spleen. Pre-exposure to SWCNT did not affect the splenocyte response to T. gondii. Conclusions Taken together, our data indicate that pre-exposure to SWCNT does not enhance or suppress the early immune response to T. gondii in mice.

  16. Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Sam H C Noonan

    Full Text Available Ocean acidification (OA is expected to negatively affect coral reefs, however little is known about how OA will change the coral-algal symbiosis on which reefs ultimately depend. This study investigated whether there would be differences in coral Symbiodinium types in response to OA, potentially improving coral performance. We used denaturing gradient gel electrophoresis (DGGE of the internal transcribed spacer 2 (ITS2 region of ribosomal DNA to investigate the dominant types of Symbiodinium associating with six species of scleractinian coral that were exposed to elevated partial pressures of carbon dioxide (pCO2 in situ from settlement and throughout their lives. The study was conducted at three naturally occurring volcanic CO2 seeps (pCO2 ∼500 to 900 ppm, pHTotal 7.8 - 7.9 and adjacent control areas (pCO2 ∼390 ppm, pHTotal ∼8.0 - 8.05 in Papua New Guinea. The Symbiodinium associated with corals living in an extreme seep site (pCO2 >1000 ppm were also examined. Ten clade C types and three clade D types dominated the 443 coral samples. Symbiodinium types strongly contrasted between coral species, however, no differences were observed due to CO2 exposure. Within five species, 85 - 95% of samples exhibited the same Symbiodinium type across all sites, with remaining rare types having no patterns attributable to CO2 exposure. The sixth species of coral displayed site specific differences in Symbiodinium types, unrelated to CO2 exposure. Symbiodinium types from the coral inhabiting the extreme CO2 seep site were found commonly throughout the moderate seeps and control areas. Our finding that symbiotic associations did not change in response to CO2 exposure suggest that, within the six coral hosts, none of the investigated 13 clade C and D Symbiodinium types had a selective advantage at high pCO2. Acclimatisation through changing symbiotic association therefore does not seem to be an option for Indo-Pacific corals to deal with future OA.

  17. Partial domain wall partition functions

    OpenAIRE

    Foda, O.; Wheeler, M.

    2012-01-01

    We consider six-vertex model configurations on an n-by-N lattice, n =< N, that satisfy a variation on domain wall boundary conditions that we define and call "partial domain wall boundary conditions". We obtain two expressions for the corresponding "partial domain wall partition function", as an (N-by-N)-determinant and as an (n-by-n)-determinant. The latter was first obtained by I Kostov. We show that the two determinants are equal, as expected from the fact that they are partition functions...

  18. General partitioning on random graphs

    OpenAIRE

    Subramanian, CR; Madhavan, CEV

    2002-01-01

    Consider the general partitioning (GP) problem defined as follows: Partition the vertices of a graph into k parts W-1,..., W-k satisfying a polynomial time verifiable property. In particular, consider properties (introduced by T. Feder, P. Hell, S. Klein, and R. Motwani, in "Proceedings of the Annual ACM Symposium on Theory of Computing (STOC '99), 1999" and) specified by a pattern of requirements as to which W-i forms a sparse or dense subgraph and which pairs W-i,W-j form a sparse or dense ...

  19. Do soil organic carbon levels affect potential yields and nitrogen use efficiency? An analysis of winter wheat and spring barley field trials

    DEFF Research Database (Denmark)

    Oelofse, Myles; Markussen, Bo; Knudsen, Leif;

    2015-01-01

    Soil organic carbon (SOC) is broadly recognised as an important parameter affecting soil quality, and can therefore contribute to improving a number of soil properties that influence crop yield. Previous research generally indicates that soil organic carbon has positive effects on crop yields, but...... in many studies it is difficult to separate the effect of nutrients from the effect of SOC in itself. The aim of this study was to analyze whether the SOC content, in itself, has a significant effect on potential yields of commonly grown cereals across a wider range of soil types in Denmark. The...... yield, the yield with no fertiliser N application and the N use efficiency would be positively affected by SOC level. A statistical model was developed to explore relationships between SOC and potential yield, yields at zero N application and N use efficiency (NUE). The model included a variety of...

  20. Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses

    OpenAIRE

    Landry, Jean-Sébastien; Matthews, H. Damon

    2016-01-01

    Non-deforestation fire – i.e., fire that is typically followed by the recovery of natural vegetation – is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-defor...

  1. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    OpenAIRE

    Kang, P.-G.; M. J. Mitchell; McHale, P J; Driscoll, C T; M. R. McHale; Inamdar, S.; Park, J.-H.

    2015-01-01

    Lakes nested in forested watersheds play important roles in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN) in the Arbutus Lake Watershed to evaluate how a lake nested in a forested watershed affects the dynamics of DOC and DON in the Adirondack Mountains of New York State...

  2. Rectilinear partitioning of irregular data parallel computations

    Science.gov (United States)

    Nicol, David M.

    1991-01-01

    New mapping algorithms for domain oriented data-parallel computations, where the workload is distributed irregularly throughout the domain, but exhibits localized communication patterns are described. Researchers consider the problem of partitioning the domain for parallel processing in such a way that the workload on the most heavily loaded processor is minimized, subject to the constraint that the partition be perfectly rectilinear. Rectilinear partitions are useful on architectures that have a fast local mesh network. Discussed here is an improved algorithm for finding the optimal partitioning in one dimension, new algorithms for partitioning in two dimensions, and optimal partitioning in three dimensions. The application of these algorithms to real problems are discussed.

  3. Geological factors affecting the chemical characteristics of the thermal waters of the carbonate karstified aquifers of Northern Vietnam

    OpenAIRE

    Drogue, C.; Cat, N. N.; Dazy, J.

    2000-01-01

    In northern Vietnam, exposed carbonate rock formations cover an area of more than 50,000 km2 .Their accumulated thickness from the Cambrian to the Triassic is in some places as much as 3000 m. Numerous thermal waters (springs and wells) occur in these strongly karstified carbonate massifs. This is the result of significant ancient and present orogenic activity, as the region demonstrates by its strong seismic activity. These karstic formations are water-bearing and strongly recharge...

  4. Geological factors affecting the chemical characteristics of the thermal waters of the carbonate karstified aquifers of Northern Vietnam

    OpenAIRE

    Drogue, C.; Cat, N. N.; Dazy, J.

    2002-01-01

    In northern Vietnam, exposed carbonate rock formations cover an area of more than 50,000 km2 .Their accumulated thickness from the Cambrian to the Triassic is in some places as much as 3000 m. Numerous thermal waters (springs and wells) occur in these strongly karstified carbonate massifs. This is the result of significant ancient and present orogenic activity, as the region demonstrates by its strong seismic activity. These karstic ...

  5. Photosynthate partitioning in alfalfa before harvest and during regrowth

    International Nuclear Information System (INIS)

    During the harvest regrowth cycle of alfalfa (Medicago sativa L.) plants, factors such as source to sink distance, sink size, and inter-organ competition continually change. However, consequent changes in the pattern of photosynthate partitioning from leaves to other organs are poorly understood. The authors objective was to examine photosynthate partitioning from upper and lower alfalfa leaves at intervals before herbage harvest and during regrowth after harvest. The uppermost or lowest fully expanded leaf on the longest or dominant stem was labeled with 14CO2. After a 24-h translocation period, the plants were divided into various organs to determine distribution of the radiocarbon. At that time, the upper leaf preferentially partitioned photosynthate to the shoot apex, unexpanded leaves and auxillary shoots of the dominant shoot, whereas the lower leaf preferentially distributed photosynthate to the crown shoots, crown, root, and nodules. Expressions of 14C partitioning were affected differently by organ mass. While the smallest organs such as nodules and unexpanded leaves always ranked higher for 14C based on relative specific activity, the largest organs such as roots and crown shoots accumulated the largest percentage of total plant recovered radioactivity. The results illustrate the importance of growth stage and leaf position in photosynthate partitioning in alfalfa and the dominance of herbage meristems for current photosynthate during regrowth

  6. Application of Quenching and Partitioning Processing to Medium Mn Steel

    Science.gov (United States)

    Seo, Eun Jung; Cho, Lawrence; De Cooman, Bruno C.

    2015-01-01

    The present work analyzes the application of quenching and partitioning processing to medium Mn steel to obtain a new type of ultra-high-strength multiphase medium Mn steel. The selection of the quench temperature makes it possible to vary the ultimate tensile strength within a range of 500 MPa. The processing leads to low-carbon lath martensite matrix with a controlled volume fraction of retained austenite.

  7. Resource partitioning among top predators in a Miocene food web

    OpenAIRE

    Domingo, M. Soledad; Domingo, Laura; Badgley, Catherine; Sanisidro, Oscar; Morales, Jorge

    2013-01-01

    The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland e...

  8. Photosynthate Partitioning and Fermentation in Hot Spring Microbial Mat Communities

    OpenAIRE

    Nold, S C; Ward, D M

    1996-01-01

    Patterns of (sup14)CO(inf2) incorporation into molecular components of the thermophilic cyanobacterial mat communities inhabiting hot springs located in Yellowstone National Park and Synechococcus sp. strain C1 were investigated. Exponentially growing Synechococcus sp. strain C1 partitioned the majority of incorporated (sup14)CO(inf2) into protein, low-molecular-weight metabolites, and lipid fractions (45, 22, and 18% of total incorporated carbon, respectively). In contrast, mat cores from va...

  9. The Effect of pH Difference Between Two Phases on the Partition of Lysozyme in Aqueous Two-Phase System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases, and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.

  10. Inversion of hematocrit partition at microfluidic bifurcations

    CERN Document Server

    Shen, Zaiyi; Kaoui, Badr; Polack, Benoît; Harting, Jens; Misbah, Chaouqi; Podgorski, Thomas

    2016-01-01

    Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer simulations and in vitro experiments reveal that the hematocrit ($\\phi_0$) partition depends strongly on RBC deformability, as long as $\\phi_0 <20$% (within the normal range in microcirculation), and can even lead to complete deprivation of RBCs in a child branch. Furthermore, we discover a deviation from the Zweifach-Fung effect which states that the child branch with lower flow rate recruits less RBCs than the higher flow rate child branch. At small enough $\\phi_0$, we get the inverse scenario, and the hematocrit in the lower flow rate child branch is even higher than in the parent vessel. We explain this result by an intricate up-stream RBC organization and we highlight the extreme dependence of RBC transport on geometrical and cell mechanical p...

  11. Natural convection heat transfer in partitioned enclosures

    International Nuclear Information System (INIS)

    Natural convection heat transfer within rectangular enclosure provided with a partition extended from the vertical heated wall was investigated experimentally. The experiments were carried out with water, for Rayleigh numbers in the range, 2.0 x 10/sup 7/ < Raw < 3.0 x 10/sup 8/, and an aspect ratio H/W = 2. The effect of partition on the fluid flow and temperature fields was investigated by dye-injection flow visualization and by thermocouple probes, respectively. The effect of the partition on the heat transfer across the enclosure was also studied. The slant partition, especially, the downward oriented partition reduces the convective heat transfer in comparison with that of horizontal partition. And only the horizontally projected length of partition, independently of the angle of inclination and the vertically projected length of the slant partition, effects on the Nusselt number Nuw distinctly

  12. On free fermions and plane partitions

    OpenAIRE

    Foda, O.; Wheeler, M.; Zuparic, M.

    2008-01-01

    We use free fermion methods to re-derive a result of Okounkov and Reshetikhin relating charged fermions to random plane partitions, and to extend it to relate neutral fermions to strict plane partitions.

  13. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jun, E-mail: hujunral@163.com [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Du, Lin-Xiu [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Wang, Jian-Jun [Institute of Materials Research, School of Material and Metallurgy, Northeastern University, Shenyang 110819 (China); Xie, Hui; Gao, Cai-Ru [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States)

    2014-01-10

    Motivated by the small lattice mismatch between ferrite and vanadium nitride (VN), we describe here the welding thermal cycle simulation that provides high toughness in the ICRCG HAZ of low carbon V–N steel. This unique behavior is attributed to the formation of ultra-fine grained ferrite along prior austenite grain boundaries generated by the first pass welding thermal cycle with high misorientation boundaries, where V(C, N) precipitates provide potential nucleation sites for ferrite, leading to extraordinary refinement of martensite/austenite (M/A) constituent. Nitrogen stimulates the precipitation behavior of V(C, N). The nucleation of high density of V(C, N) precipitates consumes carbon-content in the austenite, leading to decrease in the carbon-content in the M/A constituent, with consequent decrease in hardness. The increase in toughness is explained in terms of Griffith's crack propagation theory.

  14. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel

    International Nuclear Information System (INIS)

    Motivated by the small lattice mismatch between ferrite and vanadium nitride (VN), we describe here the welding thermal cycle simulation that provides high toughness in the ICRCG HAZ of low carbon V–N steel. This unique behavior is attributed to the formation of ultra-fine grained ferrite along prior austenite grain boundaries generated by the first pass welding thermal cycle with high misorientation boundaries, where V(C, N) precipitates provide potential nucleation sites for ferrite, leading to extraordinary refinement of martensite/austenite (M/A) constituent. Nitrogen stimulates the precipitation behavior of V(C, N). The nucleation of high density of V(C, N) precipitates consumes carbon-content in the austenite, leading to decrease in the carbon-content in the M/A constituent, with consequent decrease in hardness. The increase in toughness is explained in terms of Griffith's crack propagation theory

  15. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    OpenAIRE

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2012-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-contro...

  16. On Packing Densities of Set Partitions

    OpenAIRE

    Goyt, Adam M.; Pudwell, Lara K.

    2013-01-01

    We study packing densities for set partitions, which is a generalization of packing words. We use results from the literature about packing densities for permutations and words to provide packing densities for set partitions. These results give us most of the packing densities for partitions of the set $\\{1,2,3\\}$. In the final section we determine the packing density of the set partition $\\{\\{1,3\\},\\{2\\}\\}$.

  17. Effects of Sequence Partitioning on Compression Rate

    OpenAIRE

    Alagoz, B. Baykant

    2010-01-01

    In the paper, a theoretical work is done for investigating effects of splitting data sequence into packs of data set. We proved that a partitioning of data sequence is possible to find such that the entropy rate at each subsequence is lower than entropy rate of the source. Effects of sequence partitioning on overall compression rate are argued on the bases of partitioning statistics, and then, an optimization problem for an optimal partition is defined to improve overall compression rate of a...

  18. Solving set partitioning problems using lagrangian relaxation

    NARCIS (Netherlands)

    van Krieken, M.G.C.

    2006-01-01

    This thesis focuses on the set partitioning problem. Given a collection of subsets of a certain root set and costs associated to these subsets, the set partitioning problem is the problem of finding a minimum cost partition of the root set. Many real-life problems, such as vehicle routing and crew s

  19. Modelling trace metal partitioning in forest floors of northern soils near metal smelters

    International Nuclear Information System (INIS)

    Trace metal (TM) mobility and toxicity varies with changing soil conditions. Geochemical models can account for the influence of soil characteristics on TM behaviour. We tested the effectiveness of the Stockholm humic model (SHM), and the NICA-Donnan model (NDM) to estimate partitioning coefficients (log Kd) in 26 forest floor horizons of podzolic soils enriched in trace metals from deposition by metal smelters. We wanted to know if a consistent approach could be applied to model metal partitioning in forest floors without optimizing each individual soil. When optimized, the SHM reproduced the partitioning of Cd, Cu and Zn but not Pb. It was necessary to revise the affinity constants for the NDM to simultaneously simulate the partitioning of the four metals. Revised affinity constants for the NDM model based on a fixed definition of soil organic carbon, i.e., a fixed ratio of fulvic and humic acids per unit carbon, reproduced metal partitioning more effectively in an independent data set of 16 soils than the use of generic affinity constants available for these models. From the perspective of the applicability of these models to risk assessment, this result suggests geochemical models using affinity constants that have been verified and/or modified against multiple soils from a region can provide good estimates of metal partitioning on a regional scale. - The solid-solution partitioning of trace metals in forest floors contaminated by smelter emissions can be modelled using a single set of model parameters for soil organic matter

  20. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    Science.gov (United States)

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. PMID:26905446

  1. Genetic Factors in Rhizobium Affecting the Symbiotic Carbon Costs of N2 Fixation and Host Plant Biomass Production

    DEFF Research Database (Denmark)

    Skøt, L.; Hirsch, P. R.; Witty, J. F.

    1986-01-01

    The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different...... the lowest carbon costs of N2 fixation (7.10–8.10 μmol C/μmol N2), but shoot dry weight of those plants was also smaller than that of plants nodulated by strains with the background of B151 or JI8400. Nodules formed by these two strain types had carbon costs of N2 fixation varying between 11.26 and 13.......95 μmol C/μmol N2. The effect of symbiotic plasmids on the carbon costs was relatively small. A time-course experiment demonstrated that nodules formed by a strain derived from JI6015 were delayed in the onset of nitrogenase activity and had a lower rate of activity compared to nodules induced by a strain...

  2. Niobium-containing quenching and partitioning processed ultrahigh strength martensite–austenite dual phase steels

    International Nuclear Information System (INIS)

    Given the strong recent interest in quenching and partitioning processed steels, we present here a study concerning niobium bearing steel with medium carbon content. The quenching and partitioning process leads to an extremely high product of tensile strength and percentage elongation approaching 38 GPa%. The contribution is a cumulative effect of martensite with tempered randomly-oriented laths, small fraction of lower bainite, and a high fraction of retained austenite

  3. Graph partitioning advance clustering technique

    CERN Document Server

    Madhulatha, T Soni

    2012-01-01

    Clustering is a common technique for statistical data analysis, Clustering is the process of grouping the data into classes or clusters so that objects within a cluster have high similarity in comparison to one another, but are very dissimilar to objects in other clusters. Dissimilarities are assessed based on the attribute values describing the objects. Often, distance measures are used. Clustering is an unsupervised learning technique, where interesting patterns and structures can be found directly from very large data sets with little or none of the background knowledge. This paper also considers the partitioning of m-dimensional lattice graphs using Fiedler's approach, which requires the determination of the eigenvector belonging to the second smallest Eigenvalue of the Laplacian with K-means partitioning algorithm.

  4. Ontology Partitioning: Clustering Based Approach

    Directory of Open Access Journals (Sweden)

    Soraya Setti Ahmed

    2015-05-01

    Full Text Available The semantic web goal is to share and integrate data across different domains and organizations. The knowledge representations of semantic data are made possible by ontology. As the usage of semantic web increases, construction of the semantic web ontologies is also increased. Moreover, due to the monolithic nature of the ontology various semantic web operations like query answering, data sharing, data matching, data reuse and data integration become more complicated as the size of ontology increases. Partitioning the ontology is the key solution to handle this scalability issue. In this work, we propose a revision and an enhancement of K-means clustering algorithm based on a new semantic similarity measure for partitioning given ontology into high quality modules. The results show that our approach produces meaningful clusters than the traditional algorithm of K-means.

  5. The partition of regional sea level variability

    Science.gov (United States)

    Forget, Gaël; Ponte, Rui M.

    2015-09-01

    The existing altimetric record offers an unprecedented view of sea level (ζ) variability on a global scale for more than 2 decades. Optimal inference from the data involves appropriate partition of signal and noise, in terms of relevant scales, physical processes and forcing mechanisms. Such partition is achieved here through fitting a general circulation model to altimeter and other datasets to produce a "best" estimate of ζ variability directly forced by the atmosphere-the signal of primary interest here. In this context noise comes primarily from instrument errors and meso-scale eddies, as expected, but spatial smoothing effectively reduces this noise. A separate constraint is thus formulated to measure the fit to monthly, large-scale altimetric variability that unlike the daily, pointwise constraint shows a high signal-to-noise ratio. The estimate is explored to gain insight into dynamics, forcing, and other factors controlling ζ variability. Contributions from thermo-steric, halo-steric and bottom pressure terms are all important depending on region, but slopes of steric spectra (red) and bottom pressure spectra (white) are nearly invariant with latitude. Much ζ variability can be represented by a seasonal cycle and linear trend, plus a few EOFs that can be associated with known modes of climate variability and/or with topographic controls. Both wind and buoyancy forcing are important. The response is primarily basin-bound in nature, but uneven patterns of propagation across basin boundaries are clearly present, with the Pacific being able to affect large portions of the Indian and Atlantic basins, but the Atlantic affecting mostly the Arctic.

  6. n-Level Hypergraph Partitioning

    OpenAIRE

    Henne, Vitali; Meyerhenke, Henning; Sanders, Peter; Schlag, Sebastian; Schulz, Christian

    2015-01-01

    We develop a multilevel algorithm for hypergraph partitioning that contracts the vertices one at a time and thus allows very high quality. This includes a rating function that avoids nonuniform vertex weights, an efficient "semi-dynamic" hypergraph data structure, a very fast coarsening algorithm, and two new local search algorithms. One is a $k$-way hypergraph adaptation of Fiduccia-Mattheyses local search and gives high quality at reasonable cost. The other is an adaptation of size-constrai...

  7. Twisted sectors from plane partitions

    CERN Document Server

    Datta, Shouvik; Li, Wei; Peng, Cheng

    2016-01-01

    Twisted sectors arise naturally in the bosonic higher spin CFTs at their free points, as well as in the associated symmetric orbifolds. We identify the coset representations of the twisted sector states using the description of W_\\infty representations in terms of plane partitions. We confirm these proposals by a microscopic null-vector analysis, and by matching the excitation spectrum of these representations with the orbifold prediction.

  8. Effect of varying the rate of partitioning of phenanthrene in nonaqueous-phase liquids on biodegradation in soil slurries

    OpenAIRE

    Ortega Calvo, J. J.; Birman, I.; M. Alexander

    1995-01-01

    A study was conducted to determine the influence of varying the rates of partitioning of phenanthrene from nonaqueous-phase liquids to water on its biodegradation. Partitioning rates from dibutyl phthalate and 2,2,4,4,6,8,8-heptamethylnonane were rapid in slurries of soil or aquifer solids that were shaken and were affected by the identity and volume of the non-aqueous-phase liquid. Concentrations of the surfactant Alfonic 810-60 that increased partitioning inhibited biodegradation. The rates...

  9. Redox driven metabolic tuning: Carbon source and aeration affect synthesis of poly(3-hydroxybutyrate) in Escherichia coli

    OpenAIRE

    Nikel, Pablo I.; de Almeida, Alejandra; Giordano, Andrea M.; Pettinari, M. Julia

    2010-01-01

    Growth and polymer synthesis were studied in a recombinant E. coli strain carrying phaBAC and phaP of Azotobacter sp. strain FA8 using different carbon sources and oxygen availability conditions. The results obtained with glucose or glycerol were completely different, demonstrating that the metabolic routes leading to the synthesis of the polymer when using glycerol do not respond to environmental conditions such as oxygen availability in the same way as they do when other substrates, such as...

  10. Geological factors affecting the chemical characteristics of the thermal waters of the carbonate karstified aquifers of Northern Vietnam

    Directory of Open Access Journals (Sweden)

    C. Drogue

    2000-01-01

    Full Text Available In northern Vietnam, exposed carbonate rock formations cover an area of more than 50,000 km2 .Their accumulated thickness from the Cambrian to the Triassic is in some places as much as 3000 m. Numerous thermal waters (springs and wells occur in these strongly karstified carbonate massifs. This is the result of significant ancient and present orogenic activity, as the region demonstrates by its strong seismic activity. These karstic formations are water-bearing and strongly recharged by rainfall of between 1600 mm and 2000 mm per year in 90% of the area concerned. In view of the average annual air temperatures (17°C-25°C according to the region, 23 sample springs or wells were chosen with water temperatures of between 29°C and 68°C. Hydrochemical characteristics of these thermal waters emerging in different carbonate-rock units were examined by chemical analyses of major ions. In this large region, thermal waters are divided into four hydrochemical types: the Na-Cl type resulting from the intrusion of sea water for distances of up to several kilometres inland and depths of 1000 m, the Ca-SO4 type, probably resulting from the leaching of deposits of metallic sulphides that are widely distributed in these carbonate-rock units, and finally the Ca-HCO3 and Mg-HCO3 types which are chemically similar to fresh karstic waters in limestones and dolostones. The occurrence of these thermal groundwaters as well as their chemical characteristics seem to indicate the existence of large-scale deepseated groundwater flow systems in the karstic aquifers. Keywords: Vietnam; thermal waters; karst; hydrochemistry

  11. Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification

    Czech Academy of Sciences Publication Activity Database

    Hruška, Jakub; Krám, Pavel; Moldan, Filip; Oulehle, Filip; Evans, C. D.; Wright, R. F.; Cosby, B. J.; Kopáček, Jiří

    2014-01-01

    Roč. 225, č. 7 (2014), s. 2015. ISSN 0049-6979 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 ; RVO:60077344 Keywords : acidification * surface waters * soils * dissolved organic carbon * magic model * preindustrial water chemistry Subject RIV: EH - Ecology, Behaviour; DA - Hydrology ; Limnology (BC-A) Impact factor: 1.554, year: 2014

  12. FACTORS AFFECTING THE REMOVAL OF A BASIC AND AN AZO DYE FROM ARTIFICIAL SOLUTIONS BY ADSORPTION USING ACTIVATED CARBON

    OpenAIRE

    Albroomi, H I; ElSayed, Mohamed; Baraka, A.; Abdelmaged, M A

    2014-01-01

    Decolourisation of wastewater, particularly from textile industries, is one of the major environmental concerns these days. Current methods for removing dyes from wastewater are costly and cannot effectively be used to treat wide range of such wastewater. This work describes the use of commercial available granular activated carbon (GAC) as an efficient adsorbent material for dyes removal. Aqueous solutions of various basic dye Methylene Blue (MB) and azo-dye Tartrazine with concentrations 5-...

  13. On higher spin partition functions

    CERN Document Server

    Beccaria, M

    2015-01-01

    We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the "physical" ones or, equivalently, the (regularized) total number of degrees of freedom vanishes. This reflects large underlying gauge symmetry and suggests analogy with supersymmetric or topological theory. The Z=1 property extends also to the AdS background, i.e. the 1-loop vacuum partition function of Vasiliev theory is equal to 1 (assuming a particular regularization of the sum over spins); this was noticed earlier as a consistency requirement for the vectorial AdS/CFT duality. We find that Z=1 is also true in the conformal higher spin theory (with higher-derivative d^{2s} kinetic terms) expanded near flat or conformally flat S^4 background. We also consider the partition function of free conformal theory of symmetric traceless rank s tensor field which has 2-derivative kinetic term but only scalar gauge invariance in flat space. This non...

  14. On higher spin partition functions

    Science.gov (United States)

    Beccaria, Matteo; Tseytlin, Arkady A.

    2015-07-01

    We observe that the partition function of the set of all free massless higher spins s = 0, 1, 2, 3,... in flat space is equal to one: the ghost determinants cancel against the ‘physical’ ones or, equivalently, the (regularized) total number of degrees of freedom vanishes. This reflects large underlying gauge symmetry and suggests analogy with supersymmetric or topological theory. The Z = 1 property extends also to the AdS background, i.e. the 1-loop vacuum partition function of Vasiliev theory is equal to 1 (assuming a particular regularization of the sum over spins); this was noticed earlier as a consistency requirement for the vectorial AdS/CFT duality. We find that Z = 1 is true also in the conformal higher spin theory (with higher-derivative {\\partial }2s kinetic terms) expanded near flat or conformally flat S4 background. We also consider the partition function of free conformal theory of symmetric traceless rank s tensor field which has 2-derivative kinetic term but only scalar gauge invariance in flat 4d space. This non-unitary theory has Weyl-invariant action in curved background and it corresponds to ‘partially massless’ field in AdS5. We discuss in detail the special case of s = 2 (or ‘conformal graviton’), compute the corresponding conformal anomaly coefficients and compare them with previously found expressions for generic representations of conformal group in 4 dimensions.

  15. A partitioned central solar receiver

    International Nuclear Information System (INIS)

    Else of solar energy as substitute for conventional fuels at a competitive cost requires efficient conversion from solar radiation to usable forms of energy. In solar thermal or thermochemical applications, high efficiency usually re- quires high temperature and high concentration of incoming radiation. The main form of energy loss from high temperature solar central receivers is thermal emission ('re radiation'), at an effective temperature close to the maximum receiver temperature. This loss is reduced if the aperture is divided into segments, most of which are maintained at lower temperatures. A two-stage partitioned receiver demonstrating this concept is under construction at the Weizman Solar Tower. The high-temperature stage is the DIAPR (Directly Irradiated Annular Pressurized Receiver). The low-temperature stage is made of tubular cavity receivers of simpler design. Preliminary optical and thermal design of the partitioned receiver is presented. For the design exit temperature of 1500 K, the aperture size of the partitioned receiver is about 60% of the equivalent single-stage receiver, indicating a significant increase of conversion efficiency. The exit temperature of the low-temperature stage is around 1100 K, allowing simpler design and inexpensive construction. (authors)

  16. Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses

    Science.gov (United States)

    Landry, Jean-Sébastien; Damon Matthews, H.

    2016-04-01

    Non-deforestation fire - i.e., fire that is typically followed by the recovery of natural vegetation - is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-deforestation fire vs. fossil fuel combustion on the global carbon cycle and climate, because (1) fossil fuel combustion implies a net transfer of carbon from geological reservoirs to the atmospheric, oceanic, and terrestrial pools, whereas fire occurring in terrestrial ecosystems does not; (2) the average lifetime of the atmospheric CO2 increase is longer when originating from fossil fuel combustion compared to fire, due to the strong vegetation regrowth following fire disturbances in terrestrial ecosystems; and (3) other impacts, for example on land surface albedo, also differ between fire and fossil fuel combustion. The main purpose of this study is to illustrate the consequences from these fundamental differences between fossil fuel combustion and non-deforestation fires using 1000-year simulations of a coupled climate-carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate-carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions - implicitly implying that they have similar effects per unit of CO2 emitted - should therefore be avoided, particularly when these comparisons

  17. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Ferro Orozco, A.M., E-mail: mferro@cidca.org.ar [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA) CCT La Plata CONICET - Fac. de Cs. Exactas, UNLP. 47 y 116 (B1900AJJ) La Plata (Argentina); Contreras, E.M.; Zaritzky, N.E. [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA) CCT La Plata CONICET - Fac. de Cs. Exactas, UNLP. 47 y 116 (B1900AJJ) La Plata (Argentina); Fac. de Ingenieria, UNLP. 47 y 1 (B1900AJJ) - La Plata (Argentina)

    2010-04-15

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (q{sub Cr}) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey {approx} lactose > glucose > citrate > acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  18. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication

    International Nuclear Information System (INIS)

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (qCr) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey ∼ lactose > glucose > citrate > acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  19. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? – A review

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available Motivated by the widespread and contradictory results regarding the glass transition temperature of carbon nanotube (CNT/epoxy composites, we reviewed and analyzed the literature results dealing with the effect of unmodified multiwall carbon nanotubes (MWNT on the cure behaviour of an epoxy resin (as a possible source of this discrepancy. The aim of this work was to clarify the effective role of unmodified multiwall carbon nanotubes on the cure kinetics and glass transition temperature (Tg of their epoxy composites. It was found that various authors reported an acceleration effect of CNT. The cure reaction was promoted in its early stage which may be due to the catalyst particles present in the CNT raw material. While SWNT may lead to a decrease of Tg due to their bundling tendency, results reported for MWNT suggested an increased or unchanged Tg of the composites. The present status of the literature does not allow to isolate the effect of MWNT on the Tg due to the lack of a study providing essential information such as CNT purity, glass transition temperature along with the corresponding cure degree.

  20. Depletion of the "gamma-type carbonic anhydrase-like" subunits of complex I affects central mitochondrial metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Fromm, Steffanie; Göing, Jennifer; Lorenz, Christin; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-01-01

    "Gamma-type carbonic anhydrase-like" (CAL) proteins form part of complex I in plants. Together with "gamma carbonic anhydrase" (CA) proteins they form an extra domain which is attached to the membrane arm of complex I on its matrix exposed side. In Arabidopsis two CAL and three CA proteins are present, termed CAL1, CAL2, CA1, CA2 and CA3. It has been proposed that the carbonic anhydrase domain of complex I is involved in a process mediating efficient recycling of mitochondrial CO2 for photosynthetic carbon fixation which is especially important during growth conditions causing increased photorespiration. Depletion of CAL proteins has been shown to significantly affect plant development and photomorphogenesis. To better understand CAL function in plants we here investigated effects of CAL depletion on the mitochondrial compartment. In mutant lines and cell cultures complex I amount was reduced by 90-95% but levels of complexes III and V were unchanged. At the same time, some of the CA transcripts were less abundant. Proteome analysis of CAL depleted cells revealed significant reduction of complex I subunits as well as proteins associated with photorespiration, but increased amounts of proteins participating in amino acid catabolism and stress response reactions. Developmental delay of the mutants was slightly alleviated if plants were cultivated at high CO2. Profiling of selected metabolites revealed defined changes in intermediates of the citric acid cycle and amino acid catabolism. It is concluded that CAL proteins are essential for complex I assembly and that CAL depletion specifically affects central mitochondrial metabolism. PMID:26482706

  1. Design of Chitosan-Grafted Carbon Nanotubes: Evaluation of How the –OH Functional Group Affects Cs+ Adsorption

    OpenAIRE

    Shubin Yang; Dadong Shao; Xiangke Wang; Guangshun Hou; Masaaki Nagatsu; Xiaoli Tan; Xuemei Ren; Jitao Yu

    2015-01-01

    In order to explore the effect of –OH functional groups in Cs+ adsorption, we herein used the low temperature plasma-induced grafting method to graft chitosan onto carbon nanotubes (denoted as CTS-g-CNTs), as raw-CNTs have few functional groups and chitosan has a large number of –OH functional groups. The synthesized CTS-g-CNT composites were characterized using different techniques. The effect of –OH functional groups in the Cs+ adsorption process was evaluated by comparison of the adsorptio...

  2. Soil-Gas Identification of Environmental Factors Affecting CO2 Concentrations Beneath a Playa Wetland: Implications for Soil-Gas Monitoring at Carbon Storage Sites

    Science.gov (United States)

    Romanak, K.; Bennett, P.

    2009-12-01

    significant carbonate dissolution resulting from reaction of CO2 with infiltrating water and soil carbonate. Results of the study show that the degree of carbon reactivity within a near-surface environment limits the effectiveness of shallow subsurface and surface-flux soil-gas monitoring at engineered carbon repositories. When carbon reactivity is at a maximum, CO2 cycling is complex and input of exogenous CO2 into the system is difficult to constrain and quantify. A summary of the factors that define carbon reactivity and their affects on near-surface soil-gas monitoring at geologic carbon storage sites is presented, along with recommendations for site evaluation with regard to near-surface monitoring.

  3. Study of variables affecting extraction of organic solvents from solid sorbent sampling media using supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R.A. [Dept. of Health and Human Services, U.S. Public Health Service, Centers for Disease Control and Prevention, National Inst. for Occupational Safety and Health, Div. of Physical Sciences and Engineering, Cincinnati, OH (United States); Shulman, S.A. [Dept. of Health and Human Services, U.S. Public Health Service, Centers for Disease Control and Prevention, National Inst. for Occupational Safety and Health, Div. of Physical Sciences and Engineering, Cincinnati, OH (United States)

    1996-06-01

    The extraction of our solvents from three sorbents, using supercritical carbon dioxide was studied. Toluene and isooctane were extracted from Anasorb 747{sup R}, a synthetic carbon; 1-butanol from silica gel; and 2-nitropropane from Anasorb 727{sup R}, a porous organic polymer. Preliminary experiments indicated that dynamic extraction was required; these experiments also fixed the duration of extraction of the analytes. All extractions were performed at 1.0 mL min{sup -1}. The temperature and density of the supercritical extraction fluid were then varied, according to a fractional factorial statistical design. The amounts remaining on the sorbent were determined via solvent desorption of the analytes and gas chromatography of the eluents. The fraction extracted data were modeled as a function of temperature and density according to a thermodynamic approach that permitted computation of constant-density enthalpies of desorption. This study indicates a significant temperature- and density-dependence for quantitative extraction of isooctane and toluene from Anasorb 747{sup R} and 1-butanol from silica gel, with no measurable temperature- or density-dependence for extraction of 2-nitropropane from Anasorb 727{sup R}. The extracted analytes were also collected via cryotrapping; only higher level masses of 1-butanol were quantitativley recovered. The dependence of the extraction efficiency on the thimble volumes passed over the matrix is discussed. (orig.)

  4. Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana.

    Science.gov (United States)

    Soto, Débora; Córdoba, Juan Pablo; Villarreal, Fernando; Bartoli, Carlos; Schmitz, Jessica; Maurino, Veronica G; Braun, Hans Peter; Pagnussat, Gabriela C; Zabaleta, Eduardo

    2015-09-01

    The NADH-ubiquinone oxidoreductase complex (complex I) (EC 1.6.5.3) is the main entrance site of electrons into the respiratory chain. In a variety of eukaryotic organisms, except animals and fungi (Opisthokonta), it contains an extra domain comprising trimers of putative γ-carbonic anhydrases, named the CA domain, which has been proposed to be essential for assembly of complex I. However, its physiological role in plants is not fully understood. Here, we report that Arabidopsis mutants defective in two CA subunits show an altered photorespiratory phenotype. Mutants grown in ambient air show growth retardation compared to wild-type plants, a feature that is reversed by cultivating plants in a high-CO2 atmosphere. Moreover, under photorespiratory conditions, carbon assimilation is diminished and glycine accumulates, suggesting an imbalance with respect to photorespiration. Additionally, transcript levels of specific CA subunits are reduced in plants grown under non-photorespiratory conditions. Taken together, these results suggest that the CA domain of plant complex I contributes to sustaining efficient photosynthesis under ambient (photorespiratory) conditions. PMID:26148112

  5. Influence of biochar on isoproturon partitioning and bioaccessibility in soil

    International Nuclear Information System (INIS)

    The influence of biochar (5%) on the loss, partitioning and bioaccessibility of 14C-isoproturon (14C-IPU) was evaluated. Results indicated that biochar had a dramatic effect upon 14C-IPU partitioning: 14C-IPU extractability (0.01 M CaCl2) in biochar-amended treatments was reduced to 14C-IPU extractability in biochar free treatments decreased with ageing from 90% to 40%. A partitioning model was constructed to derive an effective partition coefficient for biochar:water (KBW of 7.82 × 104 L kg−1). This was two orders of magnitude greater than the apparent Kfoc value of the soil organic carbon:water (631 L kg−1). 14C-radiorespirometry assays indicated high competence of microorganisms to mineralise 14C-IPU in the absence of biochar (40.3 ± 0.9%). Where biochar was present 14C-IPU mineralisation never exceeded 2%. These results indicate reduced herbicide bioaccessibility. Increasing IPU application to ×10 its recommended dose was ineffective at redressing IPU sequestration and its low bioaccessibility. Highlights: •Biochar had a dramatic effect on IPU partitioning. •IPU extractability was reduced to BW) was 7.82 × 104 L kg−1. •KBW was 124 times greater than the apparent Kfoc value of the control. •Biochar precluded microbial bioaccessibility – no catabolic response was observed. -- Biochar dramatically reduced 14C-IPU extractability (BW being ×123 greater than the apparent Kfoc. Correspondingly, microbial bioaccessibility of IPU was negligible

  6. Correspondence of bubble size and frother partitioning in flotation

    Institute of Scientific and Technical Information of China (English)

    张炜

    2014-01-01

    The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved. Meanwhile, it is believed that frother transport between phases is perhaps the most important reason for the interactive nature of the phenomena occurring in the bulk and froth phases in flotation, as frother adsorbed in the surface of rising bubbles is removed from the bulk phase and then released into the froth as a fraction of the bubbles burst. This causes the increased concentration in the froth compared to the bulk concentration, named as frother partitioning. Partitioning reflects the adsorption of frother on bubbles and how to influence bubble size is not known. There currently exists no such a topic aiming to link these two key parameters. To fill this vacancy, the correspondence between bubble size and frother partitioning was examined. Bubble size was measured by sampling-for-imaging (SFI) technique. Using total organic carbon (TOC) analysis to measure the frother partitioning between froth and bulk phases was determined. Measurements have shown, with no exceptions including four different frothers, higher frother concentration is in the bulk than in the froth. The results also show strong partitioning giving an increase in bubble size which implies there is a compelling relationship between these two, represented byCFroth/CBulk andD32. TheCFroth/CBulk andD32 curves show similar exponential decay relationships as a function of added frother in the system, strongly suggesting that the frother concentration gradient between the bulk solution and the bubble interface is the driving force contributing to bubble size reduction.

  7. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Huang, Haining; Li, Xu

    2016-06-01

    Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX‑-N (NO3‑-N and NO2‑-N) in the presence of CuO NPs was only 62.3%, but it increased to 81.1% when CNTs appeared in this circumstance. Our data revealed that CuO NPs were more easily attached to CNTs rather than cell surface because of the lower energy barrier (3.5 versus 36.2 kT). Further studies confirmed that the presence of CNTs caused the formation of large, incompact, non-uniform dispersed, and more negatively charged CuO-CNTs heteroaggregates, and thus reduced the nanoparticle internalization by cells, leading to less toxicity to metabolism of carbon source, generation of reduction equivalent, and activities of nitrate reductase and nitrite reductase. These results indicate that assessing nanomaterial-induced risks in real circumstances needs to consider the “mixed” effects of nanomaterials.

  8. Partitioning of copy-number genotypes in pedigrees

    Directory of Open Access Journals (Sweden)

    Andelfinger Gregor U

    2010-05-01

    Full Text Available Abstract Background Copy number variations (CNVs and polymorphisms (CNPs have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in Birdsuite and PLINK for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data. Results We have developed CNGen, a new software for the partitioning of copy number polymorphism using the integrated genotypes from Birdsuite with the Affymetrix platform. The algorithm applied to familial trios or extended pedigrees can produce partitioned copy number genotypes with distinct parental alleles. We have validated the algorithm using simulations on a complex pedigree structure using frequencies calculated from a real dataset of 300 genotyped samples from 42 pedigrees segregating a congenital heart defect phenotype. Conclusions CNGen is the first published software for the partitioning of copy number genotypes in pedigrees, making possible the use CNPs and CNVs for linkage analysis. It was implemented with the Python interpreter version 2.5.2. It was successfully tested on current Linux, Windows and Mac OS workstations.

  9. Schmidt games and Markov partitions

    International Nuclear Information System (INIS)

    Let T be a C2-expanding self-map of a compact, connected, C∞, Riemannian manifold M. We correct a minor gap in the proof of a theorem from the literature: the set of points whose forward orbits are nondense has full Hausdorff dimension. Our correction allows us to strengthen the theorem. Combining the correction with Schmidt games, we generalize the theorem in dimension one: given a point x0 in M, the set of points whose forward orbit closures miss x0 is a winning set. Finally, our key lemma, the no matching lemma, may be of independent interest in the theory of symbolic dynamics or the theory of Markov partitions

  10. Partitioning of some volatile organic compounds between air and waste water from 288 To 303 K

    International Nuclear Information System (INIS)

    This study investigated effects of temperature and organic content in wastewater on the air-liquid partitions of isopropanol, acetone and p-xylene. A supernatant obtained from centrifugation of activated sludge as the test liquid. Dimensionless Henry's law constants (KH) in a deionized water and dimensionless apparent Henry's law constants (KH) in the supernatant containing one of the VOCs were measured at 288 to 303 K. KH for all the three VOCs decrease with an increase in the dissolved total organic carbon (TOC) concentration in the wastewater. A model correlating KH with the organic carbon-water partition coefficient, TOC concentration and temperature was derived

  11. On the partition dimension of unicyclic graphs

    CERN Document Server

    Rodriguez-Velazquez, Juan A; Fernau, Henning

    2011-01-01

    Given an ordered partition $\\Pi =\\{P_1,P_2, ...,P_t\\}$ of the vertex set $V$ of a connected graph $G=(V,E)$, the \\emph{partition representation} of a vertex $v\\in V$ with respect to the partition $\\Pi$ is the vector $r(v|\\Pi)=(d(v,P_1),d(v,P_2),...,d(v,P_t))$, where $d(v,P_i)$ represents the distance between the vertex $v$ and the set $P_i$. A partition $\\Pi$ of $V$ is a \\emph{resolving partition} if different vertices of $G$ have different partition representations, i.e., for every pair of vertices $u,v\\in V$, $r(u|\\Pi)\

  12. On the partition dimension of trees

    CERN Document Server

    Rodriguez-Velazquez, Juan A; Lemanska, Magdalena

    2011-01-01

    Given an ordered partition $\\Pi =\\{P_1,P_2, ...,P_t\\}$ of the vertex set $V$ of a connected graph $G=(V,E)$, the \\emph{partition representation} of a vertex $v\\in V$ with respect to the partition $\\Pi$ is the vector $r(v|\\Pi)=(d(v,P_1),d(v,P_2),...,d(v,P_t))$, where $d(v,P_i)$ represents the distance between the vertex $v$ and the set $P_i$. A partition $\\Pi$ of $V$ is a \\emph{resolving partition} of $G$ if different vertices of $G$ have different partition representations, i.e., for every pair of vertices $u,v\\in V$, $r(u|\\Pi)\

  13. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.; Meyer, Anne S.; Adler-Nissen, Jens

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise by...... "precipitate" (7-34% and 2-7%, respectively). This indicated entrapment of antioxidants at the oil-water interface in mayonnaise. The results signify that antioxidants partitioning into different phases of real food emulsions may vary widely......This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise by...... either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  14. Adaptive Partitioning for Very Large RDF Data

    OpenAIRE

    Harbi, Razen; Abdelaziz, Ibrahim; Kalnis, Panos; Mamoulis, Nikos; Ebrahim, Yasser; Sahli, Majed

    2015-01-01

    Distributed RDF systems partition data across multiple computer nodes (workers). Some systems perform cheap hash partitioning, which may result in expensive query evaluation, while others apply heuristics aiming at minimizing inter-node communication during query evaluation. This requires an expensive data preprocessing phase, leading to high startup costs for very large RDF knowledge bases. Apriori knowledge of the query workload has also been used to create partitions, which however are sta...

  15. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.; Meyer, Anne S.; Adler-Nissen, Jens

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise by...... either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  16. Effect of the heat-affected zones on hydrogen permeation and embrittlement of low-carbon steels

    International Nuclear Information System (INIS)

    Steels with yield strengths below about 900 MPa are essentially immune to hydrogen embrittlement, and almost all pipeline steels have a yield strength below that value. However, same catastrophic failures of pipelines have been reported. Under mechanical stress these failures are due to the local formation of high-hardness martensite (hard spot) during cooling and from the presence of absorbed hydrogen developed under cathodic over-protection. This paper describes a photoelectrochemical, micrographic and fractographic study of the effect of an heat-affected zone (hard spot) on hydrogen permeation and the embrittlement of an API 5L STD X60 steel. (orig.)

  17. Generating Milton Babbitt's all-partition arrays

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms of a...... algorithm to generate the specific all-partition arrays used in three of Babbitt’s works. Finally, we evaluate the algorithm and the heuristics in terms of how well they predict the sequences of integer partitions used in two of Babbitt’s works. We also explore the effect of the heuristics on the...

  18. The partitioning of iodides into steam

    International Nuclear Information System (INIS)

    In order to estimate the likely releases of radioactive iodine during steam generator tube rupture (SGTR) faults, it is necessary to know the relevant partition coefficients as a function of temperature and solution composition. It has been suggested previously that, under SGTR fault conditions, partitioning of free or ion-paired I- into the steam may be more extensive than that for molecular HI. This report uses available information on the partitioning of iodides and other salts to provide a means of estimating the partition coefficient of the iodide ion as a function of boric acid concentration and temperature. (author)

  19. Enumeration of Cylindric Plane Partitions - part I

    CERN Document Server

    Langer, Robin

    2012-01-01

    Cylindric plane partitions may be thought of as a natural generalization of reverse plane partitions. A generating series for the enumeration of cylindric plane partitions was recently given by Borodin. The first result of this paper is a $(q,t)$-analog of Borodin's identity which extends previous work by Okada in the reverse plane partition case. Our proof uses commutation relations for $(q,t)$-vertex operators acting on Macdonald polynomials as given by Garsia, Haiman and Tesla. The second result of this paper is an explicit combinatorial interpreation of the $(q,t)$-Macdonald weight in terms of a non-intersecting lattice path model on the cylinder.

  20. Changes in foliar carbon isotope composition and seasonal stomatal conductance reveal adaptive traits in Mediterranean coppices affected by drought

    Institute of Scientific and Technical Information of China (English)

    Giovanni Di Matteo; Luigi Perini; Paolo Atzori; Paolo De Angelis; Tiziano Mei; Giada Bertini; Gianfranco Fabbio; Giuseppe Scarascia Mugnozza

    2014-01-01

    We estimated water-use efficiency and potential photosyn-thetic assimilation of Holm oak (Quercus ilex L.) on slopes of NW and SW aspects in a replicated field test examining the effects of intensifying drought in two Mediterranean coppice forests. We used standard tech-niques for quantifying gas exchange and carbon isotopes in leaves and analyzed total chlorophyll, carotenoids and nitrogen in leaves collected from Mediterranean forests managed under the coppice system. We pos-tulated that responses to drought of coppiced trees would lead to differ-ential responses in physiological traits and that these traits could be used by foresters to adapt to predicted warming and drying in the Mediterra-nean area. We observed physiological responses of the coppiced trees that suggested acclimation in photosynthetic potential and water-use effi-ciency:(1) a significant reduction in stomatal conductance (p<0.01) was recorded as the drought increased at the SW site;(2) foliarδ13C increased as drought increased at the SW site (p<0.01);(3) variations in levels of carotenoids and foliar nitrogen, and differences in foliar morphology were recorded, and were tentatively attributed to variation in photosyn-thetic assimilation between sites. These findings increase knowledge of the capacity for acclimation of managed forests in the Mediterranean region of Europe.

  1. Substitution of valine for histidine 265 in carbon monoxide dehydrogenase from Rhodospirillum rubrum affects activity and spectroscopic states.

    Science.gov (United States)

    Spangler, N J; Meyers, M R; Gierke, K L; Kerby, R L; Roberts, G P; Ludden, P W

    1998-02-13

    In carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum, histidine 265 was replaced with valine by site-directed mutagenesis of the cooS gene. The altered form of CODH (H265V) had a low nickel content and a dramatically reduced level of catalytic activity. Although treatment with NiCl2 and CoCl2 increased the activity of H265V CODH by severalfold, activity levels remained more than 1000-fold lower than that of wild-type CODH. Histidine 265 was not essential for the formation and stability of the Fe4S4 clusters. The Km and KD for CO as well as the KD for cyanide were relatively unchanged as a result of the amino acid substitution in CODH. The time-dependent reduction of the [Fe4S4]2+ clusters by CO occurred on a time scale of hours, suggesting that, as a consequence of the mutation, a rate-limiting step had been introduced prior to the transfer of electrons from CO to the cubanes in centers B and C. EPR spectra of H265V CODH lacked the gav = 1.86 and gav = 1.87 signals characteristic of reduced forms of the active site (center C) of wild-type CODH. This indicates that the electronic properties of center C have been modified possibly by the disruption or alteration of the ligand-mediated interaction between the nickel site and Fe4S4 chromophore. PMID:9461598

  2. Solar regeneration of powdered activated carbon impregnated with visible-light responsive photocatalyst: factors affecting performances and predictive model.

    Science.gov (United States)

    Yap, Pow-Seng; Lim, Teik-Thye

    2012-06-01

    This study demonstrated a green technique to regenerate spent powdered activated carbon (AC) using solar photocatalysis. The AC was impregnated with a photocatalyst photoexcitable under visible-light irradiation to yield a solar regenerable composite, namely nitrogen-doped titanium dioxide (N-TiO(2)/AC). This composite exhibited bifunctional adsorptive-photocatalytic characteristics. Contaminants of emerging environmental concern, i.e. bisphenol-A (BPA), sulfamethazine (SMZ) and clofibric acid (CFA) which exhibited varying affinities for AC were chosen as target pollutants. The adsorption of BPA and SMZ by the N-TiO(2)/AC was significantly higher than that of CFA. The performance of solar photocatalytic regeneration (SPR) of the spent N-TiO(2)/AC composite generally increased with light intensity, N-TiO(2) loading and temperature. The regeneration efficiency (RE) for CFA-loaded spent composite was the highest compared to the other pollutant-loaded spent composites, achieving 77% within 8h of solar irradiation (765 W m(-2)). The rate-limiting process was pollutant desorption from the interior AC sorption sites. A kinetic model was developed to predict the transient concentration of the sorbate remaining in the spent composite during SPR. Comparison studies using solvent extraction technique indicated a different order of RE for the three pollutants, attributable to their varying solubilities in the aqueous and organic solvents. PMID:22464146

  3. Subterranean ventilation: a key but poorly known process affecting the carbon balance of semi-arid ecosystems

    Science.gov (United States)

    López Ballesteros, Ana; Sánchez Cañete, Enrique P.; Serrano Ortiz, Penélope; Kowalski, Andrew S.; Oyonarte, Cecilio; Domingo, Francisco

    2016-04-01

    Subterranean ventilation, conceived as the advective transport of CO2-rich air from the vadose zone to the atmosphere through a porous media (i.e. soil or snow; Sánchez-Cañete et al., 2013), has arisen as an important process contributing to the carbon (C) balance of Mediterranean ecosystems (Kowalski et al., 2008; Sánchez-Cañete et al., 2011; Serrano-Ortiz et al., 2014), apart from other well-known biotic processes (i.e. plant photosynthesis, autotrophic and heterotrophic respiration). Recent studies have linked this subterranean CO2 release to fluctuations in the friction velocity or wind speed under drought conditions when water-free soil pores enable air transport (Rey et al., 2012a, 2013), however, barometric pressure variations has been suggested as another important driver (Sánchez-Cañete et al., 2013). In this study, we investigate this process in newly studied semi-arid grassland located in SE Spain, as the ideal ecosystem to do so given the great length of the dry season and the slight biotic activity limited to the winter season. Preliminary results, based on unpublished analyzed eddy covariance data and subterranean CO2 molar fraction measurements, confirm the presence of ventilation events from May to October for seven years 2009-2015. During these events, increases in the friction velocity correlates with sizeable CO2 emissions of up to ca.10 μmol m‑2 s‑1, and CO2 molar fraction regularly drops 2000-3000 ppm just after the turbulence peak, at several depths below the soil surface (0.15 and 1.5 m). Additionally, during the driest period (July-August), the friction velocity explains from 37% to 57% of the net C emission variability. On the other hand, the model residuals do not show a significant relationship, neither with air pressure nor with soil water content. Overall, the results found in this newly monitored site demonstrate, as shown by past research, the relevance of subterranean ventilation as a key process in the C balance of

  4. Measurement of soil organic carbon with Vis-NIR spectroscopy as affected by moisture content and texture

    Science.gov (United States)

    Tekin, Yucel; Tumsavas, Zeynal; Mounem Mouazen, Abdul

    2013-04-01

    The aim of this study was to understand and assess the effects of moisture content (MC) and texture on the prediction accuracy of soil organic carbon (SOC) with a visible and near infrared spectroscopy (vis-NIRS). A total of 270 soil samples collected from Turkey and the UK were examined under 6 gravimetric MC levels of 0%, 5%, 10%, 15%, 20% and 25%. Then these samples were divided into two texture classes, namely, light (clay content ≤ 28%) and heavy (clay content > 28%) texture classes to understand the effect of texture and how this interacts with MC. A fiber-optic vis-NIR spectrophotometer (350 - 2500nm) (LabSpec2500 Near Infrared Analyzer, Analytical Spectral Devices, Inc, USA) was used to measure spectra of these samples in diffuse reflectance mode. The entire spectra was split randomly into 3 replicates of 80 % and 20 % for the cross-validation set and independent validation set, respectively before running the partial leas squares (PLS) regression analysis. PLS analyses with full cross-validation were carried out to establish models for SOC for individual MC level and all (mixed) MC samples in addition to models for light and heavy soils. Results showed that the prediction performance of SOC in the independent validation set was successful for model of all MC levels, with root mean square error of prediction (RMSEP) = 1.26 - 1.55% and residual prediction deviation (RPD) = 2.29 - 2.83. However, the best accuracy was obtained with dry soil samples model, confirming the negative effect on MC on prediction accuracy. In terms of the texture effect, the accuracy of the SOC models was generally higher for heavy soils (RMSEP = 1.42 % and RPD = 2.57) than for light soils (RMSEP = 1.58 % and RPD = 2.36). It can be concluded that there is a significant effect of MC on prediction accuracy of SOC and splitting samples into heavy and light soils is recommended for modelling heavy soils only, for which the mixed MC model is recommended.

  5. Assimilate partitioning during reproductive growth

    International Nuclear Information System (INIS)

    Leaves having various phyllotactic relationships to fruitlets were labeled for 1 hour with 10/sub r/Ci of 14CO2. Fruitlets were also labeled. Fruitlets did fix 14CO2. Translocation of radioactivity from the peel into the fruit occurred slowly and to a limited extent. No evidence of translocation out of the fruitlets was observed. Assimilate partitioning in avocado was strongly influenced by phyllotaxy. If a fruit and the labeled leaf had the same phyllotaxy then greater than 95% of the radiolabel was present in this fruit. When the fruit did not have the same phyllotaxy as the labeled leaf, the radiolabel distribution was skewed with 70% of the label going to a single adjacent position. Avocado fruitlets exhibit uniform labeling throughout a particular tissue. In avocado, assimilates preferentially move from leaves to fruits with the same phyllotaxy

  6. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion.

    Science.gov (United States)

    Viljanen, Kaarina; Kylli, Petri; Hubbermann, Eva-Maria; Schwarz, Karin; Heinonen, Marina

    2005-03-23

    The antioxidant activities of anthocyanins and anthocyanin fractions isolated from blackcurrants, raspberries, and lingonberries were investigated in whey protein-stabilized emulsion. The extent of protein oxidation was measured by determining the loss of tryptophan fluorescence and formation of protein carbonyl compounds and that of lipid oxidation by conjugated diene hydroperoxides and hexanal analyses. The antioxidant activity of berry anthocyanins increased with an increase in concentration. Blackcurrant anthocyanins were the most potent antioxidants toward both protein and lipid oxidation at all concentrations due to the beneficial combination of delphinidin and cyanidin glycosides. Most berry anthocyanins (69.4-72.8%) partitioned into the aqueous phase of the emulsion, thus being located favorably for antioxidant action toward protein oxidation. The presence of the lipid decreased the share of anthocyanin in the aqueous phase. Thus, the structure of food affects the antioxidant activity by influencing the partitioning of the antioxidant. PMID:15769130

  7. Free cumulants and enumeration of connected partitions

    OpenAIRE

    Lehner, Franz

    2001-01-01

    A combinatorial formula is derived which expresses free cumulants in terms of classical comulants. As a corollary, we give a combinatorial interpretation of free cumulants of classical distributions, notably Gaussian and Poisson distributions. The latter count connected pairings and connected set partitions respectively. The proof relies on Moebius inversion on the partition lattice.

  8. Set partitions with successions and separations

    OpenAIRE

    Munagi, Augustine O.

    2005-01-01

    Partitions of the set {1,2,…,n} are classified as having successions if a block contains consecutive integers, and separated otherwise. This paper constructs enumeration formulas for such set partitions and some variations using Stirling numbers of the second kind.

  9. Comportement des déchets graphite en situation de stockage : Relâchement et répartition des espèces organiques et inogarniques du carbone 14 et du tritium en milieu alcalin

    OpenAIRE

    Vende, Ludivine

    2012-01-01

    23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730y), but also on tritium, which is the main contributor to the radioa...

  10. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    Science.gov (United States)

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-02-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p carbon and total nitrogen (molar C/N ratios) were observed in the 30-40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period.

  11. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    Science.gov (United States)

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-01-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30–40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period. PMID:26879008

  12. Carbon stocks in organic matter fractions as affected by land use and soil management, with emphasis on no-tillage effect

    Directory of Open Access Journals (Sweden)

    Bayer Cimélio

    2002-01-01

    Full Text Available Land use and soil management may affect both labile and humified soil organic matter (SOM fractions, but the magnitude of these changes is poorly known in subtropical environments. This study investigated effects of four land use and soil management systems (forest, native pasture, and conventional tillage and no-tillage in a wheat/soybean succession on (i total soil organic carbon (SOC stocks (0 to 250mm depth and on (ii carbon (C stocks in labile (coarse, light and humified (mineral-associated, humic substances SOM fractions (0 to 25mm depth, in a Hapludox soil from southern Brazil. In comparison to the adjacent forest site, conventionally tilled soil presented 36% (46.2Mg ha-1 less SOC in the 0 to 250mm depth and a widespread decrease in C stocks in all SOM fractions in the 0 to 25mm depth. The coarse (>53 mum and light (<1kg dm-3 SOM fractions were the most affected under no-tillage, showing 393% (1.22Mg C ha-1 and 289% (0.55Mg C ha-1 increases, respectively, in relation to conventional tillage. Similar results were observed for mineral-associated SOM and humic substance C pools (34% and 38% increases, respectively under no-tillage. Compared with labile SOM fraction results, the percentual increments on C stocks in humified fractions were smaller; but in absolute terms this C pool yielded the highest increases (3.06 and 2.95Mg C ha-1, respectively. These results showed that both labile and humified organic matter are better protected under the no-tillage system, and consequently less vulnerable to mineralization. Humified SOM stabilization process involving interactions with variable charge minerals is probably important in maintaining and restoring soil and environmental quality in tropical and subtropical regions.

  13. Phenanthrene partitioning in sediment-surfactant-fresh/saline water systems

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the influence of salinity on the effectiveness of surfactants in the remediation of sediments contaminated with phenanthrene (PHE). This is an example of a more general application of surfactants in removing hydrophobic organic compounds (HOCs) from contaminated soil/sediment in saline environments via in-situ enhanced sorption or ex-situ soil washing. Salinity effects on surfactant micelle formation and PHE partitioning into solution surfactant micelles and sorbed surfactant were investigated. The critical micelle concentration of surfactants decreased, and PHE partition between surfactant micelles and water increased with increasing salinity. Carbon-normalized partition coefficients (Kss) of PHE onto the sorbed cationic surfactant increased significantly with increasing salinity, which illustrates a more pronounced immobilization of PHE by cationic surfactant in a saline system. Reduction of PHE sorption by anionic surfactant was more pronounced in the saline system, indicating that the anionic surfactant has a higher soil washing effectiveness in saline systems. - The effectiveness of surfactant-enhanced remediation technology was promoted when applying it in estuarine environment with a higher salinity.

  14. Approximate path integral methods for partition functions

    International Nuclear Information System (INIS)

    We review several approximate methods for evaluating quantum mechanical partition functions with the goal of obtaining a method that is easy to implement for multidimensional systems but accurately incorporates quantum mechanical corrections to classical partition functions. A particularly promising method is one based upon an approximation to the path integral expression of the partition function. In this method, the partition-function expression has the ease of evaluation of a classical partition function, and quantum mechanical effects are included by a weight function. Anharmonicity is included exactly in the classical Boltzmann average and local quadratic expansions around the centroid of the quantum paths yield a simple analytic form for the quantum weight function. We discuss the relationship between this expression and previous approximate methods and present numerical comparisons for model one-dimensional potentials and for accurate three-dimensional vibrational force fields for H2O and SO2

  15. Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Bader Michael

    2008-12-01

    Full Text Available Abstract Background Exposure to particulate matter is a risk factor for cardiopulmonary disease but the underlying molecular mechanisms remain poorly understood. In the present study we sought to investigate the cardiopulmonary responses on spontaneously hypertensive rats (SHRs following inhalation of UfCPs (24 h, 172 μg·m-3, to assess whether compromised animals (SHR exhibit a different response pattern compared to the previously studied healthy rats (WKY. Methods Cardiophysiological response in SHRs was analyzed using radiotelemetry. Blood pressure (BP and its biomarkers plasma renin-angiotensin system were also assessed. Lung and cardiac mRNA expressions for markers of oxidative stress (hemeoxygenase-1, blood coagulation (tissue factor, plasminogen activator inhibitor-1, and endothelial function (endothelin-1, and endothelin receptors A and B were analyzed following UfCPs exposure in SHRs. UfCPs-mediated inflammatory responses were assessed from broncho-alveolar-lavage fluid (BALF. Results Increased BP and heart rate (HR by about 5% with a lag of 1–3 days were detected in UfCPs exposed SHRs. Inflammatory markers of BALF, lung (pulmonary and blood (systemic were not affected. However, mRNA expression of hemeoxygenase-1, endothelin-1, endothelin receptors A and B, tissue factor, and plasminogen activator inhibitor showed a significant induction (~2.5-fold; p Conclusion Our finding shows that UfCPs exposure at levels which does not induce detectable pulmonary neutrophilic inflammation, triggers distinct effects in the lung and also at the systemic level in compromised SHRs. These effects are characterized by increased activity of plasma renin-angiotensin system and circulating white blood cells together with moderate increases in the BP, HR and decreases in heart rate variability. This systemic effect is associated with pulmonary, but not cardiac, mRNA induction of biomarkers reflective of oxidative stress; activation of vasoconstriction

  16. Partitioning Gas Tracer Technology for Measuring Water in Landfills

    Science.gov (United States)

    Briening, M. L.; Jakubowitch, A.; Imhoff, P. T.; Chiu, P. C.; Tittlebaum, M. E.

    2002-12-01

    Unstable landfills can result in significant environmental contamination and can become a risk to public health. To reduce this risk, water may be added to landfills to ensure that enough moisture exists for biodegradation of organic wastes. In this case risks associated with future breaks in the landfill cap are significantly reduced because organic material is degraded more rapidly. To modify moisture conditions and enhance biodegradation, leachate is typically collected from the bottom of the landfill and then recirculated near the top. It is difficult, though, to know how much leachate to add and where to add it to achieve uniform moisture conditions. This situation is exacerbated by the heterogeneous nature of landfill materials, which is known to cause short circuiting of infiltrating water, a process that has been virtually impossible to measure or model. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. In this research we are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. In this methodology two gas tracers are injected into a landfill. One tracer is non-reactive with landfill materials, while the second partitions into and out of free water trapped within the pore space of the solid waste. Chromatographic separation of the tracers occurs

  17. Studies of partitioning and transmutation

    International Nuclear Information System (INIS)

    Part 1: Current status of partitioning and transmutation: The purpose of the project covered in this report is to contribute to a watching brief exercise for the Department of the Environment, Transport and the Regions (DETR) on the subject of the Partitioning and Transmutation (P and T) of long-lived radionuclides present in high level radioactive waste (HLW). The watching brief is intended to ensure that DETR are aware of international developments and progress so that UK policy continues to be soundly based. This has been achieved by attendance at international meetings and conferences and studies of the published literature, and also by participation in the Fourth Framework R and D Programme of the European Commission (EQ) in the field of P and T (see Part 2 below). Answers have been developed to a list of questions about certain aspects of P and T, provided by the DETR; and further information has also been provided about progress in the current EC programme and elsewhere. National programmes on P and T are in progress in various countries, and the motivations for these vary. These programmes concentrate exclusively on high level waste (HLW) in spite of the environmental importance of other waste streams. P and T is not generally seen as a viable waste management strategy in the short or medium term, but as an option for the future. A considerable new impetus has been imparted to P and T research by the development of Accelerator Driven Systems (ADS) which provide high neutron fluxes suitable for transmutation. Such systems may be more effective than current fission reactors for this purpose. Good progress has also been made in the separation of actinides and long-lived fission products from HLW, using both aqueous and dry (pyrochemical) processes. P and T is more likely to be implemented in future decades as part of a radically new type of fuel cycle, probably pyrochemical, rather than as an extension of PUREX reprocessing. However, pyrochemical reprocessing

  18. Ecosystem partitioning of 15N-glycine after long-term climate and nutrient manipulations, plant clipping and addition of labile carbon in a subarctic heath tundra

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    Low temperatures and high soil moisture restrict cycling of organic matter in arctic soils, but also substrate quality, i.e. labile carbon (C) availability, exerts control on microbial activity. Plant exudation of labile C may facilitate microbial growth and enhance microbial immobilization of......, microorganisms and plants. There were few effects of long-term warming and fertilization on soil and plant pools. However, fertilization increased soil and plant N pools and increased pool dilution of the added 15N label. In all treatments, microbes immobilized a major part of the added 15N shortly after label...... addition. However, plants exerted control on the soil inorganic N concentrations and recovery of total dissolved 15N (TD15N), and likewise the microbes reduced these soil pools, but only when fed with labile C. Soil microbes in clipped plots were primarily C limited, and the findings of reduced N...

  19. Self-complementary plane partitions by Proctor's minuscule method

    OpenAIRE

    Kuperberg, Greg

    1994-01-01

    A method of Proctor [European J. Combin. 5 (1984), no. 4, 331-350] realizes the set of arbitrary plane partitions in a box and the set of symmetric plane partitions as bases of linear representations of Lie groups. We extend this method by realizing transposition and complementation of plane partitions as natural linear transformations of the representations, thereby enumerating symmetric plane partitions, self-complementary plane partitions, and transpose-complement plane partitions in a new...

  20. In situ synchrotron study on the interplay between martensite formation, texture evolution and load partitioning in low-alloyed TRIP steels

    International Nuclear Information System (INIS)

    Highlights: → In situ probing the micromechanical response of TRIP steels using high-energy X-rays. → Link between metastable austenite evolution in bulk and material mechanical response. → Higher aluminium content yields larger austenite transformation range and formability. → The austenite stability depends strongly on grain orientation. → Load partitioning between constituent phases is affected by the transformation. - Abstract: We have studied the micromechanical behaviour of two low-alloyed multiphase TRIP steels with different aluminium contents by performing in situ high-energy X-ray diffraction experiments at a synchrotron source under increasing tensile stress levels. A detailed analysis of the two-dimensional diffraction data has allowed us to unravel the interplay between the martensite formation, the texture evolution and the load partitioning, and to correlate the observed behaviour to the macroscopic response of the material. The high aluminium content TRIP steel grade presents a higher volume fraction of retained austenite at room temperature that transforms more gradually into martensite under deformation, providing a larger uniform elongation. The comparison between the observed transformation behaviour and the texture evolution indicates that the component along the loading direction corresponds to a low critical stress for the transformation. The evolution of the elastic strains revealed the occurrence of a significant load partitioning before reaching the macroscopic yield strength, which becomes more pronounced in the plastic regime due to the progressive yielding of the different grains in the polycrystalline material. This opens the door to tailor the austenite stability by altering the distribution in grain size, local carbon content, and grain orientation in order to produce the optimal load partitioning and work hardening for improved combinations of strength and formability in low-alloyed TRIP steels.

  1. Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Davidsen, Jesper; Jørgensen, Kent

    2001-01-01

    detergents. The calorimetric results reveal that the membrane partitioning of lysolipids depends strongly on the phase structure of the lipid membrane. This is manifested as a lysolipid partition coefficient, K, that is much larger for fluid-phase lipid membranes as compared to gel-phase lipid membranes...... magnitude higher when the saturated acyl chain of the detergents increases by two carbon atoms. The obtained partition coefficients are of importance in relation to a deeper understanding of the interplay between global aqueous and local membrane concentrations of the detergents and the functional influence...

  2. DYNAMIC TASK PARTITIONING MODEL IN PARALLEL COMPUTING

    Directory of Open Access Journals (Sweden)

    Javed Ali

    2012-04-01

    Full Text Available Parallel computing systems compose task partitioning strategies in a true multiprocessing manner. Such systems share the algorithm and processing unit as computing resources which leads to highly inter process communications capabilities. The main part of the proposed algorithm is resource management unit which performs task partitioning and co-scheduling .In this paper, we present a technique for integrated task partitioning and co-scheduling on the privately owned network. We focus on real-time and non preemptive systems. A large variety of experiments have been conducted on the proposed algorithm using synthetic and real tasks. Goal of computation model is to provide a realistic representation of the costs of programming The results show the benefit of the task partitioning. The main characteristics of our method are optimal scheduling and strong link between partitioning, scheduling and communication. Some important models for task partitioning are also discussed in the paper. We target the algorithm for task partitioning which improve the inter process communication between the tasks and use the recourses of the system in the efficient manner. The proposed algorithm contributes the inter-process communication cost minimization amongst the executing processes.

  3. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations

    OpenAIRE

    Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice r...

  4. Convex Regression with Interpretable Sharp Partitions

    Science.gov (United States)

    Petersen, Ashley; Simon, Noah; Witten, Daniela

    2016-01-01

    We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set.

  5. PARTITION PROPERTY OF DOMAIN DECOMPOSITION WITHOUT ELLIPTICITY

    Institute of Scientific and Technical Information of China (English)

    Mo Mu; Yun-qing Huang

    2001-01-01

    Partition property plays a central role in domain decomposition methods. Existing theory essentially assumes certain ellipticity. We prove the partition property for problems without ellipticity which are of practical importance. Example applications include implicit schemes applied to degenerate parabolic partial differential equations arising from superconductors, superfluids and liquid crystals. With this partition property, Schwarz algorithms can be applied to general non-elliptic problems with an h-independent optimal convergence rate. Application to the time-dependent Ginzburg-Landau model of superconductivity is illustrated and numerical results are presented.

  6. Quantum Dilogarithms and Partition q-Series

    Science.gov (United States)

    Kato, Akishi; Terashima, Yuji

    2015-08-01

    In our previous work (Kato and Terashima, Commun Math Phys. arXiv:1403.6569, 2014), we introduced the partition q-series for mutation loop γ—a loop in exchange quiver. In this paper, we show that for a certain class of mutation sequences, called reddening sequences, the graded version of partition q-series essentially coincides with the ordered product of quantum dilogarithm associated with each mutation; the partition q-series provides a state-sum description of combinatorial Donaldson-Thomas invariants introduced by Keller.

  7. Quantum dilogarithms and partition q-series

    OpenAIRE

    Kato, Akishi; Terashima, Yuji

    2014-01-01

    In our previous work [arXiv:1403.6569], we introduced the partition q-series for mutation loop --- a loop in exchange quiver. In this paper, we show that for certain class of mutation sequences, called reverse-ending mutation loops, a graded version of partition q-series essentially coincides with the ordered product of quantum dilogarithm associated with each mutation; the partition q-series provides a state-sum description of combinatorial Donaldson-Thomas invariants introduced by B. Keller.

  8. An Algebraic Hardware/Software Partitioning Algorithm

    Institute of Scientific and Technical Information of China (English)

    秦胜潮; 何积丰; 裘宗燕; 张乃孝

    2002-01-01

    Hardware and software co-design is a design technique which delivers computer systems comprising hardware and software components. A critical phase of the co-design process is to decompose a program into hardware and software. This paper proposes an algebraic partitioning algorithm whose correctness is verified in program algebra. The authors introduce a program analysis phase before program partitioning and develop a collection of syntax-based splitting rules. The former provides the information for moving operations from software to hardware and reducing the interaction between components, and the latter supports a compositional approach to program partitioning.

  9. Partitions optimality and clustering, v.2

    CERN Document Server

    Hwang, Frank K; Chen, Hongbin

    2013-01-01

    The need for optimal partition arises from many real-world problems involving the distribution of limited resources to many users. The ""clustering"" problem, which has recently received a lot of attention, is a special case of optimal partitioning. This book is the first attempt to collect all theoretical developments of optimal partitions, many of them derived by the authors, in an accessible place for easy reference. Much more than simply collecting the results, the book provides a general framework to unify these results and present them in an organized fashion. Many well-known practical p

  10. Spectral partitioning in diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K; Chambers, D H; Candy, J V

    1999-06-14

    The scattering mechanism of diffraction tomography is described by the integral form of the Helmholtz equation. The goal of diffraction tomography is to invert this equation in order to reconstruct the object function from the measured scattered fields. During the forward propagation process, the spatial spectrum of the object under investigation is ''smeared,'' by a convolution in the spectral domain, across the propagating and evanescent regions of the received field. Hence, care must be taken in performing the reconstruction, as the object's spectral information has been moved into regions where it may be considered to be noise rather than useful information. This will reduce the quality and resolution of the reconstruction. We show haw the object's spectrum can be partitioned into resolvable and non-resolvable parts based upon the cutoff between the propagating and evanescent fields. Operating under the Born approximation, we develop a beam-forming on transmit approach to direct the energy into either the propagating or evanescent parts of the spectrum. In this manner, we may individually interrogate the propagating and evanescent regions of the object spectrum.

  11. Lipid partitioning during cardiac stress.

    Science.gov (United States)

    Kolwicz, Stephen C

    2016-10-01

    It is well documented that fatty acids serve as the primary fuel substrate for the contracting myocardium. However, extensive research has identified significant changes in the myocardial oxidation of fatty acids during acute or chronic cardiac stress. As a result, the redistribution or partitioning of fatty acids due to metabolic derangements could have biological implications. Fatty acids can be stored as triacylglycerols, serve as critical components for biosynthesis of phospholipid membranes, and form the potent signaling molecules, diacylglycerol and ceramides. Therefore, the contribution of lipid metabolism to health and disease is more intricate than a balance of uptake and oxidation. In this review, the available data regarding alterations that occur in endogenous cardiac lipid pathways during the pathological stressors of ischemia-reperfusion and pathological hypertrophy/heart failure are highlighted. In addition, changes in endogenous lipids observed in exercise training models are presented for comparison. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:27040509

  12. Partial domain wall partition functions

    CERN Document Server

    Foda, O

    2012-01-01

    We consider six-vertex model configurations on a rectangular lattice with n (N) horizontal (vertical) lines, and "partial domain wall boundary conditions" defined as 1. all 2n arrows on the left and right boundaries point inwards, 2. n_u (n_l) arrows on the upper (lower) boundary, such that n_u + n_l = N - n, also point inwards, 3. all remaining n+N arrows on the upper and lower boundaries point outwards, and 4. all spin configurations on the upper and lower boundaries are summed over. To generate (n-by-N) "partial domain wall configurations", one can start from A. (N-by-N) configurations with domain wall boundary conditions and delete n_u (n_l) upper (lower) horizontal lines, or B. (2n-by-N) configurations that represent the scalar product of an n-magnon Bethe eigenstate and an n-magnon generic state on an N-site spin-1/2 chain, and delete the n lines that represent the Bethe eigenstate. The corresponding "partial domain wall partition function" is computed in construction {A} ({B}) as an N-by-N (n-by-n) det...

  13. A Partitioning Strategy for OODB

    Directory of Open Access Journals (Sweden)

    Sudesh Rani

    2011-11-01

    Full Text Available An effective strategy for distributing data across multiple disks is crucial to achieving good performance in a parallel object-oriented database management system. During query processing, a large amount of data need to be processed and transferred among the processing nodes in the system. A good data placement strategy should be able to reduce the communication overheads, and, at the same time, to provide the opportunity for exploiting different types of parallelism in query processing, such as intra-operator parallelism, inter-operator parallelism, and inter-query parallelism. However, there exists a conflict between these two requirements. While minimizing interprocessor communication favors the assignment of the whole database to a small number of processors, achieving higher degree of parallelism favors the distributions of the database evenly among a large number of processors. A trade-off must be made to obtain a good policy for mapping the database to the processors.We need good heuristics to solve this and more complicated database allocation problems. In this paper, we propose some heuristics for partitioning an OODB so that the overall execution time can be reduced.

  14. Energy partitioning schemes: a dilemma.

    Science.gov (United States)

    Mayer, I

    2007-01-01

    Two closely related energy partitioning schemes, in which the total energy is presented as a sum of atomic and diatomic contributions by using the "atomic decomposition of identity", are compared on the example of N,N-dimethylformamide, a simple but chemically rich molecule. Both schemes account for different intramolecular interactions, for instance they identify the weak C-H...O intramolecular interactions, but give completely different numbers. (The energy decomposition scheme based on the virial theorem is also considered.) The comparison of the two schemes resulted in a dilemma which is especially striking when these schemes are applied for molecules distorted from their equilibrium structures: one either gets numbers which are "on the chemical scale" and have quite appealing values at the equilibrium molecular geometries, but exhibiting a counter-intuitive distance dependence (the two-center energy components increase in absolute value with the increase of the interatomic distances)--or numbers with too large absolute values but "correct" distance behaviour. The problem is connected with the quick decay of the diatomic kinetic energy components. PMID:17328441

  15. Evaluation of Partitioning Gas Tracer Tests for Measuring Water in Landfills

    Science.gov (United States)

    Imhoff, P. T.; Han, B.; Jafarpour, Y.; Gallagher, V. N.; Chiu, P. C.; Fluman, D. A.; Vasuki, N. C.; Yazdani, R.; Augenstein, D.; Cohen, K. K.

    2003-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. An important issue in the operation of bioreactor landfills is knowing how much water to add and where to add it. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. We are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. We report the results from laboratory and field tests designed to evaluate the partitioning gas tracer test within an anaerobic landfill operated by the Delaware Solid Waste Authority. Vertical wells were installed within the landfill to inject and extract tracer gases. Gas flow and tracer gas movement in the solid waste were controlled by the landfill's existing gas collection system, which included vertical wells installed throughout the landfill through

  16. Welding-induced local maximum residual stress in heat affected zone of low-carbon austenitic stainless steel with machined surface layer and its influential factors

    International Nuclear Information System (INIS)

    In this study, the effects of work-hardening and pre-existing stress in the machined surface layer of low-carbon austenitic stainless steel on the welding-induced residual stress were experimentally investigated through the use of weld specimens with three different surface layers; as-cutout, mechanically-polished and electrolytically-polished. The high tensile and compressive stresses exist in the work-hardened surface layer of the as-cutout and mechanically-polished specimens, respectively. Meanwhile, no stress and work-hardened surface layer exist in the electrolytically-polished specimen. TIG bead-on-plate welding under the same welding heat input conditions was performed to introduce the residual stress into these specimens. Using these welded specimens, the distributions of welding-induced residual stress were measured by the X-ray diffraction method. Similarly, the distributions of hardness in welds were estimated by the Vickers hardness test. And then, these distributions were compared with one another. Based on the results, the residual stress in the weld metal (WM) is completely unaffected by the machined surface layer because the work-hardened surface layer disappears through the processes of melting and solidification during welding. The local maximum longitudinal tensile residual stress in the heat affected zone (HAZ) depends on the work-hardening but not on the existing stress, regardless of whether tensile or compressive, in the machined surface layer before welding. At the base metal far from WM and HAZ, the residual stress is formed by the addition of the welding-induced residual stress to the pre-existing stress in the machined surface layer before welding. The features of the welding-induced residual stress in low-carbon austenitic stainless steel with the machined surface layer and their influential factors were thus clarified. (author)

  17. Expanding the REE Partitioning Database for Lunar Materials

    Science.gov (United States)

    Rapp, Jennifer F.; Draper, David S.

    2014-01-01

    Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. This is taken as evidence of a large-scale differentation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were later derived. However, the extent of the Eu anomaly in lunar rocks is variable. Some plagioclase grains in a lunar impact rock (60635) have been reported to display a negative Eu anomaly, or in some cases single grains display both positive and neagtive anomalies. Cathodoluminescence images reveal that some crystals have a negative anomaly in the core and positive at the rim, or vice versa, and the negative anomalies are not associated with crystal overgrowths. Oxygen fugacity is known to affect Eu partitioning into plagioclase, as under low fO2 conditions Eu can be divalent, and has an ionic radius similar to Ca2+ - significant in lunar samples where plagioclase compositions are predominantly anorthitic. However, there are very few experimental studies of rare earth element (REE) partitioning in plagioclase relevant to lunar magmatism, with only two plagioclase DEu measurements from experiments using lunar materials, and little data in low fO2 conditions relevant to the Moon. We report on REE partitioning experiments on lunar compositions. We investigate two lunar basaltic compositions, high-alumina basalt 14072 and impact melt breccia 60635. These samples span a large range of lunar surface bulk compositions. The experiments are carried out at variable fO2 in 1 bar gas mixing furnaces, and REE are analysed by and LA-ICP-MS. Our results not only greatly expand the existing plagioclase DREE database for lunar compositions, but also investigate the significance of fO2 in Eu partitioning, and in the interpretation of Eu anomalies in lunar materials.

  18. Stereochemical determination of carbon partitioning between photosynthesis and photorespiration in C3 plants: use of (3R)-D-[3-3H1, 3-14C]glyceric acid

    International Nuclear Information System (INIS)

    When (3R)-D-[3-3H1,3-14C]glyceric acid is supplied in tracer amounts to illuminated tobacco leaf discs, the acid penetrates to the chloroplasts without loss of 3H, and is phosphorylated there. Subsequent metabolism associated with the reductive photosynthetic cycle fully conserves 3H. Oxidation of ribulose bisphosphate (RuBP) by RuBP carboxylase-oxygenase (EC 4.1.1.39) results in the formation of (2R)-[2-3H1, 14C]glycolic acid which, on oxidation by glycolate oxidase (EC 1.1.3.1), releases 3H to water. Loss of 3H from the combined photosynthetic and photorespiratory systems is, therefore, associated with the oxidative photorespiratory loop. Assuming steady-state conditions and a basic metabolic model, the fraction of RuBP oxidized and the photorespiratory carbon flux relative to gross or net CO2 fixation can be calculated from the fraction of supplied 3H retained in the triose phosphates exported from the chloroplasts. This retention can be determined from the 3H:14C ratio for glucose obtained from isolated sucrose. The dependence of 3H retention upon O2 and CO2 concentrations can be deduced by assuming simple competitive kinetics for RuBP carboxylase-oxygenase. The experimental results confirmed the stereochemical assumptions made. Under conditions of negligible photorespiration 3H retention was essentially complete. The change in 3H retention with O2 and CO2 concentrations were investigated. For leaf discs (upper surface up) in normal air, it was estimated that 39% of the RuBP was oxidized, 32% of the fixed CO2 was photorespired, and the photorespiration rate was 46% of the net photosynthetic CO2 fixation rate. These are minimal estimates, as it is assumed that the only source of photorespired CO2 is glycine decarboxylation

  19. Grand partition function of hadronic bremsstrahlung

    International Nuclear Information System (INIS)

    The grand partition function of hadronic bremsstrahlung is obtained using saddle-point procedures. Several levels of approximation are considered. The results are qualitatively consistent with earlier simple approximations

  20. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2013-10-30

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  1. Connections between groundwater flow and transpiration partitioning.

    Science.gov (United States)

    Maxwell, Reed M; Condon, Laura E

    2016-07-22

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes. PMID:27463671

  2. OPTIMAL PARTITIONS OF DATA IN HIGHER DIMENSIONS

    Data.gov (United States)

    National Aeronautics and Space Administration — OPTIMAL PARTITIONS OF DATA IN HIGHER DIMENSIONS BRADLEY W. JACKSON*, JEFFREY D. SCARGLE, AND CHRIS CUSANZA, DAVID BARNES, DENNIS KANYGIN, RUSSELL SARMIENTO, SOWMYA...

  3. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids...... and chromosomes from prokaryotic organisms. All known plasmid-encoded par loci specify three components: a cis-acting centromere-like site and two trans-acting proteins that form a nucleoprotein complex at the centromere (i.e. the partition complex). The proteins are encoded by two genes in an operon...... that is autoregulated by the par-encoded proteins. In all cases, the upstream gene encodes an ATPase that is essential for partitioning. Recent cytological analyses indicate that the ATPases function as adaptors between a host-encoded component and the partition complex and thereby tether plasmids and chromosomal...

  4. Incompatibility boundaries for properties of community partitions

    CERN Document Server

    Browet, Arnaud; Sarlette, Alain

    2016-01-01

    We prove the incompatibility of certain desirable properties of community partition quality functions. Our results generalize the impossibility result of [Kleinberg 2003] by considering sets of weaker properties. In particular, we use an alternative notion to solve the central issue of the consistency property. (The latter means that modifying the graph in a way consistent with a partition should not have counterintuitive effects). Our results clearly show that community partition methods should not be expected to perfectly satisfy all ideally desired properties. We then proceed to show that this incompatibility no longer holds when slightly relaxed versions of the properties are considered, and we provide in fact examples of simple quality functions satisfying these relaxed properties. An experimental study of these quality functions shows a behavior comparable to established methods in some situations, but more debatable results in others. This suggests that defining a notion of good partition in communitie...

  5. Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

    Directory of Open Access Journals (Sweden)

    A. R. Smith

    2011-02-01

    Full Text Available Through increases in net primary production (NPP, elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270 g m−2 in ambient and 6450 (se 130 g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018. During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.

  6. Data Clustering via Principal Direction Gap Partitioning

    OpenAIRE

    Abbey, Ralph; Diepenbrock, Jeremy; Langville, Amy; Meyer, Carl; Race, Shaina; Zhou, Dexin

    2012-01-01

    We explore the geometrical interpretation of the PCA based clustering algorithm Principal Direction Divisive Partitioning (PDDP). We give several examples where this algorithm breaks down, and suggest a new method, gap partitioning, which takes into account natural gaps in the data between clusters. Geometric features of the PCA space are derived and illustrated and experimental results are given which show our method is comparable on the datasets used in the original paper on PDDP.

  7. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  8. Bipartite graph partitioning and data clustering

    OpenAIRE

    Zha, Hongyuan; He, Xiaofeng; Ding, Chris; Gu, Ming; Simon, Horst D

    2001-01-01

    Many data types arising from data mining applications can be modeled as bipartite graphs, examples include terms and documents in a text corpus, customers and purchasing items in market basket analysis and reviewers and movies in a movie recommender system. In this paper, we propose a new data clustering method based on partitioning the underlying bipartite graph. The partition is constructed by minimizing a normalized sum of edge weights between unmatched pairs of vertices of the bipartite g...

  9. The mathematics of lecture hall partitions

    OpenAIRE

    Savage, Carla D.

    2016-01-01

    Over the past twenty years, lecture hall partitions have emerged as fundamental combinatorial structures, leading to new generalizations and interpretations of classical theorems and new results. In recent years, geometric approaches to lecture hall partitions have used polyhedral geometry to discover further properties of these rich combinatorial objects. In this paper we give an overview of some of the surprising connections that have surfaced in the process of trying to understand the lect...

  10. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  11. Partition, migration, and jute cultivation in India

    OpenAIRE

    Bharadwaj, Prashant; Fenske, James

    2012-01-01

    Climate change is expected to displace millions of involuntary migrants in Bangladesh. We draw on history to show that these ``environmental refugees'' can play a positive role in the regions that receive them by looking at the partition of India. We use an instrumental variables (IV) strategy to show that the migrants played a major role in India's take-up of jute cultivation. Our estimates suggest that migrants fully explain post-Partition jute cultivation. Consistent with migrants bring...

  12. A Serial Multilevel Hypergraph Partitioning Algorithm

    OpenAIRE

    Lotfifar, Foad; Johnson, Matthew

    2016-01-01

    The graph partitioning problem has many applications in scientific computing such as computer aided design, data mining, image compression and other applications with sparse-matrix vector multiplications as a kernel operation. In many cases it is advantageous to use hypergraphs as they, compared to graphs, have a more general structure and can be used to model more complex relationships between groups of objects. This motivates our focus on the less-studied hypergraph partitioning problem. In...

  13. Geographical partition for distributed web crawling

    OpenAIRE

    Exposto, José; Macedo, Joaquim; Pina, António; Alves, Albano; Rufino, José

    2005-01-01

    This paper evaluates scalable distributed crawling by means of the geographical partition of the Web. The approach is based on the existence of multiple distributed crawlers each one responsible for the pages belonging to one or more previously identified geographical zones. The work considers a distributed crawler where the assignment of pages to visit is based on page content geographical scope. For the initial assignment of a page to a partition we use a simple heuristic that marks a page ...

  14. Stochastic Approximation Algorithms for Number Partitioning

    OpenAIRE

    Ruml, Wheeler

    1993-01-01

    This report summarizes research on algorithms for finding particularly good solutions to instances of the NP-complete number-partitioning problem. Our approach is based on stochastic search algorithms, which iteratively improve randomly chosen initial solutions. Instead of searching the space of all 2^(n-1), possible partitionings, however, we use these algorithms to manipulate indirect encodings of candidate solutions. An encoded solution is evaluated by a decoder, which interprets the encod...

  15. Nodal minimal partitions in dimension 3

    OpenAIRE

    Helffer, B.; Hoffmann-Ostenhof, T.; Terracini, S.

    2010-01-01

    In continuation of previous papers, we analyse the properties of spectral minimal k-partitions of an open set in R3 which are nodal, i.e. produced by the nodal domains of an eigenfunction of the Dirichlet Laplacian in . We show that such a k-partition is necessarily the nodal one associated with a k-th eigenfunction. Hence we have in this case equality in Courant’s nodal theorem.

  16. Perturbative partition function for squashed S^5

    CERN Document Server

    Imamura, Yosuke

    2012-01-01

    We compute the index of 6d N=(1,0) theories on S^5xR containing vector and hypermultiplets. We only consider the perturbative sector without instantons. By compactifying R to S^1 with a twisted boundary condition and taking the small radius limit, we derive the perturbative partition function on a squashed S^5. The 1-loop partition function is represented in a simple form with the triple sine function.

  17. A Gray path on binary partitions

    CERN Document Server

    Colthurst, Thomas

    2009-01-01

    A binary partition of a positive integer $n$ is a partition of $n$ in which each part has size a power of two. In this note we first construct a Gray sequence on the set of binary partitions of $n$. This is an ordering of the set of binary partitions of each $n$ (or of all $n$) such that adjacent partitions differ by one of a small set of elementary transformations; here the allowed transformatios are replacing $2^k+2^k$ by $2^{k+1}$ or vice versa (or addition of a new +1). Next we give a purely local condition for finding the successor of any partition in this sequence; the rule is so simple that successive transitions can be performed in constant time. Finally we show how to compute directly the bijection between $k$ and the $k$th term in the sequence. This answers a question posed by Donald Knuth in section 7.2.1 of The Art of Computer Programming.

  18. Carbon dioxide emissions as affected by alternative long-term irrigation and tillage management practices in the lower Mississippi River Valley.

    Science.gov (United States)

    Smith, S F; Brye, K R

    2014-01-01

    Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV). As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years) effects of irrigation (i.e., irrigated and dryland production) and tillage (conventional and no-tillage) on estimated carbon dioxide (CO2) emissions from soil respiration during two soybean (Glycine max L.) growing seasons from a wheat- (Triticum aestivum L.-) soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P > 0.05); however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P = 0.044) under irrigated (21.9 Mg CO2 ha(-1)) than under dryland management (11.7 Mg CO2 ha(-1)). Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability. PMID:25371912

  19. Game Theoretic Iterative Partitioning for Dynamic Load Balancing in Distributed Network Simulation

    CERN Document Server

    Kurve, Aditya; Miller, David J; Kesidis, George

    2011-01-01

    High fidelity simulation of large-sized complex networks can be realized on a distributed computing platform that leverages the combined resources of multiple processors or machines. In a discrete event driven simulation, the assignment of logical processes (LPs) to machines is a critical step that affects the computational and communication burden on the machines, which in turn affects the simulation execution time of the experiment. We study a network partitioning game wherein each node (LP) acts as a selfish player. We derive two local node-level cost frameworks which are feasible in the sense that the aggregate state information required to be exchanged between the machines is independent of the size of the simulated network model. For both cost frameworks, we prove the existence of stable Nash equilibria in pure strategies. Using iterative partition improvements, we propose game theoretic partitioning algorithms based on the two cost criteria and show that each descends in a global cost. To exploit the d...

  20. Wavelet Space Partitioning for Symbolic Time Series Analysis

    Institute of Scientific and Technical Information of China (English)

    Venkatesh Rajagopalan; Asok Ray

    2006-01-01

    @@ A crucial step in symbolic time series analysis (STSA) of observed data is symbol sequence generation that relies on partitioning the phase-space of the underlying dynamical system. We present a novel partitioning method,called wavelet-space (WS) partitioning, as an alternative to symbolic false nearest neighbour (SFNN) partitioning.While the WS and SFNN partitioning methods have been demonstrated to yield comparable performance for anomaly detection on laboratory apparatuses, computation of WS partitioning is several orders of magnitude faster than that of the SFNN partitioning.

  1. Life-cycle assessment of lightweight textile membrane partition walls

    OpenAIRE

    Neiva, Sara Daniela Oliveira; Mateus, Ricardo; Macieira, Mónica; Mendonça, Paulo, ed. lit.; Bragança, L.

    2012-01-01

    This paper analyze the environmental, functional and economical performances of some conceptual lightweights textiles membranes partitions walls and to compare one of them with two technologies present in Portuguese market: i) the heavyweight conventional hollow brick partition wall; and ii) the lightweight reference plasterboard partition wall. Advantages of use textile/ fibrous/ membrane based materials in partition walls are focused and they may contribute for the development of new partit...

  2. Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees

    Institute of Scientific and Technical Information of China (English)

    MA Ping; BAI Tuan-hui; MA Feng-wang

    2015-01-01

    To understand how drought stress affects CO2 assimilation and energy partitioning in apple (Malus domestica Borkh.), we investigated photosynthesis and photo-protective mechanisms when irrigation was withheld from potted Fuji trees. As the drought progressing, soil relative water content (SRWC) decreased from 87 to 24%in 15 d;this combined the decreasing in leaf relative water content (LRWC), net photosynthesis rate (Pn) and stomatal conductance (Gs). However, the concen-trations of chlorophyl s (Chl) remained unchanged while Pn values were declining. Photochemistry reactions were slightly down-regulated only under severe drought. Rubisco activity was signiifcantly decreased as drought conditions became more severe. The actual efifciency of photosystem II (ΦPSI ) was diminished as drought became more intense. Consequently, xanthophyl-regulated dissipation of thermal energy was greatly enhanced. Simultaneously, the ratio ofΦPSI to the quantum yield of carbon metabolism, which is measured under non-photorespiratory conditions, increased in paral el with drought severity. Our results indicate that, under progressive drought stress, the reduction in photosynthesis in apple leaves can be attributed primarily to stomatal limitations and the inhibited capacity for CO2 ifxation. Xanthophyl cycle-dependent ther-mal dissipation and the Mehler reaction are the most important pathways for dispersing excess energy from apple leaves during periods of drought stress.

  3. Orality and the Archive: Teaching the Partition of India through Oral Histories

    Directory of Open Access Journals (Sweden)

    Gaana Jayagopalan

    2016-07-01

    Full Text Available This article is a reflection on how select oral histories and witness accounts about the partition of India and Pakistan, especially those by Urvashi Butalia and Veena Das were used in a graduate seminar in Bengaluru. The article explores the strength of oral archives as repositories of radical enquiry that may be used in classrooms to understand the complex nature of history, historiography, and interrogate the State’s archival processes. The article explores how students began to see the potency in oral archives as a space that embodies the victimhood of partition victims as opposed to an effacement of the sufferers in most state archives of the event. It observes how the memorialisation of Partition is different in the State’s construction of partition: to the victims who recount their stories, it is the ‘everyday’ that becomes predominant as opposed to State archives that seek to represent the differences between the two nations as paramount in its processes of memorialisation. The note concludes by emphasising the need to put such oral histories to use in classroom, especially to understand the nature of suffering. Through a reading of such stories, it is proposed, an affective literacy is enabled in students’ modes of enquiry about trauma, memory and suffering.   Keywords: Partition of India, affective literacy, archives, oral histories, witness narratives.

  4. Thermodynamics of phenanthrene partition into solid organic matter from water

    Institute of Scientific and Technical Information of China (English)

    CHEN Bao-liang; ZHU Li-zhong; TAO Shu

    2005-01-01

    The thermodynamic behavior of organic contaminants in soils is essential to develop remediation technologies and assess risk from alternative technologies. Thermodynamics of phenanthrene partition into four solids (three soils and a bentonite) from water were investigated. The thermodynamics parameters (Δ H, Δ G°, Δ S°, ) were calculated according to experimental data. The total sorption heats of phenanthrene to solids from water ranged from - 7.93 to - 17.1 kJ/mol, which were less exothermic than the condensation heat of phenanthrene-solid(i.e., - 18.6 k J/mol). The partition heats of phenanthrene dissolved into solid organic matter ranged from 23.1 to 32.2k J/mol, which were less endothermic than the aqueous dissolved heat of phenanthrene(i. e., 40.2 kJ/mol), and were more endothermic than the fusion heat of phenanthrene-solid (i. e., 18.6 kJ/mol). The standard free energy changes, Δ G°, are all negative which suggested that phenanthrene sorption into solid was a spontaneous process. The positive values of standard entropy changes,ΔS° , show a gain in entropy for the transfer of phenanthrene at the stated standard state. Due to solubility-enhancement of phenanthrene,the partition coefficients normalized by organic carbon contents decrease with increasing system temperature(i. e., In Koc = -0.284In S +9.82( n =4, r2 = 0.992)). The solubility of phenanthrene in solid organic matter increased with increasing temperatures. Transports of phenanthrene in different latitude locations and seasons would be predicted according to its sorption thermodynamics behavior.

  5. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    Science.gov (United States)

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively. PMID:26278374

  6. Partitioning and purification of extracellular β-1,3-1,4-glucanase in aqueous two-phase systems

    Institute of Scientific and Technical Information of China (English)

    HE Guo-qing; ZHANG Xiu-yan; TANG Xing-jun; CHEN Qi-he; RUAN Hui

    2005-01-01

    The partition behaviors of β-1,3-1,4-glucanase, α-amylase and neutral proteases from clarified and whole fermentation broths of Bacillus subtilis ZJF-1A5 were investigated. An aqueous two-phase system (polyethylene glycol (PEG)/MgSO4)was examined with regard to the effects of PEG molecular weight (MW) and concentration, MgSO4 concentration, pH and NaCl concentration on enzyme partition and extraction. The MW and concentration of PEG were found to have significant effects on enzyme partition and extraction with low MW PEG showing the greatest benefit in the partition and extraction of β-glucanase with the PEG/MgSO4 system. MgSO4 concentration influenced the partition and extraction of β-glucanase significantly. pH had little effect on β-glucanase or proteases partition but affected α-amylase partition when pH was over 7.0. The addition of NaCl had little effect on the partition behavior of β-glucanase but had very significant effects on the partitioning of α-amylase and on the neutral proteases. The partition behaviors of β-glucanase, α-amylase and proteases in whole broth were also investigated and results were similar to those obtained with clarified fermentation broth. A two-step process for purifying β-glucanase was developed, which achieved β-glucanase recovery of 65.3% and specific activity of 14027 U/mg, 6.6 times improvement over the whole broth.

  7. Carbon and other light element contents in the Earth's core based on first-principles molecular dynamics.

    Science.gov (United States)

    Zhang, Yigang; Yin, Qing-Zhu

    2012-11-27

    Carbon (C) is one of the candidate light elements proposed to account for the density deficit of the Earth's core. In addition, C significantly affects siderophile and chalcophile element partitioning between metal and silicate and thus the distribution of these elements in the Earth's core and mantle. Derivation of the accretion and core-mantle segregation history of the Earth requires, therefore, an accurate knowledge of the C abundance in the Earth's core. Previous estimates of the C content of the core differ by a factor of ∼20 due to differences in assumptions and methods, and because the metal-silicate partition coefficient of C was previously unknown. Here we use two-phase first-principles molecular dynamics to derive this partition coefficient of C between liquid iron and silicate melt. We calculate a value of 9 ± 3 at 3,200 K and 40 GPa. Using this partition coefficient and the most recent estimates of bulk Earth or mantle C contents, we infer that the Earth's core contains 0.1-0.7 wt% of C. Carbon thus plays a moderate role in the density deficit of the core and in the distribution of siderophile and chalcophile elements during core-mantle segregation processes. The partition coefficients of nitrogen (N), hydrogen, helium, phosphorus, magnesium, oxygen, and silicon are also inferred and found to be in close agreement with experiments and other geochemical constraints. Contents of these elements in the core derived from applying these partition coefficients match those derived by using the cosmochemical volatility curve and geochemical mass balance arguments. N is an exception, indicating its retention in a mantle phase instead of in the core. PMID:23150591

  8. Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge.

    Science.gov (United States)

    Wang, Wenhao; Wang, Wen-Xiong

    2016-07-01

    Severe trace metal pollution due to industrial effluents releases was found in Jiulong River Estuary, Southern China. In this study, water samples were collected during effluent release events to study the dynamic changes of environmental conditions and metal partitioning among dissolved, particulate and colloidal phases controlled by estuarine mixing. Intermittent effluent discharges during low tide caused decreasing pH and dissolved oxygen, and induced numerous suspended particulate materials and dissolved organic carbon to the estuary. Different behaviors of Cu, Zn, Ni, Cr and Pb in the dissolved fraction against the conservative index salinity indicated different sources, e.g., dissolved Ni from the intermittent effluent. Although total metal concentrations increased markedly following effluent discharges, Cu, Zn, Cr, Pb were predominated by the particulate fraction. Enhanced adsorption onto particulates in the mixing process resulted in elevated partitioning coefficient (Kd) values for Cu and Zn, and the particle concentration effect was not obvious under such anthropogenic impacts. Colloidal proportion of these metals (especially Cu and Zn) showed positive correlations with dissolved or colloidal organic carbon, suggesting the metal-organic complexation. However, the calculated colloidal partitioning coefficients were relatively constant, indicating the excess binding capacity. Overall, the intermittent effluent discharge altered the particulate/dissolved and colloidal/soluble phase partitioning process and may further influence the bioavailability and potential toxicity to aquatic organisms. PMID:27061473

  9. Partitioning of unstructured meshes for load balancing

    International Nuclear Information System (INIS)

    Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab

  10. Partition functions and graphs: A combinatorial approach

    CERN Document Server

    Solomon, A I; Duchamp, G; Horzela, A; Penson, K A; Solomon, Allan I.; Blasiak, Pawel; Duchamp, Gerard; Horzela, Andrzej; Penson, Karol A.

    2004-01-01

    Although symmetry methods and analysis are a necessary ingredient in every physicist's toolkit, rather less use has been made of combinatorial methods. One exception is in the realm of Statistical Physics, where the calculation of the partition function, for example, is essentially a combinatorial problem. In this talk we shall show that one approach is via the normal ordering of the second quantized operators appearing in the partition function. This in turn leads to a combinatorial graphical description, giving essentially Feynman-type graphs associated with the theory. We illustrate this methodology by the explicit calculation of two model examples, the free boson gas and a superfluid boson model. We show how the calculation of partition functions can be facilitated by knowledge of the combinatorics of the boson normal ordering problem; this naturally gives rise to the Bell numbers of combinatorics. The associated graphical representation of these numbers gives a perturbation expansion in terms of a sequen...

  11. Fourier transform spectrometer controller for partitioned architectures

    Science.gov (United States)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  12. Electrochemical determination of partition coefficients of drugs.

    Science.gov (United States)

    Kontturi, K; Murtomäki, L

    1992-10-01

    An electrochemical method for the determination of partition coefficients of drugs that can exist as ions in aqueous solutions is presented. The method involves cyclic voltammetry at the polarizable interface between two immiscible electrolyte solutions. Because n-octanol is an unsuitable solvent for electrochemical purposes, 1,2-dichloroethane, which has electronic properties similar to those of n-octanol, was used in the measurements. The values obtained could be correlated with the values for n-octanol-water partition taken from the literature by an approach based on the linear solvation relationship: log P1 = a log P2 + b; in this relationship, a and b are constants and P1 and P2 correspond to the two different organic and aqueous phase partition equilibria. Furthermore, aqueous diffusion coefficients of drugs were determined from voltammograms. PMID:1432622

  13. Parallel Graph Partitioning for Complex Networks

    CERN Document Server

    Meyerhenke, Henning; Schulz, Christian

    2014-01-01

    Processing large complex networks like social networks or web graphs has recently attracted considerable interest. In order to do this in parallel, we need to partition them into pieces of about equal size. Unfortunately, previous parallel graph partitioners originally developed for more regular mesh-like networks do not work well for these networks. This paper addresses this problem by parallelizing and adapting the label propagation technique originally developed for graph clustering. By introducing size constraints, label propagation becomes applicable for both the coarsening and the refinement phase of multilevel graph partitioning. We obtain very high quality by applying a highly parallel evolutionary algorithm to the coarsened graph. The resulting system is both more scalable and achieves higher quality than state-of-the-art systems like ParMetis or PT-Scotch. For large complex networks the performance differences are very big. For example, our algorithm can partition a web graph with 3.3 billion edges ...

  14. Crescimento e partição de matéria seca e de carbono no mamoeiro em resposta à nutrição nitrogenada Growth and dry matter and carbon partition in papaya plants in response to nitrogen nutrition

    Directory of Open Access Journals (Sweden)

    Jailson Lopes Cruz

    2004-12-01

    ended sixty-four days after sowing. It was shown that total dry matter production of stem, leaf and roots, as well as the values of leaf area, leaf area/leaf mass ratio, stem mass and specific leaf area were smaller for plants grown under lower nitrogen availability. However, the root/shoot ratio did not show differences among treatments, indicating that there was no adjustment in carbon partition between these plant parts. The concentrations of total soluble sugars (TSS, reducing sugars (RS and not reducing sugars (NRS increased with the increase of NO-3 in solution. An opposing trend was noted for starch concentration, higher for plants grown under NO-3 deficiency. The starch/NRS ratio was higher for plants grown under lower NO-3 availability, suggesting that there was a reduction of export levels of assimilates produced.

  15. Partitioning of resveratrol between pentane and DMSO

    DEFF Research Database (Denmark)

    Shen, Chen; Stein, Paul C.; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    Partitioning of trans-3,5,4′-trihydroxy-stilbene (resveratrol) between n-pentane and DMSO was investigated as a contribution to understand the interaction between resveratrol and biomembranes. In order to determine the partition coefficient P* of resveratrol between pentane and DMSO, resveratrol...... solutions in DMSO were equilibrated against pentane solutions. From the UV-vis absorbance of resveratrol in the DMSO phase, P* = 1.74 × 10−3 was determined. The mutual miscibility of pentane and DMSO, measured by 1H-NMR spectroscopy, was taken into account. The value of P* indicates a preference of...

  16. Partitioning SAT Instances for Distributed Solving

    Science.gov (United States)

    Hyvärinen, Antti E. J.; Junttila, Tommi; Niemelä, Ilkka

    In this paper we study the problem of solving hard propositional satisfiability problem (SAT) instances in a computing grid or cloud, where run times and communication between parallel running computations are limited.We study analytically an approach where the instance is partitioned iteratively into a tree of subproblems and each node in the tree is solved in parallel.We present new methods for constructing partitions which combine clause learning and lookahead. The methods are incorporated into the iterative approach and its performance is demonstrated with an extensive comparison against the best sequential solvers in the SAT competition 2009 as well as against two efficient parallel solvers.

  17. Partitioning and transmutation. Annual Report 1997

    International Nuclear Information System (INIS)

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process

  18. Partitioning and transmutation. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aa.; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1997-12-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. Refs, figs, tabs.

  19. Partition signed social networks via clustering dynamics

    Science.gov (United States)

    Wu, Jianshe; Zhang, Long; Li, Yong; Jiao, Yang

    2016-02-01

    Inspired by the dynamics phenomenon occurred in social networks, the WJJLGS model is modified to imitate the clustering dynamics of signed social networks. Analyses show that the clustering dynamics of the model can be applied to partition signed social networks. Traditionally, blockmodel is applied to partition signed networks. In this paper, a detailed dynamics-based algorithm for signed social networks (DBAS) is presented. Simulations on several typical real-world and illustrative networks that have been analyzed by the blockmodel verify the correctness of the proposed algorithm. The efficiency of the algorithm is verified on large scale synthetic networks.

  20. Acyl-CoA metabolism and partitioning

    DEFF Research Database (Denmark)

    Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2014-01-01

    expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing...... metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute...

  1. DNA Partitioning in Confining Nanofluidic Slits

    Science.gov (United States)

    Greenier, Madeline; Levy, Stephen

    We measure the partitioning of double stranded DNA molecules in moderately and strongly confining nanofluidic slit-like structures. Using fluorescent microscopy, the free energy penalty of confinement is inferred by comparing the concentration of DNA molecules in adjoining slits of different depths. These depths range in size from several persistence lengths to the DNA molecule's radius of gyration. The partition coefficient is determined as a function of the slit depth, DNA contour length, and DNA topology. We compare our results to theory and Monte Carlo simulations that predict the loss of free energy for ideal and semiflexible excluded volume polymers confined between parallel plates.

  2. The largest singletons of set partitions

    OpenAIRE

    Sun, Yidong; Wu, Xiaojuan

    2010-01-01

    Recently, Deutsch and Elizalde studied the largest and the smallest fixed points of permutations. Motivated by their work, we consider the analogous problems in set partitions. Let $A_{n,k}$ denote the number of partitions of $\\{1,2,\\dots, n+1\\}$ with the largest singleton $\\{k+1\\}$ for $0\\leq k\\leq n$. In this paper, several explicit formulas for $A_{n,k}$, involving a Dobinski-type analog, are obtained by algebraic and combinatorial methods, many combinatorial identities involving $A_{n,k}$...

  3. Partitioning of organic production in marine plankton communities

    DEFF Research Database (Denmark)

    Conan, P.; Søndergaard, Morten; Kragh, T.;

    2007-01-01

    N limitation or forced the plankton communities to P limitation. Per added limiting nutrient, the diatom-dominated bags produced more particulate (POC) and dissolved organic carbon (DOC) than the other bags. However, the relative partitioning of net production to POC and DOC did not differ as a...... function of the plankton communities. Between 22% and 33% of the net production accumulated as new DOC. The higher values were found in the N-limited bags. The production of new dissolved organic nitrogen (DON) was variable over time, and short periods of positive production were followed by removal...... a constant low net production of dissolved organic phosphorus (DOP) across the nutrient gradient. The production of DOP was low in the P-limited (-Si) bags; however, with a surplus of inorganic P, most of the assimilated P (74% to 85%) was recovered as new DOP. The consequence was a huge range in...

  4. Optimization of thread partitioning parameters in speculative multithreading based on artificial immune algorithm

    Institute of Scientific and Technical Information of China (English)

    Yu-xiang LI; Yin-liang ZHAO‡; Bin LIU; Shuo JI

    2015-01-01

    Thread partition plays an important role in speculative multithreading (SpMT) for automatic parallelization of ir-regular programs. Using unified values of partition parameters to partition different applications leads to the fact that every ap-plication cannot own its optimal partition scheme. In this paper, five parameters affecting thread partition are extracted from heuristic rules. They are the dependence threshold (DT), lower limit of thread size (TSL), upper limit of thread size (TSU), lower limit of spawning distance (SDL), and upper limit of spawning distance (SDU). Their ranges are determined in accordance with heuristic rules, and their step-sizes are set empirically. Under the condition of setting speedup as an objective function, all com-binations of five threshold values form the solution space, and our aim is to search for the best combination to obtain the best thread granularity, thread dependence, and spawning distance, so that every application has its best partition scheme. The issue can be attributed to a single objective optimization problem. We use the artificial immune algorithm (AIA) to search for the optimal solution. On Prophet, which is a generic SpMT processor to evaluate the performance of multithreaded programs, Olden bench-marks are used to implement the process. Experiments show that we can obtain the optimal parameter values for every benchmark, and Olden benchmarks partitioned with the optimized parameter values deliver a performance improvement of 3.00%on a 4-core platform compared with a machine learning based approach, and 8.92%compared with a heuristics-based approach.

  5. Capacity of US Forests to Maintain Existing Carbon Sequestration will be affected by Changes in Forest Disturbances and to a greater extent, the Economic and Societal Influences on Forest Management and Land Use

    Science.gov (United States)

    Joyce, L. A.; Running, S. W.; Breshears, D. D.; Dale, V.; Malmsheimer, R. W.; Sampson, N.; Sohngen, B.; Woodall, C. W.

    2012-12-01

    Increasingly the value of US forest carbon dynamics and carbon sequestration is being recognized in discussions of adaptation and mitigation to climate change. Past exploitation of forestlands in the United States for timber, fuelwood, and conversion to agriculture resulted in large swings in forestland area and terrestrial carbon dynamics. The National Climate Assessment explored the implications of current and future stressors, including climate change, to the future of forest carbon dynamics in the United States. While U.S forests and associated harvested wood products sequestered roughly 13 percent of all carbon dioxide emitted in the United States in 2010, the capacity of forests to maintain this amount of carbon sequestration will be affected by the effects of climate change on forest disturbances, tree growth and mortality, changes in species composition, and to a greater extent, the economic and societal influences on forest management and forestland use. Carbon mitigation through forest management includes three strategies: 1) land management to increase forest area (afforestation) and/or avoid deforestation; 2) carbon management in existing forests; and 3) use of wood in place of materials that require more carbon emissions to produce, in place of fossil fuels to produce energy or in wood products for carbon storage. A significant financial incentive facing many private forest owners is the value of their forest lands for conversion to urban or developed uses. In addition, consequences of large scale die-off and wildfire disturbance events from climate change pose major challenges to forestland area and forest management with potential impacts occurring up to regional scales for timber, flooding and erosion risks, other changes in water budgets, and biogeochemical changes including carbon storage. Options for carbon management on existing forests include practices that increase forest growth such as fertilization, irrigation, switch to fast

  6. Thermal partition of two asymmetric discrete heat sources by cold air curtain

    Institute of Scientific and Technical Information of China (English)

    DENG Quan-wei; DENG Qi-hong

    2005-01-01

    A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.

  7. Three-way partitioning with two C isotopes: A field study of pyrogenic C, soil organic C, and plant root C and their interactions

    Science.gov (United States)

    Whitman, T.; Lehmann, J.

    2013-12-01

    Soils hold a globally important stock of organic carbon (C). The cycling of this stock both affects and is affected by climatic changes. One predicted effect of global climate change is changes to fire regimes. As well as releasing large quantities of CO2 through combustion, fires generate pyrogenic C (pyC), which is relatively stable chemically. PyC not only contributes directly to total soil C stocks, but also can affect the cycling of non-pyC and plant growth. These non-linear three-way interactions are challenging to predict, partly because it is methodologically challenging to distinguish the three sources of C in a single system using traditional isotopic partitioning approaches. One solution would be to use 12C, 13C, and radioactive 14C to partition the three C sources. However, radioisotope work can be expensive and is tightly regulated. In a 2x2 experimental design (here, with pyC additions and plant presence as the two treatments), it is possible to use only the stable isotopes (12C and 13C) to separate the three emission sources, given certain conditions. Our approach is based on the inclusion of a fifth treatment, which is a mirror of the three-part treatment (soil with pyC and with plants), but with one component (here, pyC) having a different 13C signature. This approach is most robust when the third source is an external input that can be produced in a controlled manner, which is the case for pyC. We describe our application of this system to a field trial in upstate NY. The soil was developed primarily under C3 plants (∂13C = -23‰), the plant is sorghum-sudan grass (∂13C = -12.6‰), and the pyC was produced from 13C labeled maize at 350°C (∂13C = +35.6‰ and +106.6‰). CO2 flux data are collected daily initially, then bi-weekly, over three months. Gas samples for isotopic partitioning are collected at three timepoints, using an isotopic forced diffusion chamber technique. We discuss the implications of our findings for carbon cycling as

  8. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    Science.gov (United States)

    Kang, Phil-Goo; Mitchell, Myron J.; McHale, Patrick J.; Driscoll, Charles T.; Inamdar, Shreeram; Park, Ji-Hyung

    2016-05-01

    Lakes nested in forested watersheds play an important role in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC) and dissolved organic (DON) and inorganic nitrogen (DIN) in aquatic ecosystems of the Arbutus Lake watershed to evaluate how a lake nested in a forested watershed affects the sources (e.g., production) and sinks (e.g., retention) of DOC and DON in the Adirondack Mountains of New York, USA. We observed no significant long-term changes of DOC and DON in the lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass balances between inlet and outlet for the period from 2000 to 2009 suggested that the lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 µmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: + 87 µmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low percent retention ((influx-outflux)/influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different

  9. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    Directory of Open Access Journals (Sweden)

    P.-G. Kang

    2015-10-01

    Full Text Available Lakes nested in forested watersheds play important roles in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC, dissolved organic nitrogen (DON, and dissolved inorganic nitrogen (DIN in the Arbutus Lake Watershed to evaluate how a lake nested in a forested watershed affects the dynamics of DOC and DON in the Adirondack Mountains of New York State, USA. We observed no significant long-term changes of concentrations and fluxes of DOC and DON in the Lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the Lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass-balances between inlet and outlet for the period from 2000 to 2009 suggested that the Lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha−1 yr−1. In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: −1.0 μmol N L−1 between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: +87 μmol C L−1. DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha−1 yr−1; range of differences: −15 to 27 mol N ha−1 yr−1. DON exhibited low % retention ((influx − outflux / influx (mean: 6.9 %, range: −34.8 to +31.2 compared to DOC (mean: 30.1 %, range: +9.2 to +44.1. The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating a lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially

  10. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    Science.gov (United States)

    Kang, P.-G.; Mitchell, M. J.; McHale, P. J.; Driscoll, C. T.; McHale, M. R.; Inamdar, S.; Park, J.-H.

    2015-10-01

    Lakes nested in forested watersheds play important roles in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN) in the Arbutus Lake Watershed to evaluate how a lake nested in a forested watershed affects the dynamics of DOC and DON in the Adirondack Mountains of New York State, USA. We observed no significant long-term changes of concentrations and fluxes of DOC and DON in the Lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the Lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass-balances between inlet and outlet for the period from 2000 to 2009 suggested that the Lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 μmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: +87 μmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low % retention ((influx - outflux) / influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating a lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different biogeochemical

  11. Partition Behavior of Penicillin in Three-liquid-phase Extraction System

    Institute of Scientific and Technical Information of China (English)

    谭显东; 季清荣; 常志东

    2006-01-01

    Partition behavior of penicillins G and V was studied in a novel three-liquid-phase extraction system, which is composed of butyl acetate (BA), polyethylene glycol (PEG), ammonia sulfate [(NH4)2SO4] and water (H2O). The main components in the top, middle and bottom phases are butyl acetate, polyethylene glycol aqueous solution and ammonia sulfate aqueous solution, respectively. Some parameters such as partition coefficients Di/j and mass fractions Ei ofpenicillins G and V were determined at the room temperature, respectively. Experimental efforts have been made to investigate the partition behavior of penicillin in the three-liquid-phase extraction system, including initial concentrations of phase-forming components [PEG and (NH4)2SO4], PEG molecular weight, pH, initial concentration of penicillin. The results indicated that penicillins G and V have the similar partition behavior. They preferentially distribute into the middle phase with the increase of initial concentration of phase-forming components and into the top phase with the decrease of pH, while partition coefficient Dm/b is hardly affected by pH value. The variation of PEG molecular weight has little effect on mass fractions of penicillin. The increase of initial concentration of penicillins G and V could lead to the increase of Dt/b, Dm/b and the decrease of Dt/m, while their mass fractions in all phases were almost independent on their initial concentrations.

  12. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (Ktw) are measured. • Measured Ktw values are nearly the same as the respective Kow. • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (Ktw) for organic compounds, the log Ktw values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log Ktw determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log Ktw are closely related to their respective log Kow (octanol–water), with log Kow = 1.9 to 6.5. A significant difference is observed between the present and early measured log Ktw for compounds with log Kow > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log Kaw/lipid) are virtually identical to the respective log Ktw values, which manifests the dominant lipid-partition effect of the compounds with algae

  13. Virasoro constraint for Nekrasov instanton partition function

    CERN Document Server

    Kanno, Shoichi; Zhang, Hong

    2012-01-01

    We show that Nekrasov instanton partition function for SU(N) gauge theories satisfies recursion relations in the form of U(1)+Virasoro constraints when {\\beta} = 1. The constraints give a direct support for AGT conjecture for general quiver gauge theories.

  14. Partitioning Hadamard vectors into Hadamard matrices

    OpenAIRE

    Casazza, Peter G.; Tremain, Janet C.

    2016-01-01

    We will show that in a space of dimension $m$, any family of $2^{m-1}$ distinct Hadamard vectors (where you can choose x or -x but not both) can be partitioned into Hadamard matrices if and only if $m=2^n$ for some n. We will solve this problem with a simple algorithm for assigning the vectors to the Hadamard matrices.

  15. Partition Function of Interacting Calorons Ensemble

    CERN Document Server

    Deldar, Sedigheh

    2015-01-01

    We present a method for computing the partition function of a caloron ensemble taking into account the interaction of calorons. We focus on caloron-Dirac string interaction and show that the metric that Diakonov and Petrov offered works well in the limit where this interaction occurs. We suggest computing the correlation function of two polyakov loops by applying Ewald's method.

  16. Partition function of interacting calorons ensemble

    Science.gov (United States)

    Deldar, S.; Kiamari, M.

    2016-01-01

    We present a method for computing the partition function of a caloron ensemble taking into account the interaction of calorons. We focus on caloron-Dirac string interaction and show that the metric that Diakonov and Petrov offered, works well in the limit where this interaction occurs. We suggest computing the correlation function of two polyakov loops by applying Ewald's method.

  17. Mapping Pesticide Partition Coefficients By Electromagnetic Induction

    Science.gov (United States)

    A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...

  18. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  19. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  20. Fair Partitions of Polygons: An Elementary Introduction

    Indian Academy of Sciences (India)

    R Nandakumar; N Ramana Rao

    2012-08-01

    We introduce the question: Given a positive integer , can any 2D convex polygonal region be partitioned into convex pieces such that all pieces have the same area and the same perimeter? The answer to this question is easily `yes’ for =2. We give an elementary proof that the answer is `yes’ for =4 and generalize it to higher powers of 2.

  1. Scheduling Driven Partitioning of Heterogeneous Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    In this paper we present an algorithm for system level hardware/software partitioning of heterogeneous embedded systems. The system is represented as an abstract graph which captures both data-flow and the flow of control. Given an architecture consisting of several processors, ASICs and shared b...

  2. Domain wall partition functions and KP

    International Nuclear Information System (INIS)

    We observe that the partition function of the six-vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP τ function and express it as an expectation value of charged free fermions (up to an overall normalization)

  3. Domain wall partition functions and KP

    CERN Document Server

    Foda, O; Zuparic, M

    2009-01-01

    We observe that the partition function of the six vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP tau function and express it as an expectation value of charged free fermions (up to an overall normalization).

  4. Baxter Algebras, Stirling Numbers and Partitions

    OpenAIRE

    Guo, Li

    2004-01-01

    Recent developments of Baxter algebras have lead to applications to combinatorics, number theory and mathematical physics. We relate Baxter algebras to Stirling numbers of the first kind and the second kind, partitions and multinomial coefficients. This allows us to apply congruences from number theory to obtain congruences in Baxter algebras.

  5. Set Partitions and the Multiplication Principle

    Science.gov (United States)

    Lockwood, Elise; Caughman, John S., IV

    2016-01-01

    To further understand student thinking in the context of combinatorial enumeration, we examine student work on a problem involving set partitions. In this context, we note some key features of the multiplication principle that were often not attended to by students. We also share a productive way of thinking that emerged for several students who…

  6. A Partition Temperley-Lieb Algebra

    OpenAIRE

    Juyumaya, Jesús

    2013-01-01

    We introduce a generalization of the Temperley--Lieb algebra. This generalization is defined by adding certain relations to the algebra of braids and ties. A specialization of this last algebra corresponds to one small Ramified Partition algebra, this fact is the motivation for the name of our generalization.

  7. Hydrological regulations, land use and a mud volcano affecting the sediment and carbon load of the tropical Brantas River, Java, Indonesia

    Science.gov (United States)

    Jennerjahn, Tim; Jänen, Ingo

    2014-05-01

    Intensive human uses of the coastal zone and increasing extreme events are more and more endangering the integrity of coastal ecosystems during the Anthropocene. This is of particular importance in SE Asia where large parts of the population live in the coastal zone and economically depend on its resources. Intensive tectonic activity in the circum-Pacific 'Ring of fire' exposes the region to extreme natural events like volcano eruptions, earthquakes and occasionally following tsunamis. The Indonesian island of Java is a prime example in this respect because of its location on an active continental margin and a population density >1,000 inhabitants km-2. Its second largest river, the Brantas, empties into the shallow Madura Strait through two major branches, the Wonokromo and the Porong, the latter being responsible for 80 % of the discharge. Major land use in the catchment is agriculture (61 %) and the hydrology and sediment load of the river is regulated by 8 large dams and numerous weirs. The estuarine lowlands in the prograding delta were once covered by mangroves which were to a large extent replaced by aquaculture ponds. The eruption of a mud volcano near the Porong in 2006 added another factor affecting the amount and composition of the dissolved and particulate river loads. Concentrations of total suspended sediments (TSM) and particulate organic carbon (POC) displayed large seasonal variations in the Brantas before its diversion into the Porong and the Wonokromo as well as in the latter two with maxima during the wet season (Nov-April). High concentrations in the Porong during both seasons were mainly due to the constantly high input from the mud volcano. Favourable weathering conditions and agriculture as the predominant land use are responsible for high erosion rates of 4-14 mm yr-1 in the catchment. The 8 major dams and numerous weirs built between the 1970s and the 1990s retain a large amount of that sediment leading to an overall low sediment yield of

  8. An Energy Balance Model to Predict Chemical Partitioning in a Photosynthetic Microbial Mat

    Science.gov (United States)

    Hoehler, Tori M.; Albert, Daniel B.; DesMarais, David J.

    2006-01-01

    Studies of biosignature formation in photosynthetic microbial mat communities offer potentially useful insights with regards to both solar and extrasolar astrobiology. Biosignature formation in such systems results from the chemical transformation of photosynthetically fixed carbon by accessory microorganisms. This fixed carbon represents a source not only of reducing power, but also energy, to these organisms, so that chemical and energy budgets should be coupled. We tested this hypothesis by applying an energy balance model to predict the fate of photosynthetic productivity under dark, anoxic conditions. Fermentation of photosynthetically fixed carbon is taken to be the only source of energy available to cyanobacteria in the absence of light and oxygen, and nitrogen fixation is the principal energy demand. The alternate fate for fixed carbon is to build cyanobacterial biomass with Redfield C:N ratio. The model predicts that, under completely nitrogen-limited conditions, growth is optimized when 78% of fixed carbon stores are directed into fermentative energy generation, with the remainder allocated to growth. These predictions were compared to measurements made on microbial mats that are known to be both nitrogen-limited and populated by actively nitrogen-fixing cyanobacteria. In these mats, under dark, anoxic conditions, 82% of fixed carbon stores were diverted into fermentation. The close agreement between these independent approaches suggests that energy balance models may provide a quantitative means of predicting chemical partitioning within such systems - an important step towards understanding how biological productivity is ultimately partitioned into biosignature compounds.

  9. Partitioning of biocides between water and inorganic phases of render

    DEFF Research Database (Denmark)

    Urbanczyk, Michal; Bollmann, Ulla E.; Bester, Kai

    , the partitioning of biocides between water and inorganic phases of render was studied. In this study the partitioning constants of benzoisothiazolinone, carbendazim, dichlorooctylisothiazolinone, diuron, iodocarb, isoproturon, irgarol, mecoprop, methylisothiazolinone, octylisothiazolinone, terbutryn...

  10. The importance of applying an appropriate data partitioning

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2015-01-01

    In this presentation are described specific technical solutions put in place in various database applications of the ATLAS experiment at LHC where we make use of several partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL procedures and scheduler jobs to sustain data sliding windows in order to enforce various data retention policies. We also make use of the new Oracle 11g reference partitioning in the ATLAS Nightly Build System to achieve uniform data segmentation. However the most challenging was to segment the data of the new ATLAS Distributed Data Management system, which resulted in tens of thousands list type partitions and sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate physical model for the application data management. The so-far accumulated knowledge wi...

  11. The importance of having an appropriate data segmentation (partitioning)

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2014-01-01

    In this presentation will be shown real life examples from database applications in the ATLAS experiment @ LHC where we make use of many Oracle partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL for sustaining data sliding windows in order to enforce various data retention policies. We also make use of the reference partitioning in some use cases, however the most challenging was to segment the data of a large bookkeeping system which resulted in tens of thousands list partitions and list sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate for the use case data management model. The gained experience with all of those will be shared with the audience.

  12. Effect of Quenching and Partitioning Process on MA Constituent in Nb-Bearing HSLA Steel

    Institute of Scientific and Technical Information of China (English)

    YU Wei; CHEN Tao; JIAO Duotian; WU Huibin

    2012-01-01

    The effect of quenching-partitioning (Q-P) process on martensite-austenite (MA) constituent is investigated by the thermo-analysis simulator for a niobium-bearing HSLA steel.The process includes quenching from 950 ℃ to the intermediate temperature of 350-550 ℃ at the rate of 30 ℃/s and subsequent reheating at the rate of 20-50 ℃/s and partitioning at 660-800 ℃.The microstructure is characterized by nano probe,EBSD,colored metallograph,optical microscope and graphic analytic method.The results show that the improvement of distribution homogeneity of MA in microstructure,the diminishment of the MA average grain size and increment of the MA volume fraction is caused by the intermediate temperature decrease,the reheating rate increase and a proper partitioning temperature.The volume fraction of MA is up to 7.9% while the sample is quenched to 450 ℃,reheated at 50 ℃/s and partitioned at 750 ℃.The grain is granular or equiaxed in shape and the average grain size of MA is about 0.77-1.48 μm after treated by Q&P process.The grains tend to be coarse and with sharpy-angle as the intermediate temperature is up and the reheating rate and the partitioning temperature rises.The MA volume fraction depends on the untransformed austenite volume fraction after quenching and carbon diffusion time and temperature during partitioning process.

  13. Short-term partitioning of 14C-[U]-glucose in the soil microbial pool under varied aeration status

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Picek, T.; Tykva, Richard; Šimek, Miloslav; Pavlů, Bohuslav

    2004-01-01

    Roč. 40, - (2004), s. 386-392. ISSN 0178-2762 R&D Projects: GA ČR GA206/02/1036 Institutional research plan: CEZ:AV0Z6066911 Keywords : carbon partitioning * priming action * microbial biomass Subject RIV: EH - Ecology, Behaviour Impact factor: 1.276, year: 2004

  14. Dynamic State Space Partitioning for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami; Kristensen, Lars Michael

    2009-01-01

    We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different...... partitions, and thereby limit the amount of disk access and network communication. We report on several experiments made with our verification platform ASAP that implements the dynamic partitioning scheme proposed in this paper....

  15. Asymptotic Behavior of Mean Partitions in Consensus Clustering

    OpenAIRE

    Jain, Brijnesh

    2015-01-01

    Although consistency is a minimum requirement of any estimator, little is known about consistency of the mean partition approach in consensus clustering. This contribution studies the asymptotic behavior of mean partitions. We show that under normal assumptions, the mean partition approach is consistent and asymptotic normal. To derive both results, we represent partitions as points of some geometric space, called orbit space. Then we draw on results from the theory of Fr\\'echet means and sto...

  16. Hyper-Graph Based Database Partitioning for Transactional Workloads

    OpenAIRE

    Cao, Yu; Guo, Xiaoyan; Todd, Stephen

    2013-01-01

    A common approach to scaling transactional databases in practice is horizontal partitioning, which increases system scalability, high availability and self-manageability. Usu- ally it is very challenging to choose or design an optimal partitioning scheme for a given workload and database. In this technical report, we propose a fine-grained hyper-graph based database partitioning system for transactional work- loads. The partitioning system takes a database, a workload, a node cluster and part...

  17. Optimising query execution time in LHCb Bookkeeping System using partition pruning and Partition-Wise joins

    International Nuclear Information System (INIS)

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as range-hash partition, partition pruning and usage of the Partition-Wise joins. The system has to serve thousands of queries per minute, the performance and capability of the system is measured when the above performance optimization techniques are used

  18. Optimising query execution time in LHCb Bookkeeping System using partition pruning and Partition-Wise joins

    Science.gov (United States)

    Mathe, Zoltan; Charpentier, Philippe

    2014-06-01

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as range-hash partition, partition pruning and usage of the Partition-Wise joins. The system has to serve thousands of queries per minute, the performance and capability of the system is measured when the above performance optimization techniques are used.

  19. Facet-defining inequalities for the simple graph partitioning polytope

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    2007-01-01

    The simple graph partitioning problem is to partition an edge-weighted graph into mutually node-disjoint subgraphs, each containing at most b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we provide several classes of facet-defining inequalities for...... the associated simple graph partitioning polytope....

  20. GPU Acceleration of Graph Matching, Clustering, and Partitioning

    NARCIS (Netherlands)

    Fagginger Auer, B.O.

    2013-01-01

    We consider sequential algorithms for hypergraph partitioning and GPU (i.e., fine-grained shared-memory parallel) algorithms for graph partitioning and clustering. Our investigation into sequential hypergraph partitioning is concerned with the efficient construction of high-quality matchings for hyp

  1. Comparative Study on the Factors Affecting the Provincial Carbon Emissions%省域碳排放影响因素比较研究

    Institute of Scientific and Technical Information of China (English)

    欧元明; 周少甫

    2014-01-01

    分析碳排放情况,本文发现人均碳排放和碳排放密度之间没有必然联系;碳排放密度存在明显的空间群集效应。基于 LMDI 方法分解,发现人均产出起拉动作用,而能源效率和能源消费碳排放强度则主要是抑制作用。基于 STIRPAT 模型分析,发现人均总产出水平、单位产出的化石能源消耗量、煤炭消费占比均对碳排放有显著的强化作用。建议:大力发展便捷的公共交通、倡导绿色出行,减轻交通对大城市碳排放的压力;通过改变能源结构,通过电力能源生产外迁等方式降低排放密度超高的地区碳排放压力、开发清洁能源,降低二氧化碳高排放能源消费占比;对高能耗产业逐步实施“产能总量控制---限制出口---进口替代”路径的产业优化措施,逐步减轻“输入性碳排放”压力。%Based on descriptive statistics analysis method to analyze the 30 provinces and autonomous regions and the country’s car-bon dioxide emissions ,this paper found : per capita carbon emissions and carbon emissions density are not necessarily linked , secondary energy output region’s per capita carbon emissions are high ,and the density of carbon emissions is low ;carbon emissions density had obvi-ously spatial clustering effect .The LMDI method is used to decompose on the driving factors based on carbon emissions per capita ,found that per capita output has stimulating effect ,while energy efficiency and carbon intensity of energy consumption are inhibited .Based on analysis of influencing factors by STIRPAT model ,we found that per capita output ,fossil energy consumption per unit of output ,coal con-sumption accounted for carbon emissions have a significant strengthening effect .Thus it recommends to vigorously develop the convenient public transportation ,promote green travel ,and reduce traffic pressure on the city carbon emissions ; as supplementary carbon trading ,by changing

  2. Comparison of the composition and gas/particle partitioning of organic acids in monoterpene and isoprene dominated environments

    Science.gov (United States)

    Thompson, S.; Yatavelli, L. R.; Stark, H.; Kimmel, J.; Krechmer, J.; Hu, W.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2013-12-01

    Gas and particle-phase organic acids measurements from two different regions with different biogenic volatile organic compound emissions are used to understand gas/particle partitioning principles. A Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS), with acetate (CH3COO-) as the reagent ion was used to selectively detect acids. Hundreds of gas and particle-phase organic acids were measured in both locations, a monoterpene and MBO-dominated environment (ponderosa pine forest in Colorado, BEACHON-RoMBAS 2011) and isoprene and terpene-dominated environment (mixed deciduous and pine forest in Alabama, SOAS 2013). Time series of gas/particle partitioning for ions consistent with tracers for isoprene oxidation such as methacrylic acid epoxide (MAE) and isoprene epoxydiol (IEPOX) and tracers for α-pinene oxidation such as pinic and pinonic acid will be presented. Gas/particle partitioning, represented as the fraction of each species in the particle-phase, Fp, was calculated for C1-C18 alkanoic acids and biogenic VOC oxidation tracers and compared to an absorptive partitioning model. These results are compared with those of two other instruments that can also quantify gas/particle partitioning with high time resolution: a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG) and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS). Data from both environments were consistent with the values and trends predicted by the absorptive partitioning model for the tracer acids. However, for low carbon number alkanoic acids we report a higher fraction in the particle phase than predicted by the model. The Fp for the bulk-averaged acids and its relationship to the degree of oxidation and carbon number will also be presented. Temporal patterns and correlations with atmospheric conditions and composition will be explored for individual and bulk acids. We will discuss atmospheric implications of the gas/particle partitioning

  3. Carbon Solubility in Core Melts in Shallow Magma Ocean Environment and its bearing on Distribution of Carbon between Deep Earth Reservoirs

    Science.gov (United States)

    Dasgupta, R.; Walker, D.

    2007-12-01

    Carbon affects the melting phase relations of mantle rocks [1] and core metal [2], influences the physical properties of molten silicates and metals, and also has significant effect on partitioning of other key elements between various deep Earth phases. But the carbon budget of Earth's deep mantle and core is poorly constrained due to lack of knowledge of behavior of carbon during core formation. In order to determine the storage capacity of dissolved carbon in metallic core melts and to put constraints on partitioning of carbon between silicate mantle and metallic core, we have determined the solubility of carbon in molten core metal at P- T conditions relevant for a shallow magma ocean.Experiments are performed at 2 GPa and to 2500 °C using a piston cylinder apparatus. Pure Fe-rod or a mixture of Fe-5.2%Ni loaded into graphite capsules were used as starting materials. Al coated run products are analyzed by EMP. Carbon concentration of 5.8 ± 0.4 wt.% at 2000 °C, 6.5 ± 0.9 wt.% at 2250 °C, and 7.5 ± 1.2 wt.% at 2500 °C are measured in quenched iron melt saturated with graphite. The trend of C solubility versus temperature for Fe-5.2 wt.% Ni melt, within analytical uncertainties, is similar to that of pure Fe.We have compared our solubility data and an estimate of the current carbon content of the mantle with the carbon content of core melts and residual mantle silicates respectively, derived from equilibrium batch or fractional segregation of core liquids, to constrain the partition coefficient of carbon between silicate and metallic melts in a magma ocean, DC. Translation of the limits of DC, derived from our solubility data, on calculation of carbon content of the residual silicate shows that the observed mantle concentration of carbon is too low to be matched by the process of shallow magma ocean fractionation of carbon between metal and silicate in a chondritic protoearth. If carbon solubility in liquid Fe does not change strongly as a function of

  4. In situ fate and partitioning of waterborne perfluoroalkyl acids (PFAAs) in the Youngsan and Nakdong River Estuaries of South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seongjin [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Khim, Jong Seong, E-mail: jskocean@snu.ac.kr [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Park, Jinsoon [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Kim, Minhee; Kim, Woong-Ki; Jung, Jinho; Hyun, Seunghun; Kim, Jeong-Gyu [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of); Lee, Hyojin; Choi, Heeseon J. [Department of Environmental Chemistry and Ecology, GeoSystem Research Corporation, Gunpo (Korea, Republic of); Codling, Garry [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Giesy, John P. [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Department of Zoology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China)

    2013-02-15

    Concentrations, distributions, fate, and partitioning of perfluoroalkyl acids (PFAAs) were investigated in surface water (n = 34) collected from the Youngsan and Nakdong River Estuaries of South Korea. Thirteen individual PFAAs in water and suspended solids (SS) were quantified by use of HPLC–MS/MS. PFAAs were detected in all samples, which indicated that they were widely distributed in the study area. Greater concentrations of PFAAs were found at some inland sites which seemed to be affected by direct input from point sources, such as wastewater treatment plants, and/or indirect diffusive sources, such as surface runoff. Spatial distributions of PFAAs in estuaries along transects toward the open sea demonstrated that these chemicals were transported to the outer region primarily by water discharged during the rainy season. Field-based partition coefficients (K{sub d}) for long-chain PFAAs (C ≥ 8) were significantly correlated with salinity (r{sup 2} = 0.48 to 0.73, p < 0.01); K{sub d} values increased exponentially as a function of salinity. Due to the ‘salting-out’ effect, PFAAs were largely scavenged by adsorption onto SS and/or sediments in estuarine environments. In addition, values for K{sub d} of those PFAAs were directly proportional to the number of carbon atoms in the PFAAs. Salting constants of selected PFAAs were notably greater than those of other environmental organic contaminants, which indicated that adsorption of PFAAs is largely associated with salinity. Overall, the results of the present study will provide better understanding of the fate and transport of PFAAs in the zone of salinity boundary that can be used for developing fate models of PFAAs in the coastal marine environment. - Highlights: ► In situ fate and partitioning of PFAAs were described along salinity gradients in estuaries. ► Salinity was found to be the key factor controlling adsorption of waterborne PFAAs. ► The K{sub d} for longer-chain PFAAs (C ≥ 8) increased as

  5. Development of partitioning method. Back-extraction of uranium from DIDPA solvent

    International Nuclear Information System (INIS)

    A partitioning method has been developed under the concepts of separation of elements in high level liquid waste generated from nuclear fuel reprocessing according to their half lives and radiological toxicity and of disposal of them by suitable methods. In the partitioning process developed in JAERI solvent, extraction with DIDPA (di-isodecyl phosphoric acid) was adopted for actinide separation. The present paper describes the results of study on back-extraction of hexavalent uranium from DIDPA. Most experiments were carried out to select a suitable reagent for back-extraction of U (VI) extracted from 0.5M nitric acid with DIDPA. The experimental results show that distribution ratios of U (VI) is less than 0.1 in the back-extractions with 1.5M sodium carbonate-15 vol% alcohol or 20wt% hydrazine carbonate-10 vol% alcohol. Uranium in the sodium carbonate solution were recovered by anion-exchange with strong-base resins and eluted by NH4NO3 and other reagents. The results of the present study confirm the validity of the DIDPA extraction process; U, Pu, Np, Am and Cm in HLW are extracted simultaneously with DIDPA, and they are recovered from DIDPA with various reagent: nitric acid for Am and Cm, oxalic acid for Np and Pu, and sodium carbonate or hydrazine carbonate for U. (author)

  6. Development of partitioning method. Back-extraction of uranium from DIDPA solvent

    Energy Technology Data Exchange (ETDEWEB)

    Tatsugae, Ryozo; Kubota, Masumitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shirahashi, Koichi

    1995-03-01

    A partitioning method has been developed under the concepts of separation of elements in high level liquid waste generated from nuclear fuel reprocessing according to their half lives and radiological toxicity and of disposal of them by suitable methods. In the partitioning process developed in JAERI solvent, extraction with DIDPA (di-isodecyl phosphoric acid) was adopted for actinide separation. The present paper describes the results of study on back-extraction of hexavalent uranium from DIDPA. Most experiments were carried out to select a suitable reagent for back-extraction of U (VI) extracted from 0.5M nitric acid with DIDPA. The experimental results show that distribution ratios of U (VI) is less than 0.1 in the back-extractions with 1.5M sodium carbonate-15 vol% alcohol or 20wt% hydrazine carbonate-10 vol% alcohol. Uranium in the sodium carbonate solution were recovered by anion-exchange with strong-base resins and eluted by NH{sub 4}NO{sub 3} and other reagents. The results of the present study confirm the validity of the DIDPA extraction process; U, Pu, Np, Am and Cm in HLW are extracted simultaneously with DIDPA, and they are recovered from DIDPA with various reagent: nitric acid for Am and Cm, oxalic acid for Np and Pu, and sodium carbonate or hydrazine carbonate for U. (author).

  7. Comparison of the morphology of alkali–silica gel formed in limestones in concrete affected by the so-called alkali–carbonate reaction (ACR) and alkali–silica reaction (ASR)

    International Nuclear Information System (INIS)

    The morphology of alkali–silica gel formed in dolomitic limestone affected by the so-called alkali–carbonate reaction (ACR) is compared to that formed in a siliceous limestone affected by alkali–silica reaction (ASR). The particle of dolomitic limestone was extracted from the experimental sidewalk in Kingston, Ontario, Canada that was badly cracked due to ACR. The siliceous limestone particle was extracted from a core taken from a highway structure in Quebec, affected by ASR. Both cores exhibited marked reaction rims around limestone particles. The aggregate particles were polished and given a light gold coating in preparation for examination in a scanning electron microscope. The gel in the ACR aggregate formed stringers between the calcite crystals in the matrix of the rock, whereas gel in ASR concrete formed a thick layer on top of the calcite crystals, that are of the same size as in the ACR aggregate

  8. Bipartite graph partitioning and data clustering

    International Nuclear Information System (INIS)

    Many data types arising from data mining applications can be modeled as bipartite graphs, examples include terms and documents in a text corpus, customers and purchasing items in market basket analysis and reviewers and movies in a movie recommender system. In this paper, the authors propose a new data clustering method based on partitioning the underlying biopartite graph. The partition is constructed by minimizing a normalized sum of edge weights between unmatched pairs of vertices of the bipartite graph. They show that an approximate solution to the minimization problem can be obtained by computing a partial singular value decomposition (SVD) of the associated edge weight matrix of the bipartite graph. They point out the connection of their clustering algorithm to correspondence analysis used in multivariate analysis. They also briefly discuss the issue of assigning data objects to multiple clusters. In the experimental results, they apply their clustering algorithm to the problem of document clustering to illustrate its effectiveness and efficiency

  9. Partitioning and transmutation. Annual Report 1999

    International Nuclear Information System (INIS)

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed

  10. Supersymmetric partition functions on Riemann surfaces

    CERN Document Server

    Benini, Francesco

    2016-01-01

    We present a compact formula for the supersymmetric partition function of 2d N=(2,2), 3d N=2 and 4d N=1 gauge theories on $\\Sigma_g \\times T^n$ with partial topological twist on $\\Sigma_g$, where $\\Sigma_g$ is a Riemann surface of arbitrary genus and $T^n$ is a torus with n=0,1,2, respectively. In 2d we also include certain local operator insertions, and in 3d we include Wilson line operator insertions along $S^1$. For genus g=1, the formula computes the Witten index. We present a few simple Abelian and non-Abelian examples, including new tests of non-perturbative dualities. We also show that the large N partition function of ABJM theory on $\\Sigma_g \\times S^1$ reproduces the Bekenstein-Hawking entropy of BPS black holes in AdS4 whose horizon has $\\Sigma_g$ topology.

  11. Sifting Function Partition for the Goldbach Problem

    CERN Document Server

    Song, Fu-Gao

    2008-01-01

    All sieve methods for the Goldbach problem sift out all the composite numbers; even though, strictly speaking, it is not necessary to do so and which is, in general, very difficult. Some new methods introduced in this paper show that the Goldbach problem can be solved under sifting out only some composite numbers. In fact, in order to prove the Goldbach conjecture, it is only necessary to show that there are prime numbers left in the residual integers after the initial sifting! This idea can be implemented by using one of the three methods called sifting function partition by integer sort, sifting function partition by intervals and comparative sieve method, respectively. These are feasible methods for solving both the Goldbach problem and the problem of twin primes. An added bonus of the above methods is the elimination of the indeterminacy of the sifting functions brought about by their upper and lower bounds.

  12. Number Partitioning via Quantum Adiabatic Computation

    Science.gov (United States)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  13. Data Partitioning for Parallel Entity Matching

    CERN Document Server

    Kirsten, Toralf; Hartung, Michael; Groß, Anika; Köpcke, Hanna; Rahm, Erhard

    2010-01-01

    Entity matching is an important and difficult step for integrating web data. To reduce the typically high execution time for matching we investigate how we can perform entity matching in parallel on a distributed infrastructure. We propose different strategies to partition the input data and generate multiple match tasks that can be independently executed. One of our strategies supports both, blocking to reduce the search space for matching and parallel matching to improve efficiency. Special attention is given to the number and size of data partitions as they impact the overall communication overhead and memory requirements of individual match tasks. We have developed a service-based distributed infrastructure for the parallel execution of match workflows. We evaluate our approach in detail for different match strategies for matching real-world product data of different web shops. We also consider caching of in-put entities and affinity-based scheduling of match tasks.

  14. On partition function in Astronomy \\& Astrophysics

    CERN Document Server

    Sharma, M K; Chandra, Suresh

    2015-01-01

    In order to analyze spectrum from the interstellar medium (ISM), spectrum of the molecule of interest is recorded in a laboratory, and accurate rotational and centrifugal distortion constants are derived. By using these constants, one can calculate accurate partition function. However, in the same paper, where these constants are derived, the partition function is calculated by using a semi-empirical expression. We have looked into the details of this semi-empirical expression and compared the values, obtained from it, with the accurate ones. As an example, we have considered the case of Methanimine (CH$_2$NH) which is detected in a number of cosmic objects. It is found that for the kinetic temperature $T > 120$ K, the semi-empirical expression gives large value as compared to the accurate one. The deviation becomes about 25\\% larger than the accurate one at the kinetic temperature of 400 K.

  15. Analysis of fractals with combined partition

    Science.gov (United States)

    Dedovich, T. G.; Tokarev, M. V.

    2016-03-01

    The space—time properties in the general theory of relativity, as well as the discreteness and non-Archimedean property of space in the quantum theory of gravitation, are discussed. It is emphasized that the properties of bodies in non-Archimedean spaces coincide with the properties of the field of P-adic numbers and fractals. It is suggested that parton showers, used for describing interactions between particles and nuclei at high energies, have a fractal structure. A mechanism of fractal formation with combined partition is considered. The modified SePaC method is offered for the analysis of such fractals. The BC, PaC, and SePaC methods for determining a fractal dimension and other fractal characteristics (numbers of levels and values of a base of forming a fractal) are considered. It is found that the SePaC method has advantages for the analysis of fractals with combined partition.

  16. Nested partitions method, theory and applications

    CERN Document Server

    Shi, Leyuan

    2009-01-01

    There is increasing need to solve large-scale complex optimization problems in a wide variety of science and engineering applications, including designing telecommunication networks for multimedia transmission, planning and scheduling problems in manufacturing and military operations, or designing nanoscale devices and systems. Advances in technology and information systems have made such optimization problems more and more complicated in terms of size and uncertainty. Nested Partitions Method, Theory and Applications provides a cutting-edge research tool to use for large-scale, complex systems optimization. The Nested Partitions (NP) framework is an innovative mix of traditional optimization methodology and probabilistic assumptions. An important feature of the NP framework is that it combines many well-known optimization techniques, including dynamic programming, mixed integer programming, genetic algorithms and tabu search, while also integrating many problem-specific local search heuristics. The book uses...

  17. Mantle Mineral/Silicate Melt Partitioning

    Science.gov (United States)

    McFarlane, E. A.; Drake, M. J.

    1992-07-01

    Introduction: The partitioning of elements among mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. It has been proposed that the elevated Mg/Si ratio of the upper mantle of the Earth is a consequence of the flotation of olivine into the upper mantle (Agee and Walker, 1988). Agee and Walker (1988) have generated a model via mass balance by assuming average mineral compositions to generate upper mantle peridotite. This model determines that upper mantle peridotite could result from the addition of 32.7% olivine and 0.9% majorite garnet into the upper mantle, and subtraction of 27.6% perovskite from the upper mantle (Agee and Walker, 1988). The present contribution uses experimental data to examine the consequences of such multiple phase fractionations enabling an independent evaluation of the above mentioned model. Here we use Mg-perovskite/melt partition coefficients from both a synthetic and a natural system (KLB-1) obtained from this laboratory. Also used are partition coefficient values for majorite garnet/melt, beta spinel/melt and olivine/melt partitioning (McFarlane et al., 1991b; McFarlane et al., 1992). Multiple phase fractionations are examined using the equilibrium crystallization equation and partition coefficient values. The mineral proportions determined by Agee and Walker (1988) are converted into weight fractions and used to compute a bulk partition coefficient value. Discussion: There has been a significant debate concerning whether measured values of trace element partition coefficients permit large-scale fractionation of liquidus phases from an early terrestrial magma ocean (Kato et al., 1988a,b; Walker and Agee, 1989; Drake, 1989; Drake et al., 1991; McFarlane et al., 1990, 1991). It should be noted that it is unclear which, if any, numerical values of partition coefficients are appropriate for examining this question, and certainly the assumptions for the current model must be more fully

  18. Combinatorics, partitions, and many-body physics

    International Nuclear Information System (INIS)

    Some combinatorial techniques are presented which streamline the graphical analysis used in N-body scattering theory. The basic results are derived using properties of the lattice of partitions of N particles, which naturally arises on classifying translational symmetry properties of N-body operators. Classical cumulant expansions are recovered, previously obtained results are presented from a unified point of view, and some new theorems concerning connectivity of N-body equations are presented

  19. Gas flow in a partitioned rotor

    International Nuclear Information System (INIS)

    The governing equations for linearized flow in a long gas-centrifuge sector are derived from the compressible, Navier-Stokes equations for a rotating, viscous, heat-conducting fluid. The resulting Poisson equation describing the fluid motion is reduced to the corresponding eigenfunction problem by separation of variables. A generalized Fourier Series solution is ultimately found to express the perturbation velocity. Illustrations of the flow field are presented and sensitivity to the number of partitions is found to be strong

  20. Biogeography of time partitioning in mammals

    OpenAIRE

    J Bennie; JP Duffy; R Inger; KJ Gaston

    2014-01-01

    The majority of mammal species are nocturnal, but many are diurnal (active during the day), crepuscular (active mostly during twilight), or cathemeral (active during hours of daylight and darkness). These different strategies for regulating activity over a 24-h cycle are associated with suites of adaptations to light or semidarkness. The biogeography of these time partitioning strategies is, however, poorly understood. We show that global patterns in mammal diversity with different diel activ...